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Abstract Continuum Parallel Robots are mechanical devices with closed loops

where kinematic pairs have been eliminated and motion is obtained by large deforma-

tions of certain elements. Most compliant mechanisms use notches in thick elements

to produce the effect of kinematic pairs. A few are designed so that slender elements

can deform and produce the desired motion. Some microelectromechanical systems

have used this principle to create bistable planar mechanisms. The purpose of this

work is to extend such principle in the field of macro mechanisms for manipulation.

The aim is to design the counterparts to some classical parallel manipulators solving

the corresponding kinematic problems. In doing this, the authors will have to work

out the most efficient way to solve a position problem where geometry and forces are

involved. Such compliant mechanisms could be combined in the future with tenseg-

rity systems to enhance the available workspace. In this first report we will focus on

the simplest planar parallel mechanism of two degrees of freedom.

Keywords Parallel continuum robot ⋅ Compliant mechanism ⋅ Kinematic

analysis ⋅ Experimental mechanics

1 Introduction

Continuum Parallel Robots have been designed and studied with some success

recently, either as compliant mechanisms [1, 2] or soft robot systems [3]. However,

apart from classical texts on the subject of nonlinear deformations such as [4], or

a seminal work on compliant mechanisms such as [5], there is not much academic
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literature on the subject of the kinematics problems to be solved in such closed loop

devices using analytical approaches. Nevertheless, some of the work done in MEMS

devices can help in the process [6, 7].

The purpose of the work reported here is to establish an analysis frame where

the systematic kinematic analysis of parallel devices that make use of flexible ele-

ments deforming in a nonlinear extent can be established. This is the first step in such

journey, where starting from the classical analysis of the elastica of a bar clamped at

both extremes that makes use of the elliptic integrals, we have solved a planar parallel

device with two degrees of freedom analytically. The key issue is the consideration

of the force equilibrium at the kinematic stage of the analysis.

2 Fundamentals of Flexible Bars Clamped at both Ends

A slender element under flexion in a plane acquires the form of a planar curve as

in Fig. 1. Navier-Bernouilli hypothesis assumes that its cross sections remain planar

and perpendicular to the bent curve. Bernoulli-Euler law establishes that the bending

moment M at a point is expressed proportional to the curvature 𝜅 as:

𝜅 = d𝜃
ds

= M
EI

(1)

where E is the Young modulus and I is the moment of the cross section about the

neutral axis.

Focusing on the case of a bar clamped at both extremes, we define for a section in

equilibrium (see Fig. 1): R and 𝜓 as the force (modulus and orientation respectively)

at the extremity, M1 as the bending moment at a extreme, and M as the bending

moment at a cross-section. The static equilibrium of moments for that portion of bar

can be expressed to get M and substitute into Eq. (1) to obtain:

𝜅 = d𝜃
ds

= M
EI

=
M1
EI

+ R
EI

cos𝜓 y − R
EI

sin𝜓 x (2)

Fig. 1 A section of a planar

bar at equilibrium
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Its derivative with respect to the arc length s yields

d𝜅
ds

= d2𝜃
d2s

= R
EI

cos𝜓
dy
ds

− R
EI

sin𝜓 dx
ds

(3)

and in terms of 𝜃 it gives

d𝜅
ds

= d2𝜃
d2s

= R
EI

cos𝜓 sin 𝜃 − R
EI

sin𝜓 cos 𝜃 = R
EI

sin (𝜃 − 𝜓) (4)

A first integration in 𝜃 provides the expression

𝜅
2

2
= − R

EI
cos (𝜃 − 𝜓) + C (5)

where C is a constant of integration. As a result the following differential equation

is obtained

𝜅 = d𝜃
ds

=
√

2C − 2R
EI

cos (𝜃 − 𝜓) (6)

A second integration requires a more complex mathematical manipulation. Several

approaches exist in the literature, here we will follow [6], where the first step is a

sort of change of variables from 𝜃,C to 𝜙, k to give

C = R(2k2 − 1)
EI

(7)

cos
(
𝜓 − 𝜃

2

)
= k sin𝜙 (8)

Differentiation of Eq. (8) gives

d𝜃 = 2k cos𝜙√
1 − k2 sin2 𝜙

d𝜙 (9)

and simple trigonometric manipulation of Eq. (8) also provides

cos (𝜃 − 𝜓) = 2k2 sin2 𝜙 − 1 (10)

Upon substitution of Eqs. (7), (9) and (10) into Eq. (6), and further simplifications

we get an integral from one extreme of the bar of length L to the other:

√
RL2
EI

= ∫
𝜙2

𝜙1

1√
1 − k2 sin2 𝜙

d𝜙 = F(k, 𝜙2) − F(k, 𝜙1) (11)

where F(k, 𝜙) is the incomplete elliptic integral of the first kind.
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Fig. 2 Modes 1 and 2 of the buckling of a clamped-clamped bar

For given boundary conditions on the slope of the bar at extremes, 𝜃1 and 𝜃2, and

a given force at extremes R and 𝜓 , we can proceed as follows. Considering the case

where 𝜃1 and 𝜃2 are null, it is obtained

𝜙1 = arcsin
(

1
k
cos

(
𝜓

2

))
𝜙2 = 𝜙1 + n𝜋
𝜙2 = m𝜋 − 𝜙1

(12)

where 𝜙1 =
[
−𝜋∕2, 𝜋∕2

]
, n = 2, 4,… and m = 1, 3,…. The angle 𝜙 will vary con-

tinuously from 𝜙1 to 𝜙2. Then, modulus k = [−1, 1] can be obtained iteratively on

Eq. (11) for a certain value of n or m. These later values define the buckling mode

(see Fig. 2). Inflection points of the bar correspond to values 𝜙 = q𝜋∕2 with even

values of q.

Upon substitution of Eqs. (7) and (8) into Eq. (6), the curvature at each point is

given by

𝜅 = d𝜃
ds

= 2k
√

R
EI

cos𝜙 (13)

In order to get the x coordinate of a point in the curve, Eq. (13) is expressed as

d𝜃
ds

dx
dx

= cos 𝜃 d𝜃
dx

= 2k
√

R
EI

cos𝜙 (14)

where we will substitute d𝜃 by Eq. (9) and cos 𝜃 as a function of k and 𝜓 from Eq.

(10). As a result we get the integral:

x = −
√

EI
R

cos𝜓
[
2E(k, 𝜙i) − 2E(k, 𝜙1) − F(k, 𝜙i) + F(k, 𝜙1)

]
+

+
√

EI
R
2k sin𝜓

[
cos𝜙i − cos𝜙1

]
(15)

where E(k, 𝜙) is the incomplete elliptic integral of the second kind. In order to get

the y coordinate a similar procedure to the one followed for x can be worked out.
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Fig. 3 Solutions for modes 1 (red curve) and 2 (black curve) for 𝜓 = 135 and 𝜓 = 315 from kmin
to k= 1

For a given value of the coordinates of the extreme of the deflected bar, i.e. a and b,

and the boundary conditions on the slope of the bar at extremes 𝜃1, 𝜃2, we must iterate

on 𝜓 and k in Eq. (11), obtaining x from Eq. (15) and y from an analogous equation,

and verify the error with respect to a and b until it is below a given threshold.

From the above results we can note that solutions can be found between some lim-

iting values for k in an unknown range of 𝜓 for each mode separately. A minimum

value for k, upon analysis of Eq. (12), corresponds to limiting values 𝜙1 = −𝜋∕2
and 𝜙1 = 𝜋∕2. In the case of a clamped-clamped bar, modes 1 and 2 have a coin-

cident 𝜙2 = 𝜋 − (−𝜋∕2) = −𝜋∕2 + 2𝜋 and 𝜙2 = 𝜋 − (𝜋∕2) = 𝜋∕2 + 2𝜋. There is a

common limit for both modes defined as the curve of end positions of the buckled

bar for any 𝜓 and the limiting value of kmin = || cos(𝜓

2

)||, positive for the range

k =
[
kmin, 1

]
and negative for the range k =

[
−kmin,−1

]
.

If we limit the analysis to positive values of k, and plot the end positions of the

bar for a given value of 𝜓 in the range from kmin to k = 1 we get the plot in Fig. 3.

As it can be seen, solutions for both modes start from the limiting curve of kmin and

go up to a k value of 1.

3 Kinematic Analysis of the 𝟐 DoF Parallel Continuum
Robot

The case study is a planar parallel continuous robot with 2 degrees of freedom where

two linear actuators introduce forces on two collinear sliders where bars have been

clamped at 45◦, and are welded together at 90◦ at the other extremity. From a home

position where no deformation is forced, moving the sliders closer will make the

end-effector reach upper positions, while getting away produces the contrary (see

Fig. 4).

The purpose of the kinematic analysis is to find the function between the value

of such relative compression-extension of sliders and the y coordinate reached by

the end-effector point. In order to do that, the key point is the condition of force
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Fig. 4 Solutions of the

position problem of a 2 DoF

parallel continuum robot

Fig. 5 Forces at equilibrium

in such positions

Fig. 6 Feasible solution

curve of the position

problem

equilibrium to be accomplished. At any time the forces exerted by one bar onto the

other at the end-effector connection must be in equilibrium. With no load applied it

implies that a force R is parallel to the sliding guide (see Fig. 5). Therefore, the angle

𝜓 of the force at the end of each of the clamped bars is known.

If we rotate the problem in Fig. 5 45◦ clockwise, we get the fundamental problem

of a bar clamped at both extremes studied in the previous section. The solutions for

the bar under compression will be on the curve of solutions for 𝜓 = 135◦, while for

tension on the curve of 𝜓 = 315◦. Superimposing Fig. 5 on Fig. 3 we get Fig. 6. As

mode 2 is out of the possible solutions, only curves corresponding to mode 1 are

shown.

The computed plot is used to solve Inverse and Direct Position problems. In the

Inverse Position Problem, for a given value of y for the end-effector point, we draw

a line parallel to the rotated x axis at such a distance. At the intersection with the

curve we get the feasible solution, either for compression or tension. In the Direct

Position Problem, for a given value of the half-distance between sliders, we draw a
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line parallel to the rotated y axis at such a distance from the first slider and at the

intersection with the curve we get the solution.

4 Numerical and Experimental Validation

In order to validate the proposed analytical approach, a numerical analysis using

FEA and an experimental analysis have been carried out. The FEM model consists

of two beam elements clamped together at a right angle, with two specific boundary

conditions. These conditions are two clamped ends at the non-common vertex of the

beams. The material is PTFE with an elastic modulus of E= 4 GPa. The model is

analyzed using the non-linear method. Beam189-type elements have been used in the

model by the software ANSYS. Starting from an initial configuration of the system

where no deformation exists, forced displacements either in the input or the output

are imposed. Solutions to both cases are identical.

A simple prototype was assembled and a series of experimental measurements

were taken on an MC 850 ZEISS three-dimensional measuring machine (precision

is ±0.005 mm), with experimental set up in Fig. 7. Results obtained using analytical

method, FEM analysis, and experimental measurements are compared in the plots

of Fig. 8. Validation of the analysis methods is accomplished.

Fig. 7 The experimental set

up with a prototype

Fig. 8 Comparison of

analytical, numerical and

experimental solutions of the

position problem
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5 Conclusions and Future Work

The use of flexible links to create parallel devices has a potential to produce new

mechanisms for applications where human interaction is present. The analytical

methods available in the literature can be adjusted to solve the position problems of

such mechanisms under the introduction of additional conditions on the force equi-

librium of the mechanism. A simple parallel continuum mechanism has been solved

to prove the feasibility and implementation of the proposed approach for kinematics

analysis and characterization of Continuum Parallel robots. Compared to tenseg-

rity mechanisms, the number of elements in the system is minimized because of the

capability of the rigid elements to work under compression mode.
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