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Abstract This paper presents a comprehensive analytical solution to the forward

kinematic problem of a newly introduced spatial parallel manipulator, namely, the

3-RPRS. The manipulator has three legs with two actuators in each, which connect a

moving triangular platform to a fixed base. Loop-closure equations are formed to find

the unknown passive rotary joint angle in each leg. These equations are subsequently

reduced to a single univariate polynomial equation of degree 16. The coefficients of

this equation are obtained as closed-form functions of the architecture parameters

of the manipulator and the input joint angles, and therefore the analysis covers all

possible architectures and configurations. Furthermore, it is found that the polyno-

mial has only the even powers, therefore leading to 8 pairs of solutions, each pair

being mirrored at the base platform. The theoretical developments are illustrated via

a numerical example. The results obtained are validated by checking the residues

of the original loop-closure equations, thereby establishing the correctness of the

formulation as well as the results.
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1 Introduction

Parallel manipulators have attracted a lot of research attentions in the past few

decades for their superior performance over their serial counterparts in terms of the

load-carrying capacity, rigidity and accuracy. While some manipulators are very well

established in terms of their applications in the industries, such as the Stewart plat-

form manipulator (introduced in 1954) [6], and the Delta robot (introduced in 1980s)

[4], many more continue to emerge. For instance, the Agile Eye [2] is a three degree

of freedom (DoF) spherical parallel manipulator, mainly developed for camera ori-

entation. The mechanical architecture of the robot allows it to achieve high velocities

and acceleration. This manipulator has been immensely popular since its introduc-

tion in 1993. A partially decoupled four DoF parallel manipulator with the acronym

PAMINSA has been presented in [3]. The specialty of this robot is the decoupling of

the displacements along the horizontal and vertical axes, enabling static balancing,

and reducing the loads on the actuators.

A new six DoF spatial parallel manipulator was introduced in [7]. The manipula-

tor has three legs mounted on a circualr guide at the base, which allows it to exhibit

large (i.e., kinematically unbounded) yaw motions, which is not very common in

platform-type spatial parallel manipulators. In [7] only the inverse kinematic analy-

sis of the manipulator was presented. In the present paper, the forward kinematic

problem of the manipulator is studied in the closed-form, to the extent permissible

mathematically. The loop-closure constraints are derived in the joint space. Through

a sequence of elimination of variables, the set of equations is reduced to a single

equation in one of the passive joint variables. This equation, called the forward kine-
matics univariate (FKU) (in accordance with [5]), when transformed to its algebraic

form, turns out to be of degree 16. However, using symbolic simplifications
1

per-

formed in the computer algebra system Mathematica, it is revealed that the FKU

is actually of degree 8 in the square of the remaining variable. Thus, it is established

that there are essentially 8 possible poses of the manipulator, the remaining being

mirror reflections of the same, at the base platform. The theoretical calculations are

illustrated through a numerical example, and the validity of the results obtained is

demonstrated by computing the norm of the residues of the constraint equations.

The rest of the paper is organised as follows: Sect. 2 covers the mathematical for-

mulation, starting from the geometrical description of the manipulator, then form-

ing the loop-closure equations and finally presenting a detailed solution procedure

for the forward kinematic problem. Section 3 presents a numerical case study. The

correctness of the results obtained has been verified by checking the residues of the

loop-closure equations. The conclusions are presented in Sect. 4.

1
Interested readers can find the details of the used simplification scheme in [1, 5].
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2 Mathematical Formulation

The geometry of the manipulator is described in this section, followed by the formu-

lation of its forward kinematics.

2.1 Geometry

The geometry of the 3-RPRS is shown in Fig. 1. It consists of a fixed base and a mov-

ing top platform, connected by three legs of identical architecture, namely, RPRS.

The first two joints in each leg are active (i.e., actuated), together imparting general

six DoF spatial motion to the top platform. The first joint imparts a rotation about the

axis Z0. Physically the rotary motion is achieved by mounting the links on a circular

guide. The next joint is prismatic, with its axis orthogonal to the said circular guide.

A rigid strut of length l is connected to the prismatically actuated link at the base,

through a passive (i.e., unactuated) revolute joint situated at the point bi, i = 1, 2, 3,

which are given by:

bi = [di cos 𝜃i, di sin 𝜃i, 0]⊤. (1)

In Eq. (1), di denotes the extent of the actuation of the prismatic point, and 𝜃i
denotes the orientation of the ith prismatic joint axis, given as the in-plane CCW

rotation about the Z0 axis, measured from the X0 axis. The vector along the ith strut

is expressed in the local frame of the leg as (see the frame Xl3Yl3Zl3 in Fig. 1):

Fig. 1 Schematic

representation of the

manipulator
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li = [l cos𝜙i, 0, l sin𝜙i]⊤. (2)

The upper extremity of the ith strut is connected to the end-effector platform by a

passive spherical joint at the point pi, where the location of pi in the base-frame {0}
is given by:

pi = bi + Ri
(
𝜃i
)
li. (3)

In Eq. (3), Ri
(
𝜃i
)

is the rotation matrix corresponding to a counter-clockwise rota-

tion about the positive Z0 axis, by an angle 𝜃i. The end-effector is an equilateral

triangle, with each side having length s.
The complete set of joint variables describing the configuration of the manipu-

lator is given by q = [𝜃1, 𝜃2, 𝜃3, d1, d2, d3, 𝜙1, 𝜙2, 𝜙3]⊤, of which 𝜽 = [𝜃1, 𝜃2, 𝜃3, d1,
d2, d3]⊤ are designated as the active variables, and 𝝓 = [𝜙1, 𝜙2, 𝜙3]⊤ are the passive
rotary joint variables. In terms of these variables, the forward kinematic problem

reduces to the task of finding 𝝓, for given geometric parameters l, s, which have

already been defined above, and the known inputs, 𝜽. The first step towards that is

to find the three independent equations involving 𝜽 and 𝝓, which are derived next.

2.2 Loop-Closure Equations

The manipulator is required to maintain loop-closure at every instance, leading to

the constraints that apply on the motion of the top platform, and the manipulator in

general. In this case, the loop-closure constraints can be stated as follows: the tip

points of each leg, pi, move in space in such a manner, that the distance between any

two of them is held constant, and equal to s (as the top platform is a an equilateral

triangle of side s). This statement is translated into the desired three equations in 𝝓

in the following:

(
p1 − p2

)
⊤

⋅
(
p1 − p2

)
− s2 = 0 ⇒ f1

(
𝜙1, 𝜙2

)
= 0, (4)

(
p2 − p3

)
⊤

⋅
(
p2 − p3

)
− s2 = 0 ⇒ f2

(
𝜙2, 𝜙3

)
= 0, (5)

(
p3 − p1

)
⊤

⋅
(
p3 − p1

)
− s2 = 0 ⇒ f3

(
𝜙3, 𝜙1

)
= 0. (6)

Equations (4)–(6) represent the loop-closure equations, which are solved next to

obtain the values of the unknown passive joint rotation, 𝜙i.
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2.3 Solution

Equations (4)–(6) are linear in the cosine and sine of (𝜙1, 𝜙2),
(
𝜙2, 𝜙3

)
and

(
𝜙3, 𝜙1

)
,

respectively. Solving for cos𝜙1 and sin𝜙1 simultaneously from Eqs. (4) and (6) and

substituting in the identity sin2 𝜙1 + cos2 𝜙1 = 1, the unknown 𝜙1 is eliminated from

the system of equations, while leading to a new equation in the remaining variables:

g(𝜙2, 𝜙3) = 0. (7)

Also, the common solution of f1 = 0, f3 = 0 in 𝜙1 is obtained uniquely as

𝜙1 = atan2(cos𝜙1, sin𝜙1), (8)

where atan2(cos(⋅), sin(⋅)) denotes the two-argument arctangent function. At this

stage, there remain two equations involving the sine and cosine of 𝜙2, 𝜙3: f2 = 0,

and g = 0. As g is found to be quadratic in these functions, it is easier to work with

the algebraic forms of these equations henceforth. These are converted to polynomi-

als in t2 using the standard tangent half-angle substitution: t2 = tan(𝜙2∕2). After the

transformation, g = 0 becomes a quartic equation in t2, (say, h1(t2, 𝜙3) = 0) while

f2 = 0 turns into a quadratic,
2

say, h2(t2, 𝜙3) = 0. These steps are shown schemati-

cally in (9).

f1
(
𝜙1, 𝜙2

)
= 0

f3
(
𝜙1, 𝜙3

)
= 0

)
×𝜙1⟶ g(𝜙2, 𝜙3) = 0

𝜙2→t2
←←←←←←←←←←←←←←←←←←←←←→ h1(t2, 𝜙3) = 0;

f2(𝜙2, 𝜙3) = 0
𝜙2→t2
←←←←←←←←←←←←←←←←←←←←←→ h2(t2, 𝜙3) = 0.

(9)

The symbol ‘
×x
⟶’ implies the elimination of the variable x from two simultaneous

equations in x, and ‘

𝜙2→t2
←←←←←←←←←←←←←←←←←←←←←→’ implies the conversion of a trigonometric expression in

𝜙2 to its algebraic equivalent, in terms of t2 = tan(𝜙∕2). The quadratic nature of h2 in

t2 suggests an easy means for obtaining t2 in the closed-form, as well as eliminating t2
from the equations hi = 0, as shown below. Firstly, h1(t2, 𝜙3) is divided by h2(t2, 𝜙3),
treating both as polynomials in t2:

h1(t2, 𝜙3) = 𝛼(t2, 𝜙3)h2(t2, 𝜙3) + 𝛽(t2, 𝜙3), (10)

where 𝛼, 𝛽 are the quotient and the remainder polynomials, respectively. The under-

lying assumption made here is that the leading coefficient of the divisor h2(t2, 𝜙3)

2
It may be noted here is that the last remaining variable, 𝜙3, is retained in its trigonometric form

while 𝜙2 alone is converted to t2. This helps in further symbolic computations required in the

derivation of the FKU (see [5] for the details).
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is non-zero.
3

Evidently, 𝛽 can be at the most linear in t2, and h1 = 0, h2 = 0 means

𝛽 = 0. Therefore, one finds an expression of t2 uniquely in terms of all the known

entities and 𝜙3, and this value of t2 is guaranteed to satisfy the equations h1 = 0,
h2 = 0 simultaneously.

𝛽(t2, 𝜙3) = 0 ⇒ c1(𝜙3)t2 + c2(𝜙3) = 0;
t2 = −c2(𝜙3)∕c1(𝜙3), assuming c1(𝜙3) ≠ 0. (11)

From t2, the passive variable 𝜙2 is found by inverting the half-tangent formula:

𝜙2 = 2 arctan(t2). (12)

Equation (12) yields a unique solution of 𝜙2 for each value of 𝜙3. The solutions for

𝜙3 are computed next, to complete the solution of the forward kinematics problem.

The common solution t2 from Eq. (11) is substituted in the equation h2(t2, 𝜙3) = 0,

to reduce it to an equation with 𝜙3 as the sole remaining unknown. This equation is

converted to its algebraic form in terms of t3 = tan(𝜙3∕2), and the FKU equation

𝜂

(
t3
)
= 0 is obtained as a polynomial in the unknown t3. The FKU is of degree 16

in t3. However, upon rigorous symbolic simplification, it is found that the FKU has

the following form:

a0t163 + a1t143 + a2t123 + a3t103 + a4t83 + a5t63 + a6t43 + a7t23 + a8 = 0. (13)

The coefficients, ai, are functions of the architecture parameters and known inputs,

and are therefore known exactly, in the closed form. These can therefore be evaluated

to an arbitrary level of desired accuracy, and the FKU may be solved to find all the

real values of t3. This is illustrated in the next section. The numerical form of the

FKU after substituting the values of the architecture parameters and inputs is given

in Eq. (14) as a monic polynomial:

t163 − 21.4575t143 − 86.4879t123 + 2667.8104t103 + 608.5886t83
− 28338.0681t63 + 44125.4058t43 − 21515.7426t23 + 3376.6233 = 0. (14)

3 Numerical Results

To illustrate the mathematical developments presented above, the following numeri-

cal values are chosen for the architecture parameters: l = 2.2, and s = 2. The numeri-

cal values of the active variables
4

are chosen as d1 = 1.2, d2 = 1.5, d3 = 1.7, 𝜃1 = 0,

3
The manipulator is singular when h2 becomes linear in t2, a case which is not discussed in this

paper.

4
All angles are in radians, and lengths in meters, unless mentioned otherwise explicitly.
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𝜃2 = 1.832, 𝜃3 = 5.497. The given input vector along with l = 2.2 and s = 2 results

in 16 distinct solutions for t3 of which 8 are real and the other 8 are complex. The real

values of the passive joint angles for the given set of input variables is enumerated

in Table 1. In order to validate the obtained solutions numerically, all the numerical

inputs are results are substituted back to the original loop-closure equations, Eqs.

(4)–(6), and the residue of the vector f = [f1, f2, f2]⊤ is computed:

e = ‖f‖. (15)

The error e is tabulated in the last column of Table 1 for each of the real branches of

the solution. It can be seen from Table 1, that there are actually 4 distinct solutions

(i.e., no. 1, 3, 5, 7), while the other 4 are mirror images of them (i.e., no. 2, 4, 6, 8,

respectively) (Fig. 2).

4 Conclusions

This paper has presented an analytical study of the forward kinematics of the 3-RPRS

manipulator. The manipulator has three legs, connecting a moving platform in the

form of an equilateral triangle to a fixed base. Each of the legs have a rotary and a

prismatic actuator in series, together imparting the full six spatial motions onto the

moving platform. The legs contain a single passive variable, the determination of

which is the objective of the forward kinematic analysis. Three loop-closure equa-

tions are formed to find the three unknowns, and these equations are subsequently

reduced to a single polynomial of degree 16. Further, this polynomial is shown to

have only even-powered terms, therefore revealing that the manipulator can have at

most 8 poses for a given set of inputs, and the corresponding mirror images about

the fixed base. The coefficients of the polynomial are obtained in closed-form, for a

generic architecture of the manipulator, thus solving the forward kinematics prob-

lem comprehensively. The results were numerically validated by substituting, in the

loop-closure constraint equations and evaluating the residue of each equation. The

resulting residues were found to be very close to zero, thereby providing necessary

validation of the correctness of the solutions.
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Fig. 2 Configurations

depicting the real solutions

for the given inputs

(numbered as per Table 1). a
Pose no. 1, b Pose no. 3, c
Pose no. 5, d Pose no. 7

(a) Pose no. 1 (b) Pose no. 3

(c) Pose no. 5 (d) Pose no. 7
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