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Abstract The article elaborates simplified thoughts of the effect of the size of the
air bubbles and their interactions on the shock fluid compressibility. When fluid
flows through the throttle hole, pressure drop occurs and the dissolved air is
released from the liquid in the form of bubbles. These bubbles can influence the
stiffness of the liquid. If such effect occurs e.g. in a hydraulic shock absorbers, than
the damper stops perform its function. This phenomenon is called the delay.
Releasing the air into the liquid can be observed even at low piston speed of the
damper. However for low piston speeds the delay does not occur, the liquid and
containing air bubbles behave as incompressible.
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1 Introduction

The aim of this work is to verify the possibility of formation of the delay [1] in the
damper using elementary physical laws. We assume that the delay is created by the
compression of free air bubbles in the shock liquid. Releasing the air into the liquid
can be observed even at low piston speed of the damper. However for low piston
speeds the delay does not occur, the liquid and containing air bubbles behave as
incompressible. We want verify whether the fluid stiffness depends on bubble
radius and whether the bubbles are grouping into the bigger assemblies.
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2 Volume-Stiffness of the Bubbles

The set of n equal bubbles (each with radius Rn, pressure pn and volume Vn) is
described by three simple equations

1. the ideal gas law

pnnVn ¼ p0V0; ð1Þ

2. the relation between surface tension, radius and pressure

pn � pkð ÞRn ¼ 2r; ð2Þ

3. the equation for volume of the bubble

Vn ¼ 4
3
pR3

n: ð3Þ

By substituting pn from (2) and Vn from (3) into (1) we can obtain the ideal gas
law in this form

3npkVn þ 2 � 62
3

ffiffiffi
p3

p
nrV

2
3
n � 3p0V0 ¼ 0: ð4Þ

This enables us to find volume of bubble Vn as a function of pressure pn. Volume
stifness kn of the bubble is given by

kn ¼ dVn

dpk

� ��1

: ð5Þ

A set of n bubbles has a lower stiffness given by equation

Kn ¼ 1
n 1
kn

¼ kn
n
: ð6Þ

An important question is the change of volume stiffness by changing the number
of bubbles n

RATIO ¼ Kn

K1
: ð7Þ

Exact forms of Eqs. (5), (6) and (7) are very complicated and not
“human-readable”.
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Assuming values

r ¼ 40� 10�3 N=m; ð8Þ

pk ¼ 105 Pa; ð9Þ

R0 ¼ 3mm; ð10Þ

we get the numerical result shown in Fig. 1. By decreasing number of bubbles, the
volume stiffness of the gas is growing.

3 The Equilibrium State of Two Bubbles

The equilibrium position of two connected bubbles occurs if their potential energy
is minimal. For this expression it is necessary to derive dependency of the potential
energy on the distance between midpoints of the bubbles s12. The minimum must
be subsequently applied as follows

dEp s12ð Þ
ds12

¼ 0: ð11Þ

Potential energy of two connected bubbles will be equal to sum of surface and
pressure energy.

Fig. 1 Stiffness of a set of n equal bubbles (Kn) compared with stiffness of one bubble (K1). The
mass of gas in the bubbles is the same
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Ep ¼ Srþ p1V1 þ p2V2; ð12Þ

where S is total surface of the bubbles. Gas pressure energy inside the bubble is
constant (we assume the validity of the equation of state) and thus irrelevant for
searching of the energy minimum, just as surface tension.

Therefore the relation is determined by the equation

dS
ds12

¼ 0: ð13Þ

Let’s introduce the marking (Fig. 2) where index 1 is spherical cap of the small
bubble, index 2 for spherical cap of the bigger bubble and index 3 for spherical cap
belonging to both bubbles.

Provided that formula (1) is valid, the following is true for our bubbles:

pi0Vi0 ¼ piVi: ð14Þ

The initial state of the two bubbles is determined by their size before merging

Vi0pi0 ¼ 4pR3
i0

3
� pk þ 2r

Ri0

� �
; i ¼ 1; 2 ð15Þ

Fig. 2 Interaction between two bubbles
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Pressure inside the bubble pi is sum of pressure of surrounding fluid and addition
due to surface tension

pi ¼ pk þ 2r
Ri

; ð16Þ

Volume Vi is dependent on volumes of individual spherical caps.

Vi ¼
pvi 3r2v þ h2i

� �
6

� pv3 3r2v þ h23
� �

6
ð�1Þi; ð17Þ

where hi, h3 are heights of the spherical caps and rv is spherical cap radius

h1 ¼ R1 þ v1; h2 ¼ R2 þ s12 � v1; h3 ¼ R3 � s13 � v1 ð18Þ

and

rv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 � v31

q
: ð19Þ

On the basis of force equilibrium it is possible to derive that radius R3 is function
of radii of outer spherical caps.

R3 ¼ 2R1R2

R2 � R1
; ð20Þ

distances s13 and v1 are derived from the geometry on the Fig. 2 as follows

s13 ¼ �v1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 � R2

1 þR2
3

q
; ð21Þ

v1 ¼ R2
1 � R2

2 þ s212
2s12

: ð22Þ

The bubble surface will be calculated as a sum of surfaces of individual spherical
caps, where the surface of the third cap must be counted twice.

S ¼ 2pR1h1 þ 2pR2h2 þ 4pR3h3: ð23Þ

By substituting Eqs. (15)–(22) in the Eqs. (14) and (23) we get a system of three
equations which are depending only on R1, R2 and s12.

pi0Vi0 ¼ pi R1;R2; s12ð Þ � Vi R1;R2; s12ð Þ; ð24Þ

S ¼ S R1;R2; s12ð Þ; ð25Þ
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Differentiating (25) by s12 with respect to (13) we get

dS
ds12

¼ @S
@s12

þ @S
@R1

dR1

ds12
þ @S

@R2

dR2

ds12
¼ 0: ð26Þ

We express unknown derivatives of radius by distance implicitly using deriva-
tives of expressions (24). Because the solutions are difficult to read we call them f1
and f2.

dð23Þ
ds12

¼ 0 ¼ fi R1;R2; s12;
dR1

ds12
;
dR2

ds12

� �
: ð27Þ

Equations (24), (26) and (27) form a system of five nonlinear algebraic equations
with solution of equilibrium state

s12 ¼ R1 þR2: ð28Þ

4 Conclusions

It is theoretically confirmed (Fig. 1) that stiffness of fluid with smaller bubbles is
higher than the same amount of air in a smaller number of larger bubbles. The
assumption that bubbles in fluid are clustering and, therefore, the stiffness of fluid is
decreased, was not confirmed. The result (28) means that two bubbles located in
fluid tend not to merge. Because bubbles in fluid do merge, the reason for drop of
stiffness will be more complicated and we will focus on this phenomenon further.
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