
Chapter 10
The Stabilizing Virtues of Monetary Policy
on Endogenous Bubble Fluctuations
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Abstract We explore the stabilizing role of monetary policy on the existence of
endogenous fluctuations when the economy experiences a rational bubble. Consider-
ing an overlapping generations model, expectation-driven fluctuations are explained
by a portfolio choice between three assets (capital, bonds and money), credit market
imperfections and a collateral effect. They occur under a positive bubble on bonds.
The key mechanism relies on the existence of gaps between the returns on assets due
to financial distortions. Then, we study the stabilizing role of the monetary policy.
Such a policy managed by a (standard) Taylor rule has no clear stabilizing virtues.
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10.1 Introduction

In recent years, asset prices have experienced large fluctuations, and the financial
sphere of the economy had strong effects on the real one, as illustrating during the
last financial crisis. Some empirical contributions shed light on the excessive asset
price volatility, and reveal that asset prices fluctuate more than their fundamental
value (see Shiller 1981, 1989, and LeRoy and Porter 1981). One explanation for this
excessive volatility is the existence and the fluctuations of asset bubbles.

A large body of theoretical literature explores the role of credit market imperfec-
tions in the existence and dynamics of rational bubbles (Farhi andTirole 2012;Martin
and Ventura 2012;Wang andWen 2012). Despite the fact that most of these contribu-
tions deal with credit constraints at the level of entrepreneurs, some empirical studies
highlight the existence of credit constraints faced by consumers underlying the role
of collateral on their behavior (Campbell andMankiw 1989; Jappelli 1990; Iacoviello
2004). Such types of credit market imperfections affect the portfolio choices between
different existing assets, but also explain the gaps between their returns.We think that
such credit market imperfections may be a main transmission channel between the
financial and the real spheres. In this paper, we argue that credit constraints faced by
consumer play a crucial role to explain expectation-driven fluctuations of speculative
bubbles, as illustrated during the recent subprime crisis. This idea already appears in
Bosi and Seegmuller (2010) and Clain-Chamosset-Yvrard and Seegmuller (2015).1

They assume that the share of consumption financed by credit is positively correlated
to a collateral. Because of this type of credit market distortions, the portfolio choices
are no longer constant through time. A change in agents’ expectations generates
a new trade-off between asset holdings promoting equilibrium indeterminacy, and
thus the occurrence of expectation-driven fluctuations.We enrich these contributions
by considering both capital and the stabilizing role of a monetary policy conducted
through a Taylor rule.

Indeed, economic fluctuations based on consumer credit constraints open the door
to new policy tools for stabilizing issues. A stabilizing policy must dampen or elim-
inate the mechanism source of indeterminacy. Since our explanation of expectation-
driven fluctuations relies on a trade-off between different assets, namely capital,
bonds and money, relevant stabilizing policies are those reducing the gaps between
their returns. Monetary policy appears to be a natural policy tool, since it affects the
opportunity cost of money holdings through the level of the nominal interest rate.
In addition, contrary to most of the literature, we analyze the stabilizing role of the
monetary policy when bubble fluctuations occur in an economy with both produc-
tion and a positive bubble (Grandmont 1985, 1986; Bernanke and Woodford 1997;
Benhabib et al. 2001; Sorger 2005; and Rochon and Polemarchakis 2006).

1Only few other contributions have analyzed the existence of bubble fluctuations with an interplay
between the real and the financial spheres of the economy (Michel and Wigniolle 2003, 2005; Bosi
and Seegmuller 2010; Wigniolle 2014).



10 The Stabilizing Virtues of Monetary Policy on Endogenous … 233

We consider a simple overlapping generations (OLG) model with capital accu-
mulation to highlight the role of consumers’ credit market imperfections and col-
lateral in an economy characterized by a rational bubble.2 Households save through
bonds, money and capital. Bonds are sold by themonetary authority to supplymoney.
Because of a binding cash-in-advance (CIA) constraint, money is held by households
to finance a share of their consumption in the second period of their life. Despite
the fact that capital is used for the production, it also serves as a collateral: Holding
more capital increases the amount of collateral, and thus allows each household to
reduce the share of consumption financed through money. It is important to note that
the three assets have different returns. Bonds have larger return than capital because
this latter is used as a collateral to relax the consumers’ credit constraint, and also
a larger return than money because we focus on equilibria with binding constraints.
As a direct implication, the Fisher relationship is not satisfied.3 The violation of
this relationship will induce some portfolio choices that promote indeterminacy, and
therefore endogenous fluctuations.

We prove the existence of a steady state characterized by a positive rational bub-
ble on bonds (Tirole 1985). In contrast to several existing papers (Farmer 1986;
Benhabib and Laroque 1988; Rochon and Polemarchakis 2006), expectation-driven
fluctuations occur in the neighborhood of such a steady state with a positive rational
asset bubble under gross substitutability and reasonable values of input substitution,
without requiring arbitrarily large increasing returns to scale (Cazzavillan and Pintus
2005). This result is obtained because of the role of collateral.

Since expectation-driven fluctuations are mainly driven by the portfolio choices
between capital, money and bonds and the violation of the Fisher relationship, a
policy may have a stabilizing virtue if it is able to reduce the gaps between the
different returns on assets. Therefore, the monetary authority could play an active
role in stabilizing the economy by manipulating the nominal interest rate. Following
Bernanke (2010) who argues that a rule which responds to expected inflation is rel-
evant to describe the US monetary policy, we consider that the nominal interest rate
is determined according to a Taylor rule on expected inflation. We show however
that the stabilizing results are mitigated. A weakly active policy can even promote
endogenous fluctuations for some relevant parameter configurations. One explana-
tion is that such a rule does not significantly modify the nominal interest rate, and
therefore does not alter so much the portfolio choices. More generally, this result
provides an adding argument emphasizing that standard policy tools are not so rele-
vant in some circumstances. In our case, these circumstances are the existence of a
bubble and consumers’ credit constraints affected by a collateral.

This paper is organized as follows. In the next section, we present the model.
The intertemporal equilibrium is defined in Sect. 10.3. Section10.4 is devoted to the

2Our work is close to the framework developed by Rochon and Polemarchakis (2006). However,
our analysis differs in two main points: First, we take into account the role of collateral on the
consumption behavior; Second, we analyze a monetary policy that could fit better the practices of
central banks, instead of an interest rate pegging.
3Recall that the Fisher relationship means that the gross real interest rate is equal to the gross
nominal interest rate deflated by the gross inflation rate.
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steady state analysis. In Sect. 10.5, we analyze the occurrence of expectation-driven
fluctuationswhen there is a positive bubble and the stabilizing role ofmonetary policy.
Concluding remarks are provided in Sect. 10.6, and all the proofs are gathered in a
final Appendix.

10.2 The Model

We consider an OLG model with production in discrete time (t = 0, 1, ...,+∞).
This economy consists of identical two period-lived households, firms, a monetary
authority and a government.

10.2.1 Households

There is no population growth, and at each date t , a generation of unit size is born
and lives for two periods.

An household derives utility from consumption of final good when young (ct )

and old (dt+1). Her preferences are represented by an additively separable life-cycle
utility function:

u (ct ) + βv (dt+1) = c1−εu
t

1 − εu
+ β

d1−εv

t+1

1 − εv

, β > 0 (10.1)

where εu > 0 and εv > 0 denote respectively the degrees of concavity of u (ct ) and
v (dt+1). We further note that εv < 1 implies gross substitutability meaning that
savings are an increasing function of the global return on portfolio.4

In her first period of life, the household is young and supplies one unit of labor
inelastically remunerated at thewagewt .With this wage, she can consume an amount
ct of final good at price pt , and save through a diversified portfolio of nominal

4As we will see below, the consumer problem has the following structure:

max
c1−εu

t

1 − εu
+ β

d1−εv

t+1

1 − εv

st. ct + st = wt

dt+1 = R̃t+1st + �t+1,

where st represents global savings of a household, R̃t+1 the global return on her portfolio, wt her
labor income and �t+1 a monetary transfer. From this problem, we obtain:

dst

d R̃t+1

R̃t+1

st
= 1 − εv R̃t+1st/(R̃t+1st + �t+1)

εust/(wt − st ) + εv R̃t+1st/(R̃t+1st + �t+1)
,

which is positive for εv < 1.
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balances Mt+1 needed for a transaction motive, productive capital per capita kt+1

(with rental factor Rt+1)5 and nominal bonds Bt+1 (with nominal interest rate it+1).
In our framework, bonds denote nominal debts issued by the monetary authority in
order to inject money in the economy. In contrast to asset papers with no fundamental
value considered as freely disposed of, these bonds can have a negative nominal value
(Bt+1 < 0).

In her second period of life, the household is old. She uses her remunerated
savings and her monetary transfer �t+1 received from the monetary authority to
purchase an amount dt+1 of final good at price pt+1. The first and second-period
budget constraints are written as follows:

pt ct + Mt+1 + Bt+1 + pt kt+1 ≤ ptwt (10.2)

pt+1dt+1 ≤ Mt+1 + (1 + it+1) Bt+1

+pt+1Rt+1kt+1 + �t+1 (10.3)

The household has to pay cash a part of the second period consumption dt+1:
Her money demand is rationalized by a cash-in-advance (CIA) constraint. We use a
constraint of the type introduced by Hahn and Solow (1995), i.e. γ pt+1dt+1 ≤ Mt+1,
but we extend it to capture the role of collateral:

γ (kt+1)pt+1dt+1 ≤ Mt+1 (10.4)

A binding cash-in-advance constraint means that a share γ (kt+1) ∈ (0, 1) of her
second-period consumption has to be paid cash, i.e. with nominal balances Mt+1.
As underlined in Rochon and Polemarchakis (2006) and Clain-Chamosset-Yvrard
and Seegmuller (2015), the household can consume the remaining share 1 − γ (kt+1)

of consumption on credit when old. Indeed, because she holds Bt+1 + pt+1kt+1 in
her portfolio when young, the household knows that she will have her remunerated
savings from bonds and capital (1 + it+1)Bt+1/pt+1 + Rt+1kt+1 at the next period,
in addition to the transfer from the monetary authority �t+1/pt+1. As a result, she
can consume on credit by borrowing from a bank or a financial institution an amount
equal to (1 + it+1)Bt+1/pt+1 + Rt+1kt+1 + �t+1/pt+1, that she will pay back at the
end of her second period of life. In the following, we refer to 1 − γ (kt+1) as the
credit share.

Furthermore, we assume that the credit share is increasing with the amount of
physical capital held by a household. Through this assumption, we assert that capital
acts as a collateral for the household. Since a collateral is by definition an asset that
a household offers a bank or a financial institution to secure a loan, we argue that the
value of physical capital kt+1 can be pledged as a collateral, rather than the capital
income Rt+1kt+1. If the household fails to repay the loan, the financial institution
can seize its physical capital to recover its losses, and thus become the owner of
this capital. Since the financial institution takes less risk, it would be easier for the

5 We assume a full capital depreciation within a period.
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household to obtain credit from the bank or the financial institution by holding more
capital in her portfolio, and thus to reduce her need of cash in her second period of
life.

This is also in accordance with some empirical studies which, focusing on U.S
data, underline the negative correlation between money holdings and wealth (see
Wolff 1998). In our framework, kt+1 can be seen as a proxy of household’s wealth.
In any case, it is a simple way to introduce credit market imperfections and to capture
the role of collateral on consumption behavior of the household as highlighted by
empirical studies (among others, Campbell and Mankiw 1989; Iacoviello 2004).6

The following assumption summarizes the properties of the function γ (k):

Assumption 1 γ (k) ∈ (0, 1) is a continuous function defined on [0,+∞), C2 on
(0,+∞), decreasing (γ ′ (k) ≤ 0).

For further references, we define the following elasticities:

η1 (k) ≡
[
1 − γ (k)

]′
k

1 − γ (k)
= − γ ′(k)k

1 − γ (k)
≥ 0, (10.5)

η2 (k) ≡ −
[
1 − γ (k)

]′′
k

[
1 − γ (k)

]′ = −γ ′′(k)k

γ ′(k)
(10.6)

Example The following function satisfies these properties:

γ (k) = 1 − a + bkε

1 + ckε
, (10.7)

with a ∈ (0, 1), c > 1, b ∈ (ac, c) and ε > 0. Using this example, η1(k) and η2(k)

are given by:

η1(k) = b − ca

a + bkε

εkε

1 + ckε
≥ 0 and η2(k) = 1 + ε

(
2ckε

1 + ckε
− 1

)

When collateral does not matter (η1 (kt+1) = 0), and γ tends to 0, money is no
longer needed and the creditmarket distortion disappears,whereaswhen γ > 0, there
is a need of cash. When collateral matters (η1 (kt+1) > 0), the households are aware
of the credit share function: They are able to relax the CIA constraint by increasing
capital holdings.

6This manner of introducing a collateral effect differs from models with borrowing/collateral con-
straint à la Kiyotaki and Moore (1997). First, borrowing is typically used to finance investment
project in these models with collateral constraint, whereas in our paper borrowing finances con-
sumption. Second, our CIA constraint implies a limit on the borrowing’s share of total expenditures
instead of the borrowing capacity itself. Indeed, using the second-period budget constraint and
introducing At+1 = (1 + it+1)Bt+1/pt+1 + Rt+1kt+1 + �t+1/pt+1 as the amount of borrowing,
we can rewrite our CIA constraint as follows At+1/(pt+1dt+1) ≤ 1 − γ (kt+1). Finally, our limit
is nonlinear and increasing with collateral, whereas the borrowing limit of a standard collateral
constraint is exogenous or linear with collateral.
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Using πt+1 ≡ pt+1/pt and introducing the real variables mt+1 ≡ Mt+1/pt+1,
bt+1 ≡ Bt+1/pt+1 and δt+1 ≡ �t+1/pt+1, the constraints (10.2)–(10.4) can be rewrit-
ten as follows:

ct + πt+1mt+1 + πt+1bt+1 + kt+1 ≤ wt (10.8)
dt+1 ≤ mt+1 + (

1 + it+1
)

bt+1 + Rt+1kt+1 + δt+1 (10.9)
γ

(
kt+1

)
dt+1 ≤ mt+1 (10.10)

An household derives her optimal consumption choice (ct , dt+1) and her optimal
portfolio choice (kt+1, mt+1, bt+1) by maximizing her utility function (10.1) under
her budget and cash-in-advance constraints (10.8)–(10.10).

Assumption 2 Let ε̃u ≡ c
1 + i

π

iη1 (1 − γ )

η2d (1 + iγ )2
.7 For all t ≥ 0, we assume it > 0,

η2(kt ) > 0 and εu > ε̃u .

Since the conditions inAssumption2 rely on endogenousvariables, as it , πt , γ (kt ),
Assumption 2 can seem quite strong. Nevertheless, as we are interested in the occur-
rence of fluctuations in the vicinity of a steady state, Assumption 2 will be supposed
satisfied at the steady state. By continuity, it will also hold in the neighborhood of
this steady state. Note that we provide a numerical example satisfying n2(kt ) > 0 at
the normalized steady state that we consider for the dynamic analysis. In addition,
since εu is a free preference parameter, Assumption 2 can always be satisfied.

We can derive the following Lemma8:

Lemma 1 Under Assumptions 1 and 2, constraints (10.8)–(10.10) are binding and
the second-order conditions are satisfied.

Lemma 1 requires that the function of the credit share 1 − γ (kt+1) is concave:
Capital holdings increase, at a decreasing rate, the fraction of second-period con-
sumption purchased on credit. Moreover, the CIA constraint is binding if the nominal
interest rate it+1 is strictly positive (it+1 > 0).

Under Assumptions 1 and 2, the optimal households’ behavior is summarized by
the following equations:

u′(ct )

βv′(dt+1)
= 1 + it+1

πt+1

1

1 + it+1γ (kt+1)
(10.11)

Rt+1 = 1 + it+1

πt+1
− it+1η1(kt+1)

1 − γ (kt+1)

kt+1
dt+1 (10.12)

7For simplicity, the arguments of the functions and the time subscripts are omitted.
8The proof of Lemma 1 is given in a technical appendix available on https://sites.google.com/site/
liseclainchamosset.

https://sites.google.com/site/liseclainchamosset
https://sites.google.com/site/liseclainchamosset
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When collateral does not matter (η1(k) = 0), Eqs. (10.11) and (10.12) rewrite:

u′(ct )

βv′(dt+1)
= (1 + it+1)/πt+1

1 + it+1γ
(10.13a)

and

Rt+1 = 1 + it+1

πt+1
(10.13b)

We note that as γ tends to 0, we obtain the intertemporal trade-off found in
Diamond (1965) and Tirole (1985), in which there are no credit market distortions in
the economy (see Eq. (10.13a)). As γ > 0, a distortion exists: Old households now
have to pay cash γ in order to consume an additional unit of final good, and money
entails an opportunity cost. Nevertheless, when collateral does not matter, capital
and bonds are perfect substitutes (see Eq. (10.13b)).

When collateral matters (η1(k) > 0), capital and bonds are no longer perfect
substitutes. Households can now decrease their need of cash by holding more capital
in their portfolio. As a consequence, the return on capital is lower than the return on
bonds.

The endogeneity of the credit share ensures the portfolio choices to be no longer
constant through time.The trade-off between assets is endogenous anddepends on the
amount of collateral held by the households. A change in expected inflation generates
a portfolio effect, i.e. a new trade-off between asset holdings. This portfolio effect is
the key mechanism through which expectation-driven fluctuations may occur. Since
the portfolio choices are the explanation for fluctuations, we will also focus on a
stabilizing policy designed to dampen the portfolio effect by modifying the different
returns on assets.

10.2.2 Firms

A representative competitive firm produces the final good using capital and labor
under a constant returns to scale technology f (K/L) L . Using k = K/L , the inten-
sive production function f (k) satisfies:

Assumption 3 f (k) is a continuous function defined on [0,+∞) and C2 on
(0,+∞), strictly increasing ( f ′ (k) > 0) and strictly concave ( f ′′ (k) < 0). Defin-
ing α(k) ≡ f ′(k)k/ f (k) ∈ (0, 1) as the capital share in total income and σ(k) ≡[

f ′(k)k
f (k)

− 1
]

f ′(k)

k f ′′(k)
> 0 as the elasticity of capital-labor substitution, we further

assume f ′(1) < 1, limk→0+ f ′ (k) > 1 and σ(k) > 1 − α(k).

Note that at the end of Sect. 10.4.2, we provide a numerical example that satisfies
Assumption 3. The competitive firm takes the prices as given and maximizes the
profits f (Kt/Lt ) Lt − wt Lt − Rt Kt :
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Rt = f ′ (kt ) ≡ R (kt ) (10.14)

wt = f (kt ) − kt f ′ (kt ) ≡ w (kt ) (10.15)

Hence, the interest rate and wage elasticities are respectively equal to εR(k) ≡
R′(k)k/R(k) = −(1 − α(k))/σ (k) and εw(k) ≡ w′(k)k/w(k) = α(k)/σ (k). The
inequality σ(k) > 1 − α(k) involves capital income Rt kt being increasing with kt ,
which is not a restrictive assumption.

10.2.3 Monetary Authority

For implementing monetary policy, the monetary authority (central bank) uses open
market operations defined as the purchase or sale of bonds in exchange for nominal
balances.9 At time t , the central bank creates nominal balances Mt+1, which offer
liquidity at the next period t + 1.10 The money growth factor μt = Mt+1/Mt can be
written as follows:

μt = πt+1
mt+1

mt
(10.16)

In order to supply Mt+1 in the economy at t + 1, the central bank buys bonds
from old households, and pays for them in cash through open market operations.
The profits made by central bank �t at time t are given by:

�t = Bt+1 + Mt+1 − (1 + it )Bt − Mt (10.17)

These profits are distributed as dividends to the old households at time t . The budget
constraint of the monetary authority at time t is written as follows:

Bt+1 + Mt+1 = (1 + it )Bt + Mt + �t = (1 + it )(Bt + Mt ) (10.18)

or in real terms:

πt+1(bt+1 + mt+1) = (1 + it )(bt + mt ) (10.19)

Introducing the variable θt ≡ (1 + it )(bt + mt ), Eq. (10.19) can be rewritten as fol-
lows:

πt+1θt+1 = (1 + it+1)θt (10.20)

9To study the existence of expectation-driven fluctuations in an OLG model without collateral,
Rochon and Polemarchakis (2006) use similar open market operations to issue money in the econ-
omy.
10Placing a part of their savings in the form of nominal balances in their first period of life, young
households have the opportunity to obtain liquidity in their second period of life.
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Note that if θt is positive at the equilibrium, then a part of bonds, which are purely
unbacked public assets (intrinsically useless), has a positive value. Let bt = b̄t + b̃t ,
where b̄t denotes the real counterpart of money, and b̃t the real value of unbacked
public assets. As b̄t + mt = 0, θt = (1 + it )(bt + mt ) > 0 is equivalent to b̃t > 0.
We can argue that there is a bubble on bonds when b̃t > 0. Therefore, θt > 0 pertains
to a situation in which a positive bubble on bonds exists.11 When θt = 0, all bonds
are the counterpart of money. In this case, all money in the economy corresponds
to inside money: No bubbles on bonds exist. When θt < 0, there is an excess of
households’ debt.

In addition, the monetary authority chooses the nominal interest rate it+1 as the
monetary instrument, and implements the following interest rate rule:

1 + it+1 = (
1 + i∗)

(πt+1

π∗
)φ

, (10.21)

where φ ≥ 0 is a measure of monetary policy responses to expected inflation. Fur-
thermore, i∗ and π∗ are respectively the stationary values of the nominal interest rate
and the inflation of an existing stationary equilibrium chosen as the targets by the
monetary authority.

When φ = 0, the central bank decides to fix the level of the nominal interest rate
at its stationary level i∗. When φ > 0, Eq. (10.21) depicts a Taylor interest rate rule,
which responds to expected inflation. Note that according to Bernanke (2010), a rule
which responds to expected inflation is more relevant to describe the US monetary
policy than a rule responding to observed inflation. For φ ∈ (0, 1), the rule weakly
reacts to expected inflation. An increase (decrease) in the inflation raises (depresses)
the nominal interest rate less than proportionally, involving a decrease (increase)
in the real interest rate. For φ > 1, the rule strongly reacts to expected inflation.
An increase (decrease) in the inflation raises (depresses) the nominal interest rate
more than proportionally, involving an increase (decrease) in the real interest rate.
Following Benhabib et al. (2001), we define a rule with φ ∈ (0, 1) as a passive one,
and a rule with φ > 1 as an active one.

10.3 Intertemporal Equilibrium

At the intertemporal equilibrium, the budget and cash-in-advance constraints of
households are given by:

ct + πt+1

1 + it+1
θt+1 + kt+1 = w(kt ) (10.22)

dt+1 = θt+1 + f ′(kt+1)kt+1 (10.23)

11Alternatively, θt > 0 corresponds to a situation in which the outside money is positive. A positive
outside money indicates that there is fiat money in circulation in the economy. In the literature on
rational bubble, the bubble is often considered as being fiat money.
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γ (kt+1)dt+1 = mt+1 (10.24)

The budget constraints of the monetary authority is as follows:

πt+1 = (1 + it+1)
θt

θt+1
(10.25)

Substituting Eq. (10.25) into the first-period budget constraint Eq. (10.22), we get:

ct + θt + kt+1 = w(kt) (10.26)

Using Eqs. (10.16), (10.24) and (10.25), we deduce the money growth factor:

μt = (1 + it+1)
θt

θt+1

γ (kt+1)

γ (kt )

θt+1 + f ′(kt+1)kt+1

θt + f ′(kt )kt
(10.27)

Substituting Eqs. (10.22) and (10.26) into Eq. (10.11), and Eqs. (10.23) and (10.25)
into Eq. (10.12), the consumers’ intertemporal trade-off and the no-arbitrage condi-
tion are respectively given by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θt
u′( f (kt ) − f ′(kt )kt − θt − kt+1)

βv′(θt+1 + f ′(kt+1)kt+1)
= θt+1

1 + it+1γ (kt+1)

θt+1

θt
= 1 + it+1

πt+1
= f ′(kt+1)Ht+1(kt+1, θt ),

(10.28)

wi th Ht+1(kt+1, θt ) ≡ 1 + it+1η1(kt+1)
[
1 − γ (kt+1)

]

1 − θt it+1η1(kt+1)
[
1 − γ (kt+1)

]
/kt+1

(10.29)

When collateral does notmatter (η1(k) = 0),weobtain Ht+1(kt+1, θt ) = 1. There-
fore, the Fisher equation ((1 + it+1)/πt+1 = f ′(kt+1)) holds at the intertemporal
equilibrium. This means that the return on real asset (capital) is equal to the return
on nominal asset (bonds) deflated by the inflation factor. The role of collateral
(η1(k) > 0) implies the violation of the Fisher equation (Ht+1(kt+1, θt ) > 1). As
capital serves as a collateral, its return becomes lower than the real return on bonds
( f ′(kt+1) < (1 + it+1)/πt+1)). This violation of the Fisher equationwill induce some
portfolio choices that promote indeterminacy, a source of expectation-driven fluctu-
ations.

Interestingly, the level of nominal interest rate can offset the collateral effect (see
Eq. (10.29)). Hence, considering amonetary policy conducted through an usual inter-
est rate rule, like a Taylor one, could a priori be relevant to stabilize macroeconomic
fluctuations.

From the budget constraint of themonetary authority Eq. (10.25) and themonetary
rule Eq. (10.21), we deduce that:
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πt+1

π∗ =
(

θt

θt+1

) 1
1−φ

(10.30)

Substituting Eq. (10.30) into Eq. (10.21), we obtain the nominal interest rate at the
equilibrium:

it+1 = (
1 + i∗

) (
θt

θt+1

)aφ

− 1, where aφ ≡ φ

1 − φ
∈ (−∞, −1) ∪ [0, +∞) (10.31)

Note that when aφ ∈ (−∞,−1), the monetary rule is active. When aφ ∈ (0,+∞),
the rule is passive.

Definition 1 Under Assumptions 1–3, an intertemporal equilibrium with perfect
foresight is a sequence (kt , θt ) ∈ R+ × R, t = 0, 1, ...,+∞, such that the dynamic
system (10.28) is satisfied, where Ht+1(kt+1, θt ) is defined by (10.29), it+1 by Eq.
(10.31), and k0 > 0 is given.

Taking into account Eqs. (10.29) and (10.31), we note that kt is the only predeter-
mined variable of the two-dimensional dynamic system (10.28). The intertemporal
sequence of kt and θt enables us to determine all the other variables, namely ct , dt ,
mt and bt .

10.4 Steady State Analysis

From the system (10.28), we deduce that two kinds of steady state exist: θ = 0
and θ �= 0. Since we are interested in fluctuations with a positive bubble, we will
focus on steady states with θ > 0. A steady state with a positive bubble is a solution
(k, θ) ∈ R

2++ that satisfies the following system:

⎧
⎪⎪⎨

⎪⎪⎩

u′( f (k) − f ′(k)k − k − θ)

βv′(θ + f ′(k)k)
= 1

1 + i∗γ (k)

f ′(k)H(k, θ) = 1

(10.32)

wi th H(k, θ) = 1 + i∗η1(k)
[
1 − γ (k)

]

1 − θ i∗η1(k)
[
1 − γ (k)

]
/k

(10.33)

Under a constant credit share (η1(k) = 0), we see from the system (10.32) that
the steady state is unique, and the monetary policy does not affect the production
side. Indeed, the second equation of the system (10.32) reduces to f ′(k) = 1. Under
Assumption 3, this gives a unique stationary solution in k and superneutrality of
money holds. When collateral matters (η1(k) > 0), the superneutrality of money is
canceled. Because of collateral, the monetary sphere affects the real one.
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10.4.1 Existence

From Eq. (10.32), a steady state with θ > 0 is a solution k ∈ R++ satisfying:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′ (c(k))

βv′ (d(k))
= 1

1 + i∗γ (k)

θ = 1 − f ′(k) {1 + i∗η1(k)[1 − γ (k)]}
i∗η1(k)[1 − γ (k)]/k

(10.34)

wi th c(k) = f (k) − k − k[1 − f ′(k)]
i∗η1(k)[1 − γ (k)] and d(k) = k[1 − f ′(k)]

i∗η1(k)[1 − γ (k)]
From these equations, we deduce that d(k) > 0 implies f ′(k) < 1, and from Eqs.

(10.25) and (10.27), 1 + i∗ = π = μ > 1.

Assumption 4

1 − f ′(k∗)
f ′(k∗)

> i∗η1(k∗)
[
1 − γ (k∗)

]
(10.35)

Under Assumption 4, any bubble can be positive (see Eq. (10.34)). Note also that
this assumption is satisfied by the example provided at the end of Sect. 10.4.2.

Proposition 1 Let k be defined by c
(
k
) = 0 and k ∈ (0, k) by f ′(k) = 1. Under

Assumptions 1–4, there exists a steady state characterized by k∗ ∈ (
k, k

)
and 0 <

θ∗ < f (k∗) − k∗ − f ′(k∗)k∗.

Proof See Appendix “Proof of Proposition 1”.

Proposition 1 indicates that a steady state with a positive bubble exists. When
collateral does not matter (η1(k) = 0), we can see from Eq. (10.33) that the
steady state is at the golden rule (R(k) = 1). As the well-known result of Tirole
(1985), a positive rational asset bubble crowds out capital. When collateral matters
(η1(k) > 0), this economy experiences an over-accumulation of capital at the steady
state (R(k) < 1). The existence of collateral incites households to hold more capital
in their portfolio in order to relax the cash-in-advance constraint, and therefore, the
capital return decreases.

Regarding the monetary policy, we recall that the central bank chooses the value
of an existing steady state for its target. Since the steady state k∗ always exists, we
assume that the central bank selects this steady state as a target, i.e. π∗ = 1 + i∗.12

12Indeed, our analysis does not exclude multiplicity of steady states. See Clain-Chamosset-Yvrard
and Seegmuller (2013) for more details.



244 L. Clain-Chamosset-Yvrard and T. Seegmuller

10.4.2 Normalized Steady State

In order to facilitate the analysis of local dynamics (Sect. 10.5), we establish the exis-
tence of a normalized steady state k∗ = 1 (NSS).We follow the procedure introduced
by Cazzavillan et al. (1998), and use the scaling parameter β to give conditions for
the existence of such a steady state.

Assumption 5 Let ν(η1) = i∗η1(1)
[
1 − γ (1)

]
, we assume:

f (1) > 1 + 1 − f ′(1)
ν(η1)

Assumption 5 ensures that the first period consumption at the normalized steady
state is positive (i.e. c(1) > 0), and it is satisfied when the productivity is sufficiently
large. Note that we show that a numerical example satisfies Assumption 5 at the end
of Sect. 10.4.2.

Proposition 2 Under Assumptions 1–5, there exists a unique value β∗ > 0 given
by

β∗ = u′ [ f (1) − 1 − (1 − f ′(1))/ν(η1)
]

v′ [(1 − f ′(1))/ν(η1)]
[1 + i∗γ (1)]

such that k∗ = 1 ∈ (
k, k

)
is a steady state of the dynamic system (10.28). Moreover,

there is a positive bubble (θ∗ > 0) if 1 − f ′(1) [1 + ν(η1)] > 0.

Thereafter, we set β = β∗ so that k∗ = 1. We further note c∗ ≡ c(1), γ ≡ γ (1),
η1 ≡ η1 (1), η2 ≡ η2 (1), ψ ≡ f ′(1), α = α(1) and σ = σ(1).

To convince the reader that all our assumptions leading to our results are compat-
ible, consider the following example:

Example For a non-empty set of parameter values (a, b, c, ε, A, α, σ ), the func-
tion γ (k) given by Eq. (10.7) in Sect. 10.2.1 and the production function f (k) =
A

(
αk(σ−1)/σ +1 − α)σ/(σ−1) evaluated at the normalized steady state k∗ = 1 fit all

the requirements imposed by Assumptions 2–5.
Indeed, there exist critical values σ , ᾱ, A and Ā such that for a < 1, c > 1,

b ∈ (ac, c), ε > 0, σ > σ , α ∈ (1 − σ, ᾱ) and A ∈ (A, Ā), the function γ (k) and
the production function f (k) evaluated at k∗ = 1 satisfy Assumptions 2–5.

Proof See Appendix “Proof of Example in Section 10.4.2”.
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10.5 Expectation-Driven Fluctuations and the Stabilizing
Role of Monetary Policy

We now study the emergence of expectation-driven fluctuations with a speculative
bubble and an interplay between the financial and the real spheres. We show that
when no Taylor rule is implemented (φ = 0), local indeterminacy can occur in the
neighborhood of the normalized steady state with a positive bubble under not restric-
tive conditions, namely gross substitutability and a not too weak input substitution,
because of the credit market distortion. The violation of the Fisher relationship and
the resulting portfolio choice between bonds, capital and money are the key ingre-
dients to explain these fluctuations. When the Taylor rule is implemented (φ > 0),
we analyze the stabilizing role of the monetary policy. We will see that it is quite
mitigated.

To study the existence of local indeterminacy, we introduce the following addi-
tional assumption:

Assumption 6 Let η̄1 > 0 and η̄2 > 0.13 We assume η1 < η̄1 and η2 > η̄2.

Example Note that η1 = (b − ca)ε/[(a + b)(1 + c)] and η2 = 1 + ε[2c/
(1 + c) − 1] at the normalized steady state k∗ = 1. Recall that a < 1, c > 1, b ∈
(ac, c) and ε > 0.

For b close to ca, η1 is close to zero, and thus η1 < η̄1 is satisfied. As shown
in Appendix “Proofs of Proposition 3, Corollaries 1 and 2” (see Eq. (10.54)),
ε > ε̄ is equivalent to η2 > η̄2. Thus, the function γ (k) evaluated at k∗ = 1 satisfies
Assumption 6.
To derive our different results, we start by linearizing the dynamic system (10.28)
around the normalized steady state k∗ = 1, and obtain the following lemma14:

Lemma 2 Under Assumptions 1–6, the characteristic polynomial, evaluated at the
steady state k∗ = 1, writes P (X) ≡ X2 − T X + D = 0, where T and D are respec-
tively the trace and the determinant of the associated Jacobian matrix. We have:

1 − T + D = εdk
1 − ψ [1 + ν(η1)]

ξ1

εv − εs
v

εv − ε̄v

(10.36)

1 + T + D = ξ3

ξ1

εv − ε
f
v

εv − ε̄v

(10.37)

1 − D = εv − εh
v

εv − ε̄v

(10.38)

13The expressions of η̄1 and η̄2 are given in Appendix “Proofs of Proposition 3, Corollaries 1 and
2”.
14The proof of Lemma 2 is given in a technical appendix available on https://sites.google.com/site/
liseclainchamosset.

https://sites.google.com/site/liseclainchamosset
https://sites.google.com/site/liseclainchamosset
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where εv �= ε̄v , and the expressions of ξ1 ≡ ξ1(aφ), ξ3 ≡ ξ3(aφ), ε̄v ≡ ε̄v(aφ), ε
f
v ≡

εv(aφ), εh
v ≡ εh

v (aφ), εs
v and εdk are given in Appendix “Proofs of Proposition 3,

Corollaries 1 and 2”.

We recall that when 1 − T + D = 0, one eigenvalue is equal to 1. When 1 + T +
D = 0, one eigenvalue is equal to −1. When 1 − T + D > 0, 1 + T + D > 0 and
D = 1, the characteristic roots are complex conjugates with modulus equal to 1. All
eigenvalues are inside the unit circle, when the following conditions are satisfied
(i) 1 − T + D > 0, (i i) 1 + T + D > 0 and (i i i) D < 1. In other words, when
conditions (i)-(i i i) are satisfied, the steady state is a sink, i.e. locally indeterminate.
The steady state is a saddle pointwhen 1 − T + D < 0 (resp.> 0) and 1 + T + D >

0 (resp. < 0). It is a source otherwise.
A (local) bifurcation arises when at least one eigenvalue crosses the unit circle.

Therefore, a bifurcation occurs when either (iv) 1 − T + D = 0, or (v) 1 + T +
D = 0, or (vi) 1 − T + D > 0, 1 + T + D > 0 and D = 1. According to a contin-
uous change of εv , a pitchfork bifurcation emerges when εv goes through εs

v , defined
by 1 − T + D = 0.15 A flip bifurcation occurs when εv goes through ε

f
v , defined by

1 + T + D = 0. Finally, a Hopf bifurcation arises, as εv goes through εh
v , defined by

D = 1, but we still keep 1 − T + D > 0 and 1 + T + D > 0.
The next proposition summarizes the local dynamic properties of the model:

Proposition 3 Let εv �= ε̄v , ψ < 1/(1 + i∗γ ) and Assumptions 1–6 hold.

1. When εu ∈ (
ε̃u, ε

s
u

)
, the following holds:

• if aφ ∈ (−∞, âφ), then the steady state is locally determinate for εv <

max{εh
v , ε

s
v}, undergoes a pitchfork (resp. Hopf) bifurcation for εv = εs

v (resp.
εv = εh

v ), is locally indeterminate for εv > max{εh
v , ε

s
v}.

• if aφ ∈ (âφ, āφ), then the steady state is locally indeterminate for εv < ε
f
v ,

undergoes a flip bifurcation for εv = ε
f
v , is locally determinate for ε

f
v < εv <

max{εh
v , ε

s
v}, undergoes a pitchfork (resp. Hopf) bifurcation for εv = εs

v (resp.
εv = εh

v ), is locally indeterminate for εv > max{εh
v , ε

s
v}.

• if aφ ∈ (āφ,−1[, then the steady state is locally indeterminate for εv < εs
v ,

undergoes a pitchfork bifurcation for εv = εs
v , is locally determinate for εs

v <

εv < max{ε f
v , εh

v }, undergoes a flip (resp. Hopf) bifurcation for εv = ε
f
v (resp.

εv = εh
v ), is locally indeterminate for εv > max{ε f

v , εh
v }.

• if aφ ∈ [0, ãφ), then the steady state is locally indeterminate for εv < εs
v ,

undergoes a pitchfork bifurcation for εv = εs
v , is locally determinate for

εv ∈ (εs
v, ε

f
v ), undergoes a flip bifurcation for εv = ε

f
v , is locally indetermi-

nate for εv > ε
f
v .

• if aφ ∈ (ãφ,+∞), then the steady state is locally indeterminate for εv < εs
v ,

undergoes a pitchfork bifurcation for εv = εs
v , is locally determinate for

εv > εs
v .

15Indeed, we have an odd number of steady states. We prove the existence of at least three steady
states in the online technical appendix at https://sites.google.com/site/liseclainchamosset. See also
Clain-Chamosset-Yvrard and Seegmuller (2013).

https://sites.google.com/site/liseclainchamosset
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Fig. 10.1 The stabilizing role of monetary policy

2. When εu > εs
u , the steady state is locally determinate for εv < max{ε f

v , εh
v },

undergoes a flip (resp. Hopf) bifurcation for εv = ε
f
v (resp. εv = εh

v ), and is locally
indeterminate for εv > max{ε f

v , εh
v }.

Proof See Appendix “Proofs of Proposition 3, Corollaries 1 and 2”.

Figure10.1 provides a qualitative illustration of the local dynamic properties of
the model when εs

v > 0. Under Assumptions 1–6, ε̄v , ε
f
v , εh

v are increasing functions
of aφ , while εs

v does not depend on aφ . Furthermore, ε̄v , ε
f
v , εh

v and εs
v intersect

as indicated in Fig. 10.1 under some parameter conditions. Note that Fig. 10.1 is
precisely constructed using Appendix “Proofs of Proposition 3, Corollaries 1 and
2”. From Lemma 2 and plotting the different critical and bifurcation values, ε̄v ,
εs
v , ε

f
v , εh

v in the plane (aφ, εv), we can determine the local indeterminacy regions
corresponding to the grey areas in Fig. 10.1.

Proposition 3 provides general conditions for local dynamics. To clarify their
significance, we start by considering the case where a Taylor rule is not implemented
(aφ = 0). This allows us to understand under which conditions expectation-driven
fluctuations occur. In a second step, we will discuss the stabilizing role of a monetary
policy managed by a Taylor rule (aφ ∈ (−∞,−1) ∪ (0,+∞)).

From Proposition 3, we can derive the following corollary on the existence of
expectation-driven fluctuations when aφ = 0:
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Corollary 1 Assuming εv �= ε̄v and Assumptions 1–6, the following holds when
aφ = 0:

1. When εu ∈ (
ε̃u, ε

s
u

)
, the steady state is locally indeterminate for εv < εs

v < 1,
undergoes a pitchfork bifurcation for εv = εs

v , is locally determinate for εv ∈(
εs
v, ε

f
v

)
, undergoes a flip bifurcation for εv = ε

f
v , and is locally indeterminate

for εv > ε
f
v .

2. When εu > εs
u , the steady state is locally determinate for εv < ε

f
v , undergoes a

flip bifurcation for εv = ε
f
v , and is locally indeterminate for εv > ε

f
v .

Proof See Appendix “Proofs of Proposition 3, Corollaries 1 and 2”.

Corollary 1 shows the occurrence of persistent endogenous fluctuations around
the steady state with a positive bubble under gross substitutability and a not too weak
capital-labor substitution when no Taylor rule is implemented. Hence, this result
extends Bosi and Seegmuller (2010) and Clain-Chamosset-Yvrard and Seegmuller
(2015) to a model with both inside money and capital.16

When collateral does not matter (η1 = 0), the local stability properties of the
model correspond to Corollary 1.2. Endogenous fluctuations and two-period cycles
occur only for a significant income effect, i.e. a large degree of concavity εv .17 More
interestingly, when collateral matters (η1 > 0), local indeterminacy also appears
under gross substitutability, i.e. for a small degree of concavity εv < εs

v < 1.
The basic mechanism for fluctuations under gross substitutability relies on a port-

folio trade-off between the three assets. Because of the difference between the returns
on physical and monetary assets, a reallocation between the assets takes place fol-
lowing a modification in agents’ expectations.

Economic intuition. If households expect an increase in inflation from period
t to t + 1, the return on bonds becomes less attractive compared to the return on
capital. Because of the portfolio effect, households reallocate their savings towards
capital. As a consequence, when εv < εs

v < 1, the portfolio effect can accelerate
capital accumulation. Households consume less by cash (see Eq. (10.24)). The real
balances mt+1 decrease, entailing a decrease in the return on money. An effective
rise in inflation takes place, meaning that the initial expectations are self-fulfilling.

We focus now on the stabilizing role of the monetary policy managed by a Tay-
lor rule. A policy is stabilizing in our framework as soon as it reduces the range of
parameter values for which local indeterminacy, and thus expectation-driven fluctu-
ations, emerge. Since the occurrence of fluctuations under gross substitutability is an
interesting result, we ensure for the remainder of the paper that εs

v > 0, assuming18:

16In these two papers, the stabilizing role of monetary policies is not addressed in the same way as
here. Indeed, the monetary authority directly manages the money growth factor, while it fixes the
interest rate in our framework.
17Since εv > ε

f
v > 1, income effects dominate substitution effects. Hence, global savings (θt +

kt+1) are a decreasing function of their return.
18εs

u is given by Eq. (10.45) in Appendix “Proofs of Proposition 3, Corollaries 1 and 2”.
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Assumption 7 εu < εs
u .

Since εu is a free preference parameter, Assumption 7 can always be satisfied and
is in accordance with the numerical example provided at the end of Sect. 10.4.2.

We recall that since aφ = φ/(1 − φ), aφ ∈ (−∞,−1) (φ > 1) means that the
monetary rule is active, while aφ ∈ (0,+∞) (φ ∈ (0, 1)) means that the rule is pas-
sive. Using these notations, we derive the next corollary from Proposition 3 and
Fig. 10.1:

Corollary 2 Assuming εv �= ε̄v , ψ < 1/(1 + i∗γ ) and Assumptions 1–7, the follow-
ing holds:

1. If aφ ∈ (−∞, âφ], increasing the responsiveness of the monetary rule φ does not
affect or reduces the range of parameters for indeterminacy.

2. If aφ ∈ (âφ,−1), increasing the responsiveness of the monetary rule φ reduces
the range of parameters for local indeterminacy when εv is large enough, but
raises the range of parameters for local indeterminacy when εv is small enough.

3. If aφ ∈ [0,+∞), increasing the responsiveness of the monetary rule φ reduces
the range of parameters for local indeterminacy when εv is large enough, but has
no impact on the range of parameters for local indeterminacy when εv is small
enough.

Proof See Appendix “Proofs of Proposition 3, Corollaries 1 and 2”.

Proposition 3, Corollary 2 and Fig. 10.1 highlight that a monetary policy managed
by a Taylor rule has mitigated results concerning the stabilization of expectation-
driven fluctuations. Comparing with the results of Corollary 1, a passive rule (aφ ∈
(0,+∞)) stabilizes fluctuations occurring for a large level of εv (εv > ε

f
v ). However,

it has no impact on fluctuations occurring for εv < εs
v . On the contrary, an active

rule (aφ ∈ (−∞,−1)) could stabilize endogenous fluctuations that occur for εv <

εs
v , in particular if it is weakly active (aφ sufficiently negative i.e. φ close to one).
Nevertheless, with respect to the configuration without Taylor rule (aφ = 0), an
active rule destabilizes promoting indeterminacy for new ranges of parameter values.
Indeed, under a weakly active rule (aφ sufficiently negative), local indeterminacy
occur for all εv > εs

v .
To sum, depending on households’ preferences (εv) and on the responsiveness of

the monetary policy with respect to expected inflation (aφ), we may have opposite
conclusions concerning the stabilizing role of the monetary policy. This is in contrast
with several previous contributions, for instance Bernanke and Woodford (1997),
Sorger (2005) or Clain-Chamosset-Yvrard and Seegmuller (2015).

Our explanation of these results is that the monetary authority manipulates the
level of the elasticity of the nominal interest rate with respect to the expected inflation
(φ), which has not a sufficiently significant impact on the interest rate level to dampen
or eliminate the impact of the credit market imperfection and the role of collateral.
For instance, a weakly active rule has not a huge impact on the nominal interest rate,
and therefore does not sufficiently modify the portfolio choices.
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10.6 Concluding Remarks

We develop an overlapping generations model with capital accumulation, bonds and
money, where the share of consumption purchased on credit depends on a collateral.
We show the existence of expectation-driven fluctuationswith a positive rational bub-
ble on bonds. In addition, such endogenous fluctuations are in accordance with gross
substitutability and a not too weak substitution between inputs. This is explained by
a credit market imperfection and the role of a collateral. The basic mechanism for
fluctuations relies on a portfolio trade-off between the three assets.

We further analyze the stabilizing role of the monetary policy. To consider an
usual policy rule, we focus on a monetary policy fixed according to a Taylor rule on
expected inflation. We show that the stabilizing role of such a policy is mitigated. In
fact, no clear-cut conclusion on stabilisation is obtained. One reason is that such a
policy does not alter sufficiently the portfolio choices. More generally, we think that
our results provide an adding argument against the use of standard policy instruments
in any circumstances. In thismodel, these circumstances are the existence of a bubble,
a credit market imperfection and the collateral effect.

Appendix

Proof of Proposition 1

A steady state k is a solution of h (k) = j (k), with:

h (k) ≡ u′ (c(k))

βv′ (d(k))
(10.39a)

j (k) ≡ 1

1 + i∗γ (k)
(10.39b)

where c (k) ≡ f (k) − k − d(k) and d (k) ≡ k[1 − f ′(k)]
i∗η1(k)[1 − γ (k)] .

We start by determining the admissible range of values for k. To ensure d(k) > 0,
we get at the steady state f ′ (k) < 1. Under Assumption 3, f ′(k) is a decreasing
function of k. Hence, k > f ′−1 (1) = k.

Now, we want to determine the range of k such that c(k) > 0. The decreasing
returns on capital imply f

(
k
)

> k f ′(k). Since f ′(k) = 1, c(k) = f (k) − k > 0. In
addition, as d(k) > 0, we derive the following inequality:

lim
k→+∞ c (k) < lim

k→+∞ f (k) − k = −∞
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because f ′(k) < 1 for k large enough. As a result, there exists one value k such
that ∀k < k, c

(
k
)

> 0. By construction, we have k < k, and therefore (k, k) is a
nonempty subset.

To prove the existence of a stationary solution k, we use the continuity of h (k)

and j (k). Using Eqs. (10.39a) and (10.39b), we determine the boundary values of
h (k) and j (k):

limk→k h (k) = u′ (c
(
k
))

βv′(0)
= 0+ limk→k h (k) = u′ (c (0))

βv′(d(k))
= +∞

limk→k j (k) = 1

1 + i(k)γ (k)
∈ (0, 1] limk→k j (k) = 1

1 + i(k)γ
(
k
) ≤ 1

We have limk→k h (k) < limk→k j (k) and limk→k h (k) > limk→k j (k). There-
fore, there exists at least one value k∗ ∈ (

k, k
)
such that h (k∗) = j (k∗). �

Proof of Example in Section 10.4.2

Let σ ≡ 1 − 1
2+ν(η1)

, ᾱ ≡ 1
2+ν(η1)

, A ≡ 1+ν(η1)

α+ν(η1)
and Ā ≡ 1/α

1+ν(η1)
. For a ∈ (0, 1),

c > 1, b ∈ (ac, c) and ε > 0, Assumption 2 is satisfied at the normalized steady
state. Assumption 3 requires A < 1/α and σ > 1 − α. For A > A, Assumption 5
is satisfied. Moreover, the bubble is positive at the normalized steady state when
A < A. As a consequence, the set (A, Ā) must be non-empty. This is true for α < ᾱ

and σ > σ .

Proofs of Proposition 3, Corollaries 1 and 2

Recall that ψ = f ′(1), ν(η1) = η1i∗ (1 − γ ) > 0, c∗ = f (1) − 1 − 1 − ψ

ν(η1)
> 0, (10.40)

aφ = φ/(1 − φ) ∈ (−∞, −1[∪[0, +∞) and let εdk = ψ

1 − ψ

1 − α

σ
+ η2 > 0, and

ηθ
1 = 1 − ψ

ψ

1

i∗(1 − γ )
.

First of all, we suppose for the rest of the proof that η1 < ηθ
1 , because ∀ η1 < ηθ

1 ,
θ > 0 (see condtion (10.35)).

From Lemma 2, the expressions of 1 − T + D, 1 + T + D and 1 − D can be
written as follows:
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1 − T + D = εdk
1 − ψ [1 + ν(η1)]

ξ1(aφ)

εv − εs
v

εv − ε̄v

(10.41)

1 + T + D = ξ3(aφ)

ξ1(aφ)

εv − ε
f
v

εv − ε̄v

(10.42)

1 − D = εv − εh
v

εv − ε̄v

(10.43)

where εs
v = 1 − ψ

ν(η1)

ν(η1) + εdk

εdk

εs
u − εu

c∗ , ε f
v = ξ4(aφ)

ξ3(aφ)
≡ ε f

v (aφ),

εh
v = ξ5(aφ)

ξ1(aφ)
≡ εh

v (aφ) and ε̄v = −ξ2(aφ)

ξ1(aφ)
≡ ε̄v(aφ) (10.44)

with εs
u = c∗ ν(η1)

1 − ψ

1

ν(η1) + εdk

ν(η1)

1 + i∗γ
, (10.45)

ξ1(aφ) = −ψν(η1)

(
1 − 1 − α

σ

)
1 + i∗

i∗ aφ + {1 − ψ [1 + ν(η1)]} εdk

− ψ

1 − ψ
ν(η1)

(
1 − 1 − α

σ

)
,

(10.46)

ξ2(aφ) = (1 − ψ)
1 + i∗

i∗

{
−εu

c∗ + ν(η1)

1 + i∗γ

[
1 + i∗γ

ψ

1 − ψ

(
1 − 1 − α

σ

)]

−εdk
i∗γ

1 + i∗γ

}
aφ − ψ [1 + ν(η1)]

εu

c∗ + ν(η1)
2 ψ

1 + i∗γ
+ ν(η1)ψ

(
1 − 1 − α

σ
+ 1

1 + i∗γ

)
− (1 − ψ) εdk,

(10.47)

ξ3(aφ) = −ψν(η1)

(
1 − 1 − α

σ

)
1 + i∗

i∗
aφ + {1 − ψ [1 + ν(η1)]} εdk

− 2
ψ

1 − ψ
ν(η1)

(
1 − 1 − α

σ

)
, (10.48)

ξ4(aφ) = 2(1 − ψ)
1 + i∗

i∗

{(
1 + ψ

1 − α

σ

)
εu

c∗ − i∗γ ν(η1)

1 + i∗γ

[
1 + ψ

1 − ψ

(
1 − 1 − α

σ

)]

+ εdk i∗γ
1 + i∗γ

}
aφ +

{
2ψ

[
1 + ν(η1) + 1 − α

σ

]
+

1 − ψ

ν(η1)
[ν(η1) + εdk ] {1 − ψ [1 + ν(η1)]}

}
εu

c∗ − ν(η1)
2ψ

1 + i∗γ

− 2ν(η1)ψ

(
1 − 1 − α

σ

)
− ν(η1)

1 + ψ

1 + i∗γ
+ 2(1 − ψ)εdk , (10.49)
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ξ5(aφ) = (1 − ψ)
1 + i∗

i∗

{(
1 − ψ

1 − α

σ

)
εu

c∗ − ν(η1)

1 + i∗γ
[
1 + i∗γψ

1 − ψ

(
1 − 1 − α

σ

)]
+ εdk i∗γ

1 + i∗γ

}
aφ + ψ

[
1 + ν(η1) − 1 − α

σ

]
εu

c∗ − ν(η1)
2ψ

1 + i∗γ

− ν(η1)ψ

(
1 − 1 − α

σ
+ 1

1 + i∗γ

)
+ (1 − ψ)εdk

(10.50)

We aim to determine the range of parameter values (aφ and εv) for which local
indeterminacy conditions (i)-(i i i) are satisfied. To do this, we must analyze the
functions ε

f
v , εh

v , ε̄v and ξi with i = {1, 2, 3, 4, 5}, then draw ε
f
v , εh

v and ε̄v in the
plane (aφ, εv).

Weobserve that ξi with i = {1, 2, 3, 4, 5} are linear functions ofaφ , i.e. ξ a
i aφ + ξ b

i .

Note that ξ a
1 < 0 and ξ a

3 < 0. Furthermore, there exist η
ξ b
1
1 > 0, η

ξa
2
1 > 0, η

ξ b
2
1 > 0,

η
ξ b
3
1 > 0, η

ξa
4
1 > 0, η

ξ b
4
1 > 0, η

ξa
5
1 > 0 and η

ξ b
5
1 > 0 such that ∀ η1 < min{ηξ b

1
1 , η

ξa
2
1 ,

η
ξ b
2
1 , η

ξ b
3
1 , η

ξa
4
1 , η

ξ b
4
1 , η

ξa
5
1 , η

ξ b
5
1 } ≡ η̃1, one has ξ b

1 > 0, ξ a
2 < 0, ξ b

2 < 0, ξ b
3 > 0, ξ a

4 > 0,

ξ b
4 > 0, ξ a

5 > 0 and ξ b
5 > 0. Therefore, we deduce that ξ1(aφ) ≥ 0 when aφ ≤ ξ b

1
ξa
1

and ξ1(aφ) < 0 otherwise. ξ2(aφ) ≥ 0 when aφ ≤ ξ b
2

ξa
2

< 0 and ξ2(aφ) < 0 otherwise.

ξ3(aφ) ≥ 0 when aφ ≤ ξ b
3

ξa
3
and ξ3(aφ) < 0 otherwise. ξ4(aφ) ≤ 0 when aφ ≤ ξ b

4
ξa
4

< 0

and ξ4(aφ) > 0 otherwise. ξ5(aφ) ≤ 0 when aφ ≤ ξ b
5

ξa
5

< 0 and ξ5(aφ) > 0 otherwise.

We analyze now ε
f
v , εh

v , ε
s
v and ε̄v . Suppose that η1 < min{ηθ

1, η̃1}.
First, εs

v does not depend on aφ . Second, the different critical and bifurcation
values (ε̄v , ε

f
v , εh

v ) are homographic functions of aφ . ε
f
v has a vertical asymptote at

aφ = ξ b
3

ξa
3

≡ ãφ > 0. ε̄v and εh
v have the same vertical asymptote at aφ = ξ b

1
ξa
1

> ãφ . The

first derivatives of ε
f
v , εh

v and ε̄v with respect to aφ are given by:

∂ε
f
v

∂aφ
= ξa

4 ξb
3 − ξb

4 ξa
3

ξ3(aφ)2
> 0,

∂εh
v

∂aφ
= ξa

5 ξb
1 − ξb

5 ξa
1

ξ1(aφ)2
> 0 and

∂ε̄v

∂aφ
= − ξa

2 ξb
1 − ξb

2 ξa
1

ξ1(aφ)2
> 0.

It would be useful to locate the different bifurcation and critical values (ε f
v , εh

v ,
εs
v and ε̄v) when aφ = 0. We can note that ε f

v > 0, εh
v > 0 and ε̄v > 0 when aφ = 0.

Moreover, εs
v > 0 if and only if εu ∈ (ε̃u, ε

s
u), where εu > ε̃u is required for the

second-order conditions, with:

ε̃u ≡ c∗ ν(η1)
2

η2 (1 − ψ) (1 + i∗γ )2
(10.51)

The set (ε̃u, ε
s
u) is nonempty if and only if

η2(1 − ψ)i∗γ > ν(η1) (1 − ψ) + ψ
1 − α

σ
(10.52)
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As ν(η1) = i∗η1 (1 − γ ), the condition (10.52) holds if

η1 <
1

i∗ (1 − γ )

η2(1 − ψ)i∗γ − ψ (1 − α) /σ

1 − ψ
≡ η1 and η2 >

ψ

1 − ψ

(1 − α) /σ

i∗γ
≡ η̄2 (10.53)

Therefore, ∀ η1 < η1 and η2 > η̄2, we have ε̃u < εs
u . We suppose now that η1 <

min{ηθ
1, η̃1, η1} and η2 > η̄2. Note that using the function γ (k) given by Eq. (10.7),

η2 > η̄2 is equivalent to:

ε >
1 + c

c − 1

(
ψ

1 − ψ

1 − α

σ iγ
− 1

)
≡ ε̄ (10.54)

where γ = 1 − (a + b)/(1 + c).

We can show that εs
v < 1. Since εdk = ψ

1−ψ
1−α
σ

+ η2 and the condition (10.52) is

satisfied, we have ν(η1) < (1 + i∗γ ) εdk . Therefore, εs
v = ν(η1)

1+i∗γ
1

εdk
− εu

c∗
ν(η1)+εdk

εdk
1−ψ

ν(η1)
< 1.

Furthermore, εh
v < ε̄v and εh

v > 1 for a sufficiently small η1. Indeed εh
v > 1 is

equivalent to ψ Q(ν(η1)) > 0, where Q(ν(η1)) is a quadratic polynomial defined on
R+ such that:

Q(ν(η1)) = − ν(η1)
2

1 + i∗γ
+ ν(η1)

[
εu

c∗ −
(
1 − 1 − α

σ
+ 1

1 + iγ

)

+ εdk + 1 − (1 − α)/σ

1 − ψ

]
+

(
1 − 1 − α

σ

)
εu

c∗

Q(ν(η1)) is a concave function with Q(ν(0)) > 0. As a consequence, there is a
threshold η̂1 > 0 such that ∀η1 < η̂1, Q(ν(η1)) > 0.

Concerning ε
f
v , we can show that ε̄v < ε

f
v for η1 small enough. Note that ε

f
v >

ξ b
4 /ξ b

1 . ξ
b
4 /ξ b

1 > ε̄v is satisfied if−ν(η1)
[
ψ

(
1 − 1−α

σ

) + 1
1+i∗γ

]
+ (1 − ψ) εdk > 0.

Therefore, there exists η
1

> 0 such that ∀ η1 < η
1
, this inequality is satisfied. Hence,

∀ η1 < η
1
, ε̄v < ε

f
v .

Therefore, ∀ η1 < min{ηθ
1, η̃1, η1, η̂1, η1

}, one has εs
v < 1 < εh

v < ε̄v < ε
f
v when

aφ = 0. Moreover, we can show that there exists η′
1 > 0 such that ∀ η1 < η′

1,
εs
v < εh

v < ε̄v < ε
f
v when aφ = −1. For the rest of the proof, we assume that

η1 < min{ηθ
1, η̃1, η1, η̂1, η1

, η′
1}.

Recall that aφ is defined on (−∞,−1) ∪ [0,+∞). At this stage of the proof, we
can state by analyzing 1 − T + D, 1 + T + D and 1 − D given by Eqs. (10.41)–
(10.43) that if aφ ∈ (−∞,−1), local indeterminacy occurs when εv < min{ε̄v,

ε
f
v , εh

v , ε
s
v} or when εv > max{ε̄v, ε

f
v , εh

v , ε
s
v}. From the previous results, we deduce

that if aφ ∈ [0, ãφ), local indeterminacy occurs when εv < εs
v or when εv > ε

f
v .
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Finally, if aφ > ãφ , local indeterminacy occurs when ε < εs
v . For the case aφ ∈

(−∞,−1), we should determine the location of ε f
v , εh

v , ε
s
v and ε̄v in the plane (aφ, εv).

The functions ε
f
v , εh

v and ε̄v are continuous and monotone increasing on aφ ∈
(−∞,−1). We can show that the graph of these functions cross the horizonntal axis
on aφ ∈ (−∞,−1). Let introduce the different following points aξ2

φ , aξ4
φ and aξ5

φ ,

which corresponds to the points at which ε̄v , ε
f
v and εh

v cross the horizontal axis. aξ2
φ

is defined by ε̄v = 0 such that aξ2
φ = − ξ b

2
ξa
2

< 0. aξ4
φ is defined by ε

f
v = 0 such that

aξ4
φ = − ξ b

4
ξa
4

< 0. aξ5
φ is defined by εh

v = 0 such that aξ5
φ = − ξ b

5
ξa
5

< 0.
After some algebra, we can show that sinceψ < 1/(1 + i∗γ ), there exists ηa

1 > 0
such that ∀ η1 < ηa

1 , aξ5
φ < aξ2

φ . Furthermore, either aξ2
φ < aξ4

φ ∀ η1 > 0 or there exists

ηb
1 such that ∀ η1 < ηb

1 > 0, aξ2
φ < aξ4

φ . Hence, if η1 < min{ηa
1 , η

b
1, η

θ
1, η̃1, η1, η̂1, η1

,

η′
1}, one has aξ5

φ < aξ2
φ < aξ4

φ < 0.

Let η′′
1 = min{ηa

1 , η
b
1, η

θ
1, η̃1, η1, η̂1, η1

, η′
1}. For the rest of the proof, we suppose

that η1 < η′′
1 .

Since the functions ε
f
v , εh

v and ε̄v are continuous and monotone increasing on
(−∞,−1) ∪ [0, ãφ), we can now locate ε

f
v , εh

v and ε̄v in the plane (aφ, εv).

Let âφ ≡ aξ4
φ . Since ψ < 1/(1 + i∗γ ), aξ 5

φ < aξ2
φ < âφ . Using the expressions of

1 − T + D, 1 + T + D and 1 − D given by Eqs. (10.41)–(10.43), we state that
if aφ ∈ (−∞, âφ), local indeterminacy occurs when εv > max{ε f

v , εh
v , ε

s
v}. If aφ ∈

[âφ,−1) ∪ [0, ãφ), local indeterminacy occurs when εv < min{ε f
v , εs

v} or when εv >

max{ε f
v , εh

v , ε
s
v}.

We have shown that εs
v can be positive. In such a case, it would be useful to

determine when ε
f
v , εh

v and ε̄v cross εs
v . Suppose that εs

v > 0. εh
v = εs

v when aφ =
− (

εs
vξ

b
1 − ξ b

5

)
/(εs

vξ
a
1 − ξ a

5 ) ≡ a1
φ < 0, ε̄v = εs

v when aφ = − (
εs
vξ

b
1 + ξ b

2

)
/(εs

vξ
a
1 +

ξ a
2 ) ≡ a2

φ < 0, and ε
f
v = εs

v when aφ = − (
εs
vξ

b
3 − ξ b

4

)
/(εs

vξ
a
3 − ξ a

4 ) ≡ a3
φ < 0.

Because ψ < 1/(1 + i∗γ ), we can show after some algebra that either a1
φ < a2

φ ∀
η1 > 0 or there exists ηe

1 > 0 such that ∀ η1 < ηe
1, a

1
φ < a2

φ . It is difficult to determine
the location of a3

φ . Nevertheless, if a1
φ < a3

φ < a2
φ < 0 or if a3

φ < a1
φ < a2

φ < 0, we
get 1 − T + D < 0, 1 + T + D < 0 and D > 1 for some values of εv . Since this is
not feasible, we can eliminate these configurations. Therefore, if η1 < min{ηe

1, η
′′
1},

one has a1
φ < a2

φ < a3
φ < 0.

Let η̄1 = min{ηe
1, η

′′
1}.All conditions onη1 required in this proof are satisfiedwhen

η1 < η̄1. We can now derive the dynamic properties of the model. The properties of
local dynamics are depicted by Fig. 10.1.19 Grey areas in Fig. 10.1 correspond to the
different regions inwhich the steady state is a sink, in otherwords to the indeterminacy
regions.

19Figure10.1 depicts the dynamic properties of the model with εu ∈ (ε̃u , εs
u). The configuration

with εu > εs
u can be easily deduce from the former one.
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We deduce Proposition 3 and Corollary 1 from Fig. 10.1. Since aφ = φ/(1 − φ)

is increasing with φ, we can derive Corollary 2 from Proposition 3 and Fig. 10.1. �
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