
Chapter 3
Multiscale Modelling of Mechanical
Anisotropy

Jerzy Gawad, Albert van Bael and Paul van Houtte

3.1 Introduction

Let us first recall one of the most fundamental observations in the material science
and engineering: the overall chemical composition of a material does not fully
determine the properties of the material. The internal structure of the material,
which can be observed on the microscopic scale, influences its macroscopic
properties as well. The term ‘microstructure’ is commonly used when referring to
that structure, yet the meaning of the term remains somewhat ambiguous. In the first
place, the definitions of the microstructure vary from one research field to another.
The differences in what is understood by the term reach down to the list of features
that are considered as belonging to the microstructure. Even the length scale
associated with the microstructure is not unambiguously defined, although the name
itself suggests that order of micrometers would be the proper scale.
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This chapter does not attempt to define the microstructure as such. We will rather
follow the notion of microstructure-property relationships. From this point of view,
the microstructure includes all features of the material needed to explain a certain
property of interest. By the same token, the microstructure contains all information
needed to derive or compute that property. This notion of deriving properties by
means of microstructure simulations is nowadays well accepted, see for example
the textbook by Ghosh and Dimiduk (2011).

The mechanical behaviour of polycrystalline metals and alloys is controlled by
several factors generally attributed to the microstructure of the material. To enu-
merate just a few most recognized in the literature:

• phase composition,
• crystal structure of the phases, which also determines the deformation mecha-

nisms of each phase,
• grain size and shape,
• preferential orientation of the crystals, usually referred to as crystallographic

texture,
• substructure, which is typically a self-organized dislocations pattern,
• interfaces of the phases and grain boundaries,
• presence of non-metalic or intermetalic phases,
• presence of voids and other imperfections at the grain boundaries,
• presence of micro-cracks and other intra-grain discontinuities.

This short enumeration can already give us an impression what order of com-
plexity one has to deal with to derive the properties from the microstructure. Most
of these factors cannot be considered in isolation, which makes the matters yet more
convoluted. Another source of difficulty intrinsically lies in hierarchical nature of
polycrystalline materials: larger structures have a substructure (Fig. 3.1). A length
scale suitable to tackle phenomena occurring in the structure is rarely convenient to
concurrently analyse the substructure. Even if we limit our interest to plasticity, it
remains a highly coupled phenomenon which involves at least large part of the
factors listed above. Certain factors have a direct consequence on the plastic

Fig. 3.1 Hierarchy of length scales in metallic materials: from macroscopic, via multiple
differently oriented crystals, via patterns of dislocations (substructure), via dislocation cores, to
atomistic level. Different modelling and simulation methods are used at each length scale
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deformability of the material. For instance, the crystal lattice largely determines the
available deformation mechanisms. Some types of crystals may primarily deform
by crystallographic slip, other tend to accommodate the deformation also by acti-
vating twinning mechanisms. It is also possible that a crystal subjected to an
external mechanical loading may also undergo a phase transformation. Yet the
crystal structure alone does not give us a complete picture. The activation of the
crystallographic deformation mechanisms largely depends on the direction of
loading, which means the crystals are mechanically anisotropic. As we can see,
there is a link between microstructure and micro-scale properties. If an aggregate
comprising a finite number of individual crystals is deformed, its mechanical ani-
sotropy depends on the orientation of the constituents. Therefore, the crystallo-
graphic texture, which is a microstructural feature, influences the mechanical
anisotropy of polycrystalline. This brings us to the clue that a link between the
microstructure and effective properties observed in a lager scale can be also derived.
In other words, a microstructure can be exploited to characterize a homogeneous
continuous medium (Miehe et al. 1999). Note that the effective properties are
usually associated with a constitutive description of the material in continuum
mechanics, and as such are very much applicable in numerous engineering prob-
lems, including simulation of metal forming.

It is extremely complex to directly include some of microstructural features in
continuum mechanics constitutive modelling. For instance, reorientation of indi-
vidual crystals due to deformation is hard to describe in that manner. Thus, another
theoretical framework is needed to derive homogenized properties from the
microstructure. It is useful to introduce two different phenomenological scales:

• micro-scale that is characterized by a statistically representative volume of
material that comprises microstructural constituents. An assembly of
microstructural features enumerated above can be conveniently modelled in this
scale.

• macro-scale that considers the material as a continuous medium.

The two scales can be more generally named as fine-scale and coarse-scale,
respectively, but the terms micro-scale and macro-scale put more emphasis on the
relation with the microstructure. For this reason we will only occasionally use the
generic names in this chapter. A two-level hierarchy, nevertheless, constitutes one
of fundamental building blocks of a more general multi-scale approach.

It is important to note that state variables used in the micro- and macro-scale are
typically different, but some of the variables have counterparts in both scales, as
presented in Fig. 3.2. This framework is commonly known as Representative
Volume Element (RVE), sometimes also referred to as Representative Elementary
Volume. The RVE concept is one of the foundations of homogenization theories.

In essence, the RVE is considered as a sub-volume of the whole bulk of material.
The RVE allows one to estimate statistically representative coarse-scale responses
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or properties of a heterogeneous volume where fine-scale evolution laws hold.
A prerequisite needed for this coupling is that a sufficient scale separation must be
satisfied (Ostoja-Starzewski 2005, 2006). In other words, an RVE has to be large
enough compared to the characteristic length scale of its constituents and processes
altering the constituents. Since the RVE is supposed to generate a description that
represents the whole material, it must include a sufficient sampling of the variety of
microstructural features that exist in the material. This implies that the minimal size
of an RVE must be set in such a way that any smaller sub-volume would be
insufficient to statistically represent the variation of its constituents. An RVE needs
also to satisfy the requirement that further increase of its size does not significantly
change the resulting homogenized response or properties (McDowell 2010). As a
corollary, a properly constructed RVE shall approximately provide the same
response and properties as any other proper RVE.

A natural question arises what is the proper size of the RVE if random poly-
crystals are modelled. A closely related question is how many grains are necessary
to homogenize the response of polycrystalline aggregates. It is essential to realize
that the necessary size of an RVE depends on the type of responses and effective
properties accounted for. These may present considerably different sensitivity to the
microstructural composition of the RVE. The factors that play a role in this context
typically include spatial distribution of microstructural constituents inside the RVE,
grain size distribution, as well as phase contrast with respect to certain properties.
Furthermore, the required RVE size is also influenced. For instance, the elastic
properties (the elastic moduli) or responses (such as stiffness) in non-evolving
stationary microstructures are less sensitive to local configurations of the con-
stituents than plastic properties in evolving microstructures (McDowell 2010).
Therefore, for the same microstructure, the RVE size differs depending on what
effective properties are considered (Kanit et al. 2003).

Fig. 3.2 Continuum with micro-structure modelled as RVE. A typical point in the macro-scale is
characterized by a representative assembly of microstructural elements. The relations between
variables in the coupled scales may vary. For instance, state variables r; � in the macroscale are
defines as volume averages of s; c in the micro-scale, respectively, the variable X is a direct
counterpart of micro-scale variable x, whereas the variable q is relevant only in the micro-scale
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3.2 Multiscale Frameworks in Crystal Plasticity

As we have discussed in the previous section, the plastic anisotropy, as well as many
other properties of polycrystalline metals, is controlled by the microstructure. Several
microstructural factors are involved, yet crystallographic texture is often the most
prevailing feature in this respect. Given its importance, the literature contains a broad
variety of reported attempts to take the texture into account in numerical simulations of
metal forming processes. Broadly speaking, the microstructure can be explicitly dealt
with if a physics-based model is employed to resolve deformation mechanisms in
individual crystals. This can be done along with homogenizing the response over a
polycrystal. Several crystal plasticity (CP) frameworks exist that allow one not only to
derive macroscopic mechanical response of polycrystalline materials, but that also
provide insights on how themicroscopic state evolves with an increasing deformation.
The crystal plasticity frameworks are typically used in one of the following contexts:

• We can use a crystal plasticity framework at the micro-scale, where the
microstructure of a small volume of material is represented in a much detailed
manner. If the microstructure is explicitly modelled and discretized (either in 2D
or 3D), the resolution of the discretization is sufficiently fine to study intra- and
inter-granular effects. The RVE method is typically used in this case to obtain
effective properties or responses of the microstructure.

• We can also directly use a crystal plasticity framework inside a macroscopic
simulation. Although various microstructural features (such as texture evolution,
plastic slip, phase transformation etc.) can be tracked, the spatial resolution is
usually coarser than in the previous case and typically enables tackling whole
grains. Properties of the material or the constitutive relations needed by the
macroscopic simulation are directly extracted from the crystal plasticity
framework. The direct coupling may follow the RVE approach, but direct
embedding is also possible.

• We can combine the two ways and indirectly employ a crystal plasticity
framework inside a macroscopic simulation. The microstructure evolution is
dealt with by a crystal plasticity RVE, while some other means are used to get
the properties or responses needed in the calculations of the macroscopic model.
For instance, an approximation function can be fitted to the responses of interest
calculated by the RVE. The approximation can be either calculated before the
macroscopic simulation starts (i.e. as a part of pre-processing), or during the
simulation. The latter case can also include adjusting the approximation to the
evolved microstructural state as the macroscopic simulation advances.

The two first approaches are somewhat complementary, but their focus is different.
Whereas the former usually attempts to elucidate why and how certain fine-scale
interactions develop and how they impact the coarse-scale, the latter usually tries to
answer only the second question. Conversely, the third approach is based on a dif-
ferent paradigm: given a sufficiently predictive CP framework, a computationally
efficient coupling has to be established to answer both questions at once.
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Several crystal plasticity frameworks have been proposed over the last decades
to answer these challenges. In this chapter we shall restrict the discussion to those
that explicitly deal with microstructure to recover the properties of interest. We will
put particular emphasis on several existing strategies to incorporate the texture data
into macroscopic Finite Element simulations.

At this point we only remind the reader that another approach to handle plastic
anisotropy exists: phenomenological models that neglect the microstructural evo-
lution and restrict their scope to the macroscopic mechanical response of the
material. Chapter 1 provides an extensive overview of models belonging to this
category.

3.2.1 Statistical Crystal Plasticity

The RVE concept can be used even if the microstructure is not fully resolved in 3D,
but in a statistical manner as a set of crystals. This approach is often called sta-
tistical or mean-field crystal plasticity.

3.2.1.1 Sachs-Type Models

The iso-stress model (also called “static model”), which is commonly attributed to
Sachs (1928),1 assumes that the stress mode is the same in all crystals of a poly-
crystalline aggregate. It is then possible to apply the Generalized Schmid law (see
Chap. 2 and Gottstein (2004) for comprehensive explanation of the Schmid law) to
each of the crystals. It would then be found, at gradually increasing stress level, that
at first there would be no plastic deformation anywhere, until a stress level is
reached for which plastic deformation would start in the grain or grains with the
most favorable lattice orientation. Since all the grains experience the same state of
stress, the plastic deformation that results from it can vary from one grain to
another, thus the compatibility conditions in the aggregate are violated. The
iso-stress assumption is nowadays considered as an oversimplification, so this
group of models is rarely used.

1In fact, the work by Sachs (1928) does not assume a uniform stress field in the polycrystal, but it
considers a uniaxial tensile test on a polycrystalline material, where the Schmid law (for a uniaxial
tensile test!) is applied to find the first activated slip system in all grains, treated as stand-alone
single crystals in which one slip system is activated. Sachs proposed a model that assumes the
average of all local flow stresses to be the macroscopic flow stress (also tensile, of course).
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3.2.1.2 Taylor-Type Models

The Full Constraints (FC) Taylor-Bishop-Hill homogenization scheme, which was
originally proposed by Taylor (1938) and later taken up again by Bishop and Hill
(1951a), who proposed a different but equivalent solution method, assumes iden-
tical plastic deformation throughout all the grains in the considered volume of the
material. The constitutive equations are thus formulated for a single grain that is
considered in isolation. Although the compatibility conditions are automatically
satisfied since the entire aggregate experiences the same state of deformation, yet
the stress equilibrium condition is neglected. These authors proposed two different
solution methods, which are both based on the Generalized Schmid Law as the
constitutive model for a metallic crystal. An approximate but mathematically
convenient alternative is the visco-plastic method by Asaro and Needleman (1985).

It is well recognized that the Full Constraints approach overestimates both
texture intensity and the homogenized stresses. To answer these limitations, several
improvements have been proposed, among which the Relaxed Constraint Taylor
(RCT) (Raphanel and Van Houtte 1985; Van Houtte 1982, 1987, 1988). The
relaxed constraints models drop Taylor’s strict requirement of strain homogeneity
and allow certain violations in compatibility conditions. In other words, relaxations
are imposed on certain components of the velocity gradient tensor. Although the
RCT scheme led to moderate improvements in predictability, the concept itself
turned out to be quite influential.

3.2.1.3 Grain Interaction Models

The relaxations are the core part of so-called ‘cluster’ models (also known as ‘grain
interaction models’), which define more elaborated homogenization schemes. The
homogenization deals with small clusters of grains in place of single crystals. It is
assumed that the average plastic velocity gradient of the cluster is equal to the
macroscopic velocity gradient. Therefore, the ‘cluster’ models abandon the
assumption that each grain is treated separately and introduce interactions between
crystals in the aggregate.

The Advanced LAMEL (ALAMEL) model was proposed by Van Houtte et al.
(2005) as a generalization of the LAMEL (Liu et al. 2002; Van Houtte et al. 1999).
The ALAMEL model considers interactions in clusters of two grains, separated by
an interface, which represents a grain boundary. The interface can be arbitrarily
oriented according to a certain distribution function. In the ALAMEL scheme local
strains deviate from the macroscopic strain according to admissible relaxation
modes, and the extent of the relaxation is calculated by minimizing the collective
plastic work inside the cluster. Several improvements to the ALAMEL model
scheme have been recently proposed, for example by Arul Kumar et al. (2011),
Mahesh (2010), Mánik and Holmedal (2013), Zhang et al. (2014). The multisite
approach (Delannay 2002; Delannay et al. 2002, 2009; Van Houtte et al. 2002),
which extends the ALAMEL, postulates that each grain interacts exclusively with
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one or several of the surrounding grains. Furthermore, it adds elastic part to the
governing equations.

A similar model was proposed by Evers et al. (2002), who used the RTC
homogenization to calculate deformation of bi-crystal volume elements, each
having the crystallographic lattice orientations of two adjacent crystals.

The Grain InterAction (GIA) model, which also puts forward the concept of
grain clusters, was proposed by Crumbach et al. (2001) and further elaborated by
Engler et al. (2005). The GIA model takes into account short-range interactions
between next-neighbour grains in an aggregate consisting of eight hexahedral
grains. The structure of GIA was further developed as the Relaxed Grain Cluster
(RGC) model by Eisenlohr et al. (2009a, b), Tjahjanto et al. (2010, 2015). It was
recently extended to deal with multi-phase materials (Tjahjanto et al. 2015).

3.2.1.4 Self-consistent Schemes

The Visco-Plastic Self-Consistent (VPSC) (Lebensohn and Tomé 1993; Lebensohn
et al. 2007; Molinari et al. 1987, 1997) model was originally inspired by Eshelby’s
(1957) analytical solution of elasticity problem for an ellipsoidal inclusion
embedded in an effective medium. In the VPSC the effective medium comprises all
the grains in the representative volume and it is considered homogeneous. The
individual crystals are treated as plastically deformable ellipsoidal inclusions con-
strained by the medium, so short-range interactions are basically neglected.
However, the model resolves long-range interactions the in the polycrystalline,
which originate in the contributions from all the crystals and are carried by the
medium. The VPSC model imposes both strain compatibility and stress continuity
between grains and their surrounding, as opposed to the Taylor-type models that
postulate homogeneous strain in the sample (possibly with relaxations). The VPSC
model has gained numerous applications, most remarkably to successfully simulate
the deformation of hcp materials, e.g. Beausir et al. (2008), Ebeling et al. (2009),
Plunkett et al. (2006), Steglich et al. (2012), Tomé (2001), Walde and Riedel
(2007a), Wang et al. (2010) and extensions, see e.g. Knezevic et al. (2013a).

3.2.2 Full-Field Approaches

Here, “full-field” denotes a category of models that make use of a discrete grid to
compute certain fields variables (e.g. stress or strain) in the microstructure. The
models that belong to this category resolve both long-range and short range
interactions. In particular, if a sub-grain resolution of the grid is used, hetero-
geneities of these fields inside individual crystals can also be considered. Therefore,
the full-field approaches apply crystal plasticity theories to predict the actual
micromechanical fields that develop inside the grains of a polycrystal.
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Consequently, various localized phenomena, such as orientation gradients inside
individual grains, can be calculated as well.

The models belonging to this group are usually much more computationally
demanding than the statistical models presented in the previous section, although
the increase in computing performance over the last decade has allowed conducting
statistically meaningful simulations.

As a general remark, the ability to include intra-granular state variables, in
particular strain and stress fields, is supposed to enhance the accuracy of
microstructure evolution predictions. However, as it was shown in recent studies
(see e.g. Héripré et al. 2007; Pokharel et al. 2014; St-Pierre et al. 2008), comparison
with intra-granular strain measurements often shows only qualitative agreement
suffering clear local discrepancies between modelling and experimental results
(Pinna et al. 2015). This can be attributed to various factors, including simplifi-
cations in reproducing the initial microstructure, since simulations of more con-
trollable oligocrystals typically deliver better agreement with experiments (Delaire
et al. 2000; Klusemann et al. 2012, 2013; Lim et al. 2011, 2014; Raabe et al. 2001;
Turner et al. 2013; Zhang et al. 2015a). It has also been shown that the full field
models do not necessarily provide considerably better predictions than the statistical
ones, neither with respect to texture evolution (see e.g. Li et al. 2004) nor
macroscopic anisotropy (see e.g. Zhang et al. 2015b).

3.2.2.1 Crystal Plasticity Finite Element Method

A large body of work exists on incorporating crystal plasticity frameworks as
constitutive relation in the Finite Element method. An excellent review of these
attempts has been published by Roters et al. (2010a, b). The reader is referred to
these works for a comprehensive overview of the constitutive laws, kinematics,
homogenization and multiscale methods in the CP-FEM modeling.

Generally, CP-FEM resolves the equilibrium of the forces and the compatibility
of the displacements based on a weak form of the principle of virtual work. This is
in essence what the Finite Element method does. What differentiates the CP-FEM is
the incorporation of a certain crystal plasticity constitutive law to provide the
constitutive behavior of the material. This law typically include calculating the slip
and twinning activity and the resulting material flow. Constitutive models extending
the works of Asaro (1983a, b), Asaro and Rice (1977), Peirce et al. (1982, 1983) are
very commonly used and include visco-plastic, elasto-viscoplastic and
elastic-plastic constitutive behaviour. Plastic deformation of the material and evo-
lution of texture results from activation of deformation mechanisms, such as slip
and twinning. The CP-FEM models are formulated as either rate-dependent or
rate-insensitive with respect to the material response. The hardening at the level of
crystallographic slip and twinning is taken into account as well. A power law is
often chosen to relate the applied resolved shear stress on the slip or twinning
system to the shear rate in the slip or twinning direction. Large inelastic defor-
mation can be reached in CP-FEM. However, we have to keep in mind that
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accuracy of the FE method may be undermined if large distortions of elements are
experienced. This issue can be addressed by advanced mesh refinement methods,
see e.g. Quey et al. (2011), Resk et al. (2009).

In CP-FEM the FE mesh represents an aggregate of grains, each having a
specific set of attributes, such as shape, orientation, phase, etc. The method offers
several advantages over statistical approaches. Most remarkably:

• If several finite elements constitute a grain, the gradients of stress and strain
inside individual crystal can be taken into account. This holds even if low order
elements (e.g. linear) are used to discretize the domain.

• Gradients of other fields inside the grains can be captured as well. For instance,
crystal orientation gradient may be accounted for, which is crucial in modelling
intra-granular localization processes.

• Complicated geometry of individual crystals can be explicitly dealt with in the
model.

• Since the grains are spatially bound by each other, explicit grain boundaries are
introduced in the model. This also allows to take into consideration grain
boundary properties.

• Boundary conditions can be imposed on the RVE in a flexible manner.

Despite of all these advantages, the CP-FEM is rarely considered as a feasible
approach in modelling component-scale sheet forming processes. Since the number
of elements in the RVE grows with the number of grains considered, simulation of
the deformation becomes extremely computationally expensive for the solution of
complex problems at the macroscopic level. For example, let us consider a realistic
size of a cubic three dimensional RVE being 500 nodes at each edge, which
transforms into N ¼ 5003 elements. For the sake of simplicity, suppose that the
number of DOF required in an FEM calculation is roughly of the same order as the
total number of elements. To solve the displacement field at each given deformation
increment, one has to invert a matrix of the size of order N2. This gives us sufficient
estimate of the huge computational cost of the CP-FEM.

3.2.2.2 Crystal Plasticity FFT

Recently, considerable attention has been attracted by the Crystal Plasticity Fast
Fourier Transform (CP-FFT) method (Eisenlohr et al. 2013; Lebensohn 2001;
Lebensohn et al. 2004, 2011, 2012; Liu et al. 2010; Prakash and Lebensohn 2009;
Roters et al. 2012; Shanthraj et al. 2015), which promises substantial improvement
over the CP-FEM in terms of calculation time, while keeping high spatial resolution
in order to capture the details of complex microstructures. As opposed to the
CP-FEM, the CP-FFT is meshless, so it uses voxels to discretize 3D domain.

The CP-FFT-based formulation consists in finding a strain-rate field, associated
with a kinematically admissible velocity field, that minimizes the average of local
work-rate, under the compatibility and equilibrium constraints (Lebensohn et al.
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2008). The method is based on the fact that the local mechanical response of a
heterogeneous medium can be calculated as a convolution integral between Green
functions associated with appropriate fields of a linear reference homogeneous
medium and the actual heterogeneity field. This approach is suitable for finding the
solution of a unit cell problem with periodic boundary conditions. If a periodic
medium is considered, one can use the Fourier transform to reduce convolution
integrals in real space to simple products in Fourier space. Thus, the Fast Fourier
Transform algorithm can be utilized to transform the heterogeneity field into
Fourier space. Afterwards, the mechanical fields can be calculated by applying the
transformation back to real space.

The CP-FFT has several advantages over the CP-FEM. It basically eliminates
the major computational bottlenecks of the CP-FEM, namely the need for inverting
large matrices. In addition, no advanced meshing is needed to discretize the domain
since the method is meshless and requires just a simple regular grid of voxels. This
also eliminates several related issues, such as degeneration of finite elements on
excessive localized deformation. On the disadvantage side, the grid in Fourier space
is assumed to be regular, which is less flexible in discretizing complex geometries
than a free FE mesh. To date, the CP-FFT solvers can only make use of uniform
grid, which might be too coarse to properly approximate stress and strain fields near
grain boundaries. To keep the grid regular, simplifications to the kinematic equa-
tions have to be made (Liu et al. 2010; Prakash and Lebensohn 2009). Moreover,
the fundamental requirement of periodic boundary conditions renders the CP-FFT
somewhat less flexible than the CP-FEM. The CP-FEM also permits local mesh
refinements to capture localization of strain and abrupt discontinuities of material
properties.

3.3 Multi-scale Modelling of Plastic Anisotropy

All crystal plasticity frameworks presented in the previous section are inherently
multi-scale: they are designed to predict coarse-scale effects offine-scale interactions
in the microstructure upon imposed coarse-scale boundary conditions. Nonetheless,
the macroscopic boundary conditions that are inflicted on a simulated microstructure
are relatively simple, either with respect to the geometry (e.g. displacements
imposed on a face of a unit cube), or with regard to fundamental assumptions on
geometry (e.g. periodicity of the system, thus a unit cube with periodic boundary
conditions is assumed), or other basic assumptions in the model (e.g. identical strain
everywhere in the material). Even if completely arbitrary boundary conditions can be
prescribed, it is not always obvious how to choose the ones that would be most
relevant in a given sheet forming process. Typical idealizations, such as plane strain
deformation, pure shear, uniaxial tension/compression etc. are often just very rough
approximations of the actual conditions, which are nearly always affected by the
geometry of the process (including for instance shape of the sheet and the dies) as
well as contact conditions and other sources of non-linearities.
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For this reason it is usually not straightforward to use any of these models in
simulations of sheet forming processes. The CP model can be still used as a
component of a macroscopic analysis if it is provided with realistic boundary
conditions. To this end, a proper coupling or embedding scheme must be estab-
lished. In particular, the Finite Element Method, which is nowadays an indis-
pensable engineering tool, has been successfully used as a macroscopic host
framework for various CP models. In this section we shall present an overview of
the most prominent coupling techniques.

3.3.1 Direct Micro-Macro Coupling

If a micro-scale full field model is available as an RVE, one may use it as a
constitutive model in a macroscopic FE simulation. In fact, direct coupling typically
discards the notion of deriving properties from RVE, since the micro-model
replaces the entire constitutive law, and not just the parameters in a constitutive
equation. Thus, it is the homogenized RVE response that becomes then an integral
part of the macroscopic model.

3.3.1.1 Embedded Full-Field Models

Provided that an FEM RVE is coupled with a macroscopic FE model, this com-
putational framework is called multi-level FEM (ML-FEM) (Smit et al. 1998) or
FE2 (Feyel 1999, 2000; Feyel and Chaboche 2003). Within this general framework
one conducts an embedded micro-scale RVE FE computation in order to extract
from the RVE the quantities required at integration points of the macroscale finite
element mesh.

In the simplest variant, the coupling is rather straightforward. The multi-level FE
computes the displacement fields on both macroscopic and microscopic level (Smit
et al. 1998). The micro-scale FE RVE provides the homogenized stiffness matrix,
which is returned to the corresponding integration point in the macroscopic mesh as
the local macroscopic tangential stiffness matrix.

Such embedding scheme has a clear advantage: no analytical constitutive equation
needs to be specified at the macroscopic scale, since the constitutive behaviour comes
directly from the microscale. For certain types of materials, such as multi-phase steels,
constitutive equations that account for the presence of multiple phases are very dif-
ficult to specify. The use of ML-FEM bypasses this problem because all the com-
plexity of a multi-phase material is handled by the micro-scale FE simulation.

Admittedly, the FE2 is excessively costly if used to simulate macroscopic sys-
tems discretized with dense FE meshes. For this reason, practical applications of the
method are pretty much limited, although extensive fundamental research has been
conducted on this topic, see e.g. Coenen et al. (2012a, b), Feyel (1999, 2003), Feyel
and Chaboche (2000), Geers et al. (2010), Kouznetsova et al. (2004a, b),
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Kouznetsova and Geers (2008), Larsson and Runesson (2011), Miehe (1996),
Miehe et al. (1999), Reis and Andrade Pires (2013), Temizer and Wriggers (2008,
2011), Werwer and Cornec (2000).

3.3.1.2 Embedded Mean-Field Models

The macroscopic continuum-mechanics model model can use mean-field homog-
enization theories, in which the effective behavior of a polycrystal is used to derive
its response, but the microstructure is represented in a statistical way. To this end,
an aggregate of grains underlies every material point in the macro-scale model.
Local macroscopic deformation is imposed on the aggregate, which causes changes
in the orientation of the aggregate components. At the same time the averaged
response of the aggregate defines the macroscopic behavior of the corresponding
material point, thus deformation induced changes in plastic anisotropy is incorpo-
rated in the macroscopic finite element model. It has to be noted that we speak here
of direct embedding, in which the crystal plasticity model is called during each
increment of the macroscopic model and provides constitutive response.

Several embedded polycrystalline plasticity models were devised to describe the
metal anisotropy in this way. The Taylor-type model (Asaro and Needleman 1985)
was incorporated in works of Mathur and Dawson (1989, 1990) to simulate the
evolution of crystallographic texture in Finite Element analysis of steady state
forming simulations. The fully-implicit scheme based on the same Taylor-type
model was later proposed in Kalidindi et al. (1992). Despite the relative simplicity
of the Taylor assumption, this approach has proved to be quite predictive, as shown
in by Jung et al. (2013), Kalidindi and Schoenfeld (2000), Schoenfeld (1998), to
mention just a few examples. Yet from purely computational perspective, the
models turned out to be costly, in particular if 3D macro-scale systems were
simulated, which prompted research on accelerating the coupling. Massive parallel
computing (e.g. Beaudoin et al. 1993; Mellbin et al. 2014) on one hand, and
exploiting certain assumptions of the Taylor formulation2 (see e.g. Zecevic et al.
2015a, b) on the other hand have served that purpose.

The mesoscopic viscoplastic self-consistent schemes have been successfully
embedded into explicit time integration Finite Element codes. In particular, this
coupling was tested on strongly anisotropic aggregates, such as hcp alloys in which
plasticity at single-crystal level can be accommodated not only by slip but also by
mechanical twinning (Tomé 2001; Walde and Riedel 2007a, b). This group of
materials is particularly interesting, since such alloys typically develop pronounced
crystallographic texture and rapidly evolve in terms of plastic anisotropy. The
challenges to be addressed include rapid textural changes originating from twin-
ning, and associated strong directional hardening/softening, as well as the highly
anisotropic slip-twin interaction (Segurado et al. 2012). It is then argued that the

2See also Sect. 3.3.2.
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fine-scale model has to be frequently queried for the homogenized response in order
to accurately follow the microstructural changes.

Recently, several strategies of fully embedding the VPSC mean-field model also
in the macroscopic implicit Finite Element analysis model have been proposed
(Galán et al. 2014; Knezevic et al. 2013b, c; Segurado et al. 2012). Each integration
point of the FE model is considered as a polycrystal that provides the stress and
tangent stiffness matrix. The grain orientations approximate the initial texture,
which may subsequently evolve with deformation. The strategies attempt to
accelerate the calculations by extracting and reusing quantities that are computed as
part of the nonlinear self-consistent homogenization scheme. For instance, the FE
Jacobian matrix is expressed as a function of the viscoplastic tangent moduli, the
elastic stiffness of the aggregate, and the FE time increment (Segurado et al. 2012).

Advanced coupling strategies have been developed to preserve fine-scale vari-
ables upon mesh adaptation in the FE macroscopic model, e.g. Prakash et al.
(2015).

3.3.1.3 Embedded Reduced Texture Models

Yet the number of the crystals associated to an individual integration point of a
macroscopic FE mesh remains a hindering factor in terms of computational per-
formance. To address this issue, an interesting concept to reduce the number of
orientations per integration point was proposed by Raabe et al. (2004), Raabe and
Roters (2004), Roters (2005), Zhao et al. (2004), where the authors suggested to
de-associate the concepts of crystal and orientation and initially only consider some
selected texture components. A similar idea was later elaborated in work (Knezevic
and Landry 2015). The components are defined as compact functions, each char-
acterized by its orientation (such as the ideal orientations: Goss, Brass or Cube
component, etc.), a scatter around the orientation and the volume fraction of the
component. The key concept is to exploit the fact that a huge number of crystals can
be described by a single representative texture component. Since usually only a
small number of texture components is present in a macrotexture, it is sufficient to
map a relatively small number of ideal orientations to the macroscopic FE inte-
gration points. This is done in such a way that the superposition of all mapped
components reproduce the initial texture of the material. However, during the
simulation each of the mapped texture components undergoes its individual
reorientation under local deformation conditions. Although the method allows
reproducing the initial texture, it may not necessarily offer reliable predictions of the
final texture at individual integration points. To understand why, let us suppose that
just a single texture component is initially sufficient at a given integration point. If
the component is unstable under a given deformation mode and, as a consequence,
it breaks down into more than one component, the method will track just one of
these evolved components and neglect all the others. On this basis, it is also
doubtful whether local anisotropy can be accurately extracted from texture data that
may become increasingly incomplete during the deformation.
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As an alternative, the representative discrete orientations that are needed to
reproduce the crystallographic texture can be spatially distributed over several
neighboring integration points (Béringhier et al. 2007; Delannay et al. 2005; Logé
and Chastel 2006). The way of distributing crystallographic orientations among the
finite elements may be either proportional to the volume of the finite elements, or
independent of it. In any case, the goal is obtain a good approximation of the ODF
by merging contributions (discrete orientations) from several integration points.
This way the ODF becomes a local material property of a group of several inte-
gration points, as opposed to fully embedded models that attempt to get the ODF
locally approximated at every integration point.

3.3.2 Hierarchical Coupling

3.3.2.1 Database and Sampling Techniques

A possible way to capture the influence of microstructural changes on the aniso-
tropic response is to use a crystal plasticity model to calculate some homogenized
quantities of interest in advance and later approximate these in a macroscopic
simulation. This can be done by sampling followed by calculating a response
surface, for instance by means of multivariate Kriging, as reported by Barton et al.
(2008), Knap et al. (2008), Rouet-Leduc et al. (2014), or generalized in situ tab-
ulation technique (Arsenlis et al. 2006). Alternatively, a sequence of explicit
algebraic yield criteria can be pre-calculated for a finite set of strain levels and
linearly interpolated during the macroscopic simulation (Knezevic et al. 2013b;
Nixon et al. 2010a, b; Plunkett et al. 2006). In this case the database contains the
parameters of the yield locus model expressed as a function of strain and possibly
some other variables.

Since the exploited CP model is considered as a black box, the method can be
virtually used with any CP model. However, the sampling is very expensive if it has
to cover the evolution of the microstructural state variables in a multi-dimensional
space. In practice, it is difficult to ascertain that the entire relevant part of that space
is sufficiently probed. Nevertheless, it appears problematic that the local material
state evolution may lead outside the validity range of the interpolation.

3.3.2.2 Spectral Crystal Plasticity (SCP)

The Spectral Crystal Plasticity (SCP) can be seen as a special case of database-type
coupling. Whereas it also relies on sampling responses of a crystal plasticity
framework, the way how the results are stored and queried greatly differentiates the
SCP from the approach presented in the previous section. The database techniques
store the homogenized responses of the RVE, while the SCP stores the intermediate
results of a Taylor-type model.
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Observe that if a Taylor-type model is used, each crystal is treated separately,
and any per-grain solution of the crystal plasticity model depends solely on the
orientation of the crystal and the strain rate imposed on it. The solution may include
stress, lattice spin, shearing rates, Taylor factor etc. It is then possible to first
evaluate a Taylor-type model for a large number of orientations and strain rates and
subsequently store the results in an easily retrievable manner. As long as no other
factors are taken into account, such as hardening of slip systems or grain interac-
tions, these calculations can be done once and for all.

To achieve this, Fourier (spectral) representation of orientation distribution
function (Bunge and Esling 1984) can be conveniently used for storing the results
of a Taylor-type model, see Kalidindi and Duvvuru (2005), Kalidindi et al. (2006),
Li et al. (2003), Van Houtte (2001). The one-time, but time consuming task is to
find coefficients in Fourier series of the spectral representation for the functions that
represent the per-grain solutions of the Taylor-type CP model. These solutions must
be computed for each crystal orientation in Euler space subjected to all possible
strain rates. This way, a database of spectral coefficients is generated. The advan-
tage of the approach is that the result of the CP model can be later retrieved just by
querying the database without doing any actual CP calculations.

The spectral method was first demonstrated using generalized spherical har-
monics (GSH) (Kalidindi et al. 2006; Knezevic and Kalidindi 2007; Shaffer et al.
2010; Van Houtte 2001), and later employing Discrete Fourier Transforms
(DFT) (Al-Harbi et al. 2010; Alharbi and Kalidindi 2015; Kalidindi et al. 2009;
Knezevic et al. 2008, 2009). The DFT promises much higher computational per-
formance since it exploits Fast Fourier Transform (FFTs) algorithm for fast retrieval
of pre-computed crystal plasticity solutions. The solutions are stored on a uniform
grid in the orientation space and subsequently a local spectral interpolation using
Fast Fourier Transform is applied to recover the solutions for any orientation and
deformation mode of interest (Knezevic et al. 2008).

A DFT-based SCP framework has been embedded into Finite Element model
(Alharbi and Kalidindi 2015; Zecevic et al. 2015a, b). This is basically equivalent to
embedding a Taylor-type model at each integration point of the FE model, however
the constitutive response of the material can be evaluated much faster compared to a
direct embedding scheme such as the CP-FEM.

The computational advantage of the SCP comes with certain drawbacks, though.
Independent sampling of individual grains is implicitly required, thus the accuracy
of the SCP is bound by the limitations of the Taylor assumptions. It is now well
known that Taylor-type models do not offer best texture and anisotropy prediction.
Furthermore, the SCP approach is hardly capable of going beyond quite simple
Taylor-type models. For instance, adding internal variable hardening models would
render the SCP impractical, since constructing the database of spectral coefficients
would require exploring a high dimensional space.
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3.3.3 Yield Criteria Based on Crystal Plasticity

As we have seen in the previous section, the direct coupling of microstructure
evolution in a component-scale FE simulations is conceptually straightforward, but
computationally complex. Therefore, more robust and efficient alternatives have
been sought. It is quite easy to notice that the FE solver requires stress integration in
the macroscopic domain, whereas the fine-scale crystal plasticity framework, if
directly embedded, calculates much more than that.

This observation results in a concept to partly dissociate the evolution of
properties and the evolution of the microstructure. To this end, the evolution of
crystallographic texture and possibly other microstructural features are calculated
by means of an appropriate crystal plasticity framework, but the macroscopic
constitutive relation used in the FE only approximates the homogenized response of
the fine-scale model. The microstructural evolution is directly implemented in this
approach, since the orientations of the representative crystals and other
microstructural state variables are updated according to the macroscopic plastic
deformation. However, the mechanical description of the homogenized material
response utilizes a different mathematical model, which can be efficiently plugged
into the FE stress integration algorithm.

3.3.3.1 Yield Criteria Defined by Interpolation

If a given deformation process is considered, the material is locally subjected to a
certain stress state that slowly varies with increasing stain. Therefore, only a limited
zone of the yield locus is probed by the stress integration algorithm. This was
exploited by the works (Dawson et al. 2005; Duchêne et al. 2002; Habraken and
Duchêne 2004), which proposed that the crystal plasticity yield locus is only
sampled in a confined subspace of deviatoric stresses. Once the yield locus is
locally known in a point-by-point manner, an interpolation method allows calcu-
lating a continuous function that approximates the yield locus. It needs to be
emphasised that the interpolated yield locus is valid only within the range of the
discrete set of known data points. When the available local description of the yield
locus does not cover the region of interest anymore, one has to find another local
description enclosing the new active part of the yield locus. The approach does
neither explicitly enforce nor require any analytical yield locus model, since a
generic interpolation scheme is sufficient. This has a drawback, though: the normals
of locally interpolated yield loci may not be smooth, and thus stress integration that
relies on the normality rule may experience convergence problems. Even though
the interpolated function is continuously differentiable (e.g. C2), there is still no
guarantee that the interpolated yield locus is convex, with similar consequences as
mentioned before.
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3.3.3.2 Yield Criteria Defined by Approximation

Recall from Chap. 1 that the phenomenological descriptions of plastic anisotropy
have proved their enormous usefulness in modelling plastic anisotropy. Numerous
successful efforts have been made in the last decades to improve the macroscopic
anisotropy models, for example Aretz and Barlat (2012, 2013), Banabic et al.
(2000, 2003, 2005, 2010), Barlat et al. (1991, 1997a, b, 2003b, 2005, 2007),
Cazacu and Barlat (2004), Cazacu et al. (2006), Comsa and Banabic (2008), Hill
(1948) Hosford (1979), Plunkett et al. (2006, 2008), Soare and Barlat (2010), Soare
et al. (2008), Van Houtte and Van Bael (2004), Van Houtte et al. (2009), Vegter
and van den Boogaard (2006), Vegter et al. (2003), Yoon et al. (2004, 2006, 2010,
2014), Yoshida et al. (2013). The improvements were attained not only in terms of
predictive capabilities, but also with respect to computational performance. Due to
these advantages, the phenomenological yield loci are nowadays most commonly
adopted in commercial Finite Element (FE) packages dedicated for simulations of
metal forming operations. If a yield locus model is used in a combination with flow
theories, such as the normality flow theory, the phenomenological yield loci provide
an efficient technique for capturing the effects of material anisotropy during the
simulation of deformation processes. These advantages make the existing yield loci
models perfect candidates for becoming components of a hierarchical approach
that approximates the finer-scale model by a coarser-scale model.

The phenomenological yield criteria consider the polycrystalline material as
homogeneous at the macroscopic level, and the yield surface depends merely on the
macroscopic stress, strain rate, certain strain measures as well as their rates. The
microstructural features of the material, such as crystallographic texture, can be
indirectly taken into account by means of extensive parametrization of these
models. The phenomenological yield loci are generally limited to the initial ani-
sotropy of the material, since it is hardly possible to accurately predict the evolution
of the yield surface without taking into account how the microstructure develops
during the deformation. Usually it is assumed that the changes to the initial yield
locus due to deformation are negligible. The assumption is approximately valid if
the plastic strains are not excessively large, which admittedly holds in some sheet
metal forming processes.

One can also find several examples that combine the strength of the two
approaches: crystal plasticity frameworks and phenomenological yield loci men-
tioned above. The hierarchical multi-scale approach was followed, in which the
fine-scale model provides data needed for identification of the macroscopic one that
is based on a different mathematical framework. The yield criteria are given as
parametrized closed-form functions. A least squares method can be then used to
determine the parameters by fitting them to data points generated by virtual CP
experiments. For instance, parameters of orthotropic Hill yield criterion can be
easily derived by means of a Taylor-type model as shown in Kalidindi et al. (2004).
Other phenomenological yield criteria have been also calibrated by means of the
crystal plasticity frameworks, most remarkably FC Taylor, VPSC, ALAMEL and
CP-FEM, see e.g. An et al. (2011), Barlat et al. (2005), Gawad et al. (2010, 2013),
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Grytten et al. (2008), He et al. (2014), Inal et al. (2010), Kalidindi et al. (2004), Kim
et al. (2007, 2008), Kraska et al. (2009), Plunkett et al. (2006), Saai et al. (2013),
Savoie and MacEwen (1996), Van Bael et al. (2010), Van Houtte et al. (2009,
2011), Yoon et al. (2014), Zhang et al. (2014, 2015b).

Generally, to provide data for calibration, the crystal plasticity models have to be
evaluated for a huge number of possible stress or strain rate modes, sometimes
exceeding one million realizations. Given the fact that the number of parameters in
the yield criteria is typically small, an overdetermined least squares approach was
employed in some previous works, for instance in Grytten et al. (2008), Rabahallah
et al. (2009) that focused on identifying the Yld2004 3D yield criterion (Barlat et al.
2005). However, indiscriminate selection of data points was typically used, which
resulted in large data sets, varying in size from few thousands (Grytten et al. 2008;
Zhang et al. 2015b) to tens of thousands of data points (Rabahallah et al. 2009).

This inspired works that aim at decreasing the computational effort related to
evaluating necessary data points by running crystal plasticity virtual experiments. In
order to maximize the amount of information acquired from every data point, not
only the size of the yield locus, but also its curvature and derivatives can be
simultaneously used (Gawad et al. 2010, 2013).

It has to be emphasized that the majority of the aforementioned efforts focuses
on calibrating the initial yield locus, leaving the evolution of the plastic anisotropy
unaddressed. The evolution of the yield locus can still be captured, though. If the
strain path can be pre-determined, a sequence of explicit yield criteria can be
pre-computed along that path for a finite set of strain levels and subsequently
interpolated during the macroscopic FE simulation, as it was done in Knezevic et al.
(2013b), Nixon et al. (2010a, b), Plunkett et al. (2006). Similarly as in the case of
database and sampling techniques (see Sect. 3.3.2), the local deformation condi-
tions in the FE mesh may fall outside the assumed deformation path, thus the
evolution of the yield locus of may also lead outside the validity range of the
interpolation.

Another viable method to tackle anisotropy evolution in the macroscopic FE
problem is to use an adaptive hierarchical multi-scale approach. As opposed to the
hierarchical methods outlined above, the adaptive scheme is capable of deriving
macroscopic yield locus that reflects changes to the material along the actual
deformation path. This can be expediently done by systematic updating of the
material state, such as texture, by applying local macroscopic deformation rates and
subsequent recalibration of the phenomenological plasticity model. Each Gauss
integration point of a macroscopic FE mesh can be linked with an evolving yield
locus function, as it was successfully demonstrated by Gawad et al. (2010, 2013),
Van Bael et al. (2010), Van Houtte et al. (2011) using the Facet plastic potential
(Van Houtte et al. 2009), and recently by He et al. (2014) that used the CPB06ex2
yield criterion (Cazacu et al. 2006). The evolution of the plastic anisotropy is
therefore taken into account, as well as the evolution of the material state. In the
next section we are going to closely examine a practical implementation of this
concept.
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3.3.3.3 Evolving BBC2008 Yield Criterion

In this section we demonstrate how the adaptive hierarchical multi-scale approach
can be utilized to model evolution of plastic anisotropy in a finite element simu-
lation. For sake of simplicity, the texture is assumed to be the microstructural factor
that primarily explains plastic anisotropy. A crystal plasticity framework will be
then employed to predict changes in the crystallographic texture and to provide data
needed for accommodating a macroscopic yield criterion in an adaptive manner.
The yield criterion can be then incorporated into Finite Element model as a
user-defined material model.

More specifically, we shall use an explicit time integration FEM, since this type
of FE solvers is prevalently used in simulating sheet metal forming operations. For
the same reason, elastic-plastic constitutive model will be assumed. The BBC2008
yield criterion will be calibrated by virtual experiments conducted by means of the
ALAMEL crystal plasticity model.

We shall begin with a notion that material properties may evolve independently
within small volumes of material, typically in individual finite elements. To achieve
that, each integration point in the macroscopic mesh is associated with a collection
of state variables:

macroscopic state variables (denoted as Z) that comprise a parametric yield locus
function (along with a current set of parameters). Additionally, control variables are
included that decide when and how the yield locus function should be
reconstructed.
microscopic state variables (denoted as z) consist of variables that are relevant to
the crystal plasticity framework. The state variables must be sufficient to construct
an RVE. In our case, the variables in z are limited to the Orientation Distribution
Function given in a discrete form, i.e. as a list of crystal orientations associated with
their relative volume fractions. Although in the currently presented case the texture
is the only micro-scale state variable, other microstructural features can be added,
so the material would be described in a much more extensive way if the CP model
permits so. For instance, z can be enriched by including phase composition, grain
size and shape, ODF and/or MODF of individual phases, resistance of available
deformation mechanisms (slip and twinning systems), substructure (dislocation
densities or patterns), and many others.

Of course, the macroscopic state variables must include the stress state at the
integration point and a local measure of plastic strain, both needed by the stress
integration algorithm. The details of incorporating the yield criterion as such into
the elastic-plastic explicit time integration FE are skipped here, since they are not
essential in the presented method. The reader may refer to Chap. 1 for examples
how this can be achieved in the context of implicit or explicit time integration FE
codes. We have to mention however that the presented multi-scale model makes the
assumption that a macroscopic hardening model is available in the FE code.
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If an explicit time integration FE solver is used, the total deformation is sub-
divided into many small time increments, satisfying the stability conditions of the
time integration scheme. It is quite obvious that recalculations of the parameters of
the yield criterion at each integration point in every time increment would be highly
inefficient. Given small strains associated to the time increments, one may postpone
updating the state variables z and the subsequent recalculation of Z until a certain
criterion is met at the considered integration point.

A possible criterion, as proposed in Gawad et al. (2013), is based on tracking the
plastic strain accumulated since the previous update of the anisotropy model. The
accumulated plastic strain is calculated by integrating instantaneous plastic strain
rate D over time increments as

P ¼
Zti
ti�1

DðtÞdt ð3:1Þ

where ti is the current time since the start of the simulation, and ti�1 is the time of
the previous update. This quantity is used as the control variable in making decision
if Z needs to be updated. The criterion is fulfilled if

kPk�Pcr ð3:2Þ

where Pcr is a control parameter interpreted as a critical value to trigger the update.
Again, we emphasize that the tracking is carried out independently at each inte-
gration point. Similarly, the decision about the update is made independently from
one integration point to another.

Once the criterion is satisfied, both the microstructural state variables and the
anisotropy model at the integration point are updated. To do so, three steps are taken:

1. evolution of z along the recent deformation path P is calculated by the crystal
plasticity model,

2. necessary crystal plasticity virtual experiments are conducted to characterize the
material in its updated state, and finally

3. a new vector of yield locus parameters coefficients in Z is computed to fit the
results of the virtual experiments.

In the next paragraphs we will reiterate over these steps, however they will be
presented in a slightly different order.

Macroscopic yield locus Chap. 1 provides several examples of yield loci, which
vary with respect to their capability to describe plastic anisotropy of the material. The
formulae presented there are typically used to describe the initial yield locus or the
yield locus that corresponds to a small level of plastic strain. Let us use as an example
the BBC2008 plane stress yield criterion, which was originally proposed by Comsa
and Banabic (2008). The formulae of the BBC2008 yield criterion can be found in
Chap. 1. To exploit the plane stress yield locus, we make a constitutive assumption
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that the macroscopic material is a plastically orthotropic membrane under
plane-stress conditions. Given the plane-stress constraint, the only non-zero com-
ponents of the Cauchy stress tensor r are r11, r22 and r12 ¼ r21. Notwithstanding,
the plane stress assumption and its consequences are not mandatory and the coupling
scheme can be easily generalized to full 3D tensors, as shown in Gawad et al. (2013).

Recall from Chap. 1 that in order to distinguish whether the material is deformed
elastically or plastically, a scalar-valued yield function is usually defined:

F rð Þ ¼ �r rð Þ � Y � 0 ð3:3Þ

where �r� 0 is the equivalent yield stress and Y [ 0 is an arbitrary reference yield
stress. The function F describes the yield locus or, more specifically, the shape and
size of the yield surface. The yield surface holds the property that FðrÞ ¼ 0 when
the deformation occurs elasto-plastically, whereas purely elastic stress state satisfies
the strict inequality FðrÞ\0.

The formalism used in (3.3) does not explicitly account for the influence of the
material state on plastic anisotropy, not to mention the impact of the microstructural
state variables. Let z denote the instantaneous material state variables that in our
case specifically include texture of the material. We assume that the state variables
evolve as

z ¼ zðeplÞ ð3:4Þ

Apart from the dependency on plastic strain epl, the state variables may also be
expressed as depending on a combination of time, temperature, plastic work and
possibly other variables. The evolution equation of z is rarely given in a closed
form. In fact, in most cases the evolution of the microscopic state variables is only
known from a simulation.

An extension to the yield criterion can be introduced by adding parameters that
depend on z:

F r; zð Þ ¼ �r r; zð Þ � Y � 0 ð3:5Þ

Therefore, the extended form (3.5) also discards the assumption that the plastic
anisotropy does not change during the plastic deformation. Let us now re-write the
formulae of the BBC2008 yield criterion using the formalism provided by
Eq. (3.5).

The BBC2008 yield criterion defines the equivalent stress as:

�rðr; zÞ ¼ w� 1ð Þ
Xs
i¼1

fwi�1Pðr; zÞþws�1Qðr; zÞg
" # 1

2k

ð3:6Þ

Pðr; zÞ ¼ LðiÞðr; zÞþMðiÞðr; zÞ
h i2k

þ LðiÞðr; zÞ �MðiÞðr; zÞ
h i2k

ð3:7Þ
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Qðr; zÞ ¼ MðiÞðr; zÞþNðiÞðr; zÞ
h i2k

þ MðiÞðr; zÞ � NðiÞðr; zÞ
h i2k

ð3:8Þ

The coefficient w is defined as w ¼ ð3=2Þ1=s [ 1, where s 2 N. The choice of the
exponent k must satisfy the condition that s 2 N to ensure convexity of the yield
surface (Comsa and Banabic 2008). Furthermore, Comsa and Banabic (2008)
recommended to use k ¼ 4 and k ¼ 3 for fcc and bcc materials, respectively. The
scalar functions L, M and N are given by:

LðiÞðr; zÞ ¼ LðiÞðr11; r22; zÞ ¼ lðiÞ1 ðzÞr11 þ lðiÞ2 ðzÞr22 ð3:9Þ

MðiÞðr; zÞ ¼ MðiÞðr11; r22; r12; zÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðiÞ

1 ðzÞr11 � mðiÞ
2 ðzÞr22

h i2
þ mðiÞ

3 ðzÞ r12 þ r21ð Þ
h i2r ð3:10Þ

NðiÞðr; zÞ ¼ NðiÞðr11; r22; r12; zÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðiÞ1 ðzÞr11 � nðiÞ2 ðzÞr22
h i2

þ nðiÞ3 ðzÞ r12 þ r21ð Þ
h i2r ð3:11Þ

Equations (3.9)–(3.11) contain several parameters that depend on the material
state z. These parameters can be conveniently gathered into the vector:

p ¼ flðiÞ1 ðzÞ; lðiÞ2 ðzÞ; mðiÞ
1 ðzÞ; mðiÞ

2 ðzÞ; mðiÞ
3 ðzÞ; nðiÞ1 ðzÞ; nðiÞ2 ðzÞ; nðiÞ3 ðzÞ ði ¼ 1; . . .; sÞg

ð3:12Þ

Depending on the parameter s, the BBC2008 yield criterion may include 8
components in p for s ¼ 1, 16 components if s ¼ 2, 24 components for s ¼ 3 and
so forth. To simplify the notation, BBC2008pN stands for the BBC2008 yield
criterion comprising N parameters. To determine N parameters, at least the same
number of data points has to be provided by means of crystal plasticity virtual
experiments. We emphasize this experimental nature (even though the experiments
are virtual) by marking the data points with the superscript ‘ðexpÞ’.

In Chap. 1 we presented an extensive calibration procedure that allows one to
use arbitrary points of the plane stress yield locus. To recapitulate the most
important points, the identification problem is posed as minimisation of square
norm of the vector-valued error function:

EðpÞ ¼

wyyðpÞ
wrrðpÞ
wybybðpÞ
wrbrbðpÞ
wSSðpÞ
wbbðpÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:13Þ

3 Multiscale Modelling of Mechanical Anisotropy 101

http://dx.doi.org/10.1007/978-3-319-44070-5_1


where

yðpÞ ¼ 1� yðp; a1Þ
yðexpÞða1Þ ; . . .; 1�

yðp; anÞ
yðexpÞðanÞ

� �T

ð3:14Þ

rðpÞ ¼ 1� rðp; a1Þ
rðexpÞða1Þ ; . . .; 1�

rðp; anÞ
rðexpÞðanÞ

� �T

ð3:15Þ

ybðpÞ ¼ 1� ybðpÞ
yðexpÞb

( )T

ð3:16Þ

rbðpÞ ¼ 1� rbðpÞ
rðexpÞb

( )T

ð3:17Þ

SðpÞ ¼ 1� Sðp; h1Þ
SðexpÞðh1Þ ; . . .; 1�

Sðp; hmÞ
SðexpÞðhmÞ

� �T

ð3:18Þ

bðpÞ ¼ cos bðexpÞðh1Þ � b1ðp; h1Þ
� �

; . . .; cos bðexpÞðhmÞ � bmðp; hmÞ
� �n oT

ð3:19Þ

The components of vectors yðpÞ and rðpÞ include residuals pertaining to the series
of n uniaxial tensile tests along angles ai w.r.t. RD. Uniaxial yield stress yðexpÞðaÞ
and yðp; aÞ are calculated in the direction a by the CP virtual experiments and
derived from the yield criterion (3.6), respectively, while rðexpÞðaÞ and rðp; aÞ are
the r-values obtained in analogous way. The contribution of the equibiaxial point to
the error function is included via terms (3.16) and (3.17). Other points that lie on the
r11 and r22 section are indicated by the angle h, which defines the ratio between r11
and r22: tan h ¼ r22

r11
. The contribution (3.18) provides the magnitude of the yield

stress Sðp; hÞ in the direction given by the angle h. The normal to the yield contour
and the r11 direction form the angle bðhÞ. The weighting factors wy, wr, wyb, wrb,
wS and wb allow one to control the relative importance of the individual compo-
nents of the error function. This minimization problem can be conveniently solved
by means of general non-linear least squares solvers, such as the
Levenberg-Marquardt or the Trust Region algorithms (Conn et al. 2000).

Crystal Plasticity Virtual Experiments The data needed by (3.18) and (3.19) can
be calculated by the crystal plasticity framework, which accounts for the evolution
of fine-scale material state z.

At this moment we assume that the CP framework can be seen as a black box
that provides:
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• homogenized stress rðD; zÞ,
• evolution of z.

As a matter of fact, many crystal plasticity models are strain rate driven, sim-
ilarly as the black box mentioned above. The homogenized stresses calculated by
the black box can be seen as evaluations of function f : rHð_e; zÞ ¼ f ð_e; zÞ, even
though f is not given in a closed form. However, in many deformation processes it
is the stress state that is either known or assumed by certain idealization. In such
case the crystal plasticity model would need to predict what macroscopic defor-
mation might be reached under a superimposed macroscopic stress r. This also
poses certain inconveniences in (3.13). On one hand, the components of the residual
vector (3.13) are expressed as stress-state dependent. On the other hand, the opaque
nature of a black box does not permit any direct inversion of the function it
provides. For these reasons, a numerical inversion of f must be employed. An
iterative procedure can be then employed to to analyze deformation paths defined
by macroscopic stress modes, even though a strain-rate driven crystal plasticity
model is used. Note that the homogenization scheme in the CP model does not
require imposing stress boundary condition on every individual grain, and therefore
it is not necessarily satisfied on the grain level.

An iterative procedure can be then employed to analyze deformation paths
defined by macroscopic stress modes, even though a strain-rate driven crystal
plasticity model is used. Again, it has to be remarked that the homogenization
scheme does not require imposing stress boundary condition on every individual
grain, and therefore it is not necessarily satisfied on the grain level. On the grain
level Eqs. (3.39)–(3.50) still hold and the microscopic boundary conditions are
defined in terms of the velocity gradient. The crystal plasticity model is then
considered as a black-box implementing a purely plastic rate-insensitive material. It
must allow evaluating the homogenized macroscopic deviatoric stress SH as a
response to the macroscopic plastic strain rate D, while keeping the state variables
unmodified. An update of the state variables can be independently requested from
the black-box.

Since the underlying crystal plasticity model neglects the elastic components of
stress and strain rate, the homogenized stress is inherently deviatoric and the cor-
responding macroscopic strain rate has to satisfy the volumetric incompressibility
condition. Therefore, any of these tensor quantities contains only five independent
components, which can be utilized by converting the second-order tensor quantities
of deviatoric nature into five-dimensional vectors. In this context the primary reason
for preferring the five-dimensional vector representation is that the conversion
allows one to reduce the dimensionality of the search space, since the constraint
tr x ¼ 0 is automatically satisfied by the five-dimensional vector representation.

One can conveniently reduce the dimensionality of the search space by
exploiting the fact that symmetric second-order tensors of deviatoric nature contain
only five independent components. This property is commonly found in tensors
used in mechanics; for instance, deviatoric stresses and plastic strain rates belong to
this category. The reduction of dimensionality can be done by converting
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appropriate tensors into five-dimensional vectors, e.g. by following the transfor-
mation proposed in Van Houtte and Van Bael (2004). Other variants of the
transformation exist in the literature, see e.g. Grytten et al. (2008), Lequeu et al.
(1987), Van Houtte (1988). Throughout the remaining part of the paper the con-
vention will be used that x̂ denotes vector representation of rank-two tensor x.

Let x be a symmetric, second-order tensor that has the property that
x11 þ x22 þ x33 ¼ 0. It can be then completely described by only five independent
components. According to Van Houtte and Van Bael (2004), the components of the
corresponding 5D vector x̂ can be calculated as:

x̂1 ¼ 1ffiffiffi
2

p x11 � x22ð Þ ð3:20Þ

x̂2 ¼ �
ffiffiffi
3
2

r
x33 ð3:21Þ

x̂3 ¼
ffiffiffi
2

p
x23 ð3:22Þ

x̂4 ¼
ffiffiffi
2

p
x31 ð3:23Þ

x̂5 ¼
ffiffiffi
2

p
x12 ð3:24Þ

It is trivial to convert back the 5D vector into the second-order tensor:

x11 ¼ 1ffiffiffi
2

p x̂1 þ 1ffiffiffi
6

p x̂2 ð3:25Þ

x22 ¼ � 1ffiffiffi
2

p x̂1 þ 1ffiffiffi
6

p x̂2 ð3:26Þ

x33 ¼ �
ffiffiffi
2
3

r
x̂2 ð3:27Þ

x23 ¼ x32 ¼ 1ffiffiffi
2

p x̂3 ð3:28Þ

x31 ¼ x13 ¼ 1ffiffiffi
2

p x̂4 ð3:29Þ

x12 ¼ x21 ¼ 1ffiffiffi
2

p x̂5 ð3:30Þ

It can be easily shown that the scalar product is preserved, i.e. x : x ¼ x̂ � ŷ. As a
corollary, the length of the vector x̂ is equal to the magnitude of the corresponding
tensor x.
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The 5D representation of plastic strain rate and deviatoric stress is used in the
inversion of the function rð_e; zÞ ¼ f ð_e; zÞ.

Algorithm 1 is able to deliver m data points corresponding to biaxial stress state
with arbitrary stress ratios.

The fundamental part of the algorithm is to find the macroscopic plastic strain

rate mode Â
�
that corresponds to the imposed deviatoric stress mode Û

�
, where

Û ¼ Ŝ

kŜk ð3:31Þ

and Ŝ is a five-dimensional vector representing the deviatoric part of the stress
tensor r that defines the requested deformation path:

S ¼ r� tr r
3

I ð3:32Þ

where I is the identity tensor. This is achieved by solving an unconstrained opti-
mization problem, in which the square norm of the vector-valued residual function

fðÂ; Û�Þ ¼ Û
� � ŜHðÂÞ

kŜHðÂÞk
ð3:33Þ

is minimized. In the subsequent derivations a simplified notation will be used:
fðÂ; Û�Þ ¼ fðÂÞ, since the imposed stress mode is considered a constant. The
evaluation of the residual function involves a call to the underlying crystal plasticity
to calculate the homogenized stress sH . The search starts from an initial guess Â0,
typically chosen as Â0 ¼ Û

�
, which corresponds to the property of an isotropic von

Mises plastic material. From a current point Âold, the algorithm iteratively uses the
trust-region minimization approach (Conn et al. 2000)

min
Â2R5

kfðÂoldÞþ JðÂoldÞ Ânew � Ânew

� �
k subject to kÂnew � Âoldk� d ð3:34Þ

to find a new guess Ânew ¼ Âold þDÂ that satisfies

min
Â2R5

kJTðÂÞJðÂÞDÂþ JðÂÞfðÂÞk ð3:35Þ

where DÂ is the trial step, d is the size of the trial step and J is the Jacobian matrix
of the function f. The search is terminated when any of the following criteria is
fulfilled:
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• kfðÂnewÞk is smaller than a pre-defined threshold ftol, or
• kDÂk is smaller than a pre-defined minimal step size, or
• the number of iterations exceeds its maximal value.

As can be seen from Eqs. (3.34) and (3.35), the Jacobian matrix has to be
calculated very often. Since it is not available in a closed form, one has to compute
it numerically by a finite difference scheme, which is associated with a considerable
cost. However, if the initial guess Â0 is sufficiently close to the solution, one may
attempt to locate the minimum under the auxiliary assumption that
JðÂÞ ¼ JðÂ0Þ ¼ const. From this assumption it follows that the linearized problem
is solved, so (3.34) and (3.35) become:

min
Â2R5

kfðÂoldÞþ JðÂ0Þ Ânew � Ânew

� �
k subject to kÂnew � Âoldk� d ð3:36Þ

min
Â2R5

kJTðÂ0ÞJðÂ0ÞDÂþ JðÂ0ÞfðÂÞk ð3:37Þ

where the matrix product JTðÂ0ÞJðÂ0Þ can be conveniently pre-calculated. If the
trust region algorithm fails to converge to an acceptable solution, one may drop the
assumption on constant Jacobian and restart the minimization from the initial guess.

Incidentally, in many cases there is a sufficiently accurate initial guess available.
For instance, it may be obtained from a previous run of the method that had
explored a similar stress mode, which holds as long as an identical material state
was used by the underlying crystal plasticity model. Such condition is frequently
fulfilled if one systematically calculates a point-by-point yield locus section (for
instance, the section defined by r11 � r22 plane). Yet another example is that the
initial guess may be provided by an analytical yield locus model calibrated for a
very similar material state.

The generic procedure outlined above can be straightforwardly utilized for
determining data points that are commonly used in calibration of analytical yield
loci. The authors have implemented it in a set of algorithms, collectively known as
the Virtual Experimentation Framework (VEF) that allows conducting crystal
plasticity virtual experiments either in stress or strain rate driven mode. For
instance, uniaxial tension, uniaxial compression and biaxial stress state can be
studied by means of the VEF. Suppose that the material state variables, such as
texture, are expressed in a reference frame defined by the e1; e2; e3 directions. In
many practical applications these directions coincide with the rolling direction
(RD), transverse direction (TD) and normal direction (ND). Algorithm 2 allows
calculating instantaneous r-values and corresponding yield stresses for a sequence
of angles defining rotation around e3 from the e1 axis.

A similar algorithm (see Algorithm 3) can be used for calculating evolution of
the material state under the stress mode Û

�
. The algorithm provides a convenient

way to determine whether the microscopic state (e.g. crystallographic texture) is
stable under the imposed stress mode and to estimate how the associated strain rate

106 J. Gawad et al.



evolves. In principle, the algorithm splits the deformation path into smaller incre-
ments of plastic strain which results from the stress mode U�, given the
microstructural state of the material. The size of increments is specified by the input
parameter De. At the end of each increment the state of the microstructure is
updated to reflect the changes caused by the deformation. Eventually the procedure
returns a sequence of triplets e;A; SHðAÞð Þ. Non-essential operations, such as
reporting the history of microstructural state variables, are omitted for clarity.

Suppose one wants to determine the contour of the yield locus. Algorithm 1
presents how the normalized r11; r22 yield locus section can be calculated. The
algorithm can be also used for collecting data needed for calculating the Cartesian
tangent to the yield locus contour:

dr22
dr11

¼
dSðhÞ
dh sin hþ SðhÞ cos h

dSðhÞ
dh cos h� SðhÞ sin h

ð3:38Þ

where SðhÞ is the distance from the origin of the coordinate system to the yield

locus contour in that section. The polar derivative dSðhÞ
dh can be numerically estimated

from a single run of Algorithm 1.

Crystal plasticity ALAMEL In the previous paragraph we considered the crystal
plasticity model as a generic black box. Let us now consider a specific CP
framework, namely the rate-independent ALAMEL model proposed by Van Houtte
et al. (2005). As mentioned in Sect. 3.2.1, the ALAMEL belongs to the family of
statistical grain interaction models. The reader is referred to the paper (Van Houtte
et al. 2005), which provides a comprehensive discussion of the statistical crystal
plasticity theories relevant to this work, including foundations of Taylor’s theory.

This section briefly summarizes basic concepts of the ALAMEL model. Since
the remaining part of the work concentrates mostly on mechanical aspects, such as
yielding, the discussion of texture evolution is much limited for brevity. Let us now
just mention that the ALAMEL crystal plasticity model deals with an aggregate of
grains (a polycrystal). Each grain is characterized by its orientation assigned from
the Orientation Distribution Function (ODF) f ðgÞ where g 2 R3 represents the
crystal orientation. The whole aggregate of grains thus corresponds to a discrete
form of the ODF fdðgÞ. The slips on individual slip systems cause rotations of the
grains, and as a result evolution of texture, which is the primary component of
micro-scale state z. More details on how the lattice rotations are related to the
crystallographic slip can be found in Chap. 2.

A macroscopic deformation may be imposed onto an aggregate of crystals by
specifying the velocity gradient L. This velocity gradient tensor can be additively
decomposed into a symmetric part D, which is the plastic strain rate, and
anti-symmetric part W:
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L ¼ DþW ð3:39Þ

Let us first consider a single-phase polycrystalline aggregate, consisting of a
number of grains. In the Taylor-type models, it is supposed that each grain has
homogeneous properties, such as crystal orientation, as well as homogeneous stress
and strain distributions over the volume. If a single grain is considered, a local
constitutive law has to establish relations between the local stress, strain and rigid
body rotation inside the volume of the grain. A crystal plasticity theory, for instance
the Generalized Schmid Law, allows one to account for internal processes, such as
slip on various slip systems and the rotation of the crystal lattice, which occur as a
response to the external stimuli.

Suppose the local velocity gradient l is imposed on a single grain. Additive
decomposition of the velocity gradient tensor leads to

l ¼ dþw ð3:40Þ

where the symmetric part d is referred to as the local strain rate, and the
anti-symmetric part w is called the local spin. Provided that elasticity is neglected,
the strain rate needs to be accommodated through plastic deformation, which is
carried by dislocation slip on a number of slip systems and/or by twinning on
twinning systems. The further discussion is confined to the plastic slip as the only
mechanism of plastic deformation.

Algorithm 1: VEF algorithm for calculating scaled σ11, σ22 yield locus
section
Input: angular range: θ0, θmax, angular resolution: Δθ, scaling stress:

Ss, shear stress: σ12, logical flag: reusePrevious
Result: sequence of pairs (θ, S(θ)/Ss): o

o ← ∅
for θ = θ0 to θmax every Δθ do

σ ←
[ cos θ σ12 0

σ12 sin θ 0
0 0 0

]

S ← σ − 1
3 trσ I

U∗ ← S
‖S‖

if θ �= θ0 and reusePrevious then Â0 ← Â∗

Â∗ ← argmin
Â∈R5

‖F(Â, Û∗)‖ given Â0 // see (3.33)-(3.37)

S ← ‖SH(A∗)‖
o ← o + (θ,

S

Ss
) // extend the sequence o

end
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Algorithm 2: VEF algorithm for calculating r-values and normalized
yield stresses for a sequence of uniaxial loadings defined by directions α

Input: sequence of angles: α = [α1, . . . , αn], stress state: m (either 1 for
tension or -1 for compression), accuracy threshold: ftol, logical
flag: reusePrevious

Result: sequence of triplets (α, rα, yα): o

σ0 ← m
[
1 0 0
0 0 0
0 0 0

]

o ← ∅
hasConverged ← False
foreach α in α do

R ←
[
cosα − sinα 0
sinα cosα 0
0 0 1

]
// Rotation matrix

σr ← RT σ0R
Sr ← σr − 1

3 trσr I

U∗
r ← Sr

‖Sr‖
if reusePrevious AND hasConverged then

A0 ← RTAR
else

Â0 ← Û0
end
hasConverged ← False
Â∗

r ← argmin
Â∈R5

‖F(Âr, Û∗
r)‖ given Â0 // see (3.33)-(3.37)

if ‖F(Â∗
r , Û

∗
r)‖ < ftol then

hasConverged ← True
A ← RA∗

rR
T

rα ← A22
A33

yα ← √
3/2‖SH(A)‖

o ← o + (α, rα, yα) // extend the sequence o
end

end
return o
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The slip systems are defined by the family of symmetrically equivalent slip
planes and associated family of slip directions. For instance, in fcc materials there
are 12 slip systems given by f011gh100i. The definition of a slip system ðsÞ
includes the unit vector mðsÞ, which is normal to a slip plane that allows shear
deformation realized by a dislocation glide. The kinematical equation that relates d
with the slip rates _cðsÞ of all active slip systems reads

d ¼
XN
s¼1

MðsÞ _cðsÞ ð3:41Þ

where the Schmid tensor MðsÞ relates the normal to the slip plane with the nor-
malized shear direction bðsÞ in which the slip occurs:

MðsÞ ¼ 1
2

bðsÞ �mðsÞ þmðsÞ � bðsÞ
� �

ð3:42Þ

The slip systems that satisfy _cðsÞ 6¼ 0 are referred to as the active slip systems.
The unknown slip rates can be determined under the energetic assumption, which
postulates that minimal plastic work is dissipated per unit time:

Algorithm 3: VEF algorithm for calculating material state evolution un-
der the imposed deviatoric stress mode U∗

Input: stress mode: U∗, maximal von Mises strain: εmax, increment of
von Mises strain: Δε, accuracy threshold: ftol

Result: sequence of triplets (ε,A,SH(A)): o

εtotal ← 0
Â0 ← Û∗

o ← ∅
while

√
2/3‖εtotal‖ < εmax do

Â∗ ← argmin
Â∈R5

‖F(Â, Û∗)‖ given Â0 // see (3.33)-(3.37)

if ‖F(Â∗, Û∗)‖ < ftol then
Δε ← ΔεA∗

o ← o + (ε,A∗,SH(A∗)) // extend the sequence o
Update CP state variables by applying Δε
εtotal ← εtotal + Δε

else
return o

end
end
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_W ¼
XN
s¼1

sðsÞc j _cðsÞj ! min ð3:43Þ

where ssc is the critical resolved shear stress (CRSS) of the slip system ðsÞ. Although
the CRSS can in principle be expressed as a function of the accumulated shear in
the slip system, in the present considerations the hardening of the slip systems is
neglected. Furthermore, all the slip systems are supposed to have identical CRSS.
The generality of the presented approach is not undermined by these assumptions,
since they can be easily lifted. Moreover, one may argue that for certain classes of
materials, such as fcc, the texture evolution and induced plastic anisotropy remain
practically insensitive to the microscopic hardening model. This of course does not
generally hold for all types of materials. On the other hand, even a very simple
microscopic hardening law may become beneficial in handling complex hardening
phenomena (e.g. differential hardening effect), as it was recently demonstrated by
Eyckens et al. (2015).

Unfortunately, many combinations of slip systems may possibly satisfy (3.41)
and (3.43) simultaneously, which is called Taylor ambiguity. To determine which
slip systems are actually activated, an additional criterion is generally needed. The
interested reader is referred to a recent review by Mánik and Holmedal (2014) for a
comprehensive study of various means to solve the Taylor ambiguity. One of
possible solutions to the issue is to consider a cluster of grains that impose con-
straints on each other (Van Houtte et al. 2005).

Once the slip rates are known, the deviatoric stress tensor s can be calculated,
either directly by using the Bishop-Hill theory (Bishop and Hill 1951b), or by using
the minimization method (3.43) and considering it as the work-conjugate to the
imposed strain rate:

_W ¼ s : d ð3:44Þ

It also follows that texture evolution can be then predicted as well. The lattice
spin wL, which causes reorientation of the crystal lattice and in turn texture evo-
lution, can be found from the slip rates in each grain:

w ¼ wL þ
XN
s¼1

MðsÞ
A _cs ð3:45Þ

given the anti-symmetric part of the velocity gradient tensor (3.40). MðsÞ
A is the

anti-symmetric complement to the Schmid tensor:

MðsÞ
A ¼ bðsÞ �mðsÞ �MðsÞ ¼ 1

2
bðsÞ �mðsÞ �mðsÞ � bðsÞ
� �

ð3:46Þ

As we can see, this way the evolution of the microscopic state variables z is
accounted for.
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The ALAMEL homogenization scheme postulates that clusters of two grains
have to be treated jointly. The two grains are assumed to be neighbours, i.e. they are
separated by a grain boundary. The boundary is characterized by its orientation,
which at the same time defines a local orthogonal reference frame. By convention,
the 3rd axis of the grain boundary reference frame is parallel to the grain boundary
normal. The scheme allows relaxations of the macroscopic velocity gradient with
respect to simple shear along the boundary between the grains:

lðgrain1Þ ¼ Lþ
X2
j¼1

KðjÞ
RLX _c

ðjÞ
RLX ð3:47Þ

lðgrain2Þ ¼ L�
X2
j¼1

KðjÞ
RLX _c

ðjÞ
RLX ð3:48Þ

As can be seen, the relaxations in both grains are equal with respect to the

magnitude, but oriented in opposite directions. The relaxation slip rates _cðjÞRLX
conceptually operate on pseudo slip systems which are shared by the two grains,
whereas the slip rates and local spin rates of the clustered grains are different. The
relaxation matrices in the grain boundary reference frame are defined as:

Kð1Þ
RLX ¼

0 0 1
0 0 0
0 0 0

2
4

3
5 Kð2Þ

RLX ¼
0 0 0
0 0 1
0 0 0

2
4

3
5 ð3:49Þ

Assuming that the two grains have to simultaneously satisfy the energetic
assumption, Eq. (3.43) has to be reformulated as:

_W ¼
X2
i¼1

XN
s¼1

sði;sÞc j _cði;sÞj
n o

þ
X2
j

sðjÞr _cðjÞRLX ! min ð3:50Þ

where the index i refers to the grains in the pair. Van Houtte et al. (2005) suggest to
neglect the pseudo-slip term, although some artificial resistance of the pseudo-slip

systems can, in principle, be introduced by letting sðjÞr 6¼ 0.
The homogenized stress in the polycrystal is considered as the volume average

of contributions from all the grains in the polycrystalline. Let Vi denote the volume
of the ith grain. Provided that the stress tensor in the individual crystals is expressed
in the sample reference frame, the homogenized deviatoric part of Cauchy stress is
calculated as follows:

SH ¼
Xn
i¼1

Vi

 !�1Xn
i¼1

Visi ð3:51Þ
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It is worth mentioning in this context that the virtual experiments used in cali-
brating macroscopic yield loci are often stress driven (or at least some idealized
stress state is more opportune as the boundary condition), whereas the ALAMEL
model requires macroscopic velocity gradient or strain rate as input. In the previous
paragraphs we presented a method how to numerically convert a strain rate driven
model so the stress is imposed as the input. It is clear from (3.43) to (3.44) that the
stress state of individual grains in the polycrystalline may deviate from the imposed
stress, yet the homogenized stress over the aggregate can still satisfy

kSH � Sk\d ð3:52Þ

where d is a sufficiently small number. A stronger requirement (i.e. kSH � Sk ¼ 0)
might be difficult to satisfy given the fact that only a finite number of crystals is
used in the discretized texture.

It can be argued that (3.52) introduces long range interactions in the model, since
certain conditions have to be met over the whole polycrystal. Yet it needs to be
emphasized that no iso-stress assumption is made concerning the aggregate.

Hierarchical multi-scale model of cup drawing test The presented modelling
framework allows one to simulate the deformation of large parts, comparable in size
to body car components. In this example we use it to simulate one of the most
convenient mechanical tests assessing anisotropy of the sheet metal: the cup
drawing process that forms cylindrical cups from circular blanks. We shall also
investigate how the results of the adaptive multi-scale model compare to more
conventional simulation of the same process and to experimental data.

Briefly, let us consider the following test cases:

HMS-BBC2008: adaptive hierarchical multi-scale model is used. The plastic
anisotropy is modelled by adaptively recalculated BBC2008p16
yield criterion. The crystal plasticity model predicts texture
evolution and calculates data needed for recalibration of the
BBC2008p16, as it was described in the previous sections.

CP-BBC2008: hierarchical multi-scale model is used, but the plastic anisotropy
is kept constant throughout the simulation. This means the
crystal plasticity model uses just the initial texture data at the
pre-processing stage, and thus it provides only the initial yield
surface data for identifying the BBC2008p16.

Mech-BBC2008: The BBC2008p16 is conventionally calibrated by mechanical
testing data.

In the case study presented below we use Al alloy AA6016 metallic sheet (1 mm
nominal thickness). This material is a precipitation hardening alloy, containing
aluminum, magnesium and silicon as major components. The sheet has been
delivered in the T4 status (solution heat treated and naturally aged). One of the
major applications of this material is in the automotive industry. Admittedly, the
AA6016-T4 has a rather mild anisotropy, which furthermore does not change much
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during mechanical tests. Modern sheet metal materials are designed (on very pur-
pose!) to retain their anisotropic properties approximately constant during pro-
cessing. Keeping that in mind, we decided to choose a material that is realistic and
actually used in industrial practice. If we selected a material that is more suitable for
illustrative purposes, such as commercial purity aluminum, it would be less relevant
from the application point of view.

The most conventional way of calibrating the BBC2008 yield criterion is to
conduct a series of mechanical experiments. The characterization methods needed
for calibrating the BBC2008 to mechanical data include uniaxial tensile tests and
biaxial tension.3 In order to determine the uniaxial mechanical parameters, tensile
tests were performed on specimens cut at 0°, 15°, 30°, 45°, 60°, 75°, 90° from the
rolling direction. The experiments were carried out using a Zwick-Roell 150kN
universal tensile testing machine equipped with an extensometer with 20 mm
gauge-length. The tensile tests have also provided the values of the conventional
yield stress y ¼ Rp0:2 and the Lankford coefficients (r-values), see Fig. 3.4a, b. The
measured r-values reflect the plastic anisotropy at the beginning of yield. The
mechanical response of the sheet in biaxial tension stress state was studied by
means of two experimental setups: hydraulic bulging and thickness compression
tests. The hydraulic bulging experiments allowed determining the balanced biaxial
yield stress according to the methodology described by Lazarescu et al. (2011),
while the thickness compression tests were performed to determine the biaxial
coefficient of plastic anisotropy (Barlat et al. 2003a). The balanced biaxial yield
stress was found ybx ¼ 160:1MPa, while the measurement of the biaxial coefficient
of plastic anisotropy resulted in rbx ¼ 1:037 (cf. Fig. 3.4c).

While the conventional calibration of the BBC2208 requires fairly extensive
experimental work, the virtual calibration is much more straightforward. The
multi-scale model presented in the previous section requires texture data as the main
microstructural input. A single experiment is needed and it consumes approxi-
mately 1 of the material. As presented in Gawad et al. (2015), X-ray diffraction
technique provided the through-thickness texture and the mid-plane texture at the
depth of 50 % of the sheet. The /2 ¼ 45� sections of the measured ODF along with
schematically depicted measurement positions are shown in Fig. 3.3.

The figure also shows the texture index (TI), which gives an overall view of
texture sharpness, defined as integral over entire orientation space:

TI ¼
Z

f 2ðgÞdg ð3:53Þ

where f ðgÞ is the ODF. As can be seen, the sheet features a much sharper texture at
the mid-plane than over the complete thickness. This indicates a presence of a
complex texture gradient across the thickness, yet we shall not elaborate on this

3The results of mechanical experiments and texture measurements used in this section are taken
from Gawad et al. (2015).
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aspect here. Generally, the texture of this material is mostly attributed to the Cube
component, i.e. the orientation given by ð/1;U;/2Þ ¼ ð45�; 0�; 45�Þ in the pre-
sented ODF sections. Moreover, the spread around Cube forms a fibre towards
(45� þ x; 0�; 45�) and (45� � x; 0�; 45�). At the mid-plane however, the Cube fibre
is only partial, i.e. x\45�. The P texture component (29:5�; 90�; 45�), which is
generally attributed to the recrystallization solutionizing annealing (Engler and
Hirsch 2002), can also be identified. The analyzed textures contain also some minor
Goss component f011gh100i, which is seen in this section as a small intensity
maximum at ð/1;U;/2Þ ¼ ð90�; 90�; 45�Þ.

The measured textures were further processed to obtain input data for the virtual
experiments. Discrete ODFs, needed by the ALAMEL model, were probed from
the continuous ODFs using the STAT algorithm described in Tóth and Van Houtte
(1992) and implemented in the MTM-FHM software (Van Houtte 1995). Each of
the initial data sets consisted of N ¼ 5000 crystallographic orientations, expressed
as Euler angles in Bunge (1982) convention: /1, U and /2. The number of ori-
entations is sufficient to guarantee that the RVE represents the local macro-texture
of the material.

In the next step, the crystal plasticity stress-driven virtual experiments were
conducted to calculate the data points needed for identification of the BBC2008

Fig. 3.3 /2 ¼ 45� ODF sections (with /1 and U on horizontal and vertical axis, respectively) of
the experimental textures: a mid-plane texture (50 % depth), TI = 4.96, and b through-thickness
texture, TI = 2.45. Annotations indicate the Cube component (square) and the P component
(triangle). The ODFs are expressed in identical reference frame: x1 ¼ RD, x2 ¼ TD and x3 ¼ ND.
Schematic sketch of the experimental texture measurement scheme is presented on the right. The
violet plane depicts the surface exposed to the X-ray beam (Color figure online)
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yield criterion. Figure 3.4 presents the calculated r-values and the yield stresses.
The directions of uniaxial loading were chosen as a ¼ 0�; 15�; . . .; 90� (cf. (3.14)
and (3.15)). Since the extended identification algorithm was used (see (3.13) and
more extensive description in Chap. 1), the following directions h were used in
(3.18) and (3.19) to define biaxial stress ratios: 7°, 30°, 45°, 60°, 83°, 120°, 330°.
The point evaluated at h ¼ 45� was also used in Eqs. (3.16) and (3.17) for calcu-
lating the rb and yb. Identical selection of data points was used in the simulations
exploiting the CP-BBC2008 and HMS-BBC2008 model. All the weighting factors
in (3.13) were set to unity, except for wb ¼ 4.

It can be seen from Fig. 3.4 that the uniaxial r-values resulting from the
mechanical testing are generally consistent with the data provided by the virtual
experiments. However, this is not the case if other quantities are considered. In

(a) (b)

(c)

Fig. 3.4 Initial characterization of plastic anisotropy obtained by means of the mechanical testing
and virtual experiments: a Lankford coefficient (r-value), b uniaxial yield stress, and c biaxial yield
stress and r-values. All yield stresses are scaled by the uniaxial yield stress along 0� to RD. The
legend in a applies also to the other plots. The initial experimental textures (cf. Fig. 3.3) were used
in the virtual experiments
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terms of the scaled uniaxial yield stresses, the virtual and the mechanical tests
predict opposite trends: the maximum around 45° is consistently obtained in all
virtual experiments, whereas the mechanical testing resulted in a minimum in this
direction. As can be seen in Fig. 3.3, the variability of the experimental normalized
uniaxial yield stress is bound in the range of (	0.97, 1.0), therefore only a minor
fluctuation of 	3 % is present. Therefore, it is perfectly possible that the experi-
mental result does not fully reflect the actual material behavior, since every mea-
surand includes certain measurement uncertainty. At this point it remains debatable
whether the crystal plasticity or the mechanical experiment provides better estimate
of the actual material behavior in the considered case. Another prominent difference
between the mechanical and the virtual testing is found at the equibiaxial yield
point. Apart from the discrepancy in magnitude, the crystal plasticity predicts pretty
much variation in the equibiaxial r-value, either below unity if the sharper
mid-plane texture is used, or above unity for the milder through-thickness texture.

All the multi-scale simulations presented in the subsequent paragraphs use the
macroscopic Swift hardening law

�rðemMÞ ¼ K emM þ e0ð Þn ð3:54Þ

where the coefficients K ¼ 479:7 MPa, n ¼ 0:239 and e0 ¼ 0:00096 were deter-
mined from the average of the mechanical uniaxial tensile tests.

Concerning the cup drawing experiments, a set of cups was formed on an
adapted Erichsen device. The following dimensions characterize the geometry of
the tools: punch diameter: 50 mm, punch lip radius: 6 mm, die diameter: 52.82 mm
and die lip radius: 3 mm, while the diameter of the blank is 90 mm. After the deep
drawing, cup profiles were measured and averaged over symmetrically equivalent
positions.

An Abaqus Explicit FE model was set up to reproduce the experimental cup
drawing setup. Due to the symmetry of the process, it is possible to simulate
one-quarter of the blank. To accelerate the computations, a mass scaling procedure
was used, although quasi-static conditions were ensured. The blank was discretized
using 3247 reduced integration wedge continuum shell elements (in Abaqus
nomenclature: SC6R). Although only one layer of elements was used, the elements
were set to include 3 integration points across the thickness. Frictional contact
between the blank and the tools (punch, die and blankholder) was controlled using
Coulomb law with the coefficient of friction l ¼ 0:2, which approximately corre-
sponds to conditions in a moderately lubricated steel-aluminum contact pair.

The HMS-BBC2008 simulations were executed on ten 12-core Westmare nodes.
On average it took 5 h for an HMS-BBC2008 simulation to complete, while each of
the corresponding Mech-BBC2008 and CP-BBC2008 simulations required 1 h on a
single node.

The results of the simulations and experiments are summarized in Fig. 3.5.
Although none of the simulations perfectly reproduces the experimental profile, it is
clear that the texture-based simulations deliver superior predictions of the earing
behavior. While the CP-BBC2008 and HMS-BBC2008 simulations both result in
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correctly positioned ears, the modeling that relies on mechanical testing
(Mech-BBC2008) wrongly predicts the ears at 45° w.r.t. RD.

Another aspect of the cup geometry prediction is related to the intensity of
texture used as the starting point. As it could be anticipated from Fig. 3.4, the
sharper mid-plane texture resulted in excessively pronounced ears. With respect to
the impact of anisotropy evolution on the macroscopic geometry, both
CP-BBC2008 and HMS-BBC2008 provide very similar cup profile prediction.
Although the results of HMS-BBC2008 are slightly closer to the experimental cup,
the improvement over CP-BBC2008 is only clearly visible if the sharper mid-plane
texture is used as the starting point. Furthermore, the correction due to anisotropy
evolution is very minor when the relative cup profile almost agrees with the
experimental cups.

This raises at least two questions: why the Mech-BBC2008 produces a con-
siderably different cup profile, and why the anisotropy evolution accounted for in
HMS-BBC2008 simulations results only in limited improvement over
CP-BBC2008.

The first question can be partly answered if we recall the most significant dis-
tinction between the mechanical testing and the texture-based virtual experiments
found in Fig. 3.4. The mechanical testing resulted in a minimum of uniaxial yield
stresses in the direction around 45° w.r.t. RD, as opposed to the virtual tests that
predict it elsewhere. This minimum may appear to be a factor associated with the
position of the valleys, for the reason that they correspond to higher resistance to
tension in both RD and TD.

The stress state in the flange, nevertheless, is dominantly imposed by the
geometry of the process. Furthermore, it considerably differs from uniaxial tension.
Depending on the radial position in the flange, it may vary from nearly pure
compression along the circumferential direction (at the outer rim) to a superposition
of tension along the radial direction and predominant compression along the cir-
cumference. Suppose the total strain tensor is expressed in a cylindrical coordinate

Fig. 3.5 Comparison of
experimental and predicted
relative cup profiles, scaled by
cup height at 0° w.r.t. RD
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system given by the axes ðer; ew; ezÞ. The origin of the coordinate system is fixed
and coincides with the centre of the blank, while the axes correspond to the radial
direction of the blank, angular position along the circumference and the sheet
normal, respectively. The ratio between the radial and tangential stress in a single
material point also changes while the process advances. It may be 	–0.1 at the
beginning of the process, whereas it may reach 	–0.8 when the material point
approaches the bending zone near the die lip. The plastic flow, which is a conse-
quence of the stress state, can be then described by the ratio

e ¼ err
eww

ð3:55Þ

between the radial and tangential strains (err and eww, respectively). Since the strain
components are in a direct relation with the yield locus through the strain rates
calculated from the normality rule, the e-ratio depends on the yield locus shape as
well. The strain evolution of the e-ratio was tracked in three finite elements, initially
located at identical radius r ¼ 40 mm along the RD, TD and 45� w.r.t. RD. Since
the instantaneous stress state is used, different points on the yield locus are probed.
The strain range was chosen to ensure that the considered material points remain
sufficiently far from the die lip, and at the same time rzz 	 0.

Figure 3.6 shows the e-ratio calculated for a subset of the considered cup drawing
simulations. For the sake of clarity, the figure includes just the results of the
Mech-BBC2008, and two CP-BBC2008 and HMS-BBC2008 that are both started
from the through-thickness texture. The most pronounced difference between the
two crystal plasticity based simulations and the one based on the mechanical testing
data is visible at the RD and TD locations. This particularly holds at the onset of the
plastic deformation, when the stress state in the given coordinate system remains
nearly identical in all the cases. Thus, the divergence in the material flow is most
likely attributed to the shape of the explored yield locus regions. It appears that the
relatively limited deviation from the uniaxial tension state results in probing the yield
surface in regions of remarkably different curvature.

Fig. 3.6 Evolution of e-ratio
as a function of equivalent
von Mises plastic strain in the
cup drawing simulations at
the selected points in the
flange: RD, 45� to RD and
TD: Mech-BBC2008 (closed
black symbols), CP-BBC2008
(open blue symbols) and
HMS-BBC2008 (open red
symbols), respectively (Color
figure online)
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If the yield locus model is calibrated primarily to the uniaxial tension data, as it
is the case if the mechanical testing data are used, the regions of the yield locus that
are actually reached in the cup drawing simulation are relatively distant from the
measurement points. The yield loci derived from the virtual experiments, by con-
trast, are constructed by exploiting data points of various stress ratios. One may
hence expect these yield loci to be more reliable, since the stress states more
relevant to the cup drawing process are sampled.

Figure 3.6a also offers a hint why and the anisotropy evolution has only a minor
effect on the cup profile. It is clearly visible that the strain history of the e-ratio
coincides in the CP-BBC2008 and HMS-BBC2008 simulations only until the very
first update of the yield locus model. Nonetheless, the subsequent change in the
flow direction appears minor.

To explain this, let us examine how the fine-scale material state evolves and to
what extent it impacts the anisotropy. Figure 3.7 presents an example of simulated
cups with a superimposed field showing the count of anisotropy updates. As can be
expected from Eq. (3.1), the field variable is tightly correlated with the magnitude
of the plastic strain. Thus, the regions of the highest plastic strain have been updated
multiple times and possibly the texture has been altered to a large extent. This is
indeed the case, as seen in Fig. 3.8 showing the texture index derived from the
micro-scale state and superimposed on the deformed finite element mesh. In both
HMS-BBC2008 simulations we can observe a complex texture pattern that
develops in the formed cup. It is remarkable that the overall texture sharpness
rapidly decreases if the stronger mid-plane texture is used as the starting point,
whereas the milder through-thickness texture in certain zones of the cup slightly
intensifies.

It is difficult to examine evolution histories in all individual integration points.
Let us then explore more in detail how the micro-scale material state and anisotropy
evolve in a selected integration point located approximately 3 away from the cup
rim at the RD. Figure 3.9 presents the final deformation textures that the
HMS-BBC2008 model predicted in that location. In principle, texture evolution
may destroy the original orthorhombic symmetry (as it was used in Fig. 3.3), thus
no symmetries are imposed in the figure. The ODFs are plotted in the coordinate
system coinciding with the material co-rotational reference frame. A visual
inspection reveals a substantial change from the initial ODFs shown in Fig. 3.3.
Even though the Cube component remains the most intense texture feature, a new
texture component is regularly found. The Cu (Copper) component of varying
intensity emerges in both analyzed textures, most remarkably in the evolved
mid-plane texture, where it appears almost equally pronounced as the Cube com-
ponent. Interestingly, the Goss component remains at similar intensity level as it
used to be in the initial textures. At this point we may conclude the texture has
undergone a considerable evolution during the deformation.

One might expect that not only the texture but also the anisotropic properties
shall be far from the initial ones. The local anisotropy indeed evolves, as shown in
yield loci shown in Fig. 3.10. The initial yield locus and the one that evolved at the
considered location are substantially different, yet the largest changes are seen in the
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Fig. 3.7 Number of updates of texture and anisotropy in the HMS-BBC2008 simulations,
presented as a field projected on the final cups (symmetries on the XZ and YZ planes are
superimposed). aMid-plane texture, and b through-thickness texture are used as the initial textures
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Fig. 3.8 Texture index at successive deformation stages superimposed on the deformed FE mesh
in simulations started from a mid-plane texture (initial TI = 4.96), and b through-thickness texture
(initial TI = 2.45), respectively
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Fig. 3.9 /2 ¼ 45� ODF sections (with /1 and U on the horizontal and the vertical axis,
respectively) of the final texture textures that evolved from: a mid-plane texture (TI = 3.05), and
b through-thickness texture (TI = 2.26) in the analysed position. Both sections are presented in the
identical corotational reference frame, which initially was given by x1 ¼ RD, x2 ¼ TD and x3 is
the normal to the sheet
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yield locus regions that are not active in the cup drawing process. This basically
suggests a texture-induced cross-effect, which partly explains limited impact of
texture evolution on the macroscopic geometry of the cup. Figure 3.11 summarises
the uniaxial characteristics of plastic anisotropy that were obtained for the final
deformation textures in the same geometrical location. With regard to the effects of
texture evolution on the plastic behavior under uniaxial loading, the r-values are
moderately affected. Much more complex evolution is observed when the uniaxial
yield stresses are considered. Those not only tend to decrease, but the monotonicity
is influenced as well: the maximum at direction 45� in the initial material clearly
diminishes for the mid-plane texture.

Let us finally check a key aspect in the adaptive hierarchical modelling, namely
the ability of the macroscopic yield locus to provide a good approximation of
virtual experiments. From Fig. 3.11, which also shows how the BBC2008p16
predicts uniaxial material response, it is clear that the BBC2008 reproduces the
virtual experiments remarkably well and is generally capable of following the
changes in anisotropy that occur during the deformation.

3.3.4 Other Concepts in Multi-scale Modelling of Plastic
Anisotropy

It is hardly possible to give a complete and comprehensive overview of all the
concepts that have been investigated in the field of multi-scale modelling of plastic
anisotropy. In this short section we want to mention a few interesting approaches
that explore areas beyond the scope presented in the previous sections.

(a) (b)

Fig. 3.10 Comparison of the initial and final yield loci obtained in the HMS-BBC2008
simulations that used a mid-plane texture, and b through-thickness texture, respectively
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One of such concepts is to develop a macroscopic constitutive model that would
allow deriving the current plastic anisotropy directly from instantaneous crystal-
lographic texture or from constituents of crystal plasticity frameworks, see e.g.
Arminjon and Bacroix (1991), Kowalczyk and Gambin (2004), Tsotsova and
Böhlke (2009). Several attempts to derive macroscopic yield loci directly from
texture data (i.e. without using any CP framework) have been reported in the
literature. For instance, one can try to associate various texture components with
their contributions to the global mechanical behaviour. This way an analytical yield
locus can be constructed, as it has been tested in Darrieulat and Montheillet (2003),
Darrieulat and Piot (1996). The authors investigated how parameters of quadratic
Hill yield criterion can be analytically derived for the most common rolling tex-
tures. In the further step, a rule of mixture was followed to construct the Hill
criterion that combines contributions from individual texture components.
However, this method silently ignores the contribution from minor texture com-
ponents, which may be more than subtle if interactions between the contributing
terms play a role.

(a)

(b)

Fig. 3.11 a r-values, and
b scaled uniaxial yield
stresses calculated from
evolved textures in the
simulated fully formed cups:
ALAMEL-based virtual
experiments (symbols),
BBC2008 local yield locus
calibrated to the virtual
experiments (lines). The
legend in a applies to both
plots

124 J. Gawad et al.



As the CP appears to set more reliable and robust means to recover mechanical
data from the microstructure, computational performance of virtual experiments
becomes crucial. This point is recognized for instance in the Reduced Texture
Methodology (RTM) proposed in Rousselier and Leclercq (2006), Rousselier et al.
(2009). The RTM aims neither at a complete representation of the real material
texture, nor at an accurate modeling of its evolution, but it focuses on accelerating
the virtual experiments. This can be achieved by simplifying the crystal plasticity
model (e.g. Rousselier and Leclercq 2006). At the expense of dropping certain
physical grounds, some computational gains can be reached. For example, a con-
cept of individual crystals with smooth yield surfaces was investigated in Arminjon
and Bacroix (1991), Gambin and Barlat (1997), Gambin (1992), Zamiri et al.
(2007), Zamiri and Pourboghrat (2010), among others. In this formulation one yield
function is used at the crystal level to calculate the crystal spin and the shear rates at
the same time. Since these yield surfaces have rounded corners, as opposed to
crystal yield surfaces calculated by resolving slip systems, the problem of
non-uniqueness in the choice of active slip systems vanishes.

Since simplifications in the fundamental parts of the crystal plasticity may
possibly impair predictive capabilities of the model, another way of accelerating
virtual experiments (or to put it broader: enhancing computational performance of
RVEs) is to reduce the number of crystal orientations per integration point of the
macroscopic FE mesh. This is built on an observation that in many cases crystal-
lographic textures can be approximated by a rather small number of texture com-
ponents. Several attempts have been proposed to limit the number of orientations
that have to be processed by the crystal plasticity while retaining a good prediction
of both texture and anisotropy evolution, see e.g. Béringhier et al. (2007), Böhlke
et al. (2005), Delannay et al. (2005), Knezevic and Landry (2015), Logé and
Chastel (2006), Raabe et al. (2004), Raabe and Roters (2004), Roters (2005), Zhao
et al. (2004).
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