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Abstract Dynamic analysis of multi-mesh planetary gearings is very important for
reduction of noise and vibration. Splitting of force flow into several planet wings is
the main advantage of planetary gearings. As it can be devaluated by unequal load
sharing on individual planet stages, the floating sun gear and flexible pins of planet
gears are applied. This paper shows that dynamic model of such a gearing box is
very complicated with many multiple eigenfrequencies. The gained frequency
spectrum with multiple eigenvalues is derived and analyzed.
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1 Introduction

Modal and spectral dynamic properties of planetary gearboxes are more compli-
cated than parallel-axis gear transmission systems and therefore they need deeper
dynamic analysis. The main advantage of planetary gearing is in splitting of force
flow into several planet stages and so minimizing of weight. In order to prevent
unequal load sharing on planet stages, floating sun gear and flexible pins of planet
gears are applied. Dynamic model of such a gearing box is very complicated mainly
since it has several multiple eigenfrequencies in its spectrum.

In this paper, the solution of spectral properties of the plane type of gearings with
four planetary subsystems and with fixed planet carrier is presented. As the all
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wheels have helical gearings, fluctuation of teeth contact stiffness over a mesh cycle
can be neglected. Steady contacts in gearings are asserted by means of preloading
due to the constant moment loads on the sun and on outer rig gears.

Application of floating sun gear causes that in addition to the deformations in
mesh contact in the direction of tangent to the base circle there is also a radial
motion component perpendicular to this tangential deformation. Restoring forces at
displacement in this radial direction are usually not taken into account at mathe-
matical modelling. The new radial stiffness of gear contact has been therefore
introduced both for external and internal tooth systems.

2 Type of Investigated Gearbox

The plane type of gearings with four planetary subsystems and with fixed planet
carrier has been solved—Fig. 1. All the wheels have helical gearings. As these
gearings have a very small variation of contact stiffness, teeth contact stiffness is
supposed to be constant. The main aim of the complex study is analysis of influence
of planetary pins compliance (stiffness kc) and of free (or weekly supported, stiff-
ness kc) axis of sun wheel on gearbox dynamic properties. The second aim is to
prepare the theoretical base for evaluation of measurements data gained at the
planned experiments on new gearing box prototype.

3 Radial Stiffness of Two Gearing Wheels

Mutual radial motion of two gearing wheels changes pressure angle a as shown in
Fig. 2, where r�3 ¼ r3 cosðaÞ; r�2 ¼ r2 cosðaÞ are radiuses of base, (r3; r2 of pitch)
circles. The radial shift Dy determines change Da of pressure angle a. The radial
component Fr of the contact force F increases:

Fig. 1 Four-planetary
gearing
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DFr ¼ Fðsinða� Daj jÞ � sinðaÞÞ ffi �FcosðaÞ sinð Daj jÞ ð1Þ

Also the change of radial shift Dy is connected with Da. The approaching of base
circles Dyc and of axes Dya of both wheels are the same Dyc ¼ Dya ¼ Dy:

Dy ¼ r�3 þ r�2
cosðaÞ �

r�3 þ r�2
cosða� Daj jÞ ffi

ðr�3 þ r�2Þ sinðaÞ sinð Daj jÞ
cos2ðaÞ : ð1aÞ

The ratio of DFr and Dy, gives negative radial stiffness kr:

kr ¼ DFr

Dy
¼ DFr

Dyc
¼ DFr

Dya
¼ �Fcos3ðaÞ

ðr�3 þ r�2Þ sinðaÞ
¼ �Fcos2ðaÞ

ðr3 þ r2Þ sinðaÞ
: ð2Þ

Similar relations are valid also for the radial contact stiffness between ring and
planetary wheel that is an internal gearing contact, where the pressure angle a
increases Da[ 0 at wheels penetrating Dy ¼ Dyc. In such a case the radial contact
stiffness kr is positive. However, the approaching of base circles Dyc at internal
gearing contact is connected with increase of wheel axes distance Dya ¼ �Dyc and
therefore the radial contact stiffness kr ¼ DFr

Dya
of this internal gearing has again

negative sign similar to the external mesh.
In the mesh, there are perpendicular friction forces besides pressure forces.

These forces act along the whole length of pressure line. The friction forces in the
addendum part of the pressure line have opposite direction than in the dedendum
part, they are roughly in balance and therefore the friction forces result is small and
can be neglected in the following solution.

Fig. 2 External mesh
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3.1 Radial Free Vibration

The first step in solution of dynamics of the four planetary gearing system (Fig. 1)
is analysis of one separate planet wheel. We shall use the same value for external
and internal tooth contacts kr ¼ �40,000 N/m: Equations of motion of free radial
vibration of one planet wing, at assumption that the ring wheel axis is stiff, are

m3€y3 � krðy3 � y2Þþ k3y3 ¼ 0; m2€y2 þ kry3 þ kcy2 ¼ 0: ð3Þ

It is a 2DOF system, which can serve as a mathematical model of the upper
planet subsystem labeled by a left upper index “ 1 ” in Fig. 1. Mathematical models
of other three planet subsystems labeled by “ 2, 3, 4 ” have similar structure but the
variables must be exchanged according to the orientation of planet wings [1].

3.2 Free Tangential Vibration

Tangential motion and rotation of wheels are influenced by stiffness of tooth
meshes k1; k2 and stiffness of flexible wheel’s pins k3; kc. As planet and sun wheel
both rotate and translate, the masses of planet and of sun wheel as well their
moments of inertia must be considered. Differential equations of one planet wing
motion are described in [2]. Here the direct derivation of mathematical model of the
entire four planetary gearing box is applied.

4 Free Vibration of Four-Planetary Gearing Box

Mathematical description of free vibration of gearing box can be constructed by
means of Lagrange equations written for n generalized coordinates of motion qj

d
dt

@T
@ _qj

� �
� @T
@qj

þ @V
@qj

¼ 0 j ¼ 1; . . .; n ð4Þ

where T is kinetic energy of investigated system, V is potential energy.
Let us investigate dynamic properties of a gearing box shown in Fig. 1 without

any external driving and braking aggregate. The coordinate vector q is:

q ¼ ½u1
1y2

1x2
1u2

2y2
2x2

2u2
3y2

3x2
3u2

4y2
4x2

4u2 y3 x3 u3�T : ð5Þ
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Kinetic energy of the four-planets gearing system with 16 DOF is

T ¼ 1
2

H1 _u
2
1 þm2ð1 _y22 þ 1 _x22 þ 2 _y22 þ 2 _x22 þ 3 _y22 þ 3 _x22 þ 4 _y22 þ 4 _x22Þ

þH2ð1 _u2
2 þ 2 _u2

2 þ 3 _u2
2 þ 4 _u2

2Þþm3ð _y23 þ _x23Þþ H3 _u
2
3

" #
: ð6Þ

Potential energy V of the same 16 DOF gearing system is a function of all
angular and transversal coordinates given in the coordinate vector q and contains
also tooth mesh stiffness parameters k1; k2, stiffness kc of flexible planet pins and
stiffness k3 of sun gear support. The axis of ring wheel is supposed to be sufficiently
stiff with no transversal displacements ðy1 ¼ 0; x1 ¼ 0Þ. Potential energy consists
of radial and potential parts V ¼ Vrad þVtan. The complete potential energy is

V ¼ 1
2

kr ðy3 � 1y2Þ2 þðx3 � 2x2Þ2 þðy3 � 3y2Þ2 þðx3 � 4x2Þ2
h i
þ kr

1y22 þ 2x22 þ 3y22 þ 4x22
� �þ kcð1y22 þ 1x22 þ 2y22 þ 2x22 þ 3y22 þ 3x22 þ 4y22 þ 4x22Þ

þ k1½ðr1u1 � r2
1u2 � 1x2Þ2 þðr1u1 � r2

2u2 þ 2y2Þ2 þ ðr1u1 � r2
3u2 � 3x2Þ2

þðr1u1 � r2
4u2 þ 4y2Þ2� þ k2½ðr3u3 � x3 � r2

1u2 þ 1x2Þ2

þðr3u3 þ y3 � r2
2u2 þ 2y2Þ2 þðr3u3 þ x3 � r2

3u2 � 3x2Þ2

þðr3u3 þ y3 � r2
4u2 þ 4y2Þ2� þ k3ðy23 þ x23Þ

2
666666666664

3
777777777775

ð7Þ

Introducing expressions (6) and (7) into Lagrange equations. (4) we get 16
differential equations of motion

H1€u1 þ k1r1½4r1u1 � r2ð1u2 þ 2u2 þ 3u2 þ 4u2Þ � 1x2 þ 2y2 þ 3x2 � 4y2� ¼ 0;

m2
1€y2 þðkc þ 2krÞ1y2 � kry3 ¼ 0;

m2
1€x2 � k1r1u1 þðk1 � k2Þr21u2 þðk1 þ k2 þ kcÞ1x2 þ k2r3u3 � k2x3 ¼ 0;

H2
1€u2 � k1r2r1u1 þðk1 þ k2Þr21u2 � ðk2 � k1Þr21x2 þ k2r2x3 � k2r2r3u3 ¼ 0;

m2
2€y2 þ k1r1u1 � ðk1 � k2Þr22u2 þðk1 þ k2 þ kcÞ2y2 � k2r3u3 � k2y3 ¼ 0;

m2
2€x2 þðkc þ 2krÞ2x2 � krx3 ¼ 0;

H2
2€u2 � k1r2r1u1 þðk1 þ k2Þr22u2 þðk2 � k1Þr22y2 � k2r2y3 � k2r2r3u3 ¼ 0;

m2
3€y2 þðkc þ 2krÞ3y2 � kry3 ¼ 0;

m2
3€x2 þ k1r1u1 � ðk1 � k2Þr23u2 þðk1 þ k2 þ kcÞ3x2 � k2r3u3 � k2x3 ¼ 0;

H2
3€u2 � k1r2r1u1 þðk1 þ k2Þr23u2 þðk2 � k1Þr23x2 � k2r2x3 � k2r2r3u3 ¼ 0;

m2
4€y2 � k1r1u1 þðk1 � k2Þr24u2 þðk1 þ k2 þ kcÞ4y2 þ k2r3u3 � k2y3 ¼ 0;

m2
4€x2 þðkc þ 2krÞ4x2 � krx3 ¼ 0;

H2
4€u2 � k1r2r1u1 þðk1 þ k2Þr24u2 þðk1 � k2Þr24y2 þ k2r3y3 � k2r2r3u3 ¼ 0;

m3€y3 þ k2½�r2ð2u2 � 4u2Þ þ 2y3 � 2y2 � 4y2� þ k3y3 þ krð2y3 � 1y2 � 3y2Þ ¼ 0

m3€x3 þ k2½r2ð1u2 � 3u2Þ þ 2x3 � 1x2 � 3x2� þ k3x3 þ krð2x3 � 2x2 � 4x2Þ ¼ 0

H3€u3 þ k2r3ð4r3u3 � r2
1u2 � r2

2u2 � r2
3u2 � r2

4u2 þ 1x2 � 2y2 � 3x2 þ 4y2Þ ¼ 0;

ð8Þ
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These equations of motion can be rewritten into a matrix form

M €qþK q ¼ 0 ð9Þ

with the coordinate vector q given by (5) and with the diagonal inertia matrix M

M ¼ diag nH1;m2;m2;H2;m2;m2;H2;m2;m2;H2;m2;m2;H2;m3;m3;H3n½ �
ð10Þ

and with the full stiffness matrix K which is of order 16.
The roots of characteristic determinant

�X2MþK
�� �� ¼ 0 ð11Þ

give eigen-frequencies of investigated planetary gearbox.
If the parameters of the example of planetary gearbox are:
Tangential mesh stiffness k1 = k2 = 4e + 9 N/m, radial stiffness kr = −4e +

4N/m, planet pin stiffness kc = 5e + 9N/m, radiuses r1 = 0.3m, r2 = 0.12m, r3 = 0.06m,
masses m1 = 250 kg, m2 = 42 kg, m3 = 25 kg, moments of inertia H1 = 200 kgm2,
H2 = 0.5 kgm2,H3 = 0.05 kgm2, then by means of program “eig” in system Matlab
we get eigenfrequencies of investigated planetary gearing—see Table 1.

The first eigen-frequency has zero value and corresponds to the revolution of all
gearing wheels. The remaining fifteen non-zero eigen-frequencies correspond to the
vibrations superposed on this rotation. There are three twofold frequencies
856; 2673; 3780Hz and one fourfold frequency 1779Hz:

The used program “eig” in Matlab system ascertains corresponding modes of
vibrations in a normalized form. In the case when all the eigenvalues are distinct,
one mode shape orthogonal to the rest of eigenmodes belongs to each one of them.
But there are some multi-fold eigen-frequencies in the planet gearings frequency
spectrum, which need special mode shape procedure [3, 4]. There is no difficulty for
computer programs to extract multiple eigenvalues, but it makes certain compli-
cation in ascertaining of eigenvectors. If the system has a repeated eingen value, we
get a corresponding number of different, independent eigenvectors. Any linear
combination of these vectors is also an eigenvector. Therefore the eigenvector
matrix U is not unique. Different procedures are proposed in literature, the simplest
one seems to be the perturbation method [4, p. 382] based on splitting the multiple

Table 1 Eigen frequencies f1 f2 f3 f4 f5 f6 f7 f8

Hz 0.0 856 856 1225 1779 1779 1779 1779

f9 f10 f11 f12 f13 f14 f15 f16
Hz 2415 2673 2673 2869 2947 3780 3780 5908
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eigenvalue into several separated eigenfrequencies located close to each other and
having separate mode shapes. If in the above mentioned mathematical model of
planetary gearing is completed with moderately increasing e.g. stiffness kc of
flexible planet pins, then the frequency spectrum differs a little from the original in
Table 1, all eigenvalues are distinct and eigenmodes can be easily determined.

5 Conclusion

It is shown that the solution of vibrations of planetary gearing box with the weakly
supported sun wheel needs to include radial gear mesh stiffness into mathematical
model and that this stiffness is negative. After deriving 16 differential equations of
gearing motion, the free frequency spectrum is ascertained. Several multiple
eigenfrequencies were discovered and the method for ascertaining of adjoined
eigenmode shapes is indicated.
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