Chapter 6
Anisotropic Damage in Elasto-plastic
Materials with Structural Defects

Sanda Cleja-Tigoiu

6.1 Introduction

We propose here a mathematical formalism, developed within the continuum
damage mechanics that allows us to describe the macroscopic behaviour of
elasto-plastic material with damaged microstructure. The damage of the material at
the microscopic level means the existence of the microcracks or microvoids, that
will be modeled by the presence of certain internal state variables, called the
damage tensor or scalar damage parameters, which evolve during the irreversible
processes.

The continuum damage mechanics investigates from continuum mechanics point
of view the internal microstructural changes, concerning the mechanical modeling
of the distributed cavities and cracks, which induce the initiation of the macro
cracks. The failure is characterized by dominant macro cracks, which are generated
as an ultimate stage during the damage (microstructural) process of the material.

The continuum damage mechanics formulates mathematically the mechanical
behaviour of the materials deteriorate by the existence of the microcavities and
microcracks. Within the continuum damage mechanics two types of problems arise
when describing the state of damaged material. The first type is related to the
physical nature and the mathematical description of the damage variables, while the
second type concerns the elaboration of the constitutive framework, which allows a
coherent description of the behaviour of materials with damaged microstructure.
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The damage state can be described mathematically by using scalar and tensorial
variables, referring to isotropic damage and anisotropic damage, which are
described by the appropriate evolution equations. The scalar damage variables are
adequate for the isotropic damage, when a random distribution of microvoids and
microcracks characterizes the damaged structure. The scalar damage variables have
been extensively used in continuum damage mechanics.

Murakami (1983) discusses mechanical modeling and the damage variables used
to describe the damage state and appreciated the primary notions introduced by
Kachanov (1986), Rabotnov (1969) as basic for the development of continuum
damage mechanics. Murakami (1983, 1988) refers to the existence of the dis-
tributed microvoids, which imply microcavities and microcracks, as damage, and
call the nucleation and the growth of the voids as their evolution.

In the anisotropic damage the void growth and micro-shear crack mechanism are
active simultaneously. Briinig (2003), Briinig and Ricci (2005) provide a finite
strain framework for ductile anisotropic continuum damage based on thermody-
namic law for isothermic processes and coupled with plasticity and damage, and the
extension to nonlocal plasticity and nonlocal damage can be found in Briinig and
Ricci (2005) and Briinig et al. (2013).

In Sect. 6.2, we exemplify some scalar variables, like the void volume fraction
and effective area reduction. We make reference to the effect of triaxiality on the
ductile damage, and we recall the initial concept of the undamaged configuration in
correlation with the anisotropic damage.

In Sect. 6.3, we present the models proposed by Briinig (2003), Briinig and
Ricci (2005), which are using the multiple undamaged (fictitious) configurations
and the specific metric coefficients to describe measures of damage. The macro-
scopic background is the same for the two above-mentioned papers. We also
present the damage model by Ekh et al. (2004) proposed within the crystal plasticity
formalism, when the evolution rule for the damage is formulated with respect to the
crystalline slip system. The model is based on the fictitious configuration and the
equivalence principle of the free energy in the fictitious undamaged configuration
and the intermediate configuration, used in the multiplicative decomposition of the
deformation gradient.

In Sect. 6.3, we also briefly presented the Chaboche and Lemaitre models,
(Chaboche and Lemaitre 1990; Lemaitre 1992), in the compact formulation of
damage laws as it was reviewed, presented and numerically implemented by de
Souza Neto et al. (2008). Although there is a model developed within the small
elasto-plastic formalism and it is based on one scalar damage variable only, and our
aims is to discuss the finite elasto-plastic models coupled with the anisotropic
damage, we included this model in our presentation due to the large number of
extensions. We mention here the paper by Lammer and Tsakmakis (2000), Malcher
et al. (2012).

Two types of constitutive models have been proposed in this chapter, in
Sects. 6.4 and 6.5. The first model, discussed in Sect. 6.4, is based on the existence
of an undamaged (fictitious) configuration; the anisotropic damage is described in
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terms of the (second order) damage tensor, F?, which is a deformation like tensorial
variable. The damage tensor F¢, characterizes the passage from a certain plastically
deformed configuration (in our case considered to be also stress free configuration)
to an undamaged (fictitious) configuration and depicted a measure of anisotropic
damage. F¢ is involved in the multiplicative decomposition of the deformation
gradient F into its elastic (reversible), F¢, damaged F? and plastic, F*, components,
namely F = F'F?F”. In the proposed framework we describe the material beha-
viour with respect to the stress free (fictitious) undamaged configuration; the model
is compatible with the second law of thermomechanics, expressed as the
Clausius-Duhem dissipation inequality. The case of isotropic damage when a scalar
field replaces the tensorial damage variable, and the multiplicative decomposition of
the deformation gradient is reduced to the initial one, F = F°F”| is also considered
as a special case.

The second model is presented in Sect. 6.5, and it is developed within the
constitutive framework of second order finite elasto-plasticity, formulated by Cleja-
Tigoiu (2007, 2010). The presence of the second order damage tensor is related to
the measure of non-metricity of the so-called plastic connection. The model is
described within the second order plasticity, based on the multiplicative decom-
position of the deformation gradient F = Vy (where the function y describes the
motion of the body) into its elastic and plastic components F¢, F?, called distortions

F = F'F, (6.1)

as well as on the rule of the motion connection decomposition I' = (F)71V F into
its elastic and plastic counterparts.

The behaviour of elasto-plastic materials with damaged microstructure is
described in terms of specific differential geometry elements which characterize the
internal mechanical state, following Kroner (1992), de Wit (1981). In the proposed
elasto-plastic models the defects of lattice structure, like dislocations and discli-
nations, can be involved through the Cartan torsion of the so-called plastic con-
nection, see Cleja-Tigoiu (2010, 2002), while the point defects, microvoids and
microcracks, in the damaged zone are modeled in terms of the non-metric tensor
which belongs to the plastic connection, apart from Cleja-Tigoiu and Tigoiu (2011),
where the gradient of the elastic strain measures the damage. The non-metric
property of the plastic connection is described in terms of a symmetric second order
tensor, h, which is potential for the non-metric (extra-matter) tensor Q.

The continuum damage mechanics also deals with the constitutive and evolution
equations which describe the damage and plastic behaviour.

Energetic arguments, like dissipation inequality, along the isothermal deforma-
tion processes and power conjugated variables, will be used in order to complete the
models. The dissipative nature for the irreversible behavior is modeled by the
requirement to satisfy the principle of the free energy imbalance for the isothermal
processes. The free energy imbalance principle reformulates the classical second
law of thermodynamics within the second order finite elasto-plasticity, following
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Gurtin’s idea presented in Gurtin (2002), Gurtin et al. (2010), see Cleja-Tigoiu
(2007, 2010). The constitutive and evolution equations are derived to be compatible
with free energy imbalance. The resulting models are strongly dependent on the
postulated expressions for the free energy and the internal power.

Our exposure in Sect. 6.2 constitutes a concise and critical presentation of the
contributions and results which led to basic ideas for the development of
elasto-plastic anisotropic damaged materials. We shortly recall the meaning of
extensively used scalar damage variables, with reference to the volume void frac-
tion, and to the first micromechanical model for ductile fracture, the Gurson (1977)
model, which introduces a strong coupling between the plastic deformation and
damage. Modifications of the Gurson model for shear have been proposed and
experimentally validated by Nahshon and Hutchinson (2008), Xue (2008), the key
point being the extension of the evolution equation for the void volume fraction.
Lassance et al. (2007) consider the Gurson model to be representative of the void
growth only. The authors introduce and validate an extended version of the Gurson
(1977) model, which involves also many other recent improvements of the afore-
mentioned model. The paper applies the micromechanics-based methodology to
investigate the damage resistance of certain Al-alloys.

We expose certain ideas, as fictitious damaged and undamaged configurations,
effective stress, and so on, which have been fruitfully utilized in modeling the
anisotropic damage.

Section 6.3 is devoted to the constitutive models for elasto-plastic materials with
microstructural defects (like microcracks and microcavities), which describe the
inelastic deformations, including the anisotropic damage and based on the fictitious
configurations. We refer to the models described by Murakami (1988), Briinig
(2003), Ekh et al. (2004), Menzel et al. (2002), and so on.

Different models connecting damage and elasto-plasticity are based on defor-
mation type damage variables, see the models proposed by Briinig (2003), Briinig
and Ricci (2005), Briinig et al. (2008), Menzel et al. (2002), Ekh et al. (2004, 2005)
and we also mention de Borst et al. (1999).

Two types of damage (second order) tensors like deformation fields have been
introduced in the literature, both of them assuming the hypothesis of the existence
of the undamaged (fictitious) configuration. In general the damage deformation
tensor, denoted here by F?, characterizes the passage from an undamaged (ficti-
tious) configuration to a certain plastically deformed configuration, as a measure of
anisotropic damage. F? is viewed sometimes like a purely internal state variable,
see Menzel et al. (2002), Ekh et al. (2004, 2005) which does not influence the
multiplicative decomposition of the deformation gradient into its component, apart
from the models proposed by Briinig (2003), Briinig and Ricci (2005).

To avoid the confusions which appear, when this mention is missing we pay
attention to the configurations on which the tensor fields are defined. We tried to use
our notations only, as much as possible, with the aim to unify the notations from
different papers, in order to make evident the differences between the models and
field definitions, thus facilitating the comparison of the various presented models.
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When we refer to the finite elasto-plasticity based on the deformation gradient
multiplicative decomposition into elastic and plastic components, we have in mind
the concept of the so-called local relaxed (or stress free) configuration, physically
motivated by the mechanism of plastic deformations within the crystalline mate-
rials, see Cleja-Tigoiu and Soos (1990). The global stress free configuration does
not exist for elasto-plastic materials with crystalline structure. We assume that the
local stress free configurations can be uniquely associated to any material point,
apart from the orthogonal transformation that can be an element of the material
symmetry group. That is why we reconsidered the figures from the papers by
Briinig (2003), Murakami (1988), Ekh et al. (2004). The indeterminacy in choosing
the stress free configuration has been solved by considering the same crystallo-
graphic orientation for the appropriate material neighborhoods, in the initial and
relaxed configurations, i.e. the so-called isoclinic configuration.

We tacitly used the same idea representing graphs of the undamaged
configurations.

Another important fact is related to the objectivity assumptions, see Cleja-Tigoiu
(1990), Cleja-Tigoiu and So6s (1990), which states that if the two motions of the
body differ locally by a superposed rigid motion the set of the associated local
relaxed configurations can be the same, and moreover the associated internal state
variables have equal values. Let us remark that the elastic type constitutive equation
in terms of the Cauchy stress tensor has to be objective, namely relative to the
change of frame in the actual configuration, characterized by an orthogonal map-
ping Q. The tensor F° sustains the transformation, i.e. F* = QF¢, and F*¢ = F¢
and F? = F?. On the other hand in order to a certain elastic type constitutive
equation satisfies the stress free condition it is necessary for the Cauchy stress to be
zero, T = 0, if the elastic strain, say C° = (Fe)TFe, is the identity tensor.

In our presentation we do not considered the vector damage variables, which
were introduced to characterize the effect of the cracks distributed on certain planes.
The damage vector is considered to be perpendicular on the plane of the cracks.

6.1.1 List of Notation

Further the following notations will be used:

o &
v

e Lin—the set of the linear mappings from #" to ¥~, Sym—i.e. the set of symmetric
tensors, Orth C Lin the set of all orthogonal second order tensors;
u-v,u® v denote scalar and tensorial products of vectors;
a®banda®b ® c are defined to be a second order tensor and a third order
tensor and are defined by (a@b)u=a(b-u), (a®b®c)u=(a®b) (c-u),
for all vectors u;

the three dimensional Euclidean space, with the vector space of translations
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o for A € Lin—a second order tensor, we introduce the notations: {A}*, {A}* for
the symmetric and skew-symmetric parts of the tensor and trA for the trace of
A € Lin;

o the tensorial product A ® a fora € 77, is a third order tensor, with the property
(Aa)v=A(a-v), Vv e ¥

e T is the identity tensor in Lin and A” denotes the transpose of A € Lin;

e for A in Lin, the third order field (A xI) is defined by
((A x Du)v = (Au) x v, forall vectorsuand v;
Oa ¢(x) denotes the partial differential of the function ¢ with respect to the field A;
VA is the derivative (or the gradient) of the field A in a coordinate system {x*}

(with respect to the reference configuration), VA = %ei ®e/ @ek, for A =

Aijei ® el namely the calculation follows as the basis is fixed;

e the gradient with respect to the configuration 4 is defined by V ,H =
(VH)(F”)~" in terms of the gradient with respect to the reference configuration,
due to the fact that F” denotes the map which put into correspondence the
reference and damaged configuration, 7";

e the operator © associates to the third order tensors .o/, % the second order
tensor, denoted .o/ ©4% and defined by

(AOB) - L =oAL B = A gLy Bink, (6.2)

for all second order tensor L;

e the transpose of the third order tensor field ./" is given by A4 Tu = (N~ u)T, for
any u.
e curl of a second order tensor field A is defined by the second order tensor field

(curlA)(u x v) := (VA(u))v — (VA(Vv))u VYu,v € ¥ and
(curlA)pi = s,jjk% (6.3)

are the component of curlA given in a Cartesian basis. gy denotes the
components of Ricci permutation tensor.

e H denotes the Heaviside function, defined by H(x) =0V x<0, and
H(x)=1Vx>0

6.2 Damage State

The damage state is described by scalar and tensorial variables. We exemplify the
scalar variables, like the void volume fraction and effective area reduction. We
make reference to the effect of triaxiality on the ductile damage, and we recall the
initial formulation of the undamaged configuration concept in correlation with the
anisotropic damage.
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6.2.1 Isotropic Damage

Kachanov (1986) introduced the scalar damage variable o, (0 <w < 1). The dam-
age variable can be interpreted as being the effective area (net area) reduction
caused by the microcracks and microcavities.

Consider a damaged solid and a volume element of a sufficiently large size with
respect to the inhomogeneity and sufficiently small size to be viewed as a material
neighborhood of a given material point.

Let us denote by A(n) the area of the section of the volume element identified by
the normal n, and the effective area of resistance by A(n), i.e. the remaining area
after eliminating the microcavities and microcracks, assuming A(n) <A(n). Thus
the effective area (net area) reduction o is the ratio between the net current area,
A(n), and the area of the given section, A(n), i.e.

AW
An)’

(6.4)

From a physical point of view the so-called damage variable, d = 1 — o, is the
relative (or corrected) area of the cracks and cavities cut by a plane normal to the
direction n.

In the uniaxial tension the applied force on a section of the representative ele-
ment is 6A(n), and the effective stress, denoted by &, is defined in terms of Cauchy
stress o by ¢ = %5, as a consequence of the assumed equality

dA(n) = 6A(n). (6.5)

In the one dimensional case A(n) appears to be the effective load-carried area of the
current damaged state. The fictitious undamaged bar with the cross-section area
A(n) and subjected to the same applied force has been considered mechanically
equivalent and it is called fictitious undamaged state (Murakami 1988).

Lemaitre and Chaboche (1978), Lemaitre (1985) characterized the damage state
by the change of the elastic constants of the materials. The authors assumed the
hypothesis of elastic strain equivalence, namely the elastic type constitutive
equation of the damaged material is derived by the constitutive equation for the
elastic undamaged material, by replacing the Cauchy stress tensor, o, by the ef-
fective stress G.

(6.6)

where E and E are elastic constants of the damaged and undamaged materials.
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6.2.2 Void Volume Fraction

Another scalar damage variable, namely the void volume fraction, f, has been
extensively considered in various micromechanical models for ductile fraction. This
parameter is the ratio between the volume of microvoids, f4, and the represen-
tative volume element, f;,., i.e. f = ’;’—’ The Gurson model, (Gurson 1977), is the

first micromechanical model for ductile fracture, which introduces a strong coupling
between the plastic deformation and damage. The main result of the Gurson model
estimates the yield function for the porous metal, which is given by

o T +ofcosh( LT g (6.7)
- a 2 0y ’ '
where the hardening behaviour is described by @, = h(¢”) related through the
energy balance

o, (1—f)=a-&. (6.8)

The evolution equations for the plastic strain, void volume fraction and Cauchy
stress, respectively, (&,f, o), are given by:
The associate flow rule is characterized by

0D
# =i, (6.9)

with A defined by the Kuhn-Tucker condition />0, &<0, A& =0, and
consistency condition 4 ® = 0.

The law of the variation of the void volume fraction, caused by the accumulation
of plastic deformation, is given by

F=0—-fud, (6.10)

as the voids started to nucleate, and the rate type elastic constitutive equation is
described by

6=6F i), (6.11)

in terms of the Cauchy stress tensor.

The Gurson model has been extended to include void shape dependences and so
on, see Siruguet and Leblond (2004) and the reference that can be found, for
instance in Lassance et al. (2007), Nahshon and Hutchinson (2008). These exten-
sions are based on “the solutions for the voids subjected to axisymmetric stress and
exclude the possibility of shear localization and fracture under the low triaxiality, if
void nucleation is not invoked”, as remarked Nahshon and Hutchinson (2008). We
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make a special reference to the paper by Lassance et al. (2007), as the attention is
focused on the non-symmetric microstructural defects. The authors considered that
“the presence of coarse, elongated particles is the key microstructural feature
behaviour” of Al-alloy. The authors evidenced that the elongated f-type particles
are transformed into rounded o-type particles, by heat treatment. “At the ambient
temperature the o particles and the f§ particles oriented with the long axis perpen-
dicular to the loading direction undergo interface decohesion, while the f particles
oriented perpendicular to the loading direction break into several fragments.” They
concluded that “the ductility increases with decreasing amount of f§ particles,
increasing temperature and strain rates, and decreasing stress triaxiality.” The
review performed in the aforementioned paper contains well structured references.

6.2.3 Effect of Stress Triaxiality

The effect of stress triaxiality on ductile fracture and the evolution of the fracture
ductility is put experimentally into evidence and discussed by Bao and Wierzbicki
(2004, 2005), Briinig et al. (2013, 2008), Nahnshon and Hutchinson (2008), see
also the references in the aforementioned papers. “Fracture ductility is understood
as the ability of a material to accept large amount of deformation without fracture.
Equivalent strain to fracture is good measurement of fracture ductility,” see Bao and
Wierzbicki (2004).
The stress triaxiality is defined by the ratio

OH
n=—, where

Oe (6.12)

oy =+1uT, 6 =4/3Devl-DevT, Devl =T —1uTL

oy is the mean stress and o, is the second invariant of the stress deviator DevT.

Based on the experimental and numerical results Bao and Wierzbicki (2004,
2005) concluded that the equivalent strain to fracture, denoted by &, can be rep-
resented as a function of stress triaxiality. The relations between the effective plastic
strain at fracture and triaxiality is not monotonous. Three branches have been put
into evidence, being governed by shear mode for negative triaxiality, by void
growth dominant failure for large triaxiality and by a combination of shear and
voids growth mode for the stress triaxiality between the two regimes mentioned
above. & is supposed to be analytically represented in terms of the stress triaxiality,
i.e. & =f(n) which is specific for a given material. Finally the best fit of the
experimental data have been presented as average stress triaxiality versus equiva-
lent strain to fracture, i.e. the fracture locus has been defined. The authors men-
tioned that the displacement to the fracture has been determined during the
experiments and by the force displacement response. The significant drop in
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loading has been taken to be the point of the initiation of the fracture. It is observed
that after its initiation the crack grows very rapidly during the test.

To capture the effect of stress state on the ductile damage and failure, Briinig
et al. (2013, 2008) introduced the damage potential functions and damage criteria
which are expressed in terms of stress intensity, stress triaxiality and Lode
parameter. The damage rule takes into account the isotropic and anisotropic parts
corresponding to isotropic growth of voids and anisotropic evolution of
micro-shear-cracks, respectively. The parameters can be identify by experiments or
by numerical simulations on microscale.

Malcher et al. (2012) considered three isotropic hardening models, which
include stress triaxiality and Lode angles, (as a measure of the third invariant of the
stress): the extension of the Gurson model, proposed by Tveergard and Needleman
(1984), the Lemaitre model (1985), and Bai and Wierzbicki model (2008). Due to
the fact that Bai and Wierzbicki (2008) did not include in the model a damage
variable, but included the stress triaxiality and Lode angle, Malcher et al. (2012)
considered a modified model, by introducing the fracture indicator (a
post-processed variable). In the numerical simulations, the specimens with different
geometries have been employed in order to generate various stress and strain states,
which covered a wide range of triaxiality and Lode angles. The authors concluded
that for higher level of stress triaxiality the model proposed by Bai and Wierzbicki
(2008) combined with the fracture indicator is more in agreement with the exper-
imental results. Contrary, for a low level of the triaxiality the modified Gurtin model
(Tveergard and Needleman 1984) is in agreement with experiments with reference
to the equivalent plastic strain. The final conclusion in Malcher et al. (2012): the
analyzed models need to be improved, as the models have limitations on the values
of the displacement to fracture, the equivalent plastic strain to fracture or in term of
fracture localization, under combined loading conditions.

6.2.4 Undamaged Configuration

The second and higher order tensors are introduced to characterize the complex
three-dimensional distribution and evolution of the microvoids and microcracks, i.e.
the material anisotropic damage. Murakami (1983), Murakami and Ohno (1980,
1981), described the anisotropic damage by a second order symmetric tensor, D,

i=3
D= Din,’ ®n;, (613)
i=1

where D; and n; are the principal values and directions. D; can be interpreted as the
void area density in the plane perpendicular to direction of the damage n;.
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Fig. 6.1 F° the elastic part of the deformation gradient; G and G linear transformations from the
current deformed body 4,, and from the stress free and damaged configuration, respectively, to the
fictitious associated configurations

By assuming that the principal effect of the material damage consists of the net
area decrease due to the three-dimensional distribution of micro defects, Murakami
(1988) considered an area vector element in the current (actual) damaged config-
uration, say vdA and postulated that there exists a fictitious undamaged configu-
ration, and the equivalent load-carrying area vector is denoted by v* dA*. Here v
and v* are unit normals to the appropriate areas, see Fig. 6.1.

If G denotes the tensor which characterizes the passage from the current
deformed damaged configuration to fictitious undamaged configuration associated
with the previous one, then by applying the Nanson formula we obtain

vdA = (detG)G "nda or

_ (6.14)

vdA = (I —D)nda, wherel —D = (detG)G™"
Here vdA denotes the associated area vector in the undamaged configuration
associated to nda, the vector area in deformed damaged configuration, %,. The
definition (6.14) introduces a fictitious deformation from the current damaged
configuration to the so called fictitious undamaged configuration, G. The tensor
D (and G) depends on the current state of deformation, as Murakami (1988)
observed. Due to the fact that only the irreversible change of the structure is
responsible for the damage, Murakami (1988) associated the undamaged (fictitious)
configuration with the deformed stress free configuration. Consequently, a similar
formula to (6.14) is derived

v'dA* = (1 - D)nda, (6.15)
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where I — D is associated with G and v* dA* is the area vector in the undamaged
(fictitious) stress-free configuration, while n da denotes the associated area vector
in the damaged stress free configuration. The following formula is derived in
Murakami (1988)

I(_;ieté)ﬁ = (F)"(detG)G " (F) ", (6.16)

= (F)'D(F) ",

in terms of F¢, which realizes the passage from the stress free configuration to the
current damaged configuration.

Remark Let us remark that the formulae (6.16) hold only under the assumption that
just F¢ realizes the passage from the undamaged and stress free configuration and
fictitious undamaged configuration (associated with the current deformed config-
uration). Moreover, the second order field D and consequently the damage trans-
formation G are symmetric.

The effect of the Cauchy stress, say &, acting on the body is given by the effective
stress tensor

(I-D) 'o+a(1-D)"), (6.17)

N —

c =

introduced by Murakami and Ohno (1981). The tensor (I — D)~ represents the
stress effect increase due to damage.

Due to the hypothesis concerning the symmetry of the damage D, Murakami
expressed the idea that this damage state should correspond to the orthotropic
symmetry only, see Murakami (1988).

Remark The formula (6.17) can be rewritten as

131 1A

G = E; =D, (n; ® (om;) +on; @ n;), where1 yaay (6.18)
Consequently, if n; is a proper vector for &, the formula (6.18) could be considered
as an extension to the anisotropic damage of the uniaxial formula ; = %5, (see

the formulae (6.4) and (6.5)).

The evolution equation of the damage is expressed, following Murakami and
Ohno (1980, 1981) by

D=H(s, (I1-D) " «), (6.19)
where k denotes a hardening parameter.

In Chap. 5 of the book by Voyiadjis and Kattan (2005), the fourth-order ani-
sotropic damage effect tensor M is the key point in describing the anisotropic
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damage. M expresses the linear transformation giving rise to the effective stress

tensor ¢ in terms of the Cauchy stress tensor &, as in Murakami and Ohno (1981),
namely

(e(I—D) '+ —-D)'q). (6.20)

N —

6 = Mo, where Mo =

The explicit representation of the fourth-order damage tensor M using the second
order damage tensor D' is important in implementation of the constitutive models
of damage. The representation of M, as a matrix (6,6) is given in terms of the six
components of D, or using the proper values D, but this time in the tensorial
representation with respect to the proper vector of D. In Chap. 7 of the book by
Voyiadjis and Kattan (2005), the fourth-order anisotropic damage effect tensor
M remains a general one, without any correlation with certain second order damage
tensor, and a general elasto-plastic model connected with damage is proposed in an
Eulerian formalism. A modified elasto-plastic stiffness tensor includes the effect of
damage through the use of the undamaged stress configuration and the hypothesis
of elastic energy equivalence.

The fourth order damage tensors have been also introduced, see for instance
Murakami and Imaizumi (1982), Lubarda and Krajcinovic (1995), Voyiadjis and
Park (1996), to take into account the damage induced material anisotropy.

6.3 Models with Damage State Variables

Two constitutive models for ductile anisotropic continuum damage, based on
thermodynamic law for isothermic processes and connected with plasticity and
damage, to capture the dissipative nature of the inelastic deformation are presented
in Sect. 6.3.1 following Briinig (2003), Briinig and Ricci (2005), and in Sect. 6.3.2
following Ekh et al. (2004). Section 6.3.3 makes references to Lemaitre and
Chaboche model (1990).

6.3.1 Model with Multiple Undamaged Configurations

Briinig (2003), Briinig and Ricci (2005) provide a finite strain framework, using the
multiple undamaged (fictitious) configurations and specific metric coefficients to
describe measures of damage. The extension to nonlocal plasticity and nonlocal
damage can be found in Briinig and Ricci (2005), the macroscopic background
being the same in all the aforementioned papers. Three types of undamaged

'D is denoted by @ in Voyiadjis and Kattan (2005).
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= —— [

Fig. 6.2 The framework considered by Briinig (2003): Ry, R* and R are defined on the
appropriate undamaged configurations obtained by fictitious removing the defects of the initial,
stress-free intermediar and actual configurations: Q”d, Qe’, the inelastic (plastic and damage) and

. . . ~pl el . . .
elastic parts of the metric transformation tensor Q”, Q°, the effective plastic and elastic parts of
the effective metric transformation Q

configurations have been introduced, namely initial, &, intermediate, &, and
current, &, undamaged configurations, respectively, see Fig. 6.2. The current
undamaged configuration & and the initial undamaged configuration of the body,
&, are obtained from the current configuration (denoted by %, in Fig 6.2) and
initial configuration, %, by “fictitious removing all the damage” of the deformed
body and initial body, respectively. The elastic unloaded configuration, £*, is
associated to the deformed body % and the corresponding fictitious elastically
unloaded and undamaged configuration is denoted by &*. We remark that all these
configurations are local and only the initial and the deformed configurations are
global. The set of undamaged configurations is similar to those provided by
Murakami (1988), except the unloading initial configuration.

In Fig. 6.2, we represented here the locally appropriate neighborhoods associ-
ated to a given material point in the body, X, only.

We pointed out certain specific key points in formulating the background of the
model.

i. The multiplicative decomposition of the so-called metric transformation tensor,
Q, into its inelastic (plastic and damage) part, Q™. and elastic part, QY. is
considered, namely Q = Q™Q“? A similar multiplicative decomposition is
introduced, this time with reference to the undamaged configurations. The

The correct written form of the above decomposition and which corresponds to the mentioned
figures in the papers (Briinig 2003; Briinig and Ricci 2005) is Q = Q“ Q.
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definitions of the elastic strain and damage strain tensors, are differently
introduced

1 .
A =_"mQY, A% = 7InR’,  defined in Brinig (2003)

AY=_(1—(QN™"), A% =_(I—(R")"), inBrinig and Ricci (2005).

N = DN =
N —

(6.21)

These tensors are defined on the appropriate vector spaces associated with #*
and &”, respectively in the first definitions and with 4 and %", respectively in
the second definition. Consequently, these tensor fields are not referring to the
same configurations and their composition is generally unjustified.

ii. The appropriate strain rate tensors have been introduced in Briinig (2003),
Briinig and Ricci (2005), Briinig et al. (2013), and an additive decomposition of

the strain rate tensor defined by H = % (Q)le, into the elastic and inelastic
. . . - el
strain rates have been derived. We also remark that the strain rates H =

1 el - d g . . . X
Q% Q" and H" = 7 (RY) "R are associated with the configurations %"
and &, respectively, if we look at their written expressions.”

Comments. Generally strong restrictions have to be imposed on the considered
tensor fields in order to provide the imposed algebraic symmetry. For instance,
although (Q)_1 and Q are symmetric tensors if Q is symmetric, the tensors (Q)_IQ
and Q(Q)f1 could not be symmetric. In order to avoid these unjustified issues, the
linear and invertible transformations should be introduced in order to define the
passage between various configurations, say for instance F¢ instead of Q.
Consequently the symmetric and positive definite tensors which characterize the
corresponding metric tensors can be naturally provided, but they do not enter the
multiplicative decomposition.

iii. The elastic type constitutive equation, presented by Briinig (2003) formula
(6.82), and by Briinig and Ricci (2005) formula (6.78), characterizes the
Kirchhoff tensor T in terms of elastic strain, A (see the definitions given by
(6.21)),

2
T=2(G trA“) A + [(K — =G + 21, trA%)trA?
(G + 15 trA™)A” + [( 3 + 21, trA“)rA” + (6.22)

+7I3(Ada 'Agl)]l+n3(trAel)Ada—‘rl/]4(AduAgl+Ae]Ada).

and containing the damage strain measure, A%,

3The correct definition for H” ought to be ' = 1((Q )~ Qd + le Q™).
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Remark The constitutive Eq. (6.22), say together with (6.21), which characterizes
an elastic behaviour contains two measure of deformations with respect to different
configurations, the elastic strain A“, with respect to the deformed configuration,
while A% is defined on the stress free and damaged configuration. Moreover, the
Kirchhoff tensor T and A¢ are objective fields, while A% is not.

Remark Due to the wrong writing in the composed tensor fields, which do not
correspond to their images plotted in Fig. 6.1 from Briinig (2003), Briinig and Ricci
(2005), further we do not make reference to the appropriate formulae presented in
the aforementioned papers. We underline now some principal ideas that follow
from the papers (Briinig 2003; Briinig and Ricci 2005), and that are fruitful in
describing anisotropic damage.

In the damage-coupled elasto-plastic models, these dissipative processes, namely
plastic flow and damage, are treated by the constitutive models proposed in Briinig
(2003), Briinig and Ricci (2005), Briinig et al. (2013), as different in their nature
and effects on mechanical properties of the materials and structures. Briinig (2003)
motivated the differences by the fact that “The pure plastic flow develops by
dislocation motion and sliding phenomena along the some preferential crystallo-
graphic planes, whereas damage-related irreversible deformations are due to
residual opening of micro defects after unloading.” The free energy functions are
introduced separately with respect to the fictitious undamaged configuration, &,
and to the current damaged configuration #*. The plastic strain rate tensor is
determined via a non-associative plastic flow rule. The damaged surface is char-
acterized in terms of the stress tensor with respect to stress free damaged config-
uration, #”*.

The energies involved in plastic flow and damage processes are postulated to be
independent. The free energy function of the damaged elasto-plastic material, see
formula (6.61) by Briinig (2003), is considered to be represented in terms of three
functions

& = (AT AM) 4 D (y) + D (), (6.23)

where @ is dependent on the elastic strain A and damage strain tensor A%, the
plastic and damage parts, @' and &%, are dependent on the plastic and damage
scalars, internal variables, y and p, respectively. The effective specific free energy @
of the fictitious undamaged configuration, see formula (6.50) by Briinig (2003), is
decomposed into two parts, an effective elastic one and an effective plastic part,
respectively,

d = (A7) + D). (6.24)

Briinig (2003) states that the model “does not need strain equivalence, stress
equivalence or strain energy approaches often used in continuum damage theory,”

. . . . . —el
but the equality of the appropriate elastic type metric transformations, Q¢ and Q ,
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.. . . . —el .
is introduced. Thus the equivalence of the elastic strain tensors, A = Ag, is

accepted. Moreover, two types of the dissipation principles, one related to the
plastically deformed body coupled with anisotropic damage and the other one

concerning the undamaged fictitious configurations are considered. The correlation

between these dissipative principles is realized by the equality A¢ = A7

In the effective undamaged configuration, &*, the plastic yield condition is
described in terms of the effective stress tensor T by

f"(T,c) =0, (6.25)

where ¢ denotes the so-called strength coefficient of the matrix material. As a
specific form, the linear influence of the hydrostatic stress is considered in the
expression for the yield condition given by

0y T ) = \/7_2—c(1 —gil) —0, (6.26)

where I} = T, J, =1devT - devT. A non-associative flow rule is defined using
the plastic potential function, say g = +/Js.

Briinig and Ricci (2005) proposed a non-local continuum theory of anisotropic
damage, which incorporates a non-local yield condition

PUT ) =0T = (1= SH) VR = e V) =0, (627)

where 7 is the scalar internal variable and c denotes the strength coefficient of the
material.

The anisotropically damaged configurations are used by Briinig (2003),
Briinig et al. (2008) to describe the behaviour of the damaged materials, with
reference to the damage. The damage dissipation potential is introduced as a
function dependent on the stress tensor with respect to the configuration %~ T, and
the appropriate damage criterion is given by

f%(T,6) =0, (6.28)

where ¢ denotes the damage threshold. The damage strain rate is prescribed by the
damage potential, denoted g%, which is defined in terms of the same stress measure
T, as

HY = puo~g™. (6.29)

Analyzing experimental results, the following damage criterion has been con-
sidered to be adequate for describing the damage behaviour in ductile materials, see
Briinig (2003),
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1y, J2,6) =T + /] —G=0 (6.30)

where ¢ is dependent on the scalar internal variable y, and its gradient V u, which is
involved in a non-local theory. The scalar function B describes the influence of the
deviatoric part of the stress on damage. In order to define the damage evolution
equation, the damage potential has been introduced by

g“(T) = al, + B/ ], (6.31)

where o and f§ are damage parameters. The non-associated damage rule is derived in
Briinig and Ricci (2005) under the form

ad

H = i(ad + B dev T), (6.32)

1
V275
with the remark that the first term is related to the growth of microvoids, while the

second term considers the “dependence of the evolution of the size, shape and
orientation of the micro defects.”

Remark The rate independent models have been adopted in the papers (Briinig
2003; Briinig and Ricci 2005), and the necessity to introduce the consistency
conditions is considered, but without any references to the correlations between the
damage and yield functions.

Remark The applicability of the models proposed in Briinig (2003), Briinig and
Ricci (2005) have been proved by the numerical simulations performed and ana-
lyzed in the above mentioned papers.

6.3.2 Crystal Plasticity Model Coupled with Anisotropic
Damage

Menzel et al. (2002) developed a framework of continuum damage based on the
fictitious configuration and the equivalence principle of the free energy in the
fictitious configuration and the intermediate configuration, see Fig. 6.3. The inter-
mediate configuration (which is called the local relaxed configuration in our
description (Cleja-Tigoiu and Soo6s 1990)) is associated with the multiplicative
decomposition of the deformation gradient into its elastic and plastic parts. The
second order tensor F¢, called the integrity tensor, characterizes the passage from
an undamaged (fictitious) configuration to the intermediate configuration and it is
not involved in the multiplicative decomposition of the deformation gradient. The
damage model proposed by Ekh et al. (2004) appeals to the crystal plasticity model
and the evolution rule for the damage is formulated with respect to the crystalline
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Fig. 6.3 The elastic and plastic parts, F¢ and F?, of the deformation gradient. F¢ the damage
tensor defined on the undamaged and stress-free local configuration

slip systems. Not only the damage tensor F but also scalar integrity measure b,,
which are a set of scalar damage variables are involved in the expression of the
effective Schmid stress, T,, which is associated with the o-slip system. The o-slip
system is denoted by (s,, m*), when we refer to the intermediate configuration and
by (s, = F°s,,m* = (F¢) "m,) with respect to the actual configuration.

The reference, local intermediate and actual configurations, as well as the (local)
undamaged stress free configuration are represented in Fig. 6.3. We introduce the

tensor field, denoted by f, which realizes the passage from the undamaged to the
actual (deformed) configuration in Fig. 6.4.

e The free energy with respect to the stress free and damaged configuration is
dependent on the elastic strain (elastic right Cauchy- Green tensor), the damage
tensor, internal scalar variables denoted by {k,}, representing the hardening
variables on each slip systems,

@ = o(C%,F {k}). (6.33)
The free energy is additively represented by the elastic ¢¢ and hardening part ¢
@ = ¢°(C,b") + " ({k,}), where b?=F/F")" (6.34)

with the damage influence on the elastic part of free energy. The following as-
sumption motivated by the principle of the elastic strain energy equivalence has
been introduced by Menzel and Steinmann (2003), the elastic free energy with
respect to the stress free and damaged configuration and to the effective configu-
ration, respectively, have equal values, i.e.
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¢°(C¢,b%) = ¢°(C), where C = (F)"CF. (6.35)

Under the supplementary condition stipulating that the ¢° is isotropic with respect

to its argument, 67 the following representation follows
¢°(C*,b") = p(ji(C)), (6.36)

where j;(C) = tr((Cb?)"), k = 1,2,3, i.e. the invariants of the mentioned tensor.
As a consequence of the thermodynamic restrictions imposed by the
Clausius-Duhem inequality

T-FF)™"' —¢>0, (6.37)

written with respect to the actual configuration, the free energy density is potential
for the stress tensor. The symmetric Piola-Kirchhoff stress tensor with respect to the
intermediate configuration can be expressed as

= 20 °(C¢, b?). (6.38)

S

Thus a thermodynamic stress which is power conjugated to the rate of damage in
a slip system is associated with the damage tensor b? via the relationship

B = —20,00°(C°, b) (6.39)

being defined by a similar procedure as that used to define the symmetric
Piola-Kirchhoff stress tensor, see (6.38).

The thermodynamic stresses x, are associated with the hardening variables k,
and are defined as in the standard materials by

Ky = =0, 0" ({ki}). (6.40)

The dissipation inequality (6.37) together with (6.38)—(6.40) is reduced to the
inequality

Ce%.lﬂ”(Fp)*#ﬁdbd~F"’(Fd)*1+ > e,k > 0. (6.41)

e The yield function is assumed to be dependent on damage and thermodynamic
stresses, and is defined in terms of effective resolved shear stress, denoted by 7,,
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=3

G, =7y — [Yytr,), Tu=—1 T, =8, - C°=—m". (6.42)

Ny
<
2
S

1, is called the resolved shear stress and b, are scalar parameters which characterize
the evolution of damage.
The flow rule is of the associative type and is formulated for F* and for F¢.

The rate of plastic part of deformation gradient is associated to the yield function
(6.42) as

F ()™ :Zua%, M:Ce%. (6.43)

In order to define the damage rule, the authors introduced in Ekh et al. (2004)
the integrity resolved shear, similarly to the resolved shear stress (6.42), namely

By =5y" Mdﬁlon M = ﬁdbd~ (644)

e There exists a damage potential I',(,, b,) associated with each slip system ,
such that

Z““aMd Z““ZZ S, @ my) Zb s, ®@m,). (6.45)

e The stress-type hardening parameters, the so-called drag-stress corresponding to
the isotropic hardening variables {k,} are defined by the appropriate evolution
equations in o-slip system

ky, = u, e, = Mo (6.46)

e The scalar parameters which characterize the evolution of damage are described
by the appropriate evolution equations given by



322 S. Cleja-Tigoiu

. or,
bl = Z My 6—B“ . (647)

o

Finally the dissipation inequality is expressed as follows:

- or
Z | @y + Y, + B, —=2] >0. (6.48)
P p,
In the case of the rate-dependent plasticity p, is defined in terms of non-negative
and monotonically increasing overstress functions #,(®,)

iy = (1,(@,)). (6.49)

t*fl

The functions #,(®,) have the properties #,(®,) = 0 if &, <0, and n,(P,) > 0
if @, > 0, and #,, is the relaxation time.
Here the function (x) = (x+ |x|) is defined for all x real numbers.

Remark In the numerical application, given by Ekh et al. (2004) the small defor-
mation strain model is considered, and the scalar damage parameters have been
chosen b, = 1 —d,, and u, have been introduced corresponding to rate dependent
(viscoplastic) models.

Comments. We refer now to a certain physical meaning that can be assigned to the
damage variable within the crystal plasticity framework. In the viscoplastic model
considered by Cleja-Tigoiu and Pascan (2014) the evolution in time of the plastic
distortion is described by multislip in an appropriate crystallographic system, with
hardening laws dependent on the scalar dislocation densities, denoted by p, in -
slip system. The evolution in time of the scalar dislocation densities is described by
non-local (i.e. diffusion-like) evolution equations, which can be reduced to differ-
ential ones when the diffusion parameter, k, is vanishing. The problems concerning
the deformation of the sheet made up from such viscoplastic crystalline material,
which is generated by different slip systems that could be simultaneously activated,
were numerically solved. In compression problem, for the boundary impenetrable
to dislocations all eight activated slip systems were considered together with the
activation condition. The large band-zones of relative minimum and maximum
values of the total dislocation densities, denoted by p,,,, can be seen for k = 0.

The non-homogeneous band zones with the alternating maximum and minimum
values of plastic distortion components, as well as for stress components, follow the
localized zones of p,,,. Analyzing the numerical solutions for the boundary value
problem we conclude that the total dislocation density accumulated during the
elasto-plastic process can be interpreted as a scalar damage variable. The damage is
essentially anisotropic, due to the presence of different slip systems activated, the
damage variable as the total dislocation density is well defined from the physical
point of view.
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6.3.3 Lemaitre and Chaboche Models

We present now the models of coupled elasto-plasticity and damage constitutive
equations for small deformations, with only scalar damage variables, namely the
unified formulation of damage laws, following the exposure that can be found in
Sect. 6.3.1 (Malcher et al. 2012; Lemaitre and Chaboche 1990; Lemaitre 1992, and
so on). The models proposed by Lemaitre and Chaboche are based on the concept
of effective stress and the hypothesis of strain equivalence and are largely applied
and extended in the literature of the continuum damage field.

In Chap. 12 of the book (de Souza Neto et al. 2008), the authors reviewed and
discussed some elasto-plastic damage models and their numerical implementation.

We listed the principal hypotheses adopted in the models.

i. The existence of the free energy density, ¢, as function of the state variables
(¢°,R,X, D), where ¢ is the elastic strain, R and D are scalar hardening and
scalar damage variables, and X denotes the second order tensor, describing the
kinematic hardening. The free energy function is described in terms of both
elastic part ¢°, dependent on damage and irreversible part, ¢, i.e.

¢ = (¢, R, X, D),

= (pe(se’D) + QDP(Rv X) (6.50)

ii. Under the assumption that the elastic part of the free energy is given by

0 ==(1—-=D)&& - &, (6.51)

| =

the Cauchy stress is derived from the free energy, viewed as thermodynamic potential,
0
6=p? = p(1 - D)&, (6.52)
Oe¢
where p is the mass density.

Equivalently the damage elastic law can be written in terms of effective stress, as

1
D)
Ooff = &<,

o

)

(6.53)

The thermodynamic force conjugated to the scalar damage variable, D, is defined by

o
= —pa—D,

(6.54)



324 S. Cleja-Tigoiu

Using the invertibility of the elastic stiffness tensor £, in the case of isotropic elastic
behaviour, the expression of Y leads to another important feature of the damage, the
influence of the triaxiality. Y is dependent on the triaxiality by the factor R,,

eRV
Yziza-gflaE—Lz,
2p0(1 — D) 2Ep(l — D) (6.55)
2 OH .
R, ==(1 3(1=2v) —|.
1+ 301 -2 (22

Y corresponds to the variation of internal energy density due to damage growth at
constant stress.

iii. The plastic part of the free energy function is defined by

o (R,X) = o' (R) + gx X, (6.56)

where a is material constant. The thermodynamic forces associated with
isotropic hardening and kinematic hardening

9" _ de”

K:PaiR*K(R), L=P oy (6.57)
a is called the back stress.
The yield function ¢ is defined by
¢(o,x,a,D) = 15 (Deve —a),, — oy — K, (6.58)

where oy is the uniaxial yield stress.
The potential of dissipation is given by

=¢+ L a-at+Fp(Y),
¢ =9t urps * b Dl (6.59)
FD(Y):(I—D)(erl) (5" HE@ — pp).

a, b are constants which characterize the so-called Armstrong-Frederick hardening
law. In order to have similarity between the terms containing « in the expression of
the potential of dissipation we introduced here ﬁ

The function Fp is the key point in representing the damage evolution, r and s
are material constants and pp is a material constant, which represents the damage
threshold.
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The plastic behaviour of the material is described using the potential of dissi-
pation by

(6.60)

where & is the equivalent plastic strain, and pp is a material constant, which
represents the damage threshold. Here the function N characterizes the direction of
the plastic strain rate given by

N=3mura (6.61)

eq

Damage Thresholds. In the pure tension case there exists a certain value of the
plastic strain, &}, below for which no damage caused by microcracks occurs, namely
if &, <eg,p then D = 0. On the other hand there exists a value of damage, D = D,
which marks the macro crack initiation.

Damage is always related to some irreversible strain either at the microlevel or
the mesolevel, this property is considered by the presence of A in the evolution
equation for D, which is written in (6.60). The damage remains equal to zero if
& <pp, and the evolution occurs if & > pp. pp is a function of the applied stress
and & is the equivalent plastic strain. In the evolution equation of damage, (6.60),
the Heaviside function has been introduced to emphasize the role of the damage
threshold.

As an extension of the Lemaitre and Chaboche models, we mention that in
Lammer and Tsakmakis (2000) proposed the elasto-plastic models coupled with
damage (described in terms of scalar damage variable) for small and finite defor-
mations. In the finite strain models the strain measure on the intermediate config-
uration has been defined as

I'=—(C°—¢"), with C° = (F*)"F® and ¢ = (F*)""(F)"" (in our notation).

N —

The additive decomposition of the appropriate strain measure into its elastic and
plastic part is introduced by

I'=TI“+1I7, where

e e I 6.62
re=lco-1, r=la-e) (6.62)
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The Oldroyd derivative is given in terms of L’ = FP(FP )717 in order to have the
equality written below

—

A)

>

D', D' =1"+@")"), where

(6.63)

—

P
A)
4

Aoy op ey b
=7+ TP + 7L

The three models have been developed by Lammer and Tsakmakis (2000). These
models differ in the definitions of the yield function and the law describing the
hardening effects. In models A only the stress tensor is replaced by the effective
stress, in B the stress tensor and the back stress are replaced by the appropriate
effective fields, while in C the scalar hardening variables is also replaced by its
effective associate field. The models are developed within the thermomechanical
framework and the influence of triaxiality is involved in the models, using a similar
arguments as in the Lemaitre and Chaboche model, see the formula (6.55), in
Sect. 6.3.3.

6.4 Model with Stress-Free Undamaged Configuration
and Deformation-like Damage Tensor F¢

We present here some results partially published by Cleja-Tigoiu (2011), concerning
the elasto-plastic models with second order defect density tensor, under the
hypothesis of large deformation. In the model proposed here we assume the existence
of the stress-free, undamaged configuration. We introduced simplifications in the
succession of the damaged and the undamaged configurations, that has been pre-
sented in the above mentioned papers by Briinig (2003), Briinig and Ricci (2005).

Remark We consider only one undamaged configuration, associated with the stress
free (intermediate) local configuration, namely R* = F¢, we refer to Fig. 6.2. The
deformation like damage tensor F? is an invertible one, and it is not apriori a
symmetric tensor. The initial configuration of the body does not contain microvoids
and microcracks (more precisely these initial micro defects can be neglected),
which means that R® = I. In Figs. 6.2 and 6.4 all these elements can be seen. We
remark the differences between the considered configurations plotted in Figs. 6.4
and 6.3, where the plastic part of deformation is viewed like in the deformation
gradient multiplicative decomposition. Contrary, in this section the damage tensor
is involved into the multiplicative decomposition, establishing a similarity with the

models briefly presented in Sect. 6.3.1. We mention that Q” 17 which is considered to
be symmetric and positive definite in Briinig (2003), Briinig and Ricci (2005), is
replaced by an invertible tensor F”| which is called plastic distortion in our model.
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Fig. 6.4 Elastic, plastic and damage tensors as parts of the deformation gradient F, F = F°F¢, F”,
with F? the transformation from the undamaged and stress free configuration to the damaged and
stress free configuration

Let us consider k the reference configuration and the actual (deformed) con-
figuration (-, ) of the body %, where y represents a motion of the body.

Ax. 1. We assume that at any time ¢, for any X € 4 there exist:

o A astress free, damaged configuration and
e 4 a stress free, undamaged configuration.

Starting from these assumptions, we define the local deformations: F¢ the elastic
component, which characterizes the passage from A 1o 7(-,7), F? the plastic
component, which characterizes the passage from the reference configuration to 4~
and F the damage deformation tensor, which characterizes the passage from the
stress free, undamaged (fictitious) configuration ¢ to the damaged one, A

Mass densities p?, p”, p are written in stress free damaged and undamaged
configurations, respectively, and in actual configuration and are related by the
following relationships

pdetF¢ = p?,  pPdetF? = pP. (6.64)

Ax. 2. For any motion y, VX, Vz, the deformation gradient F := Vy(X,¢) is mul-
tiplicatively decomposed into its F? plastic, F¢ damage and F¢-elastic parts

F = F'FF?, F =F°F’. (6.65)

All the tensor fields are invertible.



328 S. Cleja-Tigoiu
6.4.1 Elastic Type Response Dependent on Damage

In describing the behaviour of elasto-plastic body with damaged structure the fol-
lowing stress tensors are introduced with respect to the appropriate configurations

T(x, 7)—the Cauchy stress in the actual configuration y(-,), where x = (X, 1);
T(x, 1)—the Piola-Kirchhoff stress in the stress free and damaged configuration,
denoted by A

T(x, t)—the Piola-Kirchhoff stress in the stress free and undamaged configuration,
denoted by ¢, the so-called effective stress.

These stress measures are related by the following relationships

det (F)(F) "' T(F*) ",
(det F)(F))'T(F!) 7", (6.66)

T
T = (detF)(F)'T(F)~"

The Mandel type stress tensors are defined with respect to the configurations /C
and C by

1 .
(F)FT, —X= F)'FT. (6.67)

1 -
— X = s = ——=
d pdetF° pr pdetF( )

o

We omitted the presence of ¢ in the notations concerning the damaged
configurations.

Ax. 3. The behaviour of the material is elastic with respect to stress free and
damaged configuration, in terms of the Piola-Kirchhoff stress tensor, T,

T(X7 t) = pdhf{'(Aea O()v

. 1 . . Tee (6.68)
where  A4°(X,7) :E(C -I), C°=(F)'F
or equivalently in terms of the Cauchy stress tensor
T = pFh (4%, 2)(F)". (6.69)

The strain tensors which appear in the relationships defined herein are defined by

T A~

F=FF, C:=FF C=F)F. (6.70)
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Let us remark that as a consequence of (6.70)
F=FF, C:= () 'C¥)"', where C=F'F. (6.71)

Let us calculate the elastic strain measure which has been introduced in (6.68), via
the relationship (6.70)

A= 3 (R T(C — ()R (R

or C—C?=2(F)"(4°)F".

[\

(6.72)

Ax. 4. The elastic constitutive equation in stress free and undamaged configuration
in terms of the effective stress is expressed in relation to the strain through

T(x,1) = p’h (C — C%,a). (6.73)

Remark The new elastic type constitutive function introduced in (6.73), hy, is
related to the old one given by (6.68), h ., through the relationship

h;, (4°,a) ;= F'h, (C — C,a)(F)", (6.74)

together with (6.72).
In other words, the dependence of the constitutive function on the configuration
A has been postulated in terms of dependence on the damage tensor F¢, which

makes the passage from the stress free and damaged configuration A to the stress
free and undamaged configuration, ¢ .

As a consequence of the stipulated definitions and properties, the elastic type
constitutive equation characterizes Cauchy stress, with respect to the stress free
and undamaged configuration, via (6.66);, as it follows

T = pFh, (C — C¢, a)(F)7, (6.75)

F¢, being involved like an internal variable.
The stress free (or relaxation) restriction is formulated, following our devel-
opment given in Cleja-Tigoiu and Sods (1990), under the form

h,(S,a) =0,for S € Sym ifandonlyif S=0. (6.76)

Here in the considered case, the relaxation restriction takes place if and only if
C := (FY)"F = ¢4, or if and only if C* := (F*)"F =1.
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6.4.2 Equations for Damage and Plasticity

We adopt the point of view formulated by Briinig (2003), Briinig and Ricci (2005),
saying that by combining plasticity and damage it seems to be natural that plasticity
can only affect the undamaged material skeleton.

Following the constitutive framework of finite elasto-plasticity, as it has been
postulated by Cleja-Tigoiu and Séos (1990, 1990), the evolution equation for F”, as
well as for F, which appears to be like an internal variable, will be written with
respect to the stress free configuration. Here we choose the stress free and
undamaged configuration.

(Ev.1). The rate of plastic part of deformation is described in terms of the
Piola-Kirchhoff type stress measure, T,

F(F)" = 1,8.4(T, ), (6.77)
associated with the yield conditions
f(Ta “) S 0 Hy 2 07 :ulf(Tv “) = 0, ,ulf(Ta “) =0. (678)

Let us remark that the rate of damage tensor F¢ can be expressed by L¢ :=

i (F”Z)71 with respect to A and by I with respect to the stress free and undamaged
configuration . Here the two rates of damage tensor F¢ are related through

K = (F)'LYFY, where I9:= (F)"'F". (6.79)

(Ev.2). The evolution equation for damage tensorial variable F, will be written
in terms of the stress measure T and F?,

(F) ' = 1,9 (T,F). (6.80)

We add two hypothesis concerning the evolution of the damage:
(Ev.3). The evolution equation is associated with the damage criterion

g (T,F9) >0. (6.81)

For F/ =1, g, (T,I)>0 together with the elastic type constitutive Eq. (6.73)
characterizes the activation condition for the damage.

Remark In the model the initial value of C at which the damage may initiate
satisfies the condition

g (ho(C —1,0),T) =0, (6.82)
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Remark. In our model we suppose that the damage can occur only if a certain
threshold in the stress space (which also means a certain criterion in (elastic) strain
space due to the possible composition with the constitutive Eq. (6.73)) is reached or
is exceeded.

(Ev. 4). No evolution of the damage is produced if there is no variation of the
plastic part of deformation, which will be formalized by the condition to have the
same plastic multiplier, u; = p, =

6.4.3 Dissipative Nature of the Irreversible Behaviour

We introduce the assumption: The elasto-plastic behaviour of the material with
damaged structure is restricted to satisfy the free energy imbalance in 7, i.e. in
the stress free and undamaged configuration,

—@y+Pin 20, (6.83)

where ¢, is the given free energy density and 2, denotes the internal power
expanded during the elasto-plastic process.

The Clausius-Duhem type inequality is reformulated as free energy imbalance
principle in J¢", and is considered to be written for any virtual (isothermal) pro-
cesses. The thermomechanical restrictions on the constitutive framework are
derived based on the formulated principle of dissipation.

The free energy with respect to the stress free and damaged configuration is
dependent on the elastic strain (elastic right Cauchy- Green tensor), C¢, the damage
tensor, F?, internal variables denoted by a,

0 = @(C,F a, (F7)7)), (6.84)

as well as being dependent on the configuration relative to which the constitutive
representation has done, namely on (F”)"".

In finite elasto-plasticity it is supposed that the free energy density can be
additively represented by the elastic and irreversible part

Py = (PE(C67Fd)+(P(iV>(Fd7(Fp)_17a)7 (685)
with the damage influence on the elastic part of free energy. Motivated by the

principle of the elastic free energy equivalence, see Menzel et al. (2002), the free
energy with respect to the effective configuration is postulated here under the form

GOy = gbe(c - Cd) + ¢(iV) (Fd> (Fp)717 (Z), (686)

In the expression of the elastic part of the free energy function, written in (6.85), the
relative strain measure C — C¢ is introduced by (6.72).
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The internal power is calculated in terms of the fields expressed with respect to
the deformed configuration, namely the Cauchy stress tensor T and gradient of the
velocity vector v, by

(L+LT). (6.87)

N =

1 .
Pt = ;T AL}, with L=Vv=FF) " and{L}’ =

The kinematical relationships are derived from (6.65),
L=Vv=L+FLYF) " +FL'(F)"!, F=FF with

S . (6.88)

L =FF)"' Li=F@F)" wr=mw
Proposition The internal power is expressed in terms of the elastic, plastic and
damage power, represented here by the scalar product of the appropriate rates
with the power conjugate stress measures, respectively,

1 ) -1 | R ~1 T .. -1
~T-L=—X FF)'+ X . F@) "+ FF)". 6.89
; 5 (F%) o (F”) ; (F°) (6.89)
where £ and X are the Mandel type stresses, which are introduced by (6.67).

We prove the above relationships. We pay attention to the first and second terms
written in (6.89).
When we take the scalar product written below we get

1 1 1 . 1.

—T-FLYF) " =—(F)'T(F)" - L = — (F)'FT L' = — X . L

p p p p

(6.90)
and

| SN S B VU 1
~T-FL'(F) ' = (®)" -1(F) " P =F)F—T - =—2 - 1”. (691)
0 p pdetF pr

as a consequence of the defined stress measures by (6.66) and (6.67).
The rate of free energy density written with respect to the stress free and
undamaged configuration can be calculated starting from (6.86)

bs = g0 - (C— Cd) + Ogagp™ 3

A Ciep _ o (6.92)
+ Oy 1™ - (=) F (1)) a0 - &
The time derivatives of the following fields can be derived
FF)™ =L - FLP(F)
(F (F) 695)

C = (F)"F + ()"F = 2F 'DF — (1")"C + L)
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as a consequence of the formulae (6.71) together with (6.88). From (6.70); we get
¢! = 2(F)T{LY)F. (6.94)

Proposition Within the constitutive framework formulated above the following
formulation for the free energy imbalance has been derived

T . . . . _
{5 = 2000 @)} LY + (2P0l (8 — 0 F)T) L 4

+ {Zéaé(p<e> _|_Fp—Ta<Fp)7] QD(W)} ’ I:p - aac(P(M o> 07
(6.95)

A I:,I:p, I:d, and _e

In order to prove the above formula we replace the internal power defined by
(6.87) and the derivative with respect to time of the free energy density calculated in
(6.92) together with (6.93) and (6.94) in the expression of the free energy imbalance
(6.83). Thus

T .
5 (LY 200" - (B) {LYF* +

+2aéq0(6) . {CLP}S +2aé(,0(e) . (Fd)T{Ld}SFd_ (696)
_ 8ng0(iV) . Ld(Fd) +FP_T8(F1;>—I (p(iv) L — 3¢(p(iv) 4>0.

Here we replaced ¥ and ¥’ by L”F? and LYF?, respectively.
If the virtual rate of appropriate fields has been also introduced, the formula
(6.95) follows from (6.96).

Theorem The following thermodynamic restrictions are provided from the free
energy imbalance:

L. The free energy density is potential for the Cauchy stress tensor

T . .
i 200 (F)" or =28c¢°, (6.97)

R

with the notation C = C — C?, if the free energy density is written under
the form (6.86).
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I. The residual dissipation inequality becomes
T . -
{cdﬁ — (Fd)TangM} T+

_ 6.98
A T p—T (iv) r? (iv) ( )
+ CE +F 8<Fp)*1§9 ‘L — 00" - 2>0.

lpd . .
Here 1Y = (F9) ¥ is the rate of damage tensor relative to the stress free and
undamaged configuration.

Proof Let us consider that during the deformation process with arbitrarily given L,

no evolution of irreversible behaviour occurs, i.e. L/ = 0, I:d =0 and a = 0.
Then the elastic type restriction (6.97) on the constitutive function follows from
(6.96). When we replace (6.97) and the rate of damage 1 in (6.95) the dissipation
inequality (6.98) follows.

We introduce the assumption that the viscoplastic type constitutive equations
characterize the irreversible behaviour of the elasto-plastic material coupled with
damage. The expressions of viscoplastic constitutive equations are suggested by the
reduced dissipation inequality (6.98).

AX. 5. The evolution equations for plastic part of deformation and damage are
postulated to be given by

, @ di_ d\T (iv)
dal =C I (F)" Oga ™™,

S | _ v (6.99)
AL = CE +F’ Ta(Fﬂ)"(/’( ),
Ag® = — o((p(iv).

AXx. 6. The evolution Egs. (6.99) are compatible with the reduced dissipative
inequality, namely the constitutive functions 24, 4, and 4, are given to satisfy the
inequality

AL L+ J,LP 1P + 8- 3> 0. (6.100)

6.4.4 Constitutive Models

In this model F¢ is a second order invertible tensor, which characterizes the passage
from the stress free and undamaged configuration, i.e. a fictitious configuration,

which is denoted by # to the stress free and damaged configuration, say 4.
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e The elastic type constitutive equation gives rise either to the Cauchy stress
tensor or to the Piola-Kirchhoff stress tensor (effective stress) by

T = pFh, (C— C% a)(F)", & T = p’hy(C—C ) (6.101)

The elastic type constitutive function can be expressed in terms of the free
energy density, following (6.97), by

h, (C — C% a) = 909 (C — C a). (6.102)

e The evolution equation for the plastic part of deformation, written in (6.77)
together with the (6.99), is characterized by

o T » 1
FP)™" =y (Cp_l’ +FP_T6(FP)1<P(W)), == (6.103)

e The evolution equation for the damage tensor, written in (6.80) together with
(6.99), is characterized by

led T . 1
O e ) e (6.104)

e The evolution equation for hardening variables a is given by (6.99)

. ; 1
b= —i0,0",  py=— (6.105)

a

Finally, we consider the model with isotropic damage, as a particular case of
the previously presented model. The damage tensor is reduced to

F'=«xR? RIcOrth, x=1-d. (6.106)

The multiplicative decomposition of the deformation gradient is reduced to F =
F°FP. The scalar damage variable is viewed as a scalar internal variable, that

variation in time being described by the specific evolution equation. The tensors C¢
and I:“, defined by (6.70)3 and (6.65),, result

C!'=«¥’1 , F=xF(RY). (6.107)

We use the polar decomposition of the elastic part of the deformation gradient,
F* = V*R®, where R® € Orth.
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Proposition There exists a stress free and undamaged configuration associated to

A, which can be characterized in term of F = V¢, where V¢ € Sym, representing
the left hand side, elastic stretch Cauchy-Green tensor.

e The elastic type constitutive equation in terms either of the Cauchy stress tensor
or of the Piola-Kirchoff stress tensor (effective stress) is expressed by the free
energy density, following (6.97)

T = pFdc '@ (1kK3(C° — 1), 2)(F)",  equivalently

_ 5 (6.108)

T = p 99! (*(C 1), )

e The evolution equation for the plastic part of deformation, written in (6.77) is
characterized by

. T ;
) = el (€ 4T 10 ). (6.109)

e The evolution equation for the damage tensor, written in (6.80) is characterized
by

T ,
k= (K’ (Ktr (ﬁ) - zr(aFd(pW). (6.110)
e The evolution equation for hardening variables is given by

& = —p130,0"). (6.111)

6.5 Models with Non-metric Property

We present here some ideas that can be found in the paper by Cleja-Tigoiu and
Tigoiu (2013), that require further development. The behaviour of elasto-plastic
materials with damaged microstructure is described in terms of specific differential
geometry elements which characterize the internal mechanical state, following
Kroner (1992), de Wit (1981). In the proposed elasto-plastic models the defects of
lattice structure, like dislocations and disclinations, can be involved through the
Cartan torsion of the so-called plastic connection, see Cleja-Tigoiu (2007, 2010,
2014).

The point defects, microvoids and microcracks in the damaged zone are modeled
in terms of the non-metric tensor which belongs to the plastic connection, apart
from Cleja-Tigoiu and Tigoiu (2011) where the gradient of the elastic strain
measures the damage. The non-metric property of the plastic connection is
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described in terms of a symmetric second order tensor, h?, which is potential for the
non-metric (extra-matter) tensor Q. The symmetric second order tensor hd, is called
here the damage tensor.

6.5.1 Constitutive Hypotheses

We present here the basic ideas developed within the finite elasto-plasticity with
second order deformations provided by Cleja-Tigoiu (2007, 2010), Cleja-Tigoiu
and Tigoiu (2013).

Let us consider the function y which defines the motion of the body, #. The
deformation gradient associated with the motion is defined by F = Vy and the
expression of the second order gradient of the motion y, pulled back to the reference
configuration is given by (F) 'VF, and is denoted by I', namely I' = (F) 'VF.
Here VF and I' are represented as third order fields in a certain coordinate system.

(p)
Hypotheses The plastic behaviour is characterized in terms of the pair (F’, I'),
whose components are incompatible.

The second order tensor field F” | which is called plastic distortion, or the plastic

()
part of the deformation gradient, and I' is characterized by a third order field in a
curvilinear coordinate system and represents the Christoffel-Riemann coefficient of
a connection, called here plastic connection.

Assumptions The plastic distortion does not satisfy the first integrability condition,

(p)
i.e. the plastic distorstion is incompatible. The plastic connection I' does not satisfy

the second integrability condition, i.e. i.e. the plastic connection is incompatible.

We recall the classical results concerning the theorems (in the smooth case).

(First Integrability Theorem) Let % be a simply connected domain in R* and
F : % — Lin. The following three assertions are equivalent

a. F isagradient, which means the existence of a vector field Z
suchthatF = VZ;

b. (VEx)(u))v— (VF(x)v)u=0, VxeU Yuve

c. (curl F(x))(uxv) =0, V x€&%,Vu,v.

(6.112)

Definition A connection I' is integrable if there exists a tensor field F such that the
partial differential equation (written in a local representation) is satisfied

r=F'VF, VYV xcu, (6.113)
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Definition The fourth order Riemann-curvature tensor %, attached to I', is defined
by

A, v) = (VDu)v — (VI)v)u+ (IMa)(I'v) — (I'v)(Ta). (6.114)

The equation written in definition (6.113) is known as the second integrability
condition. The following theorem states a relationship between the two definitions.

Theorem The second integrability condition takes place if the Riemann-curvature
tensor R belonging to I is vanishing, which means the Frobenius condition holds.

Three type of configurations are used in the models, namely the reference and
the deformed configurations at time ¢, x(-,¢), as well as the so-called damaged
(anholonomic) configuration, generically denoted by ¢, and which is viewed as

the pair (F?, (Ip“))

The model is described within the second order plasticity, based on the multi-
plicative decomposition of the deformation gradient F = Vy (where the function y
describes the motion of the body) into its elastic and plastic components F¢, F’,
called distortions

F = FF, (6.115)

as well as on the rule of the I' = (F)71VF motion connection decomposition into
its elastic and plastic counterparts, which are defined as it follows

@ o)
r=@)"'T,F ¥ +T. (6.116)

For any third order tensor I', and for any second order tensors, F;,F,, the third
order tensor I'[Fy,F;] is defined by

(F[Fl,FQ]ll)V = (F(Flu))ng, (6117)

for all vectors u and v.

In the formula (6.116) giving rise to the decomposition of the second order
deformation, the elastic connection with respect to the damaged configuration has
been introduced, as a direct consequences of the appropriate relationships between
the three order fields, when we pass from the reference configuration to the dam-
aged configuration #" by the plastic distortion F”,

(@ ©
Iy =F T[F) ", (F) ], where

(e) (p)
r=r-r.

(6.118)
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Remark We shortly justify the rationale put down at the composition rule involved
in the above formula, following Cross (1973), Wang (1973). The formula (6.116) is
a relationships between the second order derivatives for a composition rule written
for two applications.

(p)
We assume that the plastic connection I' has non-metric property with respect

to the metric tensor C7 = (F? )TF"’7 apart from the hypothesis adopted by Cleja-
Tigoiu (2007, 2010).
Consequently there exists a third order tensor Q, such that Qu € Sym and

(p) (p)
—(VC)u+ (C"Tw) +C(F'u) = Qu, (6.119)

hold for all vectors u.
The following representation for the plastic connection can be derived, see
Cleja-Tigoiu and Tigoiu (2013),

®) (p)
Ir=o +(C) ' (Ax1+1Q), o =F)"'VP, (6.120)

Here the third order tensor field A is a measure of disclination, being defined in
such a way to have the equality ((4 x Du)v = (Adu) x v.

Sz? defines the so-called Bilby type plastic connection.

Following Kroner (1992) we assume the existence of a second order tensor, hd7
which is a potential for the non-metric (extra-matter) tensor Q, namely Q = Vh.
As a direct property of the above introduced definitions, the plastic metric tensor C?
is corrected by h?, to restore the metric property of the plastic connection, i.e.

(p) (p)
—V(C” +hu+ (C° Tu)’ +C(Fu)=0, ¥ ue?. (6.121)

Remark The plastic distortion F” and the tensorial damage variable h? are in-
compatible, which means that they are not the derivative of certain vector fields, see
de Wit (1981). The second order torsion tensor, .47, related to the third order
Cartan torsion S?,

(SPQ)V = AP(@E x V), ¥ v

_ : (6.122)
NP = (F") " curlF” 4 (C7) " (curlh? + (tr A)T — (4)")
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The following defect fields have been introduced

a« = (F”) 'curl(F?) dislocation density
al = (C") 'curlh?!  damage defect density (6.123)
a' =trAl— (A)"  disclination density,

which characterize the incompatibilities existing in the materials, following for
instance Kroner (1992) and de Wit (1981).

Remark The damage defect density ad = (C' )7lcurlhd is not symmetric and
contains the plastic metric tensor and the damage tensor h?. Thus there is a measure
of damage explicitly dependent on the plastic distortion.

For the shake of simplicity we do not consider here the disclination among the
lattice defect, apart from Cleja-Tigoiu (2010), Cleja-Tigoiu (2014), where the
influence of the lattice defect modeled by A has been emphasized.

In the model the damage variable h? was defined on the reference configuration,
and we introduce the tensorial damage variable H which is pushed forward to the
damaged configuration of h?. We also define the appropriate gradients of the
aforementioned fields, as follows

H = (F) (e,

V. H= (VH)(F) " (6.124)

6.5.2 Dissipation Postulate

The models are dissipative and the constitutive equations for the macro forces as
well as the appropriate evolution laws which involves the micro forces are derived
to be compatible with the free energy imbalance principle, formulated in Gurtin
et al. (2010) and adapted here to involve the internal expanded power during the
irreversible (plastic) process coupled with damage, as in Cleja-Tigoiu (2007), Cleja-
Tigoiu (2010).

Let us denote by ¢, the expression of the free energy function with respect to
the damaged configuration and by (2;,), the density of the internal expended
power.

Ax. 1. The elasto-plastic behavior of the material is restricted to satisfy in damaged
configuration the imbalanced free energy condition

— @ + (Pin) 4, >0 forany virtual (isothermic) processes. (6.125)
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The model is strongly dependent on the postulated expression for the free energy
density, as well as of the postulated form for the virtual internal power in the
damaged configuration.

AXx. 2. The free energy density function in the damaged configuration is postulated

to be dependent on the second order elastic deformation, in terms of C* = (Fe)TFe,
and to be dependent on the damaged configuration, through the part of second order

(p)
plastic deformation ((F?)™", .o 4)
(p)
0 = 0 (C,(F)", ./, H, Ve H), (6.126)

As the tensorial damage variable and its gradient have been introduced among
the independent variables in the expression of the free energy density, the power
conjugated variables with their rates should be introduced in the expression pos-
tulated for the virtual internal power.

Within the constitutive framework developed by Cleja-Tigoiu (2010) and
adapted to the problem which we discuss here and which refers to damage, the free
energy imbalance principle can be reformulated taking into account the expression
of the virtual internal power in A.

1 1 _
(VinZ) ¢ =52 0C + =+ (F)™(VLIF,F]) = VL))

1, - 1 1 1
+ -1 L4 VL' + 7% 6H+ —p’ - V4 0H.
p p p p

(6.127)

(m,p,) are the macroforces in ", namely Piola-Kirchhoff stress tensor and
stress momentum pulled back to the configuration with torsion, ", see Cleja-

Tigoiu (2007). The macroforces in %" are power conjugated to € and to the
gradient of the velocity gradient in the actual configuration, V, L, pulled back to the
configuration 4.

W, u¢ are micro stress momenta (third order tensors) which are conjugated to the
gradients of the rate of plastic distortion L” and of the rate of H, respectively. The

internal virtual power (6.127) is written for any virtual rate of plastic distortion L”,

and any virtual variation of damage tensor, 0H, and for their gradients VL and
V »0H, respectively. Based on the following kinematic relationships

Ce -9 (Fe)T{L}SFe ) {CeLp}S7 as C¢ = (Fp)fTC(Fp)fl7 (6128)

which are written in terms of L and L?, the virtual variation 6 C¢ is derived. To do
that, L and L are replaced by their virtual expression, L and L.
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Assuming that during the elasto-plastic process no evolution of plastic distortion
and damage is produced when an elastic process is considered, the following
statement can be proved.

Proposition A fist consequence follows from the principle of the free energy
imbalance, namely the free energy is potential for the macro force, namely the
Cauchy stress is expressed by

T(x, 1) = 2pFOp p(F)" . (6.129)

Balance Equations for Micro Forces. We mention that the micro forces are
power conjugated to the rate of kinematic variables and of their gradients, in the
plastic and damage mechanism. They satisfy their own micro balance equations in
the damaged configuration, #", which are postulated (see Cleja-Tigoiu (2007),
Cleja-Tigoiu (2010)) to be given by

Y =divy (W —u,)+pBl, Y =divy p'+pBY (6.130)
with the appropriate boundary conditions on 04" (2,t). When we pass to the

reference configuration the micro balance (6.130) can be written in the following
form

P =div (" (§ = ) () T) o+ py B,
Yt =div(P p(F)7) +po By, I = |det Y|,

m?

(6.131)

Here B, and Bffl are the mass density forces associated with the plastic and damage
mechanism.

The balance equation for macro force, i.e. the Cauchy stress tensor, is reduced to
the classical balance equation divT + pb = 0.

6.5.3 Constitutive and Evolution Equations with Respect
to the Reference Configuration

In order to describe the behaviour of the elasto-plastic material with damaged
structure, modeled by the tensorial variable h? and its gradient Vh¢, the form of the
free energy density could be postulated directly with respect to the reference
configuration,

The free energy in 2 can be expressed in a pulled back to the reference
configuration form
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(p)
¢ = o(C,F”, o/ ,h’, Vh') (6.132)

taking into account the appropriate relationships between the fields when we pass
from the damaged configuration 4" to the reference configuration by (F? )_l.

The free energy density is assumed to be dependent on h?, and its gradient,
namely the non-metric (extra-matter) tensor Q.

We develop the kinematic of the process which leads to the evolution equations

which prescribe hd, and

P = (% (F”)_1>F” = —(F")'L’P (6.133)

when the dissipation inequality is also revised.

First we proceed to directly reformulate the imbalanced form of the free energy
principle with respect to the reference configuration, taking into account the fol-
lowing expression of the internal power, namely

1= -l 1 e — e e
('@int).%f =5=-C+ ~ My ((F ) I(V)CL[F 7F ]) - v)i’Lp) +
1 2 1 ! 1 D 1 D (6.134)
+ =Y L+ - VP + -7 —H+—p' -V, —H.
p p p Dt p Dt

Second, we compute the time derivative of the free energy density function

taking into account the derivative formulae for the appropriate fields.

e JH which is involved in the expression of the virtual internal power, (6.127), is
defined to be the rate of h? pushed away to the configuration ", namely

D (g = (F) TR (), (6.135)

Dt

e The gradient with respect to #" applied to the previous rate, i.e. V »dH, leads to

1) — ) )

(6.136)

Vo (B (H) = () 7 {V(h') - (i

where the transpose of the third order tensor field ./ is given by ATu =
(Au)", for any u.

e The rate of the appropriate fields which enter the expression of the internal
power associated to the processes is calculated in terms of I as given by the
formulae
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C =) {C+cr+ @) CrE)!
VALl = R{VP+ YL -V @)Y, (e1am)

d ® ()
(E (;zf)) =-VP+P o —JLF|.

Second, we introduce the new appropriate measures for the forces which enter
the reformulated expression for the principle of the imbalanced free energy when
we passed from the damaged configuration to the reference one, namely

migfl o Ldrepy T g1 W0 _ L g Py (gr)T
po—b(F) P {(F) 0 (F7) Py p(F)ﬂ”[(F) (7))
5 0 1 riF) T 5 = (F) = 1 r(Fr) " (6.138)

Po p Po p

To

1 1
Xy = Cny, = (F")” pn(Fp)_T

Po

where X, and my denote Mandel stress measure and Piola-Kirchhoff stress tensor,
respectively, with respect to the reference configuration.

As a consequence of the formulated dissipated postulate the expression for the
macro forces is derived.

e We introduce micro stress momenta associated with the damage and disloca-
tions by the non-dissipative (energetic) constitutive relations, the so-called en-
ergetic micro forces

2o m) = Jgwe @ 5 = Dy - (6.139)

e The rates of the plastic distorsion and of the quasi-plastic strain, F” and h?, and
the constitutive functions have to be compatible with the dissipation inequality,
and they are postulated as follows

1
p_(zo — 1)+ (F) 0w =&, 1,
0
6.140
1 d (P) s . d ( )
p_(To — O @) — 2{0gp 00 A} = &0
0

where the operator ® associates to the third order tensors .27 and 4 the second
order tensor, denoted .o/©% and defined by
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(A0B) L =AILL] B =oA gLy Bink, (6.141)

for all second order tensor L.

The micro forces are eliminated from the evolution equations for plastic

deformation and damage tensor, h? via their own balance equations. The non-local
evolution equations can be either associated for instance with an appropriate yield
function in terms of effective stress and damage back stress tensor, or described as
the viscoplastic ones.

The rate independent elasto-plastic model with anisotropic damage can be
derived as it follows:

e The scalar constitutive functions &;, &, are defined in such a way to be com-
patible with the dissipation inequality

PP+ &R R >0, (6.142)

Let us introduce internal variables like stress

1. the back stress, denoted by Xj,.«, which is introduced in order to describe the
hardening of the material,

Zpack =X — po(F*) Opr o (6.143)

2. the damage stress variable
J () ¢
b =10 — PO @ — 2pg{Ogne 9@ A }". (6.144)

‘When the micro forces are eliminated via the micro balance Eq. (6.131) together
with the energetic representation for micro stress momenta (6.139) the following
expressions are provided for the back stress and damage stress

1 . )
Lpack = J—deV(PoFI Oy |1, (FP)T])) - PO(FP)TaFP%
4 (6.145)

I .
b= —podhp + - div(poF" denp) L, (F")"].
As a consequence of the micro balance equations together with the energetic
definitions for the micro stress momenta the reduced dissipation inequality referring

to the irreversible behavior coupled with damage can be derived under the form

(20 — Zpaet) - ¥ +b-h'>0. (6.146)
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We introduce the rate-independent model, following the idea proposed by
Grudmundson (2004), which is in the sprit of classical plasticity.

In terms of effective fields we introduce a convex function with respect to its
arguments, say for instance like in classical plasticity, namely

P o= \/|20 — Zpack|* + b, (6.147)

and a yield function

F =¥ —R(), with R() >0, R() >0, RO)=k>0, (6.148)

with R a scalar constitutive function dependent on the scalar hardening variable of
the deformation type, say {, which has to be introduced by a differential type
equation.

The relationships (6.140) will be viewed as evolution equations to describe the
rates of plastic distortion, through I, and for the scalar dislocation density % o,
namely

b 220~ Zhack o

| )713(() H(F),

LSRR (6.149)
dth._xR(C)Jf(f),

L=l (F),

A has the role of plastic multiplier and satisfies Kuhn-Tucker and consistency
condition.

6.5.4 Model Proposed by Aslan et al. (2011)

We make references to the class of anisotropic elasto-viscoplastic micromorphic

media which was provided by Aslan et al. (2011), within the constitutive frame-

work of finite deformation, based on the multiplicative decomposition. The degrees

of freedom of the proposed model are the displacement vector u and the micro

deformation variable ¥, which is generally a non-symmetric second order tensor.
The relative deformation tensor, denoted by e, is defined by

¢ = () 'y —1, (6.150)
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and measures the departure of the micro deformation from the plastic distortion as
e’ =0, ifandonlyif }’ =F". (6.151)

We remark that e” is a second order tensor defined on the reference configuration
and j” is defined on the reference configuration with the value in the intermediate
configuration.

The gradient of the set of degrees of freedom

(F,K), F=I+Vu, K=Curly. (6.152)

The state variables are introduced by the set the following fields
1
(Ee = 5((F€)TF6 —-1),¢" K, a>. (6.153)

The free energy density function ¢ is assumed to be dependent on the state
variables

o =oE e Ka). (6.154)
The internal power density is introduced by the following expression
p) =6-L+s-y+M-Curl 7, (6.155)

where (o, s, M) denote stress-like fields which are power conjugated to the velocity
gradient, rate of microdeformation, }%p and its curl. The consequences that can be
derived from the dissipation principle defined by p'¥) — pp > 0 were investigated by
Aslan et al. (2011).

The balance equation for the Cauchy stress, &, div ¢ =0, as well as the
appropriate balance equation for micro stresses, Curl M +s = 0, have been intro-
duced to be satisfied by the pair of forces (s, M), which are power conjugated to ;7
and Curl ;%, respectively.

Conclusions. Certain similarities can be established between the model (Aslan
et al. 2011) and the models with non-metric property.

()
(F,K) and (FP, I') describe the second order effect;

. e and h? are anisotropic second order damage tensors;

. The appropriate balance equations have been formulated for micro forces;

. The specific dissipation inequalities characterize the dissipative nature of plastic
deformation and damage.

fao o
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The physical motivation and mathematical description of the damage are com-
pletely different. € measures the discrepancy between the micro deformation and
the plastic distortions, while h? characterizes the lost of the metricity of the geo-
metrical structure, as a consequence of the existence of microvoids and microc-
racks. No evolution equation has been introduced in Aslan et al. (2011) for the
micro deformation or for the relative deformation tensor. In the model with
non-metric property the evolution equation for the tensorial damage variable is
coupled with the evolution equation for plastic distortion.

6.6 Conclusion

In the models proposed in this chapter, the key point is the presence of the tensorial
variables which describe the anisotropic damage connected to the large plastic
deformation. The physical nature and the mathematical description of the damage
variables are related to the presence of the microcracks and microvoids, developed
at the microstructural level. We pay attention to the configurations on which the
tensor fields are defined to avoid the confusions which appear when this mention is
missing.

The model presented in Sect. 6.4 is based on the fictitious undamaged and stress
free configuration and on the existence of the second order tensor, F¥ which realizes
the passage from this configuration to the damaged and stress free configuration.
Only one type of undamaged configuration has been necessary to develop the
proposed model, like in Ekh et al. (2004). Contrary to Menzel et al. (Ekh et al.
2004) the damage anisotropic tensor F¢ is involved in the gradient deformation
multiplicative decomposition, and the plastic distortion F” describes the passage
from the reference configuration to the undamaged and stress free configuration.
The damage tensor field F¢ is not symmetric, as it is considered by Briinig (2003),
Murakami (1988). The composed tensor F'F” characterizes damage and plastic
coupled effect, when the passage from the reference configuration to the damaged
stress free configuration occurs.

In the model proposed in Sect. 6.5 we defined the damage tensor to be the
second order symmetric tensor field h?, which characterizes a measure of non-
metric property for the geometry of elasto-plastic material with damaged structure.
The rationale of our choice is motivated by the fact that the local metric property of
the material with crystalline structure is lost in the material with damaged
microstructure. The symmetric tensor field h?, which is not a metric tensor, restores
the metricity of the so-called plastic connection, with respect to the reference
configuration. In the two models the evolution equations for the plastic distortion
and tensorial damage variable are derived to be compatible with the appropriate
dissipation principle, the classical one for the first model and the free energy
imbalance principle for the second one.
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