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Modelling the Portevin-Le Chatelier
Effect—A Study on Plastic Instabilities
and Pattern Formation
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7.1 Introduction

From macroscopic point of view the Portevin-Le Chatelier effect is an oscillatory
plastic flow, resulting in inhomogeneous and discontinuous deformation that may
be observed in metallic alloys subjected to load-or displacement-controlled
experiments in a certain range of strain, strain-rate and temperature. From micro-
scopic point of view the PLC effect is usually explained by a model called dynamic
strain ageing (DSA) which characterizes the interaction between moving disloca-
tions and between dislocations and diffusing solute atoms. The concept of DSA,
first introduced by Cottrell and Bilby (1949) in the frame of the dislocation theory
(see Cottrell 1953), generalized by Louat (1981) and later developed by others (see
for instance Rizzi and Hähner 2004 and the references therein) is based on the
pinning and unpinning of dislocations by impurity clouds.

In the present work, after reminding the main experimental and physical aspects
of this phenomenon we introduce the principal ideas for incorporating the
microstructural processes specific to the DSA into the phenomenological consti-
tutive modelling. Our goal is to focus on macroscopic constitutive equations
appropriate from the point of view of continuum mechanics. One way to realize this
bridge from the microstructural aspects to the macroscopic mechanical behavior
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associated with the PLC instabilities can be achieved by using the theory of flow
localization due to the DSA proposed by McCormick (1988). In this framework, we
survey the literature related with such macroscopic phenomenological approaches
able to describe both the global responses, as observed typically in the stress-strain
curves, but also the spontaneous appearance of strain localization.

In Sect. 7.2, following a line developed by Mesarovics (1995), Zhang et al.
(2001), Böhlke et al. (2009) we give a detailed description of an elastic-viscoplastic
model of McCormick type incorporating DSA and negative strain-rate sensitivity.

Starting from the idea that the PLC effect as well as all phenomena related with
strain localization and band propagation are characterized by deformation which is
inhomogeneous both in space and time, we consider that the appropriate framework
for a phenomenological approach is the field theory approach. That means, in order
to establish the predictions of a constitutive set of relations we have to add the
general law of mechanics, for instance, the balance of momentum, the balance of
mass and to investigate the resulting set of partial differential equations (PDEs) for
initial-boundary value problems which simulate laboratory experiments.

In order to outline the basic ideas we consider for simplicity in Sect. 7.3 the case
of a bar subjected to a one-dimensional stress state. We show that the field theory
approach leads in this case to a hyperbolic semilinear PDEs system with source
terms. The hyperbolic character of the system is due to the fact that we do not
neglect the inertial term in the balance of momentum, although the PLC effect
manifests only for strain-rate ranging between 10�6 s�1 and 10�2 s�1, which usu-
ally are considered as static tests.

We accurately formulate initial-boundary value problems corresponding to
strain- and stress-controlled tests. Moreover, we do not add as usual a machine
equation in order to describe the machine effect, but we formulate in a new way
mixed stress- and strain-controlled boundary conditions which include a parameter
describing the influence of the testing machine.

A numerical investigation of uniaxial tensile tests is done using an explicit finite
difference scheme based on the method of characteristics described in Appendix. It
is shown that, without introduction of a geometric defect or other heterogeneity, the
PDEs system is able to describe quantitatively the remarkable features of the PLC
effect, that is, the staircase response for a soft testing device, the jerky flow for the
hard device depending on the imposed strain-rate, but also strain localization
phenomena and pattern formation.

In the mathematical framework developed, we consider in Sect. 7.4.1 a spatial
homogeneous process in stress, strain and ageing time, as the solution of an ideal
initial-boundary value problem. That corresponds to a constant cross-head velocity
controlled experiment having a linear distribution of the velocity in the bar at the
initial moment. A linear stability analysis of this homogeneous solution allows to
determine a critical condition on some material parameters for the PLC effect.
Moreover, one determines the range of strain-rates and mechanical parameters for
which there exists a jerky flow. One shows that the boundaries of the unstable PLC
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domain correspond to a Hopf bifurcation with limit cycle behavior. Section 7.4.2
concerns the calibration and verification of the constitutive model.

7.1.1 Experimental and Physical Aspects

The phenomenon of discontinuous deformation in tensile tests had already been
observed in the first part of the 19th century in dead weight tests. By adding suc-
cessively weights to the end of copper strips, the French physicist Savart (1837)
observed that the deformation does not increase continuously, but by sudden jumps,
feature known now as ‘‘staircase’’ like stress-strain behavior. He was the first to
consider this phenomenon as an intrinsic material property of plastic deformation.
More careful and systematic tests have been considered by his studentMasson (1841)
who performed tests on different alloys at different temperatures. That is way
sometimes this phenomenon is referred as Savart–Masson effect (see the historical
comments in Bell (1973), Scott et al. (2000), Rizzi and Hähner (2004)). The use of
‘‘hard’’ testing machines, i.e. of strain-controlled experiments, at the beginning of
20th century, had allowed Portevin and Le Chatelier (1923) to investigate in a sys-
tematically manner the serrated yielding in aluminium alloys at different elongation
rates and to definitively remove a common belief that such irregularities and dis-
continuous deformation are only a machine-produced effect of little importance. In
recognition of their results, starting with thework of Cottrell (1953), this phenomenon
of discontinuous deformation of metals, in quasi-static tests, bears their name.

Thus, the PLC effect is an unstable, irregular plastic flow resulting in an inho-
mogeneous deformation that may be observed in some dilute metallic alloys. These
are, for example, steels and aluminium alloys which are important industrial
materials used for car bodies, aircraft fuselage and different type of casing. The
localized deformation associated with the PLC effect leads to the formation of
narrow bands of intense plastic deformation that leaves undesirable traces on the
surface of the final product. Moreover, it affects most materials properties by
increasing: the flow stress, the ultimate tensile strength and the work hardening rate
and by decreasing: the ductility of metals, the strain-rate sensitivity coefficient and
the fracture toughness (see Yilmaz 2011).

From macroscopic point of view the PLC effect is characterized by the following
aspects. In constant strain-rate tensile experiments, i.e. when the end of the test
specimen is subjected to a constant velocity motion, the PLC effect appears in
certain ranges of temperature and strain-rate and manifests by a discontinuous
deformation, which corresponds to serrated stress - strain curves (‘‘jerky flow’’).
The most distinct feature is the localization of strain in the form of visible bands,
apparently moving along the surface of the specimen gauge. The apparition of each
strain band corresponds to a burst of plastic activity.

While for most metallic alloys the stress-strain curves obtained in tensile tests
moves up when the strain-rate increases, for the alloys which show the PLC effect
the reverse phenomenon happens, that is, they move down. This behavior is known
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as negative strain-rate sensitivity (NSRS) of the flow stress. It is illustrated in
Fig. 7.1 where one can see that the highest strength and the highest stress-strain
curve is obtained for the lowest strain-rate, i.e. for 6� 10�4 s�1. As the strain-rate
increases to 6� 10�3 s�1 and ultimately to 6� 10�2 s�1 the two stress-strain
curves are lower, thereby indicating a negative strain-rate effect. At constant
strain-rate, the amplitude of the serrations increases gradually with strain and then
finally saturates at large strains. Moreover, the amplitude of serrations decreases
with increasing strain-rate.

Experimental observations have shown that different types of serrations correspond
to different ways the PLC bands nucleate and move along the specimen leading finally
to specific band patterns. These are designated as type A, type B and type C, serrations
and correspondingly as type A, type B and type C, PLC bands (see for instance
Chihab et al. 1987). They are illustrated in Fig. 7.2. The transition between band types
or, equivalently, serration types may occur upon changes in strain-rate and temper-
ature. Usually, higher strain-rates are associated with type A bands, lower strain-rates
with type C bands and intermediate levels with type B bands.

Type C bands nucleate randomly and appear as hopping bands throughout the
specimen gauge and the corresponding serrations have a relative constant amplitude
and frequency. Type B bands propagate in a gauge in an intermittent manner with
approximately equal intervals having amplitudes and frequencies somewhat irreg-
ular and smaller than those of a type C curve. Type A bands propagate apparently
continuously in a gauge resembling a longitudinal wave (see Ait-Amokhtar and
Fressengeas 2010), with arbitrarily located small stress drops embedded in the
regular flow in the tensile test curve.

Different optical methods, laser scanning extensometry, infrared thermographic
techniques, or digital image correlation methods, (see for instance Chihab et al.
1987; Neuhäuser et al. 2004; Ait-Amokhtar et al. 2008; Benallal et al. 2008a, b;

Fig. 7.1 True stress-strain
curves of AA5754 alloy at
various strain-rates and
temperatures (reproduced
with permission from Halim
et al. 2007 Elsevier Ltd.)
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Zdunek et al. 2008; Ait-Amokhtar and Fressengeas 2010 and the references therein)
have allowed to correlate the spatio-temporal characteristics of the PLC effect with
the associated serrations observed in conventional tensile tests.

Thus, if one looks at a zoom of the ‘‘saw teeth’’ stress–strain curve of a constant
strain-rate test (see Fig. 7.3) obtained using Digital Image Correlation technique by
Zdunek et al. (2008) one observes that it is composed by a rapid stress drop
followed by a slow reloading part and this process runs almost cyclically. One notes
also that each stress drop accompanies a local dynamic event evidenced by the
nucleation of a strain band and the subsequent strain band buildup (see the strain
distribution in images 3–4 and 7–8). On the other side, when the stress increases
quasistatically there is no strain nucleation and the bands remain unchanged (see the
strain distribution in images 1–2 and 5–6). In this way, cyclic strain accumulation
occurs leading to a strain pattern formation along the specimen. In other words, the
plastic flow appears as ‘‘strain bursts-and-arrests’’ and the strain band propagation
can be of type ‘‘go-and-stop’’.

The experimental effort on the PLC effect has been mainly devoted to constant
strain-rate tests and the atypical load-extension curves obtained have led to the
acceptance of the term “serrated flow” as a synonym for the expression
“Portevin-Le Chatelier effect”.

Fig. 7.2 Stress-time curves for an Al–Mg alloy at T = 300 �K showing the change from type C to
type B, and then to type A serrations with increasing strain-rate. a Type C; 5� 10�6 s�1, b type B;
5� 10�4 s�1 and c type A; 5� 10�3 s�1 (reproduced with permission from Chihab et al. (1987)
and Yilmaz (2011) Elsevier Ltd.)
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Considerably less attention has been paid to constant stress-rate tests. In these
experiments the PLC effect manifests by stress-strain curves which are no longer
‘‘serrated’’, but exhibit “staircase steps”. As it is described by Fellner et al. (1991)
there are two ways to conduct a constant- _r test. The first modality is to perform
dead-load experiments using a creep machine by programmed addition of water, for
example, which allow a careful control of the loading rate. This is a so-called
dead-load tensile machine and the experiment is called a true constant- _r test. In this
case “almost perfect” steps can be obtained as it is illustrated in Fig. 7.4. The
second way, but the most common in laboratory experiments, is to use a conven-
tional tensile testing machine with electronic control systems. Such a machine is
used as a hard testing machine for constant extension-rate tests, but when one
inserts a spring of weak stiffness between the specimen and the grips of the machine
it is used as a soft testing machine for constant loading-rate tests. In this case, the
steps of the staircase present always a decrease of the stress and even successive
“oscillations” (see Figs. 3–4 in Fellner et al. 1991). The machine effect on the
“staircase shape” is not negligible as it can be seen from the physical experiments in
Fig. 7.5 obtained using a Zwick testing machine equipped with digital recording.
This experiment can be considered a “pseudoconstant- _r” test.

It is important to note that, unlike the constant strain-rate tensile experiments in
which the serrations on the stress-strain curves are accompanied by the appearance
of visible localized deformations bands along the gauge length, in true constant
stress-rate experiments no well defined stretcher-strain markings can be revealed on
the surface of the specimen (Fellner et al. 1991).

Fig. 7.3 Correlation between stress drops and pattern formation: strain band localization during a
stress drop and no change in strain distribution during the stress increase (reproduced from Zdunek
et al. (2008) Elsevier Ltd.)
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However, Cuddy and Leslie (1972), testing several alloys of iron, by means of a
creep tensile test machine, with an incrementally increased stress, have put into
evidence that deformation bands can be detected by the oscilloscope traces of the
outputs of a double extensometer. These bands spread immediately over the entire
gauge length of the specimen while the stress remains constant and large strain
increments are recorded.

More sophisticated experiments at constant stress-rate have been performed by
Neuhäuser et al. (2004), Chmelík et al. (2007) using acoustic emission and laser
extensometry techniques in order to detect the movement of a deformation band. It
has been shown that the deformation band movement is characterized most
appropriately by a repeated nucleation of bands. This appears as a piecewise
continuous propagation at higher and strongly scattered values of propagation
velocity as compared to the A-type in strain-rate controlled tests. They claim that
“in fact there is a new generic type of PLC bands at the stress-rate controlled
deformation”.

Fig. 7.4 Strain bursts in a dead-load tensile machine with constant stress-rate for annealed AlMg3
(reproduced from Fellner et al. (1991) Elsevier Ltd.)

Fig. 7.5 Strain bursts in a Zwick testing machine in a nearly constant stress-rate test � 0:076
MPa/s for a 5182H28 alloy (reproduced with permission from Făciu et al.1998 EDP Sciences)
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From microscopic point of view the plastic flow in metals can be explained by
using the theory of dislocations (see for instance Cottrell 1953; Nabarro 1967). In
general, when dislocations move without interacting each other, or without inter-
acting with point defects, the plastic flow is steady and stable. When the motion of
dislocations is disturbed by different kind of interactions the plastic flow becomes
unstable as it happens in the case of PLC effect. This phenomenon is usually
explained by a model called dynamic strain ageing (DSA) which characterizes the
interaction between moving dislocations and between dislocations and diffusing
solute atoms (see Cottrell and Bilby 1949). It is considered that when the dislo-
cations meet obstacles like solute atoms, or interstitial particles, they are temporary
arrested for a certain time. If sufficient stress is applied these dislocations will
overcome these obstacles and will quickly move to the next obstacle where they are
stopped again and the process is repeated. This microscopic mechanism, referred to
as dislocation pinning by solutes (Cottrell 1953), is believed to be the main factor
controlling instabilities in plastic flow and in particularly the PLC effect. The
dynamic strain ageing as micro mechanism of plastic instability phenomenon
described by dislocation–solute and dislocation–dislocation interactions is in
agreement with the experimental macroscopic correlation of the spatio-temporal
characteristics of the PLC effect, obtained by different imaging techniques, as it is
illustrated, for example, in Fig. 7.3. The idea of DSA has been further developed by
van den Beukel (1975), Mulford and Kocks (1979), Louat (1981), McCormick
(1988), Springer et al. (1998), Rizzi and Hähner (2004).

7.1.2 Main Ideas for the Constitutive Modelling of the PLC
Effect

Phenomenological viscoplastic models used to describe the PLC effect are mainly
based on two directions. One is motivated by the empirical material law adopted by
Penning (1972) in his analysis of the tension tests for materials with negative
strain-rate sensitivity. This relay on the assumption that in uniaxial tension, the
stress r is defined as a function of plastic strain ep and plastic strain-rate _ep in the
form

r = rY þ rHðepÞþ rVð_epÞ; ð7:1Þ

where rY is the yield stress, rH is the strain hardening variable, and rV is the
viscous stress governing the strain-rate sensitivity of the flow stress. It is assumed
that the viscous stress is non-negative, but in order to include negative strain-rate
sensitivity, rV is taken as a decreasing function of _ep in a bounded region of the
plastic strain-rate, i.e. there is a N-shaped relationship between the plastic strain-rate
and flow stress. This model has been extended by Kubin and Estrin (1985) by
adding the so-called “machine equation”
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rðtÞ
M

=
V�

L
t � 1

L

ZL
0

eðx; tÞdx; ð7:2Þ

where M is the combined elastic modulus of the specimen and the testing machine,
L is the length of the specimen and V� is the imposed end velocity. This approach
has led to a nonlinear integro differential system involving a spatial variable x and a
temporal variable t which allowed to model constant stress-rate experiments.
Penning’s constitutive equation has been modified by Hähner (1993) by incorpo-
rating second order strain-gradients @2ep=@x2 to capture a spatial coupling of the
PLC effect. A generalization of the material law (7.1) for a three dimensional
viscoplastic model has been considered by Benallal et al. (2003, 2006).

The second direction is based on the constitutive relations introduced by
McCormick (1988) to describe the dynamic strain ageing. The model assumes that
the plastic flow occurs as a result of thermally activated escape of dislocations that
have been pinned by solute atoms and can be described by an Arrhenius-type law.
This implies that the plastic strain-rate _ep is related to the stress r and the average
local solute concentration near dislocations C by relation

_ep = _e0 exp
r� rHðepÞ

S
� HCðtaÞ

� �
, r = rHðepÞþ SH CðtaÞþ S ln

_ep

_e0

� �
; ð7:3Þ

where _e0 is a characteristic strain-rate, S and H are material constants controlling the
instantaneous and steady-state strain-rate sensitivity of the solid. Here rHðepÞ
describes the stress hardening part of the flow stress. The solute concentration C,
according to the original model proposed by Cottrell and Bilby (1949) and modified
by Louat (1981), depends on average age of dislocations according to relation

CðtaÞ = 1� exp � ta
tD

� �n� �
; ð7:4Þ

where tD is the characteristic time for solute diffusion across dislocations, n is a
phenomenological material constant and ta is the time that a representative mobile
dislocation is pinned by obstacles. The age of dislocations ta evolves according to a
phenomenological kinetic law which will be described bellow.

An obvious inconvenience of the Arrhenius-type relation (7.3) is that when it is
coupled with an elastic unloading condition, and r is lower than the flow stress, it
yields a finite plastic strain-rate (see Estrin 1996). Therefore, a different flow rule
has been proposed by Böhlke et al. (2009), whereby the plastic strain-rate _ep is
related to the stress r not by an exponential function as in (7.3), but by a power law,
coupled with an unloading condition, i.e.

_ep = _e0
r� rHðepÞ

S
� HCðtaÞ

� �m

; ð7:5Þ
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where m[ 0 is a material constant which describes the strain-rate sensitivity of the
material. By using this flow rule a geometrically non-linear elastic–viscoplastic
constitutive model has been used for simulation of material response under various
applied strain-rates.

For steady-state conditions the ageing time ta may be taken to be equal to the
waiting time of dislocations, tw, as given by the Orowan equation, which relates the
plastic strain-rate to dislocation densities and the average velocity of mobile dis-
locations, vD ¼ l

tw
, by relations

tw =
qmbl
_ep

=
qmbq

�1=2
i

_ep
=

X
_ep

ð7:6Þ

where qm is the mobile dislocation density, qi is the immobile dislocation density, l
is the effective obstacle spacing, that is, the effective mean free path between
obstacles, and b is the length of the Burgers vector. X is in fact the strain produced
by all mobile dislocations moving to the next obstacle on their path. Since
according to (7.6), X varies with the dislocation densities it follows that from
phenomenological point of view it varies with the plastic strain, that is, X = XðepÞ.
The strain dependence of X can be calculated using a dislocation model (see Zhang
et al. 2001) and taken as

X = x1 þx2ðepÞb ð7:7Þ

where x1, x2 and b are constants.
Relation (7.6) reflects the generally accepted fact that a decrease in plastic

strain-rate causes an increase in the waiting time spent by dislocations at obstacles,
which in turn will increase the magnitude of the stress drop in a jerky flow.

According to McCormick and Ling (1995), measurements of transient behavior
following abrupt changes in _ep or r indicate that ta is not an instantaneous function
of _ep, but rather may be approximated by a first order relaxation kinetics law (see
Ling and McCormick 1993). That means, the effective ageing time ta is not iden-
tical to the average waiting time tw a dislocation is arrested at localized obstacles.
The fundamental assumption proposed by McCormick (1988) is that the effective
ageing time ta ‘‘relaxes’’ towards tw with time t according to the evolution law

dta
dt

¼ tw � ta
s

; ð7:8Þ

where the characteristic relaxation time s is taken to be equal to tw.
Therefore, from (7.8) and (7.6) the age of dislocations ta evolves with time,

plastic strain and plastic strain-rate according to the phenomenological kinetic law
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dta
dt

= 1� ta
tw
; where tw =

XðepÞ
_ep

: ð7:9Þ

Let us note that if tw�ta, then from (7.9) it follows that dtadt ffi1, in agreement with

the fact that the solute concentration at arrested dislocations cannot increase faster
than that allowed by the passage of time (McCormick 1988).

McCormick’s model has been used in a large number of theoretical and
numerical studies. It has been extended to the three-dimensional case by inter-
preting relation (7.3) as a relation between the von Mises equivalent deviatoric
stress and the equivalent plastic strain. Analytical and numerical stability and
bifurcation analysis have been done by Mesarovics (1995). There are several
studies in the literature in which such kind of three-dimensional constitutive
approaches have been investigated numerically by using the finite element method.
The first numerical study in a 3D context has been done in McCormick and Ling
(1995) by discretizing the tensile specimen into a number of axisymmetric sections
and simultaneously solving the constitutive equations for dynamic strain ageing in
each section. A reference approach is that in Zhang et al. (2001) where finite
element simulations of dynamic strain ageing in flat and notably round specimens
have been implemented by using the ABAQUS code. The model has been also used
by Graff et al. (2004) and investigated in a finite element code for strain localization
phenomena associated with static and dynamic strain ageing in notched specimens.
In Jiang et al. (2007) a phenomenological model that includes spatial coupling is
developed on the basis of McCormick’s constitutive assumptions. In this case the
specimen is numerically divided into N sections with equal width, perpendicular to
the axial direction and coupled through the acting load. An experimental and
numerical investigation of the PLC effect in the aluminium alloy AA5083-H116
was carried out by Benallal et al. (2008a) using the explicit non-linear finite element
code LS-DYNA for different specimen geometries. In Zhang et al. (2012) a simple
modification of McCormick’s model has been made by introducing a power law
dependence in the right part of Eq. (7.9)1 to modify the transient kinetics of the
strain-rate response of the material. Numerical simulations of PLC band formation
and necking in a tensile specimen have been performed using the explicit dynamic
finite element code ABAQUS. By using the flow rule (7.5), Böhlke et al. (2009)
have considered a geometrically non-linear elastic-viscoplastic constitutive model
for simulation of material response under various applied strain-rates. A related
elastic-viscoplastic approach with that proposed by Böhlke et al. (2009) has been
used by Mazière and Dierke (2012) to investigate the PLC critical strain in an
aluminum alloy.

More complex constitutive laws derived from a depth analysis of physical
mechanisms have been developed and are suitable, but more difficult to implement.
For instance, Rizzi and Hähner (2004) have introduced two intrinsic time scales in
the evolution equations and a characteristic length scale through a diffusion-like
term with spatial second-order gradient. Soare and Curtin (2008a, b) have
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developed a different kinetic model of dynamic strain ageing. Picu (2004) has
introduced a new mechanism leading to negative strain-rate sensitivity in dilute
solid solutions.

7.2 An Elastic-Viscoplastic Model with ‘‘Negative
Strain-Rate Sensitivity’’ of McCormick Type

We consider in the following a phenomenological three dimensional
elastic-viscoplastic constitutive model, of ‘‘overstress’’ type, that accounts for
negative strain-rate sensitivity. The model formulation is motivated by
McCormick’s ideas presented in the previous section.

For simplicity reasons the formulation of the problem and its analysis is limited
here to small strains and isotropic materials. We denote by e the small strain tensor
and by r the stress tensor, and by

e = e� 1
3
trðeÞI and s = r� 1

3
trðrÞI; ð7:10Þ

their deviatoric parts, respectively. I is the second-order identity tensor.
We consider the additive decomposition of the strain tensor e into an elastic and

inelastic part, i.e.

e = eel þ ein: ð7:11Þ

with the classical assumption of purely isochoric inelasticity of metals, i.e.
trðeinÞ = 0, it follows that the inelastic strain tensor is a deviatoric one and ein = ein.

One assumes that the volume deforms only elastically, i.e. the mean strain and
the mean stress satisfies the linear relation

trðrÞ = 3K trðeÞ; ð7:12Þ

where K is the bulk modulus. By assuming that in the elastic domain we have an
isotropic Hookean elastic material response, the relation between the stress deviator
and the deviatoric part of the elastic strain read as

s = 2leel; ð7:13Þ

where l is the shear modulus.
Therefore, the stress tensor can be written as

r = sþ 1
3
trðrÞI = 2leel þK trðeÞI = 2leel þ k trðeelÞI; ð7:14Þ
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where l and k are the Lamé coefficients and K = ð2lþ 3kÞ=3.
The inelastic strain tensor is expressed in the fairly general form of the Lévy-von

Mises type equation by which its rate is proportional with the deviatoric part of the
stress tensor as

_ein ¼ 3
2
_ep

req
s; ð7:15Þ

where

req 	
ffiffiffiffiffiffiffiffiffiffiffi
3
2
s 
 s

r
; ð7:16Þ

and

_ep 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_ein 
 _ein

r
: ð7:17Þ

denote the equivalent von Mises stress and the equivalent inelastic strain-rate. Here
and in the following the over-dot denotes the derivative with respect to time t.

The use of the von Mises equivalent quantities implies plastic isotropy of the
material. The specificity of the constitutive model is introduced through a particular
form of a kinetic equation relating the equivalent stress req and the equivalent
inelastic strain-rate _ep. To describe the PLC effect we choose here as a flow rule a
power law of type (7.5), i.e.

_ep = _e0
req � Yðep; taÞ

rD

� �m

; ð7:18Þ

The angle brackets \ 
 [ means as usual \x[ = maxð0; xÞ and allow to
characterize both the elastic and viscoplastic domains and the loading/unloading
conditions. The quantities _e0, m and rD are material parameters influencing the
kinetics of the viscoplastic processes. The factor _e0, which is proportional to the
density of mobile dislocations, is considered constant, m[ 0 is a constant rate
sensitivity parameter and rD is a characteristic stress for a dimensionless quantity
inside the bracket.

The function Y = Yðep; taÞ represents the flow stress, which depends on the
accumulated plastic strain ep defined as,

ep ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_ein 
 _ein

r
d~t; ð7:19Þ

and on an internal variable ta, called dynamic ageing time. It is obvious that the rate
of the accumulated plastic strain coincides with the equivalent inelastic strain-rate.
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The accumulated plastic strain satisfies epð0Þ = 0, i.e. the body is initially in a
virgin state and epðtÞ� 0 increases with time in any elastic-viscoplastic process.
One can view ep as a macroscopic measure of dislocations stored in the microscopic
structure.

Since the expression req � Yðep; taÞ is called overstress function, as it charac-
terizes the deviation of the equivalent stress with respect to the flow stress, one says
that this elastic-viscoplastic constitutive approach is of overstress type. It is obvi-
ous, according to (7.18), that the temporal changes in the accumulated plastic strain
ep are due to the variation of the overstress function and are associated with dis-
sipative effects.

By combining relations (7.11), (7.13), (7.15) and (7.18) one can write the
constitutive rate-type equation in terms of the rate of the deviatoric parts of total
strain tensor and stress tensor as

_e =
_s
2l

þ 3
2
_e0
req

req � Yðep; taÞ
rD

� �m

s: ð7:20Þ

From this expression one can see that we have obtained an elastic-viscoplastic
rate-type model with linear instantaneous response between the total strain deviator
e and the stress deviator s. For this class of constitutive relations see also Cristescu
and Suliciu (1982, Chap. VIII).

We assume that the flow stress can be decomposed in two additive parts

Yðep; taÞ = rHðepÞþ rBðep; taÞ; ð7:21Þ

where the first term rHðepÞ describes the hardening of the material and the second
one rBðep; taÞ takes the dynamic strain ageing into account.

One can assume for rHðepÞ a strain dependence obeying a Voce-type equation
(see Ling et al. 1993; Böhlke et al. 2009) as

rHðepÞ = r0 þðr1 � r0Þ 1� exp � H0ep

r1 - r0

� �� �� �
; ð7:22Þ

where r0 and r1 denote the initial and the saturation values of the stress and H0 is
a hardening parameter.

Motivated by relations (7.3) and (7.4), based on the generalization made by
Louat (1981) of the relation proposed by Cottrell and Bilby (1949) for the time
variation of the solute concentration around dislocations, one can take, according to
Böhlke et al. (2009), the part of the stress accounting for the PLC effect as

rBðep; taÞ = ðr1 þ r2e
pÞ 1� exp � ta

tD

� �n� �� �
; ð7:23Þ

where tD is the characteristic time for solute diffusion across dislocations and n[ 0
is a material parameter.
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Let us note that, if one takes the ageing time ta equal to the waiting time of
dislocations tw, then according to (7.6), one can write relation (7.23) as

rBðep; twÞ = ðr1 þ r2e
pÞ 1� exp � XðepÞ

tD _ep

� �n� �� �
: ð7:24Þ

It is obvious that when the rate of the accumulated plastic strain _ep increases,
then the waiting time tw decreases and the stress rB also decreases, pointing out in
this way a negative strain-rate sensitivity of the flow stress.

Taking into account the relaxation law (7.9), introduced by McCormick (1988),
and by using a linear relation of type (7.7) one obtains the following form of the
evolution equation for the dynamic ageing time ta

_ta ¼ � _ep

x1 þx2ep
ta þ 1; ð7:25Þ

where _ep is the equivalent inelastic strain-rate (7.18), ep is the accumulated plastic
strain (7.19) and x1 and x2 are constant material parameters.

By using expression (7.18), relation (7.25) can be written as

_ta = � _e0
x1 þx2ep

req � Yðep; taÞ
rD

� �m

ta þ 1: ð7:26Þ

Therefore, the constitutive relations relating the unknowns quantities: the stress
r, the strain e, and the internal variable ta are given by the evolution Eqs. (7.20) and
(7.26) completed with relations (7.11–7.17) and (7.19).

These constitutive relations have to be supplemented with the balance of
momentum law

q
@v
@t

= divr; q
@vi
@t

=
@rij
@xj

ð7:27Þ

where q is the mass density of the material and v = vðx; tÞ denotes the velocity field
and div is the divergence operator with respect to the actual coordinates, written in a
Cartesian system in relation (7.27)2.

Let us note that, although the PLC effect manifests only in almost static tests
ranging, in general, between 10�6 s�1 and 10�2 s�1, the inertial term in the balance
of momentum (7.27) must not be neglected in order to capture the phenomena of
strain nucleation and strain localization which accompany the PLC effect as local
dynamic events.
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7.3 One-Dimensional Stress State

Let us consider a thin bar with uniform cross-section and length L in an undeformed
and free-stress state. In studying uniaxial load, or straining, of the bar it is common
to make a one-dimensional approximation in which the only non-vanishing stress
component is the longitudinal one which is assumed to be uniform in a
cross-section. That means, the stress tensor and its deviator in a Cartesian system of
coordinate having one of its axes directed along the bar read as

r =
r11 0 0
0 0 0
0 0 0

0
@

1
A; s =

2
3 r11 0 0
0 � 1

3 r11 0
0 0 � 1

3 r11

0
@

1
A; ð7:28Þ

and the strain tensor and its deviator as

e =
e11 0 0
0 e22 0
0 0 e22

0
@

1
A; e ¼

2
3 ðe11 � e22Þ 0 0

0 � 1
3 ðe11 � e22Þ 0

0 0 � 1
3 ðe11 � e22Þ

0
@

1
A:

ð7:29Þ

One assumes also that all the mechanical quantities intervening in the constitutive
description depends only on time t and on the spatial variable X corresponding to the
axis of the bar.

7.3.1 Constitutive Relations

In this case we denote for simplicity r = r11 and e = e11. The elastic deformation of
volume (7.11) allows to determine the transversal strain as

e22 = � e
2
þ r

6K
: ð7:30Þ

Relations (7.11)–(7.13) describing the linear elastic response of the material lead
to

eel11 =
ðkþ lÞr

lð2lþ 3kÞ =
r
E
; eel22 = � k

2lð2lþ 3kÞ r; ð7:31Þ

where E = lð3kþ 2lÞ
kþ l is the Young modulus.

By using the additive decomposition of the strain tensor in its elastic and
inelastic part, and the fact that the inelastic part is a deviatoric tensor one gets
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ein11 = e� r
E
; and ein22 = � 1

2
ein11: ð7:32Þ

The equivalent von Mises stress (7.16), the equivalent inelastic strain-rate (7.17)
and relation (7.15) read as

req = rj j; _ep = _ein11
�� �� = _e� _r

E

����
����; _e� _r

E
=

r
rj j _e� _r

E

����
����: ð7:33Þ

The accumulated plastic strain (7.19) becomes

epðtÞ =
Z t

0
_ein11ðsÞ
�� ��ds = Z t

0
_eðsÞ � _rðsÞ

E

����
����ds� 0: ð7:34Þ

Then, the tensorial viscoplastic constitutive relation (7.20) reduces to a single
equation

_e =
_r
E
þ _e0

rj j � Yðep; taÞ
rD

� �m r
rj j : ð7:35Þ

Let us consider the case of a tensile test, that is r[ 0. Then, according to
(7.33)3, _e� _r=Ej j = _e� _r=E[ 0, and the accumulated plastic strain (7.34)
becomes epðtÞ = eðtÞ � rðtÞ=E, if the bar at the initial moment is undeformed, i.e.
eð0Þ � rð0Þ=E = 0. Then, the constitutive Eq. (7.35) can be written as

_r = E _e� E _e0
r� Y e� r

E ; ta
� 	
rD

� �m

: ð7:36Þ

For the compressive case, that is when r\0, according to (7.33)3, we have
_e� _r=Ej j = � _eþ _r=E[ 0, and the accumulated plastic strain (7.34) is
epðtÞ = � eðtÞþ rðtÞ=E, if the bar at the initial moment is undeformed, i.e.
eð0Þ � rð0Þ=E = 0. Then, the constitutive Eq. (7.35) can be written as

_r = E _e� E _e0
�r� Y �eþ r

E ; ta
� 	
rD

� �m

: ð7:37Þ

By combining relations (7.36) and (7.37) we can write the constitutive
Eq. (7.35) in the form

@r
@t

� E
@e
@t

= Gðe; r; taÞ; ð7:38Þ
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where

Gðe;r; taÞ =� E _e0
rmD

r� Y e� r
E ; ta

� 	� 	m
; if r[Y e� r

E ; ta
� 	

0; if � Yð�eþ r
E ; taÞ� r� Y e� r

E ; ta
� 	

�r� Y �eþ r
E ; ta

� 	� 	m
; if r\� Y �eþ r

E ; ta
� 	

:

8><
>:

The evolution equation for the dynamic ageing time (7.25) can then be written as

@ta
@t

= Hðe; r; taÞ; ð7:39Þ

where

Hðe; r; taÞ ¼

Gðe;r;taÞ
E x1 þx2 e�r

Eð Þð Þ ta þ 1; if r[ Y e� r
E ; ta

� 	
1; if � Y �eþ r

E ; ta
� 	� r� Y e� r

E ; ta
� 	

Gðe;r;taÞ
E x1 þx2 �eþ r

Eð Þð Þ ta þ 1; if r\� Y �eþ r
E ; ta

� 	
:

8>><
>>:

Here function Y = Yðep; taÞ is given by relations (7.21)–(7.23).

7.3.2 Field Equations and Initial-Boundary Value Problems

To investigate the predictions of the model we have to consider besides the con-
stitutive relations (7.38) and (7.39) the partial differential equations governing the
longitudinal motion of a thin bar with constant mass density q in the reference
configuration. These are the balance of momentum and the compatibility equation
between strain and velocity

q
@v
@t

� @r
@X

= 0;
@e
@t

� @v
@X

= 0; ð7:40Þ

where t is time, X 2 ½0; L is the (Lagrangian) spatial coordinate along the bar and
v is the particle velocity. Once more, the inertial term is not neglected in order to be
able to capture the local dynamic events.

Hence, the complete PDEs system in the unknown r = rðX; tÞ, e = eðX; tÞ,
ta = taðX; tÞ and v = vðX; tÞ composed by the Eqs. (7.38), (7.39) and (7.40) can be
written as

@

@t

v
e
r
ta

0
BB@

1
CCAþ

0 0 �1=q 0
1 0 0 0
�E 0 0 0
0 0 0 0

0
BB@

1
CCA @

@X

v
e
r
ta

0
BB@

1
CCA =

0
0

Gðe; r; taÞ
Hðe; r; taÞ

0
BB@

1
CCA: ð7:41Þ
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The type of the system is given by its characteristic directions dX=dt = r which
are defined as the eigenvalues of the 4� 4 matrix in (7.41). These are
ðdX=dtÞ2 = E=q[ 0 and ðdX=dtÞ2 = 0. They are real and positive and conse-
quently the system is hyperbolic. Moreover, it is semilinear with source terms since
all the nonlinear terms, i.e. G and H, are among the free terms of the system.

As we have seen in Sect. 7.1.1 the PLC phenomenon is usually investigated by
two kind of experiments: either a tensile testing at constant applied strain-rate
(‘‘hard testing machine experiment’’), or a tensile testing at constant applied
stress-rate (‘‘soft testing machine experiment’’).

To simulate such kind of uniaxial quasi-static experiments we have to consider a
bar initially at rest, in its natural state of strain and stress, with one of its end fixed.
The other end is subjected to one of the following conditions.

(A) Strain–controlled experiment – cross-head velocity controlled experiment.
The left-end of the bar in this tensile test is moved with a constant negative velocity
V�. Thus, we have to find the solution of the system (7.41) which satisfies the initial
and boundary conditions.

eðX; 0Þ = 0; rðX; 0Þ = 0; taðX; 0Þ = 0; vðX; 0Þ = 0; for X 2 ½0; L;
vð0; tÞ = V�; vðL; tÞ = 0 for any t[ 0:

ð7:42Þ

This experiment corresponds to an engineering constant strain-rate _ee = V�j j=L.
(B) Stress–controlled experiment – true constant stress-rate experiment.
The end of the bar is submitted to a constant increase of the load. Thus, we have to
find the solution of the system (7.41) which satisfies the initial and boundary
conditions.

eðX; 0Þ = 0; rðX; 0Þ = 0; taðX; 0Þ = 0; vðX; 0Þ = 0; for X 2 ½0; L;
rð0; tÞ = _ret; vðL; tÞ = 0 for any t[ 0;

ð7:43Þ

where the applied stress-rate _re = const: [ 0:

(C) Mixed stress- and strain-controlled experiment – pseudoconstant stress-rate
experiment.
As we have seen in the comments from Sect. 7.1.1 related with Figs. 7.4 and 7.5 a
true constant stress-rate test is very difficult to be conducted in laboratory experi-
ments by conventional testing machines due to the elastic interaction between
specimen and the testing machine which is caused by the spring introduced between
the specimen and the grips of the machine. In order to take into account the
influence of the testing machine we consider that in fact the left-end condition is a
mixture between a perfect hard testing-machine and a pure soft-testing machine by
considering the following mixed initial-boundary value problem.
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eðX; 0Þ = 0; rðX; 0Þ = 0; taðX; 0Þ = 0; vðX; 0Þ = 0; for X 2 ½0; L;
brð0; tÞ � ð1� bÞ

ffiffiffiffiffiffi
qE

p
vð0; tÞ = b _ret � ð1� bÞ

ffiffiffiffiffiffi
qE

p
V�; vðL; tÞ = 0 for any t[ 0;

ð7:44Þ

where _re = const:[ 0, V� = const:\0 and b is a parameter with the property that
b 2 ½0; 1.

It is obvious that when b = 1 we simulate a constant stress-rate test, while when
b ¼ 0 we simulate a constant strain-rate test (_ee = V�=L). For b 2 ð0; 1Þ we have a
mixed boundary condition. If b is near 1, this boundary condition should corre-
spond to a “pseudoconstant” stress-rate experiment.

To solve these initial–boundary value problems for the system of PDEs (7.41),
and see what the model predicts, we built an explicit second order finite difference
numerical scheme based on the method of characteristics. This is described in
Appendix.

7.3.3 A Numerical Investigation

The mechanical parameters of the model are listed in the fifth column of Tables 7.1
and 7.2 and are chosen in agreement with similar parameters in the literature, but so
as to ensure the fulfillment of critical conditions for the emergence of typical
instability phenomena for the PLC effect. These conditions are investigated in
Sect. 7.4.

We consider here a bar of length L = 20 mm discretized by using 161 nodes, that
means a space integration step h = 0:125 mm and a time integration step
s = 3:44� 10�8 s satisfying condition (7.71) for the Courant number m = 0:9.
Since the numerical experiments simulate laboratory tests at extremely low
strain-rates an important computation time was necessary.

Table 7.1 Mechanical parameters for classical part of elastic-viscoplastic relations (7.20)–(7.22)

Parameters Zhang et al.
(2001)

Benallal et al.
(2008a, b), Zhang
et al. (2012)

Böhlke
et al.
(2009)

This paper Units

E 70 70 70 70 GPa

q – – – 6550 kg/m3

_e0 2:3� 10�7 10�8 3:5� 10�5 3:5� 10�6 s−1

rD ð0:41; 1:7Þ 2.23 15. 30 MPa

m Exponential
(7.3)

Exponential (7.3) 28 15

r0 38.3 78.7 123 123 MPa

r1 67.9 Power law 343 343 MPa

H0 534.6 2800 2800 MPa
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The numerical results show that the constitutive model is able to reproduce with
reasonable accuracy most of the experimentally observed phenomena which
accompany the PLC effect.

7.3.3.1 Strain-Controlled Experiments

We first consider the constant strain-rate experiment (7.42) where the free-end of
the bar is moved with the constant velocity V� = 0:2 mm/s, which corresponds to
the engineering strain-rate _ee = 10�3s�1.

The computed stress–engineering strain curve, i.e. the end-stress rð0; tÞ versus
eeðtÞ = 1

L

R L
0 eðX; tÞdX = lðtÞ � Lð Þ=L, where lðtÞ is the actual length of the bar, is

illustrated in Fig. 7.6. One obtains a serrated curve, with sudden stress drops (“jerky
flow”) and with a changes of the serrated plateaus. The emergence of different
serrated yielding plateaus in a constant strain-rate experiment is often reported in
laboratory tests on alloys which present the PLC effect as it is shown in Fig. 7.7. No
geometric defect, or other heterogeneity was introduced in the PDEs system to
initiate the unstable behavior of the solution.

The same as in the laboratory experiments, the serrations accompany the for-
mation of bands of localized deformation in the bar. Indeed, the numerical exper-
iment clearly illustrates how the strain bands nucleate, localize and propagate along
the specimen. For instance, if one focuses on the zoom in Fig. 7.6 one can follow in
Fig. 7.8 the evolution of the strain and strain-rate distribution in bar during the
stress oscillations. Thus, between the points A and B the stress rises elastically and
when it reaches a critical value it suddenly drops. During this slowly and almost
elastic process the strain band distribution in the bar remains unchanged and there is

Table 7.2 Mechanical parameters for the DSA model described by (7.26) and (7.23)

Parameters Zhang et al. (2001) Benallal et al.
(2008a, b),
Zhang et al.
(2012)

Böhlke
et al. (2009)

This paper Units

r1 ð7:92; 30:6Þ 62.22 18.9 62.22 MPa

r2 – 0 189.26 622.2 MPa

tD ð0:126; 0:03Þ 0.02 0.125 0.125 s

n 1=3 1=3 1/3 1/3

x1 ð3:6� 10�5; 7:9� 10�4Þ 10�4 6.81 �10�4 3.6 �10�5

x2 – 0 3.6 �10�4 0

A ¼ nr1
x1E

ð0:23; 1:05Þ 2:96[ e 0:132\e 8:23[ e

Temporal
instability

No Yes No Yes
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no significant plastic activity. Only at point B, just before the stress drop, the plastic
activity begins to activate and the strain-rate in the bar locally overcomes the value
of the imposed strain-rate announcing the apparition of a new localization of strain.
During the stress drop, at the level of point C, a new strain band appears and inside
this band it is observed that the strain-rate is six hundred times larger than the
applied strain-rate. At the end of the stress drop, the new band is already buildup
and the plastic activity goes out at the point D.

Once the stress starts to rise again elastically, between the points D and E, the
strain band distribution remains unchanged and the process is quasistatic (compare
the strain and the strain-rate distribution at the points C, D and E in Fig. 7.8). Only
at point E, just before a new stress drop, the strain-rate starts to increase locally
marking the new nucleation zones. Two new dynamic events follow. A stress drop
to the point F, which leads to the localization of the strain near the fixed end of the
bar, followed immediately by a sudden stress decay at the point G which leads to
the apparition of a new localization of strain. These two strain bursts are accom-
panied by an important increase of the strain-rate inside the new bands, which
becomes at the point G more than four thousand times higher than the imposed
strain-rate. This behavior is in agreement with the laboratory experiment illustrated
in Fig. 7.3. The process continues in this way in a manner almost cyclic.
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Fig. 7.6 Serrated
stress-strain curve for
numerical simulation of a
hard-testing machine
experiment with engineering
strain-rate _ee = 10�3 s�1.
Insert: zoom of a portion and
the position of points A, B, C,
D, E, F, G where are recorded
the distribution of strain e and
strain-rate _e in bar, illustrated
in Fig. 7.8

Fig. 7.7 Nominal stress
versus engineering strain in
constant strain-rate test at
_ee = 10�5 s�1 in 5182H28
alloy. Serrated flow with
change of plateaus
(reproduced with permission
from Făciu et al. (1998) EDP
Sciences)
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Fig. 7.8 a The distribution of strain e and b The distribution of strain-rate _e in bar at the moments
A, B, C, D, E, F, G in Fig. 7.6. Note the different scales used for the strain-rate distribution
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It is obvious that the stress drop occurs in a time interval much smaller than that
required for the new increase of the stress. Therefore, the sawtooth appearance of
the stress-strain curve reflects an alternation between dynamic and quasi-static
processes. Thus, Fig. 7.8 also illustrates how the stress drop is accompanied by
local dynamic events followed by quasi-static ones. This behavior explains the
mechanism of ‘‘go-and-stop’’ propagation of strain bands which is recorded in
laboratory experiments.

An overview of the PLC band propagation in the numerical simulation in
Fig. 7.6 is illustrated in Fig. 7.9. One can see that the strain bands nucleate in a way
specifically to the type B bands, which appear as hopping bands propagating dis-
continuously, in an intermittent manner.
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Fig. 7.9 Overall picture of the strain evolution in the bar during the cross-head velocity controlled
experiment in Fig. 7.6. a Spatial representation of e = eðX; tÞ. b Its plane projection
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Let us also note that each plateau of the serrated curve corresponds to a new
stage of the strain growth in bar during the plastic deformation. Thus, for the
numerical simulation illustrated in Fig. 7.6 there are four plateaus which lead to
four stages of strain increase as can be seen in Fig. 7.9.

One observes that the increase of the local strain along a plateau, in general, is
not larger than the maximal value of the engineering strain of the corresponding
plateau. Indeed, see for instance the size of the strain bursts in Fig. 7.8 and compare
with the value of the engineering strain at the end of the corresponding plateau.

Therefore, such numerical simulations could clarify the relation between the
strain magnitude of a serrated yielding plateau and the way the strain increases
inside a band during a stress drop. Thus, one could explain, depending on the
‘‘jerky” flow structure of the serrated curve, the possible occurrence of visible strain
markings on the surface of a specimen during its unstable viscoplastic flow.

The 3D Fig. 7.10 illustrates how the plastic strain-rate is locally activated in a
spectacular way in the process of band formation during each stress drop. Since
these simulations are demanding not only with respect to the computation time, but
also to the data storage it is possible to not capture here the largest strain-rates of the
numerical simulation.

The evolution of the ageing time variable ta describes the dynamic ageing
process in which dislocations are alternately pinned by solute and released, or
newly generated, when the stress attains some critical value.

This behavior is illustrated in Fig. 7.11. According to the evolution Eq. (7.26)

when a particle of the bar suffers an elastic quasi-static process one has dtadt = 1, that

is, one has a linear increase of ta with constant slope 1. This behavior can be clearly
seen appearing regularly in Fig. 7.11. The increase of the ageing time during the
slow elastic stress growth describes in fact the process of ageing of dislocations
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Fig. 7.10 Overall picture of the strain-rate _e = _eðX; tÞ in the bar during the cross-head velocity
controlled experiment in Fig. 7.6
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when the band front is pinned. Afterwards, the ageing time of the particles which
enter the viscoplastic domain starts to decay.

During the nucleation and localization process, when the stress sharply decreases
and the strain-rate bursts leading to localized bands, the ageing time ta decreases
rapidly to the waiting time tw � X=_ee = 3:5� 10�2s in the corresponding zones,
as can be seen in Fig. 7.12 (compare the ageing time distribution in the bar at points
B and C). This behavior is in agreement with Schwarz (1985) assertion that the
propagation and localization occur at the position of less aged dislocations. This can
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Fig. 7.11 Overall picture of the evolution of the ageing time ta = taðX; tÞ in the bar during the
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be also observed globally in Fig. 7.11 where ta decreases for short periods of time
in the neighborhood of the new localized front bands.

Thus, the prediction of the model is in agreement with the observation made by
Cuddy and Leslie (1972) that, as the bands appear along the gauge length, pro-
ducing regular serrations on the load-extension curve, and surface markings on the
specimen, there is an alternation between the ageing and breakaway of the
dislocations.

We end the comments on strain-controlled experiments with Fig. 7.13 which
illustrates how the strain-rate influences the yielding curve. One observes that, as
the engineering strain-rate _ee decreases, the stress-strain curves, in general, move up
pointing out the way the constitutive equations describe the negative strain-rate
sensitivity of the flow stress. For _ee = 10�1s�1 there is only a first drop, but no jerky
flow appears. The reason is that at this “high” strain-rate we are outside the region
of instability predicted by the analytical results in Sect. 7.4 for the material
parameters in Tabels 7.1 and 7.2. As we have already seen, the numerical simu-
lation performed at _ee = 10�3s�1 presents the characteristics of type B serrations
and PLC bands propagation, with regular alternation of stress increases and
decreases. For the increasing engineering strain-rate _ee = 10�2s�1, which according
to the stability analysis in the next section, lies in the intermediate range of
stable/unstable flow, the stress-strain curve presents the characteristics of a transi-
tion from type A to type B serrations with more irregular humps and valleys.

The stress drop amplitudes also show a slight strain dependence, in agreement
with laboratory experiments, which points out a gradual increase of the serrations
with strain (see Fig. 7.1). Thus, the overall agreement of the numerical simulations
with experiments is found to be reasonable.
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7.3.3.2 Stress-Controlled Experiments

We first consider a numerical simulation of the true constant stress-rate test (7.43)
(or equivalently, (7.44) for b = 1) with _re = 10 MPa/s. The computed end-stress
rð0; tÞ vs. engineering strain eeðtÞ illustrates in Fig. 7.14 how the model is able to
predict a staircase structure with five steps, each one corresponding to a strain burst.

At the scale of the 3D picture in Fig. 7.15 the specimen appears to deform in a
homogeneous manner along the almost horizontal treads, but also on the vertical
risers where the sudden strain bursts occurs leading to the increase of deformation
by steps. The transition from one strain burst plateau in Fig. 7.14 to the next one is
a quasistatic process with practically no plastic activity. The alternation between
these quasistatic and dynamic events is illustrated in Fig. 7.16 where it is depicted
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the evolution of the strain-rate for the first four plateaus in Fig. 7.14. The prediction
of the model for this ideal testing case is in agreement with the remark by Cuddy
and Leslie (1972) according to which “in a soft machine where the applied load
remains constant, the band spreads immediately over the entire gauge length.”

The evolution of the ageing time variable ta is illustrated in Fig. 7.17. One has a
homogeneous and linear increase of the ageing time with constant slope 1 during
the quasi-static elastic deformation of the bar. This corresponds to the ageing of
dislocations when they are arrested at local obstacles.
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Afterwards, when the stress attains some critical value, a decay of ta in the
viscoplastic domain starts and is followed, during the strain burst, by a sudden drop
near zero. This behavior corresponds to the moment when the dislocations become
unlocked, start to move, accelerate rapidly and advance to the next obstacles. At the
end, when the strain reaches a certain level, the advancing of the deformation front
stops and the process is restarted.

As we have seen in the Sect. 7.1.1, the experimental literature points out that
macroscopic features of the PLC effect, like the stress-engineering strain curves,
depend strongly on the testing machine. In order to examine the sensitivity of the
model to a perturbation of the mode of testing we considered the mixed
initial-boundary value problem (7.44) to simulate the so called pseudoconstant- _re
experiments. The way the model is able to simulate the influence of the machine
effects is illustrated in Fig. 7.14 where the computed stress-strain curves obtained
for b = 0:95 and b = 0:9 are represented. These numerical simulations with mixed
boundary conditions are closer to the laboratory experiments of pseudoconstant
stress-rate experiments illustrated in Fig. 7.5, or reported in Fellner et al. (1991,
Figs. 3–4). Indeed, one gets numerically, the same as in the experiments mentioned
earlier that, instead of a horizontal plateau during the strain burst, we firstly have a
stress decay followed by an increase to the level of the horizontal plateau. The
decrease is more important as the parameter b has a smaller value than 1. Much
more than that, one observes, for b = 0:9 and for large strain, that the decrease of
the stress is accompanied by oscillations. This behavior is in agreement with the
remark made in Fellner et al. (1991) that when ‘constant- _re’ tests are carried out on
electronically controlled tensile machines, it is not completely possible to avoid an
initial stress drop and successive ‘oscillations’. Moreover, for such pseudocon-
stant- _re simulations like in Fig. 7.14 it is expected that the strain will no longer
propagate in a homogeneous manner and some localization phenomena will appear
during the strain burst.

7.4 A Methodology for Investigating Mechanical
Parameters for Critical Conditions on PLC Effect

The question which arises is how one can identify the range of boundary conditions
and the range of mechanical parameters of the model described in Sect. 7.2 for
which the main characteristics of the PLC effect occur and how one can fit the
numerical simulations with experimental tests.

In this section we give a partial answer to this problem. For instance, in order to
determine for which input data, that is, for which mechanical parameters and
imposed engineering strain-rate, there exists a jerky flow, we consider a stability
analysis of a particular solution of the PDEs system (7.41). This allows the cali-
bration and verification of the constitutive model. A stability and bifurcation
analysis for investigating the PLC effect has been also used by Mesarovics (1995),
Rizzi and Hähner (2004).
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7.4.1 Temporal Stability Analysis of Serrated Curves

We analyze in the following the nature of temporal instabilities and, as a conse-
quence, the existence or non-existence of serrations on the stress–engineering strain
curve. For doing this, we consider instead of the strain-controlled problem (7.42)
the following related initial-boundary value problem

eðX; 0Þ = e�; rðX; 0Þ = r�; taðX; 0Þ = t�a; vðX; 0Þ =
V�

L
ðL� XÞ; for X 2 ½0; L;

vð0; tÞ = V� = � L_ee\0; vðL; tÞ ¼ 0; for any t[ 0:
ð7:45Þ

That means, at the initial moment the bar is not at rest, but the velocity field is
linear with respect to the spatial variable and satisfies the boundary conditions
corresponding to a strain-controlled experiment.

In this special case the PDEs system (7.41) admits the following spatial
homogeneous solution in the variables e, r and ta, i.e.

e = eðtÞ = � V�

L
t = _eet; r = rðtÞ; ta = taðtÞ; v = vðXÞ = V�

L
ðL� XÞ; ð7:46Þ

where rðtÞ and taðtÞ are determined as solution of an ordinary differential equations
(ODE) system. Taking into account that between e and t there is a linear relation we
can express the variable r and ta as function of e. Functions r = rðeÞ and ta = taðeÞ
have to be solution of the Cauchy problem for the non-linear and non-autonomous
system

dr
de = Eþ 1

_ee
Gðe; rðeÞ; taðeÞÞ; rðe�Þ ¼ r�;

dta
de = 1

_ee
H e;rðeÞ; taðeÞð Þ; taðe�Þ ¼ t�a:

(
ð7:47Þ

To simplify the stability analysis of the system (7.47) we consider the case when
the constitutive functions rH , rB in (7.21) and X in (7.7) do not depend on ep, i.e.
when the ODE system is autonomous. That means r1 = 0, H0 = 0, r2 = 0 and
x2 = 0, i.e.

rHðepÞ = r0; rBðep; taÞ = r1 1� exp � ta
tD

� �n� �
; XðepÞ = x1: ð7:48Þ

Thus, the solution of the system (7.47) satisfies the Cauchy problem

dr
de = E; rðe�Þ = 0;
dta
de = 1

_ee
; taðe�Þ = 0;

(
ð7:49Þ

if it lies in the elastic domain, that is, for
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rj j � r0 þ r1ð1� expð�ðta=tDÞnÞ;

and, it satisfies the Cauchy problem

dr
de ¼ f ðr; taÞ 	 E � E _e0

_ee
r�r0�r1ð1�expð�ðta=tDÞnÞ

rD

h im
;

rðe�Þ = r�;
dta
de = gðr; taÞ 	 � _e0

x1 _ee
r�r0�r1ð1�expð�ðta=tDÞnÞ

rD

h im
ta þ 1

_ee
;

taðe�Þ = t�a:

8>>>><
>>>>:

ð7:50Þ

if the solution belongs to the viscoplastic domain in tension, that is, for

r[ r0 þ r1ð1� expð�ðta=tDÞnÞ:

First, we investigate only the behavior of a homogeneous process in the vis-
coplastic domain, i.e. the solutions of the non-linear autonomous system (7.50).
Thus, we do not consider at this moment the case when the homogeneous solution
could enter in the elastic domain and has to satisfy the system (7.49). The combined
elastic-viscoplastic homogeneous solution for the non-autonomous system is con-
sidered later and illustrated numerically for the mechanical parameters in Tables 7.1
and 7.2 in Fig. 7.24.

To sketch the phase portrait of a dynamical system it is useful to plot the

nullclines, defined as the curve where drde = 0 and dta
de = 0. The equilibrium points,

or the fixed points of the system are defined as the intersection points of the curves
f ðr; taÞ = 0 and gðr; taÞ = 0. The system (7.50) has a unique fixed point

tfxa =
x1

_ee
; rfx = r0 þ r1 1� exp � x1

tD _ee

� �n� �
 �
þ rD

_ee
_e0

� �1=m

: ð7:51Þ

Let us note that the ageing time component of the fixed point is just the waiting
time of dislocations defined in (7.6).

To study the behavior of the prototypical autonomous system (7.50), we lin-
earize the system around its equilibrium point. Let ðdr; dtaÞ be the components of a
small disturbance of the fixed point. One shows that the disturbance evolves
according to

d
de

dr
dta


 �
=

@f
@r

@f
@ta

@g
@r

@g
@ta

" #
rfx;tfxað Þ

dr
dta


 �
þ quadratic terms: ð7:52Þ

The matrix of this linearized system is called the Jacobian matrix at the fixed
point. The type and the stability of the equilibrium points depends on the eigen-
values k1 and k2 of the Jacobian matrix and can be characterized through the values
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of its trace, determinant and discriminant of the characteristic equation, (see for
instance Strogatz 1994) i.e.

Tr = k1 þ k2 = � 1
x1

� m
rD

_e0
_ee

� �1=m

E � nr1
x1

x1

tD _ee

� �n

exp � x1

tD _ee

� �n� �
 �
;

Det = k1k2 =
mE
rDx1

_e0
_ee

� �1=m

;

D = ðk1 þ k2Þ2 � 4k1k2 = Dð_ee; _e0; r1;r0;x1; tD; rD;E; n;mÞ:
ð7:53Þ

The positive value of the determinant rules out the possibility of having a saddle
point. Hence the stability of the fixed point can be established just by looking at the
sign of trace. Therefore, the equilibrium point can be only

• a stable node if Tr\0 and D[ 0,
• a stable focus if Tr\0 and D\0,
• an unstable focus if Tr[ 0 and D\0,
• an unstable node if Tr[ 0 and D[ 0:

In this case the linearized system gives a qualitatively correct picture of the
phase portrait near the equilibrium point ðrfx; tfxa Þ. Usually, if the phase portrait
changes its topological structure as a parameter is varied, one says that a bifurcation
occurs. From (7.53)3 one sees that the phase portrait depends on the following 10
mechanical parameters which correspond to:

• boundary condition (7.45): _ee,
• kinetic parameters of viscoplastic constitutive Eq. (7.20): _e0, rD, m,
• McCormick’s law (7.25) and flow stress due to ageing (7.23): x1, r1, tD, n,
• flow stress due to plastic deformation (7.22): r0.
• elastic Young modulus E.

We consider, for instance, that only the characteristic strain-rate factor _e0, (or,
equivalently the characteristic time of the viscoplastic constitutive equation
s = 1=_e0) and the engineering strain-rate _ee vary, while the other parameters are
fixed. Then, the corresponding bifurcation plane, is characterized by the curves
across which the trace Tr and the discriminant D change their signs (see Fig. 7.18).

We show that instability phenomena for the autonomous system (7.50) can
occur if and only if the mechanical parameters satisfy the following condition

A 	 nr1
x1E

[ e; ð7:54Þ

where e is Euler’s number.
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The fulfillment of this relation will also explain the existence of serrated curves
for the non-homogeneous case considered in Sect. 7.3.3, i.e. for the
strain-controlled initial-boundary value problems (7.42) for the PDEs system (7.41)
(see Fig. 7.13).

To prove this statement let us introduce the notations

B 	 mx1E
rD

; Zð_eeÞ 	 x1

tD _ee

� �n

: ð7:55Þ

First of all, observe that, if A� e, then 1� Azexpð�zÞ� 0, for any z[ 0, and
consequently, from (7.53)1, it follows that Tr ð_e0; _eeÞ� 0, for any _e0 [ 0 and _ee [ 0.
Therefore, in this case a fixed point can not be unstable.

If A[ e, then Trð_e0; _eeÞ[ 0 if and only if 0\s = 1
_e0
\strð_eeÞ, where

strð_eeÞ = 1
_ee
Bm AZð_eeÞ expð�Zð_eeÞÞ � 1½ m; for _ee 2 _e1e ; _e

2
e

� 	
; ð7:56Þ

and

_e1e = _e1eðA;x1; tDÞ = x1

tDðx1Þ1=n
\

x1

tD
\_e2e = _e2eðA;x1; tDÞ = x1

tDðx2Þ1=n
: ð7:57Þ

Here x1, x2 are the two solutions of the transcendental equation expðxÞ = Ax with
the property that x2ðAÞ\1\x1ðAÞ.

An approximative solution of this equation, obtained using Newton’s method, is

x1 ffi ð1� AÞ expð1=AÞ
Aðexpð1=AÞ � AÞ ; x2 ffi

ffiffiffi
A

pffiffiffi
A

p � 1
3 ln

ffiffiffi
A

p
� A

� � 
: ð7:58Þ

thus,
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Fig. 7.18 Case A[ e. Plane of bifurcation of the fixed point (7.51) corresponding to parameters
s = 1=_e0 and _ee. SN stable node region (Tr\0, D[ 0); SF stable focus region (Tr\0, D\0); UF
unstable focus region (Tr[ 0, D\0); UN unstable node region (Tr[ 0, D[ 0)
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_e1e ffi
x1

tD

ffiffiffi
A

p � 1ffiffiffi
A

p
3 ln

ffiffiffi
A

p � 1
� 	

 !1=n

; _e2e ffi
x1

tD

Aðexpð1=AÞ � AÞ
expð1=AÞð1� AÞ
� �1=n

: ð7:59Þ

Thus, for A[ e, s = strð_eeÞ, is the unique positive curve in the bifurcation plane
across which the trace changes its sign, i.e. across which the fixed point (7.51)
switches from stable to unstable (see Fig. 7.18). _e1e and _e2e denote the intersection
points of this curve with the axis s = 0. Therefore, the interval _e1e ; _e

2
e

� 	
represents

the maximal interval for the applied strain-rate _ee in which a temporal instability can
appear when _e0 ! 1. Formulas (7.59) may give a direct hint about the way the
mechanical parameters influence the range of the imposed engineering strain-rate _ee
for which a jerky flow can occur.

Furthermore, one can show that

@ _ee1
@A

\0 and
@ _ee2
@A

[ 0;
@ _ee1
@x1

[ 0 and
@ _ee2
@x1

\0;
@ _ee1
@tD

\0 and
@ _ee2
@tD

\0; ð7:60Þ

which lead to the following conclusions.

Remark 1 If the parameter A, A[ e, increases, then the interval ð_e1e ; _e2eÞ expands,
while in the opposite case shrinks.

Remark 2 If the parameter x1 increases, then the interval ð_e1e ; _e2eÞ shrinks, while in
the opposite case expands.

Remark 3 If the parameter tD decreases both the values of _e1e and _e2e increase.

The curve s = strð_eeÞ has a maximum at

_e3e = _e3eðA;x1; tD;m; nÞ = x1

tDðx3Þ1=n
2 x1

tDð1þ 1=m=nÞ1=n
;
x1

tD

 !
; ð7:61Þ

where x3 is the solution of the equation expðxÞ = Axð1þmnð1� xÞÞ in the interval
ðx2; x1Þ and 1\x3\1þ 1=ðmnÞ\x1. Indeed, this follows by analyzing its
derivative,

dstrð_eeÞ
d_ee

¼ Bm

ð_eeÞ2
�1þAZð_eeÞ expð�Zð_eeÞÞ½ m�1

1� AZð_eeÞð1þmnð1� Zð_eeÞÞÞ expð�Zð_eeÞÞ½ :
ð7:62Þ

The maximum value at this point smaxtr = strð_e3eÞ determines the maximum value
of the characteristic time s, or equivalently, the minimum value of the characteristic
strain-rate factor _e0 for which the fixed point (7.51) can become an unstable focus.
This global maximum point is denoted by t = t ð_e3e ; smaxtr Þ in Fig. 7.18.
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Let us note that there are two positive curves across which the discriminant D
change its sign, i.e. the eigenvalues change from real to complex (see Fig. 7.18).
These are

s ¼ s�D ð_eeÞ ¼
1
_ee
Bm 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AZð_eeÞ expð�Zð_eeÞÞ

p� 2m
: ð7:63Þ

The graph of the function s ¼ s�D ð_eeÞ intersects the axis s = 0 at the points _e1e and
_e2e defined by (7.57), where it reaches its minimum value. There are also two local
maxima at the points

_e4e 	
x1

tDðx4Þ1=n
2 _e3e ;

x1

tD

� �
; and _e5e 	

x1

tDðx5Þ1=n
2 ð_e2e ;1Þ; ð7:64Þ

where x5 and x4 are the two solutions of the equation expðxÞ ¼ Axð1þmnð1� xÞÞ2,
with the property that x5 2 ð0; x2Þ and x4 2 ð1; x3Þ. Indeed, this follows by ana-
lyzing the expression of the derivative of this function, i.e.

ds�D ð_eeÞ
d_ee

¼ Bm

ð_eeÞ2
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AZð_eeÞ expð�Zð_eeÞÞ

ph i2m�1

� �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AZð_eeÞ expð�Zð_eeÞÞ

p
ð1þmnð1� Zð_eeÞÞÞ

h i
:

ð7:65Þ

The maximum value of the function sD� at the point _e4e determines the maximum
value of the characteristic time s, or equivalently, the minimum value of the
characteristic strain-rate factor _e0 for which the fixed point (7.51) can become an
unstable node. These local maximum points are denoted by p = p _e4e ; sD�ð_e4eÞ

� 	
and

q = q _e5e ; sD�ð_e5eÞ
� 	

in the bifurcation plane from Fig. 7.18.

7.4.2 Calibration of Mechanical Parameters

We analyze in the following the mechanical parameters of the model of dynamic
strain ageing (DSA) presented in Sect. 7.2 and the way their values lead to the
appearance of the PLC effect. Among these parameters we distinguish a first set,
summarized in Table 7.1 which is related mainly to the classical elastic-viscoplastic
approach used, and a second set, responsible for the evolution of the ageing time,
i.e. of the DSA effect, which is shown in Table 7.2.

Material characterization and parameter identification from tension tests at a
reference strain-rate for elastic-viscoplastic constitutive models of McCormick type
has been considered, for instance, by Zhang et al. (2001) (for AlMgSi alloy),
Benallal et al. (2008a) (for AA5083-H116 alloy plates), Böhlke et al. (2009) (for
aluminium alloy 2024).
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The term rHðepÞ which describes the effect of stress hardening associated with
the dislocation density evolution in the stress flow (7.21) is given by a Voce-type
equation in Zhang et al. (2001); Böhlke et al. (2009), by an extended Voce-rule in
Benallal et al. (2008a, b) or by a power law in Zhang et al. (2012). This part of the
constitutive approach does not influence the way the temporal instabilities related
with the PLC effect manifests. We adopt here the same Voce-type equation as in
Böhlke et al. (2009) (see Table 7.1), but we consider different values for the
parameters m, rD and _e0. These latter quantities affect the stress component of the
equilibrium point (7.51) and the kinetics of the viscoplastic processes in general.
Only the elastic Young modulus E from Table 7.1, which is present in condition
(7.54), influences the range of unstable PLC behavior.

The effect of DSA is accounted for by the additive term rBðep; taÞ in the flow
stress, given by relation (7.23), and includes the material parameters tD and n of the
Cottrell-Bilby-Louat ageing kinetics. The maximum value of this contribution to
the flow stress, i.e. r1 þ epr2, corresponds to the saturation of the local solute
concentration on dislocations temporarily arrested at localized obstacles. This sat-
uration value of the DSA related stress term is often considered constant (see
Table 7.2). A linear plastic strain dependence has been introduced by Böhlke et al.
(2009), instead of a plastic strain dependence introduced in the argument of the
exponential function of the Cottrell-Bilby-Louat relation in Zhang et al. (2001).

Let us note that, parameter tD, i.e. the characteristic time for solute diffusion
across dislocations, intervenes only in formula of the stress component of the
equilibrium point (7.51) and does not affect condition (7.54), that is, it does not
influence the appearance of PLC effect. A discussion on how tD is temperature
dependent is done in Mesarovics (1995). We choose here for tD the same value as in
Böhlke et al. (2009).

According to the strain ageing kinetics proposed by Cottrell and Bilby (1949) the
exponent n is 2/3. Starting with the paper by Springer and Schwink (1991) an
exponent of 1=3 has been used. Indeed, Ling and McCormick (1993) found that, for
the Al-Mg-Si alloy, the exponent 1/3 is more appropriate to describe their results of
strain-rate sensitivity measurements and this value is now accepted in the literature
(see Table 7.2). Moreover, Ling et al. (1993) claim that the 1/3 value reflects pipe
diffusion controlled strain ageing kinetics.

The evolution of the ageing time ta in the DSA process is governed by the
evolution Eq. (7.25) which includes essentially the material function
XðepÞ = x1 þ epx2. Its value represents a strain increment produced when all
arrested dislocations overcome localized obstacles and advance to the next pinned
configuration. Mesarovics (1995) has evaluated by using the Orowan law (7.6) and
some estimations of the densities of mobile and immobile dislocations that
X ffi 10�4. The value of parameter X appears as essential in condition (7.54).
Concerning the way X varies with the plastic strain Zhang et al. (2001) assumed the
non-linear expression (7.7) while Böhlke et al. (2009) the linear one.

From Table 7.2 we see that for the mechanical parameters used by Zhang et al.
(2001); Böhlke et al. (2009) condition (7.54) is not satisfied. Therefore, there is no
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engineering strain-rate _ee and no characteristic strain-rate factor _e0 for which the
stress-strain curve of a homogeneous process, i.e. solution of the system (7.47), can
be serrated. In other words, for these mechanical parameters the PLC effect can not
occur. That is why, we used in this paper a larger value for r1, just as in Benallal
et al. (2008a) and a lower value for x1, like in Zhang et al. (2001). With this choice
condition (7.54) is fulfilled for A = 8.23 which is much larger than Euler’s number
e. We show in what follows how, under these circumstances, the unstable behavior
specific for the PLC effect is captured.

We also notice that for themechanical parameters used byBenallal et al. (2008a, b),
Zhang et al. (2012) condition (7.54) is satisfied for a value of A slightly larger than e.

Further we illustrate how the stability/instability domains described by the
curves (7.56) and (7.63) allow identification of the ranges of variation of the
characteristic time s = 1=_e0 and of the engineering strain _ee for which the PLC
effect can appear. A similar bifurcation analysis can be done if one varies other
material parameters of the model which are responsible for the PLC effect i.e., x1,
tD, r1, rD, m.

For the mechanical parameters in the fifth column in Tables 7.1 and 7.2 we have
determined the main features of the bifurcation plane represented in Fig. 7.18 and
we have summarized the corresponding results in Table 7.3.

Thus, if we choose the characteristic strain-rate factor _e�0 = 3:5� 10�6 s�1 then
the intersection points of the horizontal line s� = 1=_e�0 with the curves which
delimitate the domains of stability/unstability of the equilibrium point show that the
range of the engineering strain-rate _ee for which a jerky flow can appear is
(2:37� 10�5 s�1; 3:91� 10�3 s�1). Indeed, this interval corresponds to the line
segment (b, e) in Fig. 7.18 for which the fixed point is an unstable focus. This result
is in agreement with the fact that the PLC effect can occur only for a range of
engineering strain-rate and the numerical values obtained are appropriate to the
ranges found experimentally.

According to the properties of the curves (7.56) and (7.63) in the bifurcation
plane, if s� increases (i.e. _e�0 = 1=s� decreases), but without exceeding the value
corresponding to the maximum point t, then the corresponding unstable focus
interval for _ee shrinks. For s� = 5:40� 109 s (i.e. for _e�0 = 1:85� 10�10 s�1Þ the
unstable interval reduces to the point e ¼ 1:97� 10�4 s�1.

If s� decreases (i.e., if _e�0 = 1=s� increases) then the corresponding interval of _ee
for which the fixed point is an unstable focus expands. The maximum interval is
attained when s� ! 0, that is _ee 2 _e1e = 7:99� 10�6 s�1; _e2e = 1:05� 10�1 s�1

� 	
(see Table 7.3 and Fig. 7.18). Therefore, we can adjust the interval of the imposed
strain-rate _ee for which serrated curves appear with that found in laboratory tests for
which the PLC effect manifests by an appropriate choice of the characteristic
strain-rate factor _e0.

Moreover, the range of _ee for which the equilibrium point (7.51) is an unstable
point can be adapted, according to Remark 1–3 in Sect. 7.4.1, by increasing or
decreasing the values of A, or x1, or tD. We can also show that when m increases
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then the maximum values of the functions s = strð_eeÞ and s ¼ sD�ð_eeÞ attained at
the points t, p and q increase.

In order to exemplify how the prediction of this bifurcation analysis is in
agreement with the behavior of the solution of the autonomous nonlinear ODE
system (7.50) we have considered for a fixed characteristic strain-rate factor _e�0, or
equivalently a fixed s� (see Table 7.3), different increasing values of the imposed
strain-rate _ee, which covers in a successive manner the stable/unstable zones in
Fig. 7.18.

If the pair ðs�; _eeÞ lies in the stable node region, for instance below s ¼ sD�ð_eeÞ,
for _ee\_e1e (see Fig. 7.18) then the homogeneous solution in the viscoplastic domain
is represented in Fig. 7.19. The process starts at the boundary between the elastic

Table 7.3 Type of equilibrium point (7.51) for parameters in Tables 7.1 and 7.2 and coordinates
of the points in bifurcation plane from Fig. 7.18

Stability/Unstability intervals Point on Fig. 7.18 ε̇e (s−1) τ (s) ε̇ 0 = 1/τ (s−1)

Stable node interval ↑ ↑
a 5.99×10−7 2.85×105 3.5×10−6

Stable focus interval ↓ ↓
ε̇ 1
e 7.99×10−6 0 ∞

Stable focus interval ↑ ↑
b 2.37×10−5 2.85×105 3.5×10−6

Unstable focus interval ↓ ↓
c # # #

Unstable focus interval
t 1.97×10−4 5.40×109 1.85×10−10

Unstable focus interval
p 2.25×10−4 14.93 6.69×10−2

Unstable focus interval
d # # #

Unstable focus interval ↑ ↑
e 3.91×10−3 2.85×105 3.5×10−6

Stable focus interval ↓ ↓
ε̇ 2
e 1.05×10−1 0 ∞

Stable focus interval ↑ ↑
f 12.8 2.85×105 3.5×10−6

Stable node interval ↓ ↓

# There is no intersection between the graph of s ¼ sD� ð_eeÞ and s� = 1=_e�0 = 2:85� 105 s
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and viscoplastic domain, i.e. the initial condition ðr; taÞ satisfies relations
r = Ee = r0 þ r1ð1� expð�ðe=_ee=tDÞnÞ and ta = e=_ee.

One can see that there is no stress decay and the ageing time increases as long as
the stress increases to its equilibrium value rfxeq = 211:5 MPa, and afterwards the

ageing time decays at the value of the waiting time tfxa = x1=_ee = 72 s.
If the pair ðs�; _eeÞ lies in the stable focus area, that is, between the points a and

b in Fig. 7.18, then the homogeneous solution in the viscoplastic domain is illus-
trated in Fig. 7.20. One observes the appearance of a first stress decay followed by
some small oscillations before to reach the equilibrium stress rfxeq = 214:4 MPa. The
ageing time behaves in the same manner, although the oscillations are not visible at
the scale of the figure, and it stabilizes at the value of the waiting time
tfxa = x1=_ee = 3:6 s.
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Fig. 7.19 Stable Node Interval _ee = 5� 10�7 s�1 and _e�0 = 3:5� 10�6 s�1 (s� = 2:85� 105 s).
Homogeneous process described by (7.50). a Phase portrait. b Stress and ageing time versus strain
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When the imposed strain-rate _ee enters the estimated range of instability, that is,
when the pair ðs�; _eeÞ lies in the unstable focus area between the points b and e in
Fig. 7.18, then the homogeneous solution in the viscoplastic domain is represented
in Fig. 7.21. After a first drop of the stress and of the ageing time large oscillations,
almost periodic, around the equilibrium point (rfx = 196:8 MPa; tfxa = 0:036 s)
appear. The amplitude of the stress drop is around 23 MPa.

In this case the trajectories of the solutions in the phase plane spiral toward a
stable limit cycle. This behavior illustrates that the nonlinear system is able to
describe self-sustained oscillations. It is worth noting that the limit cycle shows a
slow dynamics during one part of the cycle followed by a fast dynamics during the
remaining part of the cycle. Indeed, one sees that the periodic oscillations consist of
a slow increase of the stress which is followed by an abrupt fall in stress. This
slow-fast dynamic process is in agreement with the characteristics of the PLC effect.

Oscillations of this type resemble with the so called “relaxation oscillations” of
dynamical systems containing a small parameter which lead to singular perturba-
tion. The prototype of this behavior is the van der Pol oscillator (see Strogatz 1994).

185 190 195 200 205 210 215 220 225
0

50

100

150

200

250

300

Stress (MPa)

A
ge

in
g 

tim
e 

(s
)

Initial data

Equilibrium point

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

190

200

210

220

St
re

ss
 (

M
Pa

)

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

100

200

300

Strain

A
ge

in
g 

tim
e 

(s
)

(a)

(b)

Fig. 7.20 Stable Focus Interval _ee = 10�5 s�1 and _e�0 = 3:5� 10�6 s�1 (s� = 2:85� 105 s).
Homogeneous process described by (7.50). a Phase portrait. b Stress and ageing time vs. strain
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Characteristic of the relaxation oscillations is the presence of phases in the cycle
with different time scales: a phase of slow change followed by a short phase of rapid
change in which the system practically jumps to the next stage of slow variation. In
general, the specificity of these relaxation oscillations is that in a single period the
solution describes two slow-fast alternation accompanied by two discontinuities,
while for our nonlinear system (7.50) the solution experiences in a single period
only one slow-fast alternation.

When, by increasing the imposed strain-rate, the pair ðs�; _eeÞ enters again into a
stable focus region, that is, it lies between the points e and f in Fig. 7.18, then the
homogeneous process in the viscoplastic domain is represented in Fig. 7.22. The
behavior of the solution is similar with that in Fig. 7.20, with the difference that the
first stress drop is much more important and the oscillations are more visible before
the solution reaches the equilibrium point (rfx = 190:4 MPa; tfxa = 0:0036 s).

We have also considered the case when the pair ðs; _eeÞ belongs to the unstable
node area, that is, it lies below the curve s ¼ sD�ð_eeÞ; for _ee 2 ð_e1e ; _e2eÞ in Fig. 7.18.
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Homogeneous process described by (50). a Phase portrait. b Stress and ageing time vs. strain
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For instance, if we choose _ee = 2:25� 10�4 s�1, which corresponds to the local
maximum point p, it follows that in order to be in the unstable area, according to
Table 7.3, it is necessary that s be less than 14.93 s, or equivalently _e0 be greater
than 6:69� 10�2 s�1. Such a situation is illustrated in Fig. 7.23. The same as in the
case of the unstable focus fixed point the trajectories in the phase plane have the
property that they approach a stable limit cycle. Numerical solutions illustrated in
Fig. 7.23a show stable spirals giving rise to a limit cycle and to almost ‘‘periodic’’
oscillations. In this case both the stress and the ageing time show much larger
oscillations around the equilibrium point (rfx = 179:5 MPa; tfxa = 0:1636 s). The
amplitude of the stress drop increases to 50 MPa.

During a single period we record a slow and two fast variations of the solution.
Indeed, the limit cycle consists of an extremely slow increase of the stress followed
by a sudden discharge and a sudden rise of the stress. During the stress drop the
ageing time reaches its minimum value, while it suffers a sudden increases during
the sudden rise of the stress. This behavior is not typical to the PLC effect, but
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illustrates how the nonlinear ODE system describes self-sustained oscillations for a
large value of _e0.

The serrated stress-strain curves obtained in Figs. 7.21b and 7.23b show two
important characteristic features: they are “horizontal” and have constant amplitude.
The first is due to the fact that the strain hardening is neglected, while the second is
a consequence of the assumption that the stress accounting for the PLC effect rB
does not depend on ep, according to the constitutive relations (7.48) used in the
bifurcation analysis.

Let us consider now the general case of the elastic-viscoplastic model with the
strain hardening term rHðepÞ described by the Voce rule (7.22) and the term
rBðta; epÞ, responsible for the DSA effect, described by (7.23). The mechanical
parameters are given in the fifth column in Tables 7.1 and 7.2.
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In this case, the homogeneous process is described by the non-autonomous
system (7.47) which includes both the elastic and the viscoplastic case. The
numerical solutions obtained for three imposed engineering strain-rates _ee are
illustrated in Fig. 7.24.

The solution obtained for _ee = 10�3 s�1 has to be compared with the solution
obtained in Fig. 7.21 when the fixed point is an unstable focus. One observes how
the hardening rule leads to an increasing stress-strain serrated curve. Like in
Fig. 7.21b there is an initial large stress drop, followed by large oscillations, but
having now an increasing amplitude which ranges from 25.6 to 49.5 MPa. That is
due to the fact that in the viscoplastic deformation process the term r0 þ epr1 which
characterizes the saturation value of the DSA related stress term increases with
plastic strain. This gradually increasing amplitude is in agreement with experi-
mental facts (see for instance Fig. 7.1).

Moreover, it should be noted that a sawtooth is composed by a stress drop,
which is a fast viscoplastic and dissipative process, while the reloading part, having
the slope of the elastic Young modulus E, is a slow elastic process.

In the case of the higher strain-rate _ee = 10�2 s�1 the bifurcation analysis has
predicted for the autonomous system, according to Fig. 7.22b, a stress-strain curve
which is not serrated, since in this case we are outside the interval of instability
described in Table 7.3. In the general case of the non-autonomous system (7.47) we
see in Fig. 7.24 that the stress-strain curve preserves the same features as in the
stable focus case for lower values of the engineering strain ee. Indeed, there is in the
beginning a large stress drop followed by small oscillations which are damped and
continued with a nice increasing smooth curve. If the strain becomes larger one can
see that a serrated curve appears reflecting an unstable behavior of PLC type. This
behavior is in agreement with the remarks in Sect. 7.4.1 that by increasing the value
of the parameter A = nr1

x1E
the range of imposed strain-rate _ee for which the

Fig. 7.24 Elastic-viscoplastic homogeneous process with strain hardening described by the
non-autonomous system (7.47) for three imposed engineering strain-rates: _ee = 10�3 s�1,
_ee = 10�2 s�1 and _ee = 10�1 s�1 when _e0 = 3:5� 10�6 s�1 (s = 2:85� 105 s)
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autonomous ODE system (7.50) has an unstable behavior expands. Indeed, in this
case, if we consider the non-autonomous system (7.47) with frozen coefficients at ep

then the parameter which characterizes the instability read as AðepÞ = nðr1 þ r2epÞ
x1E

and
is increasing with the plastic strain. This explains the appearance of oscillations at
this strain-rate for large value of the engineering strain ee.

If the strain-rate increases again by an order of magnitude, i.e. to 10�1s�1, one
sees that the solution does not show unstable behavior for the range of strain in the
figure, behavior which is in agreement with the stability/instability analysis.

Thus, the graphs obtained in Fig. 7.24 correspond to spatially homogeneous
processes whose initial data are (7.45)1 which is an ideal case since from the
beginning we have supposed a linear distribution of the velocity in the bar. The real
process corresponds to the initial-boundary value problem (7.42) which introduces
from the start a small shock perturbation. This perturbation leads to spatial inho-
mogeneous solutions which have been analyzed in Sect. 7.3.3.1.

Therefore, the graphs in Fig. 7.24 have to be compared with those obtained in
Fig. 7.13 for the non-homogeneous case. The similarities between the stress-strain
curves confirm the bifurcation analysis performed and their differences highlight the
influence of localization phenomena.

7.5 Conclusions and Outlook

The analyzed constitutive model for dynamic strain ageing provides a macroscopic
description of the temporal and spatial features of the Portevin-Le Chatelier plastic
instabilities in satisfactory agreement with experimental results. We have shown
that, depending on the tensile testing conditions, the model describes both the
serrated yielding and the staircase response. The sensitivity of the model to the
boundary conditions can capture the influence of the testing machine on the stress -
engineering strain curves as it is met in practice.

In order to improve the calibration of the mechanical parameters for critical
conditions on PLC effect two directions require further analysis. The first one
concerns the properties of the solutions of the autonomous dynamical system
(7.50). We have seen that the appearance of a serrated stress-strain curve, i.e. of the
unstable PLC behavior, is related to a Hopf bifurcation and that the emerging
solution is a limit cycle in the phase plane. The shape and size of the limit cycle
allows to estimate the amplitude of the periodic stress drops. But to find analytically
the shape of the limit cycle for a dynamical system based on its equations is a tough
problem. Therefore, in order to determine how the mechanical parameters of the
model influence the serrations of a stress - strain curve one need to find a good
estimate of a trapping region for the trajectories. That means to find a closed
connected set in which all trajectories are confined (see Strogatz 1994).

A second direction is to investigate the influence of the parameters of the model
on the localization phenomena which may develop in the dynamic strain ageing
process. That means to perform a spatial stability analysis of the solutions of the
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PDEs system (7.41). For doing this we have to analyze the stability of spatially
homogeneous solutions to infinitesimal perturbations which is a necessary condi-
tion for the nucleation and propagation of strain bands.

Acknowledgments The author acknowledges support from the Romanian Ministry of Education
and Research through Project PCCE ID-100/2010.

Appendix: Numerical Scheme

The numerical scheme used to solve the initial–boundary value problems (7.42)–
(7.44) for the hyperbolic semilinear system of PDEs (7.41) is a variant of the
standard method of characteristic (see for instance Mihăilescu-Suliciu and Suliciu
1985). A time integration step condition is used to ensure the numerical stability.

Let us note that by introducing the notations

p = rþ
ffiffiffiffiffiffi
qE

p
v; q = r�

ffiffiffiffiffiffi
qE

p
v; r = r� Ee; ð7:66Þ

we can write the system (7.41) in its characteristic form

@p
@t

� C
@p
@X

= ~Gðp; q; r; taÞ; @q
@t

þC
@q
@X

= ~Gðp; q; r; taÞ; ð7:67Þ

@r
@t

= ~Gðp; q; r; taÞ; @ta
@t

= ~Hðp; q; r; taÞ; ð7:68Þ

where C ¼ ffiffiffiffiffiffiffiffiffi
E=q

p
is the longitudinal wave speed and

ð~G; ~HÞðp; q; r; taÞ = ðG;HÞðe; r; taÞ = ðG;HÞ 1
E

pþ q
2

� r
� 

;
pþ q
2

; ta

� �
:

Along the constant characteristic directions of the system the following relations
are satisfied

dp = ~Gðp; q; r; taÞdt on dX = � Cdt;

dq = ~Gðp; q; r; taÞdt on dX = Cdt;

dr = ~Gðp; q; r; taÞdt on dX = 0;

dta = ~Hðp; q; r; taÞdt on dX = 0:

ð7:69Þ

The numerical solution is build in agreement to the stencil in Fig. 7.25. We
partition the domain in space using a mesh X0,…, Xi,…, XN and in time using a
mesh t0,…, tj,… . We assume a uniform partition both in space and in time, so the
difference between two consecutive space points will be h and between two
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consecutive time points will be s. We denote by uðXi; tjÞ = u j
i the values of a

generic function u at the mesh points.
The first order numerical approximation is a set of four function ðp; q; r; taÞ

defined on the above mesh and satisfying the following iterative relations

pjþ 1
i � p j

i

s
� C

h
p j
iþ 1 � p j

i

� 	
= ð1� mÞ~Gj

i þ m~Gj
iþ 1;

qjþ 1
i � q j

i

s
þ C

h
q j
i � q j

i�1

� 	
= ð1� mÞ~Gj

i þ m~Gj
i�1;

rjþ 1
i = r ji þ s~Gj

i ; tjþ 1
a i = t ja i þ s~H j

i ;

ð7:70Þ

where the Courant number m has to satisfy condition

m 	 C
s
h
� 1; ð7:71Þ

in order to ensure the numerical stability of the scheme (see Richtmyer and Morton
1967).

The iterative relations for this explicit scheme can be written as

pjþ 1
i = ð1� mÞ p j

i þ s~Gj
i

� 	þ m p j
iþ 1 þ s~Gj

iþ 1

� 	
;

qjþ 1
i = ð1� mÞ q j

i þ s~Gj
i

� 	þ m q j
i�1 þ s~Gj

i�1

� 	
;

rjþ 1
i = r ji þ s~Gj

i ; tjþ 1
a i = t ja i þ s~H j

i ;

ð7:72Þ

or in terms of initial variables r, e, v, ta the first approximation becomes
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i = ð1� mÞr j

i þ
m
2

r j
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The second order numerical approximation is a set of four function

p
ð2Þ
; q
ð2Þ
; r
ð2Þ
; ta
ð2Þ� �

defined on the mesh and satisfying the following iterative relations

p
ð2Þjþ 1

i � p j
i

s
� C

h
p j
iþ 1 � p j

i

� 	 ¼ ð1� mÞ
2

~Gj
i þ G

ð1Þjþ 1

i

 !
þ m

2
~Gj
iþ 1 þ G

ð1Þjþ 1

i

 !
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q
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i � q j
i

s
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h
q j
i � q j

i�1

� 	 ¼ ð1� mÞ
2

~Gj
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ð1Þjþ 1

i

 !
þ m

2
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i

 !
;

r
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i = r ji þ
s
2

~Gj
i þ G

ð1Þjþ 1

i

 !
; ta

ð2Þjþ 1

i ¼ t ja i þ
s
2

~H j
i þ H

ð1Þjþ 1

i

 !
;

ð7:74Þ

where G
ð1Þjþ 1

i ¼ ~Gðpjþ 1
i ; qjþ 1

i ; rjþ 1
i ; ta

jþ 1
i Þ and H

ð1Þjþ 1

i ¼ ~H pjþ 1
i ; qjþ 1

i ; rjþ 1
i ; ta

jþ 1
i

� 
are computed using the first approximation (7.72).

The second order numerical approximation in terms of initial variables r, e, v, ta
becomes

r
ð2Þjþ 1

i ¼ ð1� mÞ r j
i þ

s
2

Gj
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m
2
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i

� �
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2E
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;

ta
ð2Þjþ 1
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s
2
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;

ð7:75Þ

where G
ð1Þjþ 1

i ¼ G ejþ 1
i ; rjþ 1

i ; tjþ 1
a i

� 
and H

ð1Þjþ 1

i = H ejþ 1
i ; rjþ 1

i ; tjþ 1
a i

� 
are com-

puted using the first approximation (7.73).
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Boundary conditions
The left boundary condition vð0; tÞ = V�, or equivalently, pð0; tÞ � qð0; tÞ ¼

2
ffiffiffiffiffiffi
qE

p
V�, for the strain controlled experiment (7.42), leads to the following itera-

tive relations.
The first order approximation at the node X0 read as

rjþ 1
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E
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0:

ð7:76Þ

and the second order approximation is
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ffiffiffiffiffiffi
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where G
ð1Þjþ 1

0 ¼ G ejþ 1
0 ; rjþ 1

0 ; tjþ 1
a 0

� 
and H

ð1Þjþ 1

0 = H ejþ 1
0 ; rjþ 1

0 ; tjþ 1
a 0

� 
are com-

puted using the first approximation given by relations (7.76).
The left boundary condition rð0; tÞ = S�ðtÞ, or equivalently, pð0; tÞþ qð0; tÞ =

2S�ðtÞ, for the stress controlled experiment (7.42), leads to the following iterative
relations.

The first order approximation at the node X0 read as
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ð7:78Þ

and the second order approximation is
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where G
ð1Þjþ 1

0 = G ejþ 1
0 ; rjþ 1

0 ; tjþ 1
a 0

� 
and H

ð1Þjþ 1

0 ¼ H ejþ 1
0 ; rjþ 1

0 ; tjþ 1
a 0

� 
are

computed using the first approximation given by relations (7.78).
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