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Abstract This paper deals with the description of the absolute nodal coordinate
formulation (ANCF) which is suitable for the flexible bodies modelling considering
large deformation. As it is shown for beam ANCF elements, this formulation leads
to the nonlinear expression of elastic forces, which could be the main disadvantage
of the ANCF. The evaluation of these forces can be done by numerical integration
in each computational step or by analytical derivation with the help of a software
for symbolic operations. The computational performance of various elastic forces
evaluation strategies is investigated using a benchmark problem of falling flexible
pendulum.
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1 Introduction

An absolute nodal coordinate formulation (ANCF) [3] is a suitable approach to the
modelling of beams, cables, wires and fibers in the framework of robot, manipulator
and mechanism design. The ANCF is based on the usage of global displacements
and slopes as nodal coordinates. It belongs to the modern approaches of flexible
multibody dynamics and allows to model flexible bodies performing a large motion
including deformation.

Dynamical models employing ANCF are characterized by constant mass
matrices and highly nonlinear stiffness matrices. Therefore the issue of the for-
mulation of elastic forces is very important and it is the motivation for the work
presented in this paper. There are several types of ANCF beam elements [2]. This
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paper is focused on a lower order ANCF element, which can be used for modelling
of thin cables, fibers and wires. This element respects bending and axial stiffness
and can be also extended by adding torsional stiffness [4].

2 Absolute Nodal Coordinate Formulation

A spatial lower order ANCF element of length l with two nodes uses components of
position vector r of nodes and its derivation with respect to local parameter x 2
0; lh i (slopes) as the nodal coordinates. This can be expressed as

e ¼ rðiÞT ; rðiÞT;x ; rðjÞT ; rðjÞT;x

h iT
; ð1Þ

where e is the vector of nodal coordinates, rðiÞ is the position vector of node i and

rðiÞ;x ¼ @rðiÞ
@x ¼ sðiÞ represents the slope at node i (note, that each element has node

i and j). This implies that each element has 12 degrees of freedom, 6 at each node.

Global position r ¼ rx; ry; rz
� �T

of an arbitrary beam point determined by parameter
x can be written as

r xð Þ ¼ S xð Þe; S xð Þ ¼ s1I; s2I; s3I; s4I½ �; ð2Þ

where S is the global shape function matrix of size 3� 12, I is the identity matrix of
size 3� 3 and the shape functions can be derived in the form

s1 ¼ 1� 3n2 þ 2n3; s2 ¼ l n� 2n2 þ n3
� �

;

s3 ¼ 3n2 � 2n3; s4 ¼ l �n2 þ n3
� �

; n ¼ x=l:
ð3Þ

It must be noted, that a cubic polynomials in x are employed to describe all three
components of the displacement and the element can be considered as
isoparametric.

Standard procedures (e.g. the Lagrange equations or the principle of virtual
work) can be used in order to derive a mathematical model of the spatial ANCF
element. Kinetic energy of the element with material density q is

Ek ¼ 1
2

Z l

0

qA _rT _rdx ¼ 1
2
_eT

Z l

0

qASTSdx _e ¼ 1
2
_eTMe _e; ð4Þ

where Me is the element mass matrix.
Strain energy Ep of the element is used for the derivation of elastic forces in the

ANCF beam model and the form of an adopted elasticity model determines the
complexity of the whole model. The most common approach employs the
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separation of the strain energy of longitudinal deformation Epl and the strain energy
of transverse (bending) deformation Ept as

Ep ¼ Epl þEpt ¼ 1
2

Z l

0

EAe2x dxþ 1
2

Z l

0

EIj2dx; ð5Þ

where E is the Young modulus, A is the area of the cross-section and I is the second
moment of the area about a transverse axis. In this particular case, it is assumed that
the second moments of the area for both transverse axes z and y are equal, so it is
applied I ¼ Izz ¼ Iyy. The axial strain ex and the curvature j can be in general case
expressed as [2]

ex ¼ 1
2

rT;xr;x � 1
� �

¼ 1
2

f 2 � 1
� �

; j ¼ d2r
ds2

����
���� ¼ r;x � r;xx

�� ��
r;x
�� ��3 ; ð6Þ

where f ¼ ds
dx represents the deformation gradient for longitudinal strain and ds is

the infinitesimal arc length. Note, that the axial strain is defined by Green strain
tensor. The strain energy leads to nonlinear elastic forces that must be evaluated in
each integration step.

3 Evaluation of Elastic Forces

Based on the general expression of axial strain (6), the vector of longitudinal elastic
forces of the element e has the form

Qe
l ¼

@Epl

@e
¼ EA

Z l

0

@ex
@e

	 
T

exdx

¼ EA
Z l

0

ST;xS;xe
� � 1

2
eTST;xS;xe� 1

� �� �
dx ¼ Kl eð Þe: ð7Þ

The integral in Eq. (7) can be derived analytically or by using some software for
symbolic operations (MATLAB R2012a was used in this work). It can be shown
that the resultant nonlinear longitudinal stiffness matrix is a full matrix and its
elements are quadratic functions of the nodal coordinates. The evaluation of such a
vector of elastic forces in each time step can be computationally demanding. That is
why it is suitable to approximate the integral in (7) by using the Gaussian
quadrature. As it is noted in [1], the matrix KlðeÞ is not unique and another
derivation of this matrix in case of planar ANCF beam is shown there. It is based on
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the separation of vector of nodal coordinates e to sum of two vectors—arbitrary
rigid-body displacement and flexible deformation. This approach leads to simpler
form of matrix Kl eð Þ in case of planar elements and is referred to as L2 model.

The vector of transverse elastic forces of element e has the form

Qe
t ¼

@Ept

@e
¼ EI

Z l

0

@j
@e

	 
T

j dx: ð8Þ

Since the general expression of curvature j in Eq. (6) is of a complex form, the
integral in Eq. (8) is difficult to solve even with the help of the software for
symbolic operations. But, as it is mentioned in [2], the derivation of curvature @j

@e
can be obtained in closed form. The vector of transverse elastic forces can be then
evaluated using Gaussian quadrature with the use of several precomputed terms. As
it is described in [1], significant simplification can be achieved when the longitu-
dinal deformation within the element is assumed constant while developing the

vector of transverse elastic forces. Then, the deformation gradient f ¼ ds
dx has a

constant value �f and the curvature can be simplified as

j ¼ d2r
ds2

����
���� ¼ d2r

dx2
� d

2x
ds2

����
���� ¼ 1

�f 2
r;xx ¼ 1

�f 2
S;xxe: ð6Þ

This approach is referred to as T2 model and it is recommended to use sufficient
number of elements to meet the mentioned assumption.

4 Benchmark Problem of a Flexible Pendulum

An in-house software for the numerical simulation of chosen mechanical systems
with flexible beams modelled by spatial lower order ANCF beam elements was
created in MATLAB. A falling flexible pendulum as a standard benchmark
example for the testing of the created code was implemented and several simulation
results are described in this section. The scheme of the pendulum is in Fig. 1 and its
parameters are l = 2 m, ρ = 4000 kg m3, a = 0.01 m, E = 108 Pa, g = 9.81 m s−2.
The simulation time is 2 s. The equations of motion were solved using ode23t
function in MATLAB with implicit error settings. The numerical solution was
performed using HP Compaq Elite 8300 with Intel Core i5-3570 CPU and 16 GB
RAM.

Three strategies of the elastic forces evaluation were tested. First model denoted
as GL-T uses Gaussian quadrature to evaluate both longitudinal and transverse
elastic forces (L is the number of Gaussian points used for determination of Qe

l and
T is the number of points for Qe

t ). Second model denoted as ST2 uses symbolically
determined longitudinal elastic forces and T2 model [1] for transverse forces. The
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last model is denoted as L2T2 and the strategy of evaluation of the elastic forces is
evident from the name of the model and corresponds with [1].

The visualization of the flexible pendulum obtained from solution of the G10-10
model is shown in Fig. 1. The computational times for each model and maximum
difference over time from G10-10 model are summarized in Table 1. It is obvious,
that results from G2-2 model are rather different, because it uses only two Gaussian
points to approximate cubic terms in general. Other differences between models are
rather small. It seems reasonable to use more Gaussian points for longitudinal force
approximation (5 points), because their evaluation is relatively fast. The vertical
displacement of the pendulum tip for selected models and the difference of vertical
displacement of the tip is shown in Fig. 2.

Fig. 1 The scheme of the flexible pendulum with its cross-section and the visualization of the
pendulum in discrete time steps

Table 1 The summary of computational demands for various approaches to elastic forces

Model Number
of
elements

Computational
time (s)

Computational
time for
longitudinal
forces (s)

Computational
time for
transverse
forces (s)

Maximum
difference from
G10-10 model
(m)

G2-2 10 107.5 14.6 60.5 3.36 × 10−1

G3-3 10 185.7 26.3 116.1 4.16 × 10−3

G4-4 10 233.4 33.8 154.1 1.84 × 10−4

G5-5 10 285.2 42.2 192.9 3.29 × 10−5

G10-10 10 492.5 76.5 367.2 Reference model

ST2 10 355.0 261.1 48.1 1.02 × 10−4

L2T2 10 109.8 14.8 50.3 1.02 × 10−2

L2T2 20 481.4 67.5 233.4 7.72 × 10−3
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5 Conclusions

In this paper, the ANCF beam element suitable for problems of flexible multibody
dynamics was described and various strategies of evaluation of the elastic forces
were shown. According to resultant computational times of various models it is
recommended to use five Gaussian points to approximate longitudinal elastic forces
and at least three points for transverse forces. Another option for transverse force
evaluation is to use T2 model [1]. The symbolical evaluation of longitudinal forces
leads to full stiffness matrix, whose evaluation is relatively slow.
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Fig. 2 The vertical displacement of the pendulum tip for selected models and the difference of
vertical displacement of the tip for selected models
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