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Preface

Virtual fabrication is a key ingredient for increasing the competitiveness of the
industry, by reducing the time from concept to market and by increasing quality and
reliability of the final product. Pushing more and more tasks from the usual
design/test/redesign cycles to the computer-based testing of a virtual prototype
reduces dramatically the research and development phase. In the metal forming
industry an important part of the virtual factory relies on the numerical simulation
of sheet metal forming processes by finite element (FE) programs. Among other
factors, the success of an FE simulation depends essentially on the accuracy of the
constitutive model describing the plastic behaviour of the sheet. Recent advances in
the modelling of metals include the modelling of structural inhomogeneities,
damage, porosity, twinning/untwining, non-local and second-order effects. Virtually
all materials used in the metal forming industry today are anisotropic (material
properties are not the same in every direction), showing both as-received (initial)
anisotropy and evolving anisotropy related to plastic deformation processes. Plastic
anisotropy can be most easily explained by the microstructure of the material.

The book gives a synthetic presentation of the research performed in the field of
multiscale modelling in sheet metal forming during more than thirty years by the
members of five international teams from Technical University of Cluj-Napoca,
Romania; KU Leuven, Belgium; Clausthal University of Technology, Germany;
Amirkabir University of Technology, Iran; University of Bucharest, Romania and
Institute of Mathematics of the Romanian Academy, Romania.

Chapter 1 is devoted to the presentation of some recent phenomenological yield
criteria. As this chapter is only a synthetic overview of the yield criteria, the reader
interested in some particular formulation should also read the original papers listed
in the reference section. This chapter gives a more detailed presentation of the yield
criteria implemented in the commercial programs used for the finite element sim-
ulation (emphasizing the formulations proposed by the CERTETA team—
BBC2005 and BBC2008 models) or the yield criteria having a major impact on the
research progress.

An overview of the crystallographic texture and plastic anisotropy is presented in
Chap. 2. After an introduction in the structure of polycrystalline materials and
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crystallographic texture the authors present the main equipment and methods for the
experimental determination of textures. The relation between texture and properties
of materials is also analyzed in a subchapter. An extended subchapter presents
different models used for polycrystalline materials with reference in particular to the
Taylor model (Full-Constraints).

Chapter 3 is dedicated to multiscale modelling of plastic anisotropy. After an
introduction in the topic the authors present the multiscale frameworks in crystal
plasticity. The statistical crystal plasticity and the full-field approaches are presented
in this section. The main section of this chapter is focused on the hierarchical
multiscale approaches. A new hierarchical multiscale framework is presented that
allows taking into account the evolution of the plastic anisotropy during sheet
forming processes. This approach was followed, in which the fine-scale model
provides data needed for identification of the macroscopic one. Generally, the
crystal plasticity models have to be evaluated for a huge number of possible stress
or strain-rate modes, sometimes exceeding one million realizations. This inspired
works that aim at decreasing the computational effort related to virtual experiments.
A possible way to capture the influence of microstructural changes on the aniso-
tropic response is to use the crystal plasticity model to calculate some quantities of
interest in advance and approximate these in the macroscopic simulation. The
evolution of crystallographic texture, which is identified as the main source of the
plastic anisotropy, is predicted by the ALAMEL crystal plasticity model. An
extension to the phenomenological anisotropic plane-stress yield criterion
BBC2008 is proposed, which provides adaptive updates of the local anisotropy in
the integration points of the macroscopic finite element model. To this end, the
BBC2008 is systematically recalibrated to data provided by the crystal plasticity
virtual experiment framework (VEF). An enhanced identification algorithm is
proposed. The new algorithm exploits comprehensive material characterization
delivered by the VEF. The deep drawing of cylindrical cups is used as a benchmark
case to validate the model.

Chapter 4 is focused on the modelling of the void growth in ductile fracture.
First is presented a short introduction to Gurson-type models for predicting the
fracture of ductile metals. After that an application of some anisotropic extensions
of the Gurson–Tvergaard–Needleman model to the prediction of fracture in a sheet
deep drawing simulation, including the identification of material parameters from
tensile tests performed on sheets is presented. Having concluded that the optimal
Gurson-type model for sheets must consider ellipsoidal voids and non-quadratic
anisotropic yield criteria, the attention is focused on three such advanced yield
criteria—Yld91, Yld2004-18p and BBC2005. A new method based on convex
analysis to derive analytical expressions for the dissipation functions of these yield
criteria is presented. The expressions thus obtained are not fully explicit and require
some supplementary minimizations; however, it is shown that such forms are
compatible with the development of Gurson-type models. In a second step Gurson’s
model is extended to non-quadratic yield criteria where the “cosh” term is replaced
by some other function. In order to calibrate these new models, the Lee and Mear
family of spheroidal axisymmetric and incompressible velocity fields are extended
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to the general ellipsoidal case. The method used is based on a Piola transform of the
spherical Mie decomposition to a new ellipsoidal Mie decomposition. This forms
the basis of a spectral method to solve the limit-analysis problem for a spheroidal
void in a confocal unit cell. Using this spectral method to find an approximate
solution in the case of a hydrostatic macroscopic stress state provides the optimal
velocity field describing the expansion of the cavity. The knowledge of this velocity
field for a given geometry permits the calibration of the remaining parameters in
Gurson-type models. At variance with previous works, the authors have not tried to
fit analytical approximations to the calibrated parameters. For a given yield crite-
rion, it has been proposed to use a new fast calibration to tabulate all parameters as
functions of void geometry and porosity and to use interpolation in these tables in a
finite element simulation. The new tools and techniques presented in this chapter
open the way to build Gurson-type models for new anisotropic yield criteria and
general ellipsoidal voids.

The advanced models for the prediction of forming limit curves are presented in
Chap. 5. After presenting different types of defects in sheet metal forming opera-
tions, the discussion focuses on the Forming Limit Curves (FLC). Classical and
original theoretical models for the prediction of FLCs are presented in detail. In this
context, the authors emphasize their contributions to the mathematical modelling of
FLCs, namely: an original implicit formulation of the Hutchinson–Neale model, a
modified model based on localized and diffuse necking, an original model based on
the non-zero through-thickness shear stress effect on the FLC, a model without
initial inhomogeneity and a model using the Gurson–Tvergaard–Needleman
(GTN) theory. A subchapter is dedicated to the comparison of the FLC’s predicted
by different theoretical models. The commercial programs (emphasizing the
FORM-CERT program developed at the CERTETA centre) and the semi-empirical
models for FLC prediction are presented in the last sections of the chapter.

Chapter 6 is devoted to anisotropic damage in elasto-plastic materials with
structural defects. The material is damaged when the microstructural changes, like
microcracks and microvoids, take place in the material (at the microstructural level)
and no macrocracks can be observed. The failure is characterized by dominant
macro cracks, which are generated as an ultimate stage during the damage
(microstructural) process of the material. The author assumed that the plastic flow
and the development of the microvoid and microcracks are distinct irreversible
mechanisms produced during the deformation process. In contrast to the plastic
behaviour, the damage affects the material elastic properties. The chapter deals with
finite elasto-plastic models, which involve the defect density tensor, as a measure
of the defects existing in the damaged microstructure. The author extended to finite
deformation the relationships between the continuum theory of lattice defects and
non-Euclidean geometry in the linear approximation, which have been presented
(from geometrical aspects only) within the small strain constitutive framework. The
evolution equations for the plastic distortion and the defect density tensor are
compatible with the free energy imbalance on the isothermal processes, which
describes the dissipative nature for the irreversible behaviour.
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Chapter 7 deals with modelling the Portevin–Le Chatelier (PLC) effect. An
elastic-viscoplastic model of McCormick type incorporating dynamic strain ageing
and negative strain-rate sensitivity is considered. A methodology for the identifi-
cation of the unstable PLC range of strain rates and mechanical parameters is
considered by using a bifurcation analysis of spatial homogeneous processes.
A critical condition on material parameters for the PLC effect is established. The
loss of homogeneity and the strain localization phenomena are investigated
numerically for both constant strain-rate and stress-rate experiments. The sensitivity
of the model to the mode of testing is investigated. The influence of the testing
machine is not taken into account by adding a machine equation, but by considering
mixed stress- and strain-controlled boundary conditions. A discussion and com-
parison with existing models in the literature is also provided.

The book is of interest to both the research and industrial communities. It is
useful for the students, doctoral fellows, researchers and engineers who are mainly
interested in the material modelling and numerical simulation of sheet metal
forming processes.

Cluj-Napoca, Romania Prof. Dorel Banabic
May 2016
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Chapter 1
Plastic Behaviour of Sheet Metals

Dorel Banabic, Dan-Sorin Comsa and Jerzy Gawad

1.1 Anisotropy of Sheet Metals

1.1.1 Uniaxial Characteristics of Plastic Anisotropy

Due to the rolling process, sheet metals generally exhibit a significant anisotropy. In
fact, the rolling process induces a particular anisotropy characterised by the symmetry
of the mechanical properties with respect to three orthogonal planes. Such a mechanical
behaviour is called orthotropy. The intersection lines of the symmetry planes are the
orthotropy axes. In the case of rolled sheet metals, their orientation is as follows: rolling
direction (RD); transverse direction (TD); normal direction (ND).

In practice, the variation of the plastic behaviour with direction is usually
assessed by means of the uniaxial yield stress and the so-called anisotropy
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(or Lankford) coefficient (Lankford et al. 1950). These characteristic are determined
by tensile tests performed on sheet specimens in the form of a strip. The anisotropy
coefficient r is defined by

r ¼ e22=e33 ð1:1Þ

where e22; e33 are the strains in the width and thickness directions, respectively. In
the case of an isotropic material, the coefficient is one because the width and
thickness strains have the same value. If the coefficient is greater than one, the
width strains will be dominant (the “thinning resistance’ is more pronounced). On
the other hand, for materials having a coefficient less than one, the thickness strains
will dominate. Equation (1.1) can be written in the form

r ¼ ln
w
w0

� ��
ln

t
t0

� �
ð1:2Þ

where w0 and w are the initial and final width of the specimen, while t0 and t are its
initial and final thickness, respectively. As the thickness is very small compared to
the width, the relative errors of measurement of the two strains will be quite
different. Therefore Eq. (1.1) is replaced by another relationship involving quan-
tities having the same order of magnitude: length and width of the specimen.
Taking into account the condition of volume constancy

e11 þ e22 þ e33 ¼ 0 ð1:3Þ

the following form of Eq. (1.1) is obtained

r ¼ �e22= e11 þ e22ð Þ ð1:4Þ

and Eq. (1.2) becomes

r ¼ � ln
w
w0

� ��
ln

l
l0

þ ln
w
w0

� �
ð1:5Þ

where l0 and l are the initial and final gage length of the specimen. Equation (1.5)
can be rearranged as follows:

r ¼ ln
w
w0

� ��
ln
l0w0

l w

� �
ð1:6Þ

This relationship is used in practice for evaluating the anisotropy coefficient.
Experiments show that r depends on the in-plane direction. If the tensile spec-

imen is cut having its longitudinal axis inclined with the angle h to the rolling
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direction, the coefficient rh is obtained. The subscript specifies the angle between
the axis of the specimen and the rolling direction.

An important element characterising the performances of a yield criterion is the
capability to predict the variations of the uniaxial yield stress and coefficient of
plastic anisotropy in the plane of the sheet metal.

In order to assess the capability of yield criteria to describe the anisotropy of
metallic sheets, we shall establish relationships defining the dependence of the
parameters mentioned above on the angle h measured from the rolling direction.

Let us denote by Yh the uniaxial yield stress corresponding to the direction
inclined at the angle h with respect to the rolling direction. In the case of a uniaxial
load, the components of the stress tensor can be expressed as follows:

r11 ¼ Yh cos2 h; r22 ¼ Yh sin2 h; r21 ¼ r12 ¼ Yh sin h cos h ð1:7Þ

By replacing Eq. (1.7) in the relationship defining the equivalent stress �r and taking
into account its first-degree homogeneity, we obtain:

�rjh¼ YhFh ð1:8Þ

where Fh is a function depending on the angle h. Of course, Fh is defined according
to the specific formulation of the equivalent stress. If we combine Eq. (1.8) with the
consistence condition,

Uð�r; YÞ :¼ �r� YðhÞ ¼ 0 ð1:9Þ

where Uð�r; YÞ is the yield function associated to the yield criterion, Y—yield stress,
h—scalar parameter defining the plastic strain accumulated by the material, we get:

Yh ¼ YðhÞ=Fh ð1:10Þ

Equation (1.10) defines the uniaxial yield stress corresponding to the planar
direction identified by the angle h. If the reference yield stress is selected to be the
one corresponding to the rolling direction (YðhÞ ¼ r0), we obtain the following
relationship:

Yh ¼ r0=Fh ð1:11Þ

In this case, the yield stress corresponding to some planar direction will depend
only on the yield stress associated to the rolling direction and the function Fh

(which is related to the yield criterion adopted in the model). The determination of
the function Fh will be presented in the next subchapters, for each type of yield
criterion.

In a similar way, we can establish the relationship defining the variation of the
coefficient of plastic anisotropy in the plane of the sheet metal. Let us consider the
specimen inclined at the angle h with respect to the rolling direction. According to
Eq. (1.1), the instantaneous coefficient of plastic anisotropy rh is defined as the ratio
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of the plastic strain rates associated to the width (inclined at the angle h + 90° with
respect to the rolling direction), _ehþ 90, and thickness, _e33:

rh ¼ _ehþ 90=_e33 ð1:12Þ

Taking into account the incompressibility restraint (see Eq. (1.3)), as well as the
expressions of the strain rate components along the principal directions,

_eh ¼ _e11 cos2 hþ _e22 sin2 hþ _e12 sin h cos h; _e33 ¼ �ð_e11 þ _e22Þ ð1:13Þ

we obtain the relationship defining the coefficient of plastic anisotropy associated to
the direction h:

rh ¼ _e11 cos2 hþ _e22 sin2 hþ _e12 sin h cos h
_e11 þ _e22

� 1 ð1:14Þ

Equation (1.14) can be rewritten in terms of the stress components if the associated
flow rule is used:

rh ¼
r11 @�r

@r11
þ r22 @�r

@r22
þ r12 @�r

@r12

� �
h

r11 @�r
@r11

þ r22 @�r
@r22

� �
h

� 1 ð1:15Þ

By coupling Eq. (1.15) with Euler’s identity, we obtain:

rh ¼ �rjh
Yh @�r

@r11
þ @�r

@r22

� �
h

� 1 ð1:16Þ

Finally, after replacing Eq. (1.8) in the last relationship, we get:

rh ¼ Fh

@�r
@r11

þ @�r
@r22

� �
h

� 1 ð1:17Þ

This formula defines the coefficient of plastic anisotropy as a dependence of the
specimen inclination. In order to make use of it, we need the expression of the
equivalent stress and the function Fh, both of them being specific to the yield
criterion adopted in the plasticity model. The planar distribution of the coefficient of
plastic anisotropy will be determined in the next subchapters, for different yield
criteria.

The average of the r-values obtained for different directions in the plane of the
sheet metal represents the so-called coefficient of normal anisotropy rn. Having
determined the values of r at specimens cut along three directions in the plane of the
sheet metal (0°, 45°, 90°, respectively), the coefficient of normal anisotropy is
determined by:
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rn ¼ r0 þ 2r45 þ r90ð Þ=4 ð1:18Þ

A measure of the variation of normal anisotropy with the angle to the rolling
direction is given by the quantity:

Dr ¼ r0 þ r90 � 2r45ð Þ=2 ð1:19Þ

known as planar anisotropy. This quantity is related to the earring amplitude of the
deep-drawn cups.

1.1.2 Biaxial Characteristics of Plastic Anisotropy

The experimental research has proved that the yield surfaces are not symmetric in
the biaxial region (Banabic and Wagner 2002; Barlat et al. 2003). This fact is also a
consequence of the plastic anisotropy. In order to give a quantitative description of
such a behaviour, the so-called coefficient of biaxial anisotropy has been defined
independently by Barlat et al. (2003), Pöhlandt et al. (2002). Barlat and his
co-workers (Barlat et al. 2003) have proposed the use of a compression test for the
experimental determination of this mechanical parameter. A set of circular speci-
mens are subjected to a normal pressure. Due to the plastic anisotropy, the discs
become elliptic during the compression. By measuring the major and minor axes of
the elliptic specimen, the corresponding principal strains can be evaluated.

As in the case of the uniaxial traction, the ratio of the principal strains will define
the coefficient of biaxial anisotropy:

rb ¼ e22=e11 ð1:20Þ

If the material is isotropic, the coefficient will be one. The more pronounced is the
anisotropy, the farther is the coefficient from unity. This parameter is a direct
measure of the slope of the yield locus at the balanced biaxial stress state. As in the
case of the uniaxial coefficient of plastic anisotropy, we shall define a general
relationship defining the biaxial coefficient. The relationship will be usable for any
yield criterion.

In the case of biaxial tension along the rolling and transverse directions, the
planar stress components can be expressed as

r11 ¼ r22 ¼ Yb; r21 ¼ r12 ¼ 0 ð1:21Þ

where, Yb is the theoretical biaxial yield stress. Consequently, the equivalent stress
becomes:

1 Plastic Behaviour of Sheet Metals 5



�rjb¼ YbFb ð1:22Þ

Here, Fb is a quantity depending on the yield criterion adopted in the plasticity
model. Equation (1.22) provides the expression of the theoretical biaxial yield
stress:

Yb ¼ YðhÞ=Fb ð1:23Þ

In a very close analogy with the case of the uniaxial coefficient of plastic anisotropy
(see Eqs. (1.12)–(1.17)), one may deduce the relationship defining the coefficient of
biaxial plastic anisotropy:

rb ¼ Fb

@�r
@r11

���
b

� 1 ð1:24Þ

This relationship involves only the parameter Fb and the expression of the equiv-
alent stress, both of them being specific to the yield criterion adopted in the plas-
ticity model. The determination of the biaxial coefficient of anisotropy will be
presented in the next subchapters, for different yield criteria.

1.2 Classical Yield Criteria for Anisotropic Sheet Metals

1.2.1 Hill (1948) Yield Criterion

In 1948 Hill (1948) proposed an anisotropic yield criterion as a generalization of the
von Mises isotropic yield criterion. The material is supposed to have an anisotropy
with three orthogonal symmetry planes. The yield criterion is expressed by a
quadratic function of the following type:

2f rij
� 	 � F r22 � r33ð Þ2 þG r33 � r11ð Þ2 þH r11 � r22ð Þ2

þ 2Lr223 þ 2Mr231 þ 2Nr212 ¼ 1
ð1:25Þ

Here f is the yield function; F, G, H, L, M and N are constants specific to the
anisotropy state of the material, and x, y, z are the principal anisotropic axes. In the
case of sheet metals, axis 1 is usually parallel to the rolling direction, 2 is parallel to
the transverse direction and 3 is collinear with the normal direction. For plane stress
ðr33 ¼ r31 ¼ r23 ¼ 0; r11 6¼ 0; r22 6¼ 0; r12 6¼ 0Þ; the yield criterion becomes

2f rij
� 	 � GþHð Þr211 � 2Hr11r22 þ HþFð Þr222 þ 2Nr212 ¼ 1 ð1:26Þ

If we take into account Eqs. (1.26) and (1.7), the equivalent stress can be expressed as

6 D. Banabic et al.



�r ¼ Yh F sin4 hþG cos4 hþH cos2 2hþ 1
2
N sin2 2h


 �1
2

ð1:27Þ

Consequently, Fh will be defined by the relationship

Fh ¼ F sin4 hþG cos4 hþH cos2 2hþ 1
2
N sin2 2h


 �1
2

ð1:28Þ

In the case of the Hill’48 yield criterion, the uniaxial yield stress corresponding to a
direction inclined at the angle h with respect to the rolling direction is

Yh ¼ YðhÞ
½F sin4 hþG cos4 hþH cos2 2hþ 1

2N sin2 2h�12
ð1:29Þ

If the yield parameter Y(h) is set equal to the uniaxial yield stress ru, the uniaxial
yield stress predicted by this criterion is

Y0 ¼ ruffiffiffiffiffiffiffiffiffiffiffiffiffi
GþH

p : ð1:30Þ

The expression of the uniaxial coefficient of plastic anisotropy predicted by the
Hill’48 yield criterion is obtained by replacing Eq. (1.28) in Eq. (1.17):

rh ¼ F sin4 hþG cos4 hþH cos2 2hþ 1
2N sin2 2h

F sin2 hþG cos2 h
� 1 ð1:31Þ

Equations (1.30) and (1.31) are used for predicting the uniaxial yield stress and
coefficient of plastic anisotropy, in the case when the parameters F, G, H and N of the
Hill’48 yield criterion are related to the experimental yield stress ru and the experi-
mental coefficients of plastic anisotropy r0, r45 and r90. The identification of the yield
criterion can be also performed by using three experimental values of the yield stress
and one experimental value of the coefficient of plastic anisotropy.

1.2.2 Barlat (1989) Yield Criterion

Barlat and Richmond (1987) proposed a more general form of Hosford’s criterion
for isotropic materials (Hosford 1972) by expressing it in an x, y, z coordinate
system, not necessarily coincident with the principal directions (the so-called ‘tri-
component plane stress yield surface’):

f ¼ k1 þ k2j jM þ k1 � k2j jM þ 2k2j jM¼ 2�rM ð1:32Þ

1 Plastic Behaviour of Sheet Metals 7



Here k1 and k2 are invariants of the stress tensor whileM is an integer exponent having
the same significance as the exponent used by Hosford; k1 and k2 are obtained from

k1 ¼ r11 þ r22
2

; k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11 � r22

2

� �2
þ r212

r
ð1:33Þ

In 1989, Barlat and Lian (1989) published a generalisation of Eqs. (1.32) and (1.33)
for materials exhibiting planar anisotropy by introducing the following yield
function:

f ¼ a k1 þ k2j jM þ a k1 � k2j jM þð1� aÞ 2k2j jM¼ �rM ð1:34Þ

The coefficients k1 and k2 are given by

k1 ¼ r11 þ hr22
2

; k2 ¼ r11 � hr22
2

� �2

þ p2r212

" #1
2

ð1:35Þ

while a, h and p are material parameters.
In order to establish the expression of the uniaxial yield stress, Eq. (1.7) will be

replaced in Eqs. (1.34) and (1.35). We get the relationship

Yh ¼ Y0

½aðF1 þF2ÞM þ aðF1 � F2ÞM þð1� aÞð2F2ÞM �
1
M

ð1:36Þ

where

F1 ¼ h sin2 hþ cos2 h
2

; F2 ¼ h sin2 h� cos2 h
2

� �2

þ p2 sin2 h cos2 h

" #1
2

ð1:37Þ

The function Fh is obtained from Eq. (1.36):

Fh ¼ ½aðF1 þF2ÞM þ aðF1 � F2ÞM þð1� aÞð2F2ÞM �
1
M ð1:38Þ

The yield parameter Y(h) in Eq. (1.36) has been set equal to the uniaxial yield stress
corresponding to the rolling direction (Y(h) = Y0).

By replacing in Eq. (1.17) the Fh expression given by Eq. (1.38) and performing
some computations, we get the relationship defining the coefficient of plastic
anisotropy:

rh ¼ aðF1 þF2ÞM þ aðF1 � F2ÞM þð1� aÞð2F2ÞM
aðF1 þF2ÞM�1ðt1 þ t2Þþ aðF1 � F2ÞM�1ðt1 � t2Þþ 2ð1� aÞð2F2ÞM�1t2

� 1

ð1:39Þ
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where

t1 ¼ hþ 1
2

;

t2 ¼ ðh� 1Þðh sin2 h� cos2 hÞ
4F2

ð1:40Þ

Equations (1.36) and (1.39) allow the calculation of the uniaxial yield stress and the
coefficient of plastic anisotropy corresponding to different directions in the plane of
the sheet metal.

In 1991, Barlat proposed a 3D extension of his yield criterion (Barlat et al.
1991). Banabic and his coworkers (Banabic et al. 2000; Banabic et al. 2003;
Banabic et al. 2005) also proposed extensions of the (Barlat and Lian 1989) yield
criterion (with seven and eight coefficients), aiming to remove some of its intrinsic
limitations.

1.3 BBC (2005) Yield Criterion

1.3.1 Equation of the Yield Surface

The sheet metal is assumed to behave as a plastically orthotropic membrane under
plane stress conditions. By making this assumption, we can use the following
description of the yield surface:

U rab; Y
� 	

:¼ r rab
� 	 � Y ¼ 0 ð1:41Þ

where r rab
� 	

[ 0 is the BBC (2005) equivalent stress (see next section), Y [ 0 is a
yield parameter, and rab ¼ rba a; b ¼ 1; 2ð Þ are planar components of the stress
tensor expressed in an orthonormal basis superimposed to the axes of plastic
orthotropy: 1—rolling direction (RD), 2—transverse direction (TD), 3—normal
direction (ND). The other components are subjected to the restriction

r3i ¼ ri3 ¼ 0; i ¼ 1; 2; 3ð Þ ð1:42Þ

arising from the plane stress hypothesis. Whenever not clearly specified, we shall
use the following convention: Greek indices take the values 1 and 2, while the Latin
ones take the values 1, 2 and 3.

The BBC (2005) yield criterion does not enforce some special constraints on the
choice of the yield parameter ðYÞ. In fact, any quantity representing a yield stress

1 Plastic Behaviour of Sheet Metals 9



can act as Y . For example, Y may be the uniaxial yield stress Yh associated to a
direction defined by the angle h measured from RD, an average of several uniaxial
yield stresses, or the biaxial yield stress Yb associated to RD and TD.

1.3.2 Flow Rule Associated to the Yield Surface

The flow rule associated to the yield surface described by Eq. (1.41) is

_epab ¼ _k
@U
@rab

; a; b ¼ 1; 2 ð1:43Þ

where _epab ¼ _epab a; b ¼ 1; 2ð Þ are planar components of the plastic strain-rate tensor
(expressed in the same basis as the corresponding components of the stress tensor),
and _k� 0 is a scalar multiplier (its significance is not essential for our discussion).
The out of plane components of the plastic strain-rate tensor are subjected to the
restrictions

_ep3a ¼ _epa3 ¼ 0; a ¼ 1; 2 ð1:44Þ

_ep33 ¼ �_ep11 � _ep22 ð1:45Þ

arising from the plane stress hypothesis and the isochoric character of the plastic
deformation.

When using Eq. (1.43) we need the partial derivatives of the function U with
respect to the planar components of the stress tensor. Equation (1.41) allows us to
calculate them as partial derivatives of the equivalent stress:

@U
@rab

¼ @r
@rab

; a; b ¼ 1; 2 ð1:46Þ

1.3.3 BBC (2005) Equivalent Stress

The equivalent stress used in Eq. (1.41) is defined by the following formula:

�r ¼ a KþCð Þ2k þ a K� Cð Þ2k þ b KþWð Þ2k þ b K�Wð Þ2k
h i 1

2k ð1:47Þ
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where k 2 N� and a; b[ 0 are material parameters, while C, K and W are functions
depending on the planar components of the stress tensor:

C ¼ Lr11 þMr22

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nr11 � Pr22ð Þ2 þ r12r21

q
W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qr11 � Rr22ð Þ2 þ r12r21

q ð1:48Þ

The coefficients L;M;N;P;Q; and R involved in Eqs. (1.48) are also material
parameters.

Despite the fact that Eqs. (1.47) and (1.48) do not enforce any constraint on the
sign of the coefficients L;M;N;P;Q; and R, the numerical tests performed by the
authors have shown that positive values of these parameters lead to better predic-
tions of the BBC (2005) yield criterion.

The conditions k 2 N� 1 and a; b[ 0 ensure the convexity of the yield surface
defined by Eqs. (1.41), (1.47) and (1.48). The parameters L;M;N;P;Q; and R are
not subjected to any constraint from this point of view.

Nine material parameters are involved in the expression of the BBC (2005)
equivalent stress: k; a; b; L;M;N;P;Q; and R (see Eqs. (1.47) and (1.48)). The
integer exponent k has a special status, due to the fact that its value is fixed from the
very beginning in accordance with the crystallographic structure of the material:
k ¼ 3 for BCC materials, k ¼ 4 for FCC materials.

The identification procedure calculates the other parameters (a; b;L;M;N;P;Q;
and R) by forcing the constitutive equations associated to the BBC (2005) yield
criterion to reproduce the following experimental data:

• The uniaxial yield stresses associated to the directions defined by 0°, 45° and
90° angles measured from RD (denoted as Y0; Y45 and Y90)

• The coefficients of uniaxial plastic anisotropy associated to the directions
defined by 0°, 45° and 90° angles measured from RD (denoted as r0; r45 and
r90)

• The biaxial yield stress associated to RD and TD (denoted as Yb)
• The coefficient of biaxial plastic anisotropy associated to RD and TD (denoted

as rb).

There are 8 constraints acting on 8 material parameters. The identification
procedure has enough data to generate a set of equations having a; b; L;M;N;P;Q;
and R as unknowns. The structure of this set of equations, as well as the solution
strategy will be presented in the next section.

When using the flow rule given by Eq. (1.43), we need the partial derivatives of
the function U with respect to the planar components of the stress tensor.
Equations (1.46), (1.47) and (1.48) lead to the following formula:
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@U
@rab

¼ @�r
@C

@C
@rab

þ @�r
@K

@K
@rab

þ @�r
@W

@W
@rab

; a; b ¼ 1; 2 ð1:49Þ

where

@r
@C ¼ a

�r2k�1 KþCð Þ2k�1� K� Cð Þ2k�1
h i

@r
@K ¼ 1

�r2k�1 a KþCð Þ2k�1 þ K� Cð Þ2k�1
h i

þ b KþWð Þ2k�1 þ K�Wð Þ2k�1
h in o

@r
@W ¼ b

�r2k�1 KþWð Þ2k�1� K�Wð Þ2k�1
h i

ð1:50Þ

and

@r
@C ¼ a

�r2k�1 KþCð Þ2k�1� K� Cð Þ2k�1
h i

@r
@K ¼ 1

�r2k�1 a KþCð Þ2k�1 þ K� Cð Þ2k�1
h i

þ b KþWð Þ2k�1 þ K�Wð Þ2k�1
h in o

@r
@W ¼ b

�r2k�1 KþWð Þ2k�1� K�Wð Þ2k�1
h i

ð1:51Þ

Equations (1.47)–(1.51) allow expressing the flow rule given by Eq. (1.43) as a
dependency of the stress components rab a; b ¼ 1; 2ð Þ.

1.3.4 Identification Procedure

As mentioned in the previous section, the parameters a; b; L;M;N;P;Q; and R are
obtained by constraining the constitutive equations associated to the BBC 2005
yield criterion to reproduce the following experimental data: Y0, Y45, Y90, r0, r45,
r90, Yb, and rb. In fact, the identification procedure will solve the following set of 8
equations considering a; b; L;M;N;P;Q; and R as unknowns:

~Y0 ¼ Y0; ~Y45 ¼ Y45; ~Y90 ¼ Y90;~r0 ¼ r0;~r45 ¼ r45;~r90 ¼ r90; ~Yb ¼ Yb;~rb ¼ rb
ð1:52Þ

where: ~Y0, ~Y45 and ~Y90 are the theoretical yield stresses corresponding to pure
tension along the directions defined by 0°, 45° and 90° angles measured from RD;
~r0, ~r45 and ~r90 are the theoretical coefficients of uniaxial anisotropy associated to the
directions mentioned above; ~Yb is the theoretical yield stress in biaxial tension along
RD and TD; ~rb is the theoretical coefficient of biaxial anisotropy associated to RD
and TD. It is obvious that the identification procedure needs formulas for evaluating
~Y0, ~Y45, ~Y90, ~r0, ~r45, ~r90, ~Yb, and ~rb. These formulas will be presented below.
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1.3.5 Theoretical Yield Stress in Pure Tension

Let ~Yh be the theoretical yield stress corresponding to pure tension along a direction
defined by the angle h measured from RD. The planar components of the stress
tensor are

r11 ¼ ~Yh cos2 h; r22 ¼ ~Yh sin2 h; r12 ¼ r21 ¼ ~Yh sin h cos h ð1:53Þ

The quantities C, K and W defined by Eqs. (1.48) become

C ¼ ~YhCh; K ¼ ~YhKh; W ¼ ~YhWh ð1:54Þ

where

Ch ¼ L cos2 hþM sin2 h

Kh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N cos2 h� P sin2 h
� 	2 þ sin2 h cos2 h

q
Wh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q cos2 h� R sin2 h
� 	2 þ sin2 h cos2 h

q ð1:55Þ

Equations (1.47) and (1.54) lead to the following expression of the equivalent stress
when pure tension is applied along the h direction:

�rjh¼ ~YhF hð Þ ð1:56Þ

where

F hð Þ ¼ a Kh þChð Þ2k þ a Kh � Chð Þ2k þ
h

b Kh þWhð Þ2k þ b Kh �Whð Þ2k
i 1
2k

ð1:57Þ

�rjh given by Eq. (1.56) should be replaced in Eq. (1.41). We thus obtain the desired
formula of the theoretical yield stress ~Yh:

~Yh ¼ Y=F hð Þ ð1:58Þ

~Y0, ~Y45 and ~Y90 can be calculated from Eqs. (1.58) and (1.57) using h ¼ 0°, 45° and
90°, respectively.

1.3.6 Theoretical Coefficient of Uniaxial Plastic Anisotropy

The theoretical coefficient of uniaxial plastic anisotropy associated to a direction
inclined at the angle h measured from RD is defined as follows:
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~rh ¼ _ephþ 90�

_epDN ð1:59Þ

where: _ephþ 90� is the plastic strain-rate component associated to the direction defined
by the angle h þ 90�, and _epDN is the component of the same tensor associated to
ND. After using the condition of plastic incompressibility

_eph þ _ephþ 90� þ _epDN ¼ 0 ð1:60Þ

Equation (1.59) becomes

~rh ¼ � _eph
_epDN

� 1 ð1:61Þ

The symbol _eph denotes the plastic strain-rate component associated to the h
direction. _eph and _epDN may be rewritten using the components of the plastic
strain-rate tensor expressed in the orthotropy basis:

_eph ¼ _ep11 cos2 hþ _ep22 sin2 hþ _ep12 þ _ep21
� 	

sin h cos h

_epDN ¼ _ep33 ¼ �_ep11 � _ep22
ð1:62Þ

We can replace now _eph and _epDN given by Eqs. (1.62) into Eq. (1.61):

~rh ¼
_ep11 cos

2 hþ _ep22 sin
2 hþ _ep12 þ _ep21

� 	
sin h cos h

_ep11 þ _ep22
� 1 ð1:63Þ

The right-hand side of Eq. (1.63) should be expressed in terms of the planar stress
components. This transformation is achieved using the flow rule (see Eqs. (1.43)
and (1.46), as well as Eq. (1.53)):

~rh ¼ 1
~Yh

rab @�r
@rab

� ����
h

@�r
@r11

þ @�r
@r22

� ����
h

� 1 ð1:64Þ

The notation �ð Þjh means that the expression enclosed by parentheses should be
calculated for pure tension along the h direction. The summation rule for tensor
components has been used in Eq. (1.64). The equivalent stress defined by
Eqs. (1.47) and (1.48) is a first-degree homogeneous function of the stress com-
ponents rab a; b ¼ 1; 2ð Þ. Thus we can use Euler’s theorem:

�r ¼ rab
@�r
@rab

ð1:65Þ
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Equations (1.64), (1.65) and (1.56) lead to the following formula for ~rh:

~rh ¼ F hð Þ
@�r
@r11

þ @�r
@r22

� ����
h

� 1 ð1:66Þ

We shall express now @�r
@r11

þ @�r
@r22

� ����
h
as a dependency of the h angle. We start by

rewriting Eq. (1.49) both for a ¼ b ¼ 1 and a ¼ b ¼ 2, assuming a uniaxial stress
state along the h direction. We have two relationships that can be added, thus
obtaining

@�r
@r11

þ @�r
@r22

� �����
h

¼ @�r
@C

����
h

@C
@r11

þ @C
@r22

� �����
h

þ @�r
@K

����
h

@K
@r11

þ @K
@r22

� �����
h

þ @�r
@W

����
h

@W
@r11

þ @W
@r22

� �����
h

ð1:67Þ

Equations (1.50), (1.54) and (1.56) allow us to express the derivatives @�r
@C

��
h
, @�r
@K

��
h

and @�r
@W

��
h
as functions of the h angle:

@r
@C

��
h¼ a

F hð Þ½ �2k�1 Kh þChð Þ2k�1� Kh � Chð Þ2k�1
h i

@r
@K

��
h
¼ 1

F hð Þ½ �2k�1 a Kh þChð Þ2k�1þ Kh � Chð Þ2k�1
h i

þ
n

b Kh þWhð Þ2k�1þ Kh �Whð Þ2k�1
h io

@r
@W

��
h
¼ b

F hð Þ½ �2k�1 Kh þWhð Þ2k�1� Kh �Whð Þ2k�1
h i

ð1:68Þ

where Ch, Kh andWh are defined by Eqs. (1.55). The other derivatives appearing on
the right-hand side of Eq. (1.67) can be also expressed as functions of the h angle
(see Eqs. 1.51), (1.53) and (1.54)):

@ C
@r11

þ @ C
@r22

� ����
h
¼ LþM;

@ K
@r11

þ @ K
@r22

� ����
h
¼ N�Pð Þ N cos2 h�P sin2 hð Þ

Kh
;

@W
@r11

þ @W
@r22

� ����
h
¼ Q�Rð Þ Q cos2 h�R sin2 hð Þ

Wh

ð1:69Þ

After replacing the quantities given by Eqs. (1.68) and (1.69) into Eq. (1.67) and
making some rearrangements, we get the following relationship for

@�r
@r11

þ @�r
@r22

� �����
h

:

@�r
@r11

þ @�r
@r22

� �����
h

¼ G hð Þ
F hð Þ½ �2k�1

ð1:70Þ
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where

G hð Þ ¼ a
N � Pð Þ N cos2 h� P sin2 h

� 	
Kh

þ LþM

" #
Kh þChð Þ2k�1

þ a
N � Pð Þ N cos2 h� P sin2 h

� 	
Kh

� L�M

" #
Kh � Chð Þ2k�1

þ b
N � Pð Þ N cos2 h� P sin2 h

� 	
Kh

þ Q� Rð Þ Q cos2 h� R sin2 h
� 	

Wh

" #
Kh þWhð Þ2k�1

þ b
N � Pð Þ N cos2 h� P sin2 h

� 	
Kh

� Q � Rð Þ Q cos2 h� R sin2 h
� 	

Wh

" #
Kh �Whð Þ2k�1

ð1:71Þ

We can now combine Eqs. (1.66) and (1.70) to obtain a formula for evaluating the
coefficient of uniaxial plastic anisotropy:

~rh ¼ F hð Þ½ �2k
G hð Þ � 1 ð1:72Þ

~r0, ~r45 and ~r90 can be calculated from Eqs. (1.72), (1.71) and (1.57) using h ¼ 0°,
45° and 90°, respectively.

1.3.7 Theoretical Yield Stress in Biaxial Tension Along RD
and TD

Let ~Yb be the theoretical yield stress corresponding to biaxial tension along RD and
TD. The planar components of the stress tensor are

r11 ¼ ~Yb; r22 ¼ ~Yb; r12 ¼ r21 ¼ 0 ð1:73Þ

The quantities C, W and K defined by Eqs. (1.48) become

C ¼ ~YbCb; K ¼ ~YbKb; W ¼ ~YbWb ð1:74Þ

where

Cb ¼ LþM;

Kb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2

q
¼ N � Pj j;

Wb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2

q
¼ Q� Rj j

ð1:75Þ
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Equations (1.47) and (1.74) lead to the following expression of the equivalent stress
when biaxial tension is applied along RD and TD:

�rjb¼ ~YbFb ð1:76Þ

where

Fb ¼ a Kb þCbð Þ2k þ a Kb � Cbð Þ2k þ
h

b Kb þWbð Þ2k þ b Kb �Wbð Þ2k
i 1
2k ð1:77Þ

�rjb given by Eq. (1.76) should be replaced in Eq. (1.40). We thus obtain the desired
formula of the theoretical yield stress ~Yb:

~Yb ¼ Y=Fb ð1:78Þ

~Yb can be calculated from Eqs. (1.78) and (1.77).

1.3.8 Theoretical Coefficient of Biaxial Plastic Anisotropy

The theoretical coefficient of biaxial plastic anisotropy associated to RD and TD is
defined as follows:

~rb ¼ _epTD=_e
p
RD ð1:79Þ

where _epRD and _epTD are the components of the plastic strain-rate tensor corresponding
to RD and TD, respectively. The choice of the orthonormal basis allows us to write
the equalities

_epRD ¼ _ep11; _epTD ¼ _ep22 ð1:80Þ

We can replace now _epRD and _epTD given by Eq. (1.80) into Eq. (1.79):

~rb ¼ _ep22
_ep11

¼ _ep11 þ _ep22
_ep11

� 1 ð1:81Þ

The right-hand side of Eq. (1.81) should be expressed in terms of the planar stress
components. This transformation is achieved using the flow rule (see Eqs. (1.43)
and (1.46)), as well as Eq. (1.73)):

~rb ¼ 1
~Yb

rab @�r
@rab

� ����
b

@�r
@r11

� ����
b

� 1 ð1:82Þ
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The notation �ð Þjb means that the expression enclosed by parentheses should be
calculated for biaxial tension along RD and TD. Equations (1.82), (1.65) and (1.76)
lead to the following formula for ~rb:

~rb ¼ Fb

@�r
@r11

� ����
b

� 1 ð1:83Þ

We shall find now the expression of the denominator @�r
@r11

� ����
b
. We start by rewriting

Eq. (1.49) for a ¼ b ¼ 1, assuming a biaxial stress state along RD and TD:

@�r
@r11

� �����
b

¼ @�r
@C

����
b

@C
@r11

����
b

þ @�r
@K

����
b

@K
@r11

����
b

þ @�r
@W

����
b

@W
@r11

����
b

ð1:84Þ

Equations (1.50), (1.74) and (1.76) allow us to express the derivatives @�r
@C

��
b,

@�r
@K

��
b

and @�r
@W

��
b:

@r
@C

����
b

¼ a
F2k�1
b

Kb þCbð Þ2k�1� Kb � Cbð Þ2k�1
h i

@r
@K

����
b
¼ 1

F2k�1
b

a Kb þCbð Þ2k�1 þ Kb � Cbð Þ2k�1
h i

þ
n

b Kb þWbð Þ2k�1þ Kb �Wbð Þ2k�1
h io

@r
@W

����
b
¼ b

F2k�1
b

Kb þWbð Þ2k�1� Kb �Wbð Þ2k�1
h i

ð1:85Þ

where Cb, Kb andWb are defined by Eqs. (1.75). The other derivatives appearing on
the right-hand side of Eq. (1.84) can be also expressed from Eqs. (1.51), (1.73) and
(1.74):

@C
@r11

����
b
¼ L;

@K
@r11

����
b
¼ N N � Pð Þ

Kb
;

@W
@r11

����
b
¼ Q Q� Rð Þ

Wb
ð1:86Þ

After replacing the quantities given by Eqs. (1.85) and (1.86) into Eq. (1.84), we

get the following relationship for @�r
@r11

� ����
b
(see also Eqs. (1.75)):

@�r
@r11

� �����
b

¼ Gb

F2k�1
b

ð1:87Þ
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where

Gb ¼ a
N N � Pð Þ

Kb
þ L


 �
Kb þCbð Þ2k�1 þ a

N N � Pð Þ
Kb

� L


 �
Kb � Cbð Þ2k�1 þ

b
N N � Pð Þ

Kb
þ Q Q� Rð Þ

Wb


 �
Kb þWbð Þ2k�1þ b

N N � Pð Þ
Kb

� Q Q� Rð Þ
Wb


 �
Kb �Wbð Þ2k�1

ð1:88Þ

We can combine Eqs. (1.83) and (1.87) to obtain a formula for evaluating the
coefficient of biaxial plastic anisotropy:

~rb ¼ F2k
b

Gb
� 1 ð1:89Þ

1.3.9 Identification Constraints

Now we have all the quantities needed to construct the identification conditions (see
Eqs. (1.52)). Equations (1.58) and (1.78) allow us to rewrite the constraints refer-
ring to the yield stresses in a more convenient form:

F 0�ð Þ½ �2k¼ y2k0 ; F 45�ð Þ½ �2k¼ y2k45; F 90�ð Þ½ �2k¼ y2k90; F2k
b ¼ y2kb ð1:90Þ

where

y0 ¼ Y=Y0; y45 ¼ Y=Y45; y90 ¼ Y=Y90; yb ¼ Y=Yb ð1:91Þ

are normalized values of the experimental yield stresses. In a similar way,
Eqs. (1.70), (1.89) and (1.90) lead to the following expressions of the constraints
associated to the coefficients of plastic anisotropy:

G 0�ð Þ ¼ 1
r0 þ 1 y

2k
0 ; G 45�ð Þ ¼ 1

r45 þ 1 y
2k
45;

G 90�ð Þ ¼ 1
r90 þ 1 y

2k
90; Gb ¼ 1

rb þ 1 y
2k
b :

ð1:92Þ

Finally, we use Eqs. (1.57), (1.55), (1.77), (1.75), (1.71), and (1.88) to put into
evidence the unknown material parameters a; b; L;M;N;P;Q; and R on the
left-hand sides of Eqs. (1.90) and (1.92):
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a N þ Lð Þ2k þ a N � Lð Þ2k þ b N þQð Þ2kb N � Qð Þ2k¼ y2k0

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
þ LþM


 �2k
þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
� L�M


 �

þ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2 þ 1

q
 �2k

þ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2 þ 1

q
 �2k
¼ 2 y45ð Þ2k

a PþMð Þ2k þ a P�Mð Þ2k þ b PþRð Þ2k þ b P� Rð Þ2k¼ y2k90

a N � Pþ LþMð Þ2k þ a N � P� L�Mð Þ2k

þ b N � PþQ� Rð Þ2k þ b N � P� QþRð Þ2k¼ y2kb

a P � Mð Þ N þ Lð Þ2k�1 þ a P þ Mð Þ N � Lð Þ2k�1

þ b PþRð Þ NþQð Þ2k�1þ b P� Rð Þ N � Qð Þ2k�1¼ r0
r0 þ 1

y2k0

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2 þ 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
þ LþM


 �2k�1
(

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
� L�M


 �2k�1
)

þ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2 þ 1

q
 �2k(

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2 þ 1

q
 �2k)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2 þ 1

q
r45 þ 1=2
r45 þ 1

2 y45ð Þ2k

a N � Lð Þ PþMð Þ2k�1 þ a N þ Lð Þ P�Mð Þ2k�1

þ b N þQð Þ PþRð Þ2k�1þ b N � Qð Þ P� Rð Þ2k�1¼ r90
r90 þ 1

y2k90

a N þ Lð Þ N � Pþ LþMð Þ2k�1 þ a N � Lð Þ N � P� L�Mð Þ2k�1

þ b N þQð Þ N � PþQ� Rð Þ2k�1

þ b N � Qð Þ N � P� QþRð Þ2k�1¼ 1
rb þ 1

y2kb

ð1:93Þ

Equations (1.93) form together a set of eight non-linear equations. The identifica-
tion procedure uses Newton’s method to obtain its numerical solution.

From now on we shall manipulate Eqs. (1.93) in a generic form:

fi a; b; L; M; N; P; Q; Rð Þ ¼ 0; i ¼ 1; 2; . . .; 8 ð1:94Þ
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where

f1 ¼ a Nþ Lð Þ2k þ a N � Lð Þ2k þ b NþQð Þ2k þ b N � Qð Þ2k�y2k0

f2 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
þ LþM


 �2k
þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
� L�M


 �2k

þ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2 þ 1

q
 �2k

þ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2 þ 1

q
 �2k
� 2 y45ð Þ2k

f3 ¼ a PþMð Þ2k þ a P�Mð Þ2k þ b PþRð Þ2k þ b P� Rð Þ2k�y2k90

f4 ¼ a N � Pþ LþMð Þ2k þ a N � P� L�Mð Þ2k

þ b N � PþQ� Rð Þ2k þ b N � P� QþRð Þ2k�y2kb

f5 ¼ a P�Mð Þ Nþ Lð Þ2k�1 þ a PþMð Þ N � Lð Þ2k�1

þ b PþRð Þ NþQð Þ2k�1 þ b P� Rð Þ N � Qð Þ2k�1� r0
r0 þ 1

y2k0

f6 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2 þ 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
þ LþM


 �2k�1
(

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
� L�M


 �2k�1
)

þ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2 þ 1

q
 �2k(

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2 þ 1

q
 �2k)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Pð Þ2 þ 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� Rð Þ2 þ 1

q
r45 þ 1=2
r45 þ 1

2 y45ð Þ2k

f7 ¼ a N � Lð Þ PþMð Þ2k�1 þ a Nþ Lð Þ P�Mð Þ2k�1

þ b NþQð Þ PþRð Þ2k�1 þ b N � Qð Þ P� Rð Þ2k�1� r90
r90 þ 1

y2k90

f8 ¼ a Nþ Lð Þ N � Pþ LþMð Þ2k�1 þ a N � Lð Þ N � P� L�Mð Þ2k�1

þ b NþQð Þ N � PþQ� Rð Þ2k�1

þ b N � Qð Þ N � P� QþRð Þ2k�1� 1
rb þ 1

y2kb

ð1:95Þ
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As mentioned previously, the parameters involved in the expression of the equiv-
alent stress are subjected to constraints: a[ 0, b[ 0, L [ 0, M [ 0, N [ 0,
P [ 0, Q [ 0, and R [ 0. Aiming to ensure a natural treatment of these
restrictions, the identification procedure replaces the parameters a; b; L;
M; N; P; Q; and R with the following substitutes:

a ¼ a0ð Þ2; b ¼ b0ð Þ2; L ¼ L0ð Þ2; M ¼ M0ð Þ2;
N ¼ N 0ð Þ2; P ¼ P0ð Þ2; Q ¼ Q0ð Þ2; R ¼ R0ð Þ2;
a0; b0; L0;M0;N 0;P0;Q0;R0 2 R

ð1:96Þ

In this way, f1; f2; . . .; f8 will become functions of the variables
a

0
; b

0
; L

0
; M

0
; N

0
; P

0
; Q

0
; and R

0
. As a consequence, Eqs. (1.94) should be rewritten

in the form

fi a a
0� 	
; b b

0� 	
; L L

0� 	
;M M

0� 	
;N N

0� 	
;P P

0� 	
;Q Q

0� 	
;R R

0� 	� � ¼ 0;
i ¼ 1; 2; . . .; 8

ð1:97Þ

The identification procedure solves Eqs. (1.97) considering a0; b0; L0;
M0; N 0; P0; Q0; and R0 as unknowns. After finding the numerical solution, the values
of the actual parameters a; b; L; M; N; P; Q; and R can be obtained from
Eqs. (1.96). Let a0k; b

0
k; L

0
k; M

0
k; N

0
k; P

0
k; Q

0
k; and R0

k be the approximations of the
numerical solution corresponding to the k-th Newton iteration. Equations (1.97) are
linearised in the vicinity of this approximation using a Taylor expansion:

@fi
@a

����
k

@a
@a0

����
k
Da0k
� 	 þ @fi

@b

����
k

@b
@b0

����
k
Db0k
� 	

þ @fi
@L

����
k

@L
@L0

����
k

DL0k
� 	 þ @fi

@M

����
k

@M
@M0

����
k

DM0
k

� 	
þ @fi

@N

����
k

@N
@N 0

����
k

DN 0
k

� 	 þ @fi
@P

����
k

@P
@P0

����
k

DP0
k

� 	
þ @fi

@Q

����
k

@Q
@Q0

����
k
DQ0

k

� 	 þ @fi
@R

����
k

@R
@R0

����
k
DR0

k

� 	 ¼ � fijk; i ¼ 1; 2; . . .; 8

ð1:98Þ

The symbol �jk means that the associated expression should be evaluated consid-
ering a0 ¼ a0k, b

0 ¼ b0k , L
0 ¼ L0k, M

0 ¼ M0
k, N

0 ¼ N 0
k, P

0 ¼ P0
k, Q

0 ¼ Q0
k and

R0 ¼ R0
k. The unknowns of the linearised set are the corrections Da0k, Db

0
k , DL

0
k,

DM0
k , DN

0
k, DP

0
k, DQ

0
k, and DR0

k . After adding them to a0k; b
0
k; L

0
k; M

0
k; N

0
k; P

0
k; Q

0
k;

and R0
k, respectively, we obtain a new approximation of the numerical solution that

should be used in the next iteration:
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a0kþ 1 ¼ a0k þDa0k
b0kþ 1 ¼ b0k þDb0k
L0kþ 1 ¼ L0k þDL0k
M0

kþ 1 ¼ M0
k þDM 0

k

N 0
kþ 1 ¼ N 0

k þDN 0
k

P0
kþ 1 ¼ P0

k þDP0
k

Q0
kþ 1 ¼ Q0

k þDQ0
k

R0
kþ 1 ¼ R0

k þDR0
k

ð1:99Þ

Two convergence criteria are used to stop the iterations:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Da0kð Þ2 þ Db0kð Þ2 þ DL0kð Þ2 þ DM0

kð Þ2 þ DN0
kð Þ2 þ DP0

kð Þ2 þ DQ0
kð Þ2 þ DR0

kð Þ2
a0kþ 1ð Þ2 þ b0kþ 1ð Þ2 þ L0kþ 1ð Þ2 þ M0

kþ 1ð Þ2 þ N 0
kþ 1ð Þ2 þ P0

kþ 1ð Þ2 þ Q0
kþ 1ð Þ2 þ R0

kþ 1ð Þ2
s

\10�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP8
i¼1

fijk
� 	2s

\10�5

ð1:100Þ

The convergence of the Newton iterations is strongly influenced by the so-called
‘initial guess’. Due to the difficulties encountered when trying to define such an
initial guess suitable for all situations that may occur in practice, the authors have
been forced to adopt a special identification strategy.

1.3.10 Particular Formulations of the BBC (2005) Yield
Criterion

We can reduce BBC (2005) to Hill (1948) yield criterion if we choose the material
parameters as follows:

Y ¼ Y0
k ¼ 1

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0
r0

1þ r90
r90

q
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r0
r0

1þ r90
r90

q
þ 1

1
1þ r0

1þ r0
r90

� �
r45 þ 1

2

� �

b ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0
r0

1þ r90
r90

q
� 1

L ¼ N ¼ Q ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
a þ b

p

M ¼ P ¼ R ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

1 þ r0
1 þ r90
r90

aþ b

s

ð1:101Þ
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In this case, the identification procedure needs only r0, r45 and r90 as input data.
The yield criterion proposed by Barlat and Lian (1989) can be also obtained by

enforcing the following constraints on the material parameters:

Y ¼ Y0; k ¼ 3 or 4; L ¼ N ¼ Q; M ¼ P ¼ R ð1:102Þ

As above, the identification procedure needs only r0, r45 and r90 as input data.
Another situation of practical interest is the so-called normal anisotropy (r0 =

r45 = r90 = r, Y0 = Y45 = Y90 = Y). In this case, BBC (2005) also reduces to the
Hill (1948) or Barlat and Lian (1989) yield criteria (depending on the value of the
exponent k):

k ¼ 1ðHill 1948Þ; k ¼ 3 or 4 ðBarlat 1989Þ;
a ¼ 1

1þ r ; b ¼ r
1þ r ; L ¼ N ¼ Q ¼ M ¼ P ¼ R ¼ 1

2
ð1:103Þ

1.4 BBC (2008) Yield Criterion

In order to enhance the flexibility of the BBC 2005 yield criterion, a new version of this
model has been developed (Comsa and Banabic 2008). The model is expressed as a
finite series that can be expanded to retain more or less terms, depending on the volume
of experimental data. Different identification strategies (using 8, 16, 24, etc. input
values) could be used in order to determine the coefficients of the yield function.

1.4.1 BBC 2008 Equivalent Stress

The equivalent stress used in Eq. (1.41) is defined as follows:

�r2k

w� 1
¼

Xs

i¼1

wi�1 LðiÞ þMðiÞ
h i2k�

þ LðiÞ �MðiÞ
h i2k� �

þws�i MðiÞ þNðiÞ
h i2k

þ MðiÞ � NðiÞ
h i2k� ��

k; s 2 N�;w ¼ 3=2ð Þ1=s [ 1

LðiÞ ¼ ‘
ðiÞ
1 r11 þ ‘

ðiÞ
2 r22

MðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðiÞ

1 r11 � mðiÞ
2 r22

h i2
þ mðiÞ

3 ðr12 þ r21Þ
h i2r

NðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðiÞ1 r11 � nðiÞ2 r22
h i2

þ nðiÞ3 ðr12 þ r21Þ
h i2r

‘
ðiÞ
1 ; ‘

ðiÞ
2 ;mðiÞ

1 ;mðiÞ
2 ;mðiÞ

3 ; nðiÞ1 ; nðiÞ2 ; nðiÞ3 2 R:

ð1:104Þ
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The quantities denoted k;‘ðiÞ1 ; ‘
ðiÞ
2 ;mðiÞ

1 ;mðiÞ
2 ;mðiÞ

3 ; nðiÞ1 ; nðiÞ2 ; nðiÞ3 ði ¼ 1; . . .; sÞ are
material parameters. One may prove that k 2 N� is a sufficient condition for the
convexity of the yield surface defined by Eqs. (1.41) and (1.104). From this point of
view, there is no constraint acting on the admissible values of the other material
parameters.

It is easily noticeable that Eqs. (1.104) reduce to the isotropic formulation
proposed by Barlat and Richmond (1987) if

‘
ðiÞ
1 ¼ ‘

ðiÞ
2 ¼ mðiÞ

1 ¼ mðiÞ
2 ¼ mðiÞ

3 ¼ nðiÞ1 ¼ nðiÞ2 ¼ nðiÞ3 ¼ 1=2; i ¼ 1; . . .; s ð1:105Þ

Under these circumstances, the exponent k may be chosen as in Barlat and
Richmond’s model, i.e. according to the crystallographic structure of the sheet
metal: k ¼ 3 for BCC materials ð2k ¼ 6Þ, and k ¼ 4 for FCC materials ð2k ¼ 8Þ.

The other parameters involved in Eqs. (1.104) result from an identification
procedure (see the next section). Their number ðnpÞ is defined by the summation
limit s :

np ¼ 8s ð1:106Þ

Let ne be the number of experimental values describing the plastic anisotropy. The
summation limit should be chosen according to the following constraint:

np ¼ 8s	 ne ð1:107Þ

i.e.

s	 ne=8; s 2 N� ð1:108Þ

Apparently, Eqs. (1.104) are usable only when ne � 8: In fact, they also work with
less experimental values. When such a situation occurs, the summation limit should
be s ¼ 1; and the ne\8 identification constraints arisen from experiments should
be accompanied by at least 8� ne artificial conditions involving the material

parameters. For example, if ne ¼ 6; we may enforce the equalities mð1Þ
1 ¼ nð1Þ1 and

mð1Þ
2 ¼ nð1Þ2 :

1.4.2 Basic Identification Procedure

Due to the expandable structure of the yield criterion, many identification strategies
can be devised. We shall restrict our discussion to a procedure that uses only
normalized yield stresses and r-coefficients obtained from uniaxial and biaxial
tensile tests.
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Let Yh be the yield stress predicted by the yield criterion in the case of a uniaxial
traction along the direction defined by the angle h measured from RD. The planar
components of the stress tensor are in this case

r11jh¼ Yh cos2 h; r22jh¼ Yh sin2 h; r12jh¼ r21jh¼ Yh sin h cos h ð1:109Þ

After replacing them in Eqs. (1.104), we get the associated equivalent stress

�rjh¼ YhFh ð1:110Þ

where Fh is defined by the relationships

F2k
h

w � 1
¼

Xs

i¼1

wi�1 LðiÞh þMðiÞ
h

h i2k�
þ LðiÞh � MðiÞ

h

h i2k� �

þws�i MðiÞ
h þNðiÞ

h

h i2k
þ MðiÞ

h � NðiÞ
h

h i2k� ��

LðiÞh ¼ ‘
ðiÞ
1 cos2 hþ ‘

ðiÞ
2 sin2 h

MðiÞ
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðiÞ

1 cos2 h� mðiÞ
2 sin2 h

h i2
þ mðiÞ

3 sin 2h
h i2r

NðiÞ
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðiÞ1 cos2 h� nðiÞ2 sin2 h
h i2

þ nðiÞ3 sin 2h
h i2r

ð1:111Þ

Equations (1.41) and (1.110) lead to the following expression of the normalized
uniaxial yield stress:

yh ¼ Yh=Y ¼ 1=Fh ð1:112Þ

The r-coefficient corresponding to the uniaxial traction along a direction inclined at
the angle h measured from RD is defined by the formula

rh ¼ _eðpÞhþ 90�

.
_eðpÞND ð1:113Þ

where _eðpÞhþ 90� is the plastic strain-rate component associated to the hþ 90� planar

direction, and _eðpÞND is the through-thickness component of the same tensor. After
some simple mathematical manipulations, Eq. (1.113) becomes

rh ¼ Fh

Gh
� 1 ð1:114Þ
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where Gh is defined by the relationships

F2k�1
h Gh

w� 1
¼

Xs

i¼1

wi�1 L̂ðiÞh þ M̂ðiÞ
h

h i
LðiÞh þ MðiÞ

h

h i2k�1
�

þ wi�1 L̂ðiÞh � M̂ðiÞ
h

h i
LðiÞh � MðiÞ

h

h i2k�1
þws�i M̂ðiÞ

h þ N̂ðiÞ
h

h i
MðiÞ

h þNðiÞ
h

h i2k�1

þ ws�i M̂ðiÞ
h � N̂ðiÞ

h

h i
MðiÞ

h � NðiÞ
h

h i2k�1
�

L̂ðiÞh ¼ ‘
ðiÞ
1 þ ‘

ðiÞ
2

M̂ðiÞ
h ¼ mðiÞ

1 � mðiÞ
2

h i
mðiÞ

1 cos2 h� mðiÞ
2 sin2 h

h i.
MðiÞ

h

N̂ðiÞ
h ¼ nðiÞ1 � nðiÞ2

h i
nðiÞ1 cos2 h� nðiÞ2 sin2 h
h i.

NðiÞ
h

ð1:115Þ

together with Eqs. (1.111).
Let us denote by Yb the yield stress predicted in the case of a biaxial traction

along RD and TD. The corresponding planar components of the stress tensor are

r11jb¼ Yb; r22jb¼ Yb; r12jb¼ r21jb¼ 0 ð1:116Þ

After replacing them in Eqs. (1.104), we get the associated equivalent stress

�rjb¼ YbFb ð1:117Þ

where Fb is defined by the relationships

F2k
b

w � 1
¼

Xs

i¼1

wi�1 LðiÞb þ MðiÞ
b

h i2k�
þ LðiÞb � MðiÞ

b

h i2k� �

þ ws�i MðiÞ
b þNðiÞ

b

h i2k
þ MðiÞ

b � NðiÞ
b

h i2k� ��

LðiÞb ¼ ‘
ðiÞ
1 þ ‘

ðiÞ
2 ; MðiÞ

b ¼ mðiÞ
1 � mðiÞ

2 ; NðiÞ
b ¼ nðiÞ1 � nðiÞ2

ð1:118Þ

Equations (1.41) and (1.117) lead to the following expression of the normalized
biaxial yield stress:

yb ¼ Yb=Y ¼ 1=Fb ð1:119Þ

The r-coefficient corresponding to the biaxial traction along RD and TD is defined
by the formula

rb ¼ _eðpÞTD

.
_eðpÞRD ð1:120Þ
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where _eðpÞRD and _eðpÞTD are the plastic strain-rate components associated to the rolling
and transverse directions, respectively. After some simple mathematical manipu-
lations, Eq. (1.120) becomes

rb ¼ Fb

Gb
� 1 ð1:121Þ

where Gb is defined by the relationships

F2k�1
b Gb

w � 1
¼

Xs

i¼1

wi�1 L̂ðiÞb þ M̂ðiÞ
b

h i
LðiÞb þ MðiÞ

b

h i2k�1
�

þ wi�1 L̂ðiÞb � M̂ðiÞ
b

h i
LðiÞb � MðiÞ

b

h i2k�1
þws�i M̂ðiÞ

b þ N̂ðiÞ
b

h i
MðiÞ

b þ NðiÞ
b

h i2k�1

þ ws�i M̂ðiÞ
b � N̂ðiÞ

b

h i
MðiÞ

b � NðiÞ
b

h i2k�1
�

L̂ðiÞb ¼ ‘
ðiÞ
1 ; M̂ðiÞ

b ¼ mðiÞ
1 ; N̂ðiÞ

b ¼ nðiÞ1
ð1:122Þ

together with Eqs. (1.118).
An identification procedure that strictly enforces a large number of experimental

constraints on the yield criterion would be inefficient in practical applications. The
failure probability of such a strategy increases when the external restrictions
become stronger. Taking into account this aspect, the authors have developed an
identification procedure based on the minimization of the following error-function:

E ‘
ðiÞ
1 ; ‘

ðiÞ
2 ;mðiÞ

1 ;mðiÞ
2 ;mðiÞ

3 ; nðiÞ1 ; nðiÞ2 ; nðiÞ3
���i ¼ 1; . . .; s

h i

¼
X
hj

yðexpÞhj

yhj
� 1

2
4

3
5
2

þ
X
hj

rðexpÞhj
� rhj

h i2
þ yðexpÞb

yb
� 1

" #2

þ rðexpÞb � rb
h i2

ð1:123Þ

where hj represents an individual element from a finite set of angles defining the
orientation of the specimens used in the uniaxial tensile tests. One may notice that
Eq. (1.123) describes a square-distance between the experimental and predicted
values of the anisotropy characteristics.

Two versions of the BBC 2008 yield criterion have been evaluated from the
point of view of their performances (see (Comsa and Banabic 2008)). They include
8 and 16 material coefficients, respectively, and correspond to the smallest values of
the summation limit ðs ¼ 1 and s ¼ 2Þ: The identification of the BBC 2008
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(16 parameters) model has been performed using the following mechanical

parameters: yðexpÞ0� , yðexpÞ15� , yðexpÞ30� , yðexpÞ45� , yðexpÞ60� , yðexpÞ75� , yðexpÞ90� , yðexpÞb , rðexpÞ0� , rðexpÞ15� , rðexpÞ30� ,

rðexpÞ45� , rðexpÞ60� , rðexpÞ75� , rðexpÞ90� and rðexpÞb . In the case of BBC 2008 (8 parameters), the

input data has been restricted to the values yðexpÞ0� , yðexpÞ45� , yðexpÞ90� , yðexpÞb , rðexpÞ0� , rðexpÞ45� ,

rðexpÞ90� and rðexpÞb .
The predictions of the BBC (2008) model with 16 parameters are superior to those

given by the 8-parameter version. The improvement is noticeable especially in the case
of the r-coefficients. This capability of the 16-parameter version is relevant for the
accurate prediction of the thickness when simulating sheet metal forming processes.
For the materials exhibiting a distribution of the anisotropy characteristics that would
lead to the occurrence of 8 ears in a cylindrical deep-drawing process (Yoo 2006) the
planar distribution of the r-coefficient predicted by the BBC (2008) yield criterion with
8 parameters is very inaccurate (see (Comsa and Banabic 2008)). This model would not
be able to predict the occurrence of more than 4 ears at the top edge of a cup
deep-drawn from a circular blank. In contrast, the variation of the r-coefficient
described by BBC 2008 with 16 parameters closely follows the reference data. In
conclusion, this model would predict the occurrence of 8 ears as reported by Yoon et al.
(2006). As compared with other formulations described in the literature, the new model
does not use linear transformations of the stress tensor. Due to this fact, its computa-
tional efficiency should be superior in the simulation of sheet metal forming processes.

1.4.3 Enhanced Identification Procedure

It is forthright to realize that the identification procedure outlined in Sect. 1.4.2 uses
data points that can be obtained by means of relatively uncomplicated mechanical tests.
These tests are typically standardized, which is of a clear advantage to reliability and
reproducibility of the results, but they do not explore all relevant deformation modes.
Owing to a recent progress in mechanical testing, several more advanced techniques
become technically feasible. These include biaxial stress setups, such as the
ISO-standardized cruciform shape test (Kuwabara et al. 2002; Kuwabara 2007; ISO
2013) or the multiaxial tube expansion test (Kuwabara and Sugawara 2013) that allow
one to study the anisotropic behaviour of sheet metals under more complex loading
conditions. The Digital Image Correlation (DIC) technique can provide accurate
readings of strain fields in a broad spectrum of experiments. Yet another alternative is
to use crystal plasticity models, further elaborated in Chap. 3, which can provide almost
unlimited number of data points that the calibration procedure could exploit. In many
cases there is more experimental data available than would be needed to calibrate a
flexible and generously parameterised yield locus model. This abundance of data can
only be utilized if some extensions to the calibration method are introduced.

The identification procedure outlined in Sect. 1.4.2 can be then further extended
and generalized with the aim to consider a broader group of data points. The
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generalization may also take into account various nature of inputs that can be
provided in calibration of the yield criteria (Gawad et al. 2015). Let p denote an N-
dimensional vector that parameterizes the yield criterion. The vector p can be in
principle found from the minimization of the vector-valued error function
E : RN ! R

M :

EðpÞ ¼ DY1ðpÞ; . . .;DYiðpÞ; . . .;DYMðpÞf gT

¼ v1 � f1ðpÞ; . . .; vi � fiðpÞ; . . .; vM � fMðpÞf gT
ð1:124Þ

To calculate the residuals vi � fiðpÞ; the error-function considers M data points
v1; . . .; vM ; which are typically obtained from a series of different experiments.
Regardless of the means how the data points have been acquired, they all serve as
the reference data for the calibration of the yield locus. The quantities vi; i ¼
1; . . .;M; are in general non-commensurable, thus a proper scaling may be neces-
sary to make them dimensionless. To emphasize the physical meaning of the
components in E; one may conveniently group the residuals into K sub-vectors:

EðpÞ ¼ DY1ðpÞ; . . .;DYiðpÞ; . . .;DYKðpÞf gT ð1:125Þ

where the contributions DYi are differences between the quantities derived from the
yield locus and the corresponding calibration data of a given type i: The contri-
butions DYi can be further parameterized, e.g. by adding parameters that control the
data acquisition (e.g. parameters of the experiments).

The minimization problem can be conveniently solved by means of general
non-linear least squares solvers, such as the Levenberg-Marquardt or the Trust
Region algorithms. From the mathematical point of view, the uniqueness of the
solution requires that N 	M; but this is not a sufficient condition. Furthermore, as
in many optimization problems, many local minima may be encountered. These
issues can be alleviated if the identification problem is posed as an over-determined
minimization, i.e. N\M; or in other words, an over-determined least squares
problem. The solution is then constrained by more equations, and by the conse-
quence the solution has to simultaneously fulfil more requirements.

Another difficulty is related to the choice of the calibration data, which in
principle should be done in such a way that most of relevant deformation modes are
sampled. On one hand, the data points should sufficiently reflect the size of the yield
locus. On the other hand, they should provide a link between the direction of the
yield stress and resulting plastic strain, therefore also the shape of the yield locus
could be determined.

Another difficulty is related to the choice of the calibration data, which in
principle should be done in such a way that most of relevant deformation modes are
sampled. On one hand, the data points should sufficiently reflect the size of the yield
locus. On the other hand, they should provide a link between the direction of the
yield stress and resulting plastic strain, therefore also the shape of the yield locus
could be determined.
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Let us consider the BBC (2008) plane stress yield criterion as an example of a
yield locus model. Suppose the criterion contains 16 parameters assembled in the
vector p; therefore it can be calibrated by supplying at least 16 data points.
Following the formalism introduced in (1.125), let us define the error-function

EðpÞ ¼

wyDyðpÞ
wrDrðpÞ
wybDybðpÞ
wrbDrbðpÞ
wSDSðpÞ
wbDbðpÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð1:126Þ

that takes into account the residual error with respect to the uniaxial yield stresses
Dy; Lankford coefficient (uniaxial r-values) Dr; balanced biaxial tensile yield stress
Dyb; and the corresponding rb� value, respectively, as well as yield stresses for
arbitrary plane stress ratios DS and the corresponding normals to the yield locus Db:
The weighing factors wy; wr; wyb; wrb; wS; and wb allow one to control the relative
importance of the individual components.

The components of vectors DyðpÞ and DrðpÞ include the residuals pertaining to
the series of n uniaxial tensile tests performed at the angles ai with respect to RD:

DyðpÞ ¼ 1� yðp; a1Þ
yðexpÞða1Þ ; . . .; 1�

yðp; anÞ
yðexpÞðanÞ

� �T

ð1:127Þ

DrðpÞ ¼ 1� rðp; a1Þ
rðexpÞða1Þ ; . . .; 1�

rðp; anÞ
rðexpÞðanÞ

� �T

ð1:128Þ

where yðexpÞðaÞ and yðp; aÞ denote the yield stress in the direction a and its coun-
terpart derived from the yield criterion (1.104), respectively, while rðexpÞðaÞ and
rðp; aÞ are the r-values obtained in analogous way. The residual errors regarding the
balanced biaxial point are calculated likewise:

DybðpÞ ¼ 1� ybðpÞ
yðexpÞb

( )T

ð1:129Þ

DrbðpÞ ¼ 1� rbðpÞ
rðexpÞb

( )T

ð1:130Þ

Equation (1.126) introduces the terms DSðpÞ and DbðpÞ that provide additional
constraints on the solution in the regions of the yield locus that can be specified by a
ratio between r11 and r22 and the value of the shear stress s ¼ r12 :
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DSðpÞ ¼ 1� Sðp; h1; s1Þ
SðexpÞðh1; s1Þ ; . . .; 1�

Sðp; hm; snÞ
SðexpÞðhm; snÞ

� �T

ð1:131Þ

Db(p) ¼ cos bðexpÞðh1; s1Þ � b1ðp; h1; s1Þ
� �

; . . .; cos bðexpÞðhm; snÞ � bmðp; hm; snÞ
� �n oT ð1:132Þ

As a matter of convenience, the angle h is used to express the relation between the
r11 and r22 components: tan h ¼ r22=r11: The magnitude of the yield stress in the
direction given by the angle h is denoted as Sðp; h; sÞ: The normal to the yield
contour and the r11 direction form the angle bðhÞ: Figure 1.1 presents the relations
between these quantities in a normalized yield section. From the normality rule,
bðhÞ corresponds to the direction of the plastic strain rate. In principle, both
quantities can be measured experimentally, e.g. (Kuwabara et al. 2002; Kuwabara
2007). Therefore, the amount of information acquired from the data points can be
maximized by capturing the size of the yield locus and its curvature at the same
time. Furthermore, two special cases can be considered: bðhÞ ¼ 0� and bðhÞ ¼ 90�;
which correspond to the plane strain conditions, provided that s ¼ 0:

It can be expected that some local minima of the function (1.123) would not be
necessarily the extreme values of EðpÞk k; since the latter uses also other terms to
quantify the quality of the solution. Figure 1.2 exemplifies such a case. The figure
compares two solutions of the BBC (2008) p 16 identification problem. The method
that makes use of Eq. (1.123) is referred to as the basic identification, while the
enhanced identification exploits the function (1.126). The calibration data (marked
with symbols) comprises all the data points needed by both methods. Although the
yield locus section shown in Fig. 1.2d includes the calibration points that corre-
spond to the uniaxial and balanced biaxial tension, the contributions from these

Fig. 1.1 Schematic
illustration of SðhÞ and bðhÞ
in a normalized yield locus
section. The direction of r11
coincides with RD, while r22
is parallel to TD. SðhÞ denotes
the distance from the origin to
the yield locus, while bðhÞ is
the angle between the normal
to the yield locus and r11
direction
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points were not used in (1.131) and (1.132), since they are already tackled by the
terms (1.127)–(1.130). For the sake of simplicity, only the yield locus section with
no shear component is considered, thus s ¼ 0 in (1.131)–(1.132).

To localize the minima of the respective error functions, the
Levenberg-Marquardt algorithm was followed. For each function the identification
procedure started from an identical initial guess and it was carried out until good
numerical convergence was reached. As seen in Figs. 1.2a, b, both runs result in a
very accurate prediction of the r-values and uniaxial yield stresses over a broad
range of directions. In this respect, it is hard to discriminate between the calibration
data and the BBC (2008) p 16 approximation, even though the minimization of the

Fig. 1.2 Comparison of BBC (2008) p 16 calibrated by means of the basic identification
procedure (1.123) and the enhanced procedure, which utilizes (1.127)–(1.132). a r-value, b the
scaled uniaxial yield stress, c balanced biaxial r-value and scaled balanced biaxial yield stress,
d contour of the yield locus in the r11—r22 section. The calibration data points are marked with
black symbols. The arrows denote the normal directions to the yield locus sections. The arrows
related to the calibration points are drawn longer merely for a clearer visual appearance
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function (1.123) appears to perform slightly better in terms of the normalized
uniaxial yield stresses. The balanced biaxial tension is ideally reproduced in both
cases, as can be seen in Fig. 1.2c.

However, from the normalized yield locus sections shown in Fig. 1.2d it
emerges that the enhanced identification method provides much higher fidelity of
the yield locus approximation. The figure reveals considerable discrepancies if the
basic identification algorithm is used. The divergence is particularly striking in the
regions that are distant from the uniaxial or balanced biaxial stress states, which are
the only points in that section that the basic method considers.

The enhanced identification method can benefit from both the size of the yield
surface and its curvature. It is worth mentioning that these two contributions (from
the components (1.131) and (1.132), respectively) are in many cases complemen-
tary. For instance, in Fig. 1.2d the points at h ¼ 135

�
on the green and red curves

are clearly different in terms of the distance SðhÞ; yet there is hardly any difference
with respect to the angle bðhÞ: If the point at h ¼ 15

�
is considered, the deviation

with regard to the contour curvature noticeably prevails.

1.5 3D Extensions of the BBC (2005, 2008) Yield Criteria

The methodology proposed by van Riel and van den Boogaard (2007) allows
extending the BBC (2005, 2008 yield criteria to 3D formulations. These formula-
tions can be expressed generically as follows:

�r r11 � r33;r22 � r33; r12; r21; r23; r32; r31; r13ð Þ ¼ Y : ð1:133Þ

In the above relationship, the symbols rij ¼ rji; i; j 2 1; 2; 3f g; denote Cartesian
components of the Cauchy stress tensors expressed in a basis superimposed to the
plastic orthotropy axes (by convention, the indices of the stress components are
associated to the rolling direction (1), transverse direction (2), and normal direction
(3)), �r� 0 is the equivalent stress (first-degree homogeneous function of the
Cauchy stresses rij ¼ rji; i; j 2 1; 2; 3f g), and Y [ 0 is the yield parameter.

The 3D extension of the BBC (2005) equivalent stress involved in Eq. (1.133)
reads (see Eqs. (1.47) and (1.48) for comparison)

�r2 ¼ a KþCð Þ2k þ a K� Cð Þ2k þ b KþWð Þ2k þ b K�Wð Þ2k
h i1

k

þ 3 r23r32 þ r31r13ð Þ;
ð1:134Þ

where k 2 N� and a; b[ 0 are material parameters, while C, K and W are functions
depending on r11 � r33; r22 � r33; and r12 ¼ r21 :
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C ¼ L r11 � r33ð ÞþM r22 � r33ð Þ
K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N r11 � r33ð Þ � P r22 � r33ð Þ½ �2 þ r12r21

q
W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q r11 � r33ð Þ � R r22 � r33ð Þ½ �2 þ r12r21

q ð1:135Þ

The coefficients L;M;N;P;Q; and R involved in Eqs. (1.135) are also material
parameters. In the case of the BBC (2008) equivalent stress, the 3D extension is
(see Eqs. (1.104) for comparison)

�r2 ¼ w� 1ð Þ
Xs

i¼1

wi�1 LðiÞ þ MðiÞ
h i2k�

þ LðiÞ �MðiÞ
h i2k� �(

þ ws�i MðiÞ þNðiÞ
h i2k

þ MðiÞ � NðiÞ
h i2k� ���1

k

þ 3 r23r32 þ r31r13ð Þ
k; s 2 N�;w ¼ 3=2ð Þ1=s [ 1

LðiÞ ¼ ‘
ðiÞ
1 r11 � r33ð Þþ ‘

ðiÞ
2 r22 � r33ð Þ

MðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðiÞ

1 r11 � r33ð Þ � mðiÞ
2 r22 � r33ð Þ

h i2
þ mðiÞ

3 ðr12 þ r21Þ
h i2r

NðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðiÞ1 r11 � r33ð Þ � nðiÞ2 r22 � r33ð Þ
h i2

þ nðiÞ3 ðr12 þ r21Þ
h i2r

‘
ðiÞ
1 ; ‘

ðiÞ
2 ;mðiÞ

1 ;mðiÞ
2 ;mðiÞ

3 ; nðiÞ1 ; nðiÞ2 ; nðiÞ3 2R:
ð1:136Þ

Because Eqs. (1.133)–(1.136) reduce to the 2D formulations of the BBC (2005,
2008) yield criteria by enforcing ri3 ¼ r3i ¼ 0; i 2 1; 2; 3f g; the 3D versions of
both plasticity models can be efficiently adapted to finite elements accommodating
either 2D or 3D stress states. One may also notice that the 2D identification pro-
cedures of the BBC (2005, 2008) yield criteria are still usable for calibrating their
3D versions.

1.6 Advanced Anisotropic Yield Criteria

During the last years, the competition in the automotive and aeronautical industry
has become more intense. This fact has lead to the development of new steel alloys
(Bake Hardenable, Dual Phase, Complex Phase, Transformation Induced
Plasticity-TRIP, Martensitic Steels, Hot-stamping boron-alloyed steels), aluminium
alloys having better performances and increased interest on the use of magnesium
and superplastic alloys. Since 2000, the modelling of the anisotropic behaviour of
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these materials has encouraged the research activities focused on the development
of yield criteria. Several new models have been proposed during the last years.
These models allow a very good description of the anisotropic behaviour both of
steel alloys (BCC crystallographic structure), aluminium alloys (FCC structure) and
magnesium alloys (HCP structure). The new yield criteria incorporate a large
number of coefficients (usually, at least 8 coefficients). Due to this fact, they are
able to give an accurate description of the yield surface and follow closely the
planar variations of the uniaxial yield stress and the coefficient of plastic anisotropy.
Even more, some of the recently developed models can also capture the
non-symmetric response in tension/compression specific to the HCP alloys. Due to
the significant impact of these advanced yield criteria, they are described in a
separate subchapter entitled ‘Advanced Anisotropic Yield Criteria’.

1.6.1 Barlat Yield Criteria

In order to remove the disadvantages of the Barlat 1994 and Barlat 1996 yield
criteria, but aiming to preserve their flexibility, Barlat proposed in 2000 (Barlat
et al. 2000, 2003) a new model particularized for plane stress (2D). Barlat considers
a linear transformation defined as follows:

X = C � s ð1:137Þ

where s is the deviatoric stress tensor and X is the linearly transformed stress tensor.
This gives 9 independent anisotropy coefficients for the general case and 7 for plane
stress. However, when applied to plane stress conditions, only one coefficient is
available to account for r45 and r45. As pointed out in Barlat et al. (2003) additional
coefficients in the context of linear transformations can be obtained by using two
transformations associated to different isotropic yield functions, respectively. As a
consequence, Barlat et al. (2003) proposed a yield function expressed by the
relationship

U ¼ U0 þU00 ¼ 2ra; ð1:138Þ

where

U0 ¼ S1 � S2j ja ð1:139Þ

and

U00 ¼ 2S2 þ S1j ja þ 2S2 þ S2j ja ð1:140Þ

S1, and S2 are principal deviatoric stresses and ‘a’ is an exponent depending on the
crystallographic structure of the material. Applying a linear transformation to each
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of the isotropic functions defined by Eqs. (1.139) and (1.140) one obtains the yield
function

U ¼ U0 X 0ð Þ þU00 X 00ð Þ ¼ 2�ra ð1:141Þ

where �r is the effective stress, a is a material coefficient and

U0 ¼ X0
1 þX0

2

�� ��a ð1:142Þ

U00 ¼ 2X00
2 þX00

1

�� ��a þ 2X00
1 þX00

2

�� ��a ð1:143Þ

and

X0¼ C0:s¼ C0:T:r¼ L0:r
X00¼ C00:s¼ C00:T:r¼ L00:r

ð1:144Þ

T is a matrix that transforms the Cauchy stress tensor r into its deviator s:

T ¼
2=3 �1=3 0
�1=3 2=3 0
0 0 1

2
4

3
5 ð1:145Þ

C0 and C00 being the linear transformations. In the reference frame associated with
the material symmetry,

X 0
11

X 0
22

X 0
12

2
4

3
5 ¼

C0
11 C0

12 0
C0
21 C0

22 0
0 0 C0

66

2
4

3
5 s11

s22
s12

2
4

3
5 ð1:146Þ

and

X 00
11

X 00
22

X 00
12

2
4

3
5 ¼

C00
11 C00

12 0
C00
21 C00

22 0
0 0 C00

66

2
4

3
5 s11

s22
s12

2
4

3
5 ð1:147Þ

Because U0 depends on X0
1 � X0

2, only three coefficients remain independent in C0

(see more details in (Barlat et al. 2003)). There are five independent coefficients in
C00. In both transformations, there are 8 independent anisotropy coefficients.

The principal values X1 and X2 of there X0 and X00 are as follows:
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X1 ¼ 1
2

X11 þX22 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX11 � X22Þ2 þ 4X2

12

q� �
; ð1:148Þ

X2 ¼ 1
2

X11 þX22 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX11 � X22Þ2 þ 4X2

12

q� �
: ð1:149Þ

The coefficients of L0 and L00 are

L011
L012
L021
L022
L066

2
66664

3
77775 ¼

2=3 0 0
�1=3 0 0
0 �1=3 0
0 2=3 0
0 0 1

2
66664

3
77775

a1
a2
a7

2
4

3
5 ð1:150Þ

L0011
L0012
L0021
L0022
L0066

2
66664

3
77775 ¼ 1

9

�2 2 8 �2 0
1 �4 �4 4 0
4 �4 �4 1 0
�2 8 2 �2 0
0 0 0 0 1

2
66664

3
77775

a3
a4
a5
a6
a8

2
66664

3
77775 ð1:151Þ

Due to the fact that 8 coefficients are incorporated in the linear transformations, 8
material characteristics are needed for identification. The uniaxial tension test along
the rolling, diagonal and transversal directions, together with the biaxial tension test
can provide only 7 characteristics (3 uniaxial yield stresses, 3 coefficients of uni-
axial anisotropy and the biaxial yield stress). Barlat adopted the coefficient of
biaxial anisotropy rb as the eighth characteristic in the identification procedure.

By using the same methodology as the one described above, Barlat et al. (2005)
proposed a 3D yield criterion called Barlat 2004–18p:

U ¼ s01 � s001
�� ��a þ s01 � s002

�� ��a þ s01 � s003
�� ��a þ s02 � s001

�� ��a þ s02 � s002
�� ��a þ

þ s02 � s003
�� ��a þ s03 � s001

�� ��a þ s03 � s002
�� ��a þ s03 � s003

�� ��a¼ 4�ra;
ð1:152Þ

where, �r represents the uniaxial yield stress (any other yield stress may be use as
reference yield stress) and a is an exponent determined based on the crystallo-
graphic structure of the material. The associated linear transformation on the stress
deviator is defined as follows:

C ¼

0 �c12 �c13 0 0 0
�c21 0 �c23 0 0 0
�c31 �c32 0 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

0

2
6666664

3
7777775

ð1:153Þ
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and C0 and C00 are obtained by adding prime and double prime symbols. Each
transformation provides 9 coefficients and totally both transformations give 18
coefficients. In order to determine all this coefficients an the minimization of the
error function method is used (see (Banabic et al. 2000)). If only one linear
transformation is assumed the Barlat 2004–18p formulation reduces to Banabic
et al. (2005) yield criterion.

The uniaxial yield stresses and anisotropy coefficients in seven directions in the
plane of the sheet (0, 15, 30, 45, 60, 75 and 90° to the rolling direction), the biaxial
yield stress, the biaxial anisotropy coefficient and four additional data characterizing
out-of-plane properties (two tensile and two simple shear yield stresses) are used in
the identification of all the coefficients. For the determination of the out-of-plane
parameters, crystal plasticity models are also needed (see (Barlat et al. 2005)).

If one adopts a yield function defined by the relationship

U ¼ s01 � s002
�� ��a þ s02 � s003

�� ��a þ s03 � s001
�� ��a�f s01

�� ��a þ s02
�� ��a þ s03

�� ��ag
þ s001
�� ��a þ s002

�� ��a þ s003
�� ��a¼ 4�ra;

ð1:154Þ

the number of coefficients included in the linear transformations will reduce to 13:

C
0 ¼

0 �1 �c
0
13 0 0 0

�c
0
21 0 �c

0
23 0 0 0

�1 �1 0 0 0 0
0 0 0 c

0
44 0 0

0 0 0 0 c
0
55 0

0 0 0 0 0 c
0
66

0

2
6666664

3
7777775

ð1:155Þ

C
00 ¼

0 �c
00
12 �c

00
13 0 0 0

�c
00
21 0 �c

00
23 0 0 0

�1 �1 0 0 0 0
0 0 0 c

00
44 0 0

0 0 0 0 c
00
55 0

0 0 0 0 0 c
00
66

0

2
6666664

3
7777775

ð1:156Þ

For the plane stress case the number of coefficients reduces from 13 to 9.
The yield function has been tested for different aluminium alloys exhibiting a

pronounced anisotropy. The model has proved its capability to provide an accurate
prediction of the planar variations of the uniaxial yield stress and coefficient of
plastic anisotropy.

The implementation of the Barlat 2004–18p model in finite-element codes
(Yoon et al. 2006) has proved its capability to predict the occurrence of six and
eight ears in the process of cup drawing. This is the most important advantage of the
yield criterion. Of course, it is possible to develop models incorporating more and
more linear transformations and thus having a larger number of coefficients. The
practical difficulty related to the use of such yield criteria consists in the

1 Plastic Behaviour of Sheet Metals 39



experimental determination of the mechanical parameters needed for the evaluation
of the coefficients. The disadvantages of the models presented above are:

• Due to the complexity of the formulation, they are not user-friendly.
• They need crystal plasticity models for the evaluation of some parameters.

1.6.2 Cazacu-Barlat Yield Criteria

To introduce orthotropy in the expression of an isotropic criterion, (Cazacu and
Barlat 2001) proposed an alternative method based on the theory of representation
of tensor functions. They developed a method for generalizing the invariants of the
stress deviator J2 and J3. Based on this method, an anisotropic yield criterion is
obtained by substituting the expression of the stress deviator invariants in the
isotropic criterion by their respective anisotropic forms.

The generalized forms of the invariants, J3
0 and J2

0, respectively, are:

Jo3 ¼ 1
27

b1 þ b2ð Þr311 þ
1
27

b3 þ b4ð Þr322 þ
1
27

2 b1 þ b4ð Þ � b2 � b3½ �r333
� 1
9

b1r22 þ b2r33ð Þr211 �
1
9

b3r33 þ b4r11ð Þr222

� 1
9

b1 � b2 þ b4ð Þr11 þ b1 � b3 þ b4ð Þr22½ �r233

þ 2
9

b1 þ b4ð Þr11r22r33 �
r2xz
3

2b9r22 � b8r33 � 2b9 � b8ð Þr11½ �

� r212
3

2b10r33 � b5r22 � 2b10 � b5ð Þr11½ � � r223
3

b6 þ b7ð Þr11 � b6r22 � b7r33½ �
þ 2b11r12r13r23:

ð1:157Þ

where the coefficients bk (k = 1, …, 11) describe the anisotropy and reduce to unity
for isotropic conditions.

Jo2 ¼ a1
6

r11 � r22ð Þ2 þ a2
6

r22 � r33ð Þ2 þ a3
6

r11 � r33ð Þ2 þ a4r
2
12 þ a5 r

2
13 þ a6 r

2
23

ð1:158Þ

where the coefficients ak (k = 1, …, 6) describe the anisotropy and reduce to unity
in the isotropic case. Note that J02 is Hill’s (1948) quadratic yield function.

In Cazacu and Barlat (2001), this approach was used to extend Drucker’s iso-
tropic yield criterion (Drucker 1949) to an orthotropic formulation. For this case the
expression of the proposed orthotropic criterion is:
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f O ¼ Jo2
� 	3 � c Jo3

� 	2¼ k2: ð1:159Þ

where c is a constant,

k2 ¼ 18
Y
3

� �6

ð1:160Þ

and Y is the uniaxial yield stress.
For the in-plane case, the yield function may be written in the form

f O2 � 1
6

a1 þ a3ð Þr211 �
a1
3
r11r22 þ 1

6
a1 þ a2ð Þr222 þ a4r

2
12


 �3

� c
1
27 b1 þ b2ð Þr311 þ 1

27 b3 þ b4ð Þr322 � 1
9 b1r11 þ b4r22ð Þr11r22

� 1
3 r

2
12 b5 � 2 b10ð Þr11 � b5r22½ �

( )2

¼ k2:

ð1:161Þ

where a1–a4 and b1–b5 and b10 are coefficients describing the anisotropy, c is a
constant and k is expressed by Eq. (1.160). As one may see, the yield function
incorporates 10 anisotropy coefficients and an extra constant c. The 10 anisotropy
coefficients and the value of c can be determined from the measured uniaxial yield
stresses rh and strain ratios rh in 5 different orientations and rb, the value of the
equibiaxial tensile stress. In the 3D case, the model incorporates 18 coefficients.

The yield stress in uniaxial tension along an axis at orientation h to the rolling
direction is predicted by:

rh ¼ k
1
3

1
6

a1 þ a3ð Þ cos4 hþ a4 � a1=3ð Þ cos2 h sin2 hþ 1
6

a1 þ a2ð Þ sin4 h

 �3

�c

1
27 b1 þ b2ð Þ cos6 hþ 1

27 b3 þ b4ð Þ sin6 h

� 1
9

b1 þ 3b5 � 6b10ð Þ cos2 h
þ b4 � 3b5ð Þ sin2 h


 �
sin2 h cos2 h

2
64

3
75
2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

�1=6

ð1:162Þ

and the biaxial yield stress by:

rb ¼ k
1
3

a2 þ a3
6

� �3
� c

�2 b1 þ b2 þ b3 � 2b4
27

� �2
" #�1

6

ð1:163Þ

Yielding under pure shear parallel to the orthotropic axes occurs when rxy is
equal to
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s ¼ k
1
3 a4ð Þ�1

2 ð1:164Þ

In order to predict the distribution of the anisotropy coefficient rh, the function f 02
defined by Eq. (1.161) should be replaced in the relationship

rh ¼ �
sin2 h @ f o

@rx
� sin 2h @ f o

@ rxy
þ cos2 h @ f o

@ ry
@ f o

@rx
þ @ f o

@ry

ð1:165Þ

Cazacu and Barlat (2003) also applied the representation theorems for transverse
isotropy and cubic symmetries. The general expressions of the invariants of the
stress deviators in these cases are detailed in (Cazacu and Barlat 2001). The method
is applied for the extension of Drucker’s isotropic yield criterion to transverse
isotropy and cubic symmetries.

Aiming to develop models of the asymmetrical tension/compression behaviour
specific to the alloys having a Hexagonal Closed Packed-HCP structure, Cazacu
and Barlat have successfully used the representation theory of tensor functions.
They have proposed an isotropic yield function in the form (Cazacu and Barlat
2004):

f ¼ ðJ2Þ3=2 � cJ3 ¼ s3Y ð1:166Þ

where sY is the yield stress in pure shear and c is a constant. This constant can be
expressed in the terms of the uniaxial yield stresses in tension rT and compression
rC, respectively, as follow:

c ¼ 3
ffiffiffi
3

p ðr3T � r3CÞ
2ðr2T þ r2CÞ

: ð1:167Þ

Anisotropy was introduced in the formulation using the method presented above.
For plane stress conditions, the yield locus is:

1
3

r21 � r1r2 þ r22
� 	
 �3=2

� c
27

½2r31 þ r32 � 3ðr1 þ r2Þr1r2� ¼ s3Y ; ð1:168Þ

where r1 and r2 are principal stresses.
The expressions of the anisotropic yield function and the uniaxial yield stresses

in tension and compression along an axis having the angular orientation h to the
rolling direction are presented in (Cazacu and Barlat 2004). The predictions of the
biaxial yield stresses corresponding to the tension and compression, as well as the
planar distribution of the anisotropy coefficient are also presented in the referenced
paper.

Experimental researches (Liu et al. 1997) have shown that for some HCP alloys
(e.g., titanium based alloys) the yield surface is better described by fourth order
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functions. As a consequence, in order to describe such a behaviour, (Cazacu et al.
2006) proposed an isotropic yield function for which the degree of homogeneity
a is not fixed:

U ¼ S1j j � kS1j ja þ S2j j � kS2j ja þ S3j j � kS3j ja; ð1:169Þ

where S1, S2, S3 are principal values of the stress deviator, a is a positive integer and
k is the strength differential parameter.

In order to extend the isotropic criterion defined by Eq. (1.169) to an anisotropic
formulation, the principal values of the deviatoric stress (S1, S2, S3) are replaced by
the principal values of the transformed tensor (R1, R2, R3), obtained after applying a
linear transformation. In this way, the new anisotropic yield criterion (CPB05) can
be written as

U ¼ R1j j � kR1j ja þ R2j j � kR2j ja þ R3j j � kR3j ja: ð1:170Þ

The paper (Cazacu et al. 2006) gives a detailed presentation of the relationships
used to predict the uniaxial yield stresses and the coefficients of plastic anisotropy
both for tension and compression states. Additional linear transformations can be
incorporated into the CPB05 criterion for an improved representation of the ani-
sotropy. The most important advantage of this yield criterion consists in its capa-
bility to provide an accurate description of the tension/compression behaviour
specific to the magnesium and titanium alloys.

1.6.3 Vegter Yield Criterion

Using points of the yield locus determined directly by experiments, (Vegter et al. 1995;
Vegter and van den Boogaard 2006) obtained the yield locus in the first quadrant by
applying a Bezier interpolation. Vegter’s criterion requires the determination of three
parameters for each reference point (two principal stresses r1 and r2 and the strain
vector q = de2/de1). In order to describe the planar anisotropy Vegter’s criterion needs
as many as 17 parameters. The analytical expression of the criterion is

r1

r2

� �
¼ 1� kð Þ2 r1

r2

� �r

i
þ 2k 1� kð Þ r1

r2

� �h

i
þ k2

r1

r2

� �r

iþ 1
ð1:171Þ

for re and angle u where

r1
r2

� �r

iþ 1
¼

Xm cos

j¼0

aj1
aj2

� �r

i

cos 2juð Þ ð1:172Þ

is a trigonometric expansion associated to the reference point,

1 Plastic Behaviour of Sheet Metals 43



R uð Þ ¼
Xm cos

j¼0

bj cos 2juð Þ ð1:173Þ

is a cosine interpolation of the function R(u), u is the angle between the principal
directions and the orthotropic axes, k is a parameter of the Bézier function, r is a
superscript denoting the reference point, h is a superscript denoting the breaking

point,
aj1
aj2

� �r

i

are parameters of the trigonometric interpolation to be determined at

the reference points, and bj are parameters of the trigonometric interpolation of the
R-function.

The most important advantage of the criterion is the flexibility ensured by the
large number of parameters. The disadvantages are related to the unfriendly form of
the yield function making it improper for analytical computation, the large number
of experiments required (uniaxial tension, biaxial tension, plane strain and pure
shearing), and the need of mathematical abilities of the user. The Vegter’s model
has been implemented in the PAMSTAMP FE commercial program.

1.7 Recommendations on the Choice of the Yield Criteria

The most important factors that must be taken into account when choosing the yield
criterion are as follows:

• Accuracy of the prediction both of the yield locus and the uniaxial yield stress
and uniaxial coefficient of plastic anisotropy

• Computational efficiency and ease of implementation in numerical simulation
codes

• Flexibility of the yield criterion
• Degree of generality
• Number of mechanical parameters needed by the identification procedure
• Robustness of the identification procedure
• Experimental difficulties caused by the determination of the mechanical

parameters involved in the identification procedure
• User-friendliness of the yield criterion
• Acceptance of the yield criterion in the scientific/industrial community.

Usually, the best quality of the predictions will be ensured by the yield criteria
having an identification procedure based both on uniaxial and biaxial tension
experimental data. As concerns the experimental data obtained by uniaxial tension
tests, the identification should use at least the yield stresses and the coefficients of
plastic anisotropy corresponding to three planar directions (00, 450 and 900).

The yield criteria that use a larger number of mechanical parameters in the
identification (13 or even more—Barlat 2004, BBC 2008 etc.) are able to provide
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highly accurate descriptions of the anisotropic behaviour. It is especially notable
their capability to capture the occurrence of six or eight ears in the case of
deep-drawing of cylindrical cups.

1.8 Perspectives

As it can be seen from the previous sections of this chapter, advanced yield criteria
allow an accurate prediction of the anisotropic behaviour of materials. On the one
hand, it is possible to simultaneously describe the distribution of both the uniaxial
yield stress and the anisotropy coefficient in the surface of the metallic sheet. On the
other hand, it is also possible to model both “first and second order anisotropic
behaviour anomalies”.

The future research in this field will be oriented towards developing new models
which include special properties (superplastic materials, shape memory materials,
etc.). By including the evolution of the coefficients in the yield functions it will be
possible to predict the yield loci for nonlinear loading. Stochastic modelling will be
used for a more robust prediction of the yield loci (taking into account the vari-
ability of the mechanical parameters). Coupling the phenomenological models with
the ones based on crystal plasticity will allow better simulation of the parameters
evolution in technological processes (these include temperature, strain rate, strain
path, structural evolution).

Therefore, the virtual process chain will be described more accurately, allowing
it to be used in real fabrication processes.
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Chapter 2
Crystallographic Texture and Plastic
Anisotropy

Hans Joachim Bunge and Robert Arthur Schwarzer

2.1 The Structure of Polycrystalline Materials

Anisotropy includes elastic and plastic anisotropy. The macroscopic anisotropy is
closely related to the anisotropic behavior of the single crystal and to the structure of the
poylcrystalline material. The anisotropy of the elastoplastic behavior of the single
crystal results from the crystallographic nature of plastic glide, interactions between the
glide systems (reflecting the dislocation—dislocation—precipitation interactions) and
eventually anisotropy of elastic constants. The mechanical anisotropy associated with
the granular aspect of the material is caused by the crystallographic texture, mor-
phology (size, shape and mutual arrangement of grains, grain boundaries) and internal
stresses caused by intragranular incompatibilities of plastic strain. In cold rolled sheets,
elastic deformation is much smaller than plastic deformation.

The structure of crystalline materials can be characterized by four structure levels:

1. The Crystal Structure specifies the kind and position of atoms in the unit cell of
the ideal crystal lattice.

2. The Phase Structure specifies the sizes, shapes and mutual arrangement of single-
phase volumes (volumes with constant crystal structure) in polyphase materials.

3. The Grain Structure specifies the sizes, shapes, crystal lattice orientations, and
mutual arrangement of monocrystal volumes (within the single-phase volumes).
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4. The Substructure specifies the kind, amount, arrangement, crystallographic
orientation of all lattice defects, i.e. all deviations from the ideal crystal lattice
such as point defects, dislocations, stacking faults, grain and phase boundaries,
the surface, elastic strain, magnetization, electric polarization.

This is illustrated schematically in Fig. 2.1. Any crystalline material is thus
completely characterized by the Microstructure Function G(x) which specifies the
phase, orientation and defects in all small (monocrystalline) volume elements Vx at
the loci x in the material (Bunge and Schwarzer 2001):

GðxÞ ¼
iðxÞ Phase Locus Function
gðxÞ Orientation Locus Function
DðxÞ Substructure Function

8<
:

9=
; Microstructure Function ð2:1Þ

2.2 Definition of Crystallographic Texture

The term Crystallographic Texture or Preferred Orientations, in its widest sense,
may be identified with the Orientation Locus Function g(x). In a narrower (con-
ventional) sense, however, it is understood as the set of volume fractions of all
crystallites in the sample having any given crystal orientation g. Its mathematical
formulation is the Orientation Density Function or Orientation Distribution
Function ODF (Bunge 1982):

dVg=V
dg

¼ fðgÞ; g ¼ u1;U;u2f g Global Texture: ð2:2Þ

The same definition can also be applied to smaller (but still polycrystalline)
subsamples of the size VX at the locus X in the sample. The ODF in the subsample
VX is called the Local Texture, and all local textures together form a Texture Field.
In order to make clear that the definition Eq. (2.2) applies to the whole sample it
may then be called the global texture.

Fig. 2.1 The structure of a
polycrystalline material can
be characterized by four
structure levels: crystal
structure, phase structure,
grain structure, substructure
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dVg=VX

dg
¼ f(g;XÞ; X ¼ X1;X2;X3f g Texture Field ð2:3Þ

Finally, by considering still smaller (monocrystalline) subvolumes VX at the
locus X, we obtain the complete Orientation Locus Function g(x) (contained in
Eq. (2.1)) (Bunge and Schwarzer 2001)

g ¼ g(xÞ; g ¼ u1;U;u2f g
x ¼ x1; x2; x3f g: Orientation Locus Function ð2:4Þ

The Orientation Locus Function g(x) corresponds to a Cosserat continuum
(Cosserat and Cosserat 1909) (if we do not take the atomistic structure of matter
into account). The three definitions, Eqs. (2.2)–(2.4), are illustrated in Fig. 2.2.
The ODF, Eq. (2.2), is three-dimensional, whereas texture fields and the
Orientation Locus Function require six dimensions for their complete representa-
tion. Hence, if we want to “visualize” them, some further data reduction is required
(to no more than three dimensions). In mathematical models of materials properties,
e.g. the plastic properties as considered in this volume, both six-dimensional
quantities, however, can be taken fully into account.

2.2.1 Crystal Orientation

The basic quantity in the Eqs. (2.2)–(2.4) is crystal orientation g. It is defined by
choosing a crystallographic coordinate system KB consisting of three crystal
directions, e.g. [100][010][001] in cubic materials or ½1 �1 0 0� ½11 �2 0� ½0 0 0 1� in
hexagonal materials. A second coordinate system, KA, is (somehow) fixed in the
sample. In sheet metals, for instance, one may choose the rolling, transverse and
normal direction. In principle, the choice of both coordinate systems is deliberate.

It is, however, convenient to choose them in relation to symmetry, i.e. sample
symmetry in the case of KA and crystal symmetry in the case of KB. An often
considered sample symmetry is orthorhombic symmetry (which is in this case often

Fig. 2.2 Illustration of the
three texture functions: the
global texture f(g); the local
textures f(g, X) forming
together a texture field; the
orientation locus function g(x)
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called orthotropic symmetry). Crystal orientation g is the rotation which transfers
KA into KB. This may be written in the form

KB ¼ g � KA Crystal Orientation ð2:5Þ

and is illustrated in Fig. 2.3. Cubic-cubic coordinate systems are assumed. So a
non-cubic crystal and/or a non-cubic sample coordinate system have to be defined
first in orthonormal frames (Schumann 1979). Crystal orientation can be specified
in many different “parameterizations”, e.g. by a transformation matrix [gij], the
Euler angles fu1;U;u2g, a rotation axis r and angle x, the Rodrigues vector,
quaternions, or others:

g ¼ ½gij� ¼ fu1;U;u2g ¼ fr;xg Orientation Parameters: ð2:6Þ

In this chapter we shall mainly use the Euler angles fu1;U;u2g as was already
done in Eqs. (2.2) and (2.4).

2.3 Experimental Determination of Textures

Texture measurement in the classical sense, Eq. (2.2), can be carried out with a
Texture Goniometer, Fig. 2.4, using X-ray or Neutron Diffraction. The “output” of
such an instrument are Direction Distribution Functions, P(hkl)(a, b), of the normal
directions h to low-index reflecting crystal lattice planes (hkl) which are commonly
called Pole Figures (Wassermann and Grewen 1962):

dV/V
dX

¼ PðhklÞða; bÞ ¼ 1
2p

Z
h fabgk

f(g) dg; dX ¼ sin a da db Pole Figure ð2:7Þ

where (a, b) specifies a direction referred to the sample coordinate system KA.
These functions are two-dimensional projections of the three-dimensional function
f(g) as is expressed on the right hand side of Eq. (2.7). The function f(g) can be
calculated from several pole figures by a mathematical procedure, solving the

Fig. 2.3 The orientation g of
a single-crystalline volume
element is described by the
rotation which transfers the
sample coordinate system KA

into the crystal coordinate
system KB
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integral equation (Eq. (2.7)), called Pole Figure Inversion as shown schematically
in Fig. 2.5. “Experimental” pole figures measured in reflection mode of X-ray
diffraction are incomplete with a non-acquired circular range at large angles of
specimen tilt. Since the ODF represents the full orientation distribution of the
sampled volume, complete “theoretical” pole figures, however, can be recalculated
from the ODF. For more details see e.g. Bunge (1982); Spiess et al. (2016).

In order to measure local textures and texture fields, a collimated fine primary
beam (X-rays or synchrotron radiation), e.g. of 0.05 mm in diameter, is used and
the specimen is scanned in steps of similar size. This can be done with an X-ray
Scanning Apparatus which is essentially an “upgraded” conventional texture
goniometer with a computer-controlled x–y specimen stage (see e.g. (Fischer and
Schwarzer 1998; Schwarzer 2005)). Pole intensity distribution maps (Fig. 2.6a),
texture fields, f(g, X), and pole figures of small selected specimen areas are
acquired. In addition residual lattice strain is determined simultaneously with the
same high spatial resolution by evaluating the profile and shift of the X-ray
diffraction peaks (Fig. 2.6b). If “white” primary X-rays and an energy dispersive
X-ray detector are employed, the chemical composition can furthermore be
obtained by X-ray micro-fluorescence analysis (XFA), and thus—in combination
with checking for characteristic diffraction peaks—the Phase Locus Function i(x) is
so acquired (Schwarzer 2005).

The complete Microstructure Function G(x) (at least in a two-dimensional
section x = {x1, x2, 0}), Eq. (2.1), can be measured by backscatter electron
diffraction in the Scanning Electron Microscope as is shown schematically in
Fig. 2.7 (see e.g. (Schwarzer 1997; Schwartz et al. 2009)). The results of such
measurements, known as EBSD (Electron Backscatter Diffraction) or COM
(Crystal Orientation Microscopy), may be visualized by color-coding of g(x) in
microstructural images as is shown, as an example, in Fig. 2.8. For the use in
mathematical models e.g. of plastic anisotropy, the individual grain orientations of
the Orientation Locus Function g(x) are available in the complete six-dimensional
form, Eq. (2.4) (or at least five-dimensional if measurement is restricted to one
sample plane). Phases can be discriminated simultaneously to determine the Phase

Fig. 2.4 An automated X-ray texture goniometer (schematic) consisting of a two-circle
diffractometer supplemented by a Eulerian Cradle as the sample orientation device
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Locus Function i(x) by checking, in a trial with all assumed crystal structures, for
best indexing the diffraction patterns if the lattice constants differ sufficiently, as
well as by supplementing electron beam microanalysis (Energy Dispersive X-Ray
Spectroscopy, EDS, or Auger Electron Spectroscopy, AES). The pattern quality
(PQ), i.e. the sharpness of the backscatter Kikuchi patterns, is a (semi-)quantitative
measure of the perfection of the diffracting crystallite volume thus providing an
estimate of the Substructure Function D(x).

Fig. 2.5 Calculation of the Orientation Distribution Function (ODF) (center) from several
incomplete experimental pole distribution functions (top). The procedure is called “Pole
Figure Inversion”. From the ODF complete pole figures can be recalculated (bottom)

52 H.J. Bunge and R.A. Schwarzer



The properties of a polycrystalline aggregate depend markedly on the arrange-
ment and distribution of its constituent elements of all four structure levels as stated
in Sect. 2.1. Hence, the general concept of orientation stereology, rather than merely
texture or conventional stereology alone (i.e. Quantitative Materialography), must be
taken as a basis for comprehensive models which describe and simulate anisotropic
properties of the real polycrystalline material. Orientation stereology is based on the
Microstructure Function G(x), Eq. (2.1). Both fields of materials science, texture and

Fig. 2.6 Cross section of an aluminum rivet. a Spatial distribution map of the 220 pole intensity.
The 220 planes were placed parallel to the reference direction a = 35° and b = 83°, 20 = 40.2°;
b The lattice strain across the rivet bolt was calculated from the width of the 220 peaks

Fig. 2.7 Backscatter electron diffraction in a scanning electron microscope (schematic). The
points (x, y) on the specimen are scanned automatically. A wide-angle Kikuchi diffraction pattern
(see insert on top right) is acquired in every point with a sensitive CCD camera, evaluated
automatically for crystal orientation, and represented by a pixel with orientation specific color on
the monitor screen to form a crystal orientation map (COM) (Schwarzer 1997)
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stereology, and their conventional functions characterizing the microstructure are
contained, but many other functions can be derived from G(x) which are hard or in
no way accessible to direct measurement (Bunge and Schwarzer 2001).

Fig. 2.8 Representation of individual crystal data g(x) by color coding. A laser welding seam
connects an Al6013 with an Al5083 metal sheet. The crystal directions, {hkl} in welding direction
and <uvw> in the reference direction (perpendicular to the welding direction and in the sheet
plane), have been coded by the color triangle (top left) to form crystal orientation maps. The
inverse pole figures of Al6013 (upper left), of the welding seam (center left), respectively of
Al5083 (bottom left) have been constructed from the individual grain orientations. The grain
structure is clearly reproduced in the pattern quality map (PQ) (Brokmeier et al. 2007)
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2.4 Texture and Properties of Materials

Crystallographic texture, or even more generally the Microstructure Function G(x),
influences the physical properties of materials as is shown schematically in the right
half of Fig. 2.9. On the other hand, texture is formed (or modified) by physical
processes as is shown schematically on the left side of Fig. 2.9. With respect to the
topic of this book we consider here particularly Plastic Anisotropy as a property and
Plastic Deformation as a process. In technological forming processes both are
directly related to each other as is also illustrated in this figure. The relationships are
to be expressed in terms of mathematical models. It is evident that the relationship
Process ! Structure ! Properties, illustrated in Fig. 2.9, holds for virtually all
crystalline materials, be they metals, ceramics, (partly) crystalline polymers, or even
geologic or natural biologic materials.

Crystallographic texture influences the properties of a material via Crystal
Anisotropy as is illustrated schematically in Fig. 2.10:

• If the orientation distribution of the crystallites is not random, then the material
may be macroscopically anisotropic. The effect can be understood (at least in a
good first approximation) in terms of the classical texture function f(g). This is
the main topic of this chapter.

• At the grain boundaries the (local) properties are discontinuous. This may have a
strong influence on the material’s properties, too, even if the material is
macroscopically isotropic.

• And finally the near-boundary zones of the crystallites may have deviating
physical properties (e.g. higher diffusion or lower strength).

Fig. 2.9 The two aspects of texture analysis: the “Process ! Texture” relationship (left side); the
“Texture ! Property” relationship (right side)
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These latter two effects require the full Orientation Locus Function g(x) for their
understanding rather than only the classical concept of texture f(g).

In this book plastic formability of materials is considered for sheet materials. In
this case it is convenient to subdivide plastic anisotropy into planar and normal
anisotropy, as is shown schematically in Fig. 2.11. The normal anisotropy influ-
ences the maximum drawability of sheet material and should thus be as high as
possible, as is shown in Fig. 2.12. For the correlation of r with deep-drawability see
also Chap. 5.

Fig. 2.10 Effect of crystal anisotropy on material properties (schematic): a macro-anisotropy,
b micro-discontinuity, c grain boundary properties

Fig. 2.11 The anisotropy of
sheet material is subdivided
into normal and planar
anisotropy
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Planar anisotropy leads to earing as is shown in Fig. 2.13. Hence, it should be
as low as possible, ideally it should be zero. Both quantities are directly related to
crystallographic texture. In fact, earing shown in Fig. 2.13 and the means how to
avoid it, has become the very mark of crystallographic texture (see e.g.
(Wassermann and Grewen 1962)).

2.5 Plasticity of Polycrystalline Materials

Plasticity of crystalline materials must be considered on many different length-scales
as is illustrated in Fig. 2.14. The following scales may be distinguished:

Fig. 2.12 Normal anisotropy expressed by the average r-value enhances the deep drawability of
sheet metals. The same material, e.g. aluminum, copper, iron, may have different textures and
hence different �r-values (after (Wilson 1966))

Fig. 2.13 Planar anisotropy expressed by Δr leads to earing after deep drawing
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Microscopic ! Hardening relevant

Mesoscopic ! Texture relevant

Macroscopic ! Process relevant.

In this chapter we consider mainly the mesoscopic—texture relevant—scale. As is
illustrated in Fig. 2.15, two volume elements of different length scales are distinguished:

• A small monocrystalline volume element (a) at the locus x, with the crystal ori-
entation g, Eq. (2.4), which undergoes homogeneous deformation e(x) (as the
average of individual dislocationmovements considered on themicroscopic scale).

• A bigger, polycrystalline volume element (d) at the locus X with the texture f(g),
Eq. (2.3), which undergoes the quasi-homogeneous deformation �eðXÞ (as the
average of the local deformations e(x) of all monocrystalline volume elements
(a) which it contains).

Any mathematical model of polycrystal plasticity must contain model assump-
tions about the monocrystalline as well as the polycrystalline volume element.
Plastic deformation of the monocrystalline volume element has been considered in
terms of the following models:

• The Sachs model assumes glide in only one glide system which is subjected to
the highest shear stress according to its maximum Schmid factor (Sachs 1928).

Fig. 2.14 Plasticity of polycrystalline materials is to be considered on many different length
scales ranging from atomistic to macroscopic-technological dimensions
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• The viscoplastic (strain rate sensitive) model assumes glide in all glide systems.
The glide rates cn in these systems depend on the shear stresses sn falling into
the systems (according to their Schmid factors).

cn ¼ c0 �
sn

sn0

� �1
m

ð2:8Þ

The exponent m is a measure of strain rate sensitivity (Canova et al. 1984; Tóth
et al. 1997).

• The Taylor-Bishop-Hill model assumes glide in all glide systems. The glide rates
cn guarantee minimum deformation work (see Eq. (2.13)) (Bishop and Hill
1951; Taylor 1938).

Also the polycrystalline volume element has been considered with different
model assumptions:

• The Taylor-Bishop-Hill model (full constraints) assumes constant deformation
throughout the whole material

Fig. 2.15 Different volume
elements considered in a
polycrystalline material:
a small volume element
which is single crystalline
with homogeneous
deformation, Vx, b single
crystalline with
inhomogeneous deformation,
c volume fraction with same
orientation g, d bigger
polycrystalline volume Vx

with texture f(g)
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eðxÞ ¼ �eðXÞ: ð2:9Þ

This assumption allows the polycrystalline volume element to be treated solely
on the basis of the classical texture f(g), Eq. (2.3).

• The relaxed constraints (Taylor) model allows deviations from Eq. (2.9).
Particularly one or two shear strain components in eðxÞ are “relaxed”, i.e. they
are allowed to assume non-fixed values which are deduced, later on, from the
model (Honneff and Mecking 1978).

• The self-consistent model considers one grain with the orientation g (at a time)
individually which is embedded in a homogeneous matrix the properties of
which are texture averages over all orientations g according to the texture f(g)
(Kröner 1961; Molinari et al. 1987; Tomé and Canova 1998).

• Finally, model calculations have also been carried out without any model
hypotheses about the polycrystal, i.e. they are based on the Orientation Locus
Function g(x), Eq. (2.4), the changes of which follow as a result of the model
(Dawson et al. 1994; Dawson and Beaudoin 1998).

All of the polycrystal assumptions may be combined with any of the
monocrystal assumptions, hence leading to a great variety of different model
variants.

Plastic deformation is necessarily combined with elastic deformation. Hence,
strictly speaking plasticity cannot be considered without taking elasticity into
account. The maximum elastic strains are, however, much smaller than the maxi-
mum plastic strains. This applies particularly to metal forming processes in which
the elastic strains can be neglected as compared with the plastic ones. It does not
apply to the range of yield stresses, i.e. to the very onset of plasticity.

In this case some of the crystallites may have already been deformed plastically,
whereas others are still in the elastic range. Hence, all models of plastic anisotropy
and plastic deformation have been considered in two approximations, i.e. with and
without elasticity (see e.g. (Iwakuma 1984; Masson and Zaoui 1999)).

Reviews over the various models are given, for instance, in (Van Houtte 1984,
1996; Kocks et al. 1998; Leffers et al. 1988; Leffers 1988; Lowe et al. 1991; Raabe
1998; Zaoui 1986). In the following we shall consider the full-constraints Taylor
model in some more detail.

2.5.1 The Taylor Model (Full-Constraints)

Plastic deformation in a small volume element, Vx, may be described by the dis-
placement vector du of a point x after a small deformation step dη

dui ¼ dg � eij � xj ð2:10Þ

as is illustrated schematically in Fig. 2.16.
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Monocrystalline Volume Element
If the volume element is monocrystalline the deformation tensor eij is composed of
glide deformations in the glide systems n with the glide rates cn. Glide in one glide
system is assumed to be a homogeneous shear described by the shear tensor (av-
eraged over individual dislocation glide)

Gn
ijðgÞ ¼ dni � nnj ð2:11Þ

with d being the vector of the glide direction and n the normal to the glide plane,
respectively (referred to the chosen sample coordinate system KA).

In a given crystal structure, glide plane and glide direction are usually known
with respect to the crystal coordinate system KB, e.g. in the form fhklghuvwi as
glide plane and glide direction. In fcc metals, for instance, the glide systems
f111gh110i are assumed active. The orientations of the glide systems must be
transformed by the rotation g, using the transformation matrix [gij], Eq. (2.6), into
the sample coordinate system KA which was assumed in Eq. (2.11).

Plastic deformation may also proceed by twinning which we do not consider
here for the sake of simplicity. Diffusion processes such as grain boundary glide are
not taken into account here either.

Glide, by itself, does not change the orientation of the crystal lattice. However,
the external forces may induce a torque on the deformed volume element which
leads to a rigid rotation R as is illustrated schematically in Fig. 2.17. Hence, the

Fig. 2.16 A small
deformation step dη in a small
volume element characterized
by the displacement vector u

Fig. 2.17 Plastic deformation of a single-crystalline volume element by glide and rigid rotation.
The intermediate state (only glide without rotation) is only imaginary
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deformation tensor eij in Eq. (2.10) must be composed of glide in all glide systems
and a rigid rotation R:

eij ¼
XN
n¼1

cn � Gn
ijðgÞþRij: ð2:12Þ

In most cases, the number N of available glide systems is greater than the
number of independent components in e. Hence, Eq. (2.12) leaves a high degree of
freedom to the choice of the cn. Any physically realistic choice must, however,
guarantee minimum deformation work which requires

XN
n¼1

cnj jan ¼ min!M; an ¼ sn0=s0 ð2:13Þ

where sn0 are the critical resolved shear stresses in the glide systems, and s0 is some
average value of them. In Eqs. (2.12) and (2.13), eij and g are the input variables,
the rotation Rij and the Taylor factor M are the output quantities of the model, the
glide system tensors Gn

ij described by d and n, Eq. (2.11), depend on the crystal
structure of the considered material, and the critical resolved shear stresses sn0
depend on the state of deformation hardening reached after a finite degree η of
deformation, i.e. they depend on D(x), Eq. (2.1).

The matrices eij, Gij, Rij in Eq. (2.12) may be split into their respective sym-
metric and antisymmetric parts. Hence, Eq. (2.12) can be written in the form

esymij ¼
XN
n¼1

cn � Gn
ijðgÞsym ð2:12aÞ

eantij ¼
XN
n¼1

cn � Gn
ijðgÞant þRij: ð2:12bÞ

Since Rij is antisymmetric it is not contained in Eq. (2.12a). Hence, this equation
can be solved together with Eq. (2.13) for the cn. In the most general case this
system of equations has several linearly independent solutions cnm (notwithstanding
the minimum condition in Eq. (2.13) which enforces a unique solution for M).
Substituting the cnm in Eq. (2.12b) gives the rotations Rm

ij which are thus also not
unique. Hence, the Taylor model has two (external) output quantities

M(eij; g) Taylor Factor ð2:14Þ

Rijðeij; g) ¼
X
m

am � Rm
ij ðeij; gÞ Axis Rotation Rate: ð2:15Þ
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(Then the “internal” quantities cnm are no more required.) The Taylor factor M
expresses the deformation work dW needed during the deformation step dη,
Eq. (2.10). It is

dW ¼ dg � s0 �M: ð2:16Þ

Hence, its dependence on eij, Eq. (2.14) describes the plastic anisotropy of the
monocrystalline volume element. M has been called the plastic potential. It is the
basis for the calculation of the plastic properties of the material (for small
deformations).

The rigid rotation rate R changes the crystallographic orientation g of the volume
element by Δg

Dg ¼ dg � R Lattice Spin: ð2:17Þ

Corresponding to the Cosserat continuum (Lippmann 1969, 1995) this may be
called the “lattice spin” of the monocrystalline volume element. The Cosserat
theory of elasticity, also known as micropolar elasticity, incorporates the translation
due to force stress assumed in classical elasticity as well as a local orientation of
volume elements due to a couple stress (torque). Lattice spin is the basis for the
change of texture in the course of plastic deformation. Considered as a function of
the starting orientation g it describes the Orientation Flow Field (in the orientation
space) (Bunge and Klein 1993, 1991).

The Taylor model does not fix the factors am in Eq. (2.15) which may assume
any values under the conditionsX

m

am ¼ 1; 0� am � 1: ð2:18Þ

The actual values of the am depend on the environment of the considered volume
element, i.e. on g(x) in this environment. They may also be influenced by the local
defect substructure D(x), Eq. (2.1). These quantities are, however, not taken into
consideration in the classical Taylor model. Rather, as was mentioned in the context
of Eq. (2.9), this model stays within the scope of the classical texture function f(g).
Hence, within the Taylor model, some reasonable assumptions for some average
values of the am are usually introduced (see e.g. (Chin 1969)). It is worth men-
tioning that the non-uniqueness of the rotation Δg, for volume elements with the
same starting orientation g, leads to deformation textures which are flatter than the
ones described later on in Eq. (2.24). For details see e.g. (Bunge and Klein 1993).

In Fig. 2.18 the Taylor factor is shown as a function of crystal orientation g,
calculated for plane-strain deformation q = 0 (see Eq. (2.26)) for fcc metals with
the glide systems f111gh110i (Bunge 1970). In Fig. 2.19 one section, u1 = 90°, of
the orientation flow field is shown for the same parameters as for the Taylor factor
in Fig. 2.18 (Bunge 1970).
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Polycrystalline Volume Element
The monocrystal quantities M and R, Eqs. (2.14) and (2.15), are to be averaged in
the polycrystalline volume element VX with the texture f(g) as weight function:

Fig. 2.18 The single-crystal Taylor factor M(g) as a g function of crystal orientation expressed by
Euler angles u1, U, u2
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MðeijÞ ¼
Z
g

M(eij; g) � f(g) dg ð2:19Þ

RijðeijÞ ¼
Z
g

Rijðeij; g) � f(g) dg: ð2:20Þ

The polycrystal Taylor factor M expresses the deformation work needed during
the deformation step dη in the polycrystalline volume element VX

dW ¼ dg � s0 �M. ð2:21Þ

Hence, its dependence on eij, Eq. (2.19) describes the plastic anisotropy of this
volume element. It is the plastic potential for this volume element.

The averaged rotation rate R describes a “common” rotation component of all
monocrystalline volume elements contained in the polycrystalline one, Fig. 2.20. If
the crystallites would do only this rotation, the texture f(g) would only be rotated as
a whole to the new one

f 0ðg) ¼ f(Dg � gÞ; Dg ¼ dg � R Texture Spin: ð2:22Þ

With reference to the Cosserat continuum (Lippmann 1969, 1995) this may be
called the Texture Spin. It is, however, evident from Fig. 2.20 that this texture spin
represents only a small part of the total texture change. This is corroborated by
Fig. 2.21. In this figure the deviation of the texture from its original orthotropic

Fig. 2.19 Lattice rotation R
(g) as a function of the initial
orientation g (only one
section, u1 = 90°, of the
Euler space is shown). Crystal
orientations rotate toward the
main orientation (Cu) of the
copper rolling texture
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symmetry (expressed by an asymmetry parameter) is plotted for samples cut out of
an aluminum sheet under different angles b to the rolling direction (i.e. to the
original orthotropic axes) and elongated by 20 % (Bunge and Nielsen 1997). The
upper curve a is the total change, the lower curve b is obtained after carrying out the
texture spin, Eq. (2.22), i.e. the average rotation shown in Fig. 2.20b. The still
remaining deviation from orthotropic symmetry, curve b, is due to the individual
rotations shown in Fig. 2.20a. They are much stronger than the “common” rotation
component, the texture spin which is shown in Fig. 2.22, as a function of the angle
b. It assumes a maximum value of only 5° in this case. Hence, the Cosserat
continuum is not an appropriate model to treat plastic deformation to large plastic
strains in terms of polycrystalline volume elements. In the isotropic Cosserat solid
there are six elastic constants, in contrast to the classical elastic solid in which there
are two. A polycrystalline volume element requires many more internal parameters,
e.g. the texture coefficients Clm

k , Eq. (2.41).
In order to obtain the complete texture change the rotations R(g) must be con-

sidered individually for all orientations g together with the orientation densities f(g)

Fig. 2.20 Individual lattice
rotation Δg (lattice spin) a and
the average rotation Dg
(texture spin) b

Fig. 2.21 Deviation of the
texture symmetry from the
original orthotropic symmetry
(as a measure of texture
change) for samples cut out of
an aluminum sheet and
elongated by 20 % under the
angle b to the rolling
direction: a total asymmetry;
b remaining asymmetry after
carrying out the “texture spin”
rotation according to
Eqs. (2.20) and (2.22)
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in these orientations. Hence, the texture change during a small deformation step dη
is described by the continuity equation in the orientation space g (Clement and
Coulomb 1979):

@f(g;gÞ
@g

¼ �div f(g;gÞ � R(g)ef g ¼ /ðg;gÞe Continuity Equation: ð2:23Þ

Equation (2.23) expresses the fact that no orientations “get lost” in the orien-
tation space. They rather move continuously into and out of any volume element in
this space in which the density f(g) is defined. In this respect the texture is anal-
ogous to a compressible fluid in the orientation space with local density f(g). After
larger deformation the end-texture fend(g) is reached. It is obtained by integration
over all small steps dη. Thereby it must be admitted that the deformation tensor eij
(i.e. the deformation geometry) may vary with the deformation degree η. Hence, the
deformation path e(η) must be taken into account, and it is obtained after large
deformations by

fendðgÞ ¼ fstartðgÞþ
Z gend

gstart
/ðg;g;gðeÞÞ dg LargeDeformations: ð2:24Þ

As a special case, the deformation path e(η) may also be constant, as for instance
during uniaxial elongation in the homogeneous range.

2.5.2 Special Plasticity Parameters

Having Eqs. (2.12a) and (2.12b) in mind, it is meaningful to split the deformation
tensor, Eq. (2.10), into its symmetric and antisymmetric part

Fig. 2.22 The texture spin
Δg according to Eqs. (2.20)
and (2.22) and Fig. 2.20 for
samples cut out of an
aluminum sheet and elongated
20 % under the angle b to the
rolling direction
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eij ¼ esymij þ eantij : ð2:25Þ

The first one is a shape change of the volume element, the second one is a rigid
rotation (which is to be distinguished from the lattice rotation Rij in Eq. (2.12)). The
symmetric part can be referred to its principle axes which are related to the chosen
sample coordinate system KA by the rotation ge

esymkl ¼
1 0 0
0 �q 0
0 0 �ð1� qÞ

2
4

3
5
ge

Principle StrainAxes: ð2:26Þ

By the choice of dη the component e11 in Eq. (2.26) can always be normalized to
one. As is seen in Eqs. (2.12a) and (2.13), the monocrystal Taylor factor M depends
only on the symmetric part of the imposed strain esym. With Eq. (2.19) the same
holds for the polycrystal Taylor factor M. Hence, we can write

MðeÞ ¼ MðesymÞ ¼ Mðq; geÞ: ð2:27Þ

If we know the principle strain axes a priori then we can choose them as the
sample coordinate system KA. In this case the polycrystal Taylor factor depends
only on one parameter, namely q (assuming of course that the texture is given and
does not change during the small deformation step).

According to Eq. (2.21) the Taylor factor M describes the deformation work
needed during the deformation step dη. If the parameters q and ge in Eq. (2.27) are
not fixed by the deformation device, then they will assume such values which
minimize Eq. (2.27):

Mðq; geÞ!min: ð2:28Þ

The minimum values depend on the texture and hence, they are material property
parameters, describing plastic anisotropy.

We consider particularly the following two simple experimental conditions:

Uniaxial Stress, r-Value
In a uniaxial tensile test a uniaxial stress is applied. This enforces a strong strain
component along the stress direction. Nevertheless, the principle strain axes may
deviate from the principle stress axes, Fig. 2.23. In many cases (of not too strong
texture) these deviations may, however, be neglected. Then ge in Eq. (2.28) is fixed
and M has to be minimized with respect to q only:

dMðq)
dq

¼ 0 ! qmin: ð2:29Þ
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The minimum value of q is related to the Lankford parameter r by

r ¼ qmin

1� qmin
: ð2:30Þ

This is illustrated in Fig. 2.24 for two samples cut in rolling direction and under
45° from a rolled iron sheet. The curves were calculated from the measured texture
by Eq. (2.19) as a function of q. The experimental q-value agrees quite well with
the calculated minimum value according to Eq. (2.29) (Bunge and Roberts 1969;
Bunge 1970).

Fig. 2.23 In a uniaxial tensile test under the angle b towards sheet-rolling direction the principle
strain axes e may deviate from the principle stress axes r

Fig. 2.24 The polycrystal
Taylor factor Mðq) as a
function of q (for a given
texture) compared with the
experimentally determined
q-value, respectively r-value
according to Eq. (2.30)

2 Crystallographic Texture and Plastic Anisotropy 69



Biaxial Stress, Yield Locus
A biaxial stress may be applied to the material. It can be represented in the principle
stress axes which have the orientation gr with respect to the sample coordinate
system KA:

rij ¼
r1 0 0
0 r2 0
0 0 0

2
4

3
5
gr

Principle Stress Axes: ð2:31Þ

In the most general case the principle strain axes ge in Eq. (2.26) need not be
parallel to the principle stress axes of Eq. (2.31) as was illustrated in Fig. 2.23. If,
however, the material has orthorhombic (orthotropic) symmetry, as in the case of
sheet metals, and if we choose the principle stress axes parallel to the orthotropic
axes of the material, i.e. to the symmetry axes of the texture, then they are also the
principle strain axes ge of Eq. (2.26). The deformation work (Eq. (2.21)) can then
be expressed by the stress and strain tensor

dW ¼ dg � eij � rij

¼ dg � r1 � q � r2½ � ¼ s0 � dg �Mðq): ð2:32Þ

For any given value of q, Eq. (2.32) represents a straight line in the principle
stress-space r1, r2 which is a tangent to the yield locus. The yield locus is then
obtained as the inner envelope of the bunch of these straight lines. By differentiating
Eq. (2.32) with respect to q one obtains, together with Eq. (2.32), (Bunge et al.
1980; Park et al. 1993)

r1 ¼ MðqÞ � q � dMðqÞ
dq

� �
� s0

r2 ¼ � dMðqÞ
dq

� s0
ð2:33Þ

This is illustrated in Fig. 2.25. The shape of the yield locus follows from Mðq)
and hence from the texture, its size is given by the hardness parameter s0.

2.5.3 Plasticity of Cubic Metals

Crystal structure enters plastic behavior, e.g. in the Taylor model, via the glide
systems, i.e. via the Gn

ij in Eq. (2.12) expressed by dni and nnj in Eq. (2.11). The
glide systems are (in a good first approximation)
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for fcc metals : f111gh110i
for bcc metals : f110gh111i ð2:34Þ

i.e. glide plane normal and glide direction are exchanged in the two crystal struc-
tures. Then it follows immediately from Eq. (2.11)

Gn
ijðg)symbcc ¼ Gn

ijðg)symfcc

Gn
ijðg)antbcc ¼ �Gn

ijðg)antfcc

ð2:35Þ

and for the two principle quantities of plasticity, M and R:

M(g)bcc ¼ M(g)fcc
Rijðg)bcc ¼ �Rijðg)fcc:

ð2:36Þ

Hence, with the same texture, fcc and bcc metals have the same (polycrystal)
Taylor factor

Mbcc ¼ Mfcc Same Texture fðgÞ ð2:37Þ

and therefore the same plastic anisotropy expressed, for instance, by the r-value,
Eq. (2.30), or by the yield locus, Eq. (2.33).

As an example Fig. 2.26 shows the yield loci of three different fcc and bcc
materials calculated from their respective textures. All three yield loci are in
between those according to the von Mises and Tresca hypotheses. The differences
are due to the different rolling textures. Because of Eq. (2.37), fcc and bcc materials
with the same given texture need not be distinguished in plasticity model calcula-
tions for small deformations. Because of Eq. (2.36b), however, the orientation
changes of fcc and bcc crystals by plastic deformation go into opposite directions.
Hence, with the same starting texture different end-textures will result after the

Fig. 2.25 The yield locus is
obtained as the inner envelope
of a bundle of straight lines as
a function of q (cf. Eq. (2.32))
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same (large) plastic deformation according to Eq. (2.24). Therefore, plastic
behavior of these two kinds of materials is different after large deformation.

Finally Fig. 2.27 illustrates the influence of different glide systems on the yield
locus with the same texture (in this case random crystal orientation distribution is
assumed). Glide systems f111gh112i have been considered (at least in addition to
f111gh110i) for fcc metals with low stacking fault energy such as brass and silver.
Pencil glide fhklgh111i is assumed to be the best-fitting deformation mode for bcc
metals. Taking different glide systems into account then Eq. (2.36) is no more
strictly valid, but it is still a good first approximation.

Fig. 2.26 Yield loci of
various materials calculated
from their textures

Fig. 2.27 Yield loci
calculated for three different
glide systems
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2.5.4 Deformation Hardening

Any change of the flow stresses r in the course of deformation is generally called
deformation hardening. The stresses are obtained by minimizing the deformation
work, Eq. (2.21), from which particularly Eq. (2.33) was obtained in that special
case.

Hence, total hardening can be split into the following three contributions due to
changes of the three parameters s0, a

n and f(g) entering this expression

@r
@g

� �
an;fðgÞ

¼ @r
@s0

� ds0
dg

Isotropic StrainHardening ð2:38Þ

@r
@g

� �
s0;fðgÞ

¼ @r
@an

� da
n

dg
Anisotropic StrainHardening
“Latent Hardening”

ð2:39Þ

@r
@g

� �
s0;an

¼ @r
@ f(g)

� df(g)
dg

Texture Hardening: ð2:40Þ

It is worth mentioning that all three parts may assume also negative values
(softening). This is particularly known as the Bauschinger Effect and as deformation
softening (negative strain hardening) as well as texture softening. The prevailing
case is, however, positive hardening.

Anisotropic strain hardening (latent hardening) is often assumed to be small
compared with isotropic strain hardening. In this case strain hardening is a multi-
plicand factor s0, Eqs. (2.21) and (2.33). This factor does not enter Eqs. (2.29) and
(2.30). Hence, the r-value is a plasticity parameter which is independent of the
actual hardening state of the material (which may be different when different
samples are being compared). Texture hardening (or softening) can be deduced
from the texture change according to Eq. (2.23) for small deformation steps (where
it is generally small compared to strain hardening), and from Eq. (2.24) for large
strains in which case it must not be neglected.

2.5.5 Plasticity of Macroscopic Bodies

On the mesoscopic scale we have considered a polycrystalline volume element VX

(type d in Fig. 2.15) which is characterized by its texture f(g) and its hardness
described by sn0. Both quantities may vary as a consequence of deformation.

On the macroscopic scale (process-relevant scale) many such polycrystalline
volume elements at the loci X must be considered. They undergo the local defor-
mation �eðXÞ(deformation field) which may even vary in the course of deformation
as a function of η (deformation path). Hence, each volume element may develop its
own texture (texture field f(g, X)) as well as its own hardness sn0ðXÞ, both as a
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function of the actual deformation degree η. The deformation field �eðXÞ is not
uniquely fixed by the external conditions. Rather, stresses and/or strains are given
only on the surface of the body. The stress and strain fields �eðXÞ and r(X) develop
according to minimum total deformation energy which involves the actual materials
property fields f(g, X, η) and sn0ðX;gÞ. Hence, any plasticity model of macroscopic
bodies must consider local textures and local hardness simultaneously (see e.g.
(Hoferlin et al. 1999)).

2.6 Parameterization of the Texture Function

The texture function f(g), defined in Eq. (2.2), is the basic quantity for the calcu-
lation of the plastic properties of a polycrystalline material from the known prop-
erties of monocrystals expressed in Eq. (2.19). The function f(g) is a function of
three variables. It requires several thousand function values for its numerical rep-
resentation and treatment (depending on the required angular resolution and hence
accuracy). This number can be drastically reduced by choosing an appropriate
parameterization of this function. For this purpose we express f(g) by a series
expansion in terms of generalized spherical harmonics Tlm

k ðg) (Bunge 1982):

f(g) ¼
XL
k¼0

XMðkÞ

l¼1

XNðkÞ
m¼1

Clm
k � Tlm

k ðgÞ: ð2:41Þ

The “resolving power” of this representation is given by the series truncation
value L. The function f(g) is then represented by its coefficients Clm

k , the number of
which depends on L. The coefficients are obtained from experimental measure-
ments of pole figures by a mathematical procedure called Pole Figure Inversion for
which routine computer programs have been developed (Dahms and Bunge 1989;
Dahlem-Klein et al. 1993; Schäfer 1998). The positivity of ODF and pole figures, as
statistical density functions, is taken into account during the iterative calculation so
that “ghost” errors are eliminated. The result of this procedure was illustrated in
Fig. 2.5.

In order to calculate the basic integral Eq. (2.19), the function M(g) is repre-
sented in the same way (Bunge 1970) as well:

M(g) ¼
XL0

k¼0

XMðkÞ

l¼1

XNðkÞ
m¼1

mlm
k � Tlm

k ðg): ð2:42Þ

Thereby the truncation value L0 may be chosen different from L in Eq. (2.41).
The coefficients mlm

k can be obtained from M(g) by a known mathematical pro-
cedure, see e.g. (Bunge 1982). The integral Eq. (2.19) then takes on the form
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M ¼
XLmin

k¼0

XMðkÞ

l¼1

XNðkÞ
m¼1

Clm
k �mlm

k

2kþ 1
; Lmin ¼ min L;L0½ �: ð2:43Þ

It turns out that usually the series Eq. (2.42) converges much faster than that of
Eq. (2.41), i.e. L0 < L. In fact, rather low values of Lmin are often satisfactory.
Hence, Eq. (2.43) provides a very “economic” mathematical treatment of the
“Texture ! Property” relationship illustrated on the right side of Fig. 2.9 (here
applied to plastic properties).

In cubic materials the lowest-order non-random approximation is Lmin = 4. With
this approximation the r-value in sheet metals, according to Eqs. (2.29) and (2.30),
in the sheet plane, Fig. 2.11, can be written in the form

rðbÞ ¼ 1þ r1C11
4 þ r2C12

4 sin2bþ r3C13
4 sin4b. ð2:44Þ

It contains only three texture coefficients C1m
4 . Since a similar fourth-order

expression describes the elastic properties in sheet materials, too, this may be used
as the basis for an (indirect) determination of plastic properties from the more
convenient measurement of elastic properties, as was done, for the first time, by
Stickels and Mould (Stickels and Mould 1970) and was found satisfactory in many
applications.

It must be mentioned, however, that the “Process ! Texture” relationship does
not allow a satisfactory low-order approximation. This relationship, expressed in
Eqs. (2.23) and (2.24), requires the full series expansion Eq. (2.41) with the value L
guaranteeing good convergence of the series (which is the higher the sharper the
texture is). As a rule L * 30 may be satisfactory in many cases, corresponding to
some hundred coefficients Clm

k . This is much more than the four coefficients of the
approximation, but Eq. (2.44) is still one order of magnitude lower than the rep-
resentation of the texture function f(g) by several thousand function values. Hence,
the parameterization of this function by Eq. (2.41) is “most economic” also for the
“Process ! Texture” relationship. For details see e.g. (Klein and Bunge 1991).

2.7 Other Modes of Plasticity

In the preceding sections we have considered plastic deformation on the basis of
dislocation glide (which was averaged to homogeneous shear in the glide systems).
In the most general case, however, many other physical processes may also con-
tribute to plastic deformation of materials:

• Mechanical twinning leads to homogeneous shear in the twin lamellae, similar
to Eq. (2.11). Crystal orientation in these lamellae is, however, changed dis-
continuously with respect to the starting crystal orientation. Furthermore, the
shear stresses sn0, by which twinning is “triggered”, are quite different in
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twinning and “anti-twinning” direction. Twinning is the main reason for
non-centrosymmetric yield loci in the hexagonal materials. This is not treated in
the present chapter.

• Grain boundary sliding leads to highly localized shear strains in the grain
boundaries, based on diffusion processes. In this case texture formation contains
a strong contribution of rigid rotation of grains with respect to each other. It is
assumed that this effect plays an important role in superplastic deformation
which is also not considered in this chapter.

• Hot deformation is characterized by recrystallization processes occurring
simultaneously with dislocation glide and hardening. Hence, the texture, and as
a result of that plastic anisotropy, are changing in a different way compared to
that considered in this chapter. It may be mentioned that the deformation of low-
melting-point materials, such as lead, may be “hot-deformation” in this sense
even at room temperature.

• Martensitic phase transformation may be induced by plastic deformation (de-
formation martensite). This process bears strong analogy to mechanical twin-
ning mentioned above. This process plays a role, for instance, in some steels. It
is also the basic process for shape memory materials, the deformation of which
is also not considered in this chapter.

• Green-forming of (moist) ceramic masses is based on sliding and rotation of
rigid particles and follows completely different mechanisms as those considered
here.

• Finally, the present considerations deal only with crystalline materials as shown
in Fig. 2.1 and described in the Microstructure Function, Eq. (2.1). This does
not include materials with amorphous structures (either completely or partly
amorphous) such as polymers or glasses. Plasticity of these materials is thus also
not included in this chapter.

Mathematical models for the Process ! Texture, Texture ! Property rela-
tionships (Fig. 2.9) and hence, the plasticity of materials, based on the mentioned
mechanisms, are much more complicated than the case treated here, i.e. plasticity
based only on dislocation glide. Nevertheless, plasticity based on dislocation glide
only is still the most prominent case applicable to the formability of many tech-
nologically important materials.
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Chapter 3
Multiscale Modelling of Mechanical
Anisotropy

Jerzy Gawad, Albert van Bael and Paul van Houtte

3.1 Introduction

Let us first recall one of the most fundamental observations in the material science
and engineering: the overall chemical composition of a material does not fully
determine the properties of the material. The internal structure of the material,
which can be observed on the microscopic scale, influences its macroscopic
properties as well. The term ‘microstructure’ is commonly used when referring to
that structure, yet the meaning of the term remains somewhat ambiguous. In the first
place, the definitions of the microstructure vary from one research field to another.
The differences in what is understood by the term reach down to the list of features
that are considered as belonging to the microstructure. Even the length scale
associated with the microstructure is not unambiguously defined, although the name
itself suggests that order of micrometers would be the proper scale.
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This chapter does not attempt to define the microstructure as such. We will rather
follow the notion of microstructure-property relationships. From this point of view,
the microstructure includes all features of the material needed to explain a certain
property of interest. By the same token, the microstructure contains all information
needed to derive or compute that property. This notion of deriving properties by
means of microstructure simulations is nowadays well accepted, see for example
the textbook by Ghosh and Dimiduk (2011).

The mechanical behaviour of polycrystalline metals and alloys is controlled by
several factors generally attributed to the microstructure of the material. To enu-
merate just a few most recognized in the literature:

• phase composition,
• crystal structure of the phases, which also determines the deformation mecha-

nisms of each phase,
• grain size and shape,
• preferential orientation of the crystals, usually referred to as crystallographic

texture,
• substructure, which is typically a self-organized dislocations pattern,
• interfaces of the phases and grain boundaries,
• presence of non-metalic or intermetalic phases,
• presence of voids and other imperfections at the grain boundaries,
• presence of micro-cracks and other intra-grain discontinuities.

This short enumeration can already give us an impression what order of com-
plexity one has to deal with to derive the properties from the microstructure. Most
of these factors cannot be considered in isolation, which makes the matters yet more
convoluted. Another source of difficulty intrinsically lies in hierarchical nature of
polycrystalline materials: larger structures have a substructure (Fig. 3.1). A length
scale suitable to tackle phenomena occurring in the structure is rarely convenient to
concurrently analyse the substructure. Even if we limit our interest to plasticity, it
remains a highly coupled phenomenon which involves at least large part of the
factors listed above. Certain factors have a direct consequence on the plastic

Fig. 3.1 Hierarchy of length scales in metallic materials: from macroscopic, via multiple
differently oriented crystals, via patterns of dislocations (substructure), via dislocation cores, to
atomistic level. Different modelling and simulation methods are used at each length scale
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deformability of the material. For instance, the crystal lattice largely determines the
available deformation mechanisms. Some types of crystals may primarily deform
by crystallographic slip, other tend to accommodate the deformation also by acti-
vating twinning mechanisms. It is also possible that a crystal subjected to an
external mechanical loading may also undergo a phase transformation. Yet the
crystal structure alone does not give us a complete picture. The activation of the
crystallographic deformation mechanisms largely depends on the direction of
loading, which means the crystals are mechanically anisotropic. As we can see,
there is a link between microstructure and micro-scale properties. If an aggregate
comprising a finite number of individual crystals is deformed, its mechanical ani-
sotropy depends on the orientation of the constituents. Therefore, the crystallo-
graphic texture, which is a microstructural feature, influences the mechanical
anisotropy of polycrystalline. This brings us to the clue that a link between the
microstructure and effective properties observed in a lager scale can be also derived.
In other words, a microstructure can be exploited to characterize a homogeneous
continuous medium (Miehe et al. 1999). Note that the effective properties are
usually associated with a constitutive description of the material in continuum
mechanics, and as such are very much applicable in numerous engineering prob-
lems, including simulation of metal forming.

It is extremely complex to directly include some of microstructural features in
continuum mechanics constitutive modelling. For instance, reorientation of indi-
vidual crystals due to deformation is hard to describe in that manner. Thus, another
theoretical framework is needed to derive homogenized properties from the
microstructure. It is useful to introduce two different phenomenological scales:

• micro-scale that is characterized by a statistically representative volume of
material that comprises microstructural constituents. An assembly of
microstructural features enumerated above can be conveniently modelled in this
scale.

• macro-scale that considers the material as a continuous medium.

The two scales can be more generally named as fine-scale and coarse-scale,
respectively, but the terms micro-scale and macro-scale put more emphasis on the
relation with the microstructure. For this reason we will only occasionally use the
generic names in this chapter. A two-level hierarchy, nevertheless, constitutes one
of fundamental building blocks of a more general multi-scale approach.

It is important to note that state variables used in the micro- and macro-scale are
typically different, but some of the variables have counterparts in both scales, as
presented in Fig. 3.2. This framework is commonly known as Representative
Volume Element (RVE), sometimes also referred to as Representative Elementary
Volume. The RVE concept is one of the foundations of homogenization theories.

In essence, the RVE is considered as a sub-volume of the whole bulk of material.
The RVE allows one to estimate statistically representative coarse-scale responses
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or properties of a heterogeneous volume where fine-scale evolution laws hold.
A prerequisite needed for this coupling is that a sufficient scale separation must be
satisfied (Ostoja-Starzewski 2005, 2006). In other words, an RVE has to be large
enough compared to the characteristic length scale of its constituents and processes
altering the constituents. Since the RVE is supposed to generate a description that
represents the whole material, it must include a sufficient sampling of the variety of
microstructural features that exist in the material. This implies that the minimal size
of an RVE must be set in such a way that any smaller sub-volume would be
insufficient to statistically represent the variation of its constituents. An RVE needs
also to satisfy the requirement that further increase of its size does not significantly
change the resulting homogenized response or properties (McDowell 2010). As a
corollary, a properly constructed RVE shall approximately provide the same
response and properties as any other proper RVE.

A natural question arises what is the proper size of the RVE if random poly-
crystals are modelled. A closely related question is how many grains are necessary
to homogenize the response of polycrystalline aggregates. It is essential to realize
that the necessary size of an RVE depends on the type of responses and effective
properties accounted for. These may present considerably different sensitivity to the
microstructural composition of the RVE. The factors that play a role in this context
typically include spatial distribution of microstructural constituents inside the RVE,
grain size distribution, as well as phase contrast with respect to certain properties.
Furthermore, the required RVE size is also influenced. For instance, the elastic
properties (the elastic moduli) or responses (such as stiffness) in non-evolving
stationary microstructures are less sensitive to local configurations of the con-
stituents than plastic properties in evolving microstructures (McDowell 2010).
Therefore, for the same microstructure, the RVE size differs depending on what
effective properties are considered (Kanit et al. 2003).

Fig. 3.2 Continuum with micro-structure modelled as RVE. A typical point in the macro-scale is
characterized by a representative assembly of microstructural elements. The relations between
variables in the coupled scales may vary. For instance, state variables r; � in the macroscale are
defines as volume averages of s; c in the micro-scale, respectively, the variable X is a direct
counterpart of micro-scale variable x, whereas the variable q is relevant only in the micro-scale
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3.2 Multiscale Frameworks in Crystal Plasticity

As we have discussed in the previous section, the plastic anisotropy, as well as many
other properties of polycrystalline metals, is controlled by the microstructure. Several
microstructural factors are involved, yet crystallographic texture is often the most
prevailing feature in this respect. Given its importance, the literature contains a broad
variety of reported attempts to take the texture into account in numerical simulations of
metal forming processes. Broadly speaking, the microstructure can be explicitly dealt
with if a physics-based model is employed to resolve deformation mechanisms in
individual crystals. This can be done along with homogenizing the response over a
polycrystal. Several crystal plasticity (CP) frameworks exist that allow one not only to
derive macroscopic mechanical response of polycrystalline materials, but that also
provide insights on how themicroscopic state evolves with an increasing deformation.
The crystal plasticity frameworks are typically used in one of the following contexts:

• We can use a crystal plasticity framework at the micro-scale, where the
microstructure of a small volume of material is represented in a much detailed
manner. If the microstructure is explicitly modelled and discretized (either in 2D
or 3D), the resolution of the discretization is sufficiently fine to study intra- and
inter-granular effects. The RVE method is typically used in this case to obtain
effective properties or responses of the microstructure.

• We can also directly use a crystal plasticity framework inside a macroscopic
simulation. Although various microstructural features (such as texture evolution,
plastic slip, phase transformation etc.) can be tracked, the spatial resolution is
usually coarser than in the previous case and typically enables tackling whole
grains. Properties of the material or the constitutive relations needed by the
macroscopic simulation are directly extracted from the crystal plasticity
framework. The direct coupling may follow the RVE approach, but direct
embedding is also possible.

• We can combine the two ways and indirectly employ a crystal plasticity
framework inside a macroscopic simulation. The microstructure evolution is
dealt with by a crystal plasticity RVE, while some other means are used to get
the properties or responses needed in the calculations of the macroscopic model.
For instance, an approximation function can be fitted to the responses of interest
calculated by the RVE. The approximation can be either calculated before the
macroscopic simulation starts (i.e. as a part of pre-processing), or during the
simulation. The latter case can also include adjusting the approximation to the
evolved microstructural state as the macroscopic simulation advances.

The two first approaches are somewhat complementary, but their focus is different.
Whereas the former usually attempts to elucidate why and how certain fine-scale
interactions develop and how they impact the coarse-scale, the latter usually tries to
answer only the second question. Conversely, the third approach is based on a dif-
ferent paradigm: given a sufficiently predictive CP framework, a computationally
efficient coupling has to be established to answer both questions at once.
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Several crystal plasticity frameworks have been proposed over the last decades
to answer these challenges. In this chapter we shall restrict the discussion to those
that explicitly deal with microstructure to recover the properties of interest. We will
put particular emphasis on several existing strategies to incorporate the texture data
into macroscopic Finite Element simulations.

At this point we only remind the reader that another approach to handle plastic
anisotropy exists: phenomenological models that neglect the microstructural evo-
lution and restrict their scope to the macroscopic mechanical response of the
material. Chapter 1 provides an extensive overview of models belonging to this
category.

3.2.1 Statistical Crystal Plasticity

The RVE concept can be used even if the microstructure is not fully resolved in 3D,
but in a statistical manner as a set of crystals. This approach is often called sta-
tistical or mean-field crystal plasticity.

3.2.1.1 Sachs-Type Models

The iso-stress model (also called “static model”), which is commonly attributed to
Sachs (1928),1 assumes that the stress mode is the same in all crystals of a poly-
crystalline aggregate. It is then possible to apply the Generalized Schmid law (see
Chap. 2 and Gottstein (2004) for comprehensive explanation of the Schmid law) to
each of the crystals. It would then be found, at gradually increasing stress level, that
at first there would be no plastic deformation anywhere, until a stress level is
reached for which plastic deformation would start in the grain or grains with the
most favorable lattice orientation. Since all the grains experience the same state of
stress, the plastic deformation that results from it can vary from one grain to
another, thus the compatibility conditions in the aggregate are violated. The
iso-stress assumption is nowadays considered as an oversimplification, so this
group of models is rarely used.

1In fact, the work by Sachs (1928) does not assume a uniform stress field in the polycrystal, but it
considers a uniaxial tensile test on a polycrystalline material, where the Schmid law (for a uniaxial
tensile test!) is applied to find the first activated slip system in all grains, treated as stand-alone
single crystals in which one slip system is activated. Sachs proposed a model that assumes the
average of all local flow stresses to be the macroscopic flow stress (also tensile, of course).
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3.2.1.2 Taylor-Type Models

The Full Constraints (FC) Taylor-Bishop-Hill homogenization scheme, which was
originally proposed by Taylor (1938) and later taken up again by Bishop and Hill
(1951a), who proposed a different but equivalent solution method, assumes iden-
tical plastic deformation throughout all the grains in the considered volume of the
material. The constitutive equations are thus formulated for a single grain that is
considered in isolation. Although the compatibility conditions are automatically
satisfied since the entire aggregate experiences the same state of deformation, yet
the stress equilibrium condition is neglected. These authors proposed two different
solution methods, which are both based on the Generalized Schmid Law as the
constitutive model for a metallic crystal. An approximate but mathematically
convenient alternative is the visco-plastic method by Asaro and Needleman (1985).

It is well recognized that the Full Constraints approach overestimates both
texture intensity and the homogenized stresses. To answer these limitations, several
improvements have been proposed, among which the Relaxed Constraint Taylor
(RCT) (Raphanel and Van Houtte 1985; Van Houtte 1982, 1987, 1988). The
relaxed constraints models drop Taylor’s strict requirement of strain homogeneity
and allow certain violations in compatibility conditions. In other words, relaxations
are imposed on certain components of the velocity gradient tensor. Although the
RCT scheme led to moderate improvements in predictability, the concept itself
turned out to be quite influential.

3.2.1.3 Grain Interaction Models

The relaxations are the core part of so-called ‘cluster’ models (also known as ‘grain
interaction models’), which define more elaborated homogenization schemes. The
homogenization deals with small clusters of grains in place of single crystals. It is
assumed that the average plastic velocity gradient of the cluster is equal to the
macroscopic velocity gradient. Therefore, the ‘cluster’ models abandon the
assumption that each grain is treated separately and introduce interactions between
crystals in the aggregate.

The Advanced LAMEL (ALAMEL) model was proposed by Van Houtte et al.
(2005) as a generalization of the LAMEL (Liu et al. 2002; Van Houtte et al. 1999).
The ALAMEL model considers interactions in clusters of two grains, separated by
an interface, which represents a grain boundary. The interface can be arbitrarily
oriented according to a certain distribution function. In the ALAMEL scheme local
strains deviate from the macroscopic strain according to admissible relaxation
modes, and the extent of the relaxation is calculated by minimizing the collective
plastic work inside the cluster. Several improvements to the ALAMEL model
scheme have been recently proposed, for example by Arul Kumar et al. (2011),
Mahesh (2010), Mánik and Holmedal (2013), Zhang et al. (2014). The multisite
approach (Delannay 2002; Delannay et al. 2002, 2009; Van Houtte et al. 2002),
which extends the ALAMEL, postulates that each grain interacts exclusively with
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one or several of the surrounding grains. Furthermore, it adds elastic part to the
governing equations.

A similar model was proposed by Evers et al. (2002), who used the RTC
homogenization to calculate deformation of bi-crystal volume elements, each
having the crystallographic lattice orientations of two adjacent crystals.

The Grain InterAction (GIA) model, which also puts forward the concept of
grain clusters, was proposed by Crumbach et al. (2001) and further elaborated by
Engler et al. (2005). The GIA model takes into account short-range interactions
between next-neighbour grains in an aggregate consisting of eight hexahedral
grains. The structure of GIA was further developed as the Relaxed Grain Cluster
(RGC) model by Eisenlohr et al. (2009a, b), Tjahjanto et al. (2010, 2015). It was
recently extended to deal with multi-phase materials (Tjahjanto et al. 2015).

3.2.1.4 Self-consistent Schemes

The Visco-Plastic Self-Consistent (VPSC) (Lebensohn and Tomé 1993; Lebensohn
et al. 2007; Molinari et al. 1987, 1997) model was originally inspired by Eshelby’s
(1957) analytical solution of elasticity problem for an ellipsoidal inclusion
embedded in an effective medium. In the VPSC the effective medium comprises all
the grains in the representative volume and it is considered homogeneous. The
individual crystals are treated as plastically deformable ellipsoidal inclusions con-
strained by the medium, so short-range interactions are basically neglected.
However, the model resolves long-range interactions the in the polycrystalline,
which originate in the contributions from all the crystals and are carried by the
medium. The VPSC model imposes both strain compatibility and stress continuity
between grains and their surrounding, as opposed to the Taylor-type models that
postulate homogeneous strain in the sample (possibly with relaxations). The VPSC
model has gained numerous applications, most remarkably to successfully simulate
the deformation of hcp materials, e.g. Beausir et al. (2008), Ebeling et al. (2009),
Plunkett et al. (2006), Steglich et al. (2012), Tomé (2001), Walde and Riedel
(2007a), Wang et al. (2010) and extensions, see e.g. Knezevic et al. (2013a).

3.2.2 Full-Field Approaches

Here, “full-field” denotes a category of models that make use of a discrete grid to
compute certain fields variables (e.g. stress or strain) in the microstructure. The
models that belong to this category resolve both long-range and short range
interactions. In particular, if a sub-grain resolution of the grid is used, hetero-
geneities of these fields inside individual crystals can also be considered. Therefore,
the full-field approaches apply crystal plasticity theories to predict the actual
micromechanical fields that develop inside the grains of a polycrystal.
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Consequently, various localized phenomena, such as orientation gradients inside
individual grains, can be calculated as well.

The models belonging to this group are usually much more computationally
demanding than the statistical models presented in the previous section, although
the increase in computing performance over the last decade has allowed conducting
statistically meaningful simulations.

As a general remark, the ability to include intra-granular state variables, in
particular strain and stress fields, is supposed to enhance the accuracy of
microstructure evolution predictions. However, as it was shown in recent studies
(see e.g. Héripré et al. 2007; Pokharel et al. 2014; St-Pierre et al. 2008), comparison
with intra-granular strain measurements often shows only qualitative agreement
suffering clear local discrepancies between modelling and experimental results
(Pinna et al. 2015). This can be attributed to various factors, including simplifi-
cations in reproducing the initial microstructure, since simulations of more con-
trollable oligocrystals typically deliver better agreement with experiments (Delaire
et al. 2000; Klusemann et al. 2012, 2013; Lim et al. 2011, 2014; Raabe et al. 2001;
Turner et al. 2013; Zhang et al. 2015a). It has also been shown that the full field
models do not necessarily provide considerably better predictions than the statistical
ones, neither with respect to texture evolution (see e.g. Li et al. 2004) nor
macroscopic anisotropy (see e.g. Zhang et al. 2015b).

3.2.2.1 Crystal Plasticity Finite Element Method

A large body of work exists on incorporating crystal plasticity frameworks as
constitutive relation in the Finite Element method. An excellent review of these
attempts has been published by Roters et al. (2010a, b). The reader is referred to
these works for a comprehensive overview of the constitutive laws, kinematics,
homogenization and multiscale methods in the CP-FEM modeling.

Generally, CP-FEM resolves the equilibrium of the forces and the compatibility
of the displacements based on a weak form of the principle of virtual work. This is
in essence what the Finite Element method does. What differentiates the CP-FEM is
the incorporation of a certain crystal plasticity constitutive law to provide the
constitutive behavior of the material. This law typically include calculating the slip
and twinning activity and the resulting material flow. Constitutive models extending
the works of Asaro (1983a, b), Asaro and Rice (1977), Peirce et al. (1982, 1983) are
very commonly used and include visco-plastic, elasto-viscoplastic and
elastic-plastic constitutive behaviour. Plastic deformation of the material and evo-
lution of texture results from activation of deformation mechanisms, such as slip
and twinning. The CP-FEM models are formulated as either rate-dependent or
rate-insensitive with respect to the material response. The hardening at the level of
crystallographic slip and twinning is taken into account as well. A power law is
often chosen to relate the applied resolved shear stress on the slip or twinning
system to the shear rate in the slip or twinning direction. Large inelastic defor-
mation can be reached in CP-FEM. However, we have to keep in mind that
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accuracy of the FE method may be undermined if large distortions of elements are
experienced. This issue can be addressed by advanced mesh refinement methods,
see e.g. Quey et al. (2011), Resk et al. (2009).

In CP-FEM the FE mesh represents an aggregate of grains, each having a
specific set of attributes, such as shape, orientation, phase, etc. The method offers
several advantages over statistical approaches. Most remarkably:

• If several finite elements constitute a grain, the gradients of stress and strain
inside individual crystal can be taken into account. This holds even if low order
elements (e.g. linear) are used to discretize the domain.

• Gradients of other fields inside the grains can be captured as well. For instance,
crystal orientation gradient may be accounted for, which is crucial in modelling
intra-granular localization processes.

• Complicated geometry of individual crystals can be explicitly dealt with in the
model.

• Since the grains are spatially bound by each other, explicit grain boundaries are
introduced in the model. This also allows to take into consideration grain
boundary properties.

• Boundary conditions can be imposed on the RVE in a flexible manner.

Despite of all these advantages, the CP-FEM is rarely considered as a feasible
approach in modelling component-scale sheet forming processes. Since the number
of elements in the RVE grows with the number of grains considered, simulation of
the deformation becomes extremely computationally expensive for the solution of
complex problems at the macroscopic level. For example, let us consider a realistic
size of a cubic three dimensional RVE being 500 nodes at each edge, which
transforms into N ¼ 5003 elements. For the sake of simplicity, suppose that the
number of DOF required in an FEM calculation is roughly of the same order as the
total number of elements. To solve the displacement field at each given deformation
increment, one has to invert a matrix of the size of order N2. This gives us sufficient
estimate of the huge computational cost of the CP-FEM.

3.2.2.2 Crystal Plasticity FFT

Recently, considerable attention has been attracted by the Crystal Plasticity Fast
Fourier Transform (CP-FFT) method (Eisenlohr et al. 2013; Lebensohn 2001;
Lebensohn et al. 2004, 2011, 2012; Liu et al. 2010; Prakash and Lebensohn 2009;
Roters et al. 2012; Shanthraj et al. 2015), which promises substantial improvement
over the CP-FEM in terms of calculation time, while keeping high spatial resolution
in order to capture the details of complex microstructures. As opposed to the
CP-FEM, the CP-FFT is meshless, so it uses voxels to discretize 3D domain.

The CP-FFT-based formulation consists in finding a strain-rate field, associated
with a kinematically admissible velocity field, that minimizes the average of local
work-rate, under the compatibility and equilibrium constraints (Lebensohn et al.
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2008). The method is based on the fact that the local mechanical response of a
heterogeneous medium can be calculated as a convolution integral between Green
functions associated with appropriate fields of a linear reference homogeneous
medium and the actual heterogeneity field. This approach is suitable for finding the
solution of a unit cell problem with periodic boundary conditions. If a periodic
medium is considered, one can use the Fourier transform to reduce convolution
integrals in real space to simple products in Fourier space. Thus, the Fast Fourier
Transform algorithm can be utilized to transform the heterogeneity field into
Fourier space. Afterwards, the mechanical fields can be calculated by applying the
transformation back to real space.

The CP-FFT has several advantages over the CP-FEM. It basically eliminates
the major computational bottlenecks of the CP-FEM, namely the need for inverting
large matrices. In addition, no advanced meshing is needed to discretize the domain
since the method is meshless and requires just a simple regular grid of voxels. This
also eliminates several related issues, such as degeneration of finite elements on
excessive localized deformation. On the disadvantage side, the grid in Fourier space
is assumed to be regular, which is less flexible in discretizing complex geometries
than a free FE mesh. To date, the CP-FFT solvers can only make use of uniform
grid, which might be too coarse to properly approximate stress and strain fields near
grain boundaries. To keep the grid regular, simplifications to the kinematic equa-
tions have to be made (Liu et al. 2010; Prakash and Lebensohn 2009). Moreover,
the fundamental requirement of periodic boundary conditions renders the CP-FFT
somewhat less flexible than the CP-FEM. The CP-FEM also permits local mesh
refinements to capture localization of strain and abrupt discontinuities of material
properties.

3.3 Multi-scale Modelling of Plastic Anisotropy

All crystal plasticity frameworks presented in the previous section are inherently
multi-scale: they are designed to predict coarse-scale effects offine-scale interactions
in the microstructure upon imposed coarse-scale boundary conditions. Nonetheless,
the macroscopic boundary conditions that are inflicted on a simulated microstructure
are relatively simple, either with respect to the geometry (e.g. displacements
imposed on a face of a unit cube), or with regard to fundamental assumptions on
geometry (e.g. periodicity of the system, thus a unit cube with periodic boundary
conditions is assumed), or other basic assumptions in the model (e.g. identical strain
everywhere in the material). Even if completely arbitrary boundary conditions can be
prescribed, it is not always obvious how to choose the ones that would be most
relevant in a given sheet forming process. Typical idealizations, such as plane strain
deformation, pure shear, uniaxial tension/compression etc. are often just very rough
approximations of the actual conditions, which are nearly always affected by the
geometry of the process (including for instance shape of the sheet and the dies) as
well as contact conditions and other sources of non-linearities.
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For this reason it is usually not straightforward to use any of these models in
simulations of sheet forming processes. The CP model can be still used as a
component of a macroscopic analysis if it is provided with realistic boundary
conditions. To this end, a proper coupling or embedding scheme must be estab-
lished. In particular, the Finite Element Method, which is nowadays an indis-
pensable engineering tool, has been successfully used as a macroscopic host
framework for various CP models. In this section we shall present an overview of
the most prominent coupling techniques.

3.3.1 Direct Micro-Macro Coupling

If a micro-scale full field model is available as an RVE, one may use it as a
constitutive model in a macroscopic FE simulation. In fact, direct coupling typically
discards the notion of deriving properties from RVE, since the micro-model
replaces the entire constitutive law, and not just the parameters in a constitutive
equation. Thus, it is the homogenized RVE response that becomes then an integral
part of the macroscopic model.

3.3.1.1 Embedded Full-Field Models

Provided that an FEM RVE is coupled with a macroscopic FE model, this com-
putational framework is called multi-level FEM (ML-FEM) (Smit et al. 1998) or
FE2 (Feyel 1999, 2000; Feyel and Chaboche 2003). Within this general framework
one conducts an embedded micro-scale RVE FE computation in order to extract
from the RVE the quantities required at integration points of the macroscale finite
element mesh.

In the simplest variant, the coupling is rather straightforward. The multi-level FE
computes the displacement fields on both macroscopic and microscopic level (Smit
et al. 1998). The micro-scale FE RVE provides the homogenized stiffness matrix,
which is returned to the corresponding integration point in the macroscopic mesh as
the local macroscopic tangential stiffness matrix.

Such embedding scheme has a clear advantage: no analytical constitutive equation
needs to be specified at the macroscopic scale, since the constitutive behaviour comes
directly from the microscale. For certain types of materials, such as multi-phase steels,
constitutive equations that account for the presence of multiple phases are very dif-
ficult to specify. The use of ML-FEM bypasses this problem because all the com-
plexity of a multi-phase material is handled by the micro-scale FE simulation.

Admittedly, the FE2 is excessively costly if used to simulate macroscopic sys-
tems discretized with dense FE meshes. For this reason, practical applications of the
method are pretty much limited, although extensive fundamental research has been
conducted on this topic, see e.g. Coenen et al. (2012a, b), Feyel (1999, 2003), Feyel
and Chaboche (2000), Geers et al. (2010), Kouznetsova et al. (2004a, b),
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Kouznetsova and Geers (2008), Larsson and Runesson (2011), Miehe (1996),
Miehe et al. (1999), Reis and Andrade Pires (2013), Temizer and Wriggers (2008,
2011), Werwer and Cornec (2000).

3.3.1.2 Embedded Mean-Field Models

The macroscopic continuum-mechanics model model can use mean-field homog-
enization theories, in which the effective behavior of a polycrystal is used to derive
its response, but the microstructure is represented in a statistical way. To this end,
an aggregate of grains underlies every material point in the macro-scale model.
Local macroscopic deformation is imposed on the aggregate, which causes changes
in the orientation of the aggregate components. At the same time the averaged
response of the aggregate defines the macroscopic behavior of the corresponding
material point, thus deformation induced changes in plastic anisotropy is incorpo-
rated in the macroscopic finite element model. It has to be noted that we speak here
of direct embedding, in which the crystal plasticity model is called during each
increment of the macroscopic model and provides constitutive response.

Several embedded polycrystalline plasticity models were devised to describe the
metal anisotropy in this way. The Taylor-type model (Asaro and Needleman 1985)
was incorporated in works of Mathur and Dawson (1989, 1990) to simulate the
evolution of crystallographic texture in Finite Element analysis of steady state
forming simulations. The fully-implicit scheme based on the same Taylor-type
model was later proposed in Kalidindi et al. (1992). Despite the relative simplicity
of the Taylor assumption, this approach has proved to be quite predictive, as shown
in by Jung et al. (2013), Kalidindi and Schoenfeld (2000), Schoenfeld (1998), to
mention just a few examples. Yet from purely computational perspective, the
models turned out to be costly, in particular if 3D macro-scale systems were
simulated, which prompted research on accelerating the coupling. Massive parallel
computing (e.g. Beaudoin et al. 1993; Mellbin et al. 2014) on one hand, and
exploiting certain assumptions of the Taylor formulation2 (see e.g. Zecevic et al.
2015a, b) on the other hand have served that purpose.

The mesoscopic viscoplastic self-consistent schemes have been successfully
embedded into explicit time integration Finite Element codes. In particular, this
coupling was tested on strongly anisotropic aggregates, such as hcp alloys in which
plasticity at single-crystal level can be accommodated not only by slip but also by
mechanical twinning (Tomé 2001; Walde and Riedel 2007a, b). This group of
materials is particularly interesting, since such alloys typically develop pronounced
crystallographic texture and rapidly evolve in terms of plastic anisotropy. The
challenges to be addressed include rapid textural changes originating from twin-
ning, and associated strong directional hardening/softening, as well as the highly
anisotropic slip-twin interaction (Segurado et al. 2012). It is then argued that the

2See also Sect. 3.3.2.
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fine-scale model has to be frequently queried for the homogenized response in order
to accurately follow the microstructural changes.

Recently, several strategies of fully embedding the VPSC mean-field model also
in the macroscopic implicit Finite Element analysis model have been proposed
(Galán et al. 2014; Knezevic et al. 2013b, c; Segurado et al. 2012). Each integration
point of the FE model is considered as a polycrystal that provides the stress and
tangent stiffness matrix. The grain orientations approximate the initial texture,
which may subsequently evolve with deformation. The strategies attempt to
accelerate the calculations by extracting and reusing quantities that are computed as
part of the nonlinear self-consistent homogenization scheme. For instance, the FE
Jacobian matrix is expressed as a function of the viscoplastic tangent moduli, the
elastic stiffness of the aggregate, and the FE time increment (Segurado et al. 2012).

Advanced coupling strategies have been developed to preserve fine-scale vari-
ables upon mesh adaptation in the FE macroscopic model, e.g. Prakash et al.
(2015).

3.3.1.3 Embedded Reduced Texture Models

Yet the number of the crystals associated to an individual integration point of a
macroscopic FE mesh remains a hindering factor in terms of computational per-
formance. To address this issue, an interesting concept to reduce the number of
orientations per integration point was proposed by Raabe et al. (2004), Raabe and
Roters (2004), Roters (2005), Zhao et al. (2004), where the authors suggested to
de-associate the concepts of crystal and orientation and initially only consider some
selected texture components. A similar idea was later elaborated in work (Knezevic
and Landry 2015). The components are defined as compact functions, each char-
acterized by its orientation (such as the ideal orientations: Goss, Brass or Cube
component, etc.), a scatter around the orientation and the volume fraction of the
component. The key concept is to exploit the fact that a huge number of crystals can
be described by a single representative texture component. Since usually only a
small number of texture components is present in a macrotexture, it is sufficient to
map a relatively small number of ideal orientations to the macroscopic FE inte-
gration points. This is done in such a way that the superposition of all mapped
components reproduce the initial texture of the material. However, during the
simulation each of the mapped texture components undergoes its individual
reorientation under local deformation conditions. Although the method allows
reproducing the initial texture, it may not necessarily offer reliable predictions of the
final texture at individual integration points. To understand why, let us suppose that
just a single texture component is initially sufficient at a given integration point. If
the component is unstable under a given deformation mode and, as a consequence,
it breaks down into more than one component, the method will track just one of
these evolved components and neglect all the others. On this basis, it is also
doubtful whether local anisotropy can be accurately extracted from texture data that
may become increasingly incomplete during the deformation.
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As an alternative, the representative discrete orientations that are needed to
reproduce the crystallographic texture can be spatially distributed over several
neighboring integration points (Béringhier et al. 2007; Delannay et al. 2005; Logé
and Chastel 2006). The way of distributing crystallographic orientations among the
finite elements may be either proportional to the volume of the finite elements, or
independent of it. In any case, the goal is obtain a good approximation of the ODF
by merging contributions (discrete orientations) from several integration points.
This way the ODF becomes a local material property of a group of several inte-
gration points, as opposed to fully embedded models that attempt to get the ODF
locally approximated at every integration point.

3.3.2 Hierarchical Coupling

3.3.2.1 Database and Sampling Techniques

A possible way to capture the influence of microstructural changes on the aniso-
tropic response is to use a crystal plasticity model to calculate some homogenized
quantities of interest in advance and later approximate these in a macroscopic
simulation. This can be done by sampling followed by calculating a response
surface, for instance by means of multivariate Kriging, as reported by Barton et al.
(2008), Knap et al. (2008), Rouet-Leduc et al. (2014), or generalized in situ tab-
ulation technique (Arsenlis et al. 2006). Alternatively, a sequence of explicit
algebraic yield criteria can be pre-calculated for a finite set of strain levels and
linearly interpolated during the macroscopic simulation (Knezevic et al. 2013b;
Nixon et al. 2010a, b; Plunkett et al. 2006). In this case the database contains the
parameters of the yield locus model expressed as a function of strain and possibly
some other variables.

Since the exploited CP model is considered as a black box, the method can be
virtually used with any CP model. However, the sampling is very expensive if it has
to cover the evolution of the microstructural state variables in a multi-dimensional
space. In practice, it is difficult to ascertain that the entire relevant part of that space
is sufficiently probed. Nevertheless, it appears problematic that the local material
state evolution may lead outside the validity range of the interpolation.

3.3.2.2 Spectral Crystal Plasticity (SCP)

The Spectral Crystal Plasticity (SCP) can be seen as a special case of database-type
coupling. Whereas it also relies on sampling responses of a crystal plasticity
framework, the way how the results are stored and queried greatly differentiates the
SCP from the approach presented in the previous section. The database techniques
store the homogenized responses of the RVE, while the SCP stores the intermediate
results of a Taylor-type model.
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Observe that if a Taylor-type model is used, each crystal is treated separately,
and any per-grain solution of the crystal plasticity model depends solely on the
orientation of the crystal and the strain rate imposed on it. The solution may include
stress, lattice spin, shearing rates, Taylor factor etc. It is then possible to first
evaluate a Taylor-type model for a large number of orientations and strain rates and
subsequently store the results in an easily retrievable manner. As long as no other
factors are taken into account, such as hardening of slip systems or grain interac-
tions, these calculations can be done once and for all.

To achieve this, Fourier (spectral) representation of orientation distribution
function (Bunge and Esling 1984) can be conveniently used for storing the results
of a Taylor-type model, see Kalidindi and Duvvuru (2005), Kalidindi et al. (2006),
Li et al. (2003), Van Houtte (2001). The one-time, but time consuming task is to
find coefficients in Fourier series of the spectral representation for the functions that
represent the per-grain solutions of the Taylor-type CP model. These solutions must
be computed for each crystal orientation in Euler space subjected to all possible
strain rates. This way, a database of spectral coefficients is generated. The advan-
tage of the approach is that the result of the CP model can be later retrieved just by
querying the database without doing any actual CP calculations.

The spectral method was first demonstrated using generalized spherical har-
monics (GSH) (Kalidindi et al. 2006; Knezevic and Kalidindi 2007; Shaffer et al.
2010; Van Houtte 2001), and later employing Discrete Fourier Transforms
(DFT) (Al-Harbi et al. 2010; Alharbi and Kalidindi 2015; Kalidindi et al. 2009;
Knezevic et al. 2008, 2009). The DFT promises much higher computational per-
formance since it exploits Fast Fourier Transform (FFTs) algorithm for fast retrieval
of pre-computed crystal plasticity solutions. The solutions are stored on a uniform
grid in the orientation space and subsequently a local spectral interpolation using
Fast Fourier Transform is applied to recover the solutions for any orientation and
deformation mode of interest (Knezevic et al. 2008).

A DFT-based SCP framework has been embedded into Finite Element model
(Alharbi and Kalidindi 2015; Zecevic et al. 2015a, b). This is basically equivalent to
embedding a Taylor-type model at each integration point of the FE model, however
the constitutive response of the material can be evaluated much faster compared to a
direct embedding scheme such as the CP-FEM.

The computational advantage of the SCP comes with certain drawbacks, though.
Independent sampling of individual grains is implicitly required, thus the accuracy
of the SCP is bound by the limitations of the Taylor assumptions. It is now well
known that Taylor-type models do not offer best texture and anisotropy prediction.
Furthermore, the SCP approach is hardly capable of going beyond quite simple
Taylor-type models. For instance, adding internal variable hardening models would
render the SCP impractical, since constructing the database of spectral coefficients
would require exploring a high dimensional space.
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3.3.3 Yield Criteria Based on Crystal Plasticity

As we have seen in the previous section, the direct coupling of microstructure
evolution in a component-scale FE simulations is conceptually straightforward, but
computationally complex. Therefore, more robust and efficient alternatives have
been sought. It is quite easy to notice that the FE solver requires stress integration in
the macroscopic domain, whereas the fine-scale crystal plasticity framework, if
directly embedded, calculates much more than that.

This observation results in a concept to partly dissociate the evolution of
properties and the evolution of the microstructure. To this end, the evolution of
crystallographic texture and possibly other microstructural features are calculated
by means of an appropriate crystal plasticity framework, but the macroscopic
constitutive relation used in the FE only approximates the homogenized response of
the fine-scale model. The microstructural evolution is directly implemented in this
approach, since the orientations of the representative crystals and other
microstructural state variables are updated according to the macroscopic plastic
deformation. However, the mechanical description of the homogenized material
response utilizes a different mathematical model, which can be efficiently plugged
into the FE stress integration algorithm.

3.3.3.1 Yield Criteria Defined by Interpolation

If a given deformation process is considered, the material is locally subjected to a
certain stress state that slowly varies with increasing stain. Therefore, only a limited
zone of the yield locus is probed by the stress integration algorithm. This was
exploited by the works (Dawson et al. 2005; Duchêne et al. 2002; Habraken and
Duchêne 2004), which proposed that the crystal plasticity yield locus is only
sampled in a confined subspace of deviatoric stresses. Once the yield locus is
locally known in a point-by-point manner, an interpolation method allows calcu-
lating a continuous function that approximates the yield locus. It needs to be
emphasised that the interpolated yield locus is valid only within the range of the
discrete set of known data points. When the available local description of the yield
locus does not cover the region of interest anymore, one has to find another local
description enclosing the new active part of the yield locus. The approach does
neither explicitly enforce nor require any analytical yield locus model, since a
generic interpolation scheme is sufficient. This has a drawback, though: the normals
of locally interpolated yield loci may not be smooth, and thus stress integration that
relies on the normality rule may experience convergence problems. Even though
the interpolated function is continuously differentiable (e.g. C2), there is still no
guarantee that the interpolated yield locus is convex, with similar consequences as
mentioned before.
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3.3.3.2 Yield Criteria Defined by Approximation

Recall from Chap. 1 that the phenomenological descriptions of plastic anisotropy
have proved their enormous usefulness in modelling plastic anisotropy. Numerous
successful efforts have been made in the last decades to improve the macroscopic
anisotropy models, for example Aretz and Barlat (2012, 2013), Banabic et al.
(2000, 2003, 2005, 2010), Barlat et al. (1991, 1997a, b, 2003b, 2005, 2007),
Cazacu and Barlat (2004), Cazacu et al. (2006), Comsa and Banabic (2008), Hill
(1948) Hosford (1979), Plunkett et al. (2006, 2008), Soare and Barlat (2010), Soare
et al. (2008), Van Houtte and Van Bael (2004), Van Houtte et al. (2009), Vegter
and van den Boogaard (2006), Vegter et al. (2003), Yoon et al. (2004, 2006, 2010,
2014), Yoshida et al. (2013). The improvements were attained not only in terms of
predictive capabilities, but also with respect to computational performance. Due to
these advantages, the phenomenological yield loci are nowadays most commonly
adopted in commercial Finite Element (FE) packages dedicated for simulations of
metal forming operations. If a yield locus model is used in a combination with flow
theories, such as the normality flow theory, the phenomenological yield loci provide
an efficient technique for capturing the effects of material anisotropy during the
simulation of deformation processes. These advantages make the existing yield loci
models perfect candidates for becoming components of a hierarchical approach
that approximates the finer-scale model by a coarser-scale model.

The phenomenological yield criteria consider the polycrystalline material as
homogeneous at the macroscopic level, and the yield surface depends merely on the
macroscopic stress, strain rate, certain strain measures as well as their rates. The
microstructural features of the material, such as crystallographic texture, can be
indirectly taken into account by means of extensive parametrization of these
models. The phenomenological yield loci are generally limited to the initial ani-
sotropy of the material, since it is hardly possible to accurately predict the evolution
of the yield surface without taking into account how the microstructure develops
during the deformation. Usually it is assumed that the changes to the initial yield
locus due to deformation are negligible. The assumption is approximately valid if
the plastic strains are not excessively large, which admittedly holds in some sheet
metal forming processes.

One can also find several examples that combine the strength of the two
approaches: crystal plasticity frameworks and phenomenological yield loci men-
tioned above. The hierarchical multi-scale approach was followed, in which the
fine-scale model provides data needed for identification of the macroscopic one that
is based on a different mathematical framework. The yield criteria are given as
parametrized closed-form functions. A least squares method can be then used to
determine the parameters by fitting them to data points generated by virtual CP
experiments. For instance, parameters of orthotropic Hill yield criterion can be
easily derived by means of a Taylor-type model as shown in Kalidindi et al. (2004).
Other phenomenological yield criteria have been also calibrated by means of the
crystal plasticity frameworks, most remarkably FC Taylor, VPSC, ALAMEL and
CP-FEM, see e.g. An et al. (2011), Barlat et al. (2005), Gawad et al. (2010, 2013),
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Grytten et al. (2008), He et al. (2014), Inal et al. (2010), Kalidindi et al. (2004), Kim
et al. (2007, 2008), Kraska et al. (2009), Plunkett et al. (2006), Saai et al. (2013),
Savoie and MacEwen (1996), Van Bael et al. (2010), Van Houtte et al. (2009,
2011), Yoon et al. (2014), Zhang et al. (2014, 2015b).

Generally, to provide data for calibration, the crystal plasticity models have to be
evaluated for a huge number of possible stress or strain rate modes, sometimes
exceeding one million realizations. Given the fact that the number of parameters in
the yield criteria is typically small, an overdetermined least squares approach was
employed in some previous works, for instance in Grytten et al. (2008), Rabahallah
et al. (2009) that focused on identifying the Yld2004 3D yield criterion (Barlat et al.
2005). However, indiscriminate selection of data points was typically used, which
resulted in large data sets, varying in size from few thousands (Grytten et al. 2008;
Zhang et al. 2015b) to tens of thousands of data points (Rabahallah et al. 2009).

This inspired works that aim at decreasing the computational effort related to
evaluating necessary data points by running crystal plasticity virtual experiments. In
order to maximize the amount of information acquired from every data point, not
only the size of the yield locus, but also its curvature and derivatives can be
simultaneously used (Gawad et al. 2010, 2013).

It has to be emphasized that the majority of the aforementioned efforts focuses
on calibrating the initial yield locus, leaving the evolution of the plastic anisotropy
unaddressed. The evolution of the yield locus can still be captured, though. If the
strain path can be pre-determined, a sequence of explicit yield criteria can be
pre-computed along that path for a finite set of strain levels and subsequently
interpolated during the macroscopic FE simulation, as it was done in Knezevic et al.
(2013b), Nixon et al. (2010a, b), Plunkett et al. (2006). Similarly as in the case of
database and sampling techniques (see Sect. 3.3.2), the local deformation condi-
tions in the FE mesh may fall outside the assumed deformation path, thus the
evolution of the yield locus of may also lead outside the validity range of the
interpolation.

Another viable method to tackle anisotropy evolution in the macroscopic FE
problem is to use an adaptive hierarchical multi-scale approach. As opposed to the
hierarchical methods outlined above, the adaptive scheme is capable of deriving
macroscopic yield locus that reflects changes to the material along the actual
deformation path. This can be expediently done by systematic updating of the
material state, such as texture, by applying local macroscopic deformation rates and
subsequent recalibration of the phenomenological plasticity model. Each Gauss
integration point of a macroscopic FE mesh can be linked with an evolving yield
locus function, as it was successfully demonstrated by Gawad et al. (2010, 2013),
Van Bael et al. (2010), Van Houtte et al. (2011) using the Facet plastic potential
(Van Houtte et al. 2009), and recently by He et al. (2014) that used the CPB06ex2
yield criterion (Cazacu et al. 2006). The evolution of the plastic anisotropy is
therefore taken into account, as well as the evolution of the material state. In the
next section we are going to closely examine a practical implementation of this
concept.
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3.3.3.3 Evolving BBC2008 Yield Criterion

In this section we demonstrate how the adaptive hierarchical multi-scale approach
can be utilized to model evolution of plastic anisotropy in a finite element simu-
lation. For sake of simplicity, the texture is assumed to be the microstructural factor
that primarily explains plastic anisotropy. A crystal plasticity framework will be
then employed to predict changes in the crystallographic texture and to provide data
needed for accommodating a macroscopic yield criterion in an adaptive manner.
The yield criterion can be then incorporated into Finite Element model as a
user-defined material model.

More specifically, we shall use an explicit time integration FEM, since this type
of FE solvers is prevalently used in simulating sheet metal forming operations. For
the same reason, elastic-plastic constitutive model will be assumed. The BBC2008
yield criterion will be calibrated by virtual experiments conducted by means of the
ALAMEL crystal plasticity model.

We shall begin with a notion that material properties may evolve independently
within small volumes of material, typically in individual finite elements. To achieve
that, each integration point in the macroscopic mesh is associated with a collection
of state variables:

macroscopic state variables (denoted as Z) that comprise a parametric yield locus
function (along with a current set of parameters). Additionally, control variables are
included that decide when and how the yield locus function should be
reconstructed.
microscopic state variables (denoted as z) consist of variables that are relevant to
the crystal plasticity framework. The state variables must be sufficient to construct
an RVE. In our case, the variables in z are limited to the Orientation Distribution
Function given in a discrete form, i.e. as a list of crystal orientations associated with
their relative volume fractions. Although in the currently presented case the texture
is the only micro-scale state variable, other microstructural features can be added,
so the material would be described in a much more extensive way if the CP model
permits so. For instance, z can be enriched by including phase composition, grain
size and shape, ODF and/or MODF of individual phases, resistance of available
deformation mechanisms (slip and twinning systems), substructure (dislocation
densities or patterns), and many others.

Of course, the macroscopic state variables must include the stress state at the
integration point and a local measure of plastic strain, both needed by the stress
integration algorithm. The details of incorporating the yield criterion as such into
the elastic-plastic explicit time integration FE are skipped here, since they are not
essential in the presented method. The reader may refer to Chap. 1 for examples
how this can be achieved in the context of implicit or explicit time integration FE
codes. We have to mention however that the presented multi-scale model makes the
assumption that a macroscopic hardening model is available in the FE code.
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If an explicit time integration FE solver is used, the total deformation is sub-
divided into many small time increments, satisfying the stability conditions of the
time integration scheme. It is quite obvious that recalculations of the parameters of
the yield criterion at each integration point in every time increment would be highly
inefficient. Given small strains associated to the time increments, one may postpone
updating the state variables z and the subsequent recalculation of Z until a certain
criterion is met at the considered integration point.

A possible criterion, as proposed in Gawad et al. (2013), is based on tracking the
plastic strain accumulated since the previous update of the anisotropy model. The
accumulated plastic strain is calculated by integrating instantaneous plastic strain
rate D over time increments as

P ¼
Zti
ti�1

DðtÞdt ð3:1Þ

where ti is the current time since the start of the simulation, and ti�1 is the time of
the previous update. This quantity is used as the control variable in making decision
if Z needs to be updated. The criterion is fulfilled if

kPk�Pcr ð3:2Þ

where Pcr is a control parameter interpreted as a critical value to trigger the update.
Again, we emphasize that the tracking is carried out independently at each inte-
gration point. Similarly, the decision about the update is made independently from
one integration point to another.

Once the criterion is satisfied, both the microstructural state variables and the
anisotropy model at the integration point are updated. To do so, three steps are taken:

1. evolution of z along the recent deformation path P is calculated by the crystal
plasticity model,

2. necessary crystal plasticity virtual experiments are conducted to characterize the
material in its updated state, and finally

3. a new vector of yield locus parameters coefficients in Z is computed to fit the
results of the virtual experiments.

In the next paragraphs we will reiterate over these steps, however they will be
presented in a slightly different order.

Macroscopic yield locus Chap. 1 provides several examples of yield loci, which
vary with respect to their capability to describe plastic anisotropy of the material. The
formulae presented there are typically used to describe the initial yield locus or the
yield locus that corresponds to a small level of plastic strain. Let us use as an example
the BBC2008 plane stress yield criterion, which was originally proposed by Comsa
and Banabic (2008). The formulae of the BBC2008 yield criterion can be found in
Chap. 1. To exploit the plane stress yield locus, we make a constitutive assumption
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that the macroscopic material is a plastically orthotropic membrane under
plane-stress conditions. Given the plane-stress constraint, the only non-zero com-
ponents of the Cauchy stress tensor r are r11, r22 and r12 ¼ r21. Notwithstanding,
the plane stress assumption and its consequences are not mandatory and the coupling
scheme can be easily generalized to full 3D tensors, as shown in Gawad et al. (2013).

Recall from Chap. 1 that in order to distinguish whether the material is deformed
elastically or plastically, a scalar-valued yield function is usually defined:

F rð Þ ¼ �r rð Þ � Y � 0 ð3:3Þ

where �r� 0 is the equivalent yield stress and Y [ 0 is an arbitrary reference yield
stress. The function F describes the yield locus or, more specifically, the shape and
size of the yield surface. The yield surface holds the property that FðrÞ ¼ 0 when
the deformation occurs elasto-plastically, whereas purely elastic stress state satisfies
the strict inequality FðrÞ\0.

The formalism used in (3.3) does not explicitly account for the influence of the
material state on plastic anisotropy, not to mention the impact of the microstructural
state variables. Let z denote the instantaneous material state variables that in our
case specifically include texture of the material. We assume that the state variables
evolve as

z ¼ zðeplÞ ð3:4Þ

Apart from the dependency on plastic strain epl, the state variables may also be
expressed as depending on a combination of time, temperature, plastic work and
possibly other variables. The evolution equation of z is rarely given in a closed
form. In fact, in most cases the evolution of the microscopic state variables is only
known from a simulation.

An extension to the yield criterion can be introduced by adding parameters that
depend on z:

F r; zð Þ ¼ �r r; zð Þ � Y � 0 ð3:5Þ

Therefore, the extended form (3.5) also discards the assumption that the plastic
anisotropy does not change during the plastic deformation. Let us now re-write the
formulae of the BBC2008 yield criterion using the formalism provided by
Eq. (3.5).

The BBC2008 yield criterion defines the equivalent stress as:

�rðr; zÞ ¼ w� 1ð Þ
Xs
i¼1

fwi�1Pðr; zÞþws�1Qðr; zÞg
" # 1

2k

ð3:6Þ

Pðr; zÞ ¼ LðiÞðr; zÞþMðiÞðr; zÞ
h i2k

þ LðiÞðr; zÞ �MðiÞðr; zÞ
h i2k

ð3:7Þ
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Qðr; zÞ ¼ MðiÞðr; zÞþNðiÞðr; zÞ
h i2k

þ MðiÞðr; zÞ � NðiÞðr; zÞ
h i2k

ð3:8Þ

The coefficient w is defined as w ¼ ð3=2Þ1=s [ 1, where s 2 N. The choice of the
exponent k must satisfy the condition that s 2 N to ensure convexity of the yield
surface (Comsa and Banabic 2008). Furthermore, Comsa and Banabic (2008)
recommended to use k ¼ 4 and k ¼ 3 for fcc and bcc materials, respectively. The
scalar functions L, M and N are given by:

LðiÞðr; zÞ ¼ LðiÞðr11; r22; zÞ ¼ lðiÞ1 ðzÞr11 þ lðiÞ2 ðzÞr22 ð3:9Þ

MðiÞðr; zÞ ¼ MðiÞðr11; r22; r12; zÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðiÞ

1 ðzÞr11 � mðiÞ
2 ðzÞr22

h i2
þ mðiÞ

3 ðzÞ r12 þ r21ð Þ
h i2r ð3:10Þ

NðiÞðr; zÞ ¼ NðiÞðr11; r22; r12; zÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðiÞ1 ðzÞr11 � nðiÞ2 ðzÞr22
h i2

þ nðiÞ3 ðzÞ r12 þ r21ð Þ
h i2r ð3:11Þ

Equations (3.9)–(3.11) contain several parameters that depend on the material
state z. These parameters can be conveniently gathered into the vector:

p ¼ flðiÞ1 ðzÞ; lðiÞ2 ðzÞ; mðiÞ
1 ðzÞ; mðiÞ

2 ðzÞ; mðiÞ
3 ðzÞ; nðiÞ1 ðzÞ; nðiÞ2 ðzÞ; nðiÞ3 ðzÞ ði ¼ 1; . . .; sÞg

ð3:12Þ

Depending on the parameter s, the BBC2008 yield criterion may include 8
components in p for s ¼ 1, 16 components if s ¼ 2, 24 components for s ¼ 3 and
so forth. To simplify the notation, BBC2008pN stands for the BBC2008 yield
criterion comprising N parameters. To determine N parameters, at least the same
number of data points has to be provided by means of crystal plasticity virtual
experiments. We emphasize this experimental nature (even though the experiments
are virtual) by marking the data points with the superscript ‘ðexpÞ’.

In Chap. 1 we presented an extensive calibration procedure that allows one to
use arbitrary points of the plane stress yield locus. To recapitulate the most
important points, the identification problem is posed as minimisation of square
norm of the vector-valued error function:

EðpÞ ¼

wyyðpÞ
wrrðpÞ
wybybðpÞ
wrbrbðpÞ
wSSðpÞ
wbbðpÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:13Þ
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where

yðpÞ ¼ 1� yðp; a1Þ
yðexpÞða1Þ ; . . .; 1�

yðp; anÞ
yðexpÞðanÞ

� �T

ð3:14Þ

rðpÞ ¼ 1� rðp; a1Þ
rðexpÞða1Þ ; . . .; 1�

rðp; anÞ
rðexpÞðanÞ

� �T

ð3:15Þ

ybðpÞ ¼ 1� ybðpÞ
yðexpÞb

( )T

ð3:16Þ

rbðpÞ ¼ 1� rbðpÞ
rðexpÞb

( )T

ð3:17Þ

SðpÞ ¼ 1� Sðp; h1Þ
SðexpÞðh1Þ ; . . .; 1�

Sðp; hmÞ
SðexpÞðhmÞ

� �T

ð3:18Þ

bðpÞ ¼ cos bðexpÞðh1Þ � b1ðp; h1Þ
� �

; . . .; cos bðexpÞðhmÞ � bmðp; hmÞ
� �n oT

ð3:19Þ

The components of vectors yðpÞ and rðpÞ include residuals pertaining to the series
of n uniaxial tensile tests along angles ai w.r.t. RD. Uniaxial yield stress yðexpÞðaÞ
and yðp; aÞ are calculated in the direction a by the CP virtual experiments and
derived from the yield criterion (3.6), respectively, while rðexpÞðaÞ and rðp; aÞ are
the r-values obtained in analogous way. The contribution of the equibiaxial point to
the error function is included via terms (3.16) and (3.17). Other points that lie on the
r11 and r22 section are indicated by the angle h, which defines the ratio between r11
and r22: tan h ¼ r22

r11
. The contribution (3.18) provides the magnitude of the yield

stress Sðp; hÞ in the direction given by the angle h. The normal to the yield contour
and the r11 direction form the angle bðhÞ. The weighting factors wy, wr, wyb, wrb,
wS and wb allow one to control the relative importance of the individual compo-
nents of the error function. This minimization problem can be conveniently solved
by means of general non-linear least squares solvers, such as the
Levenberg-Marquardt or the Trust Region algorithms (Conn et al. 2000).

Crystal Plasticity Virtual Experiments The data needed by (3.18) and (3.19) can
be calculated by the crystal plasticity framework, which accounts for the evolution
of fine-scale material state z.

At this moment we assume that the CP framework can be seen as a black box
that provides:
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• homogenized stress rðD; zÞ,
• evolution of z.

As a matter of fact, many crystal plasticity models are strain rate driven, sim-
ilarly as the black box mentioned above. The homogenized stresses calculated by
the black box can be seen as evaluations of function f : rHð_e; zÞ ¼ f ð_e; zÞ, even
though f is not given in a closed form. However, in many deformation processes it
is the stress state that is either known or assumed by certain idealization. In such
case the crystal plasticity model would need to predict what macroscopic defor-
mation might be reached under a superimposed macroscopic stress r. This also
poses certain inconveniences in (3.13). On one hand, the components of the residual
vector (3.13) are expressed as stress-state dependent. On the other hand, the opaque
nature of a black box does not permit any direct inversion of the function it
provides. For these reasons, a numerical inversion of f must be employed. An
iterative procedure can be then employed to to analyze deformation paths defined
by macroscopic stress modes, even though a strain-rate driven crystal plasticity
model is used. Note that the homogenization scheme in the CP model does not
require imposing stress boundary condition on every individual grain, and therefore
it is not necessarily satisfied on the grain level.

An iterative procedure can be then employed to analyze deformation paths
defined by macroscopic stress modes, even though a strain-rate driven crystal
plasticity model is used. Again, it has to be remarked that the homogenization
scheme does not require imposing stress boundary condition on every individual
grain, and therefore it is not necessarily satisfied on the grain level. On the grain
level Eqs. (3.39)–(3.50) still hold and the microscopic boundary conditions are
defined in terms of the velocity gradient. The crystal plasticity model is then
considered as a black-box implementing a purely plastic rate-insensitive material. It
must allow evaluating the homogenized macroscopic deviatoric stress SH as a
response to the macroscopic plastic strain rate D, while keeping the state variables
unmodified. An update of the state variables can be independently requested from
the black-box.

Since the underlying crystal plasticity model neglects the elastic components of
stress and strain rate, the homogenized stress is inherently deviatoric and the cor-
responding macroscopic strain rate has to satisfy the volumetric incompressibility
condition. Therefore, any of these tensor quantities contains only five independent
components, which can be utilized by converting the second-order tensor quantities
of deviatoric nature into five-dimensional vectors. In this context the primary reason
for preferring the five-dimensional vector representation is that the conversion
allows one to reduce the dimensionality of the search space, since the constraint
tr x ¼ 0 is automatically satisfied by the five-dimensional vector representation.

One can conveniently reduce the dimensionality of the search space by
exploiting the fact that symmetric second-order tensors of deviatoric nature contain
only five independent components. This property is commonly found in tensors
used in mechanics; for instance, deviatoric stresses and plastic strain rates belong to
this category. The reduction of dimensionality can be done by converting
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appropriate tensors into five-dimensional vectors, e.g. by following the transfor-
mation proposed in Van Houtte and Van Bael (2004). Other variants of the
transformation exist in the literature, see e.g. Grytten et al. (2008), Lequeu et al.
(1987), Van Houtte (1988). Throughout the remaining part of the paper the con-
vention will be used that x̂ denotes vector representation of rank-two tensor x.

Let x be a symmetric, second-order tensor that has the property that
x11 þ x22 þ x33 ¼ 0. It can be then completely described by only five independent
components. According to Van Houtte and Van Bael (2004), the components of the
corresponding 5D vector x̂ can be calculated as:

x̂1 ¼ 1ffiffiffi
2

p x11 � x22ð Þ ð3:20Þ

x̂2 ¼ �
ffiffiffi
3
2

r
x33 ð3:21Þ

x̂3 ¼
ffiffiffi
2

p
x23 ð3:22Þ

x̂4 ¼
ffiffiffi
2

p
x31 ð3:23Þ

x̂5 ¼
ffiffiffi
2

p
x12 ð3:24Þ

It is trivial to convert back the 5D vector into the second-order tensor:

x11 ¼ 1ffiffiffi
2

p x̂1 þ 1ffiffiffi
6

p x̂2 ð3:25Þ

x22 ¼ � 1ffiffiffi
2

p x̂1 þ 1ffiffiffi
6

p x̂2 ð3:26Þ

x33 ¼ �
ffiffiffi
2
3

r
x̂2 ð3:27Þ

x23 ¼ x32 ¼ 1ffiffiffi
2

p x̂3 ð3:28Þ

x31 ¼ x13 ¼ 1ffiffiffi
2

p x̂4 ð3:29Þ

x12 ¼ x21 ¼ 1ffiffiffi
2

p x̂5 ð3:30Þ

It can be easily shown that the scalar product is preserved, i.e. x : x ¼ x̂ � ŷ. As a
corollary, the length of the vector x̂ is equal to the magnitude of the corresponding
tensor x.
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The 5D representation of plastic strain rate and deviatoric stress is used in the
inversion of the function rð_e; zÞ ¼ f ð_e; zÞ.

Algorithm 1 is able to deliver m data points corresponding to biaxial stress state
with arbitrary stress ratios.

The fundamental part of the algorithm is to find the macroscopic plastic strain

rate mode Â
�
that corresponds to the imposed deviatoric stress mode Û

�
, where

Û ¼ Ŝ

kŜk ð3:31Þ

and Ŝ is a five-dimensional vector representing the deviatoric part of the stress
tensor r that defines the requested deformation path:

S ¼ r� tr r
3

I ð3:32Þ

where I is the identity tensor. This is achieved by solving an unconstrained opti-
mization problem, in which the square norm of the vector-valued residual function

fðÂ; Û�Þ ¼ Û
� � ŜHðÂÞ

kŜHðÂÞk
ð3:33Þ

is minimized. In the subsequent derivations a simplified notation will be used:
fðÂ; Û�Þ ¼ fðÂÞ, since the imposed stress mode is considered a constant. The
evaluation of the residual function involves a call to the underlying crystal plasticity
to calculate the homogenized stress sH . The search starts from an initial guess Â0,
typically chosen as Â0 ¼ Û

�
, which corresponds to the property of an isotropic von

Mises plastic material. From a current point Âold, the algorithm iteratively uses the
trust-region minimization approach (Conn et al. 2000)

min
Â2R5

kfðÂoldÞþ JðÂoldÞ Ânew � Ânew

� �
k subject to kÂnew � Âoldk� d ð3:34Þ

to find a new guess Ânew ¼ Âold þDÂ that satisfies

min
Â2R5

kJTðÂÞJðÂÞDÂþ JðÂÞfðÂÞk ð3:35Þ

where DÂ is the trial step, d is the size of the trial step and J is the Jacobian matrix
of the function f. The search is terminated when any of the following criteria is
fulfilled:
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• kfðÂnewÞk is smaller than a pre-defined threshold ftol, or
• kDÂk is smaller than a pre-defined minimal step size, or
• the number of iterations exceeds its maximal value.

As can be seen from Eqs. (3.34) and (3.35), the Jacobian matrix has to be
calculated very often. Since it is not available in a closed form, one has to compute
it numerically by a finite difference scheme, which is associated with a considerable
cost. However, if the initial guess Â0 is sufficiently close to the solution, one may
attempt to locate the minimum under the auxiliary assumption that
JðÂÞ ¼ JðÂ0Þ ¼ const. From this assumption it follows that the linearized problem
is solved, so (3.34) and (3.35) become:

min
Â2R5

kfðÂoldÞþ JðÂ0Þ Ânew � Ânew

� �
k subject to kÂnew � Âoldk� d ð3:36Þ

min
Â2R5

kJTðÂ0ÞJðÂ0ÞDÂþ JðÂ0ÞfðÂÞk ð3:37Þ

where the matrix product JTðÂ0ÞJðÂ0Þ can be conveniently pre-calculated. If the
trust region algorithm fails to converge to an acceptable solution, one may drop the
assumption on constant Jacobian and restart the minimization from the initial guess.

Incidentally, in many cases there is a sufficiently accurate initial guess available.
For instance, it may be obtained from a previous run of the method that had
explored a similar stress mode, which holds as long as an identical material state
was used by the underlying crystal plasticity model. Such condition is frequently
fulfilled if one systematically calculates a point-by-point yield locus section (for
instance, the section defined by r11 � r22 plane). Yet another example is that the
initial guess may be provided by an analytical yield locus model calibrated for a
very similar material state.

The generic procedure outlined above can be straightforwardly utilized for
determining data points that are commonly used in calibration of analytical yield
loci. The authors have implemented it in a set of algorithms, collectively known as
the Virtual Experimentation Framework (VEF) that allows conducting crystal
plasticity virtual experiments either in stress or strain rate driven mode. For
instance, uniaxial tension, uniaxial compression and biaxial stress state can be
studied by means of the VEF. Suppose that the material state variables, such as
texture, are expressed in a reference frame defined by the e1; e2; e3 directions. In
many practical applications these directions coincide with the rolling direction
(RD), transverse direction (TD) and normal direction (ND). Algorithm 2 allows
calculating instantaneous r-values and corresponding yield stresses for a sequence
of angles defining rotation around e3 from the e1 axis.

A similar algorithm (see Algorithm 3) can be used for calculating evolution of
the material state under the stress mode Û

�
. The algorithm provides a convenient

way to determine whether the microscopic state (e.g. crystallographic texture) is
stable under the imposed stress mode and to estimate how the associated strain rate

106 J. Gawad et al.



evolves. In principle, the algorithm splits the deformation path into smaller incre-
ments of plastic strain which results from the stress mode U�, given the
microstructural state of the material. The size of increments is specified by the input
parameter De. At the end of each increment the state of the microstructure is
updated to reflect the changes caused by the deformation. Eventually the procedure
returns a sequence of triplets e;A; SHðAÞð Þ. Non-essential operations, such as
reporting the history of microstructural state variables, are omitted for clarity.

Suppose one wants to determine the contour of the yield locus. Algorithm 1
presents how the normalized r11; r22 yield locus section can be calculated. The
algorithm can be also used for collecting data needed for calculating the Cartesian
tangent to the yield locus contour:

dr22
dr11

¼
dSðhÞ
dh sin hþ SðhÞ cos h

dSðhÞ
dh cos h� SðhÞ sin h

ð3:38Þ

where SðhÞ is the distance from the origin of the coordinate system to the yield

locus contour in that section. The polar derivative dSðhÞ
dh can be numerically estimated

from a single run of Algorithm 1.

Crystal plasticity ALAMEL In the previous paragraph we considered the crystal
plasticity model as a generic black box. Let us now consider a specific CP
framework, namely the rate-independent ALAMEL model proposed by Van Houtte
et al. (2005). As mentioned in Sect. 3.2.1, the ALAMEL belongs to the family of
statistical grain interaction models. The reader is referred to the paper (Van Houtte
et al. 2005), which provides a comprehensive discussion of the statistical crystal
plasticity theories relevant to this work, including foundations of Taylor’s theory.

This section briefly summarizes basic concepts of the ALAMEL model. Since
the remaining part of the work concentrates mostly on mechanical aspects, such as
yielding, the discussion of texture evolution is much limited for brevity. Let us now
just mention that the ALAMEL crystal plasticity model deals with an aggregate of
grains (a polycrystal). Each grain is characterized by its orientation assigned from
the Orientation Distribution Function (ODF) f ðgÞ where g 2 R3 represents the
crystal orientation. The whole aggregate of grains thus corresponds to a discrete
form of the ODF fdðgÞ. The slips on individual slip systems cause rotations of the
grains, and as a result evolution of texture, which is the primary component of
micro-scale state z. More details on how the lattice rotations are related to the
crystallographic slip can be found in Chap. 2.

A macroscopic deformation may be imposed onto an aggregate of crystals by
specifying the velocity gradient L. This velocity gradient tensor can be additively
decomposed into a symmetric part D, which is the plastic strain rate, and
anti-symmetric part W:
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L ¼ DþW ð3:39Þ

Let us first consider a single-phase polycrystalline aggregate, consisting of a
number of grains. In the Taylor-type models, it is supposed that each grain has
homogeneous properties, such as crystal orientation, as well as homogeneous stress
and strain distributions over the volume. If a single grain is considered, a local
constitutive law has to establish relations between the local stress, strain and rigid
body rotation inside the volume of the grain. A crystal plasticity theory, for instance
the Generalized Schmid Law, allows one to account for internal processes, such as
slip on various slip systems and the rotation of the crystal lattice, which occur as a
response to the external stimuli.

Suppose the local velocity gradient l is imposed on a single grain. Additive
decomposition of the velocity gradient tensor leads to

l ¼ dþw ð3:40Þ

where the symmetric part d is referred to as the local strain rate, and the
anti-symmetric part w is called the local spin. Provided that elasticity is neglected,
the strain rate needs to be accommodated through plastic deformation, which is
carried by dislocation slip on a number of slip systems and/or by twinning on
twinning systems. The further discussion is confined to the plastic slip as the only
mechanism of plastic deformation.

Algorithm 1: VEF algorithm for calculating scaled σ11, σ22 yield locus
section
Input: angular range: θ0, θmax, angular resolution: Δθ, scaling stress:

Ss, shear stress: σ12, logical flag: reusePrevious
Result: sequence of pairs (θ, S(θ)/Ss): o

o ← ∅
for θ = θ0 to θmax every Δθ do

σ ←
[ cos θ σ12 0

σ12 sin θ 0
0 0 0

]

S ← σ − 1
3 trσ I

U∗ ← S
‖S‖

if θ �= θ0 and reusePrevious then Â0 ← Â∗

Â∗ ← argmin
Â∈R5

‖F(Â, Û∗)‖ given Â0 // see (3.33)-(3.37)

S ← ‖SH(A∗)‖
o ← o + (θ,

S

Ss
) // extend the sequence o

end
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Algorithm 2: VEF algorithm for calculating r-values and normalized
yield stresses for a sequence of uniaxial loadings defined by directions α

Input: sequence of angles: α = [α1, . . . , αn], stress state: m (either 1 for
tension or -1 for compression), accuracy threshold: ftol, logical
flag: reusePrevious

Result: sequence of triplets (α, rα, yα): o

σ0 ← m
[
1 0 0
0 0 0
0 0 0

]

o ← ∅
hasConverged ← False
foreach α in α do

R ←
[
cosα − sinα 0
sinα cosα 0
0 0 1

]
// Rotation matrix

σr ← RT σ0R
Sr ← σr − 1

3 trσr I

U∗
r ← Sr

‖Sr‖
if reusePrevious AND hasConverged then

A0 ← RTAR
else

Â0 ← Û0
end
hasConverged ← False
Â∗

r ← argmin
Â∈R5

‖F(Âr, Û∗
r)‖ given Â0 // see (3.33)-(3.37)

if ‖F(Â∗
r , Û

∗
r)‖ < ftol then

hasConverged ← True
A ← RA∗

rR
T

rα ← A22
A33

yα ← √
3/2‖SH(A)‖

o ← o + (α, rα, yα) // extend the sequence o
end

end
return o
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The slip systems are defined by the family of symmetrically equivalent slip
planes and associated family of slip directions. For instance, in fcc materials there
are 12 slip systems given by f011gh100i. The definition of a slip system ðsÞ
includes the unit vector mðsÞ, which is normal to a slip plane that allows shear
deformation realized by a dislocation glide. The kinematical equation that relates d
with the slip rates _cðsÞ of all active slip systems reads

d ¼
XN
s¼1

MðsÞ _cðsÞ ð3:41Þ

where the Schmid tensor MðsÞ relates the normal to the slip plane with the nor-
malized shear direction bðsÞ in which the slip occurs:

MðsÞ ¼ 1
2

bðsÞ �mðsÞ þmðsÞ � bðsÞ
� �

ð3:42Þ

The slip systems that satisfy _cðsÞ 6¼ 0 are referred to as the active slip systems.
The unknown slip rates can be determined under the energetic assumption, which
postulates that minimal plastic work is dissipated per unit time:

Algorithm 3: VEF algorithm for calculating material state evolution un-
der the imposed deviatoric stress mode U∗

Input: stress mode: U∗, maximal von Mises strain: εmax, increment of
von Mises strain: Δε, accuracy threshold: ftol

Result: sequence of triplets (ε,A,SH(A)): o

εtotal ← 0
Â0 ← Û∗

o ← ∅
while

√
2/3‖εtotal‖ < εmax do

Â∗ ← argmin
Â∈R5

‖F(Â, Û∗)‖ given Â0 // see (3.33)-(3.37)

if ‖F(Â∗, Û∗)‖ < ftol then
Δε ← ΔεA∗

o ← o + (ε,A∗,SH(A∗)) // extend the sequence o
Update CP state variables by applying Δε
εtotal ← εtotal + Δε

else
return o

end
end
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_W ¼
XN
s¼1

sðsÞc j _cðsÞj ! min ð3:43Þ

where ssc is the critical resolved shear stress (CRSS) of the slip system ðsÞ. Although
the CRSS can in principle be expressed as a function of the accumulated shear in
the slip system, in the present considerations the hardening of the slip systems is
neglected. Furthermore, all the slip systems are supposed to have identical CRSS.
The generality of the presented approach is not undermined by these assumptions,
since they can be easily lifted. Moreover, one may argue that for certain classes of
materials, such as fcc, the texture evolution and induced plastic anisotropy remain
practically insensitive to the microscopic hardening model. This of course does not
generally hold for all types of materials. On the other hand, even a very simple
microscopic hardening law may become beneficial in handling complex hardening
phenomena (e.g. differential hardening effect), as it was recently demonstrated by
Eyckens et al. (2015).

Unfortunately, many combinations of slip systems may possibly satisfy (3.41)
and (3.43) simultaneously, which is called Taylor ambiguity. To determine which
slip systems are actually activated, an additional criterion is generally needed. The
interested reader is referred to a recent review by Mánik and Holmedal (2014) for a
comprehensive study of various means to solve the Taylor ambiguity. One of
possible solutions to the issue is to consider a cluster of grains that impose con-
straints on each other (Van Houtte et al. 2005).

Once the slip rates are known, the deviatoric stress tensor s can be calculated,
either directly by using the Bishop-Hill theory (Bishop and Hill 1951b), or by using
the minimization method (3.43) and considering it as the work-conjugate to the
imposed strain rate:

_W ¼ s : d ð3:44Þ

It also follows that texture evolution can be then predicted as well. The lattice
spin wL, which causes reorientation of the crystal lattice and in turn texture evo-
lution, can be found from the slip rates in each grain:

w ¼ wL þ
XN
s¼1

MðsÞ
A _cs ð3:45Þ

given the anti-symmetric part of the velocity gradient tensor (3.40). MðsÞ
A is the

anti-symmetric complement to the Schmid tensor:

MðsÞ
A ¼ bðsÞ �mðsÞ �MðsÞ ¼ 1

2
bðsÞ �mðsÞ �mðsÞ � bðsÞ
� �

ð3:46Þ

As we can see, this way the evolution of the microscopic state variables z is
accounted for.
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The ALAMEL homogenization scheme postulates that clusters of two grains
have to be treated jointly. The two grains are assumed to be neighbours, i.e. they are
separated by a grain boundary. The boundary is characterized by its orientation,
which at the same time defines a local orthogonal reference frame. By convention,
the 3rd axis of the grain boundary reference frame is parallel to the grain boundary
normal. The scheme allows relaxations of the macroscopic velocity gradient with
respect to simple shear along the boundary between the grains:

lðgrain1Þ ¼ Lþ
X2
j¼1

KðjÞ
RLX _c

ðjÞ
RLX ð3:47Þ

lðgrain2Þ ¼ L�
X2
j¼1

KðjÞ
RLX _c

ðjÞ
RLX ð3:48Þ

As can be seen, the relaxations in both grains are equal with respect to the

magnitude, but oriented in opposite directions. The relaxation slip rates _cðjÞRLX
conceptually operate on pseudo slip systems which are shared by the two grains,
whereas the slip rates and local spin rates of the clustered grains are different. The
relaxation matrices in the grain boundary reference frame are defined as:

Kð1Þ
RLX ¼

0 0 1
0 0 0
0 0 0

2
4

3
5 Kð2Þ

RLX ¼
0 0 0
0 0 1
0 0 0

2
4

3
5 ð3:49Þ

Assuming that the two grains have to simultaneously satisfy the energetic
assumption, Eq. (3.43) has to be reformulated as:

_W ¼
X2
i¼1

XN
s¼1

sði;sÞc j _cði;sÞj
n o

þ
X2
j

sðjÞr _cðjÞRLX ! min ð3:50Þ

where the index i refers to the grains in the pair. Van Houtte et al. (2005) suggest to
neglect the pseudo-slip term, although some artificial resistance of the pseudo-slip

systems can, in principle, be introduced by letting sðjÞr 6¼ 0.
The homogenized stress in the polycrystal is considered as the volume average

of contributions from all the grains in the polycrystalline. Let Vi denote the volume
of the ith grain. Provided that the stress tensor in the individual crystals is expressed
in the sample reference frame, the homogenized deviatoric part of Cauchy stress is
calculated as follows:

SH ¼
Xn
i¼1

Vi

 !�1Xn
i¼1

Visi ð3:51Þ
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It is worth mentioning in this context that the virtual experiments used in cali-
brating macroscopic yield loci are often stress driven (or at least some idealized
stress state is more opportune as the boundary condition), whereas the ALAMEL
model requires macroscopic velocity gradient or strain rate as input. In the previous
paragraphs we presented a method how to numerically convert a strain rate driven
model so the stress is imposed as the input. It is clear from (3.43) to (3.44) that the
stress state of individual grains in the polycrystalline may deviate from the imposed
stress, yet the homogenized stress over the aggregate can still satisfy

kSH � Sk\d ð3:52Þ

where d is a sufficiently small number. A stronger requirement (i.e. kSH � Sk ¼ 0)
might be difficult to satisfy given the fact that only a finite number of crystals is
used in the discretized texture.

It can be argued that (3.52) introduces long range interactions in the model, since
certain conditions have to be met over the whole polycrystal. Yet it needs to be
emphasized that no iso-stress assumption is made concerning the aggregate.

Hierarchical multi-scale model of cup drawing test The presented modelling
framework allows one to simulate the deformation of large parts, comparable in size
to body car components. In this example we use it to simulate one of the most
convenient mechanical tests assessing anisotropy of the sheet metal: the cup
drawing process that forms cylindrical cups from circular blanks. We shall also
investigate how the results of the adaptive multi-scale model compare to more
conventional simulation of the same process and to experimental data.

Briefly, let us consider the following test cases:

HMS-BBC2008: adaptive hierarchical multi-scale model is used. The plastic
anisotropy is modelled by adaptively recalculated BBC2008p16
yield criterion. The crystal plasticity model predicts texture
evolution and calculates data needed for recalibration of the
BBC2008p16, as it was described in the previous sections.

CP-BBC2008: hierarchical multi-scale model is used, but the plastic anisotropy
is kept constant throughout the simulation. This means the
crystal plasticity model uses just the initial texture data at the
pre-processing stage, and thus it provides only the initial yield
surface data for identifying the BBC2008p16.

Mech-BBC2008: The BBC2008p16 is conventionally calibrated by mechanical
testing data.

In the case study presented below we use Al alloy AA6016 metallic sheet (1 mm
nominal thickness). This material is a precipitation hardening alloy, containing
aluminum, magnesium and silicon as major components. The sheet has been
delivered in the T4 status (solution heat treated and naturally aged). One of the
major applications of this material is in the automotive industry. Admittedly, the
AA6016-T4 has a rather mild anisotropy, which furthermore does not change much
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during mechanical tests. Modern sheet metal materials are designed (on very pur-
pose!) to retain their anisotropic properties approximately constant during pro-
cessing. Keeping that in mind, we decided to choose a material that is realistic and
actually used in industrial practice. If we selected a material that is more suitable for
illustrative purposes, such as commercial purity aluminum, it would be less relevant
from the application point of view.

The most conventional way of calibrating the BBC2008 yield criterion is to
conduct a series of mechanical experiments. The characterization methods needed
for calibrating the BBC2008 to mechanical data include uniaxial tensile tests and
biaxial tension.3 In order to determine the uniaxial mechanical parameters, tensile
tests were performed on specimens cut at 0°, 15°, 30°, 45°, 60°, 75°, 90° from the
rolling direction. The experiments were carried out using a Zwick-Roell 150kN
universal tensile testing machine equipped with an extensometer with 20 mm
gauge-length. The tensile tests have also provided the values of the conventional
yield stress y ¼ Rp0:2 and the Lankford coefficients (r-values), see Fig. 3.4a, b. The
measured r-values reflect the plastic anisotropy at the beginning of yield. The
mechanical response of the sheet in biaxial tension stress state was studied by
means of two experimental setups: hydraulic bulging and thickness compression
tests. The hydraulic bulging experiments allowed determining the balanced biaxial
yield stress according to the methodology described by Lazarescu et al. (2011),
while the thickness compression tests were performed to determine the biaxial
coefficient of plastic anisotropy (Barlat et al. 2003a). The balanced biaxial yield
stress was found ybx ¼ 160:1MPa, while the measurement of the biaxial coefficient
of plastic anisotropy resulted in rbx ¼ 1:037 (cf. Fig. 3.4c).

While the conventional calibration of the BBC2208 requires fairly extensive
experimental work, the virtual calibration is much more straightforward. The
multi-scale model presented in the previous section requires texture data as the main
microstructural input. A single experiment is needed and it consumes approxi-
mately 1 of the material. As presented in Gawad et al. (2015), X-ray diffraction
technique provided the through-thickness texture and the mid-plane texture at the
depth of 50 % of the sheet. The /2 ¼ 45� sections of the measured ODF along with
schematically depicted measurement positions are shown in Fig. 3.3.

The figure also shows the texture index (TI), which gives an overall view of
texture sharpness, defined as integral over entire orientation space:

TI ¼
Z

f 2ðgÞdg ð3:53Þ

where f ðgÞ is the ODF. As can be seen, the sheet features a much sharper texture at
the mid-plane than over the complete thickness. This indicates a presence of a
complex texture gradient across the thickness, yet we shall not elaborate on this

3The results of mechanical experiments and texture measurements used in this section are taken
from Gawad et al. (2015).
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aspect here. Generally, the texture of this material is mostly attributed to the Cube
component, i.e. the orientation given by ð/1;U;/2Þ ¼ ð45�; 0�; 45�Þ in the pre-
sented ODF sections. Moreover, the spread around Cube forms a fibre towards
(45� þ x; 0�; 45�) and (45� � x; 0�; 45�). At the mid-plane however, the Cube fibre
is only partial, i.e. x\45�. The P texture component (29:5�; 90�; 45�), which is
generally attributed to the recrystallization solutionizing annealing (Engler and
Hirsch 2002), can also be identified. The analyzed textures contain also some minor
Goss component f011gh100i, which is seen in this section as a small intensity
maximum at ð/1;U;/2Þ ¼ ð90�; 90�; 45�Þ.

The measured textures were further processed to obtain input data for the virtual
experiments. Discrete ODFs, needed by the ALAMEL model, were probed from
the continuous ODFs using the STAT algorithm described in Tóth and Van Houtte
(1992) and implemented in the MTM-FHM software (Van Houtte 1995). Each of
the initial data sets consisted of N ¼ 5000 crystallographic orientations, expressed
as Euler angles in Bunge (1982) convention: /1, U and /2. The number of ori-
entations is sufficient to guarantee that the RVE represents the local macro-texture
of the material.

In the next step, the crystal plasticity stress-driven virtual experiments were
conducted to calculate the data points needed for identification of the BBC2008

Fig. 3.3 /2 ¼ 45� ODF sections (with /1 and U on horizontal and vertical axis, respectively) of
the experimental textures: a mid-plane texture (50 % depth), TI = 4.96, and b through-thickness
texture, TI = 2.45. Annotations indicate the Cube component (square) and the P component
(triangle). The ODFs are expressed in identical reference frame: x1 ¼ RD, x2 ¼ TD and x3 ¼ ND.
Schematic sketch of the experimental texture measurement scheme is presented on the right. The
violet plane depicts the surface exposed to the X-ray beam (Color figure online)
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yield criterion. Figure 3.4 presents the calculated r-values and the yield stresses.
The directions of uniaxial loading were chosen as a ¼ 0�; 15�; . . .; 90� (cf. (3.14)
and (3.15)). Since the extended identification algorithm was used (see (3.13) and
more extensive description in Chap. 1), the following directions h were used in
(3.18) and (3.19) to define biaxial stress ratios: 7°, 30°, 45°, 60°, 83°, 120°, 330°.
The point evaluated at h ¼ 45� was also used in Eqs. (3.16) and (3.17) for calcu-
lating the rb and yb. Identical selection of data points was used in the simulations
exploiting the CP-BBC2008 and HMS-BBC2008 model. All the weighting factors
in (3.13) were set to unity, except for wb ¼ 4.

It can be seen from Fig. 3.4 that the uniaxial r-values resulting from the
mechanical testing are generally consistent with the data provided by the virtual
experiments. However, this is not the case if other quantities are considered. In

(a) (b)

(c)

Fig. 3.4 Initial characterization of plastic anisotropy obtained by means of the mechanical testing
and virtual experiments: a Lankford coefficient (r-value), b uniaxial yield stress, and c biaxial yield
stress and r-values. All yield stresses are scaled by the uniaxial yield stress along 0� to RD. The
legend in a applies also to the other plots. The initial experimental textures (cf. Fig. 3.3) were used
in the virtual experiments
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terms of the scaled uniaxial yield stresses, the virtual and the mechanical tests
predict opposite trends: the maximum around 45° is consistently obtained in all
virtual experiments, whereas the mechanical testing resulted in a minimum in this
direction. As can be seen in Fig. 3.3, the variability of the experimental normalized
uniaxial yield stress is bound in the range of (	0.97, 1.0), therefore only a minor
fluctuation of 	3 % is present. Therefore, it is perfectly possible that the experi-
mental result does not fully reflect the actual material behavior, since every mea-
surand includes certain measurement uncertainty. At this point it remains debatable
whether the crystal plasticity or the mechanical experiment provides better estimate
of the actual material behavior in the considered case. Another prominent difference
between the mechanical and the virtual testing is found at the equibiaxial yield
point. Apart from the discrepancy in magnitude, the crystal plasticity predicts pretty
much variation in the equibiaxial r-value, either below unity if the sharper
mid-plane texture is used, or above unity for the milder through-thickness texture.

All the multi-scale simulations presented in the subsequent paragraphs use the
macroscopic Swift hardening law

�rðemMÞ ¼ K emM þ e0ð Þn ð3:54Þ

where the coefficients K ¼ 479:7 MPa, n ¼ 0:239 and e0 ¼ 0:00096 were deter-
mined from the average of the mechanical uniaxial tensile tests.

Concerning the cup drawing experiments, a set of cups was formed on an
adapted Erichsen device. The following dimensions characterize the geometry of
the tools: punch diameter: 50 mm, punch lip radius: 6 mm, die diameter: 52.82 mm
and die lip radius: 3 mm, while the diameter of the blank is 90 mm. After the deep
drawing, cup profiles were measured and averaged over symmetrically equivalent
positions.

An Abaqus Explicit FE model was set up to reproduce the experimental cup
drawing setup. Due to the symmetry of the process, it is possible to simulate
one-quarter of the blank. To accelerate the computations, a mass scaling procedure
was used, although quasi-static conditions were ensured. The blank was discretized
using 3247 reduced integration wedge continuum shell elements (in Abaqus
nomenclature: SC6R). Although only one layer of elements was used, the elements
were set to include 3 integration points across the thickness. Frictional contact
between the blank and the tools (punch, die and blankholder) was controlled using
Coulomb law with the coefficient of friction l ¼ 0:2, which approximately corre-
sponds to conditions in a moderately lubricated steel-aluminum contact pair.

The HMS-BBC2008 simulations were executed on ten 12-core Westmare nodes.
On average it took 5 h for an HMS-BBC2008 simulation to complete, while each of
the corresponding Mech-BBC2008 and CP-BBC2008 simulations required 1 h on a
single node.

The results of the simulations and experiments are summarized in Fig. 3.5.
Although none of the simulations perfectly reproduces the experimental profile, it is
clear that the texture-based simulations deliver superior predictions of the earing
behavior. While the CP-BBC2008 and HMS-BBC2008 simulations both result in

3 Multiscale Modelling of Mechanical Anisotropy 117



correctly positioned ears, the modeling that relies on mechanical testing
(Mech-BBC2008) wrongly predicts the ears at 45° w.r.t. RD.

Another aspect of the cup geometry prediction is related to the intensity of
texture used as the starting point. As it could be anticipated from Fig. 3.4, the
sharper mid-plane texture resulted in excessively pronounced ears. With respect to
the impact of anisotropy evolution on the macroscopic geometry, both
CP-BBC2008 and HMS-BBC2008 provide very similar cup profile prediction.
Although the results of HMS-BBC2008 are slightly closer to the experimental cup,
the improvement over CP-BBC2008 is only clearly visible if the sharper mid-plane
texture is used as the starting point. Furthermore, the correction due to anisotropy
evolution is very minor when the relative cup profile almost agrees with the
experimental cups.

This raises at least two questions: why the Mech-BBC2008 produces a con-
siderably different cup profile, and why the anisotropy evolution accounted for in
HMS-BBC2008 simulations results only in limited improvement over
CP-BBC2008.

The first question can be partly answered if we recall the most significant dis-
tinction between the mechanical testing and the texture-based virtual experiments
found in Fig. 3.4. The mechanical testing resulted in a minimum of uniaxial yield
stresses in the direction around 45° w.r.t. RD, as opposed to the virtual tests that
predict it elsewhere. This minimum may appear to be a factor associated with the
position of the valleys, for the reason that they correspond to higher resistance to
tension in both RD and TD.

The stress state in the flange, nevertheless, is dominantly imposed by the
geometry of the process. Furthermore, it considerably differs from uniaxial tension.
Depending on the radial position in the flange, it may vary from nearly pure
compression along the circumferential direction (at the outer rim) to a superposition
of tension along the radial direction and predominant compression along the cir-
cumference. Suppose the total strain tensor is expressed in a cylindrical coordinate

Fig. 3.5 Comparison of
experimental and predicted
relative cup profiles, scaled by
cup height at 0° w.r.t. RD
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system given by the axes ðer; ew; ezÞ. The origin of the coordinate system is fixed
and coincides with the centre of the blank, while the axes correspond to the radial
direction of the blank, angular position along the circumference and the sheet
normal, respectively. The ratio between the radial and tangential stress in a single
material point also changes while the process advances. It may be 	–0.1 at the
beginning of the process, whereas it may reach 	–0.8 when the material point
approaches the bending zone near the die lip. The plastic flow, which is a conse-
quence of the stress state, can be then described by the ratio

e ¼ err
eww

ð3:55Þ

between the radial and tangential strains (err and eww, respectively). Since the strain
components are in a direct relation with the yield locus through the strain rates
calculated from the normality rule, the e-ratio depends on the yield locus shape as
well. The strain evolution of the e-ratio was tracked in three finite elements, initially
located at identical radius r ¼ 40 mm along the RD, TD and 45� w.r.t. RD. Since
the instantaneous stress state is used, different points on the yield locus are probed.
The strain range was chosen to ensure that the considered material points remain
sufficiently far from the die lip, and at the same time rzz 	 0.

Figure 3.6 shows the e-ratio calculated for a subset of the considered cup drawing
simulations. For the sake of clarity, the figure includes just the results of the
Mech-BBC2008, and two CP-BBC2008 and HMS-BBC2008 that are both started
from the through-thickness texture. The most pronounced difference between the
two crystal plasticity based simulations and the one based on the mechanical testing
data is visible at the RD and TD locations. This particularly holds at the onset of the
plastic deformation, when the stress state in the given coordinate system remains
nearly identical in all the cases. Thus, the divergence in the material flow is most
likely attributed to the shape of the explored yield locus regions. It appears that the
relatively limited deviation from the uniaxial tension state results in probing the yield
surface in regions of remarkably different curvature.

Fig. 3.6 Evolution of e-ratio
as a function of equivalent
von Mises plastic strain in the
cup drawing simulations at
the selected points in the
flange: RD, 45� to RD and
TD: Mech-BBC2008 (closed
black symbols), CP-BBC2008
(open blue symbols) and
HMS-BBC2008 (open red
symbols), respectively (Color
figure online)
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If the yield locus model is calibrated primarily to the uniaxial tension data, as it
is the case if the mechanical testing data are used, the regions of the yield locus that
are actually reached in the cup drawing simulation are relatively distant from the
measurement points. The yield loci derived from the virtual experiments, by con-
trast, are constructed by exploiting data points of various stress ratios. One may
hence expect these yield loci to be more reliable, since the stress states more
relevant to the cup drawing process are sampled.

Figure 3.6a also offers a hint why and the anisotropy evolution has only a minor
effect on the cup profile. It is clearly visible that the strain history of the e-ratio
coincides in the CP-BBC2008 and HMS-BBC2008 simulations only until the very
first update of the yield locus model. Nonetheless, the subsequent change in the
flow direction appears minor.

To explain this, let us examine how the fine-scale material state evolves and to
what extent it impacts the anisotropy. Figure 3.7 presents an example of simulated
cups with a superimposed field showing the count of anisotropy updates. As can be
expected from Eq. (3.1), the field variable is tightly correlated with the magnitude
of the plastic strain. Thus, the regions of the highest plastic strain have been updated
multiple times and possibly the texture has been altered to a large extent. This is
indeed the case, as seen in Fig. 3.8 showing the texture index derived from the
micro-scale state and superimposed on the deformed finite element mesh. In both
HMS-BBC2008 simulations we can observe a complex texture pattern that
develops in the formed cup. It is remarkable that the overall texture sharpness
rapidly decreases if the stronger mid-plane texture is used as the starting point,
whereas the milder through-thickness texture in certain zones of the cup slightly
intensifies.

It is difficult to examine evolution histories in all individual integration points.
Let us then explore more in detail how the micro-scale material state and anisotropy
evolve in a selected integration point located approximately 3 away from the cup
rim at the RD. Figure 3.9 presents the final deformation textures that the
HMS-BBC2008 model predicted in that location. In principle, texture evolution
may destroy the original orthorhombic symmetry (as it was used in Fig. 3.3), thus
no symmetries are imposed in the figure. The ODFs are plotted in the coordinate
system coinciding with the material co-rotational reference frame. A visual
inspection reveals a substantial change from the initial ODFs shown in Fig. 3.3.
Even though the Cube component remains the most intense texture feature, a new
texture component is regularly found. The Cu (Copper) component of varying
intensity emerges in both analyzed textures, most remarkably in the evolved
mid-plane texture, where it appears almost equally pronounced as the Cube com-
ponent. Interestingly, the Goss component remains at similar intensity level as it
used to be in the initial textures. At this point we may conclude the texture has
undergone a considerable evolution during the deformation.

One might expect that not only the texture but also the anisotropic properties
shall be far from the initial ones. The local anisotropy indeed evolves, as shown in
yield loci shown in Fig. 3.10. The initial yield locus and the one that evolved at the
considered location are substantially different, yet the largest changes are seen in the
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Fig. 3.7 Number of updates of texture and anisotropy in the HMS-BBC2008 simulations,
presented as a field projected on the final cups (symmetries on the XZ and YZ planes are
superimposed). aMid-plane texture, and b through-thickness texture are used as the initial textures
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Fig. 3.8 Texture index at successive deformation stages superimposed on the deformed FE mesh
in simulations started from a mid-plane texture (initial TI = 4.96), and b through-thickness texture
(initial TI = 2.45), respectively
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Fig. 3.9 /2 ¼ 45� ODF sections (with /1 and U on the horizontal and the vertical axis,
respectively) of the final texture textures that evolved from: a mid-plane texture (TI = 3.05), and
b through-thickness texture (TI = 2.26) in the analysed position. Both sections are presented in the
identical corotational reference frame, which initially was given by x1 ¼ RD, x2 ¼ TD and x3 is
the normal to the sheet
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yield locus regions that are not active in the cup drawing process. This basically
suggests a texture-induced cross-effect, which partly explains limited impact of
texture evolution on the macroscopic geometry of the cup. Figure 3.11 summarises
the uniaxial characteristics of plastic anisotropy that were obtained for the final
deformation textures in the same geometrical location. With regard to the effects of
texture evolution on the plastic behavior under uniaxial loading, the r-values are
moderately affected. Much more complex evolution is observed when the uniaxial
yield stresses are considered. Those not only tend to decrease, but the monotonicity
is influenced as well: the maximum at direction 45� in the initial material clearly
diminishes for the mid-plane texture.

Let us finally check a key aspect in the adaptive hierarchical modelling, namely
the ability of the macroscopic yield locus to provide a good approximation of
virtual experiments. From Fig. 3.11, which also shows how the BBC2008p16
predicts uniaxial material response, it is clear that the BBC2008 reproduces the
virtual experiments remarkably well and is generally capable of following the
changes in anisotropy that occur during the deformation.

3.3.4 Other Concepts in Multi-scale Modelling of Plastic
Anisotropy

It is hardly possible to give a complete and comprehensive overview of all the
concepts that have been investigated in the field of multi-scale modelling of plastic
anisotropy. In this short section we want to mention a few interesting approaches
that explore areas beyond the scope presented in the previous sections.

(a) (b)

Fig. 3.10 Comparison of the initial and final yield loci obtained in the HMS-BBC2008
simulations that used a mid-plane texture, and b through-thickness texture, respectively
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One of such concepts is to develop a macroscopic constitutive model that would
allow deriving the current plastic anisotropy directly from instantaneous crystal-
lographic texture or from constituents of crystal plasticity frameworks, see e.g.
Arminjon and Bacroix (1991), Kowalczyk and Gambin (2004), Tsotsova and
Böhlke (2009). Several attempts to derive macroscopic yield loci directly from
texture data (i.e. without using any CP framework) have been reported in the
literature. For instance, one can try to associate various texture components with
their contributions to the global mechanical behaviour. This way an analytical yield
locus can be constructed, as it has been tested in Darrieulat and Montheillet (2003),
Darrieulat and Piot (1996). The authors investigated how parameters of quadratic
Hill yield criterion can be analytically derived for the most common rolling tex-
tures. In the further step, a rule of mixture was followed to construct the Hill
criterion that combines contributions from individual texture components.
However, this method silently ignores the contribution from minor texture com-
ponents, which may be more than subtle if interactions between the contributing
terms play a role.

(a)

(b)

Fig. 3.11 a r-values, and
b scaled uniaxial yield
stresses calculated from
evolved textures in the
simulated fully formed cups:
ALAMEL-based virtual
experiments (symbols),
BBC2008 local yield locus
calibrated to the virtual
experiments (lines). The
legend in a applies to both
plots
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As the CP appears to set more reliable and robust means to recover mechanical
data from the microstructure, computational performance of virtual experiments
becomes crucial. This point is recognized for instance in the Reduced Texture
Methodology (RTM) proposed in Rousselier and Leclercq (2006), Rousselier et al.
(2009). The RTM aims neither at a complete representation of the real material
texture, nor at an accurate modeling of its evolution, but it focuses on accelerating
the virtual experiments. This can be achieved by simplifying the crystal plasticity
model (e.g. Rousselier and Leclercq 2006). At the expense of dropping certain
physical grounds, some computational gains can be reached. For example, a con-
cept of individual crystals with smooth yield surfaces was investigated in Arminjon
and Bacroix (1991), Gambin and Barlat (1997), Gambin (1992), Zamiri et al.
(2007), Zamiri and Pourboghrat (2010), among others. In this formulation one yield
function is used at the crystal level to calculate the crystal spin and the shear rates at
the same time. Since these yield surfaces have rounded corners, as opposed to
crystal yield surfaces calculated by resolving slip systems, the problem of
non-uniqueness in the choice of active slip systems vanishes.

Since simplifications in the fundamental parts of the crystal plasticity may
possibly impair predictive capabilities of the model, another way of accelerating
virtual experiments (or to put it broader: enhancing computational performance of
RVEs) is to reduce the number of crystal orientations per integration point of the
macroscopic FE mesh. This is built on an observation that in many cases crystal-
lographic textures can be approximated by a rather small number of texture com-
ponents. Several attempts have been proposed to limit the number of orientations
that have to be processed by the crystal plasticity while retaining a good prediction
of both texture and anisotropy evolution, see e.g. Béringhier et al. (2007), Böhlke
et al. (2005), Delannay et al. (2005), Knezevic and Landry (2015), Logé and
Chastel (2006), Raabe et al. (2004), Raabe and Roters (2004), Roters (2005), Zhao
et al. (2004).
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Chapter 4
Modelling the Voids Growth in Ductile
Fracture

Mihai Gologanu, Dan-Sorin Comsa, Abdolvahed Kami
and Dorel Banabic

4.1 Models for Ductile Fracture

Ductile fracture in metals and metallic alloys is due to the evolution of microscopic
voids during plastic deformation. Voids nucleate around foreign inclusions or at
grain boundaries and grow in regions with large triaxial stresses. Larger voids
promote the formation of bands of localized deformation where new small voids are
nucleated, thus forming a macroscopic crack. The microscopic dimples present on
ductile fracture faces are a direct proof for such a mechanism.

Following the pioneering work of McClintock (1968), Rice and Tracey (1969),
who studied the growth of voids in a rigid-plastic infinite medium, Gurson (1977)
proposed a new model for porous ductile materials that predicted both the growth of
such voids and their effect on the yield criterion. Later, Tvergaard (1981, 1982),
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Tvergaard and Needleman (1984) included models for void nucleation and coa-
lescence; the so-called Gurson-Tvergaard-Needleman (GTN) model has found wide
adoption in the engineering community in the last 30 years and is included in all
major finite element codes.

Gurson used limit analysis to study a spherical void in a concentric unit cell
made of a rigid-plastic material with von Mises isotropic plasticity. He obtained the
following yield criterion and void volume fraction evolution law:

req
r0

� �2

þ 2f cosh
3
2
rm
r0

� �
� 1� f 2 ¼ 0; _f ¼ 3ð1� f Þdm ð4:1Þ

Here req; rm are the von Mises equivalent stress and the mean or hydrostatic
stress, r0 is the yield stress of the matrix, f the porosity (ratio of void volume to the
overall volume) and dm the mean deformation rate. This is essentially a homoge-
nization result—the highly heterogeneous material with its many microscopic voids
is replaced with a homogeneous one, without any voids, but with a new, macro-
scopic plasticity criterion. The macroscopic effect of the voids is hidden in the
porosity, which plays the role of a scalar damage parameter—the yield criterion
shrinks progressively to zero when the porosity increases. Note also that, in contrast
to the microscopic plasticity criterion which does not depend on the mean stress, the
new macroscopic one is pressure sensitive. Also, the “cosh” term gives an expo-
nential dependence of the growth rate of the porosity as a function of the stress
triaxiality, defined as T ¼ rm=req:

The modifications made by Tvergaard and Needleman were mostly semi-
empirical and were meant to provide a better fit between model predictions and
elasto-plastic finite element studies of some unit cells containing also a single
void:

req
r0

� �2

þ 2q1f �cosh
3q2
2

rm
r0

� �
� 1� q3f

� ¼ 0 ð4:2Þ

where q1; q2; q3 are empirical parameters and f �ðf Þ is a pseudo porosity describing
the coalescence of voids via a critical porosity value marking the start of the
coalescence and an accelerated growth of the porosity during coalescence.

We like to believe that the main reason for the success of the Gurson model lies
with the rigorous, micromechanically based approach used for its development.
Alternatively, Gurson’s approach can be realized in a purely numerical manner by
studying, via finite elements, the evolution of some cylindrical or cubical unit cell
containing one or several voids. This approach was pioneered by Koplik and
Needleman (1988) who studied the coalescence of a single void in a cylindrical unit
cell under constant triaxiality loading, with the effect of neighbouring voids taken
indirectly into account by imposing that all boundaries remain straight during
deformation. Numerous such studies have appeared in the literature, many for
validating or checking various ductile fracture models, others for describing new
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mechanical effects (see as a typical and recent example Tekoğlu 2014). We argue
that the ease of setting up such a finite element model of a periodic unit cell and the
great flexibility in choosing material properties, (including plastic anisotropy, strain
hardening, viscoplasticity, single crystal plasticity, etc.), void size and shape,
loading conditions, second population of voids, combined with the physical insight
one gains into various fracture mechanisms, has indirectly contributed to the great
success of the GTN model, perceived as being potentially able to provide the same
advantages.

However, the pace of development of new Gurson type models to include the
above mentioned properties and mechanisms has been rather slow. For more
detailed information, we suggest the reviews by Tvergaard (1990), Benzerga and
Leblond (2010), Besson (2010).

4.1.1 Void Shape Effects

Gurson’s model assumes that voids have initially a spherical shape and preserve this
shape during deformation. However, real voids are far from being spherical and
deformation can further change their shape. Lee and Mear (1992) used a spectral
approach to study the growth of spheroidal (oblate and prolate) voids in an infinite
matrix with a rigid-plastic isotropic behaviour. Gologanu et al. (1993, 1994) con-
sidered the same spheroidal voids but in a finite unit cell (a spheroidal unit cell
confocal with the cavity) and were able to extend Gurson’s rigorous analysis to this
configuration; this has been known as the Gologanu-Leblond-Devaux (GLD) model.
Independently, Garajeu (2000) has proposed a similar model for the case of prolate
spheroidal voids; he also considered the case of a matrix with a power-law
rigid-viscoplastic constitutive behaviour.

Comparing the GLD model with the results of unit cell simulations showed some
limitations regarding the prediction of void shape effects on void growth. In
Gologanu (1997) we introduced a calibration method that replaces some of the
analytical parameters in the original model by new expressions fitted on numerical
results obtained with the Lee and Mear (1992) spectral method, modified for a finite
unit cell; this will be discussed in a later section.

Recently, Madou and Leblond (2012a, b) obtained a highly significant result.
They were able to extend Gurson’s model to the case of a general ellipsoidal void in
an isotropic rigid-plastic matrix. In the absence of a suitable spectral method for
such a geometry to calibrate the model, they used finite element simulations with a
clever hack to treat limit analysis problems using an elasto-plastic solver.

In a different vein, recall that Gurson’s model is essentially an approximate
homogenization procedure for a porous plastic material. Starting with the pioneering
work of Talbot and Willis (1985), who proposed a new procedure to obtain rigorous
macroscopic bounds for nonlinear composites, Ponte Castaneda and coworkers have
greatly extended these nonlinear homogenization methods (see Danas 2009 for a
review of recent results). The main idea is to transform the nonlinear problem, via
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some suitable variational principle, to a linear homogenization one and take
advantage of the well-known Hashin-Shtrikman or Willis bounds. Similar results
have been obtained by Michel and Suquet (1992) using Hölder-type inequalities.
These methods have provided constitutive models for porous materials with
power-law viscoplastic or rigid-plastic behaviour, containing general ellipsoidal
voids with arbitrary distribution and submitted to general loading conditions. One
limitation of these models has been the rather stiff behaviour at large triaxialities.
However, because at low triaxialities they have proven very accurate, there has been
a tendency to use these models to calibrate the quadratic term in Gurson type models.
We also note that recently, Agoras and Ponte Castaneda (2014) have introduced an
iterated variational approach which predicts high triaxiality behaviour in line with
Gurson type models.

4.1.2 Anisotropic Plasticity

We have seen in previous chapters that sheet metals exhibit a significant anisotropy
due to processing. In view of the intended application of Gurson type models to
sheet metals, it is important to take plastic anisotropy into account. Benzerga and
Besson (2001) extended Gurson’s limit analysis and model for spherical voids from
a matrix obeying isotropic von Mises plasticity to one obeying Hill’s orthotropic
criterion (Hill 1948). Later, Monchiet et al. (2006, 2008), Keralavarma and
Benzerga (2008, 2010) extended the anisotropic Gurson model to spheroidal voids.
Recently, Morin et al. (2015) developed a Gurson type model for general ellipsoidal
voids in an anisotropic Hill matrix.

Stewart and Cazacu (2011) extended Gurson’s model for anisotropic porous
aggregates displaying tension–compression asymmetry (e.g. metals with hexagonal
crystal structure) and containing spherical voids. The matrix material behaviour was
defined by the anisotropic Cazacu et al. (2006) yield criterion.

4.2 Anisotropic GTN Model for Sheet Metal Forming

Do voids play any role in the behaviour of metal sheets? In contrast to bulk com-
ponents where ductile failure is clearly due to the evolution of voids, metal sheets fail
mainly by necking—the formation of thin bands where the thickness of the sheet
drastically decreases up to fracture. Note that softening is the culprit in both failure
mechanisms. However, voids can influence the normal to the yield criterion well
before necking, and we have seen that the prediction of forming limits is highly
influenced by small variations in the direction of plastic flow. Also, voids provide the
final fracture mechanism in the necking region, especially for biaxial strain condi-
tions. We expect that accurate predictions of sheet fracture will be useful for example
in crash simulations by the automotive industry. There is also experimental evidence

138 M. Gologanu et al.



that forming limits of superplastic aluminium alloys are related to failure by void
growth and coalescence, see Tagata et al. (2004).

In order to explore the role of voids in sheet metal forming, we present in this
section the implementation of a simple anisotropic GTN model in ABAQUS and
the results of the numerical simulation of a deep drawing process.

4.2.1 GTN Models for Sheet Metal Forming

One of the limitations of the GTN damage model is the assumption of isotropic
behaviour for the metal matrix. In fact, because of the cold rolling production
procedure, sheet metals usually exhibit a non-negligible anisotropic behaviour.

Assuming that voids are spherical and remain so during deformation, the main
problem is to include in the GTN the anisotropy of the matrix material. Most studies
have focused on Hill48 quadratic anisotropy. We already mentioned in Sect. 4.1.2
the work of Benzerga and Besson (2001) for spherical voids in a Hill48 matrix.
Liao et al. (1997) derived an approximate potential close to the original Gurson
formulation for anisotropic sheets containing through thickness holes. Wang et al.
(2004) modified the Liao et al. model by using the average anisotropy parameter in
the constitutive equations. Chen and Dong (2009) extended the GTN model to
characterize the matrix material through Hill quadratic and Barlat-Lian
3-component (Barlat and Lian 1989) expressions of the equivalent stress.

4.2.2 Anisotropic GTN Model with Hill 48 Yield Criterion

Abaqus/Explicit allows the implementation of solid material models by means of
the VUMAT routine. Because Abaqus/Explicit uses corotational components of the
Cauchy stress and logarithmic strain as input/output when communicating with
VUMAT, plain time derivatives of such tensor quantities can be involved in the
formulation of the rate-type constitutive relationships, without any concern about
their objectivity. The model presented below assumes that the Abaqus/Explicit
corotational frame also reflects the plastic orthotropy of the sheet metal, being
initially coincident with the frame defined by the rolling direction—RD (axis 1),
transverse direction—TD (axis 2) and normal direction—ND (axis 3).

Let eij denote the components of the corotational logarithmic strain tensor sep-
arable into elastic and plastic terms:

eij ¼ eðeÞij þ eðpÞij ð4:3Þ

Let rij denote the components of the corotational Cauchy stress tensor with
mean stress rm ¼ rii=3. The Hill48 quadratic anisotropic yield surface is given by:
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uðrÞ ¼ req � r0 � 3
2
rijPijklrkl

� �1=2

�r0 ð4:4Þ

with req the Hill equivalent stress and where the orthotropic tensor P satisfies both
major and minor symmetries and plastic incompressibility. In the frame of the sheet,
req has only six non-zero components and it is given by:

req ¼ Hðr11 � r22Þ2 þGðr11 � r33Þ2 þ
h
Fðr22 � r33Þ2 þ 2Nr212 þ 2Mr213 þ 2Lr223

i1=2 ð4:5Þ

The yield stress r0 is defined as a strictly positive function of the equivalent
plastic strain �ep by means of a hardening law r0ð�eðpÞÞ: The elasticity of the sheet
metal is described by the isotropic Hooke’s law with Young modulus E and Poisson
ratio m:

The plastic part of the constitutive model is based on the GTN yield surface:

U ¼ req
r0

� �2

þ q1f
� 2cosh

3q2
2

rm
r0

� �
� q1f

�
� �

� 1; ð4:6Þ

where f � is a porosity parameter related to the void volume fraction f by:

f � ¼
f ; f � fc;

fc þ f �f �fc
ff�fc

f � fcð Þ; fc\f\ff ;
f �f ; f � ff ;

8><
>: ð4:7Þ

Here, f �f ¼ 1=q1 and q1; q2; fc; ff are material parameters.
The flow rule associated to the yield criterion U can be expressed in the form:

_eðpÞij ¼ _k
@U
@rij

; with
_k ¼ 0; if U\0;
_k� 0; if U ¼ 0;

�
ð4:8Þ

or, if Eqs. (4.4) and (4.6) are taken into account:

_eðpÞij ¼ 1
�r
_eðp;devÞPijk‘rk‘ þ 1

3
_eðp;volÞdij; ð4:9Þ

where:

_eðp;devÞ ¼ _k
@U
@req

; _eðp;volÞ ¼ � _k
@U
@rm

; ð4:10Þ
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and

@U
@req

¼ 2req
r20

;
@U
@rm

¼ 3q1q2
f �

r0
sinh q2

3rm
2r0

� �
� ð4:11Þ

Equation (4.10) allows deducing the following consistency condition that
accompanies the constraint U ¼ 0 in the elastoplastic states of the sheet metal:

_eðp;devÞ
@U
@rm

þ _eðp;volÞ
@U
@req

¼ 0: ð4:12Þ

The evolution of the parameter �eðpÞ is given by the equivalent plastic work rule:

rij _e
ðpÞ
ij ¼ 1� fð Þr0 _�eðpÞ: ð4:13Þ

The evolution of the porosity combines the growth of existing voids due to the
incompressibility of the matrix and the continuous nucleation of new voids:

_f ¼ _f ðgÞ þ _f ðnÞ; _f ðgÞ ¼ ð1� f Þ_eðp;volÞ ð4:14Þ

and where the nucleation term depends on the equivalent plastic strain and its time
derivative:

_f ðnÞ ¼ A �eðpÞ
� �

_�eðpÞ: ð4:15Þ

and the function A is given by the following Gaussian:

A ¼
fN

sN
ffiffiffiffi
2p

p exp � 1
2

�eðpÞ��eN
sN

h i2� 

; rm [ 0;

0; rm � 0;

8<
: ð4:16Þ

This models a void nucleation that is strain controlled, is activated only for
positive hydrostatic stresses and mainly around a strain �eN with a standard deviation
sN . Also, the total amount of nucleated voids is fixed by the porosity fN : Note that
once nucleated, voids will continue to grow due to the growth term in (4.14).

We have implemented the above model as a VUMAT subroutine in
ABAQUS/Explicit with two state variables, the equivalent plastic strain and the
porosity. One advantage of this approach, compared to an implementation as a
UMAT subroutine in ABAQUS/Standard, is that there is no need to provide the
Jacobian of the strain-stress relationship at the current step. Also, time steps are
very small in an explicit time integration scheme; this has encouraged the use of
approximate local solvers of the elasto-plastic equations like the cutting plane
algorithm of Simo and Hughes (1998). However, for the GTN model (4.6), the
porosity has a softening behaviour, with the yield surface shrinking for increasing
porosity. This can jeopardize the use of the cutting plane algorithm, especially
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during the final stages of the numerical simulation, when the porosity is large and
the carrying capability of the metallic sheet suffers a sudden drop. We have
therefore preferred to use a nonlinear (Newton) solver to find the correct plastic
strain increment and state variables at the end of the time step.

4.2.3 Determination of GTN Parameters from Uniaxial
Tests

A typical uniaxial tensile test of sheet metals is the simple tension of a strip. This
test is routinely performed to extract the mechanical properties of the sheet, such as
yield stress and anisotropy parameters. It is possible to take advantage of the
experimental force versus displacement curves to calibrate the GTN model
parameters (see Fratini et al.1996; Abbasi et al. 2011; Abbassi et al. 2013; Kami
et al. 2014a, b). Despite the different tools used by these authors, the procedure for
parameter identification is the same: fitting the force versus displacement curve
obtained from numerical simulations to the experimental one.

Among the material constants included in the constitutive relationships presented
in previous sections, q1; q2; q3; f0; fc; ff ; fN ; SN ; and �eN need a special attention,
because the predictive performances of the GTN model are strongly dependent on
their values. In general, an identification procedure that tries to determine all these
parameters would be very inefficient because of the large amount of experimental
data needed for calibration and the non-uniqueness of the solution.

Most of the researchers use the values proposed by Needleman and Tvergaard
for q1; q2 and q3 parameters, namely, q1 ¼ 1:5; q2 ¼ 1 and q3 ¼ q21 ¼ 2:25.
Furthermore, from the six remaining parameters i.e. f0; fc; ff ; fN ; SN and �eN , usually
four or five of them are selected for calibration and the values of the other ones are
selected arbitrarily or based on the recommendations available in the literature.

For the AA6016-T4 sheet metal with the nominal thickness of 1 mm, Kami et al.
(2014a, b) assumed typical values for �eN ; sN and calibrated the other four param-
eters f0; fc; ff and fN from results of uniaxial tests. They used an identification
procedure based on a face centred central composite RSM design of experiments,
implemented in the software package Design-Expert®. A total of 27 uniaxial tensile
tests with different parameter combinations have been performed.

The hardening of the AA6016-T4 alloy has been taken as:

r0 ¼ Kðe0 þ�epÞn ð4:17Þ

and the material parameters have been fitted to first part of the tensile curves where
the effect of voids is negligible. Also the anisotropy coefficients rh have been
determined from tensile tests on strips cut at various angles h to the rolling
direction. Table 4.1 provides all material parameters for this sheet alloy.

Figure 4.1 shows a comparison between the force versus elongation curve
predicted by the GTN model and the experimental curve obtained by averaging the
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results of all uniaxial tensile tests performed along the rolling direction. One may
easily notice that the numerical results are in very good agreement with the
experimental data, showing that material parameters obtained by identification are
representative for the AA6016-T4 sheet metal with the nominal thickness of 1 mm
and can be used for the simulation of more complex forming processes.

Figure 4.2 presents the distribution of the porosity (denoted as SDV2 in the
legend) at several stages of a tensile test simulated with ABAQUS/Explicit. Starting
from a uniform distribution, we observe an accelerated growth of the porosity at
later stages and a concentration in some narrow regions in the final stage where
coalescence of voids and necking or strain localization promote one another.

4.2.4 Simulation of a Deep Drawing Process

Deep drawing is a very common processes in the automotive industry. As the sheet
metals are deformed by applying large strains, they are prone to fracture during the
process. In recent years there has been increased interest to improve the prediction
of sheet fracture during deep drawing. The common approach is to use forming
limit curves; however, their experimental buildup is costly and time consuming.

We apply the anisotropic GTN damage model developed in the previous sections
to model a deep drawing process. The tooling setup used in the deep-drawing
experiments is shown in Fig. 4.3 (see Nicodim et al. 2013). The tests have been
performed on circular blanks with 85 mm diameter lubricated on both faces with a
mixture of oil and graphite. In all cases, the punch speed has been set to a constant
value of 33 mm/min. Deep drawing tools have been installed on the Erichsen

Table 4.1 Material
parameters for AA6016-T4

f0 2:42� 10�4 sN 0.1 n 0.2704

fc 0.047674 E 70 GPa r0 0.5529

ff 0.2 m 0.33 r45 0.4091

fN 0.041546 K 525.8 MPa r90 0.5497
�eN 0.3 e0 0.011252

Fig. 4.1 Force versus
elongation curves
corresponding to uniaxial
tensile tests performed along
the rolling direction
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Fig. 4.2 Evolution of the void volume fraction during the uniaxial tensile test. a 17.99 mm,
b 19.48 mm, c 20.47 mm, d 21.22 mm elongation
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universal testing machine which ensures a hydraulic control of the blank holding
force and punch displacement. Blank holding forces greater than 10 kN have
caused the fracture of the deep-drawn parts. The experimental results obtained in
the case of the maximum holding force (10 kN) will be used for comparison with
the predictions of the GTN model.

In the finite element model, the essential surfaces of the tools (punch, die and
blank holder) have been meshed using rigid shell elements (R3D4), while solid
deformable elements (8-node hexahedra C3D8R with the average edge size of
0.5 mm) have been adopted for meshing the circular blank. Due to the geometric
and mechanical symmetry of the deep-drawing process, only one quarter of the tool
surfaces and blank volume have been included in the finite-element model. Three
layers of solid elements have been generated in the thickness direction of the blank.
A concentrated force of 2.5 kN has been applied to the reference point of the blank
holder (one quarter of actual blank holding force—10 kN). The die has been kept
fixed in its position, the punch and the blank holder being allowed to perform
vertical translations. The frictional contact between blank and tools has been
modelled using a penalty formulation. Taking into account the lubrication condi-
tions of the laboratory experiments, the friction coefficient has been set to a value of
0.05 on all the contact surfaces.

Figure 4.4 illustrates the fracture of the AA6016-T4 metallic sheet during the
deep-drawing tests performed with a blank holding force set to 10 kN (Kami et al.
2014). Comparing the predictions of the anisotropic GTN model with the experi-
mental data, one may notice that fracture path has almost the same shape and
position in both images.

Fig. 4.3 Tooling setup used in the deep-drawing experiments
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Figure 4.5 shows the evolution of the punch force during the deep-drawing
process. Experimental data and numerical predictions are superimposed on the
same diagram. One may notice that the maximum level of the punch force predicted
by ABAQUS/Explicit (32.27 kN) is almost equal to the experimentally determined
value (34.24 kN). The diagram also allows the evaluation of the drawing depth at
which the fracture occurs. This depth corresponds to the sudden drop of the punch
force towards zero: 17.9 mm—predicted by ABAQUS/Explicit, in very good
agreement with the depth of 18.7 mm measured on the experimental curve.

4.3 Development of a Gurson Type Model for Some
Advanced Yield Criteria for Sheet Metals

We know from the previous section that modelling of voids is of interest for sheet
metals. We assumed there that voids are spherical and remain so during defor-
mation. However, experimental evidence shows that voids in metallic sheets in the

Fig. 4.4 Fractured specimens, a experiment, b numerical simulation

Fig. 4.5 Comparison of
forming forces for blank
holder of 10 kN
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as received condition are neither spherical nor spheroidal, but much better
approximated by a general ellipsoid, relative flat in the thickness direction and
elongated in the rolling direction. Further processing happens at rather low triaxi-
ality, due to the through-thickness stress component being close to zero (one
exception are hydrostatic forming processes where a large pressure is applied to the
sheet to improve formability). We expect that deformation at low triaxiality will
further enhance the departure of void shapes from spherical or spheroidal ones.

We have also used in the previous section the simplest Hill48 model for aniso-
tropic plasticity. However, we have seen that accurate prediction of sheet behaviour
in later processing stages like deep forming, requires the use of advanced, complex
plasticity criteria. Typically, yield surfaces show a combination of regions that are
almost flat, with small curvature, joined by others with large curvature. A successful
yield criterion should include accurate yield stresses (affecting the prediction of
drawing forces), an accurate strain hardening model (affecting the prediction of
spring-back) and an accurate prediction of the normal to the yield surface (affecting,
via the plastic flow, the prediction of necking and forming limits).

Concluding this preliminary analysis, it appears that the optimal Gurson type
model for metal sheets should apply to ellipsoidal voids and use an advanced
anisotropic yield criterion for the matrix. The closest model in the literature is that
of Morin et al. (2015), which considers ellipsoidal voids in a Hill matrix. However,
it is clear that quadratic yield criteria, like that of Hill, however pronounced the
anisotropy, will have difficulties in accurately capturing the flat regions of yield
surfaces typical for metal sheets. We present in this section the steps needed for the
development of a Gurson type model for some advanced plasticity criteria and
provide a detailed discussion of the entire methodology.

4.3.1 Limit Analysis and Homogenization

Limit analysis is a method to estimate the load-carrying capacity of a structure. The
only information it uses is the yield region defined as a convex region in stress
space (containing the zero stress). Consider some external loading applied to the
structure and multiply it by a scalar load parameter. The main problem of limit
analysis is to find the maximum value of the load parameter for which there is a
stress field that respects equilibrium (statically admissible) and lies inside the yield
convex at each point of the structure (plastically admissible). Beyond this critical
load value, the structure collapses. Limit analysis admits a dual, kinematical for-
mulation which permits the estimation of the critical load from above by using trial
velocity fields. These fields should be kinematically admissible (they should be zero
on the complement of the boundary part where the loading is applied) and they
represent competing collapse mechanisms. Normalizing these velocity fields such
that the power of external forces is unity, the collapse mechanism corresponding to
the critical load parameter is precisely the one which minimizes the total plastic
dissipation inside the structure. We note that this dual formulation may admit
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several solutions (non-unicity of the collapse mechanism) and solutions with dis-
continuities (rigid blocks sliding one along the other). We recommend Suquet
(1988) for a rigorous treatment of limit analysis with several applications including
homogenization problems.

How is the dissipation defined for a given velocity field? Let k denote the yield
convex in stress space, usually defined by j ¼ r uðrÞ� 0jf g with uðrÞ the yield
criterion or yield surface and let its indicator function define a potential in stress
space. Then the dissipation is the dual potential in strain rate space, defined as the
Legendre dual or conjugate of the indicator function:

indjðrÞ ¼ 0 r 2 j
þ1 r 62 j

�
; wðdÞ ¼ ind�jðdÞ ¼ sup

r2j
r: d ð4:18Þ

Here r;d represent stress and strain rate tensors. The most important property of
the dissipation function w is that is a convex function, homogeneous of degree 1.

For a given strain tensor d, the stress tensor r that attains the sup in (4.18)2 will
be located on the boundary of the yield convex and d will be the outgoing normal at
the convex at this point (or more generally will be in the normal cone if this point is
a vertex). This is equivalent to the associated flow rule for plasticity. More pre-
cisely, if r is a point on the yield surface with uðrÞ ¼ 0, then we have:

d ¼ _k
@u
@r

; _k� 0; r ¼ @w
@d

ð4:19Þ

Note that the last equation is actually a parametric description of the yield
surface.

For a yield criterion which is pressure independent, it is easy to show that the
dissipation function is given by:

wðdÞ ¼ ind�jðdÞ ¼
sup
r2j

r : d tr d ¼ 0

þ1 tr d 6¼ 0

(
ð4:20Þ

Let us now consider a unit cell or representative volume element X, containing a
single or several voids noted with V and having a matrix characterized by some
microscopic yield convex k and its associated dual potential or dissipation function
w. There are three types of boundary conditions that provide meaningful results for
the macroscopic yield region K and its associated dissipation function W, namely
homogeneous strain rate, homogeneous stress and periodic boundary conditions.
Let us first choose homogeneous strain rate boundary conditions:

v ¼ Dxj@X; ð4:21Þ

where D represents the macroscopic strain rate tensor and x is the position vector.
For any microscopic stress field r which is statically and plastically admissible, and
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for each velocity field v respecting the boundary conditions (4.21), we write the
principle of virtual work:Z

@X

rijnjvi ¼
Z

XnV

r: dðvÞ�
Z

XnV

wðdðvÞÞ ð4:22Þ

where we have used the equilibrium condition div r ¼ 0, the fact the void
boundaries are stress-free, and, for the last inequality, the definition (4.18)2 of the
plastic dissipation. The notation XnV means the unit cell minus the voids and
represent the matrix. Now, if we plug the boundary conditions (4.21) in the first
term of (4.22), we obtain:Z

@X

rijnjvi ¼
Z
@X

rijnjDikxk ¼Dik

Z
@X

rijnjxk ¼jXjR :D ð4:23Þ

where jXj is volume of the unit cell, and the last equation is actually the definition
of the macroscopic stresses:

R ¼ 1
jXj

Z
@X

r : ðn	 xÞ ð4:24Þ

As a side note, we can use Gauss’ theorem to show that the definitions of the
macroscopic quantities D via the boundary conditions (4.21) and R via the surface
average (4.24) are both equivalent to volume averages of the microscopic
quantities:

D ¼ 1
jXj
Z
X

dðvÞ ¼ dh iX; R ¼ 1
jXj
Z
X

r ¼ rh iX; ð4:25Þ

Combining now (4.22) and (4.23), we obtain the following result, valid for all
stress fields that are statically and plastically admissible and all velocity fields that
are kinematically admissible:

R:D� 1
jXj

Z
XnV

wðdðvÞÞ ð4:26Þ

This result permits the definition of the macroscopic dissipation function as:

WðDÞ ¼ inf
v¼Dxj@X

1
jXj

Z
XnV

wðdðvÞÞ ð4:27Þ
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This is a convex function, homogeneous of degree 1 and therefore has a
Legendre dual that is the indicator of a convex region in macroscopic stress space—
the sought after macroscopic yield convex K. Similar to the microscopic case
(4.19), if we define now the yield surface U by K ¼ fRjUðRÞ� 0g we obtain the
associated flow rule and the parametric description of the yield surface:

D ¼ _k
@U
@R

; R ¼ @W
@D

ð4:28Þ

The same approach applies to homogeneous stress boundary conditions; the only
differences are the definitions for macroscopic strain rates and stresses:

rijnj ¼ Rijnjj@X; Dij ¼ 1
jXj

Z
@X

1
2
ðvinj þ vjniÞ ð4:29Þ

Again, these are equivalent to the average type definitions given by (4.25). The
definition of macroscopic dissipation function becomes now:

WsðDÞ ¼ inf
D¼ 1

jXj
R
@X

v	sn

1
jXj

Z
XnV

wðdðvÞÞ ð4:30Þ

with associated yield convex Ks. It also results from (4.27) and (4.30) that Ks 
K.
We do not treat here in detail the case of periodic boundary conditions, but we note
first that they give a macroscopic yield convex intermediate between the ones above
and second that they are precisely those obtained from a rigorous homogenization
procedure (see Suquet 1988).

4.3.2 An Introduction to Gurson Type Models

Consider a porous von Mises material with spherical, spheroidal or ellipsoidal
voids. In order to apply the homogenization procedure of the previous section, we
first need to choose some representative volume element or unit cell containing a
single void. The selection of a unit cell concentric or confocal with the void is a
rather crude approximation and is motivated only by the simplifications it brings to
the mathematical treatment of the problem. Next we need to decide on boundary
conditions. Because such rounded unit cells do not stack to fill up space, periodic
boundary conditions are not applicable. Among homogeneous stress or homoge-
neous strain rate boundary conditions, the latter are preferred simply because they
impose more conditions on the velocity field and the two-field approach used in
Gurson type models has more chances to be accurate.

The dissipation of the von Mises isotropic yield criterion is readily available:
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uðrÞ ¼ req � r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0 : r0

r
� r0;

wðdÞ ¼ r0
ffiffiffiffiffiffiffiffiffiffiffiffi
2
3d : d

q
tr d ¼ 0

þ1 tr d 6¼ 0

( ð4:31Þ

Here r0 is the stress deviator and r0 is the uniaxial yield stress. Note that
trdðvÞ ¼ 0 is equivalent to divv ¼ 0 or the incompressibility of admissible velocity
fields. The next step is to find and estimate the macroscopic dissipation defined by:

WðDÞ ¼ inf
v

1
jXj

Z
XnV

wðdðvÞÞ

�������v ¼ Dxj@X; divv ¼ 0

8><
>:

9>=
>; ð4:32Þ

Note that contrary to the microscopic velocity field which is incompressible, the
macroscopic mean strain rate defined by 3Dm ¼ trD is not required to be zero. This
will give a macroscopic yield convex that is pressure sensitive, contrary to the
microscopic von Mises criterion; this effect is entirely due to the presence of the
void. The velocity field v is written as a sum:

v ¼ AvA þBvB þ � � � ð4:33Þ

where vA; vB; . . . are fixed velocity fields and A;B; . . . are unknown parameters to
be determined by minimizing the macroscopic dissipation (4.32). Actually, the
number of fields and unknown parameters is taken to be precisely the number of
parameters describing the macroscopic strain rate D, so that the parameters A;B; . . .
are fully determined solely from the boundary conditions in (4.32) and the infimum
in (4.32) is never calculated in Gurson’s approach.

The next step is to choose the fixed velocity fields in Eq. (4.33). By convention,
the first one vA describes the expansion of the cavity and is related to the macro-
scopic mean strain rate Dm; all other fields have a constant strain rate over the entire
volume and correspond to the deviatoric part of the macroscopic strain rate. For
example, in the spherical case and for axisymmetric loading with respect to the 3rd
axis (the original Gurson model), the velocity fields are given by:

vA ¼ b3
r2 er vB ¼ � x

2 ex � y
2 eyþ zez

A ¼ Dm ¼ 1
3 ð2Dxx þDzzÞ B ¼ D0 ¼ 2

3 ðDzz � DxxÞ ð4:34Þ

where r; h;/ are spherical polar coordinates, x; y; z are Cartesian coordinates and
a; b are the radii of the void and unit cell, respectively. For the spheroidal and
ellipsoidal case, the approach is similar, the main difficulty being in finding a
“good” incompressible velocity field vA describing the expansion of the cavity and
respecting conditions of homogeneous strain rate on the boundary of the unit cell.
The choice so far, valid for spherical, spheroidal and ellipsoidal voids, has been the
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unique velocity field that respects conditions of homogeneous strain rate on all
surfaces confocal with the cavity, see Leblond and Gologanu (2008).

In the spherical case, we can now easily calculate the strain rates for these
velocity fields:

dA ¼ b3

r3
ð�2er 	 er þ eh 	 eh þ e/ 	 e/Þ

dB ¼ 1
2
ð�ex 	 ex � ey 	 ey þ 2ez 	 ezÞ

ð4:35Þ

and the plastic dissipation for the full velocity field (4.33).

w ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2 b

6

r6
þ 2AB

b3

r3
ð1� 3 cos2 hÞþB2

r
ð4:36Þ

We now plug this into the definition (4.32) of the macroscopic plastic
dissipation:

W ¼ 3r0
4pb3

Zb
a

Zp
0

Z2p
0

4A2 b
6

r6
þ 2AB

b3

r3
ð1� 3 cos2 hÞþB2

� �1
2

r2 sin hdrdhd/ ð4:37Þ

We note that for the spheroidal and ellipsoidal case we obtain similar expres-
sions1 but with more complicated coefficients for the quadratic form in A;B. Next,
we need an approximate way to get rid of the integral over the angular coordinates;
usually this is based on the Cauchy-Schwartz inequality over the surface of the
unity sphere:

1
4p

Zp
h¼0

Z2p
/¼0

w sin hdhd/� 1
4p

Zp
h¼0

Z2p
/¼0

w2 sin hdhd/

0
B@

1
CA

1=2

ð4:38Þ

followed by an explicit calculation of the right hand side. This reduces the triple
integral (4.37) to a single one in the radial or pseudo-radial coordinate. Now, one
needs to find a change of coordinates x ¼ xðrÞ and to further reduce this single
integral to the following expression:

W ¼ r0

Zx2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A2x2 þ �B2

p dx
x2

ð4:39Þ

1We anticipate here the use of Tabanov’s natural coordinates r; h;/ for the spheroidal and
ellipsoidal coordinates, with a pseudo-radial and two angular coordinates; see Sect. 4.3.
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where �A ¼ FðxÞAþGðxÞB; �B ¼ HðxÞB are linear forms in A;B, and via (4.34)
linear forms in Dm;D0. In the spheroidal or ellipsoidal case and for more general
loading conditions that are not axisymmetric, the approach is similar but the rela-
tionship between �A; �B and the components of D is more complex, being a sum of

linear forms in D and terms of the form D : C : Dð Þ1=2 with C some constant
fourth-order tensor.

We arrive now at the main step in the derivation of Gurson-type models. It
consists in replacing the relative complicated functions FðxÞ;GðxÞ;HðxÞ with some
constant values �F; �G; �H. The only justification for such a crude approximation is a
posteriori—it is the only way we know to arrive at a compact form for the
macroscopic yield criterion. To make this approximation more palatable, we put
forward the minimal requirement that these functions have finite limits when x ! 0
and x ! þ1. This actually provides a guide to the selection of the most appro-
priate change of coordinates x ¼ xðrÞ:

From now on, the derivation is straightforward and is essentially the original one
discovered by Gurson (1977). In Madou and Leblond (2012a), it has been for-
malized in a so called Gurson’s lemma, asserting that for a dissipation function of
the form (4.39), its derivatives are related by:

1
r0

@W
@�B

� �2

þ 2
x1x2

cosh
1
r0

@W
@�A

� �
� 1
x21

� 1
x22

¼ 0 ð4:40Þ

For completeness, we have included the derivation of this lemma:

1
r0

@W
@�A

¼
Zx2
x1

�Adxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A2x2 þ �B2

p ¼ sinh�1 kx2 � sinh�1 kx1

1
r0

@W
@�B

¼
Zx2
x1

�Bdx

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A2x2 þ �B2

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x22 þ 1

q
x2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x21 þ 1

q
x1

ð4:41Þ

where we have noted k ¼ �A=�B. These are the parametric equations of a surface and
the parameter k can be eliminated to give (4.40).

Due the relationship between �A; �B and the macroscopic strain rate tensor D and
taking into account Eq. (4.28)2 that relates the macroscopic stresses located on the
yield surface to the derivatives of W with respect to D, Eq. (4.40) becomes the
sought after expression for the macroscopic yield surface.

In the spherical case and for axisymmetric loading we obtain:

x ¼ b3
r3 ; x1 ¼ 1; x2 ¼ 1

f ; f ¼ a3
b3 ;

�A ¼ 2Dm; �B ¼ D0; @W
@Dm

¼ 3Rm;
@W
@D0 ¼ Rzz � Rxx

ð4:42Þ
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showing that the functions FðxÞ;GðxÞ;HðxÞ are true constants in this case and
giving the classical Gurson criterion:

Rzz � Rxxð Þ2
r20

þ 2f cosh
3
2
Rm

r0

� �
� 1� f 2 ¼ 0 ð4:43Þ

In the prolate or oblate spheroidal and ellipsoidal cases, the same approach gives
the following result:

QðRÞ
r20

þ 2ðgþ 1Þðgþ f Þ cosh kRh

r0

� �
� ðgþ 1Þ2 � ðgþ f Þ2 ¼ 0 ð4:44Þ

where g is a parameter similar to the porosity—it depends only on the geometry of
the void and unit cell and, contrary to the porosity f, has a non-zero limit when the
void is flatten out to an elliptic crack. Also, k is a parameter, Rh is a linear form and
QðRÞ is a quadratic form in the components of the macroscopic stress:

Rh ¼ axRxx þ ayRyy þ azRzz ax þ ay þ az ¼ 1
QðRÞ ¼ R : Q : R

ð4:45Þ

Here Q is a constant symmetric tensor that depends on ai and two supplementary
parameters C; g and reduces to the von Mises equivalent stress when C ¼ 1; g ¼ 0.
We note that all the parameters k; ai;C; g appearing in the Gurson criterion (4.44)
depend explicitly on the geometry of the void and unit cell and on the constants
�F; �G; �H. One still needs some expression for these last parameters and this may be
obtained from a detailed study and approximation of the functions FðxÞ;GðxÞ;HðxÞ.
However, in Gologanu et al. (1997) it was observed that the model thus obtained
showed rather poor predictions when compared to results of numerical simulations.
The cause has been tracked down (see Gologanu et al. 1997) to the specific choice
of the velocity field describing the expansion of the cavity. A better accuracy can be
obtained by directly calibrating the parameters k; ai;C; g as functions of void and
unit cell geometries using selected numerical results. An alternative for the quad-
ratic term QðRÞ consists in replacing it with another quadratic form deduced from
nonlinear homogenization results, valid for the same void geometry and same
matrix. In this case, only the parameters k; ai need to be calibrated.

The local evolution of the void’s shape can be easily deduced from the
expression of the velocity given by (4.33) and depending linearly on the macro-
scopic strain rate tensor D. Unfortunately, this approach implies that the void will
not preserve an ellipsoidal shape. A better solution is to define a homogeneous rate
of deformation Dvoid on the surface of the void by using the homogenization type
expression (4.29):
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Dvoid
ij ¼ 1

jV j
Z
@V

1
2
vinj þ vjni
�  ð4:46Þ

Like for the yield criterion, the two-field approach gives rather poor accuracy
and better results are obtained by calibrating some of the parameters in the resulting
expression via numerical simulations.

Consider now the development of Gurson type models for a porous material with
a matrix obeying Hill’s anisotropic plasticity. The approach is similar to that pre-
sented above. The plastic dissipation is easily determined, the same velocity fields
are used and one arrives at the same expression (4.39) for the macroscopic dissi-
pation function that is amenable to a Gurson type model of the form (4.44). The
only differences are that the quadratic form (4.45) will reduce not to the von Mises
equivalent stress when C ¼ 1; g ¼ 0 but to Hill’s equivalent stress. The parameters
k; ai;C; g1; g2 need to be recalibrated, but some of them depend not only on the
void and unit cell geometry but also on all mechanical parameters present in Hill’s
yield criterion, which highly complicates the guessing of analytical expressions and
fitting via numerical simulations. Morin et al. (2015) partially reduced this com-
plexity by linearizing some of the model parameters with respect to mechanical
parameters in Hill’s yield criterion.

4.3.3 Dissipation Functions for Some Non-quadratic
Anisotropic Yield Criteria

Our goal is to develop Gurson type models for some advanced anisotropic yield
criteria. Note that we intend to apply such models to study the evolution of
microscopic voids in the bulk material of the sheet and therefore we need a full 3D
plasticity model for the matrix. Many modern yield criteria for sheets are given only
for plane stress conditions and must be first extended to 3D. The experimental
determination of the through-thickness plastic properties is difficult or impossible;
one solution is to use texture based models to predict these properties from
experimental texture determination.

As we have seen in the previous sections, the first step in the development of a
Gurson-type model is the calculation of the dissipation function associated to the
yield criterion. This is extremely difficult if not impossible and drastically restricts
the class of non-quadratic anisotropic yield criteria amenable to some analytical
treatment.

We will consider three non-quadratic and orthotropic yield criteria, specifically
developed to better represent the strong anisotropy of aluminium sheets. The first
two are based on linear transformations, Yld91 proposed by Barlat et al. (1991) and
Yld2004-18p proposed by Barlat et al. (2005). The third one is the BBC2005
criterion proposed by Banabic et al. (2000, 2005).
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4.3.3.1 Yield Criteria Yld91 and Yld2004-18p

The Yld91 and Yld2004-18p criteria are based on some linear transformations of
the deviator of the stress tensor:

s0 ¼ C0s ¼ C0Kr ¼ L0r; s00 ¼ C00s ¼ C00Kr ¼ L00r; ð4:47Þ

where r; s are the stress tensor and its deviator, C0;C00 are fourth order tensors
defining the anisotropy and K is the projection on the deviatoric space. In the
reference frame related to the rolling, transverse and through-thickness directions of
the sheet, these tensors are defined in Voigt notation by:

C0 ¼

0 �c012 �c013 0 0 0
�c021 0 �c023 0 0 0
�c031 �c032 0 0 0 0
0 0 0 c044 0 0
0 0 0 0 c055 0
0 0 0 0 0 c066

0
BBBBBB@

1
CCCCCCA

ð4:48Þ

and a similar expression for C00 depending on other nine constants c00ij , while K is a
singular matrix defined in any orthogonal reference frame by:

K ¼ 1
3

2 �1 �1 0 0 0
�1 2 �1 0 0 0
�1 �1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

0
BBBBBB@

1
CCCCCCA

ð4:49Þ

Recall that in the Voigt notation the stress tensor is defined by the six-component
vector r ¼ ðr11; r22; r33; r12; r13; r23Þ, while the strain tensor is defined by
d ¼ ðd11; d22; d33; 2d12; 2d13; 2d23Þ.

We note that the transformed stress tensors s0; s00 are not deviatoric but, because
they are defined via the deviatoric stress s, they do not depend on some arbitrary
pressure added to the stress tensor r and therefore they are pressure independent.
Note also that the tensors C0;C00 are not symmetric (as fourth order tensors they
have only the minor symmetries but not the major ones), which increases the
number of free parameters from six to nine for each tensor.

We consider a slight generalization of the yield criterion Yld91 given by:

uðrÞ ¼ js01 � s02jm þ js02 � s03jm þ js03 � s01jm � 2rm0 ¼ 0 ð4:50Þ

where s01; s
0
2; s

0
3 are the eigenvalues of the tensor s0 defined by the linear transfor-

mation (4.48), r0 is a scaling factor for stresses and the exponent m is 6 for BCC
metals and 8 for FCC metals. The original yield criterion considered only the case
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of a symmetric C0 and used a different presentation based on the product L0 ¼ C0K.
Note that choosing m ¼ 2 and a symmetric C0 gives a quadratic yield criterion
identical to Hill48 yield criterion. When all nonzero coefficients c0ij are equal to 1,
the yield criterion reduces to von Mises isotropic criterion.

The yield criterion Yld2004-18p is defined by:

uðrÞ ¼ js01 � s001jm þ js01 � s002 jm þ js01 � s003jm þ
þ js02 � s001 jm þ js02 � s002jm þ js02 � s003 jm þ
þ js03 � s001 jm þ js03 � s002jm þ js03 � s003 jm � 4rm0 ¼ 0

ð4:51Þ

where s01; s
0
2; s

0
3; and s001 ; s

00
2; s

00
3 are the eigenvalues of the transformed tensors s0; s00

defined in (4.48), while r0 and m have the same interpretation as for the Yld91 yield
criterion.

Omitting for brevity the prime or double prime, note that the decomposition
L ¼ CK in (4.47) is not unique, as one can add some arbitrary value to each row of
the 3� 3 matrix in the upper left corner of C. A more suitable decomposition for
our purposes is L ¼ ~CK where ~C is defined in Voigt notation by:

~C ¼

1� ~c12 � ~c13 ~c12 ~c13 0 0 0
~c21 1� ~c21 � ~c23 ~c23 0 0 0
~c31 ~c32 1� ~c31 � ~c32 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

0
BBBBBB@

1
CCCCCCA

ð4:52Þ

with

3~c12 ¼ 1þ c13 � 2c12; 3~c13 ¼ 1þ c12 � 2c13;
3~c21 ¼ 1þ c23 � 2c21; 3~c23 ¼ 1þ c21 � 2c23;
3~c31 ¼ 1þ c32 � 2c31; 3~c32 ¼ 1þ c31 � 2c32:

ð4:53Þ

The defining property of such a decomposition is that the linear transformation ~C
is the direct sum of two linear transformations, the first being the identity on
pressure like tensors, while the second transforms the space of deviatoric tensors
into itself:

~Cðsþ pIÞ ¼ ~Csþ pI¼~sþ pI; K~s ¼ ~s ð4:54Þ

where I is the 3� 3 identity matrix.
In the next subsections we will calculate the dissipation functions for the Yld91,

Yld2004-18p and BBC2005 yield criteria.
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4.3.3.2 Dissipation Function for the Yld91 Criterion

Recall that the dissipation function is defined as the Legendre conjugate of the
indicator function of the yield convex, see Eq. (4.18). Our method is based entirely
on results of convex analysis.

From now on we use a different definition of a convex region. Instead of defining
it by k ¼ rjuðrÞ� 0f g for some arbitrary u we use k ¼ rjuðrÞ� r0f g; where r0
is a scaling factor and u is a homogeneous function of degree 1.

For a convex surface defined by the following function of n variables:

uðx1; . . .; xnÞ ¼ jx1jp þ � � � þ jxnjpð Þ1p¼ r0 ð4:55Þ

the dissipation function is given by:

wðy1; . . .; ynÞ ¼ r0 jy1jq þ � � � þ jynjqð Þ1q; 1
p
þ 1

q
¼ 1 ð4:56Þ

where yi are the dual variables of xi.
The proof of this result is elementary and based on the relationships (4.18) and

(4.19) which in our case give:

yi ¼ _k
@u
@xi

¼ _k sgnðxiÞjxijp�1r1�p
0 ;

w ¼ y1x1 þ � � � þ ynxn ¼ _k x1
@u
@x1

þ � � � þ xn
@u
@xn

� �
¼ _ku ¼ _kr0

ð4:57Þ

Solving the first equation for xi and plugging the result in (4.55) gives an
equation for _k whose solution gives directly the dissipation function w: In the
second line of (4.57) we have used the homogeneity of degree 1 of uðxÞ:

We now consider general convex functions on symmetric matrices defined by
some convex and symmetric function of their eigenvalues. This is entirely similar
to the case of Hermitian matrices treated by Lewis (1996). We consider only the case
of symmetric 3� 3 matrices. Let f ðx; y; zÞ be some symmetric convex function
of three variables and, for a 3� 3 symmetric matrix r, let kðrÞ ¼ ðr1; r2; r3Þ
denote its eigenvalues. Define a function of symmetric matrices by FðrÞ ¼
f ðkðrÞÞ ¼ f ðr1; r2; r3Þ. Then F is convex and its Legendre dual is given by:

F�ðdÞ ¼ f �ðkðdÞÞ ¼ f �ðd1; d2; d3Þ: ð4:58Þ

where f � is the Legendre dual of f This result reduces the calculation of the
Legendre dual of a function of 6 variables (the independent components of a 3 � 3
symmetric matrix) to that of a function of only 3 variables. However, its deep
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relevance is that one no longer needs explicit solutions for the eigenvalues via a 3rd

degree equation to prove convexity and calculate Legendre duals.2 The proof of this
result can be found in Lewis (1996) and is essentially based on a result of von
Neumann, stating that for two symmetric (or Hermitian) matrices r; d of order n we
have the following inequality:

r : d� kðrÞ; kðdÞh i ¼ r1d1 þ � � � þ rndn ð4:59Þ

with equality iff the two matrices are simultaneously diagonalizable (there is an
orthogonal matrix Q such that QTrQ and QTdQ are both diagonal).

We need another result from convex analysis related to the linear transformation
of a convex function, see Rockafellar (1997). Let g : Rm ! R be a convex function
of a variable y and L : Rn ! R

m some linear transformation, eventually singular.
Then the function f : Rn ! R defined by f ðxÞ ¼ gðLxÞ is convex and its Legendre
dual is given by:

f �ðx�Þ ¼ inf
y�

g�ðy�Þ LTy� ¼ x�
��� � ð4:60Þ

where LT : Rm ! R
n is the transpose of L and we use the convention that the

infimum over an empty set is equal to þ1.
For example, if m ¼ n and the linear transformation L is not singular and

therefore admits an inverse, then the infimum in (4.60) is taken over the set with the
single element y� ¼ L�Tx� and we obtain f �ðx�Þ ¼ g�ðL�Tx�Þ.

A second example concerns a direct sum where m ¼ 2n and y ¼ ðy0; y00Þ, while
the linear transformation is defined by y ¼ LðxÞ ¼ ðL0ðxÞ; L00ðxÞÞ with L0; L00 : Rn !
R

n two linear transformations. Then a simple application of (4.60) results in

f �ðx�Þ ¼ inf
y0�;y00�

g�ðy0�; y00�Þ L0Ty0� þ L00Ty00� ¼ x�
��� � ð4:61Þ

Let us now consider the case of the yield criterion Yld91. Consider the convex
surface in R

3 defined by the symmetric function:

gðu1; u2; u3Þ ¼ ðju1jm þ ju2jm þ ju3jmÞ
1
m ¼ r1; r1 ¼ 2

1
mr0 ð4:62Þ

Then, by (4.55) and (4.56) we know that its dissipation function, or the Legendre
dual of its indicator function is given by:

wgðu�1; u�2; u�3Þ ¼ r1ðju�1jq þ ju�2jq þ ju�3jqÞ
1
q; q ¼ m

m� 1
ð4:63Þ

2There is also a similar result in Lewis (1996) for the gradient of F:
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Consider now the linear transformation �L defined by:

�L ¼
1 �1 0
0 1 �1
�1 0 1

0
@

1
A ð4:64Þ

and the surface f ðxÞ ¼ gð�LxÞ having the following expression:

f ðx1; x2; x3Þ ¼ ðjx1 � x2jm þ jx2 � x3jm þ jx3 � x1ÞjmÞ
1
m ¼ r1 ð4:65Þ

Then, by (4.60) we know that f is convex and its dissipation function is:

wf ðx�Þ ¼ inf
u�

wgðu�Þ �LTu� ¼ x�
��� � ð4:66Þ

The transformation �L is singular (has rank 2) but it can be decomposed as a
product �L ¼ �C�K of some invertible matrix and a projection operator on the
x1 þ x2 þ x3 ¼ 0 plane. Note that this decomposition is not unique, as �C depends on
3 arbitrary parameters. However, imposing that the sum of coefficients of each row
is equal to one, we obtain a direct sum of two linear operators, the first being the
identity on the normal to the plane above, while the second transforms the plane in
itself. Thus, we obtain:

�C ¼ 1
3

4 �2 1
1 4 �2
�2 1 4

0
@

1
A; �K ¼ 1

3

2 �1 �1
�1 2 �1
�1 �1 2

0
@

1
A ð4:67Þ

Let us now analyze the equation �LTu� ¼ �KT �CTu� ¼ K �CTu� ¼ x� defining the
infimum in (4.66). First, if x� does not lie in the image of the projection operator �K,
then these equation has no solution. Second, if x� lies in this image then there is a
one parameter family of solutions defined by u� ¼ �C�Tðx� þ a�Þ for an arbitrary
a� ¼ 1

3 ða; a; aÞ with �Ka� ¼ 0. A simple calculation then gives the following dis-
sipation function:

wf ðx�Þ ¼
inf
a

�wf ðx�; aÞ x�1 þ x�2 þ x�3 ¼ 0

þ1 x�1 þ x�2 þ x�3 6¼ 0

�
ð4:68Þ

where �wf is defined by:

�wf ¼ r1
3

x�1 � x�2 þ a
�� ��q þ x�2 � x�3 þ a

�� ��q þ x�3 � x�1 þ a
�� ��q� 1

q ð4:69Þ

In the quadratic case with m ¼ q ¼ 2, one can easily show that the infimum over
a in (4.68) is attained at a ¼ 0. In the non-quadratic case this is no longer true;
however, we will see that the formulation (4.68) is compatible with the develop-
ment of an approximate Gurson-type model.
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Note that if we apply the function f defined by (4.65) to the eigenvalues of the

symmetric matrix s0 ¼ L0r ¼ ~C
0
Kr we obtain precisely the Yld91 yield criterion.

Using the general result (4.58) for calculating Legendre duals for functions of
symmetric matrices and Eq. (4.60) giving the effect of a linear transformation, we
obtain the following expression for the dissipation function:

wðdÞ ¼ inf
a;d0

�wf ðkðd0Þ; aÞ L0Td0 ¼ d; tr d0 ¼ 0

þ1 tr d0 6¼ 0

(
ð4:70Þ

where kðdÞ ¼ ðd1; d2; d3Þ is the list of eigenvalues of the symmetric matrix d and
trd ¼ d1 þ d2 þ d3 represents its trace. Let us now analyze the equation L0Td0 ¼
K~C0Td0 ¼ d defining the infimum in Eqs. (4.70). First, if d is not deviatoric, then
there is no solution and the dissipation function is þ1. Second, if d is deviatoric,

then we have d0 ¼ ~C
0�Tðdþ pIÞ for some arbitrary p. Now, the linear transfor-

mation ~C
0
is a direct sum as shown in Eq. (4.54) and it is easy to show that the same

holds true for ~C
0�T

:

d0 ¼ ~C
0�Tðdþ pIÞ ¼ ~C

0�T
dþ pI ¼ ~dþ pI; K~d ¼ ~d ð4:71Þ

where ~d is a deviatoric tensor. But from (4.70) we know that tr d0 ¼ 3p should be
zero for the dissipation to be finite, implying p ¼ 0 and therefore there is a single

solution defined by d0 ¼ ~C
0�T

d with both d;d0 deviatoric tensors.
Summarizing, we obtain the following expression for the dissipation function of

the Yld91 anisotropic yield criterion:

w1ðdÞ ¼ inf
a

r1
3

d01 � d02 þ a
�� ��q þ d02 � d03 þ a

�� ��q þ d03 � d01 þ a
�� ��q� 1

q ð4:72Þ

where r1 ¼ 21=mr0, q ¼ m=ðm� 1Þ and d01; d
0
2; d

0
3 are the eigenvalues of the lin-

early transformed strain rate d0 ¼ ~C
0�T

d of the deviatoric strain rate d: If the strain
rate d is not deviatoric, then the dissipation function is þ1. The fourth-order

tensor tensor ~C
0�T

is the inverse of the transpose of the matrix ~C
0
defined in (4.52)

and (4.53) as a function of the original matrix C0 given in (4.48).

4.3.3.3 Dissipation Function for the Yld2004-18p Criterion

Considering now the Yld2004-18p yield criterion, the approach to calculate the
dissipation function is similar to the Yld91 case and we give only the main steps.
The starting point is the following convex surface of nine variables:
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gðu1; . . .; u9Þ ¼ ðju1jm þ � � � þ ju9jmÞ1=m ¼ r1; r1 ¼ 41=mr0 ð4:73Þ

Its dissipation function is:

wgðu�1; . . .; u�9Þ ¼ r1ðju�1jq þ � � � þ ju�9jqÞ1=q; q ¼ m
m� 1

ð4:74Þ

Consider now the linear transformation �L : R6 ! R
9 defined by:

�LT ¼

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

�1 0 0 �1 0 0 �1 0 0
0 �1 0 0 �1 0 0 �1 0
0 0 �1 0 0 �1 0 0 �1

0
BBBBBB@

1
CCCCCCA

ð4:75Þ

Then the function of six variables f ðxÞ ¼ gð�LxÞ defines a convex surface:

f ðxÞ ¼ jx1 � x4jm þ jx1 � x5jm þ jx1 � x6jmf þ
þ jx2 � x4jm þ jx2 � x5jm þ jx2 � x6jm þ
þ jx3 � x4jm þ jx3 � x5jm þ jx3 � x6jmg

1
m ¼ r1

ð4:76Þ

and its dual is given by:

wf ðx�Þ ¼ inf
u�

r1ðju�1jq þ � � � þ ju�9jqÞ1=q
����LTu� ¼ x�

n o
ð4:77Þ

The rank of the matrix �LT is 5 and its image is the 4 dimensional subspace defined
by the intersection of two hyperplanes: x�1 þ x�2 þ x�3 ¼ x�4 þ x�5 þ x�6 ¼ 0: If x� is not
in this image, then the equation defining the infimum in (4.77) has no solution and
the dissipation is þ1: If x� lies in the image of �LT then the general solution for u�

will depend on 4 arbitrary parameters a; b; c; d: Using now (4.58) and (4.61), we
obtain the following expression for the dissipation function of the Yld2004-18p
yield criterion:

wðdÞ ¼ inf
a;b;c;d

Kð~C0T
d0 þ ~C

00T
d00Þ ¼ d

r1
3

d01 � d001 þ a
�� ��q þ d01 � d002 þ b

�� ��q� þ

þ d01 � d003 � a� b
�� ��q þ d002 � d001 þ c

�� ��q þ d02 � d002 þ d
�� ��q þ

þ d02 � d003 � c� d
�� ��q þ d03 � d001 � a� c

�� ��q þ
þ d03 � d002 � b� d
�� ��q þ d03 � d003 þ aþ bþ cþ d

�� ��q�1=q
ð4:78Þ

where d is a deviatoric strain rate tensor, r1 ¼ 41=mr0, q ¼ m=ðm� 1Þ and
d01; d

0
2; d

0
3 and d

00
1 ; d

00
2 ; d

00
3 are the eigenvalues of two symmetric and deviatoric tensors
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d0; d00 such that Kð~C0T
d0 þ ~C

00T
d00Þ ¼ d: The fourth-order tensors ~C

0
; ~C

00
are defined

in (4.52) and (4.53) as functions of the original matrix C0;C00 given in (4.48). If the
strain rate d is not deviatoric, then the dissipation function is þ1.

4.3.3.4 BBC2005 Criterion and Dissipation Function

The BBC2005 yield criterion was originally developed as a plane stress criterion
and therefore needs first to be extended to a 3D criterion in order to fully describe
the matrix around a microscopic void in a Gurson-type model. We will consider the
following modification of the BBC2005-3D criterion proposed in Chap. 1:

uðrÞ ¼ a KþCð Þm þ a K� Cð Þm þ b KþWð Þm½ aþ
b K�Wð Þm þ crm13 þ crm23

�1=m¼ r0
ð4:79Þ

where a; b are material parameters, c ¼ 3m=2, while C, K and W are given by:

C ¼ L r11 � r33ð ÞþM r22 � r33ð Þ
K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N r11 � r33ð Þ � P r22 � r33ð Þ½ �2 þ r12r21

q
W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q r11 � r33ð Þ � R r22 � r33ð Þ½ �2 þ r12r21

q ð4:80Þ

and where stresses are given in the reference frame aligned with sheet. Note that the
proposed modification affects only the out-of-plane shear stresses.

We start with the following convex surface of six variables:

gðu1; . . .; u6Þ ¼ ðju1jm þ � � � þ ju6jmÞ1=m ¼ r0 ð4:81Þ

with dissipation function:

wgðu�1; . . .; u�6Þ ¼ r0ðju�1jq þ � � � þ ju�6jqÞ1=q ð4:82Þ

where q ¼ m=ðm� 1Þ:
Consider now the linear transformation �L : R5 ! R

6 defined by:

�L ¼

a1=m a1=m 0 0 0
�a1=m a1=m 0 0 0
0 b1=m b1=m 0 0
0 b1=m �b1=m 0 0
0 0 0 c1=m 0
0 0 0 0 c1=m

0
BBBBBB@

1
CCCCCCA

ð4:83Þ

Then the function of five variables f ðxÞ ¼ gð�LxÞ defines a convex surface:
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f ðxÞ ¼ ajx2 þ x1jm þ ajx2 � x1jm þ bjx2 þ x3jmð þ
þ bjx2 � x3jm þ cxm4 þ cxm5

1=m¼ r0
ð4:84Þ

with dissipation function:

wf ðx�Þ ¼ r0 inf
u�

ðju�1jq þ � � � þ ju�6jqÞ1=q
���LTu� ¼ x�

n o
ð4:85Þ

Working out the constraint in the previous equation gives:

wf ðx�Þ ¼ inf
d�

r0
2

jd� þ x�1jq
aq�1 þ jd� � x�1jq

aq�1

�

þ jd� þ x�2 þ x�3jq
bq�1 þ jd� þ x�2 � x�3jq

bq�1 þ x�q4
cq�1 þ x�q5

cq�1

�1=q ð4:86Þ

Let us now define a non-linear transformation �S : R7 ! R
5 by:

x1 ¼ y1; x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 þ y26

p
; x3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y23 þ y27

p
; x4 ¼ y4; x5 ¼ y5 ð4:87Þ

Then a simple calculation shows that the function hðyÞ ¼ f ð�SðyÞÞ defines a
convex surface:

hðyÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 þ y26

q
þ y1

����
����
m

þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 þ y26

q
� y1

����
����
m

þ cym4 þ cym5

�
þ

þ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 þ y26

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y23 þ y27

q����
����
m

þ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 þ y26

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y23 þ y27

q����
����
m�1=m

¼ r0

ð4:88Þ

with dissipation function:

whðy�Þ ¼ wf y�1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y�2 þ y�6

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y�3 þ y�7

p
; y�4; y

�
5

�  ð4:89Þ

The last step is to relate the stress tensor (as a vector in Voigt notation and with
components taken in the frame of the sheet) to y by a linear transformation �T :

R
6 ! R

7 written as a direct sum:

ðy1; y2; y3Þ ¼
L M �L�M
N �P �NþP
Q �R �QþR

0
@

1
A r11

r22
r33

0
@

1
A y4 ¼ r13

y5 ¼ r23
y6 ¼ y7 ¼ r12

ð4:90Þ

Then the convex surface defined by uðrÞ ¼ hðTrÞ is precisely the BBC2005
yield criterion (4.79), (4.80) and its dissipation function is:
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wðdÞ ¼ inf
y�

whðy�Þj�Ty� ¼ d
� � ð4:91Þ

We note that care has to be taken when calculating the dual variables for the
shear stresses; for example the term r12 is actually a condensed form for r12

2 þ r21
2 :

There are two difficulties in solving the constraint �Ty� ¼ d appearing in (4.91), but
both have been treated already. The first difficulty is related to the double employ of
r12 in (4.90)4. This has the simple solution y�6 þ y�7 ¼ d12 with one free parameter.
The second difficulty is that the 3� 3 matrix T in (4.90)1 is not invertible. Let K be
the projection operator defined in (4.67)2, and the invertible matrix �C given by:

~C ¼ 1
3

1þ 3L 1þ 3M 1� 3M � 3L
1þ 3N 1� 3P 1þ 3P� 3N
1þ 3Q 1� 3R 1þ 3R� 3Q

0
@

1
A ð4:92Þ

Then we have T ¼ CK and the equation Ty� ¼ ðd11; d22; d33Þ has a solution if
and only if d11 þ d22 þ d33 ¼ 0: If this condition is satisfied, then the most general
solution is given by:

ðy�1; y�2; y�3Þ ¼ ~C
�Tðd11; d22; d33Þþ ðe; e; eÞ: ð4:93Þ

for some arbitrary value e: It is possible to calculate the inverse of the transpose of
~C; however, for our purpose it is sufficient to give its product with the projection
operator K:

~C
�T

K ¼
L0 M0 �L0 �M0

N 0 P0 �N 0 � P0

Q0 R0 �Q0 � R0

0
@

1
A ð4:94Þ

where:

L0 ¼ 2ðP�RÞþN�Q
3D ; M0 ¼ R�Pþ 2ðQ�NÞ

3D

N 0 ¼ 2ðR�MÞþQ�L
3D ; P0 ¼ M�Rþ 2ðL�QÞ

3D

Q0 ¼ 2ðM�PÞþ L�N
3D ; R0 ¼ P�Mþ 2ðN�LÞ

3D

D ¼ LRþPQþMQ� LP�MN � NR

ð4:95Þ

Combining these results with Eq. (4.91), we obtain the following form of the
BBC2005 dissipation function:
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wðdÞ ¼ inf
d;e;f

r0
2

jdþC0jq
aq�1 þ jd � C0jq

aq�1

�

þ jdþK0 þW0jq
bq�1 þ jdþK0 �W0jq

bq�1 þ 2qdq23
cq�1 þ 2qdq13

cq�1

�1=q ð4:96Þ

where

C0 ¼ L0 d11 � d33ð ÞþM0 d22 � d33ð Þþ e

K0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 0 d11 � d33ð ÞþP0 d22 � d33ð Þþ e½ �2 þ 4ðd12 � f Þ2

q
W0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0 d11 � d33ð ÞþR0 d22 � d33ð Þþ e½ �2 þ 4f 2

q ð4:97Þ

This expression is valid only if d is a deviatoric strain rate tensor; otherwise the
dissipation function is þ1:

Note that the dissipation functions for the Yld91, Yld2004-18p and BBC2005
yield criteria are not fully explicit. However, we will see in the next section that
these expressions can be used to obtain approximate Gurson-type models.

From a numerical point of view, a simpler approach to calculate the dissipation
function for an arbitrary yield convex k ¼ r uðrÞ� 0jf g is as follows. For a given
strain rate tensor d one needs to find the point r on the yield surface with normal
parallel to d; then wðdÞ ¼ r : d.

4.3.4 Gurson-Type Models for Some Anisotropic Yield
Criteria Based on Linear Transformations

Our approach to develop Gurson-type models for Yld91 and Yld2004-18p yield
criteria is based on Gologanu et al. (1997), Keralavarma and Benzerga (2010),
Madou and Leblond (2012a). Consider a spherical, spheroidal or ellipsoidal void
V in a confocal unit cell X with homogeneous strain rate boundary conditions. Let
f ¼ jV j=jXj denote the porosity. We have seen in Sect. 4.2.2 that we need to
estimate the macroscopic dissipation function, defined by Eq. (4.32), conveniently
reproduced here:

WðDÞ ¼ inf
v

1
jXj

Z
XnV

wðdðvÞÞ

�������v ¼ Dxj@X; divv ¼ 0

8><
>:

9>=
>;

The macroscopic yield convex then has an indicator function which is the
Legendre dual of the macroscopic dissipation function; equivalently the macro-
scopic yield surface or criterion is defined parametrically by:
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R ¼ @W
@D

ð4:98Þ

The microscopic dissipation function w is given by (4.72) for the Yld91 yield
criterion and by (4.78) for the Yld2004-18p yield criterion.

Consider a velocity field of the form:

v ¼ AvA þBvB þCvC þDxyvD þDyzvE þDxzvF

vB ¼ � x
2 ex � y

2 ey þ zez; vC ¼ �xex þ yey
vD ¼ xey þ yex; vE ¼ yez þ zey; vF ¼ xez þ zex

ð4:99Þ

where vA is an incompressible velocity field that respects homogeneous strain rate
boundary conditions and describes the expansion of the cavity, while all other
velocity fields are also incompressible and have homogeneous strain rate. Although
there are six independent velocity fields in Eqs. (4.99), all parameters are deter-
mined uniquely by the boundary conditions. This is similar to the original Gurson
approach and therefore we still call (4.99) a “two-field” approach.

There are two steps in our development of a Gurson-type criteria. The first one is
generic and applies to an arbitrary microscopic yield criterion. It defines the “best”
expansion velocity field and shows how this field determines several critical fea-
tures of the macroscopic model. This definition will also permit us later to deter-
mine vA numerically during the calibration phase of the model.

Writing explicitly the boundary conditions gives:

Dxx ¼ axA� B
2
� C

Dyy ¼ ayA� B
2
þC

Dzz ¼ azAþB

ð4:100Þ

with ax; ay; az parameters that depend only on the velocity field vA: Note that:

Dxx þDyy þDzz ¼ 3Dm ¼ Aða1 þ a2 þ a3Þ ð4:101Þ

where Dm is the mean macroscopic strain rate. Now, the only reasonable require-
ment for an expansion velocity field is that it should change the volume of the void.
Due to the incompressibility of the matrix this is equivalent to Dm 6¼ 0: Assuming
that the velocity field vA is normalized such that A ¼ 3Dm; we obtain:

ax þ ay þ az ¼ 1 ð4:102Þ

Taking into account Eq. (4.98), we obtain the derivatives of W :
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@W
@A ¼ axRxx þ ayRyy þ azRzz � Rh

@W
@B ¼ � Rxx

2 � Ryy

2 þRzz;
@W
@C ¼ Ryy � Rxx

@W
@Dxy

¼ Rxy;
@W
@Dyz

¼ Ryz;
@W
@Dxz

¼ Rxz

ð4:103Þ

Recall now that for any macroscopic stress located on the yield surface we have:

R : D�WðDÞ ð4:104Þ

with equality if and only if D is proportional to the normal to the yield surface at R:
For a pure hydrostatic stress defined by a pressure p we obtain:

pI : D ¼ 3pDm ¼ inf
vA¼Dxj@X

1
jXj

Z
XnV

wðdðvAÞÞ ð4:105Þ

Taking into account the homogeneity of degree 1 of the microscopic dissipation
and the normalization of the velocity field given by (4.102), we obtain:

p ¼ inf
divvA¼0; vA¼Dxj@X

Dxx þDyy þDzz¼1; Dxy¼Dxz¼Dyz¼0

1
jXj

Z
XnV

wðdðvAÞÞ ð4:106Þ

This shows that the expansion velocity field vA is precisely the one that is
associated to a pure hydrostatic stress and that the normal at the macroscopic yield
criterion is proportional to the tensor having ða1; a2; a3Þ on its diagonal.

Note that we have here tacitly assumed that the homogeneous boundary con-
ditions for vA do not have off-diagonal components. While this simplification seems
reasonable in the case of ellipsoidal voids aligned with the orthotropy directions of
the matrix, in the general case we may expect that the normal to the macroscopic
yield surface at the hydrostatic point has some non-zero off-diagonal components.
In this case, the condition Dxy ¼ Dxz ¼ Dyz ¼ 0 in the definition (4.106) of the
expansion velocity field should be dropped.

Let us now consider some exact points located on the approximate macroscopic
yield criterion calculated via the “two-field” approach. The microscopic strain rate
is given by:

d ¼ AdA þ
� B

2 � C Dxy Dxz

Dxy � B
2 þC Dyz

Dxz Dyz B

0
@

1
A ¼ AdA þ ~d ð4:107Þ

where ~d is a deviatoric tensor that collects all constant strain rate tensors. Let
~r ¼ @w=@~d be the stress tensor located on the microscopic yield criterion with
normal ~d: Then, the derivatives of W with respect to A and ~d at A ¼ 0 are:
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@W
@A

��
A¼0¼ 1

jXj
R

XnV
@w
@d

��
A¼0: d

A ¼ ~r : 1
jXj
R

XnV
dA

 !

@W
@~d

���
A¼0

¼ 1
jXj
R

XnV
@w
@d

��
A¼0 ¼ ~r

jXj
R

XnV
1 ¼ ð1� f Þ~r

ð4:108Þ

The mean value of dA over the matrix can be calculated using Gauss’ theorem:

1
jXj

Z
XnV

dA ¼ 1
jXj

Z
@X

vA 	s n�
Z
@V

vA 	s n

0
@

1
A ¼ DA � DA;V ð4:109Þ

Due to the homogeneous strain rate boundary conditions imposed on the
boundary of the unit cell, the first tensor on the right hand is simply DA ¼
diagðax; ay; azÞ while the tensor DA;V ¼ diagðaVx ; aVy ; aVz Þ is related to the mean
deformation rate of the void.

Particularizing now (4.108) for ~d ¼ dB ¼ diagð�1=2;�1=2; 1Þ, let ~rB be the
deviatoric stress tensor located on the microscopic yield criterion with normal dB:
Then the following point is located on the macroscopic yield criterion and has also
normal dB:

Rh ¼ ~rB : ðDA � DA;V Þ
devR ¼ ð1� f Þ~rB

�
ð4:110Þ

Similarly, taking ~d ¼ dC ¼ diagð�1; 1; 0Þ gives a point with normal dC:

Rh ¼ ~rC : ðDA � DA;VÞ
devR ¼ ð1� f Þ~rC

�
ð4:111Þ

Finally, the evolution of the void shape and size can be calculated from the mean
rate of deformation Dvoid due to the total velocity field and defined by Eq. (4.46). It
is easy to show that by neglecting the off-diagonal components of ~d we obtain:

Dvoid ¼ A
f
DA;V þBdB þCdC ð4:112Þ

where A;B;C are related to the diagonal components of the macroscopic strain rate
D via Eqs. (4.100).

Summarizing the results obtained so far for an arbitrary microscopic yield cri-
terion, the key element is the cavity expansion velocity field which determines:

• The hydrostatic point on the macroscopic yield criterion and its normal.
• Two points on the approximate macroscopic yield criterion having specified

(deviatoric) normals.
• The evolution law for the shape of the void.
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The second step in developing Gurson-type yield criteria is to find suitable
approximations to reduce the macroscopic dissipation function to the form (4.39)
which permits the application of the Gurson lemma (4.40).

Consider first the Yld91 yield criterion where the dissipation function is given
by:

W ¼ 1
X

R
X=V

inf
a

�wðAdA þ ~d; aÞ

�wðd; aÞ ¼ r1
3 d01 � d02 þ a
�� ��q þ d02 � d03 þ a

�� ��q þ d03 � d01 þ a
�� ��q� 1

q

ð4:113Þ

where r1 ¼ 21=mr0 is a scaling factor for stresses and d01; d
0
2; d

0
3 are the eigenvalues

of the linearly transformed tensor d0 ¼ ~C
0�TðAdA þ ~dÞ: Note that the parameter

a over which the infimum is taken in (4.113) should be calculated independently at
each point of the matrix and therefore is a variable scalar field. The first approxi-
mation is to take the infimum only over constant fields �a, so that we can switch the
integral and the infimum:

W � 1
X
inf
�a

Z
X=V

�wðAdA þ ~d; �aÞ ð4:114Þ

The next step is to reduce the triple integral to a single one over the
pseudo-radial variable r and to find a change of variables x ¼ xðrÞ such that jjdAjj ¼
FðxÞx for some suitable norm for strain rate tensors and where FðxðrÞÞ has finite
limits when r ! 0 and r ! þ1. Other approximations are then needed to arrive
at the form (4.39) for the macroscopic dissipation function. Unfortunately, none of
these approximations can be justified in our case. For example, there is no simple
relationship between the eigenvalues for a sum of two matrices and the eigenvalues
of the matrices themselves. Only the change of variable x ¼ xðrÞ is feasible as it
depends only on the geometry of the void and unit cell and the properties of the
cavity expansion velocity field vA: We can therefore use results from (Gologanu
et al. 1997) for the spheroidal case and from (Madou and Leblond 2012a) for the
ellipsoidal case. Therefore, without further ado, we propose the following
approximation:

W ¼ inf
�a

Zx2
x1

ðAFþBG1 þCG2Þr1x½ �q þ ½�wðH~d; �aÞ�qf g1
q
dx
x2

ð4:115Þ

Here F;G1;G2 are constants and H is a constant linear transformation from the
space of deviatoric tensors into itself, equal to the identity on the off-diagonal
components of ~d and transforming the on-diagonal components by:
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ðB;CÞ ! ðH11BþH12C;H21BþH22CÞ ð4:116Þ

The limits of integration are defined by:

x1 ¼ 1
gþ 1

; x2 ¼ 1
gþ f

ð4:117Þ

where f is the porosity and g depends only on the geometry of the void and cell.
The justification for all these terms comes from the quadratic isotropic case,

where F2x2 is an approximation of dA : dA while the other constants provide an
approximation of the two cross-terms dA : dB and dA : dC:

The linear transformation H can be written as a product H ¼ ~HK of some
invertible matrix and the projection on the deviatoric space. We will need in the
sequel the inverse of the transpose of the matrix ~H given by:

~H
�T ¼

h11 h12 h13 0 0 0
h21 h22 h23 0 0 0
h31 h32 h33 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0
BBBBBB@

1
CCCCCCA

ð4:118Þ

where

h22 ¼ �4C21 þ 6C22�3C12 þ 2C11 þ 4
12

h23 ¼ 1�C11 þ 2C21
3 ; h32 ¼ 2�2C11 þ 3C12

6 ; h33 ¼ 1þ 2C11
3

C11 ¼ H11
D ;C22 ¼ H22

D ;C12 ¼ � H12
D ;C21 ¼ � H21

D ;
D ¼ H11H22 � H12H21

ð4:119Þ

and all other parameters h11; h12; h13; h21; h23 are uniquely determined from the
condition that the sum over each row and column of the 3� 3 upper left corner of
~H�T is equal to one.

We can now transfer back the infimum over �a inside the integral and obtain:

W ¼
Zx2
x1

ðAFþBG1 þCG2Þr1x½ �q þ ½wð~H~dÞ�q� �1
q
dx
x2

ð4:120Þ

Finally, using the notations:

�A ¼ ðAFþBG1 þCG2Þr1; �B ¼ wð~H~dÞ ð4:121Þ

we obtain the following expression for the macroscopic dissipation:
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Wð�A; �BÞ ¼
Zx2
x1

�Aqxq þ �Bqð Þ1q dx
x2

ð4:122Þ

For the quadratic case m ¼ q ¼ 2 this is precisely the form required by Gurson’s
lemma (4.40). In the non-quadratic case, the integral is resoluble by elementary
means only when m is a natural number. Introducing a new parameter l and a
change of variables defined by:

l ¼
�Bj j
�A
; y ¼ sgnl

ðxq þ lj jqÞðq�1Þ=q

xq�1 ð4:123Þ

we obtain for the derivatives of W:

@W
@�A

¼ sgn l
1� q

Zy2
y1

ym�2dy
ym � 1

;
@W
@�B

¼ sgnB
jljð1� qÞ

Zy2
y1

ym�2dy ð4:124Þ

While the second integral is elementary for all values of m, the first one SmðyÞ is
elementary3 only when m is a natural number. For selected values we obtain:

S2ðyÞ ¼ 1
2 ln

yþ 1
y�1 ; S4ðyÞ ¼ 3

4 ln
yþ 1
y�1 � 3

2 tan
�1 y

S6ðyÞ ¼ 5
12 ln

ðyþ 1Þ2ðy2 þ yþ 1Þ
ðy�1Þ2ðy2�yþ 1Þ þ 5

2
ffiffi
3

p tan�1
ffiffi
3

p
y

y2�1

S8ðyÞ ¼ 7
8
ffiffi
2

p ln y2 þ ffiffi
2

p
yþ 1

y2� ffiffi
2

p
yþ 1

þ 7
ffiffi
2

p
8 tan�1

ffiffi
2

p
y

y2�1

þ 7
8 ln

yþ 1
y�1 � 7

4 tan
�1 y

ð4:125Þ

Similar to the proof of Gurson’s lemma, the macroscopic yield criterion in
parametric form can be obtained via the following receipt: relate the derivatives of
W with respect to A;B;C;Dxy;Dxz;Dyz, to the macroscopic stresses via (4.103) and
to the derivatives of W with respect to �A; �B via (4.121). However, in our case we
need to generalize a key technical point from the quadratic case to that of an
arbitrary yield surface uðrÞ ¼ r1 defined by a homogeneous function of degree 1
and with dissipation function wðdÞ. The simplest case still showing this difficulty is
one where the yield surface is isotropic, the macroscopic strain rate and stress
tensors are diagonal and the cross terms are neglected in (4.121):

W ¼ Wð�A; �BÞ; �A ¼ FA; �B ¼ wð~dÞ; ~d ¼ BdB þCdC ð4:126Þ

where the diagonal tensors dB; dC are defined in (4.103). Then we have:

3For arbitrary values of the exponent, this integral is expressible as a hypergeometric function.
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@W
@B ¼ @W

@�B ~r : dB
� 

; @W
@C ¼ @W

@�B ~r : dC
� 

; ~r � @w
@~d

devR � @W
@B Q1 þ @W

@C Q2 ¼ @W
@�B ~r; uðdevRÞ ¼ @W

@�B

�� ��r1 ð4:127Þ

where the stress ~r in the first line lies on the on yield surface, and where, in the
second line, we have used the linear homogeneity of u. Here the tensors Q1;Q2 are
the duals dB; dC and are given by:

Q1 ¼ � 1
3 ex 	 ex þ ey 	 ey
� � 2

3 ez 	 ez;
Q2 ¼ � 1

2 ex 	 ex þ 1
2 ey 	 ey:

ð4:128Þ

The same method applied to the general case gives the sought after macroscopic
criterion in parametric form:

kRh � kða1R11 þ a2R22 þ a3R33Þ ¼ r1 sgn l Smðy2Þ � Smðy1Þ½ �
js01 � s02jm þ js02 � s03jm þ js03 � s01jm
� 1

m ¼ r1
lj j ym�1

1 � ym�1
2

� 
(

ð4:129Þ

where r1 ¼ 21=mr0; k ¼ 1
F ; g1 ¼ G1

F ; g2 ¼ G2
F and s01; s

0
2; s

0
3 are the eigenvalues of the

following linearly transformed tensor of the macroscopic stresses:

R0 ¼ ~H
�T ~C0 devR� g1RhQ1 � g2RhQ2ð Þ ð4:130Þ

We recall that the linear transformation ~C0 is given by Eq. (4.52) as a function of
the original linear transformation C0 appearing in the Yld91 yield criterion. Finally,
SmðyÞ is defined in (4.125) for several values of m and:

yi ¼ ðxqi þ lj jqÞðq�1Þ=q

xq�1
i

; x1 ¼ 1
1þ g

; x2 ¼ 1
gþ f

ð4:131Þ

In the quadratic case, we can eliminate the parameter l from (4.129) and obtain:

u2ðkðR0ÞÞ
r21

þ 2ðgþ 1Þðgþ f Þ cosh kRh

r1
� ðgþ 1Þ2 � ðgþ f Þ2 ¼ 0 ð4:132Þ

In the general case this is no longer possible and we are forced to use the
parametric form. We still need to prescribe the parameters of the model: the factor
k multiplying the pressure-dependent stress Rh; the two factors g1; g2 in front of the
cross terms in (4.130), the coefficients a1; a2; a3 ¼ 1� a1 � a2 defining Rh via
(4.103), the parameter g and the coefficients C11;C22;C12;C21 defining the linear

tensor ~H
�T

via (4.119). As discussed above, the choice of the expansion velocity
field vA determines three points located on the yield criterion (the hydrostatic stress
and those defined by (4.110) and (4.111)). These 3 points together with their normal
to the yield criterion give nine conditions to be satisfied by the nine parameters
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above. We will discuss in the next section how to find, via a spectral method, the
expansion velocity field in the case of an arbitrary microscopic yield criterion and
for a general ellipsoidal void. We call this a numerical calibration of the Gurson
model.

Note that the effect of the voids on the macroscopic yield criterion (4.129) is
twofold. First, the original anisotropy given by the linear transformation C0 is

amended to ~H
�T ~C

0
; this can be interpreted as a supplementary anisotropy due to the

void geometry. Second, there is a pressure-dependent term Rh affecting in multiple
ways the yield criterion. The exponent m affects the Gurson-type criterion via the
function SmðyÞ. A subtler effect is visible in Fig. 4.6 where we compare, for several
values of m; Gurson-type isotropic yield criteria of the form (4.129), with
g1 ¼ g2 ¼ C12 ¼ C21 ¼ g ¼ 0, C11 ¼ C22 ¼ 1, k ¼ 3

2 ; ai ¼ 1
3 and a porosity f ¼

0:01: Note that for larger values of the exponent the yield surface shows flatter
regions joined by a high curvature region.

The case of the Yld2004-18p is similar and does not present any new difficulty.
The multiple infimum appearing in the expression (4.78) of the dissipation function
is again pushed out of the integral by assuming all fields constant. Later, the
infimum is pushed back inside the integral so that this takes precisely the form
(4.120) but expressed via the Yld2004-18p dissipation function. The final result is
again the parametric form:

kRh � kða1R11 þ a2R22 þ a3R33Þ ¼ r1 sgn l Smðy2Þ � Smðy1Þ½ �
uðkðR0Þ; kðR00ÞÞ ¼ r1

lj j ym�1
1 � ym�1

2

� �
ð4:133Þ

where r1 ¼ 41=mr0, u is the homogeneous function of degree 1 implicitly defined
by the Yld2004-18p criterion (4.51) and kðR0Þ; kðR00Þ are the eigenvalues of two
linearly transformed tensors of the macroscopic stresses:

Fig. 4.6 Quadratic m ¼ 2
versus non-quadratic m[ 2
Gurson-type yield surfaces for
an isotropic material with
spherical voids and porosity
0.01
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R0 ¼ ~H
�T ~C0 devR� g1RhQ1 � g2RhQ2ð Þ

R00 ¼ ~H
�T ~C00 devR� g1RhQ1 � g2RhQ2ð Þ

ð4:134Þ

Here, all other parameters have similar definitions as for the Yld91 criterion.
Consider now the BBC2005 yield criterion defined by Eqs. (4.79) and (4.80)

with dissipation function given by Eqs. (4.96) and (4.97). The development of the
Gurson-type model is again similar to the Yld91 case and will not be further
detailed here. The final Gurson model is given in parametric form by:

kRh � kða1R11 þ a2R22 þ a3R33Þ ¼ r0 sgn l Smðy2Þ � Smðy1Þ½ �
a ~Kþ ~C
� m þ a ~K� ~C

� m þ b ~Kþ ~W
� m þ

h
þ b ~K� ~W

� m þ crm13 þ crm23
i1=m

¼ r0
lj j ym�1

1 � ym�1
2

� 
8>><
>>: ð4:135Þ

where SmðyÞ is defined by (4.125) and y1; y2 by (4.131). Here, the new variables
~C; ~K; ~W depend on the components of a deviatoric stress tensor ~R defined in terms
of the macroscopic stress tensor by:

~R ¼ devR� g1RhQ1 � g2RhQ2 ð4:136Þ

with Q1;Q2 defined by Eqs. (4.128). The expressions for ~C; ~K; ~W are:

~C ¼ ~L ~R11 � ~R33
� þ ~M ~R22 � ~R33

� 
~K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~N ~R11 � ~R33
� � ~P ~R22 � ~R33

� � �2 þ ~R12~R21

q
~W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Q ~R11 � ~R33
� � ~R ~R22 � ~R33

� � �2 þ ~R12~R21

q ð4:137Þ

The new parameters ~L; ~M; ~N; ~P; ~R; ~Q; ~R are related to the original parameters of
the BBC2005 criterion by the following relationship:

~L ~M �~L� ~M
~N �~P �~N þ ~P
~Q �~R �~Qþ ~R

0
@

1
A ¼

h11 h12 h13
h21 h22 h23
h31 h32 h33

0
@

1
A L M �L�M

N �P �NþP
Q �R �QþR

0
@

1
A ð4:138Þ

where the coefficients hij are given by Eqs. (4.119). Note that actually the matrix

ðhijÞ is the upper left corner of ~H
�T

and that it depends on only four parameters
C11;C22;C12;C21. We still need to specify these four parameters and also the other
parameters of the Gurson type criterion: k; a1; a2; a3; g1; g2; g. All these parameters
will be determined during the calibration of the Gurson model using a spectral
numerical method.
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As a preliminary conclusion, we have found analytical Gurson type approxi-
mations (in parametric form) for porous materials, containing spherical, spheroidal
and ellipsoidal voids and with the matrix having a rigid-plastic behaviour defined
by the advanced, non-quadratic, anisotropic yield criteria Yld91, Yld2004-18p and
BBC2005. These models still need to be calibrated, which means finding numer-
ically via a spectral method a “good” velocity field describing the expansion of the
void and using it to calculate some of the parameters of the Gurson models.

Note that although the dissipation functions for all three yield criteria were so
complicated that we were not able to fully justify some of the approximations made
to arrive at a Gurson-type criterion, their analytical expressions played a paramount
role in defining the function Sm or the pressure-dependent term in the Gurson
models (4.129), (4.133) and (4.135).

4.4 Mie Decomposition of Incompressible Vector Fields
in Ellipsoidal Coordinates

We have seen that one essential ingredient in developing and calibrating Gurson
type models was the Lee and Mear (1992) family of axisymmetric incompressible
fields for prolate and oblate spheroidal voids. The recent Gurson type models for
general ellipsoidal voids (both von Mises isotropic plasticity and Hill anisotropic
plasticity) were based on the discovery in (Leblond and Gologanu 2008) of a
velocity field describing the expansion of such voids and respecting conditions of
homogeneous strain rate on every ellipsoid confocal with the cavity. However, this
field (when added to some uniform strain rate incompressible field as in the original
two-field approach used by Gurson), does not provide alone a very accurate
description of the cavity expansion under various loading conditions and material
properties. We have seen that an essential step is the calibration of a new Gurson
type model by some semi-empirical method. Practically, key parameters in the
Gurson model are fitted on numerical results obtained for the same elementary
representative volume. Spectral methods are fast and accurate; unfortunately they
require velocity fields respecting both the incompressibility condition and the
boundary conditions. In absence of these, recent work by Madou and Leblond
(2012b) has used the finite element method to calibrate their Gurson-type model,
albeit with a clever hack to simulate limit analysis problems with isotropic or Hill
plasticity via elasto-plastic solvers. For the moment we do not know how to extend
these finite element methods to other models of anisotropic plasticity.

In the next section we present a complete solution for the missing tools needed to
calibrate new Gurson type models. First we obtain a complete family of incom-
pressible velocity fields for general ellipsoidal voids that extends that of Lee and
Mear (1992) which was limited to spheroidal voids and axisymmetric conditions.
Second we extend the spectral numerical method to an arbitrary anisotropic plas-
ticity model.
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4.4.1 Natural Ellipsoidal Coordinates

Ellipsoidal coordinates were discovered by Lamé when searching for closed-form
solutions for geodesics on the surface of an ellipsoid.

Consider a reference ellipsoid with semi-axes ða; b; cÞ, ordered such that:

a[ b[ c: ð4:139Þ

For the moment we require strict inequalities, but in the sequel these will be
relaxed. We choose Cartesian coordinates ðx; y; zÞ aligned with the ellipsoid’s axis;
the ellipsoid’s surface is then defined by the equation:

x2

a2
þ y2

b2
þ z2

c2
¼ 1: ð4:140Þ

For any value of t, the surface defined by:

x2

tþ a2
þ y2

tþ b2
þ z2

tþ c2
¼ 1; ð4:141Þ

represents a quadric conformal with the initial ellipsoid. After rearrangement, we
obtain a cubic equation for t:

SðtÞ ¼ ðtþ a2Þðtþ b2Þðtþ c2Þ � x2ðtþ b2Þðtþ c2Þ
� y2ðtþ a2Þðtþ c2Þ � z2ðtþ a2Þðtþ b2Þ ¼ 0

ð4:142Þ

Inspection of the sign of SðtÞ at t ¼ �a2;�b2;�c2 and 1 shows that the cubic
always has three real and distinct roots ðk;l; mÞ located in between these values:

k� � c2 � l� � b2 � m� � a2 ð4:143Þ

Writing SðtÞ ¼ ðt � kÞðt � lÞðt � mÞ, inserting in turn t ¼ �a2;�b2;�c2 and
solving for x2; y2; z2 we obtain:

x2 ¼ ða2 þ kÞða2 þlÞða2 þ mÞ
ða2�c2Þða2�b2Þ

y2 ¼ ðb2 þ kÞðb2 þlÞðb2 þ mÞ
ðb2�c2Þðb2�a2Þ

z2 ¼ ðc2 þ kÞðc2 þ lÞðc2 þ mÞ
ðc2�b2Þðc2�a2Þ

8>><
>>: ð4:144Þ

These relations connect Cartesian coordinates to curvilinear ones ðk; l; mÞ.
Through any point in space there passes three mutually orthogonal surfaces: one
ellipsoid ðk ¼ cst:Þ; one hyperboloid with one sheet ðl ¼ cst:Þ and one hyperboloid
with two sheets ðm ¼ cst:Þ:
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There are two problems with these classical ellipsoidal coordinates. First, the
relationship (4.144) is not one-to-one as there are in general 8 different points in
space having the same ðk; l; mÞ. To solve this, Hermite introduced uniformising
variables by expressing the algebraic relationships (4.144) in terms of Jacobian
elliptic functions of three new variables. Modern mathematical treatments like
Arscott (1964) tend to use them extensively.

Second, Eqs. (4.144) become degenerate in the limit of axisymmetric ellipsoids
—oblate spheroids ða ¼ bÞ, prolate ones ðb ¼ cÞ and spheres. Imagine now a void
that starts with a prolate/oblate/spherical shape or evolves arbitrary close to such
one. This will correspond to various 0=0 limits or other degeneracies and any
analytical or numerical method will need to devise special methods to treat them.

We now follow Tabanov (1998), Burnett and Holford (1998) and introduce
“natural” variables ðr; h;/Þ defined by:

k ¼ r2 � c2

l ¼ �b2 cos2 h� c2 sin2 h

m ¼ �b2 cos2 /� a2 sin2 /

ð4:145Þ

in terms of which the relationships (4.144) become:

x ¼ ðr2 þ h21 þ h22Þ1=2ð1� k02cos2hÞ1=2 cos/
y ¼ ðr2 þ h22Þ1=2 sin h sin/
z ¼ r cos hð1� k2 cos2 /Þ1=2

8><
>: ð4:146Þ

where:

h21 ¼ a2 � b2 h22 ¼ b2 � c2 k ¼ h21
h21 þ h22

� �1=2

k0 ¼ ð1� k2Þ1=2 ð4:147Þ

We note the striking similarity of the new coordinates to spherical (polar) ones, with
r playing the role of the radial variable and h;/ those of angular ones. Surfaces of
constant r are ellipsoids, those of constant h are hyperboloids with one sheet and
those of constant / are hyperboloids with two sheets, all being confocal with the
reference ellipsoid. Taking r ¼ 0; we obtain the double face parametrization of the

focal ellipse in the z ¼ 0 plane with demi-axes h2, ðh21 þ h22Þ1=2.
In order to have a one-to-one correspondence between points in space x; y; z and

coordinates r; h;/, we have two choices for the ranges of the new variables, either:

0� r\þ1; 0� h� p; 0�/� 2p; ð4:148Þ
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or:

0� r\þ1; 0� h� 2p; 0�/� p: ð4:149Þ

We can now lift the restriction of strict inequalities in (4.139) for the reference
ellipsoid. The oblate spheroidal case corresponds to the direct substitution h1 ¼ 0
with k ¼ 0; k0 ¼ 1. Then the relationships (4.146) reduce to:

x ¼ ðr2 þ h22Þ1=2 sin h cos/
y ¼ ðr2 þ h22Þ1=2 sin h sin/
z ¼ r cos h

8<
: ð4:150Þ

These are equivalent to the classical oblate spheroidal coordinates if we replace the
radial coordinate with a new one given by r ¼ h2 sinh k and use (4.148).

The prolate spheroidal case corresponds to h2 ¼ 0 with k ¼ 1; k0 ¼ 0: The
relationships (4.146) reduce to:

x ¼ ðr2 þ h21Þ1=2 cos/
y ¼ r sin h sin/
z ¼ r cos h sin/

8<
: ð4:151Þ

Again, these are equivalent to classical prolate spheroidal coordinates, if we replace
the radial coordinate with r ¼ h1 sinh k and use (4.149). Finally the spherical case
can be obtained by taking h2 ¼ 0 in the oblate case (4.150) or h1 ¼ 0 in the prolate
one (4.151). Several remarks are here in order:

1. The main driving idea in Tabanov is that of preservation of spheroidal limits by
simple substitution. While many of the subsequent developments could have
been presented using classical ellipsoidal coordinates, we have found that using
Tabanov’s main idea simplifies and clarifies many arguments.

2. The classical ellipsoidal coordinates (4.144) are symmetric with respect to
concomitant permutations of ðx; y; zÞ and ða; b; cÞ; the natural coordinates do
break this symmetry. In reality, for problems formulated for the inside or the
outside of some ellipsoid, we will see that the new natural coordinates preserve
the only existing symmetry, the one between angular coordinates.

3. Contrary to the classical oblate and prolate spheroidal coordinates where one
uses the focal distance to scale the radial coordinate (which makes the spherical
case a degenerate one), we do not use here any scaling. Practically, one can use
for all “length” type variables r; h1; h2 a fixed scaling that does not depend on
the shape of the reference ellipsoid.

4. The definitions (4.147) for k; k0 becomes degenerate when h1; h2 tend simulta-
neously to zero while their ratio tends to a finite limit. Then we obtain new
natural variables for the well-known sphero-conical orthogonal coordinates (see
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Morse and Feschbach 1953). In other words, the polar spherical limit can be
recovered by simple substitution only when passing first through either the
oblate or the prolate spheroidal cases. We will later see that this poses no
significant problem.

4.4.2 Laplace’s Equation in Natural Ellipsoidal Coordinates

For a curvilinear coordinate system with local coordinates n, the basis of tangent
vectors is defined by ga ¼ @r

@na with r the position vector. Components of a vector
field in this basis v ¼ vaga are called contravariant,4 while those with respect to the
dual basis v ¼ vaga are called covariant components. For orthogonal coordinate
system where the matrix of scalar products ga; gb

� � ¼ h2adab is diagonal, the terms
ha are called Lamé coefficients and there is a preference to use as basis the nor-
malized tangent vectors defined by ea ¼ 1

ha
ga ¼ haga. Components of a vector field

in this basis v ¼ vaea are called physical components and there is no distinction
between upper and lower indices (as the physical basis ea is orthonormal it is
equivalent to its dual). Unless otherwise stated we will use physical components.

Now, it is straightforward to show (see Tabanov) that the curvilinear coordinate
system defined by (4.146) with n ¼ ðr; h;/Þ is orthogonal. The Lamé coefficients
are readily calculated:

h2r ¼
ðr2 þ h22 cos

2 hÞðr2 þ h22 þ h21 sin
2 /Þ

ðr2 þ h22Þðr2 þ h21 þ h22Þ

h2h ¼
ðr2 þ h22 cos

2 hÞðk2 sin2 /þ k02 sin2 hÞ
1� k02 cos2 b

h2/ ¼ ðr2 þ h22 þ h21 sin
2 /Þðk2 sin2 /þ k02 sin2 hÞ

1� k2 cos2 /

ð4:152Þ

Motivated by these expression, we introduce the following notations:

m1 ¼ ðk2 sin2 /þ k02 sin2 hÞ1=2; m2 ¼ ðr2 þ h22 þ h21 sin
2 /Þ1=2

m3 ¼ ðr2 þ h22 cos
2 bÞ1=2

sh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k02 cos2 h

p
; s/ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 cos2 /

p
sr ¼ ðr2 þ h22Þ1=2ðr2 þ h21 þ h22Þ1=2

ð4:153Þ

The Laplace equation in the new coordinate system is given by:

4Hereafter we use the usual convention of summing over repeated indices.

180 M. Gologanu et al.



@

@r
hhh/
hr

@U
@r

� �
þ @

@h
hrh/
hh

@U
@h

� �
þ @

@/
hhhr
h/

@U
@/

� �
¼ 0 ð4:154Þ

It admits solutions found by separation of variables U ¼ UðrÞVðhÞWð/Þ:

sr@r sr@rð Þþ c1ðh21 þ h22Þ � c2ðr2 þ h22Þ
� �

U ¼ 0
sh@h sh@hð Þ � c1 þ c2k02 sin2 h
� �

V ¼ 0
s/@/ s/@/

� þ c1 þ c2k2 sin2 /
� �

W ¼ 0
ð4:155Þ

where c1; c2 are separation constants. These three second-order ordinary differential
equations are all equivalent to Lamé’s equation (see Arscott 1964) which itself has
several useful forms: the first an algebraic one, while the last two are equivalent to
Ince’s trigonometric form. Other widely used forms are the Jacobian and
Weierstrassian ones.

The usual way of solving these differential equations is to bring them to a
common form. For example, using the following changes of variable: h21t

2 ¼
r2 þ h21 þ h22 for the first differential equation, k2t2 ¼ 1� k02 cos2 h for the second
one and t ¼ cos/ for the third one, all three reduce to the following form:

ðt2 � 1Þðk2t2 � 1Þ@2
t þ tð1þ k2 � k2t2Þ@t þ h� c2k

2t2
� �

XðtÞ ¼ 0 ð4:156Þ

where h ¼ c1 þ c2k2 is another separation constant. This is precisely the algebraic
form used by Dobner and Ritter (1998) and later by Garmier and Barriot (2001) (in
a different but equivalent form) and represents the foundation for all recent
numerical implementations of Lamé functions.

However, the problem with this approach is that the first and second changes of
variables (those for r and h) become degenerate in the spheroidal limits and only the
third one (that for /) behaves reasonably. On the contrary, the differential equations
in the form (4.155) respect Tabanov’s principle—they reduce to the spheroidal
limits by simple substitution.

For example, in the oblate case where h1 ¼ 0; k ¼ 0; k0 ¼ 1, the differential
Eqs. (4.155) reduce to:

@2
r þ rffiffiffiffiffiffiffiffiffiffi

r2 þ h22
p @r þ c1h22

r2 þ h22
� c2

� �
U ¼ 0

@2
h þ cos h

sin h @h � c1
sin2 h

þ c2
� �

V ¼ 0

@2
/ þ c1

� �
W ¼ 0

ð4:157Þ

Here we recognize in the second equation the trigonometric form of Legendre’s
associated differential equation while the last one has a simple trigonometric solu-
tion. Together they imply that the separation constants are given by c2 ¼ nðnþ 1Þ
and c1 ¼ m2 where n; 0�m� n are integers. With regard to the first equation, it
represents an unusual form of the same Legendre’s differential equation, one that
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respects Tabanov’s principle for the spherical limit. Indeed, plugging h2 ¼ 0 directly
in (4.157)1 and solving, we get correctly the solid spherical harmonics:

Wsph ¼ rnPm
n ðcos hÞ

cosm/

sinm/

 !
ð4:158Þ

In the general oblate spheroidal case defined by (4.157)1, one usually makes a
new change of variable h2z ¼ ir to obtain the following well-known expression for
solid oblate spheroidal harmonics (of the first kind):

Wobl ¼ Pm
n ðzÞPm

n ðcos hÞ
cosm/

sinm/

 !
; z ¼ ir

h2
ð4:159Þ

Unfortunately, this change of variable does not respect Tabanov’s principle and
does not give the spherical limit for a direct substitution h2 ¼ 0. We note that a
similar analysis can be made for the prolate case.

In conclusion, even for the oblate and prolate cases, we prefer a treatment based
on the unusual form (4.157) that respects Tabanov’s principle.

4.4.3 Some Properties of Surface Ellipsoidal Harmonics

We list now some important properties of Lamé functions. First, the three differ-
ential Eqs. (4.155) admit polynomial solutions5 in r; cos h and cos/ respectively,
iff the second separation constant is taken as:

c2 ¼ nðnþ 1Þ ð4:160Þ

where n is an integer. For each such n there are m ¼ 1; � � � ; 2nþ 1 solutions for the
other separation variable c1 and therefore 2nþ 1 linearly independent solutions for
each of the differential equations in (4.155). These give rise to 2nþ 1 normal
solutions to Laplace’s equation:

Well ¼ Em
n ðrÞEm

n ðcos hÞEm
n ðcos/Þ ð4:161Þ

These are called solid ellipsoidal harmonics of the first kind. We note the
similarity of these harmonics with the spherical ones given by (4.158) and oblate
ones given by (4.159). There is a deeper reason for this similarity—in all these
cases, the solid harmonics of degree n are nothing else but harmonic polynomials6

of total degree n in the Cartesian coordinates ðx; y; zÞ.

5Multiplied by some leading terms involving square roots.
6These polynomials are also homogeneous only in the spherical case.
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We will need two results concerning the surface ellipsoidal harmonics. These are
defined by:

Ym
n ðh;/Þ ¼ Em

n ðcos hÞEm
n ðcos/Þ ð4:162Þ

and are similar to the surface spherical harmonics. First, they are orthogonal on the
surface Sðr ¼ cst:Þ of every ellipsoid confocal with the reference ellipsoid, with
respect to a certain weight measure:

ZZ
SðrÞ

Ym1
n1 Y

m2
n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ h22 cos2 h
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ h22 þ h21 sin
2 /

q dS ¼ cm1
n1 dm1m2dn1n2 ð4:163Þ

where cmn are some normalization constants. This can be proven by applying
Green’s theorem to the harmonic functions Em1

n1 ðrÞYm1
n1 and Em2

n2 ðrÞYm2
n2 in the interior

of the ellipsoid SðrÞ, noting that the derivative with respect to the surface normal
n is @n ¼ @r=hr and finally using the linear independence of Em1

n1 ðrÞ;Em2
n2 ðrÞ:

Using now the definition of the surface measure dS ¼ hhh/dhd/ we obtain from
(4.163) the following orthogonality property that does not involve the radial
coordinate r any more:

Zp
h¼0

Z2p
/¼0

Ym1
n1 Y

m2
n2 ðk2 sin2 /þ k02 sin2 hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k02 cos2 h
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2cos2/
p dhd/ ¼cm1

n1 dm1m2dn1n2 ð4:164Þ

The second property we need is that the surface ellipsoidal harmonics Ym
n ðh;/Þ

are the eigenvectors of a certain second order differential operator acting on the
surface of the ellipsoid. This is similar to the spherical case, where it is well known
that surface harmonics are eigenvectors of the angular or surface Laplacian:

L2sphY
m
n ¼ nðnþ 1ÞYm

n ð4:165Þ

where

L2sph ¼ � 1
sin h

@

@h
sin h

@

@h

� �
� 1

sin2 h

@2

@/2 ð4:166Þ

Passing now to the ellipsoidal case, we consider a surface ellipsoidal harmonics
Yðh;/Þ ¼ VðhÞWð/Þ where V ;W are solutions of

sh@hðsh@hÞ � c1 þ c2k
02 sin2 h

� �
V ¼ 0

s/@/ðs/@/Þþ c1 þ c2k
2 sin2 /

� �
W ¼ 0

ð4:167Þ
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for the same separation constant c1 and where c2 ¼ nðnþ 1Þ. Multiplying the first
equation by W and second one by V and adding them, we obtain the following
result:

L2ellY ¼ nðnþ 1ÞY ð4:168Þ

where the second order differential operator on the left side is defined by:

L2ell ¼ � sh@hðsh@hÞþ s/@/ðs/@/Þ
k02 sin2 hþ k2 sin2 /

ð4:169Þ

Again, we note that this operator reduces to the spherical one for k ¼ 0; k0 ¼ 1.
However, and contrary to spherical case, L2ell is not equal to the surface Laplacian
on the surface of some confocal ellipsoid. Without going into details, one can still
show that it represents some surface Laplacian but for a different metric.

4.4.4 Incompressible Vector Fields by Piola Transforms

The Mie decomposition (or toroidal-poloidal decomposition) applies to incom-
pressible vector fields in a spherical setting (see Backus 1986). Any such vector
field with div v ¼ 0 inside a ball can be written as:

v ¼ curl trþ curl curl pr ð4:170Þ

where t; p are arbitrary function and r ¼ rer is the position vector. The usual proof
relies on a special form of the Helmholtz decomposition that takes advantage of the
simple expression of the position vector in spherical coordinates (Backus et al.
1996). As such, this proof does not extend to ellipsoidal coordinates (nor to the
simpler spheroidal ones). The biggest advantage of the Mie decomposition is that
the functions t; p restricted on the surface of a sphere are real scalars, and therefore
can be each expanded in a sum of surface spherical harmonics. This significantly
simplifies the application of boundary conditions for v: On the contrary, such an
expansion in surface spherical harmonics does not apply to individual components
(in spherical coordinates) of the original vector field.

For coordinate systems that possess a rotational symmetry, there is another
simple decomposition for axisymmetric incompressible vector fields:

v ¼ curl qe/ ð4:171Þ

where q is another arbitrary function. The Lee and Mear family for the prolate and
oblate spheroidal case can be written in this form, although the resulting expression
for q is not very illuminating.
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When passing from a ball to a spherical shell, the Mie decomposition applies
again but does not capture all available incompressible fields. Indeed, all fields of
the form (4.170) have zero total flux through the outer surface (and by incom-
pressibility also on the inner surface). The Hodge decomposition theorem
(Cantarella et al. 2002) applied to a spherical shell (or any 3D region with one hole
having therefore a non-trivial second homology group) shows that we need to seek
a harmonic gradient or a vector field which is the gradient of a harmonic function:

v ¼ rg; Dg ¼ 0 ð4:172Þ

and where g is constant on each component of the boundary. For a spherical shell,
such a function is readily available:

g ¼ �A
r

þB; v ¼ rg ¼ A
r2
er ð4:173Þ

We note that the missing velocity field is nothing else than the cavity expansion
field for a spherical void.

The first extension of the Mie decomposition to a non-spherical geometry has
been proposed by Schmitt and Jault (2004) in the oblate spheroidal setting. Their
method has a geometrical flavor that is not explicit in their presentation but will be
clarified in the sequel. Let us contemplate an ellipsoidal shell N such that the inner
and outer boundaries are confocal. If we are able to write down a diffeomorphism
from this solid to a spherical shell M, then we can relate incompressible vector
fields on each solid by a Piola transform and the Mie decomposition on the
spherical shell will be pulled-back to some useful decomposition of the original
vector field.

The notations we use are as follows:

n ¼ ðr0; h0;/0Þ U �!x0¼T 0ðnÞ
spherical

M ¼ spherical shell

U " " W ¼ T 0UT�1

g ¼ ðr; h;/Þ V �!x¼TðgÞ
ellipsoidal

N ¼ ellipsoidal shell

ð4:174Þ

Each manifold (with boundary) has its own local coordinates—natural coordi-
nates ðr; h;/Þ for the ellipsoidal shell and polar coordinates ðr0; h0;/0Þ for the
spherical shell. The diffeomorphism will be given explicitly by a map U from local
to local coordinates as shown in (4.174). Let us note the Jacobians of various maps:

JU ¼ det
@n
@g

� �
; Jg ¼ det

@x
@g

� �
; Jn ¼ det

@x0

@n

� �
; ð4:175Þ

such that the Jacobian of the composition map W is given by:
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JW ¼ JnJUJ
�1
g ð4:176Þ

We switch now to the use of natural (contravariant or covariant) components of
vector fields with respect to the basis ga ¼ @

@na or its dual ga ¼ dna on M and

gb ¼ @
@gb or its dual g

b ¼ dgb on N.7

Let v ¼ vaga be a contravariant vector field on M. Define its Piola transform to
be the contravariant vector field V ¼ Vbgb on N with components given by:

V ¼ JWðrUÞ�1v; Vb ¼ JW
@gb

@na
va ð4:177Þ

Then one can show that the divergence of these fields are related by:

DIVV ¼ JW div v ð4:178Þ

or, in components:

1
Jg

@ JgVb
� 
@gb

¼ JW
1
Jn

@ JnVað Þ
@na

� �
ð4:179Þ

We now need a similar Piola type transform that commutes not with the
divergence but with the curl operator. Let u ¼ uaga be a covariant vector field on
M. Define its Piola “curl” transform to be the covariant vector field U ¼ Ubgb on
N with components given by:

U ¼ ðrUÞu; Ub ¼ @na

@gb
ua ð4:180Þ

Then one can show that the curl of these vectors are related by:

CURL U ¼ JWðrUÞ�1curl u ð4:181Þ

or, in components:

�dbc

Jg

@Uc

@gb
¼ JW

@gd

@na
�abc

Jn

@uc
@nb

� �
ð4:182Þ

where � is the Levi-Civita alternating symbol.
Note that both Piola transforms are pulling vector fields from M back to N. If the

transformation U is actually a diffeomorphism, then we can reverse this pull-back
and transfer freely vector fields from one manifold to the other. A second

7We use the same notation for the basis on M and N as there is no confusion possible.
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observation is that the Jacobian JW used in the Piola transforms should always
include the local coordinate Jacobians as in (4.176) in order that the pull-back
vectors are true vectors (behave as 1-tensors under a change of coordinates).

We are now ready to describe the method discovered by Schmitt and Jault
(2004). Start with some incompressible vector field V on N. Use the Piola transform
associated to the inverse transformation U�1 to pull it back to a vector field v on the
spherical shell M. The two vector fields are then related by Eq. (4.177). Due to
Eq. (4.178), the new field is again incompressible. It admits therefore a Mie
decomposition given by:

v ¼ A
r02

gr0 þ curl tr0gr0 þ curl curl pr0gr0 ð4:183Þ

where p ¼ pðr0; h0;/0Þ and t ¼ tðr0; h0;/0Þ are arbitrary functions. Let now u be
defined as:

u ¼ tr0gr0 þ curl pr0gr0 ð4:184Þ

but written as a covariant vector. We can then pull it back to obtain:

V ¼ JWðrUÞ�1 A
r02

gr0 þCURL ðrUÞu½ � ð4:185Þ

Let us analyze in more detail this decomposition. The vector pulled back from
u is a sum of two terms—the first one is a simple curl applied to some vector field.
The second part represents a second order operator applied to some vector field but
is not of the form curl curl like in the original Mie decomposition. Practically, we
need to apply one curl on M and the second curl on N after pull-back. Maybe there
is a Piola type transform for the curl curl operator? Unfortunately, the answer is no
and this for a deep reason. Piola transforms are actually pull-backs of differential
forms and as such they do not use the metric properties of the underlying manifolds.
On the contrary, the Mie decomposition with its double curl part requires the metric
(essentially to raise or lower indices of tensorial fields). Because our transformation
is a diffeomorphism but not an isometry, there is no reason that we can pull-back
the curl curl part. Put otherwise, the final decomposition (4.185) can be rewritten so
as to contain a double curl term but in a different metric, the one pulled-back by the
transformation.8

8The entire argument applies equally well to another second order operator—the Laplacian written
as div grad. There is no reason an arbitrary diffeomorphism will preserve harmonic functions. But
transformed harmonic functions are still harmonic is we redefine the Laplacian using the trans-
formed metric. This simple idea is the key to all recent work on cloaking transformations.
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4.4.5 The Ellipsoidal Mie Decomposition for Incompressible
Vector Fields

Let us now apply this method to an ellipsoidal shell. The key point now is to choose
a reasonable transformation U. In the oblate spheroidal case, Schmitt and Jault
(2004) have chosen the simplest such diffeomorphism—in our notation, a simple
function r0 ¼ FðrÞ for the radial coordinate and the identity for the angular coor-
dinates. This transforms an oblate spheroid to a sphere by contraction in the x; y
plane and an expansion along the z axis.

We have tried the same option for the ellipsoidal case to no avail—while we
were able to obtain a family of incompressible fields, these were not at all adapted
to an expansion in ellipsoidal surface harmonics. The winning solution is to use an
affine transformation of the surface of an ellipsoid to that of a sphere (see Arscott
1964) given by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k02 cos2 h

p
cos/ ¼ sin h0 cos/0

sin h sin/ ¼ sin h0 sin/0

cos h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 cos2 /

p
¼ cos h0

8<
: ð4:186Þ

One can easily calculate h0;/0 from these equations to obtain the full transfor-
mation ðr0; h0;/0Þ ¼ Uðr; h;/Þ:

r0 ¼ FðrÞ ¼ rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ h22

q� �
=2

h0 ¼ Gðh;/Þ ¼ cos�1 cos h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 cos2 /

p� �
/0 ¼ Hðh;/Þ ¼ tan�1 tan/

sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k02 cos2 h

p
� � ð4:187Þ

The specific choice for the function FðrÞ shown here is essentially that of
Schmitt and Jault (2004). We have been guided by the following criteria—it should
have a finite limit for r ¼ 0 corresponding to the focal ellipse of the confocal family
(with the exception of the prolate case with h2 ¼ 0 where the focal ellipse
degenerates to a segment), it should have everywhere a nonzero derivative and it
should tend to the identity at large values of r when the confocal ellipsoid tends to a
spherical form. Actually, we will see that the final result does not depend explicitly
on the choice of FðrÞ and any single valued function will do as long it provides a
diffeomorphism for all values of h1; h2.

We are now able to calculate the gradient of the transformation (4.187)

rU ¼
@rF 0 0
0 @hG @/G
0 @hH @/H

0
@

1
A ð4:188Þ
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and the Jacobians (4.175) and (4.176):

Jn ¼ hr0hh0h/0 ¼ r02 sin h0; Jg ¼ hrhhh/

JU ¼ @rFðk2 sin2 /þ k02 sin2 hÞ
shs/ðsin2 hþ k2 cos2 h cos2 /Þ1=2

ð4:189Þ

where sh; s/ are functions defined in (4.153). Note for future use that:

sin h0 ¼ ðsin2 hþ k2 cos2 h cos2 /Þ1=2 ð4:190Þ

so that the full Jacobian is:

JW ¼ @rFr02ðr2 þ h22Þ1=2ðr2 þ h21 þ h22Þ1=2
ðr2 þ h22 cos2 bÞðr2 þ h22 þ h21 sin

2 /Þ ð4:191Þ

It is apparent in this final expression that W is really a diffeomorphism for any
value of h1; h2. We are ready now to apply the program outlined above and we start
with the expansion field with contravariant components ðG=r02; 0; 0Þ, which by
pull-back gives us, by using (4.185) and (4.191):

Vr ¼ Gðr2 þ h22Þ1=2ðr2 þ h21 þ h22Þ1=2
ðr2 þ h22 cos2 bÞðr2 þ h22 þ h21 sin

2 /Þ ; Vh ¼ V/ ¼ 0 ð4:192Þ

To compare this to previous known results, let us calculate the physical com-
ponents of this expansion field:

~Vr ¼ 1
hr

Vr ¼ G

ðr2 þ h22 cos
2 bÞ1=2ðr2 þ h22 þ h21 sin

2 /Þ1=2
ð4:193Þ

while the other two components are zero and where the tilde is a reminder that these
are the physical components. This is already a remarkable result and is a good
example of the power of the Piola transform method. In the spherical case with
h1 ¼ h2 ¼ 0 it reduces to the well-known Gurson spherical expansion field. In the
oblate spheroidal case with h1 ¼ 0 and making the change of variable r ¼ h2 sinh k
we obtain:

~Vk ¼ G

h22ðsinh2 kþ cos2 bÞ1=2 cosh k
ð4:194Þ

which is precisely (modulo some scaling factor) the expansion field appearing in the
Lee and Mear (1992) oblate family. The same is true for the prolate case. Also it is
easy to show that the expansion field (4.193) corresponds exactly to the harmonic
gradient as required by Hodge theory. This is rather unexpected as in general the
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Piola transform method does not preserve harmonic functions or vectors. A final
observation is that the expansion field (4.193) does not respect conditions of
homogeneous strain rate on any confocal ellipsoid; nevertheless it must be present
in all velocity fields that change the volume of the void.

Let us now consider the curl part of the Mie decomposition for the ellipsoidal
case. We start with the vector u given in (4.184) and calculate its covariant
components:

ður0 ; uh0 ; u/0 Þ ¼ ðr0t; r0

sin h0
@/0p;�r0 sin h0 @h0pÞ ð4:195Þ

We use now the Piola “curl” transform (4.180) to pull back this vector. This
gives:

ðUr;Uh;U/Þ ¼
@rF 0 0
0 @hG @hH
0 @/G @/H

0
@

1
A ur0

uh0
u/0

0
@

1
A ð4:196Þ

Let us first consider the radial component:

Ur ¼ r0@rFt ¼ FðrÞtðr0; h0;/0Þ@rF � Tðr; h;/Þ ð4:197Þ

where, as announced, we have included the radial part of the transformation in a
new arbitrary function. For the angular components, we need to transform all
derivatives in the expression (4.195) for u from the ðr0; h0;/0Þ variables to the
ðr; h;/Þ variables. In order to make this more transparent, let us introduce the
following matrices:

J ¼ @hG @/G
@hH @/H

� �
; M ¼

1
sin h0 0
0 sin h0

� �
; R ¼ 0 1

�1 0

� �
ð4:198Þ

Then one can show that the angular part of the vector field U is given by:

ðUh;U/Þ ¼ JTMRJ�T r0@hp
r0@/p

� �
ð4:199Þ

Similar to the radial component, let us first define a new arbitrary function by:
Pðr; h;/Þ ¼ r0pðr0; h0;/0Þ. After a lengthy but elementary calculation, we obtain for
the matrix product above the following simple expression:

JTMRJ�T ¼ 0 s/
sh� sh

s/
0

� �
ð4:200Þ

Combining these results we obtain for the vector field U the following covariant
components:
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ðUr;Uh;U/Þ ¼ T ;
s/
sh

@/P; � sh
s/

@hP

� �
ð4:201Þ

where T ;P are arbitrary functions. It is easy now to calculate the curl of this vector
field. Passing from natural components to physical ones and adding the expansion
field (4.193), we obtain the sought after Mie decomposition for the ellipsoidal case:

~Vr ¼ GþL2ellP

ðr2 þ h22 cos
2 bÞ1=2ðr2 þ h22 þ h21 sin

2 /Þ1=2

~Vh ¼ 1
hrh/

@/T þ sh
s/
@2
rhP

� �
~V/ ¼ 1

hrhh
�@hT þ s/

sh
@2
r/P

� �

8>>><
>>>:

ð4:202Þ

Here, the functions sh; s/ are defined by (4.153), while the second order surface
operator L2ell is defined by (4.169). We recall these definitions for ease of use:

L2ell ¼ � sh@hðsh@hÞþ s/@/ðs/@/Þ
k02 sin2 hþ k2 sin2 /

sh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k02 cos2 h

p
; s/ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 cos2 /

p
Let us now consider boundary conditions for the velocity field V imposed on

some ellipsoid surface confocal with the reference ellipsoid and how these deter-
mine the functions P; T on the same surface.

First, it is easy to derive from (4.202) the following equations:

Gþ L2ellP ¼ m2m3 ~Vr

L2ellT ¼ � s/
sr

m3
m2

1
@/ðm1m2

2
~VhÞþ sh

sr
m2
m2

1
@hðm1m2

3
~V/Þ ð4:203Þ

where m1;m2;m3; sr are defined in (4.153). We know that the surface operator L2ell
admits ellipsoidal surface harmonics as eigenvectors. This invites us to decompose
both functions P; T as sums of ellipsoidal surface harmonics multiplied by some
arbitrary functions of the pseudo-radial variable:

Pðr; h;/Þ ¼
X1
n¼1

X2nþ 1

m¼1

PnmðrÞYm
n ðh;/Þ

Tðr; h;/Þ ¼
X1
n¼1

X2nþ 1

m¼1

TnmðrÞYm
n ðh;/Þ

ð4:204Þ

Plugging these expressions in the Mie decomposition (4.202) we obtain:

~Vr ¼ 1
m2m3

Gþ nðnþ 1ÞPnmYm
n

� �
~Vh ¼ 1

hrh/
Tnm@/Ym

n þ sh
s/
@rðPnmÞ@hYm

n

h i
~V/ ¼ 1

hrhh
�Tnm@hYm

n þ s/
sh
@rðPnmÞ@/Ym

n

h i
8>><
>>: ð4:205Þ
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where there is an implicit sum over repeated indices n;m ¼ 1; . . .2nþ 1 and we
recall that each ellipsoidal surface harmonic is a product of Lamé polynomials:

Ym
n ðh;/Þ ¼ Em

n ðcos hÞEm
n ðcos/Þ ð4:206Þ

The functions PnmðrÞ; TnmðrÞ can be further decomposed as series of functions of
the pseudo-variable r: We can use either some orthonormal basis like Chebyshev
polynomials or Lamé functions of first and second kind, in a way similar to the
prolate and oblate cases treated in Lee and Mear (1992), Gologanu (1997). In the
next section we will propose a simpler decomposition.

The ellipsoidal Mie decomposition (4.205) reduces, in the spherical case, to the
usual Mie decomposition. In the oblate and prolate spheroidal cases, it is a genuine
generalization of the Lee and Mear (1992) family of axisymmetric incompressible
vector fields to the general, non-axisymmetric case. We recall that the general case
for an oblate spheroidal geometry was already obtained by Schmitt and Jault
(2004). The ellipsoidal case is completely new to our knowledge.

4.5 Calibration of Gurson Type Models via the Mie
Decomposition

We use now the ellipsoidal Mie decomposition of incompressible vector fields to
determine, via a spectral method, the macroscopic yield criterion for an ellipsoidal
unit cell, containing a confocal void and made of a rigid-plastic material with
general anisotropic plasticity. In particular, we obtain a calibration method for
Gurson-type models by using in the spectral method a small number of vector fields
approximating the velocity field describing the expansion of the cavity.

4.5.1 The Homogenization Limit Analysis Problem

Consider an ellipsoidal void V in a confocal unit cell X: We use an ellipsoidal
coordinate system with Tabanov’s natural ellipsoidal coordinates defined by
Eqs. (4.146), consisting in a pseudo-radial variable r and two pseudo-angular
variables h;/: The void surface and the outer surface of the cell are defined by
r ¼ r1 and r ¼ r2, respectively, while the focal ellipse is given by r ¼ 0: The
demi-axis along x; y; z of a generic confocal ellipsoid defined by r ¼ cst: are

ðr2 þ h21 þ h22Þ1=2; ðr2 þ h22Þ1=2 and respectively r. The matrix is made of a
rigid-plastic material with an arbitrary, pressure-independent and anisotropic yield
criterion defined by some convex region j in stress space with dissipation function
w. Then the homogenization problem in the kinematic formulation is to find the
macroscopic yield region K via the macroscopic dissipation function given by:
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WðDÞ ¼ inf
v

1
jXj

Z
XnV

wðdðvÞÞ

�������v ¼ Dxj@X; divv ¼ 0

8><
>:

9>=
>; ð4:207Þ

The ellipsoidal Mie decomposition (4.205) of the velocity field automatically
assures the incompressibility condition. Taking a partial sum of the infinite series in
the Mie decomposition v ¼ akvðkÞ and replacing the triple integral in (4.207) with a
Gaussian quadrature with points xi and weights xi, we obtain:

WaðDÞ ¼ inf
ak

X
i

xiw
X
k

akdðvðkÞðxiÞÞ
 !�����La ¼ s

( )
ð4:208Þ

where the linear constraints La ¼ s arise from the boundary conditions v ¼ Dxj@X
and will be explicitly given in the next subsection. Note that this is a convex
minimization problem with linear constraints that depend linearly on D; and
therefore the approximate macroscopic dissipation function Wa will be automati-
cally convex. There are several possible choices for the 3D Gaussian quadrature in
(4.208): either a tensorial product of one-dimensional Gaussian quadratures in each
variable r; h;/ or the product of a Gaussian quadrature in r with a Lebedev type
quadrature for h;/ (see Lebedev and Laikov 1999). The physical components of
the strain rate dðvÞ in a general orthogonal coordinates ðq1; q2; q3Þ with Lame
coefficients ðh1; h2; h3Þ are:

dii ¼ 1
hi

@vi
@qi

þ P
j6¼i

vj
hihj

@hi
@qj

; i ¼ 1; 2; 3

2dij ¼ hi
hj

@
@qj

vi
hi

� �
þ hj

hi
@
@qi

vj
hj

� �
; i 6¼ j

8><
>: ð4:209Þ

We now show that we can calculate numerically the dissipation function in (4.208),
without the need of an analytic expression. For an arbitrary point x in the matrix, let
d ¼P

k
akdðvðkÞðxÞÞ ¼

P
k
akdðkÞ and let r denote the projection of the direction

d on the microscopic yield convex j: Then, by (4.18) and (4.19), the dissipation
function and its derivative with respect to ak are given by:

d ¼
X
k

akdk; wðdÞ ¼ r : d ¼ prjðdÞ : d;
@w
@ak

¼ prjðdÞ : dðkÞ ð4:210Þ

We note that the above derivative with respect to ak is required by most
numerical solvers for the convex minimization problem (4.208).
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Let us now find the intersections t of some arbitrary direction tR in stress space
with the yield surface or boundary of the macroscopic yield convex. For all tR
located inside the yield convex, the definition of the dissipation function gives:

ðtRÞ : D�WaðDÞ: ð4:211Þ

Using the homogeneity of degree 1 of Wa; it is easy to show that:

t ¼ inf
R:D¼1

WaðDÞ ¼ inf
ak

L0a¼s0

X
i

xiw
X
k

akdðvðkÞðxiÞÞ
 !( )

ð4:212Þ

where the linear constraints L0a ¼ s0 are given explicitly in the next subsection.

4.5.2 Boundary Conditions

We now give an explicit treatment of the boundary conditions v ¼ Dx on the outer
boundary of the cell. Let us start with some general expressions, valid for an
arbitrary Dirichlet boundary condition v ¼ u on the external surface.

We have observed that we obtain the simplest expressions if we use natural
covariant components for the vector fields. Considering therefore the ellipsoidal
Mie decomposition of v in covariant components, we obtain, for r ¼ r2:

ur ¼ vr ¼ hr
m2m3

Gþ nðnþ 1ÞPnmYm
n

� �
uh ¼ vh ¼ hh

hrh/
Tnm@/Ym

n þ sh
s/
@rðPnmÞ@hYm

n

h i
u/ ¼ v/ ¼ h/

hrhh
�Tnm@hYm

n þ s/
sh
@rðPnmÞ@/Ym

n

h i
8>><
>>: ð4:213Þ

where PnmðrÞ; TnmðrÞ are arbitrary functions and Ym
n ðh;/Þ are the ellipsoidal surface

harmonics. Using the orthogonality property (4.164) of the ellipsoidal surface
harmonics, the first equation gives directly:

G ¼ sr2
c00

Rp
0

R2p
0

urm2
1

shs/
d/dh;

Pnmðr2Þ ¼ sr2
�cmn

Rp
0

R2p
0

urYm
n m

2
1

shs/
d/dh

ð4:214Þ

where �cmn ¼ nðnþ 1Þcmn are related to the normalization constants from (4.164). The
last two equations in (4.213) provide the following conditions:
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Tnmðr2Þ ¼ 1
�cmn

Rp
0

R2p
0

@ðm2
3u/Þ
@h � @ðm2

2uhÞ
@/

� �
d/dh;

@Pnm
@r ðr2Þ ¼ 1

�cmn

Rp
0

R2p
0

m2
2

s/
@ðshuhÞ

@h � m2
3

sh
@ðs/u/Þ

@/

� �
d/dh

ð4:215Þ

We observe that Dirichlet boundary conditions on the external surface impose
not only well-defined values for all functions Pnm; Tnm on this surface, but also the
derivatives of Pnm with respect to the pseudo-radial variable.

Consider now the particular case where u ¼ Dx with a diagonal macroscopic
strain rate (in the reference frame of the void). The covariant components are:

ur ¼ r2 Dxxs2h cos
2 /þDyy sin2 h sin2 /þDzzs2/ cos

2 h
� �

uh ¼ sc h Dxxq212k
02 cos2 /þDyyq22 sin

2 /� Dzzr2s2/
� �

u/ ¼ sc/ �Dxxq212k
02s2h þDyyq22 sin

2 hþDzzr2k2 cos2 h
� 

8>><
>>: ð4:216Þ

where scb ¼ sinb cos b and we have used the following notations:

a2 ¼ ðr22 þ h21 þ h22Þ1=2; b2 ¼ ðr22 þ h22Þ1=2; c2 ¼ r2: ð4:217Þ

Note that a2; b2; c2 are precisely the demi-axis of the ellipsoidal unit cell, that
sr2 ¼ a2b2 and that K2 ¼ a2b2c2 is proportional (up to a factor of 4p=3) to the
volume of the cell. Plugging (4.216) into (4.214) and (4.215), we obtain right hand
sides that are zero for all n;m with the following exceptions:

G ¼ K2Dm

P20ðr2Þ ¼ K2 ðDzz�DyyÞKþðDyy�DxxÞk02½ �
9k02ðK�1ÞðK þ k2Þ

P22ðr2Þ ¼ K2 ðDzz�DyyÞðK�2Þþ ðDxx�DyyÞk02½ �K
24k02ðK�1ÞðKþ k02Þ

T32ðr2Þ ¼ h21c
2
2ðDzz�DyyÞþ h22a

2
2ðDxx�DyyÞ

90a2b2
@P20
@r ¼ P20ðr2Þ

K2

@ðK2Þ
@r2

� 1
a2b2

Dmh22ðKa22 þ k2c22Þ
3k02ðK�1ÞðK þ k2Þ

@P22
@r ¼ P22ðr2Þ

K2

@ðK2Þ
@r2

� 1
a2b2

Dmh22 ðK�2Þa22�k2c22½ �
8k02ðK�1ÞðK þ k02Þ

ð4:218Þ

Here we have used the following notation:

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4 � k2 þ 1

p
þ 1 ð4:219Þ

Note that these conditions are valid only for 0� k2 � 1=2 due to the following fact.
In calculating Eqs. (4.218), we have used some specially crafted scaling for the
Lame polynomials that respects Tabanov’s principle and gives the correct limit in
the oblate case by the direct substitution k ¼ 0; k0 ¼ 1; h1 ¼ 0: Unfortunately, these
expressions do not respect Tabanov’s principle for the prolate case ðk ¼ 1Þ; where a
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different scaling must be used. One advantage of this division is that we can label
the ellipsoidal surface harmonics in a similar way to the spherical ones:

Y0
2 ¼ Kþ 3k02 cos2 hþ k2�3

2
K�3k2 cos2 /þ k2

2

Y2
2 ¼ 2 K � 3k02 cos2 hþ k02ð Þ cos2 /� K�k2 þ 1

3K

� �
Y�2
3 ¼ 30 sin h cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k02 cos2 h

p
sin/ cos/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 cos2 /

p
8>><
>>: ð4:220Þ

Note that these expressions give the correct limit in the oblate spheroidal case by
direct substitution k ¼ 0; k0 ¼ 1; h1 ¼ 0:

Y0
2 ¼ ð3 cos2 h� 1Þ=2 ¼ P0

2ðcos hÞ
Y2
2 ¼ 3 sin2 h cos 2/ ¼ P2

2ðcos hÞ cos 2/
Y�2
3 ¼ 15 sin2 h cos h sin 2/ ¼ P2

3ðcos hÞ sin 2/

8<
: ð4:221Þ

with Pm
n ðcos hÞ representing the Legendre associated polynomials. The alternate

expressions for the boundary conditions (4.218) and the ellipsoidal surface har-
monics (4.220) valid for 1

2 � k2 � 1 and giving the prolate limit by simple substi-
tution k ¼ 1; k0 ¼ 0; h2 ¼ 0, are given by:

G ¼ K2Dm

P20ðr2Þ ¼ K2 ðDxx�DyyÞKþðDyy�DzzÞk2½ �
9k2ðK�1ÞðKþ k02Þ

P22ðr2Þ ¼ K2 ðDxx�DyyÞðK�2Þþ ðDzz�DyyÞk2½ �K
24k2ðK�1ÞðKþ k2Þ

T32ðr2Þ ¼ h21c
2
2ðDzz�DyyÞþ h22a

2
2ðDxx�DyyÞ

90a2b2
@P20
@r ¼ P20ðr2Þ

K2

@ðK2Þ
@r2

� 1
a2b2

Dmh21ðKc22 þ k02a22Þ
3k2ðK�1ÞðKþ k02Þ

@P22
@r ¼ P22ðr2Þ

K2

@ðK2Þ
@r2

� 1
a2b2

Dmh21 ðK�2Þc22�k2a22½ �
8k2ðK�1ÞðK þ k2Þ

ð4:222Þ

and:

Y0
2 ¼ K�3k02 cos2 hþ k02

2
Kþ 3k2 cos2 /þ k02�3

2

Y2
2 ¼ 2 cos2 h� Kþ k2

3K

� �
K � 3k2 cos2 /þ k2ð Þ

(
ð4:223Þ

where the expression for Y�2
3 is unchanged and has not been repeated. We note that

the two representations (4.220) and (4.223) for the ellipsoidal surface harmonics
give identical results for k ¼ 1=2:

As already noted, the boundary conditions (4.218) or (4.222) are supplemented by:

Pnmðr2Þ ¼ 0; 8ðn;mÞ 6¼ ð2; 0Þ or ð2; 2Þ
@Pnm
@r ðr2Þ ¼ 0; 8ðn;mÞ 6¼ ð2; 0Þ or ð2; 2Þ
Tnmðr2Þ ¼ 0; 8ðn;mÞ 6¼ ð3; 2Þ

8<
: ð4:224Þ
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The above boundary conditions provide directly the linear constraints in the
expression (4.208) of the macroscopic dissipation function as a function of the
macroscopic strain rate. However, when searching for the intersection of the
macroscopic yield surface with some direction R in stress space via the mini-
mization problem (4.212), we need a different approach. The first three equations in
(4.218) can be inverted to obtain the following expressions, all taken at r ¼ r2:

Dxx ¼ G
K2

� 3P20

2K2
ðK þ k2Þð2K � k2 � 3Þþ 4P22

KK2
ðKþ k02Þð2K � k02Þ

Dyy ¼ G
K2

þ 3P20

2K2
ðK þ k2ÞðK þ k2 � 3Þ � 4P22

KK2
ðKþ k02Þ2

Dzz ¼ G
K2

þ 3P20

2K2
ðK þ k2ÞðK � 2k2Þ � 4P22

KK2
ðK þ k02ÞðK � 2k02Þ

ð4:225Þ

The same approach applied to (4.222) gives:

Dxx ¼ G
K2

þ 3P20

2K2
ðKþ k02ÞðK � 2k02Þ � 4P22

KK2
ðK þ k2ÞðK � 2k2Þ

Dyy ¼ G
K2

þ 3P20

2K2
ðKþ k02ÞðK � k2 � 2Þ � 4P22

KK2
ðKþ k2Þ2

Dzz ¼ G
K2

� 3P20

2K2
ðKþ k02Þð2Kþ k2 � 4Þþ 4P22

KK2
ðKþ k2Þð2K � k2Þ

ð4:226Þ

These expressions, when plugged in the last three equations in (4.218) or
(4.222), provide three linear constraints. Among these, two contain the derivatives
of P20;P22. For them, it suffices to replace Dm with A=K2 to obtain the sought after
expressions. For the remaining equation, we obtain:

T32 ¼ 2h22ðKa22 þ k2c22ÞP22

5ðK þ k2Þa2b2K2
� h22 ðK � 2Þa22 � k2c22

� �ðKþ k2ÞP20

20a2b2K2

T32 ¼ 2h21ðKc22 þ k2a22ÞP22

5ðKþ k02Þa2b2K2
� h21 ðK � 2Þc22 � k02a22

� �ðKþ k02ÞP20

20a2b2K2

ð4:227Þ

where the first expression applies to 0� k2 � 1=2: and the second to 1=2� k2 � 1:
A supplementary constraint arises from plugging the same expressions for the
macroscopic strain rate into R : D ¼ 1: For the particular case of a hydrostatic
stress with R ¼ diagð1; 1; 1Þ, this gives the linear constraint:

3G ¼ K2 ð4:228Þ

Some comments are due now. If one searches for a velocity field that respects
conditions of homogeneous strain rate an all ellipsoids confocal with the cavity,
then the boundary conditions (4.218) or (4.222) applied to all r2 provide two
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differential equations for the functions P20;P22 plus the constraints (4.218)1 or
(4.222)1 involving G: Solving these equations, one recovers precisely the velocity
field discovered in Leblond and Gologanu (2008), expressed in covariant compo-
nents in ellipsoidal natural coordinates. Unfortunately, this velocity field has a
relatively complex expression involving elliptic integrals. In the next subsection we
will present a simpler approach for building a large family of velocity fields
describing the expansion of the cavity. A second comment is related to the
off-diagonal components of D. Each such component, if not zero, provides three
supplementary equations for some P2mðr2Þ, its derivative and some T3mðr2Þ. Due to
limited space, we do not give here the full expressions for these equations.

4.5.3 Calibration of Gurson Type Models

We have now all ingredients to search numerically for a “good” velocity field vA

describing the expansion of the cavity. We recall that this velocity field is associated
to a pure hydrostatic stress via the minimization problem:

p ¼ inf
divvA¼0; vA¼Dxj@X

Dxx þDyy þDzz¼1; Dxy¼Dxz¼Dyz¼0

1
jXj

Z
XnV

wðdðvAÞÞ ð4:229Þ

In order to solve this problem we choose vA among the velocity fields described
by the Mie decomposition (4.205) with the only non-zero terms given by
G;P20 rð Þ;P22 rð Þ; T32 rð Þ and with the corresponding ellipsoidal surface harmonics
defined by (4.220) or (4.223). This decomposition assures the incompressibility of
the velocity field. Next, we know that the condition Dxx þDyy þDzz ¼ 1 implies
that G has a fixed value given by (4.228). The values of P20;P22 at r ¼ r2 are
arbitrary, but their derivatives and the value of T32, all at r ¼ r2, are given by
(4.218)5,6 or (4.222)5,6 and (4.227)1 or (4.227)2 respectively. All choices above
correspond to two cases, the first defined by 0� k2 � 1=2 and the second by
1=2� k2 � 1. This family of velocity fields is used to solve the minimization
problem (4.229), or after discretization, the minimization problem (4.212) with the
three linear constraints described above. The only missing ingredient is some
explicit expression for the functions P20ðrÞ;P22ðrÞ; T32ðrÞ of the pseudo-radial
variable. Let PðrÞ be one of these three functions. As mentioned before, a simple
choice for PðrÞ is a finite Chebyshev series in the interval ðr1; r2Þ. A second choice
is given by truncating the following infinite series:

PðrÞ ¼
X1
i¼0

Pir
i þ
X1
i¼1

�Pi

r2 þ h22
� i=2 ð4:230Þ
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The first series in the right hand side of (4.230) gives, when truncated, a simple
polynomial and therefore is equivalent to a finite Chebyshev series; however, the
latter is numerically stable for high degrees, contrary to (4.230). The choice of the
second series in the right hand side of (4.230) has been guided by two criteria. First,
the i-th term in this series should behave like 1=ri for large values of the
pseudo-radial variable (corresponding to an ellipsoid that approaches a sphere).
Second, all terms should have finite limits at r ¼ 0, corresponding to the focal
ellipse, with the exception of the prolate case with h2 ¼ 0 where this ellipse
degenerates to an interval. This is similar to the behaviour of the Lee and Mear
family in the oblate and prolate cases, but has the supplementary advantage that it
does not involve complex functions like the associated Legendre functions of the
second kind.

Once we know an approximate but accurate velocity field vA0 describing the
expansion of the void we use it to determine several points on the macroscopic
Gurson criterion. First, the minimum found when solving (4.229) gives us an
approximation of the hydrostatic stress located on the yield surface. Plugging the
solution vA0 in the expressions (4.225) or (4.226) giving the macroscopic strain rates
Dxx;Dyy;Dzz, we obtain directly the normal to the yield criterion at the hydrostatic
point and therefore the parameters a1 ¼ Dxx; a2 ¼ Dyy; a3 ¼ Dzz: Note that the
condition a1 þ a2 þ a3 ¼ 1 is automatically assured due to Dxx þDyy þDzz ¼ 1
imposed from the start. Next, the same macroscopic strain rates can be used to
determine the two points on the yield criterion with known normal, given by
(4.110) and (4.111). The full determination of these points requires also the mean
strain rates DA;V on the void, due to the velocity field vA0 . These can be calculated
from the definitions (4.109) for an arbitrary velocity field in the ellipsoidal Mie
decomposition but we do not give them here as the resulting expressions involve
complete elliptic integrals involving k2; k02 and therefore do not respect Tabanov’s
principle of having spheroidal limits given by simple substitution. A possible
solution is to search for solutions using Carlson’s symmetric functions. We have
thus found solutions that respect Tabanov’s principle but unfortunately are not
symmetric in the ellipsoid axis as we expected and therefore yield very long
expressions that are not given here. An alternative solution is to use numerical
integration for the mean strain rates on the void. We note also that the same mean
strain rates provide, via Eqs. (4.112), the evolution laws for the shape of the void.

These three points located on the macroscopic criterion and having known
normal give a total of nine equations for the following nine parameters of the
Gurson-type models: k; a1; a2;C11;C12;C21;C22; g1; g2: One can treat this as a
parameter identification problem and solve it by the advanced methods described in
Chapter 1. Using this method we can determine the parameters of a Gurson-type
model as functions of void and unit cell geometries via the porosity f and the focal
parameters h1; h2: One can tabulate these results covering a wide range of
geometries and use interpolation in these tables in order to use the Gurson type
model in a finite element simulation.
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Finally, we need to provide a value for the parameter g; playing a similar role to
the porosity in Gurson-type models. In fact, this parameter is directly related to the
behaviour of the strain rate for the expansion velocity field vA0 and more precisely to
its limits for r ¼ 0 and r ¼ þ1. In our case, the velocity field vA0 is not fixed a
priori, but varies with the geometries of the void and unit cell. The only fixed
component of vA0 is the one related to the harmonic gradient velocity field corre-
sponding to G in the ellipsoidal Mie decomposition. The analysis of the strain rate
of this field is simpler than the one done in Madou et al. (2012a) and based on the
velocity field respecting conditions of homogeneous boundary strain rate on each
confocal ellipsoid (Leblond and Gologanu 2008). However, the results are the same
and we adopt therefore the definition given in Madou and Leblond (2012b):

g ¼ a1b21
a2b2c2

¼ a1b21
K2

ð4:231Þ

This definition gives a non-zero value also in the case where the void reduces to
a crack defined by the focal ellipse. However, in the prolate spheroidal case where
the focal ellipse degenerates to a segment, we have b1 ¼ 0 and therefore g ¼ f ¼ 0;
and the Gurson-type criterion reduces to the yield criterion of the matrix or a
material without voids.

4.6 Conclusions

We have presented a short introduction to Gurson-type models for predicting the
fracture of ductile metals. We continued with an application of some anisotropic
extension of the Gurson-Tvergaard-Needleman model to the prediction of fracture
in a sheet deep drawing simulation, including the identification of material
parameters from tensile tests on sheets. Having concluded that the optimal
Gurson-type model for sheets would consider ellipsoidal voids and non-quadratic
anisotropic yield criteria, we focused on three such advanced yield criteria—Yld91,
Yld2004-18p and BBC2005. We presented new methods based on convex analysis
to derive analytical expressions for the dissipation functions of these yield criteria.
The expressions thus obtained are not fully explicit and require some supplemen-
tary minimizations; however we have shown that such forms are compatible with
the development of Gurson-type models. In the second step we extended Gurson’s
model to non-quadratic yield criteria where the “cosh” term is replaced by some
other function. Unfortunately, we were able to obtain only parametric forms for
these new Gurson type models. In order to calibrate these new models, we have
extended the Lee and Mear family of spheroidal axisymmetric and incompressible
velocity fields to the general ellipsoidal case. The method we used is based on a
Piola transform of the spherical Mie decomposition to a new ellipsoidal Mie
decomposition. This forms the basis of a spectral method to solve the limit-analysis
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problem for an ellipsoidal void in a confocal unit cell. Using this spectral method to
find an approximate solution in the case of a hydrostatic macroscopic stress pro-
vides the optimal velocity field describing the expansion of the cavity. The
knowledge of this velocity field for a given geometry permits the calibration of the
remaining parameters in Gurson-type models. At variance with previous works, we
did not try to fit analytical approximations to the calibrated parameters. For a given
yield criterion, we propose to use our fast calibration to tabulate all parameters as
functions of void geometry and porosity and to use interpolation in these tables in a
finite element simulation. We hope that the new tools and techniques presented in
this Chapter open the way to build Gurson-type models for new anisotropic yield
criteria and general ellipsoidal voids.
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Chapter 5
Advanced Models for the Prediction
of Forming Limit Curves

Dorel Banabic, Dan-Sorin Comsa, Philip Eyckens, Abdolvahed Kami
and Mihai Gologanu

5.1 Failure in Sheet Metal Forming Operations

During the forming offlat sheet metal into a more complex shape, a number of plastic
instabilities may occur subsequently. A ‘plastic instability’ occurs when the zone of
plastic deformation is suddenly confined to a smaller zone. The first plastic instability
which usually occurs in forming processes is the onset of diffuse necking, in which
plastic deformation is confined to a smaller zone, but with typical dimensions that are
still in the order of magnitude of the part’s dimensions. In common industrial practice,
the presence of a diffuse neck in a formed part is considered to be acceptable (Dieter
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1988). The ‘formability’ or ‘forming limit’ is thus determined by the onset of another
type of plastic instability. For most materials and forming processes, this plastic
instability is localized necking and so the terms ‘formability’ and ‘forming limit’ have
been associated with localized necking in the literature.

In the next paragraphs, the different sequences of plastic instabilities which were
found in the literature are described in more detail, giving an overview of the
possible stages in the failure process. In each case, the final step for metal sheets,
which are all ductile materials, is the onset of ductile failure, i.e. the coalescence of
voids (resulting from the processes of void initiation and growth).

5.1.1 Diffuse Necking—Localized Necking—Ductile
Fracture

As often observed in uniaxial tensile tests of sheet metal, diffuse necking is fol-
lowed by localized necking. While the size of a diffuse neck is of the order of
magnitude of the sample width, the width of the localized neck is only of the order
of the sheet thickness (its length being of the order of magnitude of the sample
width). After the onset of localized necking, strain is concentrated within the neck
while the surrounding material returns to the elastic state. Consequently, the
thickness within the neck drops drastically compared to the elastic surrounding.
Localized necking is therefore also known as thinning instability. In the developed
localized neck, a plane strain state exists with zero extension along the neck length
(Marciniak and Kuczynski 1967).

After the onset of localized necking, the failure process can continue with ductile
fracture through void coalescence within the neck, resulting in a cup-and-cone type
of fracture in the terminology of fractography.

5.1.2 Diffuse Necking—Localized Necking—Shear
Instability—Ductile Fracture

As shown in Bird et al. (1987) and Timothy (1989), the appearance of a macro-
scopic shear localization (over multiple grains) within the developed neck is pos-
sible, which is illustrated in Fig. 5.1. In Bird et al. (1987) and Carlson and Bird
(1987), it is observed that shear localization initiates at the free surface within the
neck, and that multiple shear bands can be found within a single localized neck.

5.1.3 Diffuse Necking—Shear Instability—Ductile Fracture

Various authors have reported sheet metal failure without localized necking.
Examples that were found in the literature all deal with aluminium alloy sheets.
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In Duncan and Bird (1978), the metallographic cross-section of one aluminium
alloy shows a well-developed neck after tensile testing, while another alloy shows
no necking but instead failure has occurred along a plane at oriented at about 45° to
the sheet normal. A very similar observation is presented in Chien et al. (2004), but
on two other aluminium alloys. Failure along the plane at 45° to the sheet normal is
assumed to be the result of shear localization along this direction.

Also inHu et al. (2008) these two types offailure are also seen, but in this case for the
same alloy either after direct chill casting (DC) or strip casting (CC). The distribution of
second phase particles is different under these casting conditions: for DC, particle
distribution ismore homogeneous and necking is pronounced in a tensile test, while for
CC, more stringers of particles are present and a shear-type of failure is seen. Lademo
et al. (2008) present two different failure types for an extruded and subsequently cold
rolled AlZnMg alloy. In the fully annealed condition, uniaxial tensile test specimens
showed shear bands within a developed neck, while after partial annealing parallel and
intersecting shear bands over the sheet thickness and oblique to the sheet normal
direction were observed. The authors attribute this difference to the strong anisotropy
of the sheet in the partially annealed condition, resulting from the retained b-fibre
deformation texture, while fully annealed, the sheet has a texture close to random.

Sang and Nishikawa (1983) present the fracture profile of a number of alu-
minium alloys under plane strain stretching at various temperatures. The observed

Fig. 5.1 Through-thickness
section of ferrite-austenite
steel deformed by plane strain
punch stretching. Failure
develops along two
intersecting
through-thickness,
sample-scale shear bands
(Carlson and Bird 1987)
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fracture evolves from a shear-type fracture with no or small necking at low tem-
peratures to a highly pronounced neck with cup-and-cone fracture at higher tem-
peratures. The fracture morphology at room temperature depends on the alloy.

In pure bending of sheet metal, a similar failure mechanism is found, although
shear bands do not extent throughout the whole sheet thickness. No references in
the literature were found that report the appearance of localized necking in sheet
under bending. Steninger and Melander (1982) subjected various steel grades to
pure bending tests until failure. It is reported that after a certain homogeneous
deformation of the outer fibres, shear bands appear near the outer surface, in which
cracks are subsequently formed by void coalescence.

5.2 Forming Limit Diagram: Introduction

The formability is the capability of sheet metal to undergo plastic deformation to a
given shape without defects. The defects have to be considered separately for the
fundamental sheet metal forming procedures of deep-drawing and stretching. The
difference between these types of stamping procedures is based on the mechanics of
the forming process (see more details in Banabic et al. (2010a)).

The maximum values of the principal strains e1 and e2 can be determined by
measuring the strains at failure (necking, fracture, wrinkling etc.) on sheet compo-
nents covered with grids of circles. Gensamer (1946) was the first researcher who
performed a thorough analysis of the strain localization phenomena in the case of sheet
metals evolving along different load paths. He published a formability diagram that
could be considered as the precursor of the FLCs. The research in this field was
pioneered byKeeler (1961), Keeler andBackofen (1963) based on the observations of
Gensamer (1946) that instead of using global indices the local deformations have to be
considered (in the Fig. 5.2 is presented the Gensamer diagram reflected in mirror).

Fig. 5.2 The Forming Limit
Diagram defined by
Gensamer presented in mirror

208 D. Banabic et al.



During forming the initial circles of the grid become ellipses. Keeler plotted the
major strains against the minor strains obtained from such ellipses at fracture of
parts after biaxial stretching (e1 [ 0; e2 [ 0Þ (see Fig. 5.3 and Keeler (1978)).

For numerous materials the critical area between the domains has been detected
both by means of laboratory tests and by forming of industrial components. These
measurements were conducted for various materials. The excellent correlation of
the results was a proof that the forming limits in sheet metal forming can be
evaluated very well by determining the Forming Limit Curve (FLC).

Later, Goodwin (1968) plotted the curve for the tension/compression domain
(e1 [ 0; e2\0Þ by using different mechanical tests. In this case, transverse com-
pression allows for obtaining high values of tensile strains like in rolling or drawing.

The diagrams of Keeler (right side) and Goodwin (left side) are currently called
the Forming Limit Diagram (FLD), see Fig. 5.4 and Keeler (1978). Connecting all of
the points corresponding to limit strains leads to a Forming Limit Curve (FLC).
The FLC splits the ‘fail’ (i.e. above the FLC) and ‘save’ (i.e. below the FLC) regions.

The Forming Limit Curve FLC is plotted on a Forming Limit Diagram (FLD).
The intersection of the limit curve with the vertical axis (which represents the plane
strain deformation (e2 = 0)) is an important point of the FLD and is noted FLD0.
The position of this point depends mainly on the strain hardening coefficient and
also on thickness.

Today, depending on the kind of limit strains that is measured different types of
FLD’s are determined: for necking and for fracture, see Fig. 5.5.

From subsequent experimental and theoretical research, even two more types of
FLDs have emerged: the wrinkling limit diagram by Havranek (1977) (see Fig. 5.6)
and the Stress Forming Limit Diagram (SFLD) by Arrieux and Boivin (1987) (see
Fig. 5.7). The latter is not sensitive to the strain path.

In order to extend the application of stress limit curves to a 3D stress state
(presence of through-thickness components of compressive stress), Simha et al.

Fig. 5.3 Forming Limit Diagram defined by Keeler (1978)
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(2007a) has introduced a new concept, namely Extended Stress-Based Limit Curve
(XSFLC). The XSFLC represents the equivalent stress and mean stress at the onset
of necking during in-plane loading. Figure 5.8 shows the three formulations of the
Forming Limit Curve concept, namely: strain-based FLC (eFLC), stress-based FLC
(rFLC) and Extended Stress-Based FLC (XSFLC), respectively. The equivalent
stress and the mean stress are obtained through the expressions

Fig. 5.4 Forming Limit
Diagram defined by Keeler
(1978)

Fig. 5.5 Forming Limit
Diagrams for necking and for
fracture
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req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 � r1r2

q
; ð5:1Þ

rmean ¼ r1 þ r2
3

; ð5:2Þ

where req is the equivalent stress, and rmean the mean stress, which is assumed to be
positive in tension.

Figure 5.8 also presents the loading paths for the three cases: uniaxial stress,
plane strain and biaxial stress. A thorough analysis of the conditions for the use of
the XSFLC as a Formability Limit Curve under three-dimensional loading is pre-
sented in Simha et al. (2007b).

Forming Limit Curves are valid for one particular material alloy, temper and
gauge combination. However material properties vary from batch to batch due to
variation in the production process. Therefor a single Forming Limit Curve cannot
be an exact description of the forming limit. Janssens et al. (2001) have proposed a

Fig. 5.6 Forming Limit
Diagram for wrinkling

Fig. 5.7 Stress Forming
Limit Diagram defined by
Arrieux and Boivin (1987)
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more general concept, namely the Forming Limit Band (FLB) as a region covering
the entire dispersion of the Forming Limit Curves (Fig. 5.9).

5.3 Experimental Formability Tests

The FLC should cover the entire deformation domain specific to the sheet metal
forming processes. In general, the strain combinations span between those induced
by uniaxial and equibiaxial surface loads. The subsequent discussion will insist on
the experimental methods commonly used for investigating the deformation domain

Fig. 5.8 Schematic of the Strain-Based Forming Limit Curve (eFLC), the Strain-Based Forming
Limit Curve (rFLC) and the extended Strain-Based Forming Limit Curve (XSFLC) (Simha et al.
2007b)

Fig. 5.9 Forming Limit
Band (FLB) for two steel
grades (Janssens et al. 2001)

212 D. Banabic et al.



of the FLCs. First an overview is given of some experimental techniques designed
for the determination of the whole or a partial forming limit diagram (FLD), i.e.
Nakazima tests, Marciniak, tests stretch-bending tests, hydraulic bulging tests and
tests performed in a tensile test machine (see more details in Banabic et al. (2010a).
After the experimental formability techniques, experimental results on the influence
of different factors (sheet curvature, thickness, temperature and strain rate on
formability are discussed.

5.3.1 An Overview of Experimental Formability Tests

The most used procedures for the experimental determination of the FLCs are those
based on the punch stretching principle. Keeler (1961) was the first researcher who
adopted such a method. He used circular specimens and spherical punches with
different radii in order to modify the load path. In general, the punch stretching test
developed by Keeler is able to investigate only the right end of the tension-tension
FLC branch. Hecker (1972) extended Keeler’s methodology to the whole
tension-tension domain by improving the lubrication of the contact surface between
punch and specimen. A notable development of this experimental procedure is due
to Nakazima and Kikuma (1967). He used a hemispherical punch having a constant
radius in combination with rectangular specimens with different widths (Fig. 5.10).

In this way, Nakazima was able to explore both the tension-compression and the
tension-tension domains of the FLC. The Nakazima forming limit test is the most
widely-spread method for experimental determination of the FLD. It uses a
hemispherical punch with large diameter (in the order of 100 mm) to deform a
clamped specimen until failure. Due to the punch curvature, a strain gradient exists
in the sheet thickness direction, and also in the plane of the sheet. By using circular
specimens with lateral notches, Hasek (1978) removed the main disadvantage of
Nakazima test, namely the wrinkling of the wide specimens. Under biaxial

Fig. 5.10 Schematic view of the Nakazima test
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stretching, the largest straining is not necessarily found at the punch apex (Keeler
and Brazier 1975). The strain mode is determined by choosing the specimen width
and/or lubrication conditions (Charpentier 1975). It was early recognised that the
experimental determination of a FLC through the Nakazima test was prone to
various test conditions such as punch geometry, lubrication conditions and limit
strain measurement method. Consequently, several laboratory procedures were
proposed for comparison purposes of different materials, such as the CRM-method
(Bragard 1989). In this method, the limit strains are determined by a parabolic fit of
the non-homogeneous strain field after the onset of necking. The use of Digital
Image Correlation (DIC) for use of in-process strain measurement on a surface of
the sheet, results in a more automated and thus less user-dependent measurement of
the necking strains, as discussed in Geiger and Merklein (2003). Through DIC
measurements, a relative small non-linearity of the strain path in the Nakazima test
is found in Leppin et al. (2008): due to the hemispherical punch, a small initial
equibiaxial strain is found on the convex sheet surface, independent of the sheet
geometry. As a result, FLC0 determined from the Nakazima test is slightly shifted to
the right in the FLD.

In the Marciniak forming limit test, first described in Marciniak et al. (1973), a
punch with flat bottom deforms the sheet until failure in the flat part of the sheet
occurs. Failure at the punch edge is avoided through use of an auxiliary sheet with a
hole with appropriate dimensions in between the punch and test sheet. The flat
region of the test sheet deforms homogeneously, except in the site where strain
localization takes place. In the original paper, the test and auxiliary sheets are fully
clamped around the punch, and the strain mode is determined by the punch
geometry (having a circular, elliptical or rectangular bottom face). Grosnostajski
and Dolny (1980) improved Marciniak’s test by changing the geometry of the
specimen and carrier blank.

A standardized procedure for determination of the FLC based on Nakazima and
Marciniak tests, using a 100 mm diameter cylindrical or hemispherical punch
respectively, is found in ISO norm 12004 (2008). Various deformation modes are
achieved by different sheet sample geometries. Additional information on the this
standard can be found in Hotz and Timm (2008). In Vegter et al. (2008), the use of
a rubber disc in the tribological system in the Nakazima test is analyzed through FE
simulations. Although not described in the ISO norm 12004, it is quite common to
use such a disc in order to achieve the highest strains and thus the neck at the apex
of the Nakazima punch, a condition which is required in this norm.

In stretch-bending tests, a rectangular blank is clamped at two opposite edges
and deformed under a cylindrical punch which has its axis along the direction of the
clamped sheet edges. The punch diameter can vary from the order of the sheet
thickness much larger values. The distribution and evolution of the strain field in
stretch-bending can be quite complex. Uko et al. (1977) presents experimental
results for HSLA steel under stretch-bending in which the inside surface thickness
strain changes from compressive to tensile during testing. The observed deforma-
tion mode is near-plane strain (small negative minor strains).
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The variability of sheet formability and sheet formability testing for a standard-
ized stretch-bending test, named OSUFT, is explored in Karthik et al. (2002).
Sensitivity of numerous parameters (the hold-down force, sheet thickness, sample
width, deformation speed, lubrication conditions and seasoning of the tooling) to the
punch stroke at failure was investigated. The variability of this test between different
test laboratories was shown to be much less compared to Nakazima tests using
plane-strain samples, making it more useful for material comparison purposes.

In Kitting et al. (2008), micrographic cross-sections are shown of failed sheet
deformed through stretch-bending with varying punch radii. It can be seen that the
double-sided neck observed at large radii changes into a single-sided neck at the
convex sheet side for smaller radii. Also, punch penetration in the sheet can be seen
in case the punch radius is of the order of the sheet thickness.

The positive-positive region (right branch) of the FLC can be reproduced in a
hydraulic bulging device equipped with dies having circular or elliptic apertures.
Different load paths belonging to the tension-tension domain result by varying the
eccentricity of the elliptic aperture (Ranta-Eskola 1979). In hydraulic bulging, a
fully clamped sheet is deformed through a die with circular or elliptical aperture
through fluid pressure, usually oil. The deformation mechanism in hydraulic bulge
testing with circular die aperture has been experimentally studied by Ranta-Eskola
(1979). It is shown that at the bulge apex, sheet thinning is maximal, so it is the
preferential site for plastic instability and failure. It is also pointed out that the sheet
assumes a spherical shape at the apex, although the strain state can differ from
equibiaxial loading due to in-plane anisotropy.

Forming limit tests in tensile test machines have been proposed for deformation
modes of the left-hand side of the FLD. The uniaxial tension of flat specimens
having circular notches (proposed by Brozzo and de Lucca (1971)) allows the
exploration of the tension-compression range (left branch of the FLC). By using
relatively wide specimens, it is also possible to reach the plane strain point. In Sang
and Nishikawa (1983) and later in Timothy (1989), a plane strain state in a tensile
test machine is obtained through the use of a clamping device with knife edges to
prevent deformation in the width direction. Later, a methodology to obtain the full
left-hand side of the FLD from tensile test specimens with different geometries has
been proposed by Holmberg et al. (2004). As a conclusion, the uniaxial tension is
suitable only for investigating the positive-negative domain of the FLC.

Figure 5.11 compares the results provided by different experimental methods
developed in the seventh and eighth decades of the previous century. One may
notice that none of those procedures are able to reproduce the whole deformation
domain of the FLC. Aiming to overcome this drawback, as well as the discrepancies
of the limit strains provided by different methodologies, a specialized IDDRG
workgroup elaborated a standard proposal for the FLC determination recom-
mending the use of the Nakazima or Marciniak tests. The proposal issued by
IDDRG was subsequently adopted at international level in the form of the ISO
12004 standard ISO (2008). A description of the experimental procedures analyzed
by the IDDRG workgroup and their comparison by means of a “robin test” per-
formed in different laboratories participating in the standardization activity is given
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in Hotz and Timm (2008). A presentation of the determination of the FLCs is
described in Geiger and Merklein (2003).

Banabic et al. (2013) proposed a new procedure for the experimental determi-
nation of the FLCs. The methodology is based on the hydraulic bulging of a double
specimen (Fig. 5.12).

The upper blank has a pair of holes pierced in symmetric positions with respect
to the centre, while the lower one acts both as a carrier and a deformable punch. By
modifying the dimensions and position of the holes, it is possible to investigate the
entire deformation range of the FLC. Figure 5.13 provides a synthetic presentation
of the numerical results obtained in the case of the AA6016-T4 aluminium alloy.
The results provided by the hydraulic bulging experiments performed with the same
geometries of the specimens are also plotted on the diagram. One may notice a very
good agreement between the numerical simulation and the experimental data, as
well as the fact that the characteristic strain paths are closed to linearity in all cases.

The most important advantages of the method are the capability of investigating
the whole strain range specific to the sheet metal forming processes, simplicity of
the equipment, and reduction of the parasitic effects induced by the friction, as well
as the occurrence of the necking in the polar region. The comparison between the
FLCs determined using the new procedure and the Nakazima test shows minor
differences. Figure 5.14 compares the FLCs obtained using the methodology pro-
posed by the authors and the Nakazima test (according to the specifications of the
international standard ISO 12004-2). In both cases, the limit strains have been
measured using the ARAMIS system (Banabic et al. 2013).

5.3.2 Experimental Formability Observations Concerning
the Influence of Sheet Curvature

A comparative study between the Nakazima and Marciniak tests for aluminium
killed steel, Brass and cold rolled aluminium (Ghosh and Hecker 1975) showed a
clear trend of higher formability determined from the Nakazima test. It is however

Fig. 5.11 FLCs determined
using different experimental
methods: 1—Hasek; 2—
Nakazima; 3—uniaxial
tension; 4—Keeler; 5—
hydraulic bulge test

216 D. Banabic et al.



preliminary to conclude from this study that sheet curvature during forming is the
only reason for this since it was chosen to reduce the sheet thickness in the
Nakazima test instead of using an auxiliary sheet.

In Levy (2002), an empirical law is presented for a number of steel grades to
assess the increase in formability in sheet material after it has been subjected to a
form of bending, being multiple bending during drawbead flow or bending
occurring at corner radii of press tooling. As a rule of thumb, it is concluded that for
material which has been subjected to this kind of stretch-bending, the FLD can be
shifted upwards by an amount equal to 60 % of the thinning strain that was
achieved in the drawbead or under small tool corners.

The beneficial effect of simultaneous bending and unbending during plane strain
stretching was shown in Emmens and van den Boogaard (2008), in which a tensile

Fig. 5.12 Schematic view of the new formability test

Fig. 5.13 Strain paths
obtained in the hydraulic
bulge tests: comparison
between the numerical
simulation and experimental
data
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test specimen was additionally subjected to small bending strains under three
moving rollers.

5.3.3 Experimental Formability Observations Concerning
the Influence of Sheet Thickness

The influence of the sheet thickness on the limit strains has been studied by
Haberfield and Boyles (1973), Romano et al. (1976), Hiam and Lee (1978),
Kleemola and Kumpulainen (1980) etc.

The plane strain intercept of the FLC (denoted FLC0), was already in the 1970s
found to be dependent on the sheet thickness for a number of hot and cold rolled
steels by Keeler and Brazier (1975), resulting in higher limit strains for thicker
sheets.

Possible influencing factors which result in a general higher forming limit of
thicker sheets are discussed in Marciniak (1977). The factors that depend on sheet
thickness include through-thickness gradients of strain, stress and triaxiality, fric-
tion forces, tool contact pressure, and sheet metal homogeneity.

In Karthik et al. (2002), a standardized stretch-bend test (OSUFT) was used to
show that thicker sheets failed at higher punch strokes, even though less draw-in
under the drawbeads occurred for thicker sheets.

The influence of sheet thickness on the FLD is characterized by the following
relationships Tisza and Kovács (2012):

• the FLD for necking depends on sheet thickness (t0) (see Fig. 5.15);
• as the thickness rises, the curve rises on the plot (e1; e2);
• The influence is high for pure expansion and vanishes for pure compression;
• The influence of the thickness on the FLD0 increases linearly;

Fig. 5.14 Forming Limit
Diagram of the AA6016-T4
alloy
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• Along a linear strain path the rise of the FLD is proportional to the increase of
thickness but this influence vanishes above a critical value.

The engineer can decide if an unsuccessful forming process may be improved by
increasing the sheet thickness. This is especially important if the stress acting
during the forming process is tensile in both principal directions.

5.3.4 Experimental Formability Observations Concerning
the Combined Influence of Sheet Curvature
and Thickness

Ghosh and Hecker (1975) showed that the choice of the experimental method used
for the FLC determination (in-plane versus out-of-plane) influences the position of
the limit curves. The influence of the punch curvature on the stretching limits has
been studied first by Charpentier (1975). In Charpentier (1975) and Demeri (1986),
it is shown that the limit strain is increased by increasing the sheet thickness, or by
decreasing the punch radius in the Nakazima test. It is also observed that the strain
distribution is less homogeneous for smaller punch radii. For the same
non-dimensional bending curvature t/R (the ratio of sheet thickness to punch
radius), it appears that the limit strain increase of a thicker sheet and a smaller
punch radius is higher compared to a thinner sheet stretched under a smaller punch
radius (Charpentier 1975) (see Fig. 5.16) (the experimental data was taken from
Charpentier (1975)). Shi and Gerdeen (1991) performed a theoretical analysis of
this influence using the Marciniak-Kuckzinsky model.

Based on an experimental campaign of punch-stretching of steel alloys with
various punch radii and sheet thicknesses, Tharrett and Stoughton (2003a) proposed
that the strain on the concave side be used for comparison with FLC0 (concave-side
rule), rather than the mid-plane strain which is a more conservative criterion.

Fig. 5.15 Influence of the thickness on the FLC
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However, for two FCC materials (70/30 Brass and AA6010), this method resulted
in an overestimate of the forming limit (Tharrett and Stoughton 2003b).

5.3.5 Experimental Formability Observations Concerning
the Influence of Temperature

The influence of the temperature on the limit strains was studied first by Lange
(1975) and later by Ayres and Wenner (1978), Kumpulainen et al. (1983), van den
Boogaard (2002), Li and Ghosh (2004), Abedrabbo et al. (2006), etc. According to
these researchers, the temperature has a different influence on the formability of
different metallic alloys. For example, the formability of the AA 5754 alloy has a
significant increase when the temperature rises even with small amounts (from 250
to 350 °C) (Fig. 5.17 and Li and Ghosh (2004)), while temperature variations in the

Fig. 5.16 Influence of punch curvature on the FLC (Charpentier 1975)
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same range have a very little influence on the formability of the AA 6111-T4 alloy
(Fig. 5.18 and Li and Ghosh (2004)). The increase of the formability by raising the
temperature of the material is frequently used in the case of the sheet metals having
a poor formability at room temperature (some aluminium or magnesium alloys,
high-strength steels, etc.).

5.3.6 Experimental Formability Observations Concerning
the Influence of Strain Rate

Drewes and Martini (1976) followed later by Ayres and Wenner (1978) and Percy
(1980) have analyzed the influence of the strain rate on the limit strain. In general,
the increase of the strain rate causes a downward displacement of the FLC, that is a
diminishment of the formability. Such an example is shown in Fig. 5.19 and Percy
(1980) and corresponds to the SPCEN-SD steel. Similar results were also obtained
by Ayres and Wenner (1978). On the other hand, more recently, Balanethiram and
Daehn (1994) have reported a significant increase of the formability when the strain
rate is also increased for an OFHC copper. Gerdooei and Dariani (2009) have
explained this effect based on the Johnson-Cook law. The different behaviour of the
metallic materials from this point of view is a consequence of the different values of
the strain-rate sensitivity index, as well as of the different mechanical response
when the strain rate is modified.

Fig. 5.17 Influence of the
temperature on the FLC for
the 5754 aluminium alloy (Li
and Ghosh 2004)
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Fig. 5.18 Influence of the
temperature on the FLC for
the 6111-T4 aluminium alloy
(Li and Ghosh 2004)

Fig. 5.19 Influence of the
strain-rate on the FLC for
SPCEN-SD steel (Percy
1980)
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5.4 Forming Limit Models

Various theoretical models have been developing for the calculation of forming
limit curves (Fig. 5.20). The first ones were proposed by Swift (1952) and Hill
(1952) assuming homogeneous sheet metals (the so-called models of diffuse
necking and localized necking), respectively). The Swift model has been developed
later by Hora, so-called Modified Maximum Force Criterion-MMFC, (Hora and
Tang 1994). Marciniak (1965) proposed a model taking into account that sheet
metals are non-homogeneous from both the geometrical and the structural point of
view. Storen and Rice (1975) developed a model based on the bifurcation theory.
Dudzinski and Molinari (1991) used the method of linear perturbations for ana-
lyzing the strain localization and computing the limit strains.

Since the theoretical models are rather complex and need a profound knowledge
of continuum mechanics and mathematics while their results are not always in
agreement with experiments, some semi-empirical models have been developed in
recent years.

In the next sections the most commonly used models are presented briefly with
the focus on those based on the necking phenomenon (Swift and Hill), the
Marciniak-Kuczynski and MMFC models.

Fig. 5.20 Theoretical models used in FLC calculation
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5.4.1 Diffuse Necking Models

5.4.1.1 Swift’s Model

Considère (1885) approached for the first time the problem of plastic instability in
uniaxial tension. In the case of ductile materials, two domains may be distinguished
in the region of plastic straining. In the first domain the hardening influence on the
traction force is stronger than the influence of the cross-section reduction. This is
the so-called ‘domain of stable plastic straining’, being characterized by the fact that
an increase of the traction force is needed in order to obtain an additional defor-
mation of the specimen. In the second domain material hardening cannot com-
pensate the decrease of the traction force due to the reduction of the specimen’s
cross-section. This is the so-called ‘domain of unstable plastic straining’, being
characterized by a decrease of the traction force, although the stress continues to
increase.
The beginning of necking corresponds to the maximum of the traction force. From
the mathematical point of view, this condition can be written in the form

dF ¼ 0 ð5:3Þ

By simple mathematical manipulations the following condition of plastic instability
is obtain:

dr
de

¼ 1þ r ð5:4Þ

Assuming a Ludwik-Hollomon strain-hardening law,

r ¼ k�en ð5:5Þ

condition (5.4) becomes

�e ¼ n ð5:6Þ

Hence, according to Considère’s criterion, a material obeying the
Ludwick-Hollomon hardening law starts to neck when the strain is equal to the
hardening coefficient.

Swift (1952) used the Considère criterion to determine the limit strains in biaxial
tension. He analysed a sheet element loaded along two perpendicular directions and
applied the Considère criterion for each direction. Assuming a strain hardening
described by Eq. (5.5), he obtained the following expressions of the limit strains:
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� �2
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� �2 n ð5:8Þ

where f is the yield function.
By using different yield functions, it is possible to evaluate the limit strains as

functions of the loading ratio a and the mathematical parameters of the material
(hardening coefficient n, anisotropy coefficient r, strain-rate sensitivity m, etc.). As
an example, if the Hill 1948 yield criterion is used, the limit strains are as follows:

e�1 ¼
1þ r 1� að Þ½ � 1� 2r

1þ r aþ a2
� �

1þ rð Þ 1þ að Þ 1� 1þ 4rþ 2r2

1þ rð Þ2 aþ a2
h i n ð5:9Þ

e�2 ¼
1þ rð Þa� r½ � 1� 2r

1þ r aþ a2
� �

1þ rð Þ 1þ að Þ 1� 1þ 4rþ 2r2

1þ rð Þ2 aþ a2
h i n ð5:10Þ

The expressions of the limit strains associated to some other yield criteria (such as
Hill 1979 and Hill 1993) are presented in Banabic and Dannenmann (2001). By
computing the values of e�1 and e�2 for different loading ratios a and recording them
in a rectangular coordinate system e1, e2 the necking limit curve is obtain.

5.4.1.2 Modified Maximum Force Criterion (MMFC)

The ‘Modified Maximum Force Criterion’ (MMFC) for diffuse necking proposed
by Hora and Tang (1994) is based on Considère’s maximum force criterion. The
idea behind the MMFC-Model is to factor in an additional increase in hardening,
which is triggered by the deviation from the initial, homogeneous stress condition
—e.g. uniaxial tension—to the stress condition of local necking and with this to the
point of plane strain (Fig. 5.21).

The mathematical expression of the criterion is:

@r11

@e11
þ @r11

@b
@b
@e11

¼ r11 ð5:11Þ

Herein, b represents the strain rate ratio given by
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b ¼ _e22
_e11

ð5:12Þ

The MMFC model can be written in a form independent of the yield criterion,
i.e. it can accommodate any yield criterion. According to Hora and Tang (1994) the
following relations are defined:

a ¼ r22

r11
; �r ¼ r11

f að Þ ; �e ¼ g að Þe11: ð5:13Þ

The stress ratio a takes the values 0� a� 1; i.e. it ranges from uniaxial tension
a ¼ 0ð Þ to equibiaxial tension a ¼ 1ð Þ: �r is the equivalent stress defined by the
yield criterion which is utilized in the necking analysis, see below. �e is the
equivalent plastic strain.

g að Þ ¼ f að Þ 1þ a � b að Þ½ � ð5:14Þ

The function f að Þ is obtained from:

f að Þ ¼ 1
�r r11 ¼ 1; r22 ¼ að Þ ð5:15Þ

Assuming the instantaneous yield stress is represented by the Swift hardening law,
Hora’s necking criterion then reads (Hora and Tang 1994)

Y 0 �eð Þ � f að Þ � g að Þ � Y �eð Þ � f
0 að Þ � g að Þ � b að Þ

b0 að Þ�e ¼

¼ f að ÞY �eð Þ
ð5:16Þ

with b0 ¼ db=da; f 0 ¼ df=da; Y 0 ¼ dY=d�e:
The primary unknown �e can be easily calculated as the solution of the necking

criterion given by Eq. (5.16) (which is, in general, a non-linear equation) using
Newton’s method. Once the equivalent plastic strain at the onset of necking for a

Fig. 5.21 Basic principle of
the MMFC criterion
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chosen linear strain path is calculated from Eq. (5.16), the major and minor in-plane
strains corresponding to the onset of necking are found from

e�11 ¼
�e�

g
; e�22 ¼ b � e�11 ð5:17Þ

�e� is the root of the necking criterion Eq. (5.16).
In order to take into account the influence of the thickness on the limit strains, an

enhanced MMFC (eMMFC) has been recently proposed by Hora and his
co-workers (Hora et al. 2003). A term is added to the original formulation (5.11).
The eMMFC is expressed as

@r11
@e11

1þ t
2r

þ eðE; tÞ
h i

þ @r11
@b

@b
@e11

� r11 ð5:18Þ

where, t is the thickness, r is the sheet curvature radius and e t;E ¼ constð Þ ¼
E0

t
t0

� �p
represents the influence of the thickness. The parameters E0, p and t0 are

determined using experimental data (Hora and Tong 2006).
Recently, Hora et al. (2013) investigated the influence of the yield loci and

strain-hardening laws on the Forming Limit Curves using the MMFC model.
Different explicit expressions of the MMFC model have been proposed based on
some simplifications. A new formulation of the MMFC model Manopulo et al.
(2015) has been proposed to accommodate this model with the Homogeneous
Anisotropic Hardening (HAH) model proposed by Barlat et al. (2011). Using the
new approach, the role of the distortional hardening on strain localization has been
analyzed.

Banabic and Soare (2009) make more precise statements about the nature of the
numerical instability of the MMFC model, asses the predictive capabilities of the
criterion, and introduce a fitting parameter for its plane strain calibration. In order to
improve the prediction of limit strains using the MMFC model, Paraianu et al.
(2009), (2010) chose to introduce two fitting coefficients in the original model.

The advantage of the MMFC criteria can be found in their independence of the
inhomogeneity assumption. These criteria could be used to calculate FLC for
non-linear strain paths. A drawback of the MMFC models is the fact that they can
be affected by a singularity that emerges if the yield locus contains straight line
segments, as in the case of Barlat et al. (2003) or BBC 2005 (Banabic et al. 2005a)
yield criteria. Banabic et al. (2015) removed this limitation of the MMFC criterion
by modifying the initial formulation. As an example, the singularity noticed by
Aretz (2004) in the case of the AA2090-T3 aluminium alloy is no more present
when using the new formulation proposed in Banabic et al (2015) (see Fig. 5.22).
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5.4.2 Localized Necking Model (Hill’s Model)

In the case of uniaxial tension, the localized necking develops along a direction
which is inclined with respect to the loading direction. Hill (1952) assumed that the
necking direction is coincident with the direction of zero-elongation and thus the
straining in the necking region is due only to the sheet thinning.

The method used for obtaining the limit strains in this case is presented in
Banabic and Dörr (1995). The expressions of these strains are as follows:

e�1 ¼
@f
@r1

@f
@r1

þ @f
@r2

n ð5:19Þ

e�2 ¼
@f
@r2

@f
@r1

þ @f
@r2

n ð5:20Þ

It can be seen that

e�1 þ e�2 ¼ n ð5:21Þ

This is the equation of a line parallel with the second bisectrix of the rectangular
coordinate system e1, e2 and intersecting the vertical axis at the point (0, n).

According to Eq. (5.21), the FLC computed on the basis of the Hill’s model does
not depend on the yield criterion, but only on the value of the hardening coefficient.

Fig. 5.22 FLC of the
AA2090-T3 aluminium alloy
predicted by classic and new
MMFC models
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5.4.3 Assessing the Formability of Metallic Sheets by Means
of Localized and Diffuse Necking Models

5.4.3.1 Constitutive Equations

In what follows, sheet metals are assimilated to orthotropic membranes exhibiting a
rigid-plastic behaviour. Their formability is analyzed in the context of active
loading processes subjected to the constraints

r33 ¼ 0; r12 ¼ 0; r23 ¼ 0; r31 ¼ 0;

_e12 ¼ 0; _e23 ¼ 0; _e31 ¼ 0;
ð5:22Þ

where rij ¼ rji and _eij ¼ _eji respectively denote stress and strain-rate components
expressed in the orthotropy frame defined by the rolling direction RD (axis 1),
transverse direction TD (axis 2), and normal direction ND (axis 3). It is not difficult
to observe that Eqs. (5.22) enforce a particular plane-stress state characterized by
the absence of shearing effects. Under such circumstances, rii and _eii i ¼ 1; 2; 3ð Þ
automatically become principal values of the corresponding stress and strain-rate
tensors. In order to emphasize this significance, the following notations are adopted:

rii ¼ ri; _eii ¼ _ei; i ¼ 1; 2; 3: ð5:23Þ

The rigid-plastic behaviour of sheet metals is described by the yield criterion

�r r1;r2ð Þ ¼ y �eð Þ[ 0; �e� 0; ð5:24Þ

the flow rule

_ei ¼ _�e
@�r
@ri

; _�e[ 0; i ¼ 1; 2; ð5:25Þ

and the incompressibility condition

_e1 þ _e2 þ _e3 ¼ 0: ð5:26Þ

Equations (5.24) and (5.25) operate with the equivalent stress �r (defined as a
strictly convex and first-degree homogeneous function �r ¼ �r r1; r2ð ÞÞ, the equiv-
alent strain �e; and the yield parameter (controlled by a strictly increasing hardening
law y ¼ y �eð ÞÞ. For any load state having the property r1 [ 0; the quantities �r and
@�r=@ri i ¼ 1; 2ð Þ can be written in the form

�r r1; r2ð Þ ¼ r1f að Þ; @�r
@ri

¼ gi að Þ;
a ¼ r2=r1; r1 [ 0; i ¼ 1; 2;

ð5:27Þ
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where

f að Þ ¼ �r 1; að Þ[ 0;

g1 að Þ ¼ f að Þ � af 0 að Þ; g2 að Þ ¼ f 0 að Þ: ð5:28Þ

Equations (5.27) and (5.28) are easily deducible from the following mathematical
properties of the first-degree homogeneous function �r :

�r qr1; qr2ð Þ ¼ q�r r1; r2ð Þ; 8q[ 0; ð5:29Þ

�r r1; r2ð Þ ¼ r1
@�r
@r1

þ r2
@�r
@r2

� ð5:30Þ

With the aim of simplifying the future manipulations of the constitutive relation-
ships, one denotes by g3 the opposite of the sum g1 þ g2 :

g3 að Þ ¼ � g1 að Þþ g2 að Þ½ �: ð5:31Þ

As soon as Eqs. (5.27) and (5.31) are taken into account, Eq. (5.24) becomes

r1 ¼ y �eð Þ=f að Þ[ 0; a ¼ r2=r1; �e� 0; ð5:32Þ

while Eqs. (5.25) and (5.26) get the unified formulation

_ei ¼ _�egi að Þ; a ¼ r2=r1; r1 [ 0; _�e[ 0; i ¼ 1; 2; 3: ð5:33Þ

The models described in the next section make use of the strain-path concept.
This term designates a sequence of load states defined by a relationship between _e1
and _e2: Only strain paths that induce a continuous thinning of the metallic sheet are
relevant to the following analysis. Such a characteristic is enforced by the restriction
_e3\0 or, equivalently, _e1 þ _e2 [ 0 (see Eq. (5.26)). The analysis is further limited
to the case when _e1 is the major principal value of the strain-rate tensor, i.e. _e1 [ 0
and �_e1\_e2 � _e1: Any strain path having these properties can be represented in the
form

_e1 [ 0; _e2 ¼ b_e1; binf\b� bsup; ð5:34Þ

where the bounds of the b—range correspond to the pure shear deformation

_e1 [ 0; _e2 ¼ �_e1 ! binf ¼ �1; ð5:35Þ

and balanced biaxial elongation
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_e1 [ 0; _e2 ¼ _e1 ! bsup ¼ 1: ð5:36Þ

Under conditions (5.34)–(5.36), r1 is a strictly positive quantity. Equations (5.33)–
(5.36) can be thus combined to express b as a function of a i.e.

b ¼ g2 að Þ=g1 að Þ; g1 að Þ[ 0; ainf\a� asup; ð5:37Þ

where the bounds of the a—range result by solving the equations

binf ¼ g2 ainfð Þ=g1 ainfð Þ; g1 ainfð Þ[ 0 ! ainf ; ð5:38Þ

and

bsup ¼ g2 asup
� �

=g1 asup
� �

; g1 asup
� �

[ 0 ! asup: ð5:39Þ

If �r ¼ �r r1; r2ð Þ is strictly convex, Eqs. (5.38) and (5.39) have unique solutions.
Assuming the same strict convexity constraint, one may prove that Eq. (5.37) also
defines a one-to-one mapping a $ b; with ainf\a� asup and binf\b� bsup:

The plane-strain state _e1 [ 0 and _e2¼ 0ð Þ is of special interest for the models
discussed below. In this case, conditions (5.34) enforce

_e1 [ 0; _e2 ¼ 0 ! bFLC0
¼ 0; ð5:40Þ

the associated value of the principal stress ratio being uniquely determined by
Eq. (5.37) rewritten as follows:

g2 aFLC0ð Þ ¼ 0; g1 aFLC0ð Þ[ 0 ! aFLC0 : ð5:41Þ

5.4.3.2 Localized and Diffuse Necking Models

From a theoretical perspective, localized necking is associated with the loss of
carrying capability in a zero-extension plane. According to Hill (1952), the angle
made by this plane with TD is (see Fig. 5.23a, as well as Eqs. (5.34)–(5.36) and
(5.40))

/ ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�_e2=_e1

p
; _e1 [ 0; �_e1\_e2 � 0: ð5:42Þ

One may notice that the square root in Eq. (5.42) has no significance for strictly
positive values of the argument _e2=_e1: In such cases corresponding to biaxial
elongation regimes ð_e1 [ 0 and 0\_e2 � _e1—see Eqs. (5.34)–(5.36) and (5.40)), the
localized necking mechanism is inhibited because zero-extension planes do not
exist.
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For linear strain paths individualized by constant ratios _e2=_e1 in the range
�1\_e2=_e1 � 0; Hill’s model predicts that metallic sheets lose their carrying
capability when

_r1
r1

þ _e3 ¼ 0: ð5:43Þ

With the help of Eqs. (5.32)–(5.41) and (5.43) becomes

h �eð Þ
y �eð Þ þ g3 að Þ ¼ 0; ainf\a� aFLC0 ; a ¼ const., ð5:44Þ

where

h �eð Þ ¼ y0 �eð Þ[ 0 ð5:45Þ

is the hardening modulus. Equation (5.44) can be used to determine the equivalent
strain in the stage of localized necking, for a given value of the parameter a: Let
�eHill að Þ denote the solution of Eq. (5.44). Due to the fact that rupture immediately
follows the loss of carrying capability in the zero-extension plane (Hill 1952),
�eHill að Þ defines a limit value of the equivalent strain.

One assumes that diffuse necking begins as soon as the major cross-sectional
force is maximized, i.e. when (Dorn and Thomsen 1947; Mattiasson et al. 2006)

Fig. 5.23 Localized (a) and diffuse (b) necking domains (see the shaded regions)
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_r1
r1

� _e1 ¼ 0: ð5:46Þ

In the particular case of a linear strain path, Eqs. (5.32)–(5.39) and (5.45) bring
(5.46) to the form

h �eð Þ
y �eð Þ � g1 að Þ ¼ 0; ainf\a� asup; a ¼ const. ð5:47Þ

For a given value of the parameter a; Eq. (5.47) can be used to determine the
equivalent strain accumulated by the metallic sheet up to the onset of diffuse
necking. Let 0�eEMFC að Þ denote1 the solution of Eq. (5.47).

In its evolutionary phase, diffuse necking is described as a transition towards the
plane-strain state at the level of a straight band perpendicular to RD (see Figs. 5.23b
and 5.2). Three hypotheses are formulated with reference to this process
(Mattiasson et al. 2006):

• The linear character of the strain path is preserved in the non-necking regions.
• The minor principal strain-rate remains uniformly distributed in the metallic

sheet, i.e.

_e�2 ¼ _e2: ð5:48Þ

• The major cross-sectional force is kept at a maximum value inside the necking
band, i.e. (see Eq. (5.46) for comparison).

_r�1

r�1
� _e�

1
¼ 0: ð5:49Þ

Equations (5.48) and (5.49) use underlined symbols for the parameters of the
necking band vs. plain symbols for the parameters of the non-necking domains. The
subsequent relationships also adhere to this typographic convention.

With the help of Eqs. (5.28), (5.32)–(5.39), (5.45), Eqs. (5.48) and (5.49) can be
rewritten in the explicit forms

_�e�g2 a�

� �
¼ _�eg2 að Þ; _�e� [ 0; _�e[ 0;

ainf\a� � asup; ainf\a� asup; a ¼ const:;
ð5:50Þ

1EMFC is an acronym for “Extended Maximum Force Criterion” Mattiasson et al. (2006).
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and

h �e�

� �
y �e�

� � � g1 a�

� �2
64

3
75 _�e� �

g2 a�

� �
f a�

� � _a� ¼ 0;

�e� � 0�e að Þ; _�e� [ 0; ainf\a� � asup; ainf\a� asup;

a ¼ const:;

ð5:51Þ

respectively. The necking progress is controlled by Eqs. (5.50) and (5.51), together
with the initial conditions

0�e� ¼ 0�e ¼ 0�eEMFC að Þ; 0a� ¼ a; ainf\a� asup; a ¼ const: ð5:52Þ

The discussion below focuses on describing the manner in which Eqs. (5.50)–
(5.52) are used to determine the limit level of the equivalent strain �eEMFC að Þ that
corresponds to a given value of the parameter a:

If a ¼ aFLC0 ; Eq. (5.50) and condition (5.41) enforce a� ¼ aFLC0 : Under such

circumstances, Eq. (5.51) degenerates to Eq. (5.47), both of them being also
coincident with Eq. (5.44) particularized for a ¼ aFLC0 : The onset of diffuse
necking is thus immediately followed by rupture when the metallic sheet evolves
along a plane-strain path, i.e.

�eEMFC aFLC0ð Þ ¼0 �eEMFC aFLC0ð Þ ¼ �eHill aFLC0ð Þ: ð5:53Þ

On the other hand, if a 6¼ aFLC0 ; Eq. (5.50) and condition (5.41) also enforce
a� 6¼ aFLC0 : In this case, the evolution of the necking band towards the plane-strain

state is possible (see Fig. 5.24). Due to the fact that _�e= _�e� ! 0 for a� ! aFLC0 (see

Eq (5.50) and condition (5.41)), a bottom threshold of the ratio _�e= _�e� must be fixed in

order to avoid numerical difficulties when solving Eqs. (5.50) and (5.51):

_�e= _�e� � g; g ¼ 10�3 	 10�2 ¼ const: ð5:54Þ

If Eq. (5.50) is taken into account, condition (5.54) becomes

g2 a�

� �
=g2 að Þ� g;

ainf\a� � asup; a� 6¼ aFLC0 ; ainf\a� asup;

a 6¼ aFLC0 ; a ¼ const:;

ð5:55Þ

or, equivalently (see also Eqs. (5.52) and Fig. 5.24),
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a� inf � a� � a� sup;

a� inf ¼ a; a� sup ¼ aFLC�g ; if ainf\a\aFLC0 ; a ¼ const:;

a� inf ¼ aFLCþ g ; a� sup ¼ a; if aFLC0\a� asup; a ¼ const:;

8<
:

ð5:56Þ

with aFLC
g determined as follows:

g2 aFLC�g

� �
=g2 að Þ ¼ g; a\aFLC�g\aFLC0 ; if ainf\a\aFLC0 ;

g2 aFLCþ g

� �
=g2 að Þ ¼ g; aFLC0\aFLCþ g\a; if aFLC0\a� asup:

ð5:57Þ

In the case a 6¼ aFLC0 ; the limit value �eEMFC að Þ results by integrating Eqs. (5.50)
and (5.51) over a time interval that corresponds to the evolution of the parameter a�
between the bounds a� inf and a� sup: This task is accomplished in a sequence of imax

steps,

imax ¼ 1þ
a� sup � a� inf

Da�

���
max

66664
77775; Da�

���
max

¼ 10�5 	 10�4 = const: ð5:58Þ

Equation (5.58) uses �b c as a symbol of the floor function. Each step of the
computational procedure starts by incrementing a� (see also conditions (5.52) and

(5.56)):

Fig. 5.24 Transition towards
the plane-strain point of a
normalized yield locus (the
underlined symbols shown in
the sketch denote parameters
of the diffuse necking band)
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ia� ¼ i�1a� þDa� ;
0a� ¼ a; i ¼ 1; . . .; imax;

ainf\a� asup; a 6¼ aFLC0 ; a ¼ const:;

Da� ¼
a� sup � a� inf

imax
sgn aFLC0 � að Þ ¼ const:

ð5:59Þ

Equation (5.59) and many of the subsequent relationships involve quantities with
upper-left index qualifiers. Their significance is explained below:

i�1 � ! State parameters associated to the reference configuration of the metallic sheet
(known quantities either evaluated in the previous computational step or
initialized by means of Eqs. (5.52))

i � ! State parameters associated to the current configuration of the metallic sheet
(except for ia� ; all these quantities are unknowns that must be determined)

For solution purposes, Eqs. (5.50) and (5.51) are also rewritten in the incremental
forms (see also Eqs. (5.52))

i�e� � i�1�e�

� �
g2

ia�

� �
¼ i�e� i�1�e
� �

g2 að Þ;
0�e� ¼ 0�e ¼ 0�eEMFC að Þ; i ¼ 1; . . .; imax;

i�e� [
i�1�e� ;

i�e[ i�1�e; ainf\a� asup;

a 6¼ aFLC0 ; a ¼ const:;

ð5:60Þ

and

h i�e�

� �
y i�e�

� � � g1
ia�

� �2
64

3
75 i�e� � i�1�e�

� �
�
g2 ia�

� �
f ia�

� � Da� ¼ 0;

0�e� ¼ 0�eEMFC að Þ; i ¼ 1; . . .; imax;

i�e� [
i�1�e� ; ainf\a� asup; a 6¼ aFLC0 ; a ¼ const:;

ð5:61Þ

respectively. One may notice that Eq. (5.61) is able to determine i�e� : As soon as

Eq. (5.61) is solved for the unknown i�e� ; Eq. (5.60) allows evaluating
i�e:
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i�e ¼ i�1�eþ i�e� � i�1�e�

� � g2 ia�

� �
g2 að Þ ;

0�e� ¼ 0�e ¼0 �eEMFC að Þ; i ¼ 1; . . .; imax;

ainf\a� asup; a 6¼ aFLC0 ; a ¼ const:

ð5:62Þ

The incremental procedure presented above must be performed imax times. The
solution imax�e obtained in the last step characterizes the formability of the metallic
sheet from the point of view of the diffuse necking model:

�eEMFC að Þ ¼ imax�e; ainf\a� asup; a 6¼ aFLC0 ; a ¼ const. ð5:63Þ

Both �eHill að Þ and �eEMFC að Þ should be used to define a limit value of the equiv-
alent strain for a given value of the stress ratio a:

�e að Þ ¼ min �eHill að Þ;�eEMFC að Þ½ �; if ainf\a� aFLC0 ;
�eEMFC að Þ; if aFLC0\a� asup:

�
ð5:64Þ

Under the assumption a ¼ const., the formability is equally characterized by two of
the principal logarithmic strains (see Eqs. (5.33))

ei að Þ ¼ �e að Þgi að Þ; ainf\a� asup; a ¼ const., i ¼ 1; 2; 3: ð5:65Þ

A common practice is to use e1 ¼ e1 að Þ and e2 ¼ e2 að Þ for this purpose. If e2 ¼
e2 að Þ is a one-to-one mapping,2 e1 ¼ e1 að Þ and e2 ¼ e2 að Þ can be replaced by a
single function e1 ¼ e1 e2ð Þ that defines the Forming Limit Curve.

5.4.4 Marciniak-Kuckzynski (M-K) Model

5.4.4.1 Overview

Shortly after the introduction of the Forming Limit Diagram concept, on the basis of
the experimental investigations concerning the strain localization of some specimens
subjected to hydraulic bulging or punch stretching, Marciniak (1965) and Marciniak
and Kuczynski (1967) developed a limit curve prediction model. This model is based
on the hypothesis of the existence of imperfections in sheet metals. According to
Marciniak’s hypothesis, sheet metals have, from manufacturing, geometrical
imperfections (thickness variations) and/or structural imperfections (inclusions,
gaps). In the forming process these imperfections progressively evolve and the

2This requirement is always met when �r ¼ �r r1;r2ð Þ is a strictly convex function.
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plastic forming of the sheet metal is almost completely localized in them, leading to
the necking of the sheet metal. The realism of this hypothesis has been experi-
mentally analyzed by Azrin and Backofen (1970). This model has been intensely
used and developed by researchers due to the advantages it offers: it has an intuitive
physical background; it correctly predicts the influence of different process or
material parameters on the limit strains; the predictions are precise enough; the
model can be easily coupled with Finite Element simulation software for sheet metal
forming processes. The main drawbacks of this model are: the prediction results are
very sensitive to the constitutive equations used, as well as to the values of the
non-homogeneity parameter; in the case of advanced material models, the equation
system of the model is quite difficult to solve and lacks robustness.

A few years later, Marciniak (1968) made a thorough analysis of the strain
localization phenomenon from the right side of the FLD and extended his initial
model to cover this area. The models have periodically been brought in discussion
by specialists in dedicated symposia (see Koistinen and Wang (1978), Hecker et al.
(1978), Wagoner et al. (1989), Hora (2006), Hora and Volk (2014)) or in special
sections in conferences (NUMISHEET, NUMIFORM, IDDRG, ESAFORM, etc.).
Further developments of the Marciniak models are synthetically described in the
review papers (Banabic et al. 2010b; Banabic 2010).

The analysis of the necking process has been performed assuming a geometrical
non-homogeneity in the form of a thickness variation. This variation is usually due
to some defects in the technological procedure used to obtain the sheet metal. The
thickness variation is generally gentle. However, the theoretical model assumes a
sudden variation in order to simplify the calculations (Fig. 5.25).

Fig. 5.25 Geometrical model
of the M-K theory
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The theoretical model proposed by Marciniak and Kuczynski (1967) assumes
that the specimen has two regions: region ‘a’ having a uniform thickness sa0, and
region ‘b’ having the thickness sb0 (Fig. 5.25). The initial geometrical
non-homogeneity of the specimen is described by the so-called ‘coefficient of
geometrical non-homogeneity’, η, expressed as the ratio of the thickness in the two
regions:

g ¼ sb0
sa0

ð5:66Þ

The strain and stress states in the two regions are analysed with respect to the
principal strain eb1 in region ‘b’ and the principal strain ea1 in region ‘a’. When the
ratio eb1

	
ea1 becomes too high (infinite in theory, above 10 in practice), one may

consider that the deformation of the specimen is localized in region ‘b’ (Fig. 5.26).
The shape and position of the curve ea1(e

b
1) depend on the value of the coefficient

η. If η = 1 (geometrically homogeneous sheet), the curve becomes coincident with
the first bisectrix. Thus this theory cannot model the strain localization for geo-
metrically homogeneous sheets.

The value of the principal strain e1a in region ‘a’ corresponding to
non-significant straining of this region as compared to region ‘b’ (the straining
being localized in region ‘b’) represents the limit strain e1a* (Fig. 5.26). This strain
together with the second principal strain e2a* in region ‘a’ define a point of the
Forming Limit Curve. By varying the strain ratios q = de2/de1, different points on
the FLC are obtained. By scrolling the range 0 < q < 1, the FLC for biaxial tension
(e1 > 0, e2 > 0) is obtained. In this range the orientation of the geometrical
non-homogeneity with respect to the principal directions is assumed to be the same
during the entire forming process.

The Marciniak model (1965) was further developed by Marciniak and
Kuczynski (1967) and Marciniak et al. (1973), usually being briefly denominated
the M-K model.

The M-K model was extended to the negative range of the FLD’s (e2 < 0) by
Hutchinson and Neale (H-N model) (Hutchinson and Neale 1978a, 1978b, 1978c).

Fig. 5.26 The dependence
e1
a(e1

b)
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The geometric H-N model is presented in Fig. 5.27. According with the original
paper of Hutchinson and Neale (1978b), the inclination of the non- homogeneity
varies with the main strains by a law having the form:

tanðuþ duÞ ¼ 1þ dea1
1þ dea2

tan u ð5:67Þ

and the non-uniformity coefficient varies by a law having the form:

g1 ¼ g0ðd eb3 �d ea3Þ; ð5:68Þ

where, η1 and η0 are the current and initial non-uniformity coefficients, respectively.

5.4.4.2 Implicit Formulation of the M-K and H-N Models

Both M-K and H-N models assume that the strain localization is caused by a
thickness imperfection represented as a groove in Fig. 5.27. According to this
hypothesis, two regions of the sheet metal should be distinguished: A—
non-defective zone; B—groove. At different stages of the straining process (iden-
tified by the time parameter t), the ratio

tf ¼ tsðBÞ=tsðAÞ; 0\tf\1 ð5:69Þ

is used to describe the amplitude of the imperfection (tsðAÞ and tsðBÞ denote the
current thickness of regions A and B, respectively—see Fig. 5.27).

1

2

( )t Bs

( )t As
A

A

B

1′

2′

ϕ

Fig. 5.27 Schematic view of
the thickness imperfection
assumed by the H-N model
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Throughout this section, the sheet metal is considered to behave as an ortho-
tropic membrane under the plane-stress conditions

tri3 ¼ tr3i ¼ 0; i ¼ 1; 2; 3;
t _ea3 ¼ t _e3a ¼ 0; a ¼ 1; 2; 3:

ð5:70Þ

The constraints written above are valid both for region A and region
B. Equation (5.70) involves the components of the stress and strain-rate tensors
expressed in the plastic orthotropy frame (1 and 2 are the indices associated to the
rolling and transverse directions, respectively—see Fig. 5.27, while 3 is the index
corresponding to the normal direction—not shown in Fig. 5.27).

One also assumes that the sheet metal is subjected to loads which do not produce
tangential stresses and strains in the plastic orthotropy frame:

tr12 ¼ tr21 ¼ 0; t _e12 ¼ t _e21 ¼ 0: ð5:71Þ

This constraint will be applied not only to the non-defective zone (as in the classical
formulation of the H-N model), but also to the groove. Under such circumstances,
the diagonal components of the stress and strain-rate tensors automatically become
eigenvalues. In order to emphasize their significance, the following notations will
be used:

tri i ¼ 1; 2; 3ð Þ��principal stresses tr1 ¼ tr11;
tr2 ¼ tr22;

tr3 ¼ tr33 ¼ 0ð Þ
t _ei i ¼ 1; 2; 3ð Þ��principal strain rates t _e1 ¼ t _e11;

t _e2 ¼ t _e22;
t _e3 ¼ t _e33ð Þ:

The mechanical response of the sheet metal will be described by a rigid-plastic
model. The main ingredient of the constitutive model is the yield criterion:

t�r tr1;
tr2ð Þ ¼ tY t�eð Þ: ð5:72Þ

Equation (5.72) involves the following quantities:
t�r ¼ t�r tr1; tr2ð Þ� 0—equivalent stress (homogeneous function of the first

degree)
t�e� 0—equivalent (plastic) strain
tY ¼ tY t�eð Þ[ 0—yield parameter controlled by a strictly increasing hardening

law.
The non-zero components of the strain-rate tensor (considered fully plastic) are
defined by the flow rule

t _ea ¼ t _�e
@t�r
@tra

; a ¼ 1; 2; ð5:73Þ

and the incompressibility constraint
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t _e3 ¼ �t _e1 � t _e2: ð5:74Þ

In order to preserve the simplicity of the formulation, one assumes that region
A evolves along linear strain paths defined as follows:

t _eðAÞ1 [ 0; t _eðAÞ2 ¼ qðAÞ � t _eðAÞ1 ; �1\qðAÞ � 1: ð5:75Þ

Each strain path investigated when calculating a Forming Limit Curve will be
identified by a constant value of the parameter qðAÞ: Equation (5.75) automatically

implies that t _eðAÞ2 has the status of a minor principal strain-rate.
As shown in Fig. 5.27, the orientation of the groove is described by the angular

parameter u: One adopts the hypothesis 0� �u\45�; thus considering that the

necking band is closer to the direction of the minor principal strain-rate t _eðAÞ2 : In
order to find a formula for the calculation of the angular parameter u; a local frame
associated to the groove is defined. Its planar axes are individualized by the indices
1’ and 2’, being oriented as shown in Fig. 5.27. Let

t _eðAÞ2020 ¼ t _eðAÞ1 sin2 uþ t _eðAÞ2 cos2 u

¼ t _eðAÞ1 sin2 uþ qðAÞ cos2 u
h i ð5:76Þ

be the strain-rate along the necking band. If �1\qðAÞ � 0; Eq. (5.76) could be used
to find a zero-extension direction. Indeed, by enforcing

t _eðAÞ2020 ¼ t _eðAÞ1 sin2 uþ qðAÞ cos2 u
h i

¼ 0; �1\qðAÞ � 0; ð5:77Þ

one obtains

tan2 uþ qðAÞ ¼ 0; �1\qðAÞ � 0; ð5:78Þ

i.e.

u ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffi
�qðAÞ

q
; �1\qðAÞ � 0: ð5:79Þ

Equation (5.79) defines the orientation of the necking band for the left branch of the
Forming Limit Curve. In fact, this formula is similar to that found by Hill for the
same type of strain paths (Hill 1952).

If 0\qðAÞ � 1; Eq. (5.76) does not allow the existence of zero-extension
directions in the plane of the sheet metal. In such cases, as in the classical M-K
model, one assumes that the necking band is oriented along the direction of the

minor principal strain-rate t _eðAÞ2 :
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u ¼ 0�; 0\qðAÞ � 1: ð5:80Þ

Equations (5.79) and (5.80) can be unified in the general formula

u ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max �qðAÞ; 0½ �

q
; �1\qðAÞ � 1: ð5:81Þ

It is easily noticeable that, for linear strain paths qðAÞ ¼ const.
� �

; Eq. (5.81) implies
the constancy of the angular parameter u:

For any load state having the property tr1 [ 0; the equivalent stress could be
expressed as follows:

t�r ¼ tr1 � F tfð Þ; tf ¼ tr2=
tr1;

tr1 [ 0: ð5:82Þ

Equation (5.82) results from the fact that t�r is a first-degree homogeneous function.
The partial derivatives @t�r=@tra a ¼ 1; 2ð Þ are also homogeneous functions but of
zero-degree. As a consequence, they are expressible under the form

@t�r
@tra

¼ Ga
tfð Þ; tf ¼ tr2=

tr1;
tr1 [ 0; a ¼ 1; 2: ð5:83Þ

The functions F and Ga a ¼ 1; 2ð Þ are related only to the particular formulation of
the equivalent stress adopted in the model. Equations (5.82) and (5.83) lead to the
following expressions of the yield criterion and flow rule (see also Eqs. (5.72) and
(5.73)):

tr1 � F tfð Þ ¼ tY t�eð Þ; tf ¼ tr2=
tr1;

tr1 [ 0; ð5:84Þ
t _ea ¼ t _�e � Ga

tfð Þ; tf ¼ tr2=
tr1;

tr1 [ 0; a ¼ 1; 2: ð5:85Þ

The linear strain paths defined as in Eq. (5.75) fulfil the condition trðAÞ1 [ 0: Under
these circumstances, Eq. (5.85) can be applied to region A:

t _eðAÞa ¼ t _�eðAÞ � Ga
tfðAÞ
h i

; tfðAÞ ¼ trðAÞ2 =trðAÞ1 ;

trðAÞ1 [ 0; a ¼ 1; 2:
ð5:86Þ

Equations (5.86) and (5.75) allow to obtain a relationship between qðAÞ and tfðAÞ:

G2
tfðAÞ
h i

¼ qðAÞ � G1
tfðAÞ
h i

: ð5:87Þ

It is again noticeable that, for linear strain paths qðAÞ ¼ const.
� �

; Eq. (5.87) implies
the constancy of the principal stress ratio, i.e.
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tfðAÞ ¼ trðAÞ2

.
trðAÞ1 ¼ fðAÞ ¼ const. ð5:88Þ

At the level of region A, Eqs. (5.84) and (5.85) can thus be written in the particular
forms

trðAÞ1 � F fðAÞ
h i

¼ tY t�eðAÞ
h i

; ð5:89Þ

t _eðAÞa ¼ t _�eðAÞ � Ga fðAÞ
h i

; a ¼ 1; 2: ð5:90Þ

Because the stress state in region B also fulfils the condition trðBÞ1 [ 0; the corre-
sponding ratio

tfðBÞ ¼ trðBÞ2 =trðBÞ1 ; trðBÞ1 [ 0; ð5:91Þ

can be defined. tfðBÞ generally varies even if the strains in the non-defective zone
evolve along a linear path. Due to this fact, Eqs. (5.84) and (5.85) should be written
as follows when making reference to region B:

trðBÞ1 � F tfðBÞ
h i

¼ tY t�eðBÞ
h i

; ð5:92Þ

t _eðBÞa ¼ t _�eðBÞ � Ga
tfðBÞ
h i

; a ¼ 1; 2: ð5:93Þ

As in the classical formulation of the H-N model, two sets of constraints will be
enforced at the interface between the regions A and B (see Fig. 5.29):

• Continuity of the strain-rate along the necking band

t _eðAÞ2020 ¼ t _eðBÞ2020 ð5:94Þ

• Equilibrium of the normal and tangential loads acting on the interface from both
sides

trðAÞ1010 � tsðAÞ ¼ trðBÞ1010 � tsðBÞ; ð5:95Þ
trðAÞ1020 � tsðAÞ ¼ trðBÞ1020 � tsðBÞ: ð5:96Þ

By making use of the thickness-defect parameter tf (see Eq. (5.69)), one rewrites
Eqs. (5.95) and (5.96) in the equivalent forms
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trðAÞ1010 ¼ tf � trðBÞ1010 ; ð5:97Þ
trðAÞ1020 ¼ tf � trðBÞ1020 : ð5:98Þ

The rotated tensor components involved in Eqs. (5.97) and (5.98) can be also
expressed in terms of the principal stresses, thus obtaining

trðAÞ1 cos2 uþ trðAÞ2 sin2 u

¼ tf � trðBÞ1 cos2 uþ trðBÞ2 sin2 u
h i

;
ð5:99Þ

trðAÞ1 � trðBÞ1

h i
sinu � cosu

¼ tf � trðBÞ1 � trðBÞ2

h i
sinu � cosu:

ð5:100Þ

Because 0� �u\45�; the above relationships may be rewritten as follows:

trðAÞ1 þ trðAÞ2 tan2 u ¼ tf � trðBÞ1 þ trðBÞ2 tan2 u
h i

; ð5:101Þ

trðAÞ1 � trðBÞ1

h i
tanu ¼ tf � trðBÞ1 � trðBÞ2

h i
tan u: ð5:102Þ

Finally, with the help of the principal stress ratios associated to regions A and B (see
Eqs. (5.88), (5.91)), (5.101) and (5.102) become

trðAÞ1 � 1þ fðAÞ tan2 u
h i

¼ tf � trðBÞ1 � 1þ tfðBÞ tan2 u
h i

; ð5:103Þ

trðAÞ1 � 1� fðAÞ
h i

tanu ¼ tf � trðBÞ1 � 1� tfðBÞ
h i

tan u: ð5:104Þ

In general, Eq. (5.103) cannot reduce to the trivial case 0 = 0. Under such cir-
cumstances, it is possible to divide Eqs. (5.104) by (5.103). After some simple
manipulations, one obtains the following relationship between the principal stress
ratios associated to regions A and B:

fðAÞ � tfðBÞ
h i

sin u ¼ 0: ð5:105Þ

For the strain paths characterized by the condition �1\qðAÞ\0; Eq. (5.81) defines
an angular parameter 0�\u\45�: In this case, Eq. (5.105) enforces tfðBÞ ¼ fðAÞ ¼
const. The principal stress ratios associated to regions A and B are thus rigorously
coincident and constant when �1\qðAÞ\0:

The plane-strain path qðAÞ ¼ 0 needs a separate discussion, as in this case
Eq. (5.81) defines an angular parameter u ¼ 0� and Eq. (5.105) degenerates to the
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trivial form 0 = 0. When u ¼ 0�; the local frame associated to the groove is
superimposed to the plastic orthotropy frame (1 = 1’ and 2 = 2’). The constraints

given by Eqs. (5.77) and (5.94) now reduce to t _eðAÞ2 ¼ t _eðBÞ2 ¼ 0; meaning that
region B evolves along the same plane-strain path and enforcing again the con-
stancy of the principal stress ratio: tfðBÞ ¼ fðAÞ ¼ const: One may thus conclude

tfðBÞ ¼ fðAÞ ¼ const:; if � 1\qðAÞ � 0: ð5:106Þ

For all the strain paths characterized by the condition 0\qðAÞ � 1; Eq. (5.81)
defines an angular parameter u ¼ 0�: In this case, Eq. (5.105) also degenerates to
the trivial form 0 = 0, but Eq. (5.94) will not enforce the constancy of the stress

ratio in region B as it takes the more general form t _eðAÞ2 ¼ t _eðBÞ2 .
One may notice that, whatever is the value of the parameter qðAÞ in the range

�1\qðAÞ � 1; the equilibrium constraint given by Eq. (5.103) reduces to

trðAÞ1 ¼ tf � trðBÞ1 ; ð5:107Þ

due to Eqs. (5.106) and (5.81). For all the strain paths characterized by the con-
dition �1\qðAÞ � 0; the above relationship becomes even simpler when combined
with Eqs. (5.89), (5.92) and (5.106):

tY t�eðAÞ
h i

¼ tf � tY t�eðBÞ
h i

; if � 1\qðAÞ � 0: ð5:108Þ

Equation (5.108) makes redundant the second equilibrium constraint expressed by
Eq. (5.104). In fact, Eq. (5.108) has been deduced using Eq. (5.106) which is a
corollary of Eq. (5.104).

In the case 0\qðAÞ � 1; Eqs. (5.89) and (5.92) can be exploited to reformulate
Eq. (5.107) as follows:

tY t�eðAÞ
h i.

F fðAÞ
h i

¼ tf � tY t�eðBÞ
h i.

F tfðBÞ
h i

;

if 0\qðAÞ � 1:
ð5:109Þ

Again, Eq. (5.109) should not be accompanied by Eq. (5.104) because the second
equilibrium constraint now degenerates to the trivial form 0 = 0.

The strain-compatibility enforced by Eq. (5.94) also deserves a discussion. In
the case �1\qðAÞ � 0; this constraint becomes trivial (0 = 0) and redundant due to
Eqs. (5.81) and (5.106) already included in the model. For the remaining strain
paths 0\qðAÞ � 1; Eq. (5.94) reduces to the simpler formulation (see also
Eqs. (5.80), (5.90) and (5.93))
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t _�eðAÞ � G2 fðAÞ
h i

¼ t _�eðBÞ � G2
tfðBÞ
h i

; if 0\qðAÞ � 1: ð5:110Þ

Equation (5.110) is non-trivial and accompanies Eq. (5.109) in the model used to
calculate the right branch of the Forming Limit Curve.

The discussion below will focus on the presentation of the computational
strategy used to solve the strain localization model. The evolution of the sheet metal
up to the necking is analyzed for individual strain paths. Each of these paths is
defined by a constant value of the parameter qðAÞ in the range �1\qðAÞ � 1: The
straining process is analyzed in an incremental manner. Let T ; T þDT½ � be the
discrete time interval corresponding to one of the steps performed in the analysis.
All the parameters associated to the T moment are known quantities both for the
non-defective area and the groove. The corresponding configuration of the sheet
metal is thus taken as a reference state. In particular, the parameters associated to

the moment T ¼ 0 are defined by the conditions 0�eðAÞ ¼ 0�eðBÞ ¼ 0; and 0eðAÞa ¼
0eðBÞa ¼ 0 a ¼ 1; 2ð Þ: The initial value of the thickness ratio 0\0f\1 is also pre-
scribed. As concerns the parameters corresponding to the T þDT moment, they are
unknown quantities and should be evaluated.

The computation is conducted by applying small increments of the equivalent
strain to region A. In order to obtain sufficiently accurate results, these increments
should remain small. During the numerical tests performed by the authors, D�eðAÞ ¼
10�3 	 10�4 has proved to be a good selection range.

Due to the fact that qðAÞ uniquely defines the ratio of the principal stresses in
region A, the parameter fðAÞ should be evaluated only once, namely at the beginning
of each strain path. This task is accomplished by solving the equation (see
Eqs. (5.87) and (5.88))

qðAÞ � G1 fðAÞ
h i

� G2 fðAÞ
h i

¼ 0 ð5:111Þ

with respect to the unknown fðAÞ: In general, numerical procedures must be used to
evaluate fðAÞ: During the tests performed by the authors, the bisection method has
worked very well, especially when combined with a bracketing strategy.

As soon as fðAÞ is known, the increments of the principal strains in region A can
be evaluated from Eq. (5.90) rewritten as

DeðAÞa ¼ D�eðAÞ
h i

� Ga fðAÞ
h i

; a ¼ 1; 2: ð5:112Þ

One may also notice that, for a given strain path, DeðAÞa a ¼ 1; 2ð Þ are constant
quantities and should be computed only once.

At this stage, the parameters associated to the non-defective area of the sheet
metal can be updated using the formulae

5 Advanced Models for the Prediction of Forming Limit Curves 247



T þDT�eðAÞ ¼ T�eðAÞ þD�eðAÞ;
T þDTeðAÞa ¼ TeðAÞa þDeðAÞa ; a ¼ 1; 2:

ð5:113Þ

The solution procedure is now prepared to evaluate the groove parameters corre-
sponding to the T þDT moment. If �1\qðAÞ � 0 (left branch of the forming limit
curve), the principal stress ratios are the same in regions A and B (see Eq. (5.106)).
In this case, only the increment of the equivalent strain D�eðBÞ should be found as a
solution of Eq. (5.108) written for the T þDT moment:

T þDTY T þDT�eðAÞ
h i

¼ T þDT f � T þDTY t�eðBÞ þD�eðBÞ
h i

;

if � 1\qðAÞ � 0;
ð5:114Þ

where the current thickness ratio T þDT f is expressible from Eqs. (5.69) and (5.74)

T þDT f ¼
T þDTsðBÞ
T þDTsðAÞ

¼ 0f exp T þDTeðBÞ3 � T þDTeðAÞ3

h i
¼ 0f exp T þDTeðAÞ1 þ T þDTeðAÞ2 � TeðBÞ1 � TeðBÞ2 � DeðBÞ1 � DeðBÞ2

h i
;

ð5:115Þ

with DeðBÞa a ¼ 1; 2ð Þ resulting from Eqs. (5.93) and (5.106):

DeðBÞa ¼ D�eðBÞ
h i

� Ga fðAÞ
h i

;

if � 1\qðAÞ � 0; a ¼ 1; 2:
ð5:116Þ

Equation (5.114) can be solved only in a numerical manner. Again, during the tests
performed by the authors, the bisection method has proved excellent performances
in combination with a bracketing strategy. After D�eðBÞ is determined, the increments
of the principal strains in region B can be easily evaluated from Eq. (5.116).

In the case 0\qðAÞ � 1 (right branch of the Forming Limit Curve), the principal
stress ratio associated to region B is no longer constant. As a consequence, two
unknown quantities should be determined. They are the current principal stress ratio
T þDTfðBÞ and the increment of the equivalent strain D�eðBÞ: Fortunately, the
strain-rate along the necking band does not vanish if 0\qðAÞ � 1: Under such
circumstances, Eq. (5.110) can be put in an incremental form and used to express
D�eðBÞ as a dependency on T þDTfðBÞ (see also Eq. (5.112)):

D�eðBÞ ¼ DeðAÞ2

G2
T þDTfðBÞ
h i ; if 0\qðAÞ � 1: ð5:117Þ
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D�eðBÞ given by Eq. (5.117) should be replaced in Eq. (5.109) written for the T þDT
moment, thus obtaining

T þDTY T þDT�eðAÞ
h i.

F fðAÞ
h i

¼ T þDT f � T þDTY T�eðBÞ þ DeðAÞ2

G2
T þDTfðBÞ
h i

2
4

3
5,F T þDTfðBÞ

h i
;

if 0\qðAÞ � 1:

ð5:118Þ

The current thickness ratio T þDT f is still defined by Eq. (5.115), but the principal

strain increments DeðBÞa a ¼ 1; 2ð Þ result now from a more complicated flow rule
(see Eqs. (5.93) and (5.117)):

DeðBÞ1 ¼ DeðAÞ2

h iG1
T þDTfðBÞ
h i

G2
T þDTfðBÞ
h i ; DeðBÞ2 ¼ DeðAÞ2 ;

if 0\qðAÞ � 1:

ð5:119Þ

In conclusion, Eqs. (5.115) and (5.119) will bring Eq. (5.118) to a formulation
involving only T þDTfðBÞ as unknown. Again, the numerical solution can be found
using the bisection method combined with a bracketing strategy. After T þDTfðBÞ is
determined, Eqs. (5.117) and (5.119) allow the evaluation of the increments D�eðBÞ

and DeðBÞa a ¼ 1; 2ð Þ; respectively.
At this stage, the parameters associated to the defective area of the sheet metal

can be updated using the formulae

T þDT�eðBÞ ¼ T�eðBÞ þD�eðBÞ;
T þDTeðBÞa ¼ TeðBÞa þDeðBÞa ; a ¼ 1; 2:

ð5:120Þ

The procedure described above is simple and efficient. Both for the left and right
branches of the Forming Limit Curve, the problem consists in solving a unique
non-linear equation. At the level of region A, it is always possible to find a solution
by numerical techniques. Region B needs a more careful treatment from this point
of view. Generally, strains accumulate faster in the groove. As previously shown,
the model tries to enforce the equilibrium of the tractions along the interface with
the non-defective area of the sheet metal. At higher strain levels, the bearing
capability of the groove can be limited by the hardening law. In such cases, it is not
possible to find the solution at the level of region B. The bearing limitation can be
trapped by testing the value of the equivalent strain increment D�eðBÞ during the
bracketing procedure. If the search for an initial guess fails even for very large
increments D�eðBÞ one may deduce that region B has already attained its bearing
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limit. From a mechanical point of view, this situation corresponds to the occurrence
of the necking phenomenon in the groove. As a consequence, the current values of
the principal strains in region A should be considered as defining the limit state of
the sheet metal.

The occurrence of the necking must be also checked after finding a numerical
solution for the groove. Normally, the ratio D�eðBÞ=D�eðAÞ should be tested. If this
quantity becomes very large (D�eðBÞ=D�eðAÞ > 100, for example), one may conclude
that the necking has been initiated. The inspection of the strain path should be
stopped as the current values of the principal strains in region A define the limit
state. If the ratio D�eðBÞ=D�eðAÞ is not great enough, the computation will continue
after applying a new increment of the equivalent plastic strain D�eðAÞ to region A.

Different formulations of the equivalent stress (von Mises, Hill 1948; Barlat
1989, and Banabic et al. 2005a) and hardening laws (Hollomon, Swift, Voce,
Ghosh, Hockett-Sherby, and AUTOFORM) have been implemented in the strain
localization model presented above. In all cases, the numerical tests have shown a
very good stability and robustness of the solution procedure. In order to validate the
performances of the computational algorithm, its predictions have been compared
with experimental data corresponding both to steel and aluminium alloys. As an
example, Fig. 5.28 shows the comparison between the numerical results and the
experimental data included in Benchmark 1 of the NUMISHEET 2008 conference
(Volk et al. 2008) for the case of the AA5182-O aluminium alloy.

5.4.4.3 Comparison of the FLC’s Predicted by Different Theoretical
Models

During the last five decades, the theoretical model developed by Marciniak and
Kuczynski Marciniak (1965) has been intensively used for calculating forming limit
curves. More recently, several other approaches have been proposed. Among them,

Fig. 5.28 H-N prediction
versus experiments (Volk
et al. 2008) for AA5182-O
aluminium alloy
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Hora’s MMFC model (Hora and Tang 1994) and its extension to the so-called
EMFC model developed by Mattiasson and his co-workers Mattiasson et al. (2006)
are also attractive due to their simplicity and good performances.

Figure 5.29 shows a comparison of the FLC’s predicted by the theoretical
models mentioned above with experimental data obtained by the authors in the case
of an AA6016-T4 sheet metal (1 mm thickness). All the calculations have been
performed using the same plasticity model namely, the BBC2005 yield criterion
and Swift’s hardening law. As one may notice in Fig. 5.29, the FLC’s predicted by
the M-K and EMFC models are in very good agreement with the experimental data.
The quality of the predictions given by the MMFC model is poorer. It seems that
Hora’s assumption of a sudden evolution towards the plane-strain state in the
necking region causes an understimation of the formability along the right branch of
the FLC. From this point of view, the hypotheses on which the EMFC model is
based are more realistic. It is also noticeable the characteristic peak on the left
branch of the FLC predicted by the MMFC model. This strange behaviour is the
consequence of a mathematical singularity that cannot be removed from Hora’s
MMFC model (see Sect. 5.4.1.2 and Aretz (2004) for details).

5.4.4.4 Non-zero Thickness Stress

In sheet forming processes that imply a non-zero sheet curvature, e.g. in punch
stretching and hydraulic bulging, the thickness stress varies from a minimum (i.e.
compressive stress) at the concave side of the sheet to zero at the (stress-free)
convex side. This stress component is much smaller than in-plane stresses (at least
for not too high sheet curvatures) and are therefore usually neglected in sheet
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Fig. 5.29 Comparison of the
FLCs predicted by
Marciniak-Kuckzynski
model, Modified Maximum
Force Criterion (Hora) and
Edhanced Maximum
Force + Hill Criteria with
experimental data for
AA6016-T4 aluminium alloy
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forming limit models. Under certain conditions however, the average thickness
compressive stress can be very high and non-negligible, e.g. in double-sided
hydroforming, during which pressure is applied to both sides of the sheet with a
certain pressure difference, and in pinching regions in pressing operations (where
there is double-side tool contact).

The effect of the normal pressure on the formability of sheet metals is well
known and already used from long time ago in industry by Keeler (1970). During
some forming operations (hydrostatic forming, incremental forming) the sheet is
subjected to a significant normal pressure. Bridgman (1952) studied first time the
influence of the hydrostatic pressure on the formability. Later this influence has
been the subject of numerous experimental investigations, especially by Spitzig and
Richmond (1984). The general conclusion was that the yield stress decrease and the
formability increase with superimposed hydrostatic pressure. The increase in
formability is usually explained by the closing of the micro-voids in the sheet and
the slowing down of the nucleation of new ones due to the normal pressure exerted
by the surrounding fluid Padwal et al. (1992). A systematic analysis of sheet failure
under normal pressure without assuming ductile damage has been done in the last
decades. The first theoretical analysis was performed by Ciumadin et al. (1990).
Using a simple analytical model (similar with the Marciniak-Kuczynski model)
they succeed to calculate the FLC for different values of the hydrostatic pressure.
Gotoh et al. (1995) used the classical Swift’s and Hill’s criterion of instability and
Stören and Rice’s condition together with the constitutive model developed by
himself for localized necking. In Smith et al. (2003) and later in Matin and Smith
(2005), forming limit equations are derived for a sheet deformation under a constant
and non-zero ratio of sheet thickness stress over major in-plane stress. These
models are based on the assumption of a strain-path independent FLSD, which is
extended in the sense that the forming limit stress is also assumed to be independent
of the sheet thickness stress. In Smith et al. (2003), the ratio of minor to major
in-plane stresses are assumed to be constant during deformation, while in Matin and
Smith (2005), it is the ratio of minor to major in-plane strains which is fixed.

Banabic and Soare (2008), Wu et al. (2009), Allwood and Shouler (2009) have
analyzed the influence of the normal pressure on the Forming Limit Curve using an
enhanced Marciniak model. The results presented in the last papers are closed one
to another one. In the Fig. 5.32 is presented this influence based on the modified
Marciniak model (Banabic and Soare 2008).

Figure 5.30 shows a significant increasing of the limit strains for any strain path
(more significant in the equi-biaxial region) with the increasing of the superimposed
hydrostatic pressure. Allwood and Shouler (2009) included in the MK model a six
component stress tensor and proposed a new generalized forming limit diagram
(GFLD) showing the influence on the limit strains both of the normal and through
thickness stresses (see Fig. 5.31 and Allwood and Shouler (2009)).

The effect of the through-thickness normal stress on the forming limit diagram
has been studied extensively in the last five years using different anisotropic yield
criteria by Assempour et al. (2010), Liu and Meng (2012), Zhang et al. (2012),
(2014a, b), Nurcheshmeh and Green (2014), Lang et al. (2015), Wang et al. (2015).
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Fig. 5.30 Forming Limit Curves for several values of the normal pressure for AA3104-H19
aluminium alloy

Fig. 5.31 The generalized Forming Limit Diagram for AA1050 aluminium alloy (Allwood and
Shouler 2009)
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A clarification of the influence of the hydrostatic pressure on the yield and flow of
the metallic materials has been presented by Soare and Barlat (2014). A new
approach to analyze the effect of hydrostatic pressure on the deformability of sheet
metals was introduced by Xue (2010). He extended the one dimensional Considère
condition for arbitrary three dimensional loadings (taking into account the hydro-
static pressure) and applied it to sheet metal forming. The bifurcation point for the
localized deformation is considered from the sense of energy dissipation. Xue
(2010) applied his models to calculate both the necking and the fractured limit
strains, respectively (see Fig. 5.32 and Xue (2010) for the AA5182-0 aluminium
alloy). With the proposed method the influence of the pressure on the limit strains
has been also analysed.

The trend in formability that all these models show is that a more negative
thickness stress (i.e. more compression) delays the onset of the localized necking
instability, which is the same trend found in some experimental investigations
mentioned above.

5.4.4.5 Non-zero Through-Thickness Shear Stress

Through-thickness shearing (TTS) in sheet metal is induced through sliding fric-
tion, especially against highly curved tooling for which normal contact pressure is
high. Typical examples of these conditions may be found in incremental sheet
forming and in the deep drawing over relatively sharp die corners and across draw
beads. Research on the effect of TTS on formability has been originally initiated by
the unusually high formability observed in incremental sheet forming (Allwood and
Shouler 2009; Eyckens et al. 2009, 2011).

Fig. 5.32 The experimental
localization and fracture
curves for AA 5182-0 (Xue
2010). Experimental data
from Banabic et al. (2005b)
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Before extending the MK framework to include TTS and giving some numeric
examples on the effect of TTS on FLCs, we first look into a mathematical
description of TTS. If the sheet undergoes in-plane deformation combined with
through-thickness shearing, the strain mode can no longer be captured by a single
variable. The plastic strain rate tensor D can in this case be expressed as:

D½ � ¼
1 0 q13
0 q22 q23
q13 q23 � 1þ q22ð Þ

2
4

3
5D11 ð5:121Þ

Here D11 is the major in-plane strain rate. In (5.121) it is used as a scaling factor to
define the in-plane strain mode q22, and also two independent ‘through-thickness
shear modes’: q13 (in the direction 1, i.e. the major in-plane strain direction) and q23
(in the direction 2, i.e. the minor in-plane strain direction). From tensor analysis the
relative through-thickness shearing along all other direction in the sheet plane may
be derived, cf. (Eyckens et al. 2011). A typical result is visualized in the polar plot
given by Fig. 5.33. The lengths of the lines that start from the origin of the coor-
dinate system and that are bound by the grey-shaded area, reflect the magnitude of
relative TTS along the respective directions. Along the 1- and 2-directions, these
lengths correspond to q13 and q23 , respectively. Two enclosing, circle-shaped lobes
can be seen: one has a positive sign of TTS associated with it, while the other has
negative sign. Along the in-plane direction that separates these lobes, no TTS is
acting. It may be shown that such a direction always exists, for any possible
combination of q13 and q23 . At 90° with respect to this direction of ‘zero TTS’, the
TTS has the maximal magnitude among all in-plane directions. The maximal
magnitude of TTS is called the imposed TTS, and written as qTTS. It is imposed
along the direction given by the angle aTTS with respect to the major in-plane
straining direction. There is a one-to-one conversion between the sets of (qTTS; aTTS)
on one hand and (q13; q23) on the other hand.

The generalization of the MK formability framework towards TTS, concerns
both the force equilibrium equations and the geometric compatibility equations
(Eyckens et al. 2009).

Extension of force equilibrium is straightforward: equilibrium equations of the
in-plane normal and the in-plane shear components of force, are supplemented with
one equilibrium equation of the out-of-plane shear component of force. The
resulting set of 3 equilibrium equations is the scalar equivalent of the imposed
equilibrium of the force vectors on either side of the boundary plane between matrix

and groove:~f
a ¼~f

b

Geometric compatibility between matrix and groove is generally expressed in
terms of the velocity gradients, which intrinsically considers not only the strain rate
but also the rate of rigid body rotation. The compatibility conditions refer to
components of the velocity gradient tensors within the matrix (La) and the groove
(Lb), as expressed in a reference frame that is aligned with the (instantaneous)
directions along the groove (t-direction) and normal to the groove within the sheet
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Fig. 5.34 a Geometric compatibility conditions and b unconstrained (i.e. ‘free’) components of
the velocity gradient of the groove material. The initial configuration is depicted with wireframe.
Figure reproduced from Eyckens et al. (2009)

Fig. 5.33 Polar plot giving an example of the direction (aTTS) and magnitude (qTTS) of the
imposed through-thickness shear (TTS) onto a sheet, as well as the resulting TTS along any other
in-plane direction (straight lines bounded by the grey area). Figure reproduced from Eyckens et al.
(2011)
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plane (n-direction). As demonstrated in Fig. 5.34a, 5 out of the 9 independent
components of the velocity gradient need to be equal in both regions in order to
ensure compatibility. Consequently, the remaining 4 components of the velocity
gradient within the groove, are not constrained by their counterparts in the matrix
material, as illustrated Fig. 5.34b.

Results from this extended MK model demonstrate that TTS may have a ben-
eficial effect on formability, and that this depends not only on the magnitude but
also on the direction of imposed TTS. Let us consider first the case of plane strain
deformation with additional TTS along the direction of zero extension (minor
in-plane strain direction), which is sketched in Fig. 5.35a. The (fixed) direction of
the MK groove that determines the limit of formability, coincides in this case to the
minor in-plane strain direction. The imposed through-thickness shearing induces
non-zero out-of-plane shear stress rt3 in both matrix and groove, while in the sheet
plane, the plane strain deformation induces non-zero rnn (= r11) and rtt (= r22). It
can be shown that for a von Mises material loaded under these deformation con-
ditions, the stress mode u (in both matrix and groove) is contained in the hyperplane
rnn = 2rtt, as shown in the 3-dimensional yield locus section. The matrix’ stress
mode ua is fixed (monotonic loading). The groove stress mode ub however evolves
during deformation, from close to ua towards the plane strain stress mode (indicated
by a cross marked ‘PS’). This stress mode change is accompanied with a relative
increase of rnn-component of stress, thereby delaying the onset of strain localiza-
tion within the groove that is governed by equilibrium of the normal force
component.

Fig. 5.35 Plane strain loading superimposing TTS along a the direction of zero extension
(coinciding with groove direction t) and b the major in-plane strain direction (coinciding with
groove normal direction n). For both a and b, the relevant 3-dimensional section in stress space for
a von Mises material is shown: major in-plane stress (rnn), minor in-plane stress (rtt) and the
non-zero out-of-plane shear stress (rt3 for a and rn3 for b, respectively). For case a, the groove
stress mode ub evolves towards the plane strain point ‘PS’ during deformation, while in case b it
remains constant and equal to the matrix’ stress mode ua. Figure composed from Eyckens et al.
(2009)

5 Advanced Models for the Prediction of Forming Limit Curves 257



The results are however very different for plane strain with superimposed TTS
along the major in-plane strain, cf. Fig. 5.35b. The critical direction of the MK
groove with respect to formability, is also in this case along the direction of zero
extension. TTS induces a non-zero rn3-component of stress. It can be derived from
force equilibrium that the ratio rn3/rnn is equal for both matrix and groove, which
leads to the second hyperplane containing ua and ub that is drawn in Fig. 5.35b. As
a result, the groove stress mode is required to be equal to the matrix stress mode,
meaning that the stabilizing mechanism of groove stress mode evolution towards
the plane strain point does not occur.

Figure 5.36 shows FLC predictions with increasing TTS along the minor
in-plane strain direction (i.e. aTTS ¼ 90�). Except for equibiaxial loading, imposing
TTS along this direction generally improves formability. Figure 5.37 further
illustrates the high sensitivity of the forming limit with respect to the direction of
imposed TTS. TTS along the major in-plane strain direction (aTTS ¼ 0�) does not
significantly affect FLC (compare to FLC curve of qTTS ¼ 0 in the Fig. 5.38). The
beneficial effect of TTS on the FLC is maximal if it is imposed along the minor
in-plane strain direction (aTTS ¼ 90�).

5.4.5 Crystal Plasticity Based FLC Prediction

Crystal plasticity modelling considers the main microstructural aspects of metallic
alloys, namely the distribution of the individual metallic crystals or grains (with
associated crystal orientation), possibly augmented with information of the mor-
phologic appearance of microstructure, second phase particles (if present), or other
microstructural aspects. Crystal plasticity modelling is in essence a multi-scale

Fig. 5.36 Calculated FLCs for materials with von Mises yield locus and with an anisotropic yield
locus of AA3103 aluminium alloy, having various degrees of magnitude of imposed
through-thickness shear qTTS (different symbols). Direction of imposed TTS is given by:
aTTS ¼ 90�. Figure reproduced from Eyckens et al. (2011)
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approach, linking the physical processes that accommodate plastic deformation on
the scale of the crystal (e.g. plastic slip, deformation twinning) to the homogenized
or macroscopic behaviour of the polycrystalline metallic aggregate. The
microstructure determines the yield locus shape, which is intrinsically incorporated
in crystal plasticity modelling. For single-phase materials with near-equiaxed grain
morphology, the dominant microstructural feature linked to yield locus shape is the
crystallographic texture. Deformation-induced evolution of texture will result in
yield locus shape changes. Such effects can be readily studied by crystal plasticity.

In recent year, two different approaches have been mainly followed to couple
crystal plasticity calculations to sheet formability prediction, namely the MK
framework and FE modelling. They will be discussed next.

Fig. 5.37 Calculated FLCs for materials with an anisotropic yield locus of AA3103 aluminium
alloy, with varying imposed directions of TTS (aTTS). The magnitude of imposed TTS is qTTS ¼
0:4: Figure reproduced from Eyckens et al. (2011)

Fig. 5.38 Three theoretical
FCC textures leading to
significant differences in
FLCs, from Yoshida and
Kuroda (2012)
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The development of ductile damage or voids in the microstructure, and their
correlation to macroscopic forming limits, is another topic that has received sig-
nificant attention in recent literature. An overview of such studies is also included.

5.4.5.1 Crystal Plasticity in MK Analysis

The pioneering studies in this field adopted a crystal-plasticity-derived yield locus
in MK model framework (Barlat 1989; Bassani et al. 1979), thereby neglecting
effects of deformation texture or other microstructural evolutions. In later years, the
influence of deformation-induced texture evolution was explicitly investigated by
direct coupling of the crystal plasticity as a material model. Due to limited com-
putation power, the earlier investigations often made additional assumptions, e.g.
that necking band is perpendicular to major strain direction (Zhou and Neale 1995),
or that texture evolution should be identical in groove and surrounding matrix
(Ratchev et al. 1994). In Tóth et al. (1996), the study of the formability of three
measured aluminium textures shows the effect of texture evolution to equalize the
forming limits of the different textures and lower them (in most strain paths of the
right-hand side of the FLD). These earlier studies often adopt the
Taylor-Bisschop-Hill polycrystal plasticity model.

Over the last decade, significant attention has been given to the study of ‘ide-
alized textures’, in particular for aluminium (FCC structure). Such theoretical
textures consist of randomly-generated orientations with certain spread around a
single orientation (Wu et al. 2004a) or orientation fibre (Yoshida and Kuroda 2012).
Formability is not only very sensitive to the chosen ideal orientation, but also to the
texture spread around the central orientation (Wu et al. 2004a). This dependency
can be linked to the sharpness of yield locus in the biaxial range (Wu et al. 2004a).
The effect of the cube texture component (main recrystallization texture component
in aluminium) is studied with a rate-dependent plasticity model in Wu et al.
(2004a), where it was found that the spread around the ideal texture component
determines the yield locus surface near equibiaxial stretching deformation to affect
the formability under this deformation mode. However, the initial shape of yield
locus does not completely determine formability in right-hand side of FLD.
So-called distortional or textural hardening, i.e. yield locus shape change due to
texture evolution, is as important a factor (Signorelli et al. 2009). In aluminium
alloys for example, the cube fibre textures gives high forming limits due to the
beneficial distortional hardening effect, in spite of an unfavourable initial yield
locus shape with low r-value (Yoshida and Kuroda 2012).

In summary, in aluminium materials (FCC), rolling texture components gener-
ally have a negative effect on biaxial formability (Yoshida et al. 2007), whereas the
cube texture (recrystallization texture component) can be beneficial (Wu et al.
2004a; Yoshida et al. 2007). Fewer studies have been done on BCC cubic materials
such as ferritic steels; the study of Inal et al. (2005) suggests that sensitivity of
texture evolution on formability is much less for BCC compared to FCC materials.
For Mg sheet alloy (HCP crystal structure), besides dislocation-based plasticity also
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the mechanical twinning needs to be considered (Neil and Agnew 2009). Additional
hardening due to twinning can promote the resistance to localized necking. Also in
Wang et al. (2011), formability of Mg alloy is investigated, both with Taylor and
VPSC models. Results show that texture evolution decreases forming limit under
uniaxial and biaxial deformation paths, while it has little effect under near-plane
strain deformation. Numerical investigation also reveals that formability can be
significantly improved by altering the texture, in particular a rotation of the basal
texture component.

Coupling of crystal plasticity with formability analysis that is highly no-linear
requires sufficient attention to algorithmic implementation. For time integration
scheme of MK model with crystal plasticity-based material modelling, it is referred
to Knockaert et al. (2002); where focus is put on the consequences of texture
evolution on the overall algorithm. Kim et al. (2013) compare Newton-Raphson
and Nelder-Mead time integration schemes for crystal plasticity-based MK
simulations.

In the current state-of-the art, crystal plasticity-based formability modelling does
indeed give insightful guidelines with respect to optimized microstructure (Yoshida
et al. 2009; Yoshida and Kuroda 2012; Wang et al. 2011). Figure 5.38 gives an
example of increased theoretical formability through texture optimization. Even
though this makes crystal plasticity an appealing approach to predict formability,
often no clear improvement in FLC prediction is obtained from crystal plasticity
with respect to recent phenomenological material modelling approaches (Chiba
et al. (2013), cf. Fig. 5.39).

Advanced crystal plasticity models, which incorporate grain interaction and
non-equiaxed grain morphology, can improve accuracy of FLC predictions com-
pared to more basic Taylor crystal plasticity model, in which the local deformation
inside each crystal is unaffected by its environment in the microstructure (Signorelli
et al. 2009). For complex microstructures such as multi-phase materials, a

Fig. 5.39 Comparison of
advanced phenomenological
and crystal plasticity material
models in FLC prediction,
from Chiba et al. (2013)
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microstructural representative volume element (RVE) may be defined through FE
modelling to produce the constitutive behaviour in formability modelling frame-
work. In Tadano et al. 2013, such RVE material modelling approach for
single-phased material is used in MK analysis.

5.4.5.2 Formability Modelling Through Crystal Plasticity
in FEM (CPFEM)

In Wu et al. (2004b), the FE mesh under consideration corresponds to a unit cell of
the polycrystalline material. Each integration point corresponds to a grain and obeys
single crystal plasticity theory. A discretized aluminium texture is used to assign
grain orientations to specific integration points of the mesh, which is done arbi-
trarily. It is shown that a forming limit band rather than a single curve is obtained
when several arbitrary assignments of grains to the FE mesh are considered.
Texture evolution results in higher formability predictions on the right-hand side of
the FLD for the material under study. It is emphasized that this approach does not
require the ‘fitting’ parameter of the initial imperfection of the MK model, but on
the other hand it is indicated that forming limits depend on the number of elements
(i.e. grains) considered in the analysis. In Yoshida (2014), deformation-induced
surface roughening and strain localization is investigated by crystal plasticity FE
analysis, in particular regarding their dependency on grain size and number of
grains over the sheet thickness. If the sheet has relatively few grains over the sheet
thickness (less than 30), plane strain formability is found to be reduced due to
significant surface roughening.

In Inal et al. (2002a, b) the Taylor theory of rate-dependent crystal plasticity is
used in a plane-strain Crystal Plasticity Finite Element Model (CPFEM) to simulate
the localization of deformation under plane strain tension. Strain localization occurs
in two phases, firstly a through thickness neck is initiated, after which shear bands
are formed within the neck. Texture evolution and strain rate sensitivity were
identified as crucial parameters for shear band localization, since shear localization
was shown to be completely suppressed when texture evolution during deformation
was not considered or when strain rate sensitivity was taken to be high enough.

Hu et al. (2008) apply CPFEM (using a plane stress model) to simulate the onset
of necking in uniaxial tension of an aluminium alloy containing second phase
particles about an order of magnitude smaller than the average grain size. They
found that necking band formation is determined mainly by the arrangement of the
soft and hard grains in the model, with only a small influence of particle volume
fraction and type of particle distribution (i.e. homogeneous or aligned in stringers).
Also post-necking behaviour was studied with a plane strain model, showing the
large influence of the type of particle distribution: a homogeneous distribution leads
to a well-developed neck (i.e. a large fracture strain) with cup-and-cone ductile
fracture, while low fracture strains are found in combination with a shear-type
fracture in the presence of particle stringers. Experimentally it is also found that the
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presence of stringers (which is related to the method of sheet casting) produce a
shear-type dominant failure with small necking.

5.4.6 Void Growth Based FLC Prediction

In Saanouni (2008), the isotropic damage model of Gurson is implemented into
implicit and explicit FE analysis to predict the onset of necking in a hydraulic
bulging process. The same material model is also used for prediction of the onset of
ductile fracture in numerous bulk forming processes. Haddag et al. (2008) presents
a FLC obtained from the implementation of the isotropic damage model of
Lemaitre into implicit FE code. The damage parameters were obtained by inverse
modelling from uniaxial, plane strain and equibiaxial tension tests and a simple
shear test. The same authors apply a similar constitutive modelling approach to
Rice’s bifurcation theory for FLC prediction in Haddag et al. (2009). Achani et al.
(2007) use the isotropic damage model of Cockcroft and Latham to predict the
onset of necking in a plane strain tension test after model parameter identification
using a pure shear test. In Uthaisangsuk et al. (2008), the Nakazima test is simulated
with FEM including the Gurson-Tvergaard-Needleman damage model. The damage
parameters are estimated based on metallographic observations and other experi-
mental techniques. The shape of the FLC obtained from the different FE simulations
appears to be different than the experimental FLC, although the position of the
numeric FLD corresponds reasonably well to the experiment.

5.4.6.1 Modelling of FLC using the GTN Model

One of the recently proposed approaches for FLC construction is the application of
damage model. The determination of forming limits of metallic sheets using the
GTN damage model has been performed according to different approaches. The
most common ones include the approaches that use the numerical simulation of the
traditional formability tests prdoposed by Nakazima an Kikuma (1967) and
Marciniak and Kuczynski (1967) and the approaches that combine the GTN model
with the Marciniak-Kuczynski model (Marciniak and Kuczynski 1967). This sec-
tion introduces these approaches and their application in the construction of FLCs.

5.4.6.2 FLC Prediction by Numerical Simulation of Traditional
Formability Tests

The Nakazima and Marciniak tests are standard traditional tests for the determi-
nation of FLCs. In these tests, metallic sheets with different shapes are stretched
against a punch up to the onset of necking/fracture. By measuring the planar limit
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strains at the onset of necking, the Forming Limit Diagram (FLD) is plotted. Like
the experimental tests, the forming limit strains of metallic sheets can be predicted
by numerical simulation of Nakazima and Marciniak tests. On the other hand, the
accuracy of the predicted limit strains will be affected by the necking criterion used
in the simulations. One of the useful tools for the prediction of necking and
determination of limit strains is the application of the GTN damage model.
The GTN model defines the plastic behaviour of the sheet metal and its failure due
to void evolution.

The effect of void growth on the forming limits was investigated by employing
Gurson damage model (Gurson 1977) in the FE analysis, within the framework of
membrane theory, of a punch stretching test (Chu 1980). The effect of other
mechanisms of void evolution i.e. void nucleation and coalescence can be included
in the investigations by using the GTN damage model (Abbasi et al. 2011, 2012a;
Yoon et al. 2013). Abbasi et al. (2011), (2012a) predicted the FLC of an IF steel
using an isotropic GTN damage model. A set of rectangular specimens with a
length of 200 mm and different widths of 25, 50, 75, 100, 125, 150, 175 and
200 mm were simulated according to the Hecker test (Banabic et al. 2000). All
specimens were formed until the final void volume fraction fF for an element was
fulfilled. The value of major and minor strains at the element with void volume
fraction of fF was selected as the failure strains. The constructed FLC based on the
measured failure strains was in good agreement with experiments (see Fig. 5.40).

As the metallic sheets are commonly produced by rolling, they exhibit high
levels of anisotropy. Investigations using anisotropic GTN damage models show
that the plastic anisotropy of the matrix in ductile sheet metal influences both the
deformation behaviour and damage evolution of the material Chen and Dong

Fig. 5.40 Comparison of
FLDs obtained by
experiments and GTN model
Abbasi et al. (2012b)
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(2009). Regarding this fact, Brunet et al. (1996) employed an anisotropic
Gurson-Tvergaard model Gurson (1977), Tvergaard (1981) with Hill’48 quadratic
yield criterion Hill (1948) in the analysis of necking in the simulation of a deep
drawing process. The FLC of a mild steel sheet was determined by the numerical
simulation of Marciniak tests. Kami et al. (2015) also used the anisotropic GTN
model with Hill’48 quadratic yield criterion to determine the FLC of anisotropic
sheet metals. The commercial ABAQUS/Explicit finite element code and the
VUMAT implementation of the anisotropic GTN damage model were used to
calculate the limit strains of an AA6016-T4 sheet. The hardening behaviour of the
metallic sheet is described by Swift’s law:

Yð�epÞ ¼ 525:8ð0:113þ�epÞ0:27 ð5:122Þ

The Hill’48 coefficients i.e. F, G, H, L, M, and N were calculated as 0.648, 0.644,
0.356, 1.5, 1.5 and 1.174, respectively. The GTN model parameters were calibrated
using the force-displacement curve obtained from uniaxial tensile tests. Table 5.1
shows the values of the calibrated GTN model parameters:

The Forming Limit Curve has been constructed according to the specifications of
the international standard ISO 12004-2 (2008) and by performing the Nakazima
tests. Different strain paths have been tested by using different geometries of the
specimens according to Fig. 5.41. The values of the width parameter w are 30, 55,
70, 90, 120, 145, and 185 mm, the last of them corresponding to a fully circular
specimen. The Forming Limit Curve obtained by numerical simulations has been
validated by comparison with experimental results.

To calculate the limit strains, the numerical simulations have been continued up
to fracture. Three groups of nodes distributed along paths normal to the fracture
section have been selected and the values of the major and the minor strains at these
nodes have been measured on the frame corresponding to the stage just before the
onset of fracture. One of the node paths used to measure the principal strains is
shown in Fig. 5.42. Having the fracture section as shown in Fig. 5.42a, b facilitates
the selection of node paths for strain measurement. The first node path passes
through the middle of the fracture section (see Fig. 5.42), while the other two paths
are located on each side of the first path with an approximate distance of 2 mm,
being also parallel to each other. The values of the strains associated to these node
paths were analyzed with the ARAMIS software and according to Bragard’s
method (Bragard et al. 1972; D’Haeyer and Bragard 1975) to determine the cor-
responding point on the Forming Limit Curve.

The Forming Limit Curve obtained using the ARAMIS software is presented in
Fig. 5.43. This figure indicates that the results obtained by numerical simulation
using the GTN damage model are in good agreement with the experimental data.

Table 5.1 Values of GTN model parameters

GTN parameter q1 q2 q3 f0 fN SN �eN fC fF
Value 1.5 1 2.25 0.00035 0.05 0.1 0.3 0.05 0.15
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The comparison becomes even more favourable when confronted with the pre-
dictions of the MK and MMFC models see Fig. 5.43. One may notice from the
diagram that the quality of the GTN predictions is far better, especially along the
right branch of the Forming Limit Curve, where both MK and MMFC models
overestimate the formability of the metallic sheet.

The finite element simulation with the GTN damage model as the material
constitutive model was also used for the construction of Forming Limit Stress
Diagram (FLSDs) (Uthaisangsuk et al. 2008; He et al. 2011). For this purpose, the
Nakazima tests were simulated with sheet metal samples having the same length of
190 mm and varying widths from 55 up to 195 mm (Uthaisangsuk et al. (2008)).
The FLSD obtained in this way was used for the prediction of crack initiation due to
a two-step forming and hole expansion tests. The same investigation was performed
by the application of FLD obtained by the experimental tests. It was observed that
the FLSD obtained by the GTN model was able to predict the failure with rea-
sonable accuracy. On the other hand, the experimental FLD failed to predict the
crack initiation (Uthaisangsuk et al. (2008)). A similar work was reported by He
et al. (2011) in which the FLSD of an AA5052-O1 sheet was determined using the
GTN damage model. The cited authors performed numerical simulations of the
Nakazima test on different samples with 10 mm to 180 mm widths (see Fig. 5.44).

The numerical simulation was allowed to continue until the onset of necking
where the damaged elements with zero stress appear in the necking region. Three
elements with close stress values (the stress difference between every two elements
is within 10 %) were selected in the necking region and the mean value of the
principal maximum and middle stresses at these elements were defined as the limit

w

Fig. 5.41 Dimensional
characteristics of the circular
and notched specimens used
in the Nakazima tests with
hemispherical punch,
Ø100 mm
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stresses. The stress values were measured at the last loading increment without the
appearance of cracked elements. The same procedure has been used for the
determination of limit strains. The numerical FLD obtained by using this approach
showed good agreement with experimental results (He et al. 2011).

The GTN damage model was also used to predict FLDs for different types of
sheets, dual phase and multi-phase steels (Uthaisangsuk et al. 2009, 2011;
Ramazani et al. 2012), Tailor-welded blanks (TWBs) (Abbasi et al. 2012b, 2012c)
and sandwich sheets (Parsa et al. 2013; Liu et al. 2013). Ramazani et al. (2012)
determined the FLC of the DP600 steel by the numerical simulation of the
Nakazima test. Furthermore, the ability of the GTN model to predict the damage in
forming was assessed by FE simulation of a cross-die test. The results showed that
the GTN damage model predicts the fracture with reasonable accuracy (Ramazani
et al. 2012).

Fig. 5.42 Distribution of the major logarithmic strain of the notched specimen with w = 130 mm
a at the onset of necking and b after fracture
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Almost the same procedure in Abbasi et al. (2012a) was used for the FLC
prediction of IF-steel TWBs (Abbasi et al. 2012b, 2012c). The results showed that
the predicted FLD by the GTN model does not properly agree with the FLD
relevant to fracture initiation, but it is in fairly good conformance with the FLD that
separates the safe region from other regions.

The GTN damage model was employed to construct the FLC of
Al3105/polypropylene/Al3105 (Parsa et al. (2013)) andAA5052/polyethylene/AA5052
sandwich sheets (Liu et al. 2013). The FLC of these sandwich sheets was determined by
numerical simulations of the Nakajima test where the GTN model was used as the
constitutive model of the metallic face sheets. The effect of layer’s thickness on the
formability of these sandwich sheets was investigated.

To find the limit strains, Liu et al. (2013) analyzed the evolution of the equiv-
alent plastic strain in the neck region. As Fig. 5.45 illustrates, the evolution of the
equivalent plastic strain in the localized neck point “a” and its vicinity point “b”
were plotted as a function of the dome height. By comparing the equivalent plastic
strain curves of these two points, one may notice that the strain values at these two
points show similar tendencies during most of the deformation process, and this
portion of the deformation process is called stability period. With the proceeding of
deformation process, the equivalent plastic strain value at point “a” begins to show
a rapid increase, which indicates that the instability period starts. When the
equivalent plastic strain increment at point “a” exceeds by 7 times that at point “b”,
the localized necking is assumed to occur and the final major and minor strains of
element “a” calculated by linear interpolation are considered as the limit strains for
the construction of forming limit diagrams.

Besides the above mentioned studies, the GTN damage model was used for the
investigation of formability under double-sided pressure forming Liu and Meng
(2012) and also in the study of geometry and grain size effects on the formability of
sheet metals inmicro/meso scale plastic deformation (Xu et al. 2015). Liu et al. (2012)

Fig. 5.44 Nakazima test samples used for the numerical construction of the FLSD for an
AA5052-O1 metallic sheet
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studied the effects of double-sided pressure on the formability of an AA5052-O
aluminium alloy sheet metal under tension-compression deformation state. The left
branch of the FLD was determined by numerical simulation of Nakazima tests under
different double-sided pressure conditions. The GTN model was able to predict the
limit strains in the left branch of the FLD with acceptable accuracy.

Xu et al. (2015) investigated the geometry and grain size effects on the forma-
bility of sheet metals in micro/meso scale plastic deformation using experiments
and numerical simulation. For this purpose, the forming limit experiments were
conducted based on the miniaturized (Holmberg et al. 2004) (for the left branch of
FLC) and Marciniak (for the right branch of FLC) tests to estimate the formability
of sheet metals under different loading conditions. The dimensions of the specimens
used in these tests are shown in Fig. 5.46. The traditional Marciniak test was
performed with the punch diameter of 10 mm, die diameter of 14 mm and the hole
in the driving sheet centre of 3 mm diameter.

For the numerical construction of FLC at micro/meso scale, an extended coupled
damage model was first developed based on GTN and the Thomason (1985) models
via considering the geometry and grain size effects on void evolution. The extended
model was then employed in the numerical simulations of both Holmberg and
Marciniak tests. In these simulations, when the void volume fraction just reaches to
final void volume fraction fF the major and minor strains are considered as the limit
strains. The forming limits determined in this way are shown in Fig. 5.47 for a
copper sheet with the thickness of 0.4 mm and different grain sizes of 23.7, 58.9
and 132.2 lm and (Xu et al. 2015). As one may notice, the extended GTN is
qualitatively able to predict the changes in limit strains with the change of grain size
(the numerically predicted limit strains decrease with the increase of grain size as in
the case of experiments). Nevertheless, the extended GTN model underestimates
the limit strains under biaxial stretch condition. The reason for this inaccuracy may
be related to the identification procedure of the extended GTN model parameters. It

Fig. 5.45 Equivalent plastic
strain distribution of localized
neck element “a” and its
neighbour element “b” Liu
et al. (2013)
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is revealed that Thomason model tends to overestimate the ductility at low triaxi-
ality (Benzerga 2002), hence the parameters identified based on the uniaxial tensile
tests could be less accurate when applied to the biaxial stretch condition with higher
triaxiality. In addition, the coalescence behaviour affected by shear loading is not
considered either. This might also contribute to the difference between the exper-
imental and predicted FLCs (Xu et al. 2015).

Fig. 5.46 The dimensions of the Holmberg and Marciniak specimens used for the construction of
FLC Xu et al. (2015)

Fig. 5.47 Comparison of limit strains in a copper sheet with the thickness of 0.4 mm and grain
sizes of 23.7, 58.9 and 132.2 lm (Xu et al. 2015)

270 D. Banabic et al.



Uthaisangsuk et al. (2009), (2011) used a 3D representative volume element
(RVE) to characterize multiphase microstructures of DP600 and TRIP600 steels and
their distribution on the micro-level. Figure 5.48 illustrates an example of the RVE
for a TRIP steel its microstructure consisting of ferrite, bainite, austenite and
martensite (Uthaisangsuk et al. 2009). The GTN damage model was used in the finite
element simulations of RVE for calculating the failure moment. The FLC’s of DP600
and TRIP600 steels were constructed based on the results of these simulations.

The RVE was defined as a cube and the experimentally measured constituent
phase fractions were taken into account. To describe the random distribution of
phases, a statistical algorithm was implemented. The RVE’s were used to investi-
gate the critical areas of sheet samples in the Nakazima stretching-test. Therefore,
boundary conditions for the RVEs were obtained from the local deformation fields
in the macroscopic simulations (simulation of Nakazima tests with real dimensions
of sheet samples). The influences of the local stress state on the crack initiation in
the microstructure were considered by varying the sample dimensions. The GTN
model was only employed for the softer ferritic matrix in the RVE model, where
void initiation and void growth were observed in the experiments.

The comparison between the results of the RVE model and the experimental
FLCs of DP600 and TRIP600 steels is presented in Fig. 5.49. As this figure shows,
the limit strains predicted by the RVE model with GTN damage model underes-
timated the FLD curves in the biaxial stress condition whereas in the uniaxial
tension and plane strain range the failure predictions exhibited similar strain levels
as the experimental results. The reader is recommended to refer to Uthaisangsuk
et al. (2009) for more discussions.

Figure 5.50 shows the macroscopically simulated Nakazima samples and their
corresponding RVE’s for the microstructure of TRIP600 at the moment of failure
for the specimen having the dimensions 20 and 190 mm. The white regions are
austenite and bainite, for which the GTN damage criterion was not applied. The
failed elements reaching the critical damage values were observed close to the
upper side of the RVE model for all sample geometries. This area belongs to the
surface of the sheet samples, where cracking emerged in the experiments
(Uthaisangsuk et al. 2009).

Fig. 5.48 Representative volume elements (RVE) for a TRIP microstructure consisting of ferrite,
bainite, austenite and martensite (Uthaisangsuk et al. 2009)
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5.4.6.3 FLC Prediction by Combined M-K and GTN Models

The M-K model (Marciniak and Kuczynski 1967) assumes that the strain local-
ization results from a thickness imperfection schematically represented as a groove
in Fig. 5.27 and (Marciniak and Kuczynski 1967; Hutchinson and Neale 1978a).

Fig. 5.49 Comparison of numerical calculated strains at failure with experimental FLC’s for
DP600 and TRIP600 steels (Uthaisangsuk et al. 2009)

Fig. 5.50 FE results from macroscopic and RVE simulations for the 20 and 190 mm sheet
samples made from steel TRIP600 (Uthaisangsuk et al. 2009)
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According to this hypothesis, two regions of the sheet metal should be distin-
guished: A—non-defective zone; B—groove. At different stages of the straining
process, the parameter f ¼ sðBÞ=sðAÞ; 0\f\1; is used to describe the amplitude of
the imperfection (s(A) and s(B) denote the current thickness of regions A and B,
respectively—see Fig. 5.27. The mechanical interconnection A–B is defined by a set
of relationships enforcing the continuity of the strain-rate along the groove and the
equilibrium of the normal and tangential loads acting on the interface from both
sides (Banabic et al. 2010a). In the case of the MK model, necking is a consequence
of the fact that the thickness strain tends to accumulate faster in region B.

To overcome some drawbacks of the MK model like the unrealistic assumption
of a thickness defect, some researchers proposed to include void concentration in
the defective zone. One approach developed according to this idea is the combi-
nation of MK and Gurson damage models. In this way, both ductile fracture caused
by the evolution of voids and sheet metal instability contributes in the prediction of
necking and limit strains.

Needleman and Triantafyllidis (1978) used the MK model in combination with
Gurson damage model (Gurson 1977) to study the effect of void growth on the
formability of biaxially stretched sheets. The imperfection was described by an
increased initial volume concentration of voids in the incipient neck. The effect of
the strain-hardening exponent and difference in initial void concentration between
the material inside and outside the neck on the forming limit strains was studied
Needleman and Triantafyllidis (1978). Because voids also evolve by nucleation,
better predictions of plastic instability will be achieved when the nucleation of
voids is taken into account in the Gurson model. The study on the effect of void
nucleation on the forming limit of biaxially stretched sheets confirmed that the void
nucleation has a significant effect on the limit strains Chu and Needleman (1980).
The combined Gurson and MK models were also employed to study the effect of
material properties on the forming limits of voided sheet metals (Melander 1983;
Ragab et al. 2002).

Zadpoor et al. (2009) compared four different approaches of phenomenological
ductile fracture modelling, the MK model, a modified Gurson damage model and a
combined Gurson and MK approach to understand which of them can successfully
predict the forming limits of high strength aluminium alloys like AA2024-T3. In
the combined Gurson and MK approach, an initial imperfection in the sheet metal
was assumed and a population of initial voids that are subject to further nucleation,
growth and coalescence as deformation takes place was considered in both uniform
and imperfection zones. The schematic drawing of this model is presented in
Fig. 5.51. Once the void volume fraction of the imperfection zone reached the
failure void volume fraction, the sheet was assumed to have failed and the strain
values in the uniform zone were recorded as forming limits.

The results showed that the combination of the porous metal plasticity with the
MK model improves the quality of the predictions of the porous metal plasticity
model in the high end of the stress triaxiality values. Furthermore, it was found that
the combined GTN and MK models and the modified Gurson model are more
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computationally expensive in comparison with the MK and the phenomenological
ductile fracture models. Based on these results it was concluded that the phe-
nomenological ductile fracture models can predict the forming limits with better
accuracy and lower computational costs in comparison with the combined GTN and
MK models (Zadpoor et al. 2009).

To include material anisotropy, an approximate macroscopic yield criterion
based on the Gurson damage model (Gurson 1977) was developed by Liao et al.
(1997) under plane stress conditions:

U ¼ req
r0


 �2

þ f � 2 cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2R
6 1þRð Þ

s
6rm
2r0

 !
� f �

" #
� 1; ð5:123Þ

where, R is the anisotropy parameter, defined as the ratio of the transverse plastic
strain rate to the through-thickness plastic strain rate under in-plane uniaxial loading
conditions. Later, this model was used to investigate the failure of sheet metals
under forming operations (Huang et al. 2000). The MK method was employed to
predict plastic localization by assuming a slightly higher void volume fraction
inside randomly oriented imperfection bands in a material element of interest. The
effects of the anisotropy parameter R, the material/geometric inhomogeneities, and
the potential surface curvature on the plastic localization were investigated Huang
et al. (2000).

The finite element model of combined Gurson and MK model is presented in
Fig. 5.52 and Simha et al. (2007a, b) used this model to construct a limit curve in
terms of the invariants of mean stress and equivalent stress which is called extended
stress-based formability curve (XSFLC) using the GTN damage model. The authors
used a material model consisting of a homogeneous zone and a zone that contains

Fig. 5.51 Schematic drawing of the combined Gurson and MK models (Zadpoor et al. 2009)
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voids (material inhomogeneity) to simulate the necking under plane strain and
uniaxial stress load paths.

The GTN material model was used to simulate the necking through finite ele-
ment computations. Then, a strain-based FLC is constructed for this model and this
FLC is transformed into a XSFLC. By changing the ratio of displacement in x3
direction to displacement in x1 direction, different in-plane loading paths are applied
to the model. The XSFLC was constructed for different values of the work hard-
ening exponent and initial void volume fraction. The applicability of this model was
satisfactory for the case of straight tube hydroforming with no end feed.

The applicability of the combined Gurson and MK models in the prediction of
FLC’s of metal sheets under superimposed double-sided pressure was also inves-
tigated Liu et al. (2012). It was assumed that the imperfection zone has a certain
initial volume fraction of voids. The schematic model is shown in Fig. 5.53. To find
the limit strains, it was assumed that the failure takes place when the plastic strain
increment in the inhomogeneous zone is 10 times larger than that in the homoge-
neous zone. The major and minor strains in the homogeneous zone were considered
as the limit strains for the FLC construction (Liu et al. 2012). Figure 5.54 shows the
predicted FLC’s at different values of the initial void volume fraction of the

Fig. 5.52 Schematic material model. Symmetry and displacement boundary conditions are
shown. When u3 ¼ 0; the model is loaded along the plane strain path (Simha et al. 2007b)

Fig. 5.53 Schematic of the MK model combined with Gurson model (Liu et al. 2012)
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inhomogeneous zone fa0. As one may notice, the limit strains decrease with the
increase of fa0.

The interested reader is suggested to refer to Chien et al. (2004) and Son and
Kim (2003) for more examples of the construction of FLC using the combined
GTN and MK models.

In addition to the above mentioned works, the GTN model was employed
according to other approaches for FLC prediction. A brief description of these
approaches will be presented here. A numerical necking criterion based on the
stress state in the neck was proposed by Brunet et al. (1998) and Brunet and
Morestin (2001) for the determination of limit strains. The necking criterion was
based on the load-instability and plane strain localization assumptions (Hora’s
model (Hora and Tong 1994)) in which the failure of the material is defined by
Gurson–Tvergaard damage model with Hill’48 and Barlat and Lian (1989) yield
criteria. Similar studies using a non-local version of Gologanu–Leblond–Devaux
model (Gologanu et al. 1993, 1994, 1997) were made to define the limit strains of
anisotropic sheet metals (Brunet et al. 2004, 2005). Wang et al. (2013) used the
anisotropic GTN damage model with Hill’s quadratic yield criterion for the pre-
diction of fracture in warm stamping of an AZ31 magnesium alloy sheets and also
for the construction of FLC’s at different temperatures. By the numerical simulation
of the warm stamping process and recording the major and minor strains at the
predicted place of fracture the FLC’s at different temperatures were constructed.
The effect of temperature on the void growth, coalescence and fracture behaviour of
the Mg alloy sheets were analyzed using the anisotropic GTN model (Wang et al.
2013). Jeong and Pan (1995) employed a modified yield criterion based on the
Gurson model and the Coulomb’s yield criterion in the finite element modelling of a
voided cube. Using these constitutive relations, Forming Limit Diagrams of
rubber-modified plastics were constructed by measuring the critical localization
strains under plane-stress biaxial loading. Grange et al. (2000) extended the GTN
model to take into account the plastic anisotropy and viscoplasticity. They used this

Fig. 5.54 Comparison of
FLC’s for different values of
the initial void volume
fraction in the inhomogeneous
zone (Liu et al. 2012)

276 D. Banabic et al.



extended model for the FLC construction for a zirconium alloy containing various
amounts of hydrogen.

5.4.6.4 Theoretical Model for Forming Limit Diagram Predictions
Without Initial Inhomogeneity

Limit Analysis Interpretation of the MK Model

We will now show that the M-K model for the onset of necking admits a simple
interpretation in terms of limit analysis or limit loads. Figure 5.55a shows the
typical configuration of the homogeneous regions A along with the thickness
defective region B. As it typical for the first quadrant of the FLD, we consider only
the case where the region B is perpendicular to the direction of the major strain Ox1.
To simplify the discussion we also suppose that the coordinate system of Fig. 5.55a
is aligned with the rolling and transverse directions of the sheet, and therefore also
with the orthotropy axes of the yield locus. In the region A we impose a constant
strain rate ratio:

dA22
dA11

¼ q; 0� q� 1; dA12 ¼ 0; ð5:124Þ

where d is the strain rate and all variables carry a superscript showing the region
they belong to. The last equation is implied by the condition that the strain rates
d11; d22 are principal strain rates. Equations (5.124) and conditions of plastic nor-
mality and plane stress uniquely define the stress tensor rA in region A. The
equilibrium and compatibility conditions for the two regions are given by:

Fig. 5.55 MK model: thickness defect along a narrow band (a) and limit load interpretation of the
onset of necking (b)
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rA11t
A ¼ rB11t

B; rA12t
A ¼ rB12t

B; dA22 ¼ dB22; ð5:125Þ

where t is the actual thickness. These conditions also uniquely define the stress and
strain rate for the region B.

In the usual approach to the numerical solution of the MK model, these dif-
ferential equations are integrated using an implicit Euler solver. During deforma-
tion, the strain rate in the region B rotates toward the plane strain condition where
dB22 ¼ 0: Because of Eqs. (5.125), and the normality condition for region B, this
implies that dB11 ! 1 when dB22 ! 1: In turn, this implies an infinitely fast
decrease of the thickness in region B which is the MK definition for incipient
necking. In practice, the solver is stopped as soon as dB11=d

B
22 becomes larger than a

predefined value, usually 10.
We now propose an alternative explanation for the incipient necking predicted

by the MK model. In Fig. 5.55b we have plotted the intersection of the yield loci
for both regions A and B with the hyper-plane r12 ¼ r13 ¼ r23 ¼ r33 ¼ 0: In order
to impose the equilibrium condition given by the first of Eqs. (5.125), we have
scaled the yield loci with the respective actual thicknesses. Starting with the known
scaled stress rA11t

A in the region A, we seek the intersection of the line rB11t
B ¼ rA11t

A

with the scaled yield locus of the region B. There are three possibilities, labelled
with (p, q, r) in Fig. 5.55b: two points of intersection, one tangent point, and no
intersection.

For case (p), the two points have normals with different signs of dB22 and
therefore the correct choice is governed by the third of Eq. (5.125) and the sign of
dA22. The second case (r) is precisely the onset of necking in the MK model. As it
easily inferred from Fig. 5.55b, this case has two equivalent interpretations:

dB22 ¼ 0 , rB11 ¼ sup r11 9j r22;U
Bðr11; r22Þ� 0

� 
; ð5:126Þ

where UB is the convex yield function for the region B. The second equation above
shows that at the onset of necking the region B has reached its limit load for the x1
direction. The third case (r) reinforces this limit-load interpretation: when there is
no intersection, the equilibrium condition requires that the stresses in region A are
inside the convex yield locus. This means that region A is rigid, with no plastic
deformation, and this implies:

dA11 ¼ dA22 ¼ 0; dB22 ¼ dA22 ¼ 0 ð5:127Þ

so that region B is necessarily in the plane strain condition. We observe that this last
case is incompatible with an imposed strain rate ratio in region A as required by
Eq. (5.125); in this case the simplest solution is to switch to a constant stress ratio
(shown with a dotted line in Fig. 5.55b).

In conclusion, we have shown that the onset of necking in the MK model is
characterized by the attainment of a limit load for the defective region and a
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transition from a state of plastic deformation in both regions to one of plastic
deformation inside the defective region and a rigid one inside the defect-free region.

Coalescence Models for Ductile Porous Materials

Initially the voids in a ductile porous material grow due the incompressibility of the
surrounding material. In their pioneering work, Koplik and Needleman (1988) have
numerically analyzed an elementary cell in a material with periodic voids, sub-
mitted to conditions of constant stress ratio (with axisymmetric loading and pre-
dominant axial stress); after some deformation the plastic flow becomes localized in
the ligaments between the voids thus leading to an accelerated growth and subse-
quent coalescence of voids. An analytical model for the same elementary cell has
been proposed by Gologanu et al. (2001), based on a sandwich model with three
layers—a highly porous one surrounded by two sound layers. There are two pos-
sible regimes—one with rigid outer layers and the other with plastic sound layers.
The evolution of intervoid distances may trigger the rigid/plastic regime and
therefore the onset of coalescence. Recently, Leblond and Mottet (2008) have
extended this analysis to the case of a combined axisymmetric and shear loading,
treating within the same model the coalescence of voids and the formation of shear
bands along voided sheets.

Independently, Thomason (1985) has provided an analytical solution for the
critical normal stress acting on a periodic planar array of rectangular voids where
only the ligaments between voids are under plastic flow, the upper and lower blocks
being rigid. He then used this particular solution to determine the onset of coa-
lescence by the following limit analysis recipe: use a non-localized plastic flow
solution (given by some homogenized model for porous solids) as long as the
normal stress given by this theory is below the critical stress; otherwise switch to
the rigid blocks/plastic ligaments model.

Another successful model has been proposed by Perrin (1992). Similarly to the
above models he follows the evolution of the distribution of voids and once a
highly porous layer is formed, he applies to it the localized band bifurcation
analysis of Rudnicki and Rice (1975).

Figure 5.56 shows a typical coalescence model. The essential ingredients are the
anisotropic distribution of voids due to the plastic deformation (a), the considera-
tion of the horizontal sound layers A and highly porous layer B (b) and finally the
limit load interpretation for the onset of coalescence, completely analogous to the
one in Fig. 5.55b pertaining to the onset of necking in the M-K model: when
stresses in the sound region attain the maximal stress supported by the porous layer
at q, there is a change in plastic regime toward a rigid behaviour of the sound
regions (stresses in the sound region are inside the yield locus UA at r) while the
porous layer remains in a strain-state compatible with this rigid behaviour
dB22 ¼ dB33 ¼ 0:
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5.4.6.5 Necking Model Based on Limit Analysis for Porous Sheets

Based on the observed analogy between the onset of sheet necking as predicted by
the MK model (Marciniak and Kuczynski 1967) and the onset of coalescence of
voids in a porous bulk solid, we develop now a new necking model without an
initial imperfection based on limit analysis (LA).

Let us consider a porous sheet with a matrix obeying a rigid-plastic law with von
Mises yield criterion. An initial isotropic distribution of voids (Fig. 5.57a) will
evolve into an anisotropic one after a deformation of the sheet (Fig. 5.57b).

Fig. 5.56 Typical coalescence model based on limit analysis: distribution of voids after some
deformation (a), elementary cell showing sound and highly porous layers (b) and limit load
interpretation of the onset of coalescence with stress states in the sound regions before coalescence
p, at the onset of coalescence q and during coalescence r (c)

Fig. 5.57 LA necking model: Spherical voids with an initial homogeneous distribution (a), in
plane virtual localization band after a plastic deformation with vertical major strain (b),
through-thickness virtual localization band after a biaxial deformation that rendered the voids
oblate (c), method for determining the increased porosity in a virtual localization band (d)
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We model the voided sheet using the ellipsoidal Gurson model from Gologanu
et al. (1997) without taking into account the distribution of voids. At each moment
we test for localization inside virtual bands with various normals n (Fig. 5.57c). For
this test we do take into account the anisotropic distribution of voids that leads to an
increased porosity inside the band. We first need to determine the mean void
interspacings 2dxy and 2dz in the plane of the band and in the perpendicular
direction z, parallel to n; then we need to estimate the thickness of the band 2db or
equivalently the ratio c ¼ db=dz and finally we need a model for the limit load the
band can still sustain.

Let us denote F the deformation gradient at the actual time. By assuming that the
void interspacings are governed by the evolution of some elementary area and
length, Leblond and Mottet (2008) were able to determine an expression for the
ratio r ¼ dxy=dz. It is easy to generalize their result to the case of a distribution of
voids that has already been submitted to some deformation gradient F0 prior to the
analyzed deformation process, again starting from an isotropic distribution:

r � dxy=dz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðFF0Þ

p
nFF0F

T
0 F

Tn
� ��3=4 ð5:128Þ

where n is the normal to the band (parallel to direction zÞ.
The choice of the band thickness for coalescence models has been widely dis-

cussed in the literature. For example Thomason’s model is based on the choice 2db
equal to the void height in the direction n, in order to best model plastic flow
localization in the ligaments between voids. Based on experimental observations on
sheet rupture showing that necking in general precedes void coalescence, we follow
here the proposal of Perrin (1992) and Gologanu et al. (2001) and choose the
thickness db such that the resulting elementary cell surrounding the void is the best
possible approximation for an ellipsoid confocal with the void. This choice is
compatible with using an ellipsoidal Gurson model for determining the limit load of
the band; this model needs the porosity f p and the shape factor Sp inside the band.

A supplementary difficulty appears if the band is not parallel to the void axes or
if the void is not axisymmetric in the plane of the band. In this case, we determine
an equivalent axisymmetric void by the following recipe: we project the initial void
onto the plane xy to obtain an ellipse, we replace this ellipse with a circle of radius
axy of same area and we determine the height az of the new void by imposing equal
volumes for the original and new voids. In the sequel we will need only the
following special case: the initial void is aligned with the sheet axes and has
semiaxes a1; a2; a3 and the normal to the band is given by n ¼ ðn1; 0; n3Þ:

axy ¼ a1=22 a23n
2
1 þ a21n

2
3

� �1=4
; az ¼ a1a3

a23n
2
1 þ a21n

2
3

� �1=2 ;
expðSpÞ ¼ wp ¼ az

axy
:

ð5:129Þ
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We note that for a initial void that is also axisymmetric (either prolate or oblate),
the last equation defines uniquely the shape factor Sp of the projected void as a
function of the initial shape factor S.

The confocality condition and the porosity are given now explicitly by:

d2b � d2xy ¼ a2z � a2xy; f ¼ 4pa2xyaz
24d2xydz

ð5:130Þ

Using Eqs. (5.128), (5.129) and (5.130) we obtain the final result for the porosity f p

inside the band:

c ¼ f
f p

¼ r2 þ 6fr2w2

p


 �2=3

1� 1
w2


 �" #1=2
ð5:131Þ

For a spherical void, this expression reduces to c ¼ r as proposed by Leblond and
Mottet (2008).

We still need to provide an expression for the limit load of the virtual local-
ization band. Let rp be the stress on the inclined band in Fig. 5.57d due to stress
equilibrium and strain compatibility with the uniform sheet:

rpzz ¼ r11 cos2 h; rpxz ¼ r11 sin2 h; rpyz ¼ 0; dpyy ¼ 0: ð5:132Þ

We note that at variance with coalescence models we do not impose dpxx ¼ dpxy ¼ 0
but rather rpxx ¼ rpxy ¼ 0 resulting from plane stress conditions. LetUpðr; f p; SpÞ ¼ 0
be the yield surface of the porous band, where we have omitted the dependence on
other state parameters. Then the limit load problem for the band can be written as:

amax ¼ sup a Upðar; f p; SpÞj � 0;
@Up

@r22
¼ 0

� �
¼ 1: ð5:133Þ

There is no analytical solution of this equation; we solve it numerically using a
formulation described elsewhere.

There is a supplementary condition for incipient necking that has generally been
neglected in coalescence studies. The attainment of the limit load in the band is not
sufficient, as the subsequent deformation of this band and increased hardening
inside the band may instantaneously deactivate the limit load condition. For a
vertical through thickness band this new condition is simply:

d rp11t
� �

=ds� 0; _rp11 þ rp11d33 � 0 ð5:134Þ

where the derivatives with respect to time s must be taken for a porous band that
remains compatible with rigid blocks outside the band. The last equation is similar
to the one used by Hill for the second quadrant and identical to Eq. (7) in Stören
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and Rice (1975) for the bifurcation along a band perpendicular to the major strain
axis, without any consideration of a vertex on the yield surface. This shows that the
new model contains as a special case the bifurcation theory of Stören and Rice,
applied not to the uniform sheet but to a virtual band with increased porosity.

We do not present here the supplementary condition for an inclined band as we
have found that it is always preceded by the limit load condition for strain paths
close to the biaxial one, exactly where we expect that inclined bands may be first to
localize.

The final model we use is that for a non-inclined band incipient necking is
attained when both conditions are true:

amax � 1; _rp11 þ rp11d33 � 0 ð5:135Þ

while for an inclined band only the first condition is used.

Numerical Results

We first consider the simplest possible model for a porous sheet with a matrix
having a rigid-plastic behaviour with von Mises yield surface, Swift hardening with
K ¼ 417 MPa; e0 ¼ 0:01 and a hardening exponent 0.245 and an initial porosity
0.01. We also suppose that voids are initially spherical and remain so during sheet
deformation. Figure 5.58 compares the prediction of the new LA necking model
with the MK model. The LA necking model shows two different regions: the first
region, close to the plane-strain conditions, is one where the bifurcation condition
Eq. (5.134) is attained before the limit load condition Eq. (5.133), while for the
second region the reverse is true. For this spherical Gurson model the limit load in
an inclined band was attained always after it was attained in the non-inclined band.
The MK model results shown on the same Figure correspond to the case of an
initial damage imperfection without thickness imperfection—the region B is porous

Fig. 5.58 Numerical FLD
predictions for a spherical
Gurson model: LA necking
model versus MK model
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but region A is sound, while the other curve corresponds to the dual case where the
porosity is the same in both regions but there is an initial thickness imperfection
with thickness ratio 0.99. We now consider the same porous material as before but
we let the shape of the voids evolve toward oblate ellipsoids. Figure 5.59 compares
again the results of the new LA necking model and MK models. In this case one
observes that there appears a third region around the biaxial strain condition, where
some inclined band attains the limit load before the non-inclined band.

5.4.7 Other Models

5.4.7.1 Bifurcation Models

Bifurcation models seek the conditions under which localized plastic plane-strain
deformation is possible in a narrow band without loss of stress equilibrium. The
first bifurcation model, that of Hill (1952), was limited to the left-hand side of the
Forming Limit Curve since for deformation modes in the right-hand side, there
exists no plain-strain direction for materials with smooth yield loci and normal
plastic flow. By adopting the deformation theory of plasticity and allowing for
vertex-formation on the yield locus, the extension to the right-hand side of the FLD
was made by Stören and Rice (1975).

More recently, this bifurcation model has nevertheless been successfully used
with the flow theory of plasticity, more commonly accepted in sheet metal forming.
Flow theories in which non-normal plastic flow is allowed, are used in Hashiguchi
and Protasov (2004), Ito et al. (2000), while Haddag et al. (2007) added the damage
model of Chaboche into flow theory.

Fig. 5.59 Numerical FLD
predictions for an ellipsoidal
Gurson model: LA necking
model versus MK model
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5.4.7.2 Perturbation Models

Dudzinski and Molinari (1991) proposed the use of the linearized theory of stability
in order to determine the limit strains. This approach which considers the sheet to
have homogeneous properties, is the linear perturbation technique for sheet necking
analysis (Boudeau 1995; Boudeau and Gelin 1996). In this approach, a perturbation
to the strain state at equilibrium is introduced, from which the limit strain is found
as the conditions under which the perturbation increases in time. Recently, Jouve
(2015) revisited the Dudzinski and Molinari theory and developed a 3D linear
stability analysis to study the onset of the development of necking plastic
instabilities.

5.4.8 Semi-empirical Models

Despite all the recent enhancements of the computational models (see Sect. 5.4.4),
they are not able to give very accurate predictions of the limit strains in all the cases
encountered in practical applications (different materials, thickness, forming rates,
temperatures, strain paths, etc.). Due to this fact, the commercial finite-element
codes still make use of experimental FLD’s or FLD’s calculated with
semi-empirical models. Some of the widely-used semi-empirical models will be
presented next.

Keeler and Brazier (1975) proposed an empirical relationship for calculating the
limit strains corresponding to plane strain, e10:

e10ð%Þ ¼ 23:3þ 14:13 � tð Þ n
0:21

ð5:136Þ

where t is the sheet thickness (t � 3 mm).
Assuming that the shape of the FLD remains the same and having determined

the value of e10, it is possible to obtain the FLD by translating the Keeler-Goodwin
curve along the vertical coordinate axis.

Cayssials (1998), (1999) developed the Keeler-Brazier model by including both
the coefficient of strain-rate sensitivity m and the ‘internal damage’ parameters. The
limit strain is the solution of the equation

a e10 � nð Þ3 þ b e10 � nð Þ2 þ c e10 � nð Þ � 10 � mt ¼ 0 ð5:137Þ

where a, b and c are material constants. As a first approximation, e10 can be
expressed as follows:

e10 ¼ nþ 5mt ð5:138Þ
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Cayssials and Lemoine (2005) have extended the formulation (5.137) by including
the anisotropy coefficient thus obtaining:

aðe10 � nÞ3 þ bðe10 � nÞ2 þ cðe10 � nÞ�

� 14

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2þ 4rÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðrþ 1Þðrþ 2Þp mt ¼ 0

ð5:139Þ

where r is the anisotropy coefficient.
More, by coupling the former model with the Stören and Rice model (Stören and

Rice 1975) has been possible the extension of the new model also for drawing and
stretching areas. So, the new model is able to predict the FLC for the complete
domain, both for linear and non-linear strain paths, using only the mechanical
parameters (yield stress, strain hardening coefficient, strain rate sensitivity index
and anisotropy coefficient) and thickness of the material. The results obtained are in
very good agreement with the experimental data for new grades of steel alloys
(UHSS, DP, TRIP etc.) (Cayssials and Lemoine 2005).

Held et al. (2009) proposed a new semi-empirical approach for FLC prediction,
which is valid for all sheet metal materials used in car body production. This
approach uses a correlation of mechanical properties of uniaxial tensile test an
experimentally determined limit strains.

Abspoel et al. (2013) proposed a new method to predict accurately the FLCs for
a wide range of steel grades and thicknesses. The method is based on the corre-
lations founded between the characteristic points of the FLC and the mechanical
parameters. Four characteristic points were considered: uniaxial tension necking
point, plane strain point, intermediate biaxial stretch point and equi-biaxial stretch
point.

5.5 Commercial Programs for FLC Prediction

Based on the above mentioned models have been developed more commercial
programs for the limit strains prediction.

5.5.1 FORM-CERT Program

Based on a Marciniak-Kuckzynski model, Jurco and Banabic (2005a, b); Banabic
(2006) have developed so-called FORM-CERT commercial code. The BBC 2005
yield criterion is implemented in this model. This yield criterion can be reduced to
simpler formulations (Hill 1948, Hill 1979, Barlat 1989, etc.). In this way, the yield
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criterion can be also used in the situations when only 2, 4, 5, 6, or 7 mechanical
constants are available. The program consists in four modules: a graphical interface
for input, a module for the identification and visualization of the yield surfaces, of
the strain hardening laws and a module for calculating and visualizing the forming
limit curves. The numerical results can be compared with experimental data, using
the import/export facilities included in the program. FORM-CERT can be used as a
standalone application for calculating FLC’s and comparing them with experi-
mental data, or as an auxiliary tool for the finite-element simulation of sheet metal
forming processes. In its current structure, the program offers useful functionalities
both for research and industrial laboratories. A short description of this program
will be presented in the next sections.

The program FORM-CERT developed in the CERTETA research centre con-
sists in the following modules:

• Identification module associated to the yield criterion (responsible for evaluating
the coefficients of the yield criterion, as well as for the graphical output of the
yield locus and planar distribution of the yield stress and r-coefficient).

• Module for calculating and displaying the strain hardening law.
• Module for calculating and displaying the forming limit diagram.

Figure 5.60 shows a structural diagram of the program. This diagram presents
the modules mentioned above, as well as their interaction. We shall describe next
the functionality of each module.

Fig. 5.60 Structure of the FORM-CERT program
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5.5.1.1 Calculation and Displaying the FLC

This is the main module of the program. The MK model (see Sect. 5.4.4) of the
strain localization process has been implemented in the FORM-CERT program.

The graphical user interface provided by this module is divided in two regions
(Fig. 5.61). The first one receives the input data: coefficients of the yield criterion
and strain hardening law calculated by the modules mentioned bellow, a parameter
specifying the thickness non-homogeneity factor and also the value of the strain
increment used for computing the FLC.

At present, the FLD module works only for linear strain paths. The second
region of the graphical user interface is used for plotting the FLC predicted. Several
curves can be superimposed on the same diagram and also compared with exper-
imental data (imported from ASCII files via the ‘Experimental data’ panel).

5.5.1.2 “Experimental Data” Module

This module is structured as a panel for acquiring input data (Fig. 5.62). The user
has the possibility to type this data or to import it from ASCII files. The data can be
plotted on diagrams or exported to other modules of the FORM-CERT program. All

Fig. 5.61 Graphical user interface of the FLD module
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the diagrams generated by the modules mentioned above can be processed and also
exported in different graphical formats (Bitmap, Windows Metafile, GIF, JPEG,
Postscript, PDF, etc.). In addition, the results of the computations can be exported
in a numerical format (via ASCII, XML, Excel, and HTML files).

5.5.2 Other Programs

Hora and his co-workers have developed MATFORM code (http://www.
fominnotech.ethz.com) based on the MMFC model (Hora and Tang 1994; Hora
et al. 2003; Hora 2006). This code is able to calculate and plot the limit strains and
also the visualization of the strain hardening curve and yield loci using Hill (1948),
Hill 1979, Hill 1990 and Barlat (1989) criteria. The program is useful for evaluation
of most common experiments like tensile, bulge, Miauchi, torsion dilatometer and
tube hydroforming tests. The program is very well documented and is able to export
the constitutive models in FEM specific form for the application in the mostly
spread FEM-codes like Autoform or PamStamp.

Using the CRACH algorithm (based on the MK model), Gese and Dell (2006);
Dell et al. (2007), (2008) have developed two software: CrachLAB, a product for

Fig. 5.62 Graphical user interface of the ‘Experimental data’ module
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prediction of the initial FLC and CrachFEM a product for coupling with the FEM
codes. Criteria for ductile and shear fracture have been included in CrachFEM to
cover the whole variety of fracture modes for sheet materials. The material model
used to calculate instability describes: the initial anisotropy (using Hill 1948 cri-
terion), the combined isotropic-kinematic hardening and the strain rate sensitivity.
CrachFEM is now included in the FEM codes PamStamp and PamCrash of ESI
Group.

5.6 Conclusions

In the past, the FLC models provided an approximate description of the experi-
mental results. Such models were used especially for obtaining qualitative infor-
mation concerning the necking/tearing phenomena.

At present, the FLC models allow a sufficiently accurate prediction of the limit
strains, but each model suffers from its own limitations. There is no model that can
be applied to any sort of sheet metal, any type of crystallographic structure, any
strain-path or any variation range of the process parameters (strain rate, tempera-
ture, pressure, etc.).

The future research will be focused on a more profound analysis of the phe-
nomena accompanying the necking and fracture of the sheet metals. On the basis of
the analysis, more realistic models will be developed in order to obtain better
predictions of the limit strains. New models will be developed for prediction of the
limit strains for special sheet metal forming processes: superplastic forming,
forming at very high pressure, incremental forming etc. Commercial codes allowing
the quick and accurate calculation of the FLC’s both for linear and complex
strain-paths will be developed. The texture models will be also implemented in such
commercial programs. The FLC computation will be included in the finite element
codes used for the simulation of the sheet metal forming processes. The aim is to
develop automatic decision tools (based on artificial intelligence methods) useful in
the technological design departments. The stochastic modelling of the FLC’s will
be developed in order to increase the robustness of the sheet metal forming sim-
ulation programs. More refined, accurate and objective experimental methods for
the experimental determination of the limit strains (e.g. methods based on thermal
or acoustic effects) will be also developed.
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Chapter 6
Anisotropic Damage in Elasto-plastic
Materials with Structural Defects

Sanda Cleja-Ţigoiu

6.1 Introduction

We propose here a mathematical formalism, developed within the continuum
damage mechanics that allows us to describe the macroscopic behaviour of
elasto-plastic material with damaged microstructure. The damage of the material at
the microscopic level means the existence of the microcracks or microvoids, that
will be modeled by the presence of certain internal state variables, called the
damage tensor or scalar damage parameters, which evolve during the irreversible
processes.

The continuum damage mechanics investigates from continuum mechanics point
of view the internal microstructural changes, concerning the mechanical modeling
of the distributed cavities and cracks, which induce the initiation of the macro
cracks. The failure is characterized by dominant macro cracks, which are generated
as an ultimate stage during the damage (microstructural) process of the material.

The continuum damage mechanics formulates mathematically the mechanical
behaviour of the materials deteriorate by the existence of the microcavities and
microcracks. Within the continuum damage mechanics two types of problems arise
when describing the state of damaged material. The first type is related to the
physical nature and the mathematical description of the damage variables, while the
second type concerns the elaboration of the constitutive framework, which allows a
coherent description of the behaviour of materials with damaged microstructure.
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The damage state can be described mathematically by using scalar and tensorial
variables, referring to isotropic damage and anisotropic damage, which are
described by the appropriate evolution equations. The scalar damage variables are
adequate for the isotropic damage, when a random distribution of microvoids and
microcracks characterizes the damaged structure. The scalar damage variables have
been extensively used in continuum damage mechanics.

Murakami (1983) discusses mechanical modeling and the damage variables used
to describe the damage state and appreciated the primary notions introduced by
Kachanov (1986), Rabotnov (1969) as basic for the development of continuum
damage mechanics. Murakami (1983, 1988) refers to the existence of the dis-
tributed microvoids, which imply microcavities and microcracks, as damage, and
call the nucleation and the growth of the voids as their evolution.

In the anisotropic damage the void growth and micro-shear crack mechanism are
active simultaneously. Brünig (2003), Brünig and Ricci (2005) provide a finite
strain framework for ductile anisotropic continuum damage based on thermody-
namic law for isothermic processes and coupled with plasticity and damage, and the
extension to nonlocal plasticity and nonlocal damage can be found in Brünig and
Ricci (2005) and Brünig et al. (2013).

In Sect. 6.2, we exemplify some scalar variables, like the void volume fraction
and effective area reduction. We make reference to the effect of triaxiality on the
ductile damage, and we recall the initial concept of the undamaged configuration in
correlation with the anisotropic damage.

In Sect. 6.3, we present the models proposed by Brünig (2003), Brünig and
Ricci (2005), which are using the multiple undamaged (fictitious) configurations
and the specific metric coefficients to describe measures of damage. The macro-
scopic background is the same for the two above-mentioned papers. We also
present the damage model by Ekh et al. (2004) proposed within the crystal plasticity
formalism, when the evolution rule for the damage is formulated with respect to the
crystalline slip system. The model is based on the fictitious configuration and the
equivalence principle of the free energy in the fictitious undamaged configuration
and the intermediate configuration, used in the multiplicative decomposition of the
deformation gradient.

In Sect. 6.3, we also briefly presented the Chaboche and Lemaitre models,
(Chaboche and Lemaitre 1990; Lemaitre 1992), in the compact formulation of
damage laws as it was reviewed, presented and numerically implemented by de
Souza Neto et al. (2008). Although there is a model developed within the small
elasto-plastic formalism and it is based on one scalar damage variable only, and our
aims is to discuss the finite elasto-plastic models coupled with the anisotropic
damage, we included this model in our presentation due to the large number of
extensions. We mention here the paper by Lämmer and Tsakmakis (2000), Malcher
et al. (2012).

Two types of constitutive models have been proposed in this chapter, in
Sects. 6.4 and 6.5. The first model, discussed in Sect. 6.4, is based on the existence
of an undamaged (fictitious) configuration; the anisotropic damage is described in
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terms of the (second order) damage tensor, Fd , which is a deformation like tensorial
variable. The damage tensor Fd , characterizes the passage from a certain plastically
deformed configuration (in our case considered to be also stress free configuration)
to an undamaged (fictitious) configuration and depicted a measure of anisotropic
damage. Fd is involved in the multiplicative decomposition of the deformation
gradient F into its elastic (reversible), Fe, damaged Fd and plastic, Fp, components,
namely F ¼ FeFdFp: In the proposed framework we describe the material beha-
viour with respect to the stress free (fictitious) undamaged configuration; the model
is compatible with the second law of thermomechanics, expressed as the
Clausius-Duhem dissipation inequality. The case of isotropic damage when a scalar
field replaces the tensorial damage variable, and the multiplicative decomposition of
the deformation gradient is reduced to the initial one, F ¼ FeFp, is also considered
as a special case.

The second model is presented in Sect. 6.5, and it is developed within the
constitutive framework of second order finite elasto-plasticity, formulated by Cleja-
Ţigoiu (2007, 2010). The presence of the second order damage tensor is related to
the measure of non-metricity of the so-called plastic connection. The model is
described within the second order plasticity, based on the multiplicative decom-
position of the deformation gradient F ¼ rv (where the function v describes the
motion of the body) into its elastic and plastic components Fe;Fp, called distortions

F ¼ FeFp; ð6:1Þ

as well as on the rule of the motion connection decomposition C ¼ ðFÞ�1rF into
its elastic and plastic counterparts.

The behaviour of elasto-plastic materials with damaged microstructure is
described in terms of specific differential geometry elements which characterize the
internal mechanical state, following Kröner (1992), de Wit (1981). In the proposed
elasto-plastic models the defects of lattice structure, like dislocations and discli-
nations, can be involved through the Cartan torsion of the so-called plastic con-
nection, see Cleja-Ţigoiu (2010, 2002), while the point defects, microvoids and
microcracks, in the damaged zone are modeled in terms of the non-metric tensor
which belongs to the plastic connection, apart from Cleja-Ţigoiu and Ţigoiu (2011),
where the gradient of the elastic strain measures the damage. The non-metric
property of the plastic connection is described in terms of a symmetric second order
tensor, h, which is potential for the non-metric (extra-matter) tensor Q.

The continuum damage mechanics also deals with the constitutive and evolution
equations which describe the damage and plastic behaviour.

Energetic arguments, like dissipation inequality, along the isothermal deforma-
tion processes and power conjugated variables, will be used in order to complete the
models. The dissipative nature for the irreversible behavior is modeled by the
requirement to satisfy the principle of the free energy imbalance for the isothermal
processes. The free energy imbalance principle reformulates the classical second
law of thermodynamics within the second order finite elasto-plasticity, following

6 Anisotropic Damage in Elasto-plastic Materials with Structural Defects 303



Gurtin’s idea presented in Gurtin (2002), Gurtin et al. (2010), see Cleja-Ţigoiu
(2007, 2010). The constitutive and evolution equations are derived to be compatible
with free energy imbalance. The resulting models are strongly dependent on the
postulated expressions for the free energy and the internal power.

Our exposure in Sect. 6.2 constitutes a concise and critical presentation of the
contributions and results which led to basic ideas for the development of
elasto-plastic anisotropic damaged materials. We shortly recall the meaning of
extensively used scalar damage variables, with reference to the volume void frac-
tion, and to the first micromechanical model for ductile fracture, the Gurson (1977)
model, which introduces a strong coupling between the plastic deformation and
damage. Modifications of the Gurson model for shear have been proposed and
experimentally validated by Nahshon and Hutchinson (2008), Xue (2008), the key
point being the extension of the evolution equation for the void volume fraction.
Lassance et al. (2007) consider the Gurson model to be representative of the void
growth only. The authors introduce and validate an extended version of the Gurson
(1977) model, which involves also many other recent improvements of the afore-
mentioned model. The paper applies the micromechanics-based methodology to
investigate the damage resistance of certain Al-alloys.

We expose certain ideas, as fictitious damaged and undamaged configurations,
effective stress, and so on, which have been fruitfully utilized in modeling the
anisotropic damage.

Section 6.3 is devoted to the constitutive models for elasto-plastic materials with
microstructural defects (like microcracks and microcavities), which describe the
inelastic deformations, including the anisotropic damage and based on the fictitious
configurations. We refer to the models described by Murakami (1988), Brünig
(2003), Ekh et al. (2004), Menzel et al. (2002), and so on.

Different models connecting damage and elasto-plasticity are based on defor-
mation type damage variables, see the models proposed by Brünig (2003), Brünig
and Ricci (2005), Brünig et al. (2008), Menzel et al. (2002), Ekh et al. (2004, 2005)
and we also mention de Borst et al. (1999).

Two types of damage (second order) tensors like deformation fields have been
introduced in the literature, both of them assuming the hypothesis of the existence
of the undamaged (fictitious) configuration. In general the damage deformation
tensor, denoted here by Fd , characterizes the passage from an undamaged (ficti-
tious) configuration to a certain plastically deformed configuration, as a measure of
anisotropic damage. Fd is viewed sometimes like a purely internal state variable,
see Menzel et al. (2002), Ekh et al. (2004, 2005) which does not influence the
multiplicative decomposition of the deformation gradient into its component, apart
from the models proposed by Brünig (2003), Brünig and Ricci (2005).

To avoid the confusions which appear, when this mention is missing we pay
attention to the configurations on which the tensor fields are defined. We tried to use
our notations only, as much as possible, with the aim to unify the notations from
different papers, in order to make evident the differences between the models and
field definitions, thus facilitating the comparison of the various presented models.
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When we refer to the finite elasto-plasticity based on the deformation gradient
multiplicative decomposition into elastic and plastic components, we have in mind
the concept of the so-called local relaxed (or stress free) configuration, physically
motivated by the mechanism of plastic deformations within the crystalline mate-
rials, see Cleja-Ţigoiu and Soós (1990). The global stress free configuration does
not exist for elasto-plastic materials with crystalline structure. We assume that the
local stress free configurations can be uniquely associated to any material point,
apart from the orthogonal transformation that can be an element of the material
symmetry group. That is why we reconsidered the figures from the papers by
Brünig (2003), Murakami (1988), Ekh et al. (2004). The indeterminacy in choosing
the stress free configuration has been solved by considering the same crystallo-
graphic orientation for the appropriate material neighborhoods, in the initial and
relaxed configurations, i.e. the so-called isoclinic configuration.

We tacitly used the same idea representing graphs of the undamaged
configurations.

Another important fact is related to the objectivity assumptions, see Cleja-Ţigoiu
(1990), Cleja-Ţigoiu and Soós (1990), which states that if the two motions of the
body differ locally by a superposed rigid motion the set of the associated local
relaxed configurations can be the same, and moreover the associated internal state
variables have equal values. Let us remark that the elastic type constitutive equation
in terms of the Cauchy stress tensor has to be objective, namely relative to the
change of frame in the actual configuration, characterized by an orthogonal map-
ping Q. The tensor Fe sustains the transformation, i.e. F�e ¼ QFe; and F�d ¼ Fd

and F�p ¼ Fp: On the other hand in order to a certain elastic type constitutive
equation satisfies the stress free condition it is necessary for the Cauchy stress to be
zero, T ¼ 0; if the elastic strain, say Ce ¼ ðFeÞTFe; is the identity tensor.

In our presentation we do not considered the vector damage variables, which
were introduced to characterize the effect of the cracks distributed on certain planes.
The damage vector is considered to be perpendicular on the plane of the cracks.

6.1.1 List of Notation

Further the following notations will be used:

• E—the three dimensional Euclidean space, with the vector space of translations
V;

• Lin—the set of the linear mappings from V to V, Sym–i.e. the set of symmetric
tensors, Orth � Lin the set of all orthogonal second order tensors;

• u � v; u� v denote scalar and tensorial products of vectors;
• a� b and a� b� c are defined to be a second order tensor and a third order

tensor and are defined by ða� bÞu ¼ aðb � uÞ, ða� b� cÞu ¼ ða� bÞ ðc � uÞ,
for all vectors u;
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• for A 2 Lin—a second order tensor, we introduce the notations: fAgS; fAga for
the symmetric and skew-symmetric parts of the tensor and trA for the trace of
A 2 Lin;

• the tensorial product A� a for a 2 V, is a third order tensor, with the property
ðA� aÞv ¼ Aða � vÞ, 8v 2 V;

• I is the identity tensor in Lin and AT denotes the transpose of A 2 Lin;
• for K in Lin, the third order field ðK� IÞ is defined by

ððK� IÞuÞv ¼ ðKuÞ � v; for all vectors u and v;
• @A/ðxÞ denotes the partial differential of the function/with respect to the fieldA;
• rA is the derivative (or the gradient) of the field A in a coordinate system fxag

(with respect to the reference configuration), rA ¼ @Aij

@xk e
i � e j � ek; for A ¼

Aijei � e j; namely the calculation follows as the basis is fixed;

• the gradient with respect to the configuration K is defined by rKH ¼
ðrHÞðFpÞ�1 in terms of the gradient with respect to the reference configuration,
due to the fact that Fp denotes the map which put into correspondence the
reference and damaged configuration, K;

• the operator � associates to the third order tensors A;B the second order
tensor, denoted A�B and defined by

ðA�BÞ � L ¼ A½I;L	 �B ¼ AiskLsnBink; ð6:2Þ

for all second order tensor L;
• the transpose of the third order tensor field N is given by NTu ¼ ðNuÞT ; for

any u.
• curl of a second order tensor field A is defined by the second order tensor field

ðcurlAÞðu� vÞ :¼ ðrAðuÞÞv� ðrAðvÞÞu 8u; v 2 V and
ðcurlAÞpi ¼ eijk

@Apk

@x j
ð6:3Þ

are the component of curlA given in a Cartesian basis. eijk denotes the
components of Ricci permutation tensor.

• H denotes the Heaviside function, defined by HðxÞ ¼ 0 8 x\0; and
HðxÞ ¼ 1 8 x
 0

6.2 Damage State

The damage state is described by scalar and tensorial variables. We exemplify the
scalar variables, like the void volume fraction and effective area reduction. We
make reference to the effect of triaxiality on the ductile damage, and we recall the
initial formulation of the undamaged configuration concept in correlation with the
anisotropic damage.

306 S. Cleja-Ţigoiu



6.2.1 Isotropic Damage

Kachanov (1986) introduced the scalar damage variable x; (0\x\1). The dam-
age variable can be interpreted as being the effective area (net area) reduction
caused by the microcracks and microcavities.

Consider a damaged solid and a volume element of a sufficiently large size with
respect to the inhomogeneity and sufficiently small size to be viewed as a material
neighborhood of a given material point.

Let us denote by AðnÞ the area of the section of the volume element identified by
the normal n, and the effective area of resistance by �AðnÞ; i.e. the remaining area
after eliminating the microcavities and microcracks, assuming �AðnÞ\AðnÞ: Thus
the effective area (net area) reduction x is the ratio between the net current area,
�AðnÞ; and the area of the given section, AðnÞ; i.e.

x ¼
�AðnÞ
AðnÞ : ð6:4Þ

From a physical point of view the so-called damage variable, d ¼ 1� x; is the
relative (or corrected) area of the cracks and cavities cut by a plane normal to the
direction n.

In the uniaxial tension the applied force on a section of the representative ele-
ment is rAðnÞ; and the effective stress, denoted by �r; is defined in terms of Cauchy
stress r by �r ¼ r

1�d ; as a consequence of the assumed equality

rAðnÞ ¼ �r�AðnÞ: ð6:5Þ

In the one dimensional case �AðnÞ appears to be the effective load-carried area of the
current damaged state. The fictitious undamaged bar with the cross-section area
�AðnÞ and subjected to the same applied force has been considered mechanically
equivalent and it is called fictitious undamaged state (Murakami 1988).

Lemaitre and Chaboche (1978), Lemaitre (1985) characterized the damage state
by the change of the elastic constants of the materials. The authors assumed the
hypothesis of elastic strain equivalence, namely the elastic type constitutive
equation of the damaged material is derived by the constitutive equation for the
elastic undamaged material, by replacing the Cauchy stress tensor, r; by the ef-
fective stress �r:

ee ¼ r
�E
¼ �r

E
¼ r

Eð1� dÞ
d ¼ 1�

�E
E
; �r ¼ r

1� d
¼ E

r

E
;

ð6:6Þ

where �E and E are elastic constants of the damaged and undamaged materials.
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6.2.2 Void Volume Fraction

Another scalar damage variable, namely the void volume fraction, f, has been
extensively considered in various micromechanical models for ductile fraction. This
parameter is the ratio between the volume of microvoids, fvoids; and the represen-
tative volume element, frve; i.e. f ¼ fvoids

frve
: The Gurson model, (Gurson 1977), is the

first micromechanical model for ductile fracture, which introduces a strong coupling
between the plastic deformation and damage. The main result of the Gurson model
estimates the yield function for the porous metal, which is given by

U ¼ r2eq
r2y

þ 2f cosh
1
2
trr
ry

� �
� 1� f ; ð6:7Þ

where the hardening behaviour is described by ry ¼ hð�epÞ related through the
energy balance

ry _�e
pð1� f Þ ¼ r � _ep: ð6:8Þ

The evolution equations for the plastic strain, void volume fraction and Cauchy
stress, respectively, ðep; f ; rÞ; are given by:

The associate flow rule is characterized by

_ep ¼ k
@U
@r

; ð6:9Þ

with k defined by the Kuhn-Tucker condition k
 0; U� 0; k U ¼ 0; and
consistency condition k _U ¼ 0.

The law of the variation of the void volume fraction, caused by the accumulation
of plastic deformation, is given by

_f ¼ ð1� f Þtr _ep; ð6:10Þ

as the voids started to nucleate, and the rate type elastic constitutive equation is
described by

_r ¼ Eð_ep � _eÞ; ð6:11Þ

in terms of the Cauchy stress tensor.
The Gurson model has been extended to include void shape dependences and so

on, see Siruguet and Leblond (2004) and the reference that can be found, for
instance in Lassance et al. (2007), Nahshon and Hutchinson (2008). These exten-
sions are based on “the solutions for the voids subjected to axisymmetric stress and
exclude the possibility of shear localization and fracture under the low triaxiality, if
void nucleation is not invoked”, as remarked Nahshon and Hutchinson (2008). We
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make a special reference to the paper by Lassance et al. (2007), as the attention is
focused on the non-symmetric microstructural defects. The authors considered that
“the presence of coarse, elongated particles is the key microstructural feature
behaviour” of Al-alloy. The authors evidenced that the elongated b-type particles
are transformed into rounded a-type particles, by heat treatment. “At the ambient
temperature the a particles and the b particles oriented with the long axis perpen-
dicular to the loading direction undergo interface decohesion, while the b particles
oriented perpendicular to the loading direction break into several fragments.” They
concluded that “the ductility increases with decreasing amount of b particles,
increasing temperature and strain rates, and decreasing stress triaxiality.” The
review performed in the aforementioned paper contains well structured references.

6.2.3 Effect of Stress Triaxiality

The effect of stress triaxiality on ductile fracture and the evolution of the fracture
ductility is put experimentally into evidence and discussed by Bao and Wierzbicki
(2004, 2005), Brünig et al. (2013, 2008), Nahnshon and Hutchinson (2008), see
also the references in the aforementioned papers. “Fracture ductility is understood
as the ability of a material to accept large amount of deformation without fracture.
Equivalent strain to fracture is good measurement of fracture ductility,” see Bao and
Wierzbicki (2004).

The stress triaxiality is defined by the ratio g

g ¼ rH
re

; where

rH ¼ 1
3 trT; req ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 DevT � DevT

q
; DevT ¼ T� 1

3 trTI:
ð6:12Þ

rH is the mean stress and req is the second invariant of the stress deviator DevT:
Based on the experimental and numerical results Bao and Wierzbicki (2004,

2005) concluded that the equivalent strain to fracture, denoted by �ef ; can be rep-
resented as a function of stress triaxiality. The relations between the effective plastic
strain at fracture and triaxiality is not monotonous. Three branches have been put
into evidence, being governed by shear mode for negative triaxiality, by void
growth dominant failure for large triaxiality and by a combination of shear and
voids growth mode for the stress triaxiality between the two regimes mentioned
above. �ef is supposed to be analytically represented in terms of the stress triaxiality,
i.e. �ef ¼ f ðgÞ which is specific for a given material. Finally the best fit of the
experimental data have been presented as average stress triaxiality versus equiva-
lent strain to fracture, i.e. the fracture locus has been defined. The authors men-
tioned that the displacement to the fracture has been determined during the
experiments and by the force displacement response. The significant drop in
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loading has been taken to be the point of the initiation of the fracture. It is observed
that after its initiation the crack grows very rapidly during the test.

To capture the effect of stress state on the ductile damage and failure, Brünig
et al. (2013, 2008) introduced the damage potential functions and damage criteria
which are expressed in terms of stress intensity, stress triaxiality and Lode
parameter. The damage rule takes into account the isotropic and anisotropic parts
corresponding to isotropic growth of voids and anisotropic evolution of
micro-shear-cracks, respectively. The parameters can be identify by experiments or
by numerical simulations on microscale.

Malcher et al. (2012) considered three isotropic hardening models, which
include stress triaxiality and Lode angles, (as a measure of the third invariant of the
stress): the extension of the Gurson model, proposed by Tveergard and Needleman
(1984), the Lemaitre model (1985), and Bai and Wierzbicki model (2008). Due to
the fact that Bai and Wierzbicki (2008) did not include in the model a damage
variable, but included the stress triaxiality and Lode angle, Malcher et al. (2012)
considered a modified model, by introducing the fracture indicator (a
post-processed variable). In the numerical simulations, the specimens with different
geometries have been employed in order to generate various stress and strain states,
which covered a wide range of triaxiality and Lode angles. The authors concluded
that for higher level of stress triaxiality the model proposed by Bai and Wierzbicki
(2008) combined with the fracture indicator is more in agreement with the exper-
imental results. Contrary, for a low level of the triaxiality the modified Gurtin model
(Tveergard and Needleman 1984) is in agreement with experiments with reference
to the equivalent plastic strain. The final conclusion in Malcher et al. (2012): the
analyzed models need to be improved, as the models have limitations on the values
of the displacement to fracture, the equivalent plastic strain to fracture or in term of
fracture localization, under combined loading conditions.

6.2.4 Undamaged Configuration

The second and higher order tensors are introduced to characterize the complex
three-dimensional distribution and evolution of the microvoids and microcracks, i.e.
the material anisotropic damage. Murakami (1983), Murakami and Ohno (1980,
1981), described the anisotropic damage by a second order symmetric tensor, D,

D ¼
Xi¼3

i¼1

Dini � ni; ð6:13Þ

where Di and ni are the principal values and directions. Di can be interpreted as the
void area density in the plane perpendicular to direction of the damage ni.
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By assuming that the principal effect of the material damage consists of the net
area decrease due to the three-dimensional distribution of micro defects, Murakami
(1988) considered an area vector element in the current (actual) damaged config-
uration, say m dA and postulated that there exists a fictitious undamaged configu-
ration, and the equivalent load-carrying area vector is denoted by m� dA�: Here m

and m� are unit normals to the appropriate areas, see Fig. 6.1.
If G denotes the tensor which characterizes the passage from the current

deformed damaged configuration to fictitious undamaged configuration associated
with the previous one, then by applying the Nanson formula we obtain

m dA ¼ ðdetGÞG�Tn da or

m dA ¼ ðI� DÞn da; where I� D ¼ ðdetGÞG�T :
ð6:14Þ

Here m dA denotes the associated area vector in the undamaged configuration
associated to n da; the vector area in deformed damaged configuration, Bt: The
definition (6.14) introduces a fictitious deformation from the current damaged
configuration to the so called fictitious undamaged configuration, G. The tensor
D (and G) depends on the current state of deformation, as Murakami (1988)
observed. Due to the fact that only the irreversible change of the structure is
responsible for the damage, Murakami (1988) associated the undamaged (fictitious)
configuration with the deformed stress free configuration. Consequently, a similar
formula to (6.14) is derived

m� dA� ¼ ðI� DÞ�n d�a; ð6:15Þ

Fig. 6.1 Fe the elastic part of the deformation gradient; G and �G linear transformations from the
current deformed bodyBt; and from the stress free and damaged configuration, respectively, to the
fictitious associated configurations
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where I� D is associated with G and m� dA� is the area vector in the undamaged
(fictitious) stress-free configuration, while �n d�a denotes the associated area vector
in the damaged stress free configuration. The following formula is derived in
Murakami (1988)

ðdetGÞG�T ¼ ðFeÞTðdetGÞG�TðFeÞ�T ;

D ¼ ðFeÞTDðFeÞ�T ;
ð6:16Þ

in terms of Fe; which realizes the passage from the stress free configuration to the
current damaged configuration.

Remark Let us remark that the formulae (6.16) hold only under the assumption that
just Fe realizes the passage from the undamaged and stress free configuration and
fictitious undamaged configuration (associated with the current deformed config-
uration). Moreover, the second order field D and consequently the damage trans-
formation G are symmetric.

The effect of the Cauchy stress, say r; acting on the body is given by the effective
stress tensor

�r ¼ 1
2
ððI� DÞ�1

rþ rðI� DÞ�1Þ; ð6:17Þ

introduced by Murakami and Ohno (1981). The tensor ðI� DÞ�1 represents the
stress effect increase due to damage.

Due to the hypothesis concerning the symmetry of the damage D, Murakami
expressed the idea that this damage state should correspond to the orthotropic
symmetry only, see Murakami (1988).

Remark The formula (6.17) can be rewritten as

�r ¼ 1
2

Xi¼3

i¼1

1
1� Di

ðni � ðrniÞþ rni � niÞ; where 1
1� Di

¼
�Ai

Ai
ð6:18Þ

Consequently, if ni is a proper vector for r, the formula (6.18) could be considered
as an extension to the anisotropic damage of the uniaxial formula �ri ¼ ri

1�Di
; (see

the formulae (6.4) and (6.5)).

The evolution equation of the damage is expressed, following Murakami and
Ohno (1980, 1981) by

_D ¼ Hð�r; ðI� DÞ�1; jÞ; ð6:19Þ

where j denotes a hardening parameter.
In Chap. 5 of the book by Voyiadjis and Kattan (2005), the fourth-order ani-

sotropic damage effect tensor M is the key point in describing the anisotropic
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damage. M expresses the linear transformation giving rise to the effective stress
tensor �r in terms of the Cauchy stress tensor r, as in Murakami and Ohno (1981),
namely

�r ¼ Mr; where Mr ¼ 1
2
ðrðI� DÞ�1 þðI� DÞ�1

rÞ: ð6:20Þ

The explicit representation of the fourth-order damage tensor M using the second
order damage tensor D1 is important in implementation of the constitutive models
of damage. The representation of M, as a matrix (6,6) is given in terms of the six
components of D, or using the proper values D, but this time in the tensorial
representation with respect to the proper vector of D. In Chap. 7 of the book by
Voyiadjis and Kattan (2005), the fourth-order anisotropic damage effect tensor
M remains a general one, without any correlation with certain second order damage
tensor, and a general elasto-plastic model connected with damage is proposed in an
Eulerian formalism. A modified elasto-plastic stiffness tensor includes the effect of
damage through the use of the undamaged stress configuration and the hypothesis
of elastic energy equivalence.

The fourth order damage tensors have been also introduced, see for instance
Murakami and Imaizumi (1982), Lubarda and Krajcinovic (1995), Voyiadjis and
Park (1996), to take into account the damage induced material anisotropy.

6.3 Models with Damage State Variables

Two constitutive models for ductile anisotropic continuum damage, based on
thermodynamic law for isothermic processes and connected with plasticity and
damage, to capture the dissipative nature of the inelastic deformation are presented
in Sect. 6.3.1 following Brünig (2003), Brünig and Ricci (2005), and in Sect. 6.3.2
following Ekh et al. (2004). Section 6.3.3 makes references to Lemaitre and
Chaboche model (1990).

6.3.1 Model with Multiple Undamaged Configurations

Brünig (2003), Brünig and Ricci (2005) provide a finite strain framework, using the
multiple undamaged (fictitious) configurations and specific metric coefficients to
describe measures of damage. The extension to nonlocal plasticity and nonlocal
damage can be found in Brünig and Ricci (2005), the macroscopic background
being the same in all the aforementioned papers. Three types of undamaged

1D is denoted by U in Voyiadjis and Kattan (2005).
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configurations have been introduced, namely initial, E0; intermediate, E�; and
current, E; undamaged configurations, respectively, see Fig. 6.2. The current
undamaged configuration E and the initial undamaged configuration of the body,
E0; are obtained from the current configuration (denoted by Bt in Fig 6.2) and
initial configuration, B0; by “fictitious removing all the damage” of the deformed
body and initial body, respectively. The elastic unloaded configuration, B�; is
associated to the deformed body B and the corresponding fictitious elastically
unloaded and undamaged configuration is denoted by E�: We remark that all these
configurations are local and only the initial and the deformed configurations are
global. The set of undamaged configurations is similar to those provided by
Murakami (1988), except the unloading initial configuration.

In Fig. 6.2, we represented here the locally appropriate neighborhoods associ-
ated to a given material point in the body, X, only.

We pointed out certain specific key points in formulating the background of the
model.

i. The multiplicative decomposition of the so-called metric transformation tensor,
Q, into its inelastic (plastic and damage) part, Qpd; and elastic part, Qel; is
considered, namely Q ¼ QpdQel.2 A similar multiplicative decomposition is
introduced, this time with reference to the undamaged configurations. The

Fig. 6.2 The framework considered by Brünig (2003): R0;R� and R are defined on the
appropriate undamaged configurations obtained by fictitious removing the defects of the initial,
stress-free intermediar and actual configurations: Qpd ;Qel; the inelastic (plastic and damage) and

elastic parts of the metric transformation tensor �Qpl
; �Qel

; the effective plastic and elastic parts of
the effective metric transformation �Q

2The correct written form of the above decomposition and which corresponds to the mentioned
figures in the papers (Brünig 2003; Brünig and Ricci 2005) is Q ¼ QelQpd .

314 S. Cleja-Ţigoiu



definitions of the elastic strain and damage strain tensors, are differently
introduced

Ael ¼ 1
2
lnQel; Ada ¼ 1

2
lnR�; defined in Bru

::
nig (2003)

Ael ¼ 1
2
ðI� ðQelÞ�1Þ; Ada ¼ 1

2
ðI� ðR�Þ�1Þ; in Bru

::
nig and Ricci (2005).

ð6:21Þ

These tensors are defined on the appropriate vector spaces associated with B�

and E�; respectively in the first definitions and with B and B�; respectively in
the second definition. Consequently, these tensor fields are not referring to the
same configurations and their composition is generally unjustified.

ii. The appropriate strain rate tensors have been introduced in Brünig (2003),
Brünig and Ricci (2005), Brünig et al. (2013), and an additive decomposition of
the strain rate tensor defined by _H ¼ 1

2 ðQÞ�1 _Q; into the elastic and inelastic

strain rates have been derived. We also remark that the strain rates _H
el ¼

1
2 ðQelÞ�1 _Q

el
and _H

da ¼ 1
2 ðR�Þ�1Þ _R�

are associated with the configurations B�

and E�; respectively, if we look at their written expressions.3

Comments. Generally strong restrictions have to be imposed on the considered
tensor fields in order to provide the imposed algebraic symmetry. For instance,
although ðQÞ�1 and _Q are symmetric tensors if Q is symmetric, the tensors ðQÞ�1 _Q
and _QðQÞ�1 could not be symmetric. In order to avoid these unjustified issues, the
linear and invertible transformations should be introduced in order to define the
passage between various configurations, say for instance Fe instead of Qel:
Consequently the symmetric and positive definite tensors which characterize the
corresponding metric tensors can be naturally provided, but they do not enter the
multiplicative decomposition.

iii. The elastic type constitutive equation, presented by Brünig (2003) formula
(6.82), and by Brünig and Ricci (2005) formula (6.78), characterizes the
Kirchhoff tensor T in terms of elastic strain, Ael (see the definitions given by
(6.21)),

T ¼ 2ðGþ g2 trA
daÞAel þ ½ðK � 2

3
Gþ 2g1 trA

daÞtrAel þ
þ g3ðAda � AelÞ	Iþ g3ðtrAelÞAda þ g4ðAdaAel þAelAdaÞ:

ð6:22Þ

and containing the damage strain measure, Ada.

3The correct definition for _H
el
ought to be _H

el ¼ 1
2 ððQelÞ�1 _Q

el þ _Q
el ðQelÞ�1Þ:
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Remark The constitutive Eq. (6.22), say together with (6.21)2 which characterizes
an elastic behaviour contains two measure of deformations with respect to different
configurations, the elastic strain Ael; with respect to the deformed configuration,
while Ada is defined on the stress free and damaged configuration. Moreover, the
Kirchhoff tensor T and Ael are objective fields, while Ada is not.

Remark Due to the wrong writing in the composed tensor fields, which do not
correspond to their images plotted in Fig. 6.1 from Brünig (2003), Brünig and Ricci
(2005), further we do not make reference to the appropriate formulae presented in
the aforementioned papers. We underline now some principal ideas that follow
from the papers (Brünig 2003; Brünig and Ricci 2005), and that are fruitful in
describing anisotropic damage.

In the damage-coupled elasto-plastic models, these dissipative processes, namely
plastic flow and damage, are treated by the constitutive models proposed in Brünig
(2003), Brünig and Ricci (2005), Brünig et al. (2013), as different in their nature
and effects on mechanical properties of the materials and structures. Brünig (2003)
motivated the differences by the fact that “The pure plastic flow develops by
dislocation motion and sliding phenomena along the some preferential crystallo-
graphic planes, whereas damage-related irreversible deformations are due to
residual opening of micro defects after unloading.” The free energy functions are
introduced separately with respect to the fictitious undamaged configuration, E�;
and to the current damaged configuration B�: The plastic strain rate tensor is
determined via a non-associative plastic flow rule. The damaged surface is char-
acterized in terms of the stress tensor with respect to stress free damaged config-
uration, B�:

The energies involved in plastic flow and damage processes are postulated to be
independent. The free energy function of the damaged elasto-plastic material, see
formula (6.61) by Brünig (2003), is considered to be represented in terms of three
functions

U ¼ UelðAel;AdaÞþUplðcÞþUdaðlÞ; ð6:23Þ

where Uel is dependent on the elastic strain Ael and damage strain tensor Ada; the
plastic and damage parts, Upl and Uda; are dependent on the plastic and damage
scalars, internal variables, c and l; respectively. The effective specific free energy �U
of the fictitious undamaged configuration, see formula (6.50) by Brünig (2003), is
decomposed into two parts, an effective elastic one and an effective plastic part,
respectively,

�U ¼ �UelðAelÞþ �UplðcÞ: ð6:24Þ

Brünig (2003) states that the model “does not need strain equivalence, stress
equivalence or strain energy approaches often used in continuum damage theory,”

but the equality of the appropriate elastic type metric transformations, Qel and Q
el
;
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is introduced. Thus the equivalence of the elastic strain tensors, Ael ¼ A
el
; is

accepted. Moreover, two types of the dissipation principles, one related to the
plastically deformed body coupled with anisotropic damage and the other one
concerning the undamaged fictitious configurations are considered. The correlation

between these dissipative principles is realized by the equality Ael ¼ A
el
:

In the effective undamaged configuration, E�; the plastic yield condition is
described in terms of the effective stress tensor T by

f plðT; cÞ ¼ 0; ð6:25Þ

where c denotes the so-called strength coefficient of the matrix material. As a
specific form, the linear influence of the hydrostatic stress is considered in the
expression for the yield condition given by

f plð�I1; �J2; cÞ ¼
ffiffiffiffiffi
�J2

p
� c 1� a

c
�I1

� �
¼ 0; ð6:26Þ

where �I1 ¼ trT; �J2 ¼ 1
2 devT � devT: A non-associative flow rule is defined using

the plastic potential function, say gpl ¼
ffiffiffiffiffi
�J2

p
:

Brünig and Ricci (2005) proposed a non-local continuum theory of anisotropic
damage, which incorporates a non-local yield condition

f plðT; cÞ � f plð�I1; �J2; cÞ ¼ ð1� a
c
�I1Þ�1

ffiffiffiffiffi
�J2

p
� cðc;r2cÞ ¼ 0; ð6:27Þ

where c is the scalar internal variable and c denotes the strength coefficient of the
material.

The anisotropically damaged configurations are used by Brünig (2003),
Brünig et al. (2008) to describe the behaviour of the damaged materials, with
reference to the damage. The damage dissipation potential is introduced as a
function dependent on the stress tensor with respect to the configuration B�; eT; and
the appropriate damage criterion is given by

f daðeT; ~rÞ ¼ 0; ð6:28Þ

where ~r denotes the damage threshold. The damage strain rate is prescribed by the
damage potential, denoted gda; which is defined in terms of the same stress measureeT; as

_H
da ¼ l@eTgda: ð6:29Þ

Analyzing experimental results, the following damage criterion has been con-
sidered to be adequate for describing the damage behaviour in ductile materials, see
Brünig (2003),
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f dað~I1; ~J2; ~rÞ ¼ ~I1 þ ~b
ffiffiffiffiffi
~J2

q
� ~r ¼ 0 ð6:30Þ

where ~r is dependent on the scalar internal variable l; and its gradient rl; which is
involved in a non-local theory. The scalar function ~b describes the influence of the
deviatoric part of the stress on damage. In order to define the damage evolution
equation, the damage potential has been introduced by

gdaðeTÞ ¼ a~I1 þ b
ffiffiffiffiffi
~J2

q
; ð6:31Þ

where a and b are damage parameters. The non-associated damage rule is derived in
Brünig and Ricci (2005) under the form

_H
ad ¼ ~lðaIþ b

1ffiffiffiffiffiffiffiffi
2 ~J2

p dev eTÞ; ð6:32Þ

with the remark that the first term is related to the growth of microvoids, while the
second term considers the “dependence of the evolution of the size, shape and
orientation of the micro defects.”

Remark The rate independent models have been adopted in the papers (Brünig
2003; Brünig and Ricci 2005), and the necessity to introduce the consistency
conditions is considered, but without any references to the correlations between the
damage and yield functions.

Remark The applicability of the models proposed in Brünig (2003), Brünig and
Ricci (2005) have been proved by the numerical simulations performed and ana-
lyzed in the above mentioned papers.

6.3.2 Crystal Plasticity Model Coupled with Anisotropic
Damage

Menzel et al. (2002) developed a framework of continuum damage based on the
fictitious configuration and the equivalence principle of the free energy in the
fictitious configuration and the intermediate configuration, see Fig. 6.3. The inter-
mediate configuration (which is called the local relaxed configuration in our
description (Cleja-Ţigoiu and Soós 1990)) is associated with the multiplicative
decomposition of the deformation gradient into its elastic and plastic parts. The
second order tensor Fd; called the integrity tensor, characterizes the passage from
an undamaged (fictitious) configuration to the intermediate configuration and it is
not involved in the multiplicative decomposition of the deformation gradient. The
damage model proposed by Ekh et al. (2004) appeals to the crystal plasticity model
and the evolution rule for the damage is formulated with respect to the crystalline
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slip systems. Not only the damage tensor Fd but also scalar integrity measure ba;
which are a set of scalar damage variables are involved in the expression of the
effective Schmid stress, �sa; which is associated with the a-slip system. The a-slip
system is denoted by ð�sa; �maÞ; when we refer to the intermediate configuration and
by ðsa � Fe�sa;ma � ðFeÞ�T �maÞ with respect to the actual configuration.

The reference, local intermediate and actual configurations, as well as the (local)
undamaged stress free configuration are represented in Fig. 6.3. We introduce the
tensor field, denoted by bF; which realizes the passage from the undamaged to the
actual (deformed) configuration in Fig. 6.4.

• The free energy with respect to the stress free and damaged configuration is
dependent on the elastic strain (elastic right Cauchy- Green tensor), the damage
tensor, internal scalar variables denoted by fkag; representing the hardening
variables on each slip systems,

u ¼ uðCe;Fd; fkagÞ: ð6:33Þ

The free energy is additively represented by the elastic ue and hardening part uðhÞ

u ¼ ueðCe; bdÞþuðhÞðfkagÞ; where bd ¼ FdðFdÞT ð6:34Þ

with the damage influence on the elastic part of free energy. The following as-
sumption motivated by the principle of the elastic strain energy equivalence has
been introduced by Menzel and Steinmann (2003), the elastic free energy with
respect to the stress free and damaged configuration and to the effective configu-
ration, respectively, have equal values, i.e.

Fig. 6.3 The elastic and plastic parts, Fe and Fp, of the deformation gradient. Fd the damage
tensor defined on the undamaged and stress-free local configuration
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ueðCe; bdÞ ¼ ûeðbCÞ; where bC ¼ ðFdÞTCeFd : ð6:35Þ

Under the supplementary condition stipulating that the ûe is isotropic with respect

to its argument, bC; the following representation follows

ueðCe; bdÞ ¼ ûðjkðbCÞÞ; ð6:36Þ

where jkðbCÞ ¼ trððCbdÞkÞ; k ¼ 1; 2; 3, i.e. the invariants of the mentioned tensor.
As a consequence of the thermodynamic restrictions imposed by the

Clausius-Duhem inequality

T � _FðFÞ�1 � _u
 0; ð6:37Þ

written with respect to the actual configuration, the free energy density is potential
for the stress tensor. The symmetric Piola-Kirchhoff stress tensor with respect to the
intermediate configuration can be expressed as

T
~q
¼ 2@CeueðCe; bdÞ: ð6:38Þ

Thus a thermodynamic stress which is power conjugated to the rate of damage in
a slip system is associated with the damage tensor bd via the relationship

bd ¼ �2@bdu
eðCe; bdÞ ð6:39Þ

being defined by a similar procedure as that used to define the symmetric
Piola-Kirchhoff stress tensor, see (6.38).

The thermodynamic stresses ja are associated with the hardening variables ka
and are defined as in the standard materials by

ja ¼ �@kau
hðfkagÞ: ð6:40Þ

The dissipation inequality (6.37) together with (6.38)–(6.40) is reduced to the
inequality

Ce
eT
~q
� _FpðFpÞ�1 þ bdbd � _FdðFdÞ�1 þ

X
a

laja _k
a 
 0: ð6:41Þ

• The yield function is assumed to be dependent on damage and thermodynamic
stresses, and is defined in terms of effective resolved shear stress, denoted by ~sa;
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Ua ¼ ~sa � ½Ya þ ja	; ~sa ¼ 1
ba

sa; sa ¼ �sa � Ce
eT
~q
�ma: ð6:42Þ

sa is called the resolved shear stress and ba are scalar parameters which characterize
the evolution of damage.

The flow rule is of the associative type and is formulated for Fp and for Fd:
The rate of plastic part of deformation gradient is associated to the yield function

(6.42) as

_F
pðFpÞ�1 ¼

X
a

la
@Ua

@M
; M ¼ Ce

eT
~q
: ð6:43Þ

In order to define the damage rule, the authors introduced in Ekh et al. (2004)
the integrity resolved shear, similarly to the resolved shear stress (6.42), namely

�ba ¼ �sa �Md �ma; Md ¼ bdbd: ð6:44Þ

• There exists a damage potential Cað�ba; baÞ associated with each slip system a;
such that

_F
dðFdÞ�1 ¼

X
a

la
@Ca

@Md ¼
X
a

la
@Ca

@�ba
ð�sa � �maÞ ¼

X
a

_bað�sa � �maÞ: ð6:45Þ

• The stress-type hardening parameters, the so-called drag-stress corresponding to
the isotropic hardening variables fkag are defined by the appropriate evolution
equations in a-slip system

_ka ¼ la
@Ua

@ja
� �la: ð6:46Þ

• The scalar parameters which characterize the evolution of damage are described
by the appropriate evolution equations given by
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_ba ¼
X
a

la
@Ca

@�ba
: ð6:47Þ

Finally the dissipation inequality is expressed as follows:

X
a

la Ua þ Ya þ �ba
@Ca

@�ba

� �

 0: ð6:48Þ

In the case of the rate-dependent plasticity la is defined in terms of non-negative
and monotonically increasing overstress functions gaðUaÞ

la ¼
1
t�a

gaðUaÞh i: ð6:49Þ

The functions gaðUaÞ have the properties gaðUaÞ ¼ 0 if Ua � 0; and gaðUaÞ[ 0
if Ua [ 0; and t�a is the relaxation time.

Here the function xh i ¼ 1
2 ðxþ jxjÞ is defined for all x real numbers.

Remark In the numerical application, given by Ekh et al. (2004) the small defor-
mation strain model is considered, and the scalar damage parameters have been
chosen ba ¼ 1� da; and la have been introduced corresponding to rate dependent
(viscoplastic) models.

Comments. We refer now to a certain physical meaning that can be assigned to the
damage variable within the crystal plasticity framework. In the viscoplastic model
considered by Cleja-Ţigoiu and Paşcan (2014) the evolution in time of the plastic
distortion is described by multislip in an appropriate crystallographic system, with
hardening laws dependent on the scalar dislocation densities, denoted by qa in a-
slip system. The evolution in time of the scalar dislocation densities is described by
non-local (i.e. diffusion-like) evolution equations, which can be reduced to differ-
ential ones when the diffusion parameter, k, is vanishing. The problems concerning
the deformation of the sheet made up from such viscoplastic crystalline material,
which is generated by different slip systems that could be simultaneously activated,
were numerically solved. In compression problem, for the boundary impenetrable
to dislocations all eight activated slip systems were considered together with the
activation condition. The large band-zones of relative minimum and maximum
values of the total dislocation densities, denoted by qtot; can be seen for k = 0.

The non-homogeneous band zones with the alternating maximum and minimum
values of plastic distortion components, as well as for stress components, follow the
localized zones of qtot: Analyzing the numerical solutions for the boundary value
problem we conclude that the total dislocation density accumulated during the
elasto-plastic process can be interpreted as a scalar damage variable. The damage is
essentially anisotropic, due to the presence of different slip systems activated, the
damage variable as the total dislocation density is well defined from the physical
point of view.
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6.3.3 Lemaitre and Chaboche Models

We present now the models of coupled elasto-plasticity and damage constitutive
equations for small deformations, with only scalar damage variables, namely the
unified formulation of damage laws, following the exposure that can be found in
Sect. 6.3.1 (Malcher et al. 2012; Lemaitre and Chaboche 1990; Lemaitre 1992, and
so on). The models proposed by Lemaitre and Chaboche are based on the concept
of effective stress and the hypothesis of strain equivalence and are largely applied
and extended in the literature of the continuum damage field.

In Chap. 12 of the book (de Souza Neto et al. 2008), the authors reviewed and
discussed some elasto-plastic damage models and their numerical implementation.

We listed the principal hypotheses adopted in the models.

i. The existence of the free energy density, u; as function of the state variables
ðee;R;X;DÞ; where ee is the elastic strain, R and D are scalar hardening and
scalar damage variables, and X denotes the second order tensor, describing the
kinematic hardening. The free energy function is described in terms of both
elastic part ue; dependent on damage and irreversible part, up; i.e.

u ¼ uðee;R;X;DÞ;
u ¼ ueðee;DÞþupðR;XÞ: ð6:50Þ

ii. Under the assumption that the elastic part of the free energy is given by

ue ¼ 1
2
ð1� DÞEee � ee; ð6:51Þ

the Cauchy stress is derived from the free energy, viewed as thermodynamic potential,

r ¼ q
@u
@ee

¼ qð1� DÞEee; ð6:52Þ

where q is the mass density.
Equivalently the damage elastic law can be written in terms of effective stress, as

reff ¼ 1
qð1� DÞ r;

reff ¼ Eee:
ð6:53Þ

The thermodynamic force conjugated to the scalar damage variable, D, is defined by

Y ¼ �q
@u
@D

: ð6:54Þ
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Using the invertibility of the elastic stiffness tensor E; in the case of isotropic elastic
behaviour, the expression of Y leads to another important feature of the damage, the
influence of the triaxiality. Y is dependent on the triaxiality by the factor Rm;

Y ¼ 1

2qð1� DÞ2 r � E�1r � � reqRm

2Eqð1� DÞ2 ;

Rm ¼ 2
3
ð1þ mÞþ 3ð1� 2mÞ rH

req

� �
:

ð6:55Þ

Y corresponds to the variation of internal energy density due to damage growth at
constant stress.

iii. The plastic part of the free energy function is defined by

upðR;XÞ ¼ uIðRÞþ a
2
X � X; ð6:56Þ

where a is material constant. The thermodynamic forces associated with
isotropic hardening and kinematic hardening

j ¼ q
@up

@R
¼ jðRÞ; a ¼ q

@up

@X
; ð6:57Þ

a is called the back stress.
The yield function / is defined by

/ðr; j; a;DÞ ¼ 1
1�D ðDevr� aÞeq � rY � j; ð6:58Þ

where rY is the uniaxial yield stress.
The potential of dissipation is given by

u ¼ /þ b
2a

1
1�D a � aþFDðYÞ;

FDðYÞ ¼ r
ð1�DÞðsþ 1Þ

Y
r

	 
sþ 1
Hð�ep � pDÞ: ð6:59Þ

a, b are constants which characterize the so-called Armstrong-Frederick hardening
law. In order to have similarity between the terms containing a in the expression of
the potential of dissipation we introduced here 1

1�D.
The function FD is the key point in representing the damage evolution, r and s

are material constants and pD is a material constant, which represents the damage
threshold.
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The plastic behaviour of the material is described using the potential of dissi-
pation by

_ep ¼ k @u
@r � k 1

1�DN;
_a ¼ k @u

@a � k 1
1�D ðaN� baÞ;

_D ¼ k @FD
@Y Hð�ep � pDÞ � k 1

1�D
Y
r

	 
s
Hð�e� pDÞ;

_R ¼ k;

ð6:60Þ

where �ep is the equivalent plastic strain, and pD is a material constant, which
represents the damage threshold. Here the function N characterizes the direction of
the plastic strain rate given by

N ¼ 3
2

Devr�a
ðDevr�aÞeq : ð6:61Þ

Damage Thresholds. In the pure tension case there exists a certain value of the
plastic strain, epD below for which no damage caused by microcracks occurs, namely
if ep\epD then D ¼ 0: On the other hand there exists a value of damage, D ¼ Dc

which marks the macro crack initiation.
Damage is always related to some irreversible strain either at the microlevel or

the mesolevel, this property is considered by the presence of k in the evolution
equation for D; which is written in (6.60). The damage remains equal to zero if
�ep\pD; and the evolution occurs if �ep 
 pD: pD is a function of the applied stress
and �ep is the equivalent plastic strain. In the evolution equation of damage, (6.60),
the Heaviside function has been introduced to emphasize the role of the damage
threshold.

As an extension of the Lemaitre and Chaboche models, we mention that in
Lämmer and Tsakmakis (2000) proposed the elasto-plastic models coupled with
damage (described in terms of scalar damage variable) for small and finite defor-
mations. In the finite strain models the strain measure on the intermediate config-
uration has been defined as

Ĉ ¼ 1
2
ðCe � cpÞ; with Ce ¼ ðFeÞTFe and cp ¼ ðFpÞ�TðFpÞ�1 ðin our notation).

The additive decomposition of the appropriate strain measure into its elastic and
plastic part is introduced by

Ĉ ¼ Ĉe þ Ĉp; where
Ĉe ¼ 1

2 ðCe � IÞ; Ĉp ¼ 1
2 ðI� cpÞ ð6:62Þ
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The Oldroyd derivative is given in terms of L̂
p ¼ _F

pðFpÞ�1; in order to have the
equality written below

Ĉp
ðDÞ

¼ D̂
p
; D̂

p ¼ 1
2 ðL̂

p þðL̂pÞTÞ; where

Ĉp
ðDÞ

¼ d
dt
Ĉp þðL̂pÞT Ĉp þ ĈpL̂

p
ð6:63Þ

The three models have been developed by Lämmer and Tsakmakis (2000). These
models differ in the definitions of the yield function and the law describing the
hardening effects. In models A only the stress tensor is replaced by the effective
stress, in B the stress tensor and the back stress are replaced by the appropriate
effective fields, while in C the scalar hardening variables is also replaced by its
effective associate field. The models are developed within the thermomechanical
framework and the influence of triaxiality is involved in the models, using a similar
arguments as in the Lemaitre and Chaboche model, see the formula (6.55), in
Sect. 6.3.3.

6.4 Model with Stress-Free Undamaged Configuration
and Deformation-like Damage Tensor Fd

We present here some results partially published by Cleja-Ţigoiu (2011), concerning
the elasto-plastic models with second order defect density tensor, under the
hypothesis of large deformation. In the model proposed here we assume the existence
of the stress-free, undamaged configuration. We introduced simplifications in the
succession of the damaged and the undamaged configurations, that has been pre-
sented in the above mentioned papers by Brünig (2003), Brünig and Ricci (2005).

Remark We consider only one undamaged configuration, associated with the stress
free (intermediate) local configuration, namely R� ¼ Fd; we refer to Fig. 6.2. The
deformation like damage tensor Fd is an invertible one, and it is not apriori a
symmetric tensor. The initial configuration of the body does not contain microvoids
and microcracks (more precisely these initial micro defects can be neglected),
which means that R0 ¼ I: In Figs. 6.2 and 6.4 all these elements can be seen. We
remark the differences between the considered configurations plotted in Figs. 6.4
and 6.3, where the plastic part of deformation is viewed like in the deformation
gradient multiplicative decomposition. Contrary, in this section the damage tensor
is involved into the multiplicative decomposition, establishing a similarity with the

models briefly presented in Sect. 6.3.1. We mention that �Qpl
; which is considered to

be symmetric and positive definite in Brünig (2003), Brünig and Ricci (2005), is
replaced by an invertible tensor Fp; which is called plastic distortion in our model.
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Let us consider k the reference configuration and the actual (deformed) con-
figuration vð�; tÞ of the body B; where v represents a motion of the body.

Ax. 1. We assume that at any time t; for any X2B there exist:

• ~K a stress free, damaged configuration and
• K a stress free, undamaged configuration.

Starting from these assumptions, we define the local deformations: Fe the elastic
component, which characterizes the passage from ~K to vð�; tÞ; Fp the plastic
component, which characterizes the passage from the reference configuration to K

and Fd the damage deformation tensor, which characterizes the passage from the
stress free, undamaged (fictitious) configuration K to the damaged one, ~K:

Mass densities qd ; qp; q are written in stress free damaged and undamaged
configurations, respectively, and in actual configuration and are related by the
following relationships

qdetFe ¼ qd; qddetFd ¼ qp: ð6:64Þ

Ax. 2. For any motion v; 8X; 8t; the deformation gradient F :¼ rvðX; tÞ is mul-
tiplicatively decomposed into its Fp plastic, Fd damage and Fe-elastic parts

F ¼ FeFdFp; F̂ ¼ FeFd: ð6:65Þ

All the tensor fields are invertible.

Fig. 6.4 Elastic, plastic and damage tensors as parts of the deformation gradient F; F ¼ FeFd ;Fp;

with Fd the transformation from the undamaged and stress free configuration to the damaged and
stress free configuration
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6.4.1 Elastic Type Response Dependent on Damage

In describing the behaviour of elasto-plastic body with damaged structure the fol-
lowing stress tensors are introduced with respect to the appropriate configurations

Tðx; tÞ—the Cauchy stress in the actual configuration vð�; tÞ; where x ¼ vðX; tÞ;
~Tðx; tÞ—the Piola-Kirchhoff stress in the stress free and damaged configuration,
denoted by ~K;
�Tðx; tÞ—the Piola-Kirchhoff stress in the stress free and undamaged configuration,
denoted by K; the so-called effective stress.

These stress measures are related by the following relationships

~T ¼ det ðFeÞðFeÞ�1TðFeÞ�T ;

�T ¼ ðdetFdÞðFdÞ�1~TðFdÞ�T ;

�T ¼ ðdet F̂ÞðF̂Þ�1TðF̂Þ�T :

ð6:66Þ

The Mandel type stress tensors are defined with respect to the configurations �K
and K by

1
qd

~R ¼ 1
qdetFe ðFeÞTFe~T;

1
qp

�R ¼ 1

qdetF̂
ðF̂ÞT F̂�T: ð6:67Þ

We omitted the presence of t in the notations concerning the damaged
configurations.

Ax. 3. The behaviour of the material is elastic with respect to stress free and
damaged configuration, in terms of the Piola-Kirchhoff stress tensor, ~T;

~Tðx; tÞ ¼ qdh ~KðDe; aÞ;
where DeðX; tÞ ¼ 1

2
ðCe � IÞ; Ce ¼ ðFeÞTFe

ð6:68Þ

or equivalently in terms of the Cauchy stress tensor

T ¼ qFeh ~KðDe; aÞðFeÞT : ð6:69Þ

The strain tensors which appear in the relationships defined herein are defined by

F̂ ¼ FeFd; Ĉ :¼ F̂
T
F̂; Cd ¼ ðFdÞTFd: ð6:70Þ
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Let us remark that as a consequence of (6.70)

F ¼ F̂F
p
; Ĉ :¼ ðFpÞ�TCðFpÞ�1; where C ¼ FTF: ð6:71Þ

Let us calculate the elastic strain measure which has been introduced in (6.68), via
the relationship (6.70)

De ¼ 1
2
ðFdÞ�TðĈ� ðFdÞTFdÞðFdÞ�1

or Ĉ� Cd ¼ 2ðFdÞTðDeÞFd:

ð6:72Þ

Ax. 4. The elastic constitutive equation in stress free and undamaged configuration
in terms of the effective stress is expressed in relation to the strain through

�Tðx; tÞ ¼ qpĥKðĈ� Cd ; aÞ: ð6:73Þ

Remark The new elastic type constitutive function introduced in (6.73), ĥK; is
related to the old one given by (6.68), h ~K; through the relationship

h ~KðDe; aÞ :¼ FdĥKðĈ� Cd; aÞðFdÞT ; ð6:74Þ

together with (6.72).

In other words, the dependence of the constitutive function on the configuration
~K has been postulated in terms of dependence on the damage tensor Fd; which
makes the passage from the stress free and damaged configuration ~K to the stress
free and undamaged configuration, K:

As a consequence of the stipulated definitions and properties, the elastic type
constitutive equation characterizes Cauchy stress, with respect to the stress free
and undamaged configuration, via (6.66)3, as it follows

T ¼ qF̂hKðĈ� Cd; aÞðF̂ÞT ; ð6:75Þ

Fd ; being involved like an internal variable.
The stress free (or relaxation) restriction is formulated, following our devel-

opment given in Cleja-Ţigoiu and Soós (1990), under the form

ĥKðS; aÞ ¼ 0; for S 2 Sym if and only if S ¼ 0: ð6:76Þ

Here in the considered case, the relaxation restriction takes place if and only if
Ĉ :¼ ðFdÞTFd � Cd; or if and only if Ce :¼ ðFeÞTFe ¼ I:
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6.4.2 Equations for Damage and Plasticity

We adopt the point of view formulated by Brünig (2003), Brünig and Ricci (2005),
saying that by combining plasticity and damage it seems to be natural that plasticity
can only affect the undamaged material skeleton.

Following the constitutive framework of finite elasto-plasticity, as it has been
postulated by Cleja-Tigoiu and Sóos (1990, 1990), the evolution equation for Fp; as
well as for Fd; which appears to be like an internal variable, will be written with
respect to the stress free configuration. Here we choose the stress free and
undamaged configuration.

(Ev.1). The rate of plastic part of deformation is described in terms of the
Piola-Kirchhoff type stress measure, �T;

_F
pðFpÞ�1 ¼ l1BKð�T; aÞ; ð6:77Þ

associated with the yield conditions

�f ð�T; aÞ� 0 l1 
 0; l1�f ð�T; aÞ ¼ 0; l1
_�f ð�T; aÞ ¼ 0: ð6:78Þ

Let us remark that the rate of damage tensor Fd can be expressed by Ld :¼
_F
dðFdÞ�1 with respect to fK and by ld with respect to the stress free and undamaged

configuration K: Here the two rates of damage tensor Fd are related through

ld ¼ ðFdÞ�1LdFd ; where ld :¼ ðFdÞ�1 _F
d
: ð6:79Þ

(Ev.2). The evolution equation for damage tensorial variable Fd; will be written
in terms of the stress measure �T and Fd;

ðFdÞ�1 _F
d ¼ l2DKð�T;FdÞ: ð6:80Þ

We add two hypothesis concerning the evolution of the damage:
(Ev.3). The evolution equation is associated with the damage criterion

gKð�T;FdÞ
 0: ð6:81Þ

For Fd ¼ I; gKð�T; IÞ
 0 together with the elastic type constitutive Eq. (6.73)
characterizes the activation condition for the damage.

Remark In the model the initial value of Ĉ at which the damage may initiate
satisfies the condition

gKðĥ0ðĈ� I; 0Þ; IÞ ¼ 0; ð6:82Þ
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Remark. In our model we suppose that the damage can occur only if a certain
threshold in the stress space (which also means a certain criterion in (elastic) strain
space due to the possible composition with the constitutive Eq. (6.73)) is reached or
is exceeded.
(Ev. 4). No evolution of the damage is produced if there is no variation of the
plastic part of deformation, which will be formalized by the condition to have the
same plastic multiplier, l1 ¼ l2 � l

6.4.3 Dissipative Nature of the Irreversible Behaviour

We introduce the assumption: The elasto-plastic behaviour of the material with
damaged structure is restricted to satisfy the free energy imbalance in K, i.e. in
the stress free and undamaged configuration,

� _uK þPint 
 0; ð6:83Þ

where uK is the given free energy density and Pint denotes the internal power
expanded during the elasto-plastic process.

The Clausius-Duhem type inequality is reformulated as free energy imbalance
principle in K; and is considered to be written for any virtual (isothermal) pro-
cesses. The thermomechanical restrictions on the constitutive framework are
derived based on the formulated principle of dissipation.

The free energy with respect to the stress free and damaged configuration is
dependent on the elastic strain (elastic right Cauchy- Green tensor), Ce; the damage
tensor, Fd ; internal variables denoted by a;

uK ¼ uðCe;Fd ; a; ðFpÞ�1Þ; ð6:84Þ

as well as being dependent on the configuration relative to which the constitutive
representation has done, namely on (Fp)−1.

In finite elasto-plasticity it is supposed that the free energy density can be
additively represented by the elastic and irreversible part

uK ¼ ueðCe;FdÞþuðivÞðFd; ðFpÞ�1; aÞ; ð6:85Þ

with the damage influence on the elastic part of free energy. Motivated by the
principle of the elastic free energy equivalence, see Menzel et al. (2002), the free
energy with respect to the effective configuration is postulated here under the form

uK ¼ ûeðĈ� CdÞþuðivÞðFd; ðFpÞ�1; aÞ; ð6:86Þ

In the expression of the elastic part of the free energy function, written in (6.85), the
relative strain measure Ĉ� Cd is introduced by (6.72).
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The internal power is calculated in terms of the fields expressed with respect to
the deformed configuration, namely the Cauchy stress tensor T and gradient of the
velocity vector v; by

Pint ¼ 1
q
T � fLgS; with L ¼ rv � _FðFÞ�1; and fLgS ¼ 1

2
ðLþLTÞ: ð6:87Þ

The kinematical relationships are derived from (6.65),

L ¼ rv � Le þFeLdðFeÞ�1 þ F̂L
pðF̂Þ�1; F̂ ¼ FeFd with

Le ¼ _F
eðFeÞ�1; Ld ¼ _F

dðFdÞ�1; Lp ¼ _F
pðFpÞ�1:

ð6:88Þ

Proposition The internal power is expressed in terms of the elastic, plastic and
damage power, represented here by the scalar product of the appropriate rates
with the power conjugate stress measures, respectively,

1
q
T � L ¼ 1

qd
~R � _FdðFdÞ�1 þ 1

qp
�R � _FpðFpÞ�1 þ T

q
� _FeðFeÞ�1: ð6:89Þ

where ~R and �R are the Mandel type stresses, which are introduced by (6.67).

We prove the above relationships. We pay attention to the first and second terms
written in (6.89).

When we take the scalar product written below we get

1
q
T � FeLdðFeÞ�1 ¼ 1

q
ðFeÞTTðFeÞ�T � Ld ¼ 1

qd
ðFeÞTFe~T � Ld ¼ 1

qd
~R � Ld

ð6:90Þ

and

1
q
T � F̂LpðF̂Þ�1 ¼ ðF̂ÞT 1

q
TðF̂Þ�T � Lp ¼ ðF̂ÞT F̂ 1

qdetF̂
�T � Lp ¼ 1

qp
�R � Lp: ð6:91Þ

as a consequence of the defined stress measures by (6.66) and (6.67).
The rate of free energy density written with respect to the stress free and

undamaged configuration can be calculated starting from (6.86)

_uK ¼ @Cu
ðeÞ � ð _̂C� _C

dÞþ @FduðivÞ � _Fd þ
þ @ðFpÞ�1uðivÞ � ð�ðFpÞ�1 _F

pðFpÞ�1Þþ @au
ðivÞ � _a

ð6:92Þ

The time derivatives of the following fields can be derived

_̂FðF̂Þ�1 ¼ L� F̂LpðF̂Þ�1;

_̂C ¼ ð _̂FÞTF̂þðF̂ÞT _̂F ¼ 2F̂
T
DF̂� ððLpÞTĈþ ĈLpÞ

ð6:93Þ
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as a consequence of the formulae (6.71) together with (6.88). From (6.70)3 we get

_C
d ¼ 2ðFdÞTfLdgSFd : ð6:94Þ

Proposition Within the constitutive framework formulated above the following
formulation for the free energy imbalance has been derived

T
q
� 2 F̂@�Cu

ðeÞðF̂ÞT
� �

� f~LgS þf2Fd@Cu
ðeÞðFdÞT � @FduðivÞðFdÞTg � ~Ld þ

þf2Ĉ@�Cu
ðeÞ þFp�T@ðFpÞ�1uðivÞg � ~Lp � @au

ðivÞ �_~a
 0;

ð6:95Þ

8 ~L; ~L
p
; ~L

d
; and_~a

In order to prove the above formula we replace the internal power defined by
(6.87) and the derivative with respect to time of the free energy density calculated in
(6.92) together with (6.93) and (6.94) in the expression of the free energy imbalance
(6.83). Thus

T
q
� fLgS � 2@�Cu

ðeÞ � ðF̂ÞTfLgSFe þ

þ 2@�Cu
ðeÞ � fĈLpgS þ 2@�Cu

ðeÞ � ðFdÞTfLdgSFd�
� @FduðivÞ � LdðFdÞþFp�T@ðFpÞ�1uðivÞ � Lp � @au

ðivÞ � _a
 0:

ð6:96Þ

Here we replaced _F
p
and _F

d
by LpFp and LdFd ; respectively.

If the virtual rate of appropriate fields has been also introduced, the formula
(6.95) follows from (6.96).

Theorem The following thermodynamic restrictions are provided from the free
energy imbalance:

I. The free energy density is potential for the Cauchy stress tensor

T
q
¼ 2F̂@�Cu

ðeÞðF̂ÞT or
�T
qp

¼ 2 @�Cû
e; ð6:97Þ

with the notation �C � Ĉ� Cd ; if the free energy density is written under
the form (6.86).

6 Anisotropic Damage in Elasto-plastic Materials with Structural Defects 333



II. The residual dissipation inequality becomes

Cd
�T
qp

� ðFdÞT@FduðivÞ
� �

�~ld þ

þ Ĉ
�T
qp

þFp�T@ðFpÞ�1uðivÞ
� �

� ~Lp � @au
ðivÞ �_~a
 0:

ð6:98Þ

Here ld ¼ ðFdÞ�1 _F
d
is the rate of damage tensor relative to the stress free and

undamaged configuration.

Proof Let us consider that during the deformation process with arbitrarily given ~L;

no evolution of irreversible behaviour occurs, i.e. ~L
p ¼ 0; ~L

d ¼ 0 and _~a ¼ 0:
Then the elastic type restriction (6.97) on the constitutive function follows from
(6.96). When we replace (6.97) and the rate of damage ld in (6.95) the dissipation
inequality (6.98) follows.

We introduce the assumption that the viscoplastic type constitutive equations
characterize the irreversible behaviour of the elasto-plastic material coupled with
damage. The expressions of viscoplastic constitutive equations are suggested by the
reduced dissipation inequality (6.98).

Ax. 5. The evolution equations for plastic part of deformation and damage are
postulated to be given by

kd~l
d ¼ Cd

�T
qp

� ðFdÞT@FduðivÞ;

kp ~L
p ¼ Ĉ

�T
qp

þFp�T@ðFpÞ�1uðivÞ;

ka _a ¼ �@au
ðivÞ:

ð6:99Þ

Ax. 6. The evolution Eqs. (6.99) are compatible with the reduced dissipative
inequality, namely the constitutive functions kd ; kp and ka are given to satisfy the
inequality

kdLd � Ld þ kpLp � Lp þ ka _a � _a
 0: ð6:100Þ

6.4.4 Constitutive Models

In this model Fd is a second order invertible tensor, which characterizes the passage
from the stress free and undamaged configuration, i.e. a fictitious configuration,
which is denoted by K to the stress free and damaged configuration, say ~K:
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• The elastic type constitutive equation gives rise either to the Cauchy stress
tensor or to the Piola-Kirchhoff stress tensor (effective stress) by

T ¼ qF̂hKðĈ� Cd; aÞðF̂ÞT ;, �T ¼ qphKðĈ� Cd ; aÞ ð6:101Þ

The elastic type constitutive function can be expressed in terms of the free
energy density, following (6.97), by

hKðĈ� Cd; aÞ � @�Cu
ðeÞðĈ� Cd; aÞ: ð6:102Þ

• The evolution equation for the plastic part of deformation, written in (6.77)
together with the (6.99)2 is characterized by

_F
pðFpÞ�1 ¼ l1 Ĉ

�T
qp

þFp�T@ðFpÞ�1uðivÞ
� �

; l1 ¼
1
kp

ð6:103Þ

• The evolution equation for the damage tensor, written in (6.80) together with
(6.99)1 is characterized by

ðFdÞ�1 _F
d ¼ l2 Cd

�T
qp

� ðFdÞT@FduðivÞ
� �

; l2 ¼
1
kd

: ð6:104Þ

• The evolution equation for hardening variables a is given by (6.99)

_a ¼ �l3@au
ðivÞ; l3 ¼

1
ka

ð6:105Þ

Finally, we consider the model with isotropic damage, as a particular case of
the previously presented model. The damage tensor is reduced to

Fd ¼ jRd; Rd 2 Orth; j ¼ 1� d: ð6:106Þ

The multiplicative decomposition of the deformation gradient is reduced to F ¼
FeFp: The scalar damage variable is viewed as a scalar internal variable, that
variation in time being described by the specific evolution equation. The tensors Cd

and F̂; defined by (6.70)3 and (6.65)2, result

Cd ¼ j2 I ; F̂ ¼ jFeðRdÞ: ð6:107Þ

We use the polar decomposition of the elastic part of the deformation gradient,
Fe ¼ Ve Re; where Re 2 Orth:
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Proposition There exists a stress free and undamaged configuration associated to
~K; which can be characterized in term of F̂ ¼ jVe; where Ve 2 Sym; representing
the left hand side, elastic stretch Cauchy-Green tensor.

• The elastic type constitutive equation in terms either of the Cauchy stress tensor
or of the Piola-Kirchoff stress tensor (effective stress) is expressed by the free
energy density, following (6.97)

T ¼ qF̂@CeuðeÞðj2ðCe � IÞ; aÞðF̂ÞT ; equivalently

�T ¼ qp@CeuðeÞðj2ðCe � IÞ; aÞ
ð6:108Þ

• The evolution equation for the plastic part of deformation, written in (6.77) is
characterized by

_F
pðFpÞ�1 ¼ l1@CeuðeÞ Ce

�T
qp

þFp�T@ðFpÞ�1uðivÞ
� �

: ð6:109Þ

• The evolution equation for the damage tensor, written in (6.80) is characterized
by

_j ¼ l2j
2 j tr

�T
qp

� �
� trð@FduðivÞ

� �
: ð6:110Þ

• The evolution equation for hardening variables is given by

_a ¼ �l3@au
ðivÞ: ð6:111Þ

6.5 Models with Non-metric Property

We present here some ideas that can be found in the paper by Cleja-Ţigoiu and
Ţigoiu (2013), that require further development. The behaviour of elasto-plastic
materials with damaged microstructure is described in terms of specific differential
geometry elements which characterize the internal mechanical state, following
Kröner (1992), de Wit (1981). In the proposed elasto-plastic models the defects of
lattice structure, like dislocations and disclinations, can be involved through the
Cartan torsion of the so-called plastic connection, see Cleja-Ţigoiu (2007, 2010,
2014).

The point defects, microvoids and microcracks in the damaged zone are modeled
in terms of the non-metric tensor which belongs to the plastic connection, apart
from Cleja-Ţigoiu and Ţigoiu (2011) where the gradient of the elastic strain
measures the damage. The non-metric property of the plastic connection is
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described in terms of a symmetric second order tensor, hd ; which is potential for the
non-metric (extra-matter) tensor Q. The symmetric second order tensor hd; is called
here the damage tensor.

6.5.1 Constitutive Hypotheses

We present here the basic ideas developed within the finite elasto-plasticity with
second order deformations provided by Cleja-Ţigoiu (2007, 2010), Cleja-Ţigoiu
and Ţigoiu (2013).

Let us consider the function v which defines the motion of the body, B: The
deformation gradient associated with the motion is defined by F ¼ rv and the
expression of the second order gradient of the motion v; pulled back to the reference
configuration is given by ðFÞ�1rF; and is denoted by C; namely C ¼ ðFÞ�1rF:
Here rF and C are represented as third order fields in a certain coordinate system.

Hypotheses The plastic behaviour is characterized in terms of the pair ðFp; C
ðpÞ
Þ;

whose components are incompatible.

The second order tensor field Fp; which is called plastic distortion, or the plastic

part of the deformation gradient, and C
ðpÞ

is characterized by a third order field in a
curvilinear coordinate system and represents the Christoffel-Riemann coefficient of
a connection, called here plastic connection.

Assumptions The plastic distortion does not satisfy the first integrability condition,

i.e. the plastic distorstion is incompatible. The plastic connection C
ðpÞ

does not satisfy
the second integrability condition, i.e. i.e. the plastic connection is incompatible.

We recall the classical results concerning the theorems (in the smooth case).

(First Integrability Theorem) Let U be a simply connected domain in R3 and
F : U ! Lin: The following three assertions are equivalent

a: F is a gradient;whichmeans the existence of a vector field Z
such thatF ¼ rZ;

b: ðrFðxÞðuÞÞv� ðrFðxÞvÞu ¼ 0; 8 x 2 U; 8u; v 2 V
c: ðcurlFðxÞÞðu� vÞ ¼ 0; 8 x 2 U; 8u; v:

ð6:112Þ

Definition A connection C is integrable if there exists a tensor field F such that the
partial differential equation (written in a local representation) is satisfied

C ¼ F�1rF; 8 x 2 U; ð6:113Þ
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Definition The fourth order Riemann-curvature tensor R; attached to C; is defined
by

Rðu; vÞ ¼ ððrCÞuÞv� ððrCÞvÞuþðCuÞðCvÞ � ðCvÞðCuÞ: ð6:114Þ

The equation written in definition (6.113) is known as the second integrability
condition. The following theorem states a relationship between the two definitions.

Theorem The second integrability condition takes place if the Riemann-curvature
tensor R belonging to C is vanishing, which means the Frobenius condition holds.

Three type of configurations are used in the models, namely the reference and
the deformed configurations at time t; vð�; tÞ; as well as the so-called damaged
(anholonomic) configuration, generically denoted by K; and which is viewed as

the pair ðFp; C
ðpÞ
Þ:

The model is described within the second order plasticity, based on the multi-
plicative decomposition of the deformation gradient F ¼ rv (where the function v
describes the motion of the body) into its elastic and plastic components Fe;Fp;
called distortions

F ¼ FeFp; ð6:115Þ

as well as on the rule of the C ¼ ðFÞ�1rF motion connection decomposition into
its elastic and plastic counterparts, which are defined as it follows

C ¼ ðFpÞ�1
C
ðeÞ

K½Fp;Fp	 þ C
ðpÞ

: ð6:116Þ

For any third order tensor C; and for any second order tensors, F1;F2; the third
order tensor C½F1;F2	 is defined by

ðC½F1;F2	uÞv ¼ ðCðF1uÞÞF2v; ð6:117Þ

for all vectors u and v:
In the formula (6.116) giving rise to the decomposition of the second order

deformation, the elastic connection with respect to the damaged configuration has
been introduced, as a direct consequences of the appropriate relationships between
the three order fields, when we pass from the reference configuration to the dam-
aged configuration K by the plastic distortion Fp;

C
ðeÞ

K ¼ Fp C
ðeÞ
½ðFpÞ�1; ðFpÞ�1	;where

C
ðeÞ

¼ C� C
ðpÞ

:

ð6:118Þ
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Remark We shortly justify the rationale put down at the composition rule involved
in the above formula, following Cross (1973), Wang (1973). The formula (6.116) is
a relationships between the second order derivatives for a composition rule written
for two applications.

We assume that the plastic connection C
ðpÞ

has non-metric property with respect
to the metric tensor Cp ¼ ðFpÞTFp; apart from the hypothesis adopted by Cleja-
Ţigoiu (2007, 2010).

Consequently there exists a third order tensor Q; such that Qu 2 Sym and

�ðrCpÞuþðCpC
ðpÞ
uÞT þCpðC

ðpÞ
uÞ ¼ Qu; ð6:119Þ

hold for all vectors u:
The following representation for the plastic connection can be derived, see

Cleja-Ţigoiu and Ţigoiu (2013),

C
ðpÞ

¼ A
ðpÞ

þ ðCpÞ�1ðK� Iþ 1
2QÞ; A

ðpÞ
¼ ðFpÞ�1rFp; ð6:120Þ

Here the third order tensor field K is a measure of disclination, being defined in
such a way to have the equality ððK� IÞuÞv ¼ ðKuÞ � v:

A
ðpÞ

defines the so-called Bilby type plastic connection.
Following Kröner (1992) we assume the existence of a second order tensor, hd;

which is a potential for the non-metric (extra-matter) tensor Q; namely Q ¼ rhd:
As a direct property of the above introduced definitions, the plastic metric tensor Cp

is corrected by hd ; to restore the metric property of the plastic connection, i.e.

�rðCp þ hdÞuþðCp C
ðpÞ

uÞT þCpðC
ðpÞ

uÞ ¼ 0; 8 u 2 V: ð6:121Þ

Remark The plastic distortion Fp and the tensorial damage variable hd are in-
compatible, which means that they are not the derivative of certain vector fields, see
de Wit (1981). The second order torsion tensor, Np; related to the third order
Cartan torsion Sp;

ðSp~uÞ~v ¼ Npð~u� ~vÞ; 8 ~u; ~v;

Np ¼ ðFpÞ�1curlFp þðCpÞ�1ðcurlhd þðtrKÞI� ðKÞTÞ ð6:122Þ

6 Anisotropic Damage in Elasto-plastic Materials with Structural Defects 339



The following defect fields have been introduced

a :¼ ðFpÞ�1curlðFpÞ dislocation density
ad ¼ ðCpÞ�1curlhd damage defect density
aK :¼ trKI� ðKÞT disclination density;

ð6:123Þ

which characterize the incompatibilities existing in the materials, following for
instance Kröner (1992) and de Wit (1981).

Remark The damage defect density ad ¼ ðCpÞ�1curlhd is not symmetric and
contains the plastic metric tensor and the damage tensor hd : Thus there is a measure
of damage explicitly dependent on the plastic distortion.

For the shake of simplicity we do not consider here the disclination among the
lattice defect, apart from Cleja-Ţigoiu (2010), Cleja-Ţigoiu (2014), where the
influence of the lattice defect modeled by K has been emphasized.

In the model the damage variable hd was defined on the reference configuration,
and we introduce the tensorial damage variable H which is pushed forward to the
damaged configuration of hd . We also define the appropriate gradients of the
aforementioned fields, as follows

H ¼ ðFpÞ�ThdðFpÞ�1;

rKH ¼ ðrHÞðFpÞ�1:
ð6:124Þ

6.5.2 Dissipation Postulate

The models are dissipative and the constitutive equations for the macro forces as
well as the appropriate evolution laws which involves the micro forces are derived
to be compatible with the free energy imbalance principle, formulated in Gurtin
et al. (2010) and adapted here to involve the internal expanded power during the
irreversible (plastic) process coupled with damage, as in Cleja-Ţigoiu (2007), Cleja-
Ţigoiu (2010).

Let us denote by uK the expression of the free energy function with respect to
the damaged configuration and by ðPintÞK the density of the internal expended
power.

Ax. 1. The elasto-plastic behavior of the material is restricted to satisfy in damaged
configuration the imbalanced free energy condition

� _uKþðPintÞK 
 0 for any virtual ðisothermicÞ processes : ð6:125Þ
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The model is strongly dependent on the postulated expression for the free energy
density, as well as of the postulated form for the virtual internal power in the
damaged configuration.

Ax. 2. The free energy density function in the damaged configuration is postulated
to be dependent on the second order elastic deformation, in terms of Ce ¼ ðFeÞTFe;
and to be dependent on the damaged configuration, through the part of second order

plastic deformation ððFpÞ�1;A
ðpÞ

KÞ

u ¼ uKðCe; ðFpÞ�1;A
ðpÞ

K;H;rKHÞ; ð6:126Þ

As the tensorial damage variable and its gradient have been introduced among
the independent variables in the expression of the free energy density, the power
conjugated variables with their rates should be introduced in the expression pos-
tulated for the virtual internal power.

Within the constitutive framework developed by Cleja-Ţigoiu (2010) and
adapted to the problem which we discuss here and which refers to damage, the free
energy imbalance principle can be reformulated taking into account the expression
of the virtual internal power in K:

ðvirtPintÞK ¼ 1
2
p

~q
� dCe þ 1

~q
lK � ððFeÞ�1ðrvL½Fe;Fe	Þ � rKLpÞ

þ 1
~q
¤ p � ~Lp þ 1

~q
lp � rK

~L
p þ 1

~q
¤ d � dHþ 1

~q
ld � rKdH:

ð6:127Þ

ðp; lKÞ are the macroforces in K; namely Piola-Kirchhoff stress tensor and
stress momentum pulled back to the configuration with torsion, K; see Cleja-
Ţigoiu (2007). The macroforces in K are power conjugated to _C

e
and to the

gradient of the velocity gradient in the actual configuration,rvL; pulled back to the
configuration K.

lp; ld are micro stress momenta (third order tensors) which are conjugated to the
gradients of the rate of plastic distortion Lp and of the rate of H; respectively. The
internal virtual power (6.127) is written for any virtual rate of plastic distortion ~L

p
;

and any virtual variation of damage tensor, dH; and for their gradients rK
~L
p
and

rKdH; respectively. Based on the following kinematic relationships

_C
e ¼ 2 ðFeÞTfLgsFe � 2 fCeLpgs; as Ce ¼ ðFpÞ�TCðFpÞ�1; ð6:128Þ

which are written in terms of L and Lp; the virtual variation dCe is derived. To do
that, L and Lp are replaced by their virtual expression, ~L and ~L

p
:
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Assuming that during the elasto-plastic process no evolution of plastic distortion
and damage is produced when an elastic process is considered, the following
statement can be proved.

Proposition A fist consequence follows from the principle of the free energy
imbalance, namely the free energy is potential for the macro force, namely the
Cauchy stress is expressed by

Tðx; tÞ ¼ 2qFe@FeuðFeÞT : ð6:129Þ
Balance Equations for Micro Forces. We mention that the micro forces are
power conjugated to the rate of kinematic variables and of their gradients, in the
plastic and damage mechanism. They satisfy their own micro balance equations in
the damaged configuration, K; which are postulated (see Cleja-Ţigoiu (2007),
Cleja-Ţigoiu (2010)) to be given by

¤ p ¼ divK ðlp � lKÞþ ~qBp
m; ¤ d ¼ divK ld þ ~qBd

m ð6:130Þ

with the appropriate boundary conditions on @KðP; tÞ: When we pass to the
reference configuration the micro balance (6.130) can be written in the following
form

Jp ¤ p
K ¼ div ðJp ðlp � lKÞðFpÞ�TÞþ q0 B

p
m;

Jp¤ d ¼ div ðJp ldðFpÞ�TÞÞþ q0 B
d
m; Jp ¼ jdetFpj:

ð6:131Þ

Here Bp
m and Bd

m are the mass density forces associated with the plastic and damage
mechanism.

The balance equation for macro force, i.e. the Cauchy stress tensor, is reduced to
the classical balance equation divTþ qb ¼ 0:

6.5.3 Constitutive and Evolution Equations with Respect
to the Reference Configuration

In order to describe the behaviour of the elasto-plastic material with damaged
structure, modeled by the tensorial variable hd and its gradient rhd ; the form of the
free energy density could be postulated directly with respect to the reference
configuration,

The free energy in K can be expressed in a pulled back to the reference
configuration form
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u ¼ �uðC;Fp;A
ðpÞ
; hd;rhdÞ ð6:132Þ

taking into account the appropriate relationships between the fields when we pass
from the damaged configuration K to the reference configuration by ðFpÞ�1:

The free energy density is assumed to be dependent on hd ; and its gradient,
namely the non-metric (extra-matter) tensor Q:

We develop the kinematic of the process which leads to the evolution equations

which prescribe _h
d
; and

lp ¼ d
dt
ðFpÞ�1

� �
Fp ¼ �ðFpÞ�1LpFp ð6:133Þ

when the dissipation inequality is also revised.
First we proceed to directly reformulate the imbalanced form of the free energy

principle with respect to the reference configuration, taking into account the fol-
lowing expression of the internal power, namely

ðPintÞK ¼ 1
2
p

~q
� _Ce þ 1

~q
lK � ððFeÞ�1ðrvL½Fe;Fe	Þ � rKLpÞþ

þ 1
~q
¤ p � Lp þ 1

~q
lp � rKLp þ 1

~q
¤ d � D

Dt
Hþ 1

~q
ld � rK

D
Dt

H:

ð6:134Þ

Second, we compute the time derivative of the free energy density function
taking into account the derivative formulae for the appropriate fields.

• dH which is involved in the expression of the virtual internal power, (6.127), is
defined to be the rate of hd pushed away to the configuration K; namely

D
Dt ðHÞ ¼ ðFpÞ�T _h

dðFpÞ�1; ð6:135Þ

• The gradient with respect toK applied to the previous rate, i.e. rKdH; leads to

rK
D
Dt ðHÞ	 
 ¼ ðFpÞ�T frð _hdÞ � ð _hdA

ðpÞ
Þ � ð _hdA

ðpÞ
ÞTg½ðFpÞ�1; ðFpÞ�1	;

ð6:136Þ

where the transpose of the third order tensor field N is given by NTu ¼
ðNuÞT ; for any u:

• The rate of the appropriate fields which enter the expression of the internal
power associated to the processes is calculated in terms of lp as given by the
formulae
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_C
e ¼ ðFpÞ�Tf _CþClp þðlpÞTCgðFpÞ�1

rKLp ¼ �Fpfrlp þ A
ðpÞ
½I; lp	 � lp A

ðpÞ
g½ðFpÞ�1; ðFpÞ�1	;

d
dt
ðA
ðpÞ
Þ

� �
¼ �r lp þ lp A

ðpÞ
�A

ðpÞ
½I; lp	:

ð6:137Þ

Second, we introduce the new appropriate measures for the forces which enter
the reformulated expression for the principle of the imbalanced free energy when
we passed from the damaged configuration to the reference one, namely

md
0

q0
¼ 1

~q
ðFpÞ�1

ld ½ðFpÞ�T ; ðFpÞ�T 	; mp
0

q0
¼ 1

~q
ðFpÞTlp½ðFpÞ�T ; ðFpÞ�T 	

¤ p
0

q0
¼ ðFpÞ�1 1

~q
¤ dðFpÞ�T ;

¤ p
0

q0
¼ ðFpÞT 1

~q
¤ pðFpÞ�T ;

R0 ¼ Cp0;
p0

q0
¼ ðFpÞ�1 1

~q
pðFpÞ�T ;

ð6:138Þ

where R0 and p0 denote Mandel stress measure and Piola-Kirchhoff stress tensor,
respectively, with respect to the reference configuration.

As a consequence of the formulated dissipated postulate the expression for the
macro forces is derived.

• We introduce micro stress momenta associated with the damage and disloca-
tions by the non-dissipative (energetic) constitutive relations, the so-called en-
ergetic micro forces

1
q0
md

0 ¼ @rhd u;
1
q0
mp

0 ¼ @
A
ðpÞu: ð6:139Þ

• The rates of the plastic distorsion and of the quasi-plastic strain, Fp and hd ; and
the constitutive functions have to be compatible with the dissipation inequality,
and they are postulated as follows

1
q0

ðR0 � ¤ p
0Þþ ðFpÞT@Fpu ¼ n1 l

p;

1
q0

ð¤ d
0 � @hduÞ � 2f@rhdu�A

ðpÞ
gS ¼ n2 _h

d
;

ð6:140Þ

where the operator � associates to the third order tensors A andB the second
order tensor, denoted A�B and defined by
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ðA�BÞ � L ¼ A½I;L	 �B ¼ AiskLsnBink; ð6:141Þ

for all second order tensor L.

The micro forces are eliminated from the evolution equations for plastic
deformation and damage tensor, hd via their own balance equations. The non-local
evolution equations can be either associated for instance with an appropriate yield
function in terms of effective stress and damage back stress tensor, or described as
the viscoplastic ones.

The rate independent elasto-plastic model with anisotropic damage can be
derived as it follows:

• The scalar constitutive functions n1; n2 are defined in such a way to be com-
patible with the dissipation inequality

n1 l
p � lp þ n2 _h

d � _hd 
 0: ð6:142Þ

Let us introduce internal variables like stress

1. the back stress, denoted by Rback; which is introduced in order to describe the
hardening of the material,

Rback :¼ ¤ p
0 � q0ðFpÞT@Fpu ð6:143Þ

2. the damage stress variable

b :¼ ¤ d
0 � q0@hdu� 2q0f@rhdu�A

ðpÞ
gS: ð6:144Þ

When the micro forces are eliminated via the micro balance Eq. (6.131) together
with the energetic representation for micro stress momenta (6.139) the following
expressions are provided for the back stress and damage stress

Rback ¼ 1
Jp

divðq0Fp@
A
ðpÞu½I; ðFpÞT 	ÞÞ � q0ðFpÞT@Fpu;

b :¼ �q0@huþ 1
Jp

divðq0Fp@rhuÞ½I; ðFpÞT 	:
ð6:145Þ

As a consequence of the micro balance equations together with the energetic
definitions for the micro stress momenta the reduced dissipation inequality referring
to the irreversible behavior coupled with damage can be derived under the form

ðR0 � RbackÞ � lp þ b � _hd 
 0: ð6:146Þ
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We introduce the rate-independent model, following the idea proposed by
Grudmundson (2004), which is in the sprit of classical plasticity.

In terms of effective fields we introduce a convex function with respect to its
arguments, say for instance like in classical plasticity, namely

Ŵ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR0 � Rbackj2 þ jbj2

q
; ð6:147Þ

and a yield function

F̂ :¼ Ŵ� RðfÞ; with RðfÞ[ 0; R0ðfÞ[ 0; Rð0Þ ¼ k[ 0; ð6:148Þ

with R a scalar constitutive function dependent on the scalar hardening variable of
the deformation type, say f; which has to be introduced by a differential type
equation.

The relationships (6.140) will be viewed as evolution equations to describe the
rates of plastic distortion, through lp; and for the scalar dislocation density d

dt q
d;

namely

lp :¼ k
R0 � Rback

RðfÞ HðF̂Þ;
d
dt
h :¼ k

b
RðfÞHðF̂Þ;

_f :¼ kHðF̂Þ;

ð6:149Þ

k has the role of plastic multiplier and satisfies Kuhn-Tucker and consistency
condition.

6.5.4 Model Proposed by Aslan et al. (2011)

We make references to the class of anisotropic elasto-viscoplastic micromorphic
media which was provided by Aslan et al. (2011), within the constitutive frame-
work of finite deformation, based on the multiplicative decomposition. The degrees
of freedom of the proposed model are the displacement vector u and the micro
deformation variable v̂p; which is generally a non-symmetric second order tensor.

The relative deformation tensor, denoted by ep; is defined by

ep ¼ ðFpÞ�1v̂p � I; ð6:150Þ
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and measures the departure of the micro deformation from the plastic distortion as

ep ¼ 0; if and only if v̂p ¼ Fp: ð6:151Þ

We remark that ep is a second order tensor defined on the reference configuration
and v̂p is defined on the reference configuration with the value in the intermediate
configuration.

The gradient of the set of degrees of freedom

ðF;KÞ; F ¼ Iþru; K ¼ Curlv̂p: ð6:152Þ

The state variables are introduced by the set the following fields

Ee � 1
2
ððFeÞTFe � IÞ; ep;K; a

� �
: ð6:153Þ

The free energy density function u is assumed to be dependent on the state
variables

u ¼ uðEe; ep;K; aÞ: ð6:154Þ

The internal power density is introduced by the following expression

pðiÞ ¼ r � Lþ s � _̂vp þM � Curl _̂vp; ð6:155Þ

where ðr; s;MÞ denote stress-like fields which are power conjugated to the velocity
gradient, rate of microdeformation, _̂vp and its curl. The consequences that can be
derived from the dissipation principle defined by pðiÞ � q _u
 0 were investigated by
Aslan et al. (2011).

The balance equation for the Cauchy stress, r; div r ¼ 0; as well as the
appropriate balance equation for micro stresses, CurlMþ s ¼ 0; have been intro-
duced to be satisfied by the pair of forces ðs;MÞ; which are power conjugated to _̂v

and Curl _̂v; respectively.

Conclusions. Certain similarities can be established between the model (Aslan
et al. 2011) and the models with non-metric property.

a. ðF;KÞ and ðFp; C
ðpÞ
Þ describe the second order effect;

b. ep and hd are anisotropic second order damage tensors;
c. The appropriate balance equations have been formulated for micro forces;
d. The specific dissipation inequalities characterize the dissipative nature of plastic

deformation and damage.
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The physical motivation and mathematical description of the damage are com-
pletely different. ep measures the discrepancy between the micro deformation and
the plastic distortions, while hd characterizes the lost of the metricity of the geo-
metrical structure, as a consequence of the existence of microvoids and microc-
racks. No evolution equation has been introduced in Aslan et al. (2011) for the
micro deformation or for the relative deformation tensor. In the model with
non-metric property the evolution equation for the tensorial damage variable is
coupled with the evolution equation for plastic distortion.

6.6 Conclusion

In the models proposed in this chapter, the key point is the presence of the tensorial
variables which describe the anisotropic damage connected to the large plastic
deformation. The physical nature and the mathematical description of the damage
variables are related to the presence of the microcracks and microvoids, developed
at the microstructural level. We pay attention to the configurations on which the
tensor fields are defined to avoid the confusions which appear when this mention is
missing.

The model presented in Sect. 6.4 is based on the fictitious undamaged and stress
free configuration and on the existence of the second order tensor, Fd which realizes
the passage from this configuration to the damaged and stress free configuration.
Only one type of undamaged configuration has been necessary to develop the
proposed model, like in Ekh et al. (2004). Contrary to Menzel et al. (Ekh et al.
2004) the damage anisotropic tensor Fd is involved in the gradient deformation
multiplicative decomposition, and the plastic distortion Fp describes the passage
from the reference configuration to the undamaged and stress free configuration.
The damage tensor field Fd is not symmetric, as it is considered by Brünig (2003),
Murakami (1988). The composed tensor FdFp characterizes damage and plastic
coupled effect, when the passage from the reference configuration to the damaged
stress free configuration occurs.

In the model proposed in Sect. 6.5 we defined the damage tensor to be the
second order symmetric tensor field hd ; which characterizes a measure of non-
metric property for the geometry of elasto-plastic material with damaged structure.
The rationale of our choice is motivated by the fact that the local metric property of
the material with crystalline structure is lost in the material with damaged
microstructure. The symmetric tensor field hd ; which is not a metric tensor, restores
the metricity of the so-called plastic connection, with respect to the reference
configuration. In the two models the evolution equations for the plastic distortion
and tensorial damage variable are derived to be compatible with the appropriate
dissipation principle, the classical one for the first model and the free energy
imbalance principle for the second one.
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Chapter 7
Modelling the Portevin-Le Chatelier
Effect—A Study on Plastic Instabilities
and Pattern Formation

Cristian Făciu

Dedicated to Academician Nicolae Cristescu on the occasion of
his 87th birthday and to the 150th anniversary of the Romanian
Academy.

7.1 Introduction

From macroscopic point of view the Portevin-Le Chatelier effect is an oscillatory
plastic flow, resulting in inhomogeneous and discontinuous deformation that may
be observed in metallic alloys subjected to load-or displacement-controlled
experiments in a certain range of strain, strain-rate and temperature. From micro-
scopic point of view the PLC effect is usually explained by a model called dynamic
strain ageing (DSA) which characterizes the interaction between moving disloca-
tions and between dislocations and diffusing solute atoms. The concept of DSA,
first introduced by Cottrell and Bilby (1949) in the frame of the dislocation theory
(see Cottrell 1953), generalized by Louat (1981) and later developed by others (see
for instance Rizzi and Hähner 2004 and the references therein) is based on the
pinning and unpinning of dislocations by impurity clouds.

In the present work, after reminding the main experimental and physical aspects
of this phenomenon we introduce the principal ideas for incorporating the
microstructural processes specific to the DSA into the phenomenological consti-
tutive modelling. Our goal is to focus on macroscopic constitutive equations
appropriate from the point of view of continuum mechanics. One way to realize this
bridge from the microstructural aspects to the macroscopic mechanical behavior
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associated with the PLC instabilities can be achieved by using the theory of flow
localization due to the DSA proposed by McCormick (1988). In this framework, we
survey the literature related with such macroscopic phenomenological approaches
able to describe both the global responses, as observed typically in the stress-strain
curves, but also the spontaneous appearance of strain localization.

In Sect. 7.2, following a line developed by Mesarovics (1995), Zhang et al.
(2001), Böhlke et al. (2009) we give a detailed description of an elastic-viscoplastic
model of McCormick type incorporating DSA and negative strain-rate sensitivity.

Starting from the idea that the PLC effect as well as all phenomena related with
strain localization and band propagation are characterized by deformation which is
inhomogeneous both in space and time, we consider that the appropriate framework
for a phenomenological approach is the field theory approach. That means, in order
to establish the predictions of a constitutive set of relations we have to add the
general law of mechanics, for instance, the balance of momentum, the balance of
mass and to investigate the resulting set of partial differential equations (PDEs) for
initial-boundary value problems which simulate laboratory experiments.

In order to outline the basic ideas we consider for simplicity in Sect. 7.3 the case
of a bar subjected to a one-dimensional stress state. We show that the field theory
approach leads in this case to a hyperbolic semilinear PDEs system with source
terms. The hyperbolic character of the system is due to the fact that we do not
neglect the inertial term in the balance of momentum, although the PLC effect
manifests only for strain-rate ranging between 10�6 s�1 and 10�2 s�1, which usu-
ally are considered as static tests.

We accurately formulate initial-boundary value problems corresponding to
strain- and stress-controlled tests. Moreover, we do not add as usual a machine
equation in order to describe the machine effect, but we formulate in a new way
mixed stress- and strain-controlled boundary conditions which include a parameter
describing the influence of the testing machine.

A numerical investigation of uniaxial tensile tests is done using an explicit finite
difference scheme based on the method of characteristics described in Appendix. It
is shown that, without introduction of a geometric defect or other heterogeneity, the
PDEs system is able to describe quantitatively the remarkable features of the PLC
effect, that is, the staircase response for a soft testing device, the jerky flow for the
hard device depending on the imposed strain-rate, but also strain localization
phenomena and pattern formation.

In the mathematical framework developed, we consider in Sect. 7.4.1 a spatial
homogeneous process in stress, strain and ageing time, as the solution of an ideal
initial-boundary value problem. That corresponds to a constant cross-head velocity
controlled experiment having a linear distribution of the velocity in the bar at the
initial moment. A linear stability analysis of this homogeneous solution allows to
determine a critical condition on some material parameters for the PLC effect.
Moreover, one determines the range of strain-rates and mechanical parameters for
which there exists a jerky flow. One shows that the boundaries of the unstable PLC
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domain correspond to a Hopf bifurcation with limit cycle behavior. Section 7.4.2
concerns the calibration and verification of the constitutive model.

7.1.1 Experimental and Physical Aspects

The phenomenon of discontinuous deformation in tensile tests had already been
observed in the first part of the 19th century in dead weight tests. By adding suc-
cessively weights to the end of copper strips, the French physicist Savart (1837)
observed that the deformation does not increase continuously, but by sudden jumps,
feature known now as ‘‘staircase’’ like stress-strain behavior. He was the first to
consider this phenomenon as an intrinsic material property of plastic deformation.
More careful and systematic tests have been considered by his studentMasson (1841)
who performed tests on different alloys at different temperatures. That is way
sometimes this phenomenon is referred as Savart–Masson effect (see the historical
comments in Bell (1973), Scott et al. (2000), Rizzi and Hähner (2004)). The use of
‘‘hard’’ testing machines, i.e. of strain-controlled experiments, at the beginning of
20th century, had allowed Portevin and Le Chatelier (1923) to investigate in a sys-
tematically manner the serrated yielding in aluminium alloys at different elongation
rates and to definitively remove a common belief that such irregularities and dis-
continuous deformation are only a machine-produced effect of little importance. In
recognition of their results, starting with thework of Cottrell (1953), this phenomenon
of discontinuous deformation of metals, in quasi-static tests, bears their name.

Thus, the PLC effect is an unstable, irregular plastic flow resulting in an inho-
mogeneous deformation that may be observed in some dilute metallic alloys. These
are, for example, steels and aluminium alloys which are important industrial
materials used for car bodies, aircraft fuselage and different type of casing. The
localized deformation associated with the PLC effect leads to the formation of
narrow bands of intense plastic deformation that leaves undesirable traces on the
surface of the final product. Moreover, it affects most materials properties by
increasing: the flow stress, the ultimate tensile strength and the work hardening rate
and by decreasing: the ductility of metals, the strain-rate sensitivity coefficient and
the fracture toughness (see Yilmaz 2011).

From macroscopic point of view the PLC effect is characterized by the following
aspects. In constant strain-rate tensile experiments, i.e. when the end of the test
specimen is subjected to a constant velocity motion, the PLC effect appears in
certain ranges of temperature and strain-rate and manifests by a discontinuous
deformation, which corresponds to serrated stress - strain curves (‘‘jerky flow’’).
The most distinct feature is the localization of strain in the form of visible bands,
apparently moving along the surface of the specimen gauge. The apparition of each
strain band corresponds to a burst of plastic activity.

While for most metallic alloys the stress-strain curves obtained in tensile tests
moves up when the strain-rate increases, for the alloys which show the PLC effect
the reverse phenomenon happens, that is, they move down. This behavior is known
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as negative strain-rate sensitivity (NSRS) of the flow stress. It is illustrated in
Fig. 7.1 where one can see that the highest strength and the highest stress-strain
curve is obtained for the lowest strain-rate, i.e. for 6� 10�4 s�1. As the strain-rate
increases to 6� 10�3 s�1 and ultimately to 6� 10�2 s�1 the two stress-strain
curves are lower, thereby indicating a negative strain-rate effect. At constant
strain-rate, the amplitude of the serrations increases gradually with strain and then
finally saturates at large strains. Moreover, the amplitude of serrations decreases
with increasing strain-rate.

Experimental observations have shown that different types of serrations correspond
to different ways the PLC bands nucleate and move along the specimen leading finally
to specific band patterns. These are designated as type A, type B and type C, serrations
and correspondingly as type A, type B and type C, PLC bands (see for instance
Chihab et al. 1987). They are illustrated in Fig. 7.2. The transition between band types
or, equivalently, serration types may occur upon changes in strain-rate and temper-
ature. Usually, higher strain-rates are associated with type A bands, lower strain-rates
with type C bands and intermediate levels with type B bands.

Type C bands nucleate randomly and appear as hopping bands throughout the
specimen gauge and the corresponding serrations have a relative constant amplitude
and frequency. Type B bands propagate in a gauge in an intermittent manner with
approximately equal intervals having amplitudes and frequencies somewhat irreg-
ular and smaller than those of a type C curve. Type A bands propagate apparently
continuously in a gauge resembling a longitudinal wave (see Ait-Amokhtar and
Fressengeas 2010), with arbitrarily located small stress drops embedded in the
regular flow in the tensile test curve.

Different optical methods, laser scanning extensometry, infrared thermographic
techniques, or digital image correlation methods, (see for instance Chihab et al.
1987; Neuhäuser et al. 2004; Ait-Amokhtar et al. 2008; Benallal et al. 2008a, b;

Fig. 7.1 True stress-strain
curves of AA5754 alloy at
various strain-rates and
temperatures (reproduced
with permission from Halim
et al. 2007 Elsevier Ltd.)
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Zdunek et al. 2008; Ait-Amokhtar and Fressengeas 2010 and the references therein)
have allowed to correlate the spatio-temporal characteristics of the PLC effect with
the associated serrations observed in conventional tensile tests.

Thus, if one looks at a zoom of the ‘‘saw teeth’’ stress–strain curve of a constant
strain-rate test (see Fig. 7.3) obtained using Digital Image Correlation technique by
Zdunek et al. (2008) one observes that it is composed by a rapid stress drop
followed by a slow reloading part and this process runs almost cyclically. One notes
also that each stress drop accompanies a local dynamic event evidenced by the
nucleation of a strain band and the subsequent strain band buildup (see the strain
distribution in images 3–4 and 7–8). On the other side, when the stress increases
quasistatically there is no strain nucleation and the bands remain unchanged (see the
strain distribution in images 1–2 and 5–6). In this way, cyclic strain accumulation
occurs leading to a strain pattern formation along the specimen. In other words, the
plastic flow appears as ‘‘strain bursts-and-arrests’’ and the strain band propagation
can be of type ‘‘go-and-stop’’.

The experimental effort on the PLC effect has been mainly devoted to constant
strain-rate tests and the atypical load-extension curves obtained have led to the
acceptance of the term “serrated flow” as a synonym for the expression
“Portevin-Le Chatelier effect”.

Fig. 7.2 Stress-time curves for an Al–Mg alloy at T = 300 �K showing the change from type C to
type B, and then to type A serrations with increasing strain-rate. a Type C; 5� 10�6 s�1, b type B;
5� 10�4 s�1 and c type A; 5� 10�3 s�1 (reproduced with permission from Chihab et al. (1987)
and Yilmaz (2011) Elsevier Ltd.)
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Considerably less attention has been paid to constant stress-rate tests. In these
experiments the PLC effect manifests by stress-strain curves which are no longer
‘‘serrated’’, but exhibit “staircase steps”. As it is described by Fellner et al. (1991)
there are two ways to conduct a constant- _r test. The first modality is to perform
dead-load experiments using a creep machine by programmed addition of water, for
example, which allow a careful control of the loading rate. This is a so-called
dead-load tensile machine and the experiment is called a true constant- _r test. In this
case “almost perfect” steps can be obtained as it is illustrated in Fig. 7.4. The
second way, but the most common in laboratory experiments, is to use a conven-
tional tensile testing machine with electronic control systems. Such a machine is
used as a hard testing machine for constant extension-rate tests, but when one
inserts a spring of weak stiffness between the specimen and the grips of the machine
it is used as a soft testing machine for constant loading-rate tests. In this case, the
steps of the staircase present always a decrease of the stress and even successive
“oscillations” (see Figs. 3–4 in Fellner et al. 1991). The machine effect on the
“staircase shape” is not negligible as it can be seen from the physical experiments in
Fig. 7.5 obtained using a Zwick testing machine equipped with digital recording.
This experiment can be considered a “pseudoconstant- _r” test.

It is important to note that, unlike the constant strain-rate tensile experiments in
which the serrations on the stress-strain curves are accompanied by the appearance
of visible localized deformations bands along the gauge length, in true constant
stress-rate experiments no well defined stretcher-strain markings can be revealed on
the surface of the specimen (Fellner et al. 1991).

Fig. 7.3 Correlation between stress drops and pattern formation: strain band localization during a
stress drop and no change in strain distribution during the stress increase (reproduced from Zdunek
et al. (2008) Elsevier Ltd.)
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However, Cuddy and Leslie (1972), testing several alloys of iron, by means of a
creep tensile test machine, with an incrementally increased stress, have put into
evidence that deformation bands can be detected by the oscilloscope traces of the
outputs of a double extensometer. These bands spread immediately over the entire
gauge length of the specimen while the stress remains constant and large strain
increments are recorded.

More sophisticated experiments at constant stress-rate have been performed by
Neuhäuser et al. (2004), Chmelík et al. (2007) using acoustic emission and laser
extensometry techniques in order to detect the movement of a deformation band. It
has been shown that the deformation band movement is characterized most
appropriately by a repeated nucleation of bands. This appears as a piecewise
continuous propagation at higher and strongly scattered values of propagation
velocity as compared to the A-type in strain-rate controlled tests. They claim that
“in fact there is a new generic type of PLC bands at the stress-rate controlled
deformation”.

Fig. 7.4 Strain bursts in a dead-load tensile machine with constant stress-rate for annealed AlMg3
(reproduced from Fellner et al. (1991) Elsevier Ltd.)

Fig. 7.5 Strain bursts in a Zwick testing machine in a nearly constant stress-rate test � 0:076
MPa/s for a 5182H28 alloy (reproduced with permission from Făciu et al.1998 EDP Sciences)
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From microscopic point of view the plastic flow in metals can be explained by
using the theory of dislocations (see for instance Cottrell 1953; Nabarro 1967). In
general, when dislocations move without interacting each other, or without inter-
acting with point defects, the plastic flow is steady and stable. When the motion of
dislocations is disturbed by different kind of interactions the plastic flow becomes
unstable as it happens in the case of PLC effect. This phenomenon is usually
explained by a model called dynamic strain ageing (DSA) which characterizes the
interaction between moving dislocations and between dislocations and diffusing
solute atoms (see Cottrell and Bilby 1949). It is considered that when the dislo-
cations meet obstacles like solute atoms, or interstitial particles, they are temporary
arrested for a certain time. If sufficient stress is applied these dislocations will
overcome these obstacles and will quickly move to the next obstacle where they are
stopped again and the process is repeated. This microscopic mechanism, referred to
as dislocation pinning by solutes (Cottrell 1953), is believed to be the main factor
controlling instabilities in plastic flow and in particularly the PLC effect. The
dynamic strain ageing as micro mechanism of plastic instability phenomenon
described by dislocation–solute and dislocation–dislocation interactions is in
agreement with the experimental macroscopic correlation of the spatio-temporal
characteristics of the PLC effect, obtained by different imaging techniques, as it is
illustrated, for example, in Fig. 7.3. The idea of DSA has been further developed by
van den Beukel (1975), Mulford and Kocks (1979), Louat (1981), McCormick
(1988), Springer et al. (1998), Rizzi and Hähner (2004).

7.1.2 Main Ideas for the Constitutive Modelling of the PLC
Effect

Phenomenological viscoplastic models used to describe the PLC effect are mainly
based on two directions. One is motivated by the empirical material law adopted by
Penning (1972) in his analysis of the tension tests for materials with negative
strain-rate sensitivity. This relay on the assumption that in uniaxial tension, the
stress r is defined as a function of plastic strain ep and plastic strain-rate _ep in the
form

r = rY þ rHðepÞþ rVð_epÞ; ð7:1Þ

where rY is the yield stress, rH is the strain hardening variable, and rV is the
viscous stress governing the strain-rate sensitivity of the flow stress. It is assumed
that the viscous stress is non-negative, but in order to include negative strain-rate
sensitivity, rV is taken as a decreasing function of _ep in a bounded region of the
plastic strain-rate, i.e. there is a N-shaped relationship between the plastic strain-rate
and flow stress. This model has been extended by Kubin and Estrin (1985) by
adding the so-called “machine equation”
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rðtÞ
M

=
V�

L
t � 1

L

ZL
0

eðx; tÞdx; ð7:2Þ

where M is the combined elastic modulus of the specimen and the testing machine,
L is the length of the specimen and V� is the imposed end velocity. This approach
has led to a nonlinear integro differential system involving a spatial variable x and a
temporal variable t which allowed to model constant stress-rate experiments.
Penning’s constitutive equation has been modified by Hähner (1993) by incorpo-
rating second order strain-gradients @2ep=@x2 to capture a spatial coupling of the
PLC effect. A generalization of the material law (7.1) for a three dimensional
viscoplastic model has been considered by Benallal et al. (2003, 2006).

The second direction is based on the constitutive relations introduced by
McCormick (1988) to describe the dynamic strain ageing. The model assumes that
the plastic flow occurs as a result of thermally activated escape of dislocations that
have been pinned by solute atoms and can be described by an Arrhenius-type law.
This implies that the plastic strain-rate _ep is related to the stress r and the average
local solute concentration near dislocations C by relation

_ep = _e0 exp
r� rHðepÞ

S
� HCðtaÞ

� �
, r = rHðepÞþ SH CðtaÞþ S ln

_ep

_e0

� �
; ð7:3Þ

where _e0 is a characteristic strain-rate, S and H are material constants controlling the
instantaneous and steady-state strain-rate sensitivity of the solid. Here rHðepÞ
describes the stress hardening part of the flow stress. The solute concentration C,
according to the original model proposed by Cottrell and Bilby (1949) and modified
by Louat (1981), depends on average age of dislocations according to relation

CðtaÞ = 1� exp � ta
tD

� �n� �
; ð7:4Þ

where tD is the characteristic time for solute diffusion across dislocations, n is a
phenomenological material constant and ta is the time that a representative mobile
dislocation is pinned by obstacles. The age of dislocations ta evolves according to a
phenomenological kinetic law which will be described bellow.

An obvious inconvenience of the Arrhenius-type relation (7.3) is that when it is
coupled with an elastic unloading condition, and r is lower than the flow stress, it
yields a finite plastic strain-rate (see Estrin 1996). Therefore, a different flow rule
has been proposed by Böhlke et al. (2009), whereby the plastic strain-rate _ep is
related to the stress r not by an exponential function as in (7.3), but by a power law,
coupled with an unloading condition, i.e.

_ep = _e0
r� rHðepÞ

S
� HCðtaÞ

� �m

; ð7:5Þ
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where m[ 0 is a material constant which describes the strain-rate sensitivity of the
material. By using this flow rule a geometrically non-linear elastic–viscoplastic
constitutive model has been used for simulation of material response under various
applied strain-rates.

For steady-state conditions the ageing time ta may be taken to be equal to the
waiting time of dislocations, tw, as given by the Orowan equation, which relates the
plastic strain-rate to dislocation densities and the average velocity of mobile dis-
locations, vD ¼ l

tw
, by relations

tw =
qmbl
_ep

=
qmbq

�1=2
i

_ep
=

X
_ep

ð7:6Þ

where qm is the mobile dislocation density, qi is the immobile dislocation density, l
is the effective obstacle spacing, that is, the effective mean free path between
obstacles, and b is the length of the Burgers vector. X is in fact the strain produced
by all mobile dislocations moving to the next obstacle on their path. Since
according to (7.6), X varies with the dislocation densities it follows that from
phenomenological point of view it varies with the plastic strain, that is, X = XðepÞ.
The strain dependence of X can be calculated using a dislocation model (see Zhang
et al. 2001) and taken as

X = x1 þx2ðepÞb ð7:7Þ

where x1, x2 and b are constants.
Relation (7.6) reflects the generally accepted fact that a decrease in plastic

strain-rate causes an increase in the waiting time spent by dislocations at obstacles,
which in turn will increase the magnitude of the stress drop in a jerky flow.

According to McCormick and Ling (1995), measurements of transient behavior
following abrupt changes in _ep or r indicate that ta is not an instantaneous function
of _ep, but rather may be approximated by a first order relaxation kinetics law (see
Ling and McCormick 1993). That means, the effective ageing time ta is not iden-
tical to the average waiting time tw a dislocation is arrested at localized obstacles.
The fundamental assumption proposed by McCormick (1988) is that the effective
ageing time ta ‘‘relaxes’’ towards tw with time t according to the evolution law

dta
dt

¼ tw � ta
s

; ð7:8Þ

where the characteristic relaxation time s is taken to be equal to tw.
Therefore, from (7.8) and (7.6) the age of dislocations ta evolves with time,

plastic strain and plastic strain-rate according to the phenomenological kinetic law
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dta
dt

= 1� ta
tw
; where tw =

XðepÞ
_ep

: ð7:9Þ

Let us note that if tw�ta, then from (7.9) it follows that dtadt ffi1, in agreement with

the fact that the solute concentration at arrested dislocations cannot increase faster
than that allowed by the passage of time (McCormick 1988).

McCormick’s model has been used in a large number of theoretical and
numerical studies. It has been extended to the three-dimensional case by inter-
preting relation (7.3) as a relation between the von Mises equivalent deviatoric
stress and the equivalent plastic strain. Analytical and numerical stability and
bifurcation analysis have been done by Mesarovics (1995). There are several
studies in the literature in which such kind of three-dimensional constitutive
approaches have been investigated numerically by using the finite element method.
The first numerical study in a 3D context has been done in McCormick and Ling
(1995) by discretizing the tensile specimen into a number of axisymmetric sections
and simultaneously solving the constitutive equations for dynamic strain ageing in
each section. A reference approach is that in Zhang et al. (2001) where finite
element simulations of dynamic strain ageing in flat and notably round specimens
have been implemented by using the ABAQUS code. The model has been also used
by Graff et al. (2004) and investigated in a finite element code for strain localization
phenomena associated with static and dynamic strain ageing in notched specimens.
In Jiang et al. (2007) a phenomenological model that includes spatial coupling is
developed on the basis of McCormick’s constitutive assumptions. In this case the
specimen is numerically divided into N sections with equal width, perpendicular to
the axial direction and coupled through the acting load. An experimental and
numerical investigation of the PLC effect in the aluminium alloy AA5083-H116
was carried out by Benallal et al. (2008a) using the explicit non-linear finite element
code LS-DYNA for different specimen geometries. In Zhang et al. (2012) a simple
modification of McCormick’s model has been made by introducing a power law
dependence in the right part of Eq. (7.9)1 to modify the transient kinetics of the
strain-rate response of the material. Numerical simulations of PLC band formation
and necking in a tensile specimen have been performed using the explicit dynamic
finite element code ABAQUS. By using the flow rule (7.5), Böhlke et al. (2009)
have considered a geometrically non-linear elastic-viscoplastic constitutive model
for simulation of material response under various applied strain-rates. A related
elastic-viscoplastic approach with that proposed by Böhlke et al. (2009) has been
used by Mazière and Dierke (2012) to investigate the PLC critical strain in an
aluminum alloy.

More complex constitutive laws derived from a depth analysis of physical
mechanisms have been developed and are suitable, but more difficult to implement.
For instance, Rizzi and Hähner (2004) have introduced two intrinsic time scales in
the evolution equations and a characteristic length scale through a diffusion-like
term with spatial second-order gradient. Soare and Curtin (2008a, b) have
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developed a different kinetic model of dynamic strain ageing. Picu (2004) has
introduced a new mechanism leading to negative strain-rate sensitivity in dilute
solid solutions.

7.2 An Elastic-Viscoplastic Model with ‘‘Negative
Strain-Rate Sensitivity’’ of McCormick Type

We consider in the following a phenomenological three dimensional
elastic-viscoplastic constitutive model, of ‘‘overstress’’ type, that accounts for
negative strain-rate sensitivity. The model formulation is motivated by
McCormick’s ideas presented in the previous section.

For simplicity reasons the formulation of the problem and its analysis is limited
here to small strains and isotropic materials. We denote by e the small strain tensor
and by r the stress tensor, and by

e = e� 1
3
trðeÞI and s = r� 1

3
trðrÞI; ð7:10Þ

their deviatoric parts, respectively. I is the second-order identity tensor.
We consider the additive decomposition of the strain tensor e into an elastic and

inelastic part, i.e.

e = eel þ ein: ð7:11Þ

with the classical assumption of purely isochoric inelasticity of metals, i.e.
trðeinÞ = 0, it follows that the inelastic strain tensor is a deviatoric one and ein = ein.

One assumes that the volume deforms only elastically, i.e. the mean strain and
the mean stress satisfies the linear relation

trðrÞ = 3K trðeÞ; ð7:12Þ

where K is the bulk modulus. By assuming that in the elastic domain we have an
isotropic Hookean elastic material response, the relation between the stress deviator
and the deviatoric part of the elastic strain read as

s = 2leel; ð7:13Þ

where l is the shear modulus.
Therefore, the stress tensor can be written as

r = sþ 1
3
trðrÞI = 2leel þK trðeÞI = 2leel þ k trðeelÞI; ð7:14Þ
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where l and k are the Lamé coefficients and K = ð2lþ 3kÞ=3.
The inelastic strain tensor is expressed in the fairly general form of the Lévy-von

Mises type equation by which its rate is proportional with the deviatoric part of the
stress tensor as

_ein ¼ 3
2
_ep

req
s; ð7:15Þ

where

req 	
ffiffiffiffiffiffiffiffiffiffiffi
3
2
s 
 s

r
; ð7:16Þ

and

_ep 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_ein 
 _ein

r
: ð7:17Þ

denote the equivalent von Mises stress and the equivalent inelastic strain-rate. Here
and in the following the over-dot denotes the derivative with respect to time t.

The use of the von Mises equivalent quantities implies plastic isotropy of the
material. The specificity of the constitutive model is introduced through a particular
form of a kinetic equation relating the equivalent stress req and the equivalent
inelastic strain-rate _ep. To describe the PLC effect we choose here as a flow rule a
power law of type (7.5), i.e.

_ep = _e0
req � Yðep; taÞ

rD

� �m

; ð7:18Þ

The angle brackets \ 
 [ means as usual \x[ = maxð0; xÞ and allow to
characterize both the elastic and viscoplastic domains and the loading/unloading
conditions. The quantities _e0, m and rD are material parameters influencing the
kinetics of the viscoplastic processes. The factor _e0, which is proportional to the
density of mobile dislocations, is considered constant, m[ 0 is a constant rate
sensitivity parameter and rD is a characteristic stress for a dimensionless quantity
inside the bracket.

The function Y = Yðep; taÞ represents the flow stress, which depends on the
accumulated plastic strain ep defined as,

ep ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_ein 
 _ein

r
d~t; ð7:19Þ

and on an internal variable ta, called dynamic ageing time. It is obvious that the rate
of the accumulated plastic strain coincides with the equivalent inelastic strain-rate.
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The accumulated plastic strain satisfies epð0Þ = 0, i.e. the body is initially in a
virgin state and epðtÞ� 0 increases with time in any elastic-viscoplastic process.
One can view ep as a macroscopic measure of dislocations stored in the microscopic
structure.

Since the expression req � Yðep; taÞ is called overstress function, as it charac-
terizes the deviation of the equivalent stress with respect to the flow stress, one says
that this elastic-viscoplastic constitutive approach is of overstress type. It is obvi-
ous, according to (7.18), that the temporal changes in the accumulated plastic strain
ep are due to the variation of the overstress function and are associated with dis-
sipative effects.

By combining relations (7.11), (7.13), (7.15) and (7.18) one can write the
constitutive rate-type equation in terms of the rate of the deviatoric parts of total
strain tensor and stress tensor as

_e =
_s
2l

þ 3
2
_e0
req

req � Yðep; taÞ
rD

� �m

s: ð7:20Þ

From this expression one can see that we have obtained an elastic-viscoplastic
rate-type model with linear instantaneous response between the total strain deviator
e and the stress deviator s. For this class of constitutive relations see also Cristescu
and Suliciu (1982, Chap. VIII).

We assume that the flow stress can be decomposed in two additive parts

Yðep; taÞ = rHðepÞþ rBðep; taÞ; ð7:21Þ

where the first term rHðepÞ describes the hardening of the material and the second
one rBðep; taÞ takes the dynamic strain ageing into account.

One can assume for rHðepÞ a strain dependence obeying a Voce-type equation
(see Ling et al. 1993; Böhlke et al. 2009) as

rHðepÞ = r0 þðr1 � r0Þ 1� exp � H0ep

r1 - r0

� �� �� �
; ð7:22Þ

where r0 and r1 denote the initial and the saturation values of the stress and H0 is
a hardening parameter.

Motivated by relations (7.3) and (7.4), based on the generalization made by
Louat (1981) of the relation proposed by Cottrell and Bilby (1949) for the time
variation of the solute concentration around dislocations, one can take, according to
Böhlke et al. (2009), the part of the stress accounting for the PLC effect as

rBðep; taÞ = ðr1 þ r2e
pÞ 1� exp � ta

tD

� �n� �� �
; ð7:23Þ

where tD is the characteristic time for solute diffusion across dislocations and n[ 0
is a material parameter.
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Let us note that, if one takes the ageing time ta equal to the waiting time of
dislocations tw, then according to (7.6), one can write relation (7.23) as

rBðep; twÞ = ðr1 þ r2e
pÞ 1� exp � XðepÞ

tD _ep

� �n� �� �
: ð7:24Þ

It is obvious that when the rate of the accumulated plastic strain _ep increases,
then the waiting time tw decreases and the stress rB also decreases, pointing out in
this way a negative strain-rate sensitivity of the flow stress.

Taking into account the relaxation law (7.9), introduced by McCormick (1988),
and by using a linear relation of type (7.7) one obtains the following form of the
evolution equation for the dynamic ageing time ta

_ta ¼ � _ep

x1 þx2ep
ta þ 1; ð7:25Þ

where _ep is the equivalent inelastic strain-rate (7.18), ep is the accumulated plastic
strain (7.19) and x1 and x2 are constant material parameters.

By using expression (7.18), relation (7.25) can be written as

_ta = � _e0
x1 þx2ep

req � Yðep; taÞ
rD

� �m

ta þ 1: ð7:26Þ

Therefore, the constitutive relations relating the unknowns quantities: the stress
r, the strain e, and the internal variable ta are given by the evolution Eqs. (7.20) and
(7.26) completed with relations (7.11–7.17) and (7.19).

These constitutive relations have to be supplemented with the balance of
momentum law

q
@v
@t

= divr; q
@vi
@t

=
@rij
@xj

ð7:27Þ

where q is the mass density of the material and v = vðx; tÞ denotes the velocity field
and div is the divergence operator with respect to the actual coordinates, written in a
Cartesian system in relation (7.27)2.

Let us note that, although the PLC effect manifests only in almost static tests
ranging, in general, between 10�6 s�1 and 10�2 s�1, the inertial term in the balance
of momentum (7.27) must not be neglected in order to capture the phenomena of
strain nucleation and strain localization which accompany the PLC effect as local
dynamic events.

7 The PLC effect—A study on plastic instabilities and pattern formation 365



7.3 One-Dimensional Stress State

Let us consider a thin bar with uniform cross-section and length L in an undeformed
and free-stress state. In studying uniaxial load, or straining, of the bar it is common
to make a one-dimensional approximation in which the only non-vanishing stress
component is the longitudinal one which is assumed to be uniform in a
cross-section. That means, the stress tensor and its deviator in a Cartesian system of
coordinate having one of its axes directed along the bar read as

r =
r11 0 0
0 0 0
0 0 0

0
@

1
A; s =

2
3 r11 0 0
0 � 1

3 r11 0
0 0 � 1

3 r11

0
@

1
A; ð7:28Þ

and the strain tensor and its deviator as

e =
e11 0 0
0 e22 0
0 0 e22

0
@

1
A; e ¼

2
3 ðe11 � e22Þ 0 0

0 � 1
3 ðe11 � e22Þ 0

0 0 � 1
3 ðe11 � e22Þ

0
@

1
A:

ð7:29Þ

One assumes also that all the mechanical quantities intervening in the constitutive
description depends only on time t and on the spatial variable X corresponding to the
axis of the bar.

7.3.1 Constitutive Relations

In this case we denote for simplicity r = r11 and e = e11. The elastic deformation of
volume (7.11) allows to determine the transversal strain as

e22 = � e
2
þ r

6K
: ð7:30Þ

Relations (7.11)–(7.13) describing the linear elastic response of the material lead
to

eel11 =
ðkþ lÞr

lð2lþ 3kÞ =
r
E
; eel22 = � k

2lð2lþ 3kÞ r; ð7:31Þ

where E = lð3kþ 2lÞ
kþ l is the Young modulus.

By using the additive decomposition of the strain tensor in its elastic and
inelastic part, and the fact that the inelastic part is a deviatoric tensor one gets
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ein11 = e� r
E
; and ein22 = � 1

2
ein11: ð7:32Þ

The equivalent von Mises stress (7.16), the equivalent inelastic strain-rate (7.17)
and relation (7.15) read as

req = rj j; _ep = _ein11
�� �� = _e� _r

E

����
����; _e� _r

E
=

r
rj j _e� _r

E

����
����: ð7:33Þ

The accumulated plastic strain (7.19) becomes

epðtÞ =
Z t

0
_ein11ðsÞ
�� ��ds = Z t

0
_eðsÞ � _rðsÞ

E

����
����ds� 0: ð7:34Þ

Then, the tensorial viscoplastic constitutive relation (7.20) reduces to a single
equation

_e =
_r
E
þ _e0

rj j � Yðep; taÞ
rD

� �m r
rj j : ð7:35Þ

Let us consider the case of a tensile test, that is r[ 0. Then, according to
(7.33)3, _e� _r=Ej j = _e� _r=E[ 0, and the accumulated plastic strain (7.34)
becomes epðtÞ = eðtÞ � rðtÞ=E, if the bar at the initial moment is undeformed, i.e.
eð0Þ � rð0Þ=E = 0. Then, the constitutive Eq. (7.35) can be written as

_r = E _e� E _e0
r� Y e� r

E ; ta
� 	
rD

� �m

: ð7:36Þ

For the compressive case, that is when r\0, according to (7.33)3, we have
_e� _r=Ej j = � _eþ _r=E[ 0, and the accumulated plastic strain (7.34) is
epðtÞ = � eðtÞþ rðtÞ=E, if the bar at the initial moment is undeformed, i.e.
eð0Þ � rð0Þ=E = 0. Then, the constitutive Eq. (7.35) can be written as

_r = E _e� E _e0
�r� Y �eþ r

E ; ta
� 	
rD

� �m

: ð7:37Þ

By combining relations (7.36) and (7.37) we can write the constitutive
Eq. (7.35) in the form

@r
@t

� E
@e
@t

= Gðe; r; taÞ; ð7:38Þ

7 The PLC effect—A study on plastic instabilities and pattern formation 367



where

Gðe;r; taÞ =� E _e0
rmD

r� Y e� r
E ; ta

� 	� 	m
; if r[Y e� r

E ; ta
� 	

0; if � Yð�eþ r
E ; taÞ� r� Y e� r

E ; ta
� 	

�r� Y �eþ r
E ; ta

� 	� 	m
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E ; ta
� 	

:

8><
>:

The evolution equation for the dynamic ageing time (7.25) can then be written as

@ta
@t

= Hðe; r; taÞ; ð7:39Þ

where

Hðe; r; taÞ ¼

Gðe;r;taÞ
E x1 þx2 e�r

Eð Þð Þ ta þ 1; if r[ Y e� r
E ; ta

� 	
1; if � Y �eþ r

E ; ta
� 	� r� Y e� r

E ; ta
� 	

Gðe;r;taÞ
E x1 þx2 �eþ r

Eð Þð Þ ta þ 1; if r\� Y �eþ r
E ; ta

� 	
:

8>><
>>:

Here function Y = Yðep; taÞ is given by relations (7.21)–(7.23).

7.3.2 Field Equations and Initial-Boundary Value Problems

To investigate the predictions of the model we have to consider besides the con-
stitutive relations (7.38) and (7.39) the partial differential equations governing the
longitudinal motion of a thin bar with constant mass density q in the reference
configuration. These are the balance of momentum and the compatibility equation
between strain and velocity

q
@v
@t

� @r
@X

= 0;
@e
@t

� @v
@X

= 0; ð7:40Þ

where t is time, X 2 ½0; L is the (Lagrangian) spatial coordinate along the bar and
v is the particle velocity. Once more, the inertial term is not neglected in order to be
able to capture the local dynamic events.

Hence, the complete PDEs system in the unknown r = rðX; tÞ, e = eðX; tÞ,
ta = taðX; tÞ and v = vðX; tÞ composed by the Eqs. (7.38), (7.39) and (7.40) can be
written as

@

@t

v
e
r
ta

0
BB@

1
CCAþ

0 0 �1=q 0
1 0 0 0
�E 0 0 0
0 0 0 0

0
BB@

1
CCA @

@X

v
e
r
ta

0
BB@

1
CCA =

0
0

Gðe; r; taÞ
Hðe; r; taÞ

0
BB@

1
CCA: ð7:41Þ

368 C. Făciu



The type of the system is given by its characteristic directions dX=dt = r which
are defined as the eigenvalues of the 4� 4 matrix in (7.41). These are
ðdX=dtÞ2 = E=q[ 0 and ðdX=dtÞ2 = 0. They are real and positive and conse-
quently the system is hyperbolic. Moreover, it is semilinear with source terms since
all the nonlinear terms, i.e. G and H, are among the free terms of the system.

As we have seen in Sect. 7.1.1 the PLC phenomenon is usually investigated by
two kind of experiments: either a tensile testing at constant applied strain-rate
(‘‘hard testing machine experiment’’), or a tensile testing at constant applied
stress-rate (‘‘soft testing machine experiment’’).

To simulate such kind of uniaxial quasi-static experiments we have to consider a
bar initially at rest, in its natural state of strain and stress, with one of its end fixed.
The other end is subjected to one of the following conditions.

(A) Strain–controlled experiment – cross-head velocity controlled experiment.
The left-end of the bar in this tensile test is moved with a constant negative velocity
V�. Thus, we have to find the solution of the system (7.41) which satisfies the initial
and boundary conditions.

eðX; 0Þ = 0; rðX; 0Þ = 0; taðX; 0Þ = 0; vðX; 0Þ = 0; for X 2 ½0; L;
vð0; tÞ = V�; vðL; tÞ = 0 for any t[ 0:

ð7:42Þ

This experiment corresponds to an engineering constant strain-rate _ee = V�j j=L.
(B) Stress–controlled experiment – true constant stress-rate experiment.
The end of the bar is submitted to a constant increase of the load. Thus, we have to
find the solution of the system (7.41) which satisfies the initial and boundary
conditions.

eðX; 0Þ = 0; rðX; 0Þ = 0; taðX; 0Þ = 0; vðX; 0Þ = 0; for X 2 ½0; L;
rð0; tÞ = _ret; vðL; tÞ = 0 for any t[ 0;

ð7:43Þ

where the applied stress-rate _re = const: [ 0:

(C) Mixed stress- and strain-controlled experiment – pseudoconstant stress-rate
experiment.
As we have seen in the comments from Sect. 7.1.1 related with Figs. 7.4 and 7.5 a
true constant stress-rate test is very difficult to be conducted in laboratory experi-
ments by conventional testing machines due to the elastic interaction between
specimen and the testing machine which is caused by the spring introduced between
the specimen and the grips of the machine. In order to take into account the
influence of the testing machine we consider that in fact the left-end condition is a
mixture between a perfect hard testing-machine and a pure soft-testing machine by
considering the following mixed initial-boundary value problem.
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eðX; 0Þ = 0; rðX; 0Þ = 0; taðX; 0Þ = 0; vðX; 0Þ = 0; for X 2 ½0; L;
brð0; tÞ � ð1� bÞ

ffiffiffiffiffiffi
qE

p
vð0; tÞ = b _ret � ð1� bÞ

ffiffiffiffiffiffi
qE

p
V�; vðL; tÞ = 0 for any t[ 0;

ð7:44Þ

where _re = const:[ 0, V� = const:\0 and b is a parameter with the property that
b 2 ½0; 1.

It is obvious that when b = 1 we simulate a constant stress-rate test, while when
b ¼ 0 we simulate a constant strain-rate test (_ee = V�=L). For b 2 ð0; 1Þ we have a
mixed boundary condition. If b is near 1, this boundary condition should corre-
spond to a “pseudoconstant” stress-rate experiment.

To solve these initial–boundary value problems for the system of PDEs (7.41),
and see what the model predicts, we built an explicit second order finite difference
numerical scheme based on the method of characteristics. This is described in
Appendix.

7.3.3 A Numerical Investigation

The mechanical parameters of the model are listed in the fifth column of Tables 7.1
and 7.2 and are chosen in agreement with similar parameters in the literature, but so
as to ensure the fulfillment of critical conditions for the emergence of typical
instability phenomena for the PLC effect. These conditions are investigated in
Sect. 7.4.

We consider here a bar of length L = 20 mm discretized by using 161 nodes, that
means a space integration step h = 0:125 mm and a time integration step
s = 3:44� 10�8 s satisfying condition (7.71) for the Courant number m = 0:9.
Since the numerical experiments simulate laboratory tests at extremely low
strain-rates an important computation time was necessary.

Table 7.1 Mechanical parameters for classical part of elastic-viscoplastic relations (7.20)–(7.22)

Parameters Zhang et al.
(2001)

Benallal et al.
(2008a, b), Zhang
et al. (2012)

Böhlke
et al.
(2009)

This paper Units

E 70 70 70 70 GPa

q – – – 6550 kg/m3

_e0 2:3� 10�7 10�8 3:5� 10�5 3:5� 10�6 s−1

rD ð0:41; 1:7Þ 2.23 15. 30 MPa

m Exponential
(7.3)

Exponential (7.3) 28 15

r0 38.3 78.7 123 123 MPa

r1 67.9 Power law 343 343 MPa

H0 534.6 2800 2800 MPa
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The numerical results show that the constitutive model is able to reproduce with
reasonable accuracy most of the experimentally observed phenomena which
accompany the PLC effect.

7.3.3.1 Strain-Controlled Experiments

We first consider the constant strain-rate experiment (7.42) where the free-end of
the bar is moved with the constant velocity V� = 0:2 mm/s, which corresponds to
the engineering strain-rate _ee = 10�3s�1.

The computed stress–engineering strain curve, i.e. the end-stress rð0; tÞ versus
eeðtÞ = 1

L

R L
0 eðX; tÞdX = lðtÞ � Lð Þ=L, where lðtÞ is the actual length of the bar, is

illustrated in Fig. 7.6. One obtains a serrated curve, with sudden stress drops (“jerky
flow”) and with a changes of the serrated plateaus. The emergence of different
serrated yielding plateaus in a constant strain-rate experiment is often reported in
laboratory tests on alloys which present the PLC effect as it is shown in Fig. 7.7. No
geometric defect, or other heterogeneity was introduced in the PDEs system to
initiate the unstable behavior of the solution.

The same as in the laboratory experiments, the serrations accompany the for-
mation of bands of localized deformation in the bar. Indeed, the numerical exper-
iment clearly illustrates how the strain bands nucleate, localize and propagate along
the specimen. For instance, if one focuses on the zoom in Fig. 7.6 one can follow in
Fig. 7.8 the evolution of the strain and strain-rate distribution in bar during the
stress oscillations. Thus, between the points A and B the stress rises elastically and
when it reaches a critical value it suddenly drops. During this slowly and almost
elastic process the strain band distribution in the bar remains unchanged and there is

Table 7.2 Mechanical parameters for the DSA model described by (7.26) and (7.23)

Parameters Zhang et al. (2001) Benallal et al.
(2008a, b),
Zhang et al.
(2012)

Böhlke
et al. (2009)

This paper Units

r1 ð7:92; 30:6Þ 62.22 18.9 62.22 MPa

r2 – 0 189.26 622.2 MPa

tD ð0:126; 0:03Þ 0.02 0.125 0.125 s

n 1=3 1=3 1/3 1/3

x1 ð3:6� 10�5; 7:9� 10�4Þ 10�4 6.81 �10�4 3.6 �10�5

x2 – 0 3.6 �10�4 0

A ¼ nr1
x1E

ð0:23; 1:05Þ 2:96[ e 0:132\e 8:23[ e

Temporal
instability

No Yes No Yes
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no significant plastic activity. Only at point B, just before the stress drop, the plastic
activity begins to activate and the strain-rate in the bar locally overcomes the value
of the imposed strain-rate announcing the apparition of a new localization of strain.
During the stress drop, at the level of point C, a new strain band appears and inside
this band it is observed that the strain-rate is six hundred times larger than the
applied strain-rate. At the end of the stress drop, the new band is already buildup
and the plastic activity goes out at the point D.

Once the stress starts to rise again elastically, between the points D and E, the
strain band distribution remains unchanged and the process is quasistatic (compare
the strain and the strain-rate distribution at the points C, D and E in Fig. 7.8). Only
at point E, just before a new stress drop, the strain-rate starts to increase locally
marking the new nucleation zones. Two new dynamic events follow. A stress drop
to the point F, which leads to the localization of the strain near the fixed end of the
bar, followed immediately by a sudden stress decay at the point G which leads to
the apparition of a new localization of strain. These two strain bursts are accom-
panied by an important increase of the strain-rate inside the new bands, which
becomes at the point G more than four thousand times higher than the imposed
strain-rate. This behavior is in agreement with the laboratory experiment illustrated
in Fig. 7.3. The process continues in this way in a manner almost cyclic.
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Fig. 7.6 Serrated
stress-strain curve for
numerical simulation of a
hard-testing machine
experiment with engineering
strain-rate _ee = 10�3 s�1.
Insert: zoom of a portion and
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Fig. 7.7 Nominal stress
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constant strain-rate test at
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It is obvious that the stress drop occurs in a time interval much smaller than that
required for the new increase of the stress. Therefore, the sawtooth appearance of
the stress-strain curve reflects an alternation between dynamic and quasi-static
processes. Thus, Fig. 7.8 also illustrates how the stress drop is accompanied by
local dynamic events followed by quasi-static ones. This behavior explains the
mechanism of ‘‘go-and-stop’’ propagation of strain bands which is recorded in
laboratory experiments.

An overview of the PLC band propagation in the numerical simulation in
Fig. 7.6 is illustrated in Fig. 7.9. One can see that the strain bands nucleate in a way
specifically to the type B bands, which appear as hopping bands propagating dis-
continuously, in an intermittent manner.

0
5

 10
 15

 20
 25

 30
 35

 40
 45

0
5

 10
 15

 20

0

0.02

0.04

0.06

0.08

Tim
e (s)

Bar (mm)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

St
ra

in

 0  10  20  30  40

Time (s)

 0

 5

 10

 15

 20

B
ar

 (
m

m
)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

St
ra

in

(a)

(b)

Fig. 7.9 Overall picture of the strain evolution in the bar during the cross-head velocity controlled
experiment in Fig. 7.6. a Spatial representation of e = eðX; tÞ. b Its plane projection

374 C. Făciu



Let us also note that each plateau of the serrated curve corresponds to a new
stage of the strain growth in bar during the plastic deformation. Thus, for the
numerical simulation illustrated in Fig. 7.6 there are four plateaus which lead to
four stages of strain increase as can be seen in Fig. 7.9.

One observes that the increase of the local strain along a plateau, in general, is
not larger than the maximal value of the engineering strain of the corresponding
plateau. Indeed, see for instance the size of the strain bursts in Fig. 7.8 and compare
with the value of the engineering strain at the end of the corresponding plateau.

Therefore, such numerical simulations could clarify the relation between the
strain magnitude of a serrated yielding plateau and the way the strain increases
inside a band during a stress drop. Thus, one could explain, depending on the
‘‘jerky” flow structure of the serrated curve, the possible occurrence of visible strain
markings on the surface of a specimen during its unstable viscoplastic flow.

The 3D Fig. 7.10 illustrates how the plastic strain-rate is locally activated in a
spectacular way in the process of band formation during each stress drop. Since
these simulations are demanding not only with respect to the computation time, but
also to the data storage it is possible to not capture here the largest strain-rates of the
numerical simulation.

The evolution of the ageing time variable ta describes the dynamic ageing
process in which dislocations are alternately pinned by solute and released, or
newly generated, when the stress attains some critical value.

This behavior is illustrated in Fig. 7.11. According to the evolution Eq. (7.26)

when a particle of the bar suffers an elastic quasi-static process one has dtadt = 1, that

is, one has a linear increase of ta with constant slope 1. This behavior can be clearly
seen appearing regularly in Fig. 7.11. The increase of the ageing time during the
slow elastic stress growth describes in fact the process of ageing of dislocations
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controlled experiment in Fig. 7.6
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when the band front is pinned. Afterwards, the ageing time of the particles which
enter the viscoplastic domain starts to decay.

During the nucleation and localization process, when the stress sharply decreases
and the strain-rate bursts leading to localized bands, the ageing time ta decreases
rapidly to the waiting time tw � X=_ee = 3:5� 10�2s in the corresponding zones,
as can be seen in Fig. 7.12 (compare the ageing time distribution in the bar at points
B and C). This behavior is in agreement with Schwarz (1985) assertion that the
propagation and localization occur at the position of less aged dislocations. This can
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be also observed globally in Fig. 7.11 where ta decreases for short periods of time
in the neighborhood of the new localized front bands.

Thus, the prediction of the model is in agreement with the observation made by
Cuddy and Leslie (1972) that, as the bands appear along the gauge length, pro-
ducing regular serrations on the load-extension curve, and surface markings on the
specimen, there is an alternation between the ageing and breakaway of the
dislocations.

We end the comments on strain-controlled experiments with Fig. 7.13 which
illustrates how the strain-rate influences the yielding curve. One observes that, as
the engineering strain-rate _ee decreases, the stress-strain curves, in general, move up
pointing out the way the constitutive equations describe the negative strain-rate
sensitivity of the flow stress. For _ee = 10�1s�1 there is only a first drop, but no jerky
flow appears. The reason is that at this “high” strain-rate we are outside the region
of instability predicted by the analytical results in Sect. 7.4 for the material
parameters in Tabels 7.1 and 7.2. As we have already seen, the numerical simu-
lation performed at _ee = 10�3s�1 presents the characteristics of type B serrations
and PLC bands propagation, with regular alternation of stress increases and
decreases. For the increasing engineering strain-rate _ee = 10�2s�1, which according
to the stability analysis in the next section, lies in the intermediate range of
stable/unstable flow, the stress-strain curve presents the characteristics of a transi-
tion from type A to type B serrations with more irregular humps and valleys.

The stress drop amplitudes also show a slight strain dependence, in agreement
with laboratory experiments, which points out a gradual increase of the serrations
with strain (see Fig. 7.1). Thus, the overall agreement of the numerical simulations
with experiments is found to be reasonable.
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7.3.3.2 Stress-Controlled Experiments

We first consider a numerical simulation of the true constant stress-rate test (7.43)
(or equivalently, (7.44) for b = 1) with _re = 10 MPa/s. The computed end-stress
rð0; tÞ vs. engineering strain eeðtÞ illustrates in Fig. 7.14 how the model is able to
predict a staircase structure with five steps, each one corresponding to a strain burst.

At the scale of the 3D picture in Fig. 7.15 the specimen appears to deform in a
homogeneous manner along the almost horizontal treads, but also on the vertical
risers where the sudden strain bursts occurs leading to the increase of deformation
by steps. The transition from one strain burst plateau in Fig. 7.14 to the next one is
a quasistatic process with practically no plastic activity. The alternation between
these quasistatic and dynamic events is illustrated in Fig. 7.16 where it is depicted
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the evolution of the strain-rate for the first four plateaus in Fig. 7.14. The prediction
of the model for this ideal testing case is in agreement with the remark by Cuddy
and Leslie (1972) according to which “in a soft machine where the applied load
remains constant, the band spreads immediately over the entire gauge length.”

The evolution of the ageing time variable ta is illustrated in Fig. 7.17. One has a
homogeneous and linear increase of the ageing time with constant slope 1 during
the quasi-static elastic deformation of the bar. This corresponds to the ageing of
dislocations when they are arrested at local obstacles.
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Afterwards, when the stress attains some critical value, a decay of ta in the
viscoplastic domain starts and is followed, during the strain burst, by a sudden drop
near zero. This behavior corresponds to the moment when the dislocations become
unlocked, start to move, accelerate rapidly and advance to the next obstacles. At the
end, when the strain reaches a certain level, the advancing of the deformation front
stops and the process is restarted.

As we have seen in the Sect. 7.1.1, the experimental literature points out that
macroscopic features of the PLC effect, like the stress-engineering strain curves,
depend strongly on the testing machine. In order to examine the sensitivity of the
model to a perturbation of the mode of testing we considered the mixed
initial-boundary value problem (7.44) to simulate the so called pseudoconstant- _re
experiments. The way the model is able to simulate the influence of the machine
effects is illustrated in Fig. 7.14 where the computed stress-strain curves obtained
for b = 0:95 and b = 0:9 are represented. These numerical simulations with mixed
boundary conditions are closer to the laboratory experiments of pseudoconstant
stress-rate experiments illustrated in Fig. 7.5, or reported in Fellner et al. (1991,
Figs. 3–4). Indeed, one gets numerically, the same as in the experiments mentioned
earlier that, instead of a horizontal plateau during the strain burst, we firstly have a
stress decay followed by an increase to the level of the horizontal plateau. The
decrease is more important as the parameter b has a smaller value than 1. Much
more than that, one observes, for b = 0:9 and for large strain, that the decrease of
the stress is accompanied by oscillations. This behavior is in agreement with the
remark made in Fellner et al. (1991) that when ‘constant- _re’ tests are carried out on
electronically controlled tensile machines, it is not completely possible to avoid an
initial stress drop and successive ‘oscillations’. Moreover, for such pseudocon-
stant- _re simulations like in Fig. 7.14 it is expected that the strain will no longer
propagate in a homogeneous manner and some localization phenomena will appear
during the strain burst.

7.4 A Methodology for Investigating Mechanical
Parameters for Critical Conditions on PLC Effect

The question which arises is how one can identify the range of boundary conditions
and the range of mechanical parameters of the model described in Sect. 7.2 for
which the main characteristics of the PLC effect occur and how one can fit the
numerical simulations with experimental tests.

In this section we give a partial answer to this problem. For instance, in order to
determine for which input data, that is, for which mechanical parameters and
imposed engineering strain-rate, there exists a jerky flow, we consider a stability
analysis of a particular solution of the PDEs system (7.41). This allows the cali-
bration and verification of the constitutive model. A stability and bifurcation
analysis for investigating the PLC effect has been also used by Mesarovics (1995),
Rizzi and Hähner (2004).
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7.4.1 Temporal Stability Analysis of Serrated Curves

We analyze in the following the nature of temporal instabilities and, as a conse-
quence, the existence or non-existence of serrations on the stress–engineering strain
curve. For doing this, we consider instead of the strain-controlled problem (7.42)
the following related initial-boundary value problem

eðX; 0Þ = e�; rðX; 0Þ = r�; taðX; 0Þ = t�a; vðX; 0Þ =
V�

L
ðL� XÞ; for X 2 ½0; L;

vð0; tÞ = V� = � L_ee\0; vðL; tÞ ¼ 0; for any t[ 0:
ð7:45Þ

That means, at the initial moment the bar is not at rest, but the velocity field is
linear with respect to the spatial variable and satisfies the boundary conditions
corresponding to a strain-controlled experiment.

In this special case the PDEs system (7.41) admits the following spatial
homogeneous solution in the variables e, r and ta, i.e.

e = eðtÞ = � V�

L
t = _eet; r = rðtÞ; ta = taðtÞ; v = vðXÞ = V�

L
ðL� XÞ; ð7:46Þ

where rðtÞ and taðtÞ are determined as solution of an ordinary differential equations
(ODE) system. Taking into account that between e and t there is a linear relation we
can express the variable r and ta as function of e. Functions r = rðeÞ and ta = taðeÞ
have to be solution of the Cauchy problem for the non-linear and non-autonomous
system

dr
de = Eþ 1

_ee
Gðe; rðeÞ; taðeÞÞ; rðe�Þ ¼ r�;

dta
de = 1

_ee
H e;rðeÞ; taðeÞð Þ; taðe�Þ ¼ t�a:

(
ð7:47Þ

To simplify the stability analysis of the system (7.47) we consider the case when
the constitutive functions rH , rB in (7.21) and X in (7.7) do not depend on ep, i.e.
when the ODE system is autonomous. That means r1 = 0, H0 = 0, r2 = 0 and
x2 = 0, i.e.

rHðepÞ = r0; rBðep; taÞ = r1 1� exp � ta
tD

� �n� �
; XðepÞ = x1: ð7:48Þ

Thus, the solution of the system (7.47) satisfies the Cauchy problem

dr
de = E; rðe�Þ = 0;
dta
de = 1

_ee
; taðe�Þ = 0;

(
ð7:49Þ

if it lies in the elastic domain, that is, for
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rj j � r0 þ r1ð1� expð�ðta=tDÞnÞ;

and, it satisfies the Cauchy problem

dr
de ¼ f ðr; taÞ 	 E � E _e0

_ee
r�r0�r1ð1�expð�ðta=tDÞnÞ

rD

h im
;

rðe�Þ = r�;
dta
de = gðr; taÞ 	 � _e0

x1 _ee
r�r0�r1ð1�expð�ðta=tDÞnÞ

rD

h im
ta þ 1

_ee
;

taðe�Þ = t�a:

8>>>><
>>>>:

ð7:50Þ

if the solution belongs to the viscoplastic domain in tension, that is, for

r[ r0 þ r1ð1� expð�ðta=tDÞnÞ:

First, we investigate only the behavior of a homogeneous process in the vis-
coplastic domain, i.e. the solutions of the non-linear autonomous system (7.50).
Thus, we do not consider at this moment the case when the homogeneous solution
could enter in the elastic domain and has to satisfy the system (7.49). The combined
elastic-viscoplastic homogeneous solution for the non-autonomous system is con-
sidered later and illustrated numerically for the mechanical parameters in Tables 7.1
and 7.2 in Fig. 7.24.

To sketch the phase portrait of a dynamical system it is useful to plot the

nullclines, defined as the curve where drde = 0 and dta
de = 0. The equilibrium points,

or the fixed points of the system are defined as the intersection points of the curves
f ðr; taÞ = 0 and gðr; taÞ = 0. The system (7.50) has a unique fixed point

tfxa =
x1

_ee
; rfx = r0 þ r1 1� exp � x1

tD _ee

� �n� �
 �
þ rD

_ee
_e0

� �1=m

: ð7:51Þ

Let us note that the ageing time component of the fixed point is just the waiting
time of dislocations defined in (7.6).

To study the behavior of the prototypical autonomous system (7.50), we lin-
earize the system around its equilibrium point. Let ðdr; dtaÞ be the components of a
small disturbance of the fixed point. One shows that the disturbance evolves
according to

d
de

dr
dta


 �
=

@f
@r

@f
@ta

@g
@r

@g
@ta

" #
rfx;tfxað Þ

dr
dta


 �
þ quadratic terms: ð7:52Þ

The matrix of this linearized system is called the Jacobian matrix at the fixed
point. The type and the stability of the equilibrium points depends on the eigen-
values k1 and k2 of the Jacobian matrix and can be characterized through the values
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of its trace, determinant and discriminant of the characteristic equation, (see for
instance Strogatz 1994) i.e.

Tr = k1 þ k2 = � 1
x1

� m
rD

_e0
_ee

� �1=m

E � nr1
x1

x1

tD _ee

� �n

exp � x1

tD _ee

� �n� �
 �
;

Det = k1k2 =
mE
rDx1

_e0
_ee

� �1=m

;

D = ðk1 þ k2Þ2 � 4k1k2 = Dð_ee; _e0; r1;r0;x1; tD; rD;E; n;mÞ:
ð7:53Þ

The positive value of the determinant rules out the possibility of having a saddle
point. Hence the stability of the fixed point can be established just by looking at the
sign of trace. Therefore, the equilibrium point can be only

• a stable node if Tr\0 and D[ 0,
• a stable focus if Tr\0 and D\0,
• an unstable focus if Tr[ 0 and D\0,
• an unstable node if Tr[ 0 and D[ 0:

In this case the linearized system gives a qualitatively correct picture of the
phase portrait near the equilibrium point ðrfx; tfxa Þ. Usually, if the phase portrait
changes its topological structure as a parameter is varied, one says that a bifurcation
occurs. From (7.53)3 one sees that the phase portrait depends on the following 10
mechanical parameters which correspond to:

• boundary condition (7.45): _ee,
• kinetic parameters of viscoplastic constitutive Eq. (7.20): _e0, rD, m,
• McCormick’s law (7.25) and flow stress due to ageing (7.23): x1, r1, tD, n,
• flow stress due to plastic deformation (7.22): r0.
• elastic Young modulus E.

We consider, for instance, that only the characteristic strain-rate factor _e0, (or,
equivalently the characteristic time of the viscoplastic constitutive equation
s = 1=_e0) and the engineering strain-rate _ee vary, while the other parameters are
fixed. Then, the corresponding bifurcation plane, is characterized by the curves
across which the trace Tr and the discriminant D change their signs (see Fig. 7.18).

We show that instability phenomena for the autonomous system (7.50) can
occur if and only if the mechanical parameters satisfy the following condition

A 	 nr1
x1E

[ e; ð7:54Þ

where e is Euler’s number.
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The fulfillment of this relation will also explain the existence of serrated curves
for the non-homogeneous case considered in Sect. 7.3.3, i.e. for the
strain-controlled initial-boundary value problems (7.42) for the PDEs system (7.41)
(see Fig. 7.13).

To prove this statement let us introduce the notations

B 	 mx1E
rD

; Zð_eeÞ 	 x1

tD _ee

� �n

: ð7:55Þ

First of all, observe that, if A� e, then 1� Azexpð�zÞ� 0, for any z[ 0, and
consequently, from (7.53)1, it follows that Tr ð_e0; _eeÞ� 0, for any _e0 [ 0 and _ee [ 0.
Therefore, in this case a fixed point can not be unstable.

If A[ e, then Trð_e0; _eeÞ[ 0 if and only if 0\s = 1
_e0
\strð_eeÞ, where

strð_eeÞ = 1
_ee
Bm AZð_eeÞ expð�Zð_eeÞÞ � 1½ m; for _ee 2 _e1e ; _e

2
e

� 	
; ð7:56Þ

and

_e1e = _e1eðA;x1; tDÞ = x1

tDðx1Þ1=n
\

x1

tD
\_e2e = _e2eðA;x1; tDÞ = x1

tDðx2Þ1=n
: ð7:57Þ

Here x1, x2 are the two solutions of the transcendental equation expðxÞ = Ax with
the property that x2ðAÞ\1\x1ðAÞ.

An approximative solution of this equation, obtained using Newton’s method, is

x1 ffi ð1� AÞ expð1=AÞ
Aðexpð1=AÞ � AÞ ; x2 ffi

ffiffiffi
A

pffiffiffi
A

p � 1
3 ln

ffiffiffi
A

p
� A

� � 
: ð7:58Þ

thus,

εe

Δ=0

Δ=0
Tr=0

τ*

εe
1 εe

2

ε0

1τ=_

SN

SN

UF

UN
a b c d e

t
SF

p

f

SN
q

Fig. 7.18 Case A[ e. Plane of bifurcation of the fixed point (7.51) corresponding to parameters
s = 1=_e0 and _ee. SN stable node region (Tr\0, D[ 0); SF stable focus region (Tr\0, D\0); UF
unstable focus region (Tr[ 0, D\0); UN unstable node region (Tr[ 0, D[ 0)
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_e1e ffi
x1

tD

ffiffiffi
A

p � 1ffiffiffi
A

p
3 ln

ffiffiffi
A

p � 1
� 	

 !1=n

; _e2e ffi
x1

tD

Aðexpð1=AÞ � AÞ
expð1=AÞð1� AÞ
� �1=n

: ð7:59Þ

Thus, for A[ e, s = strð_eeÞ, is the unique positive curve in the bifurcation plane
across which the trace changes its sign, i.e. across which the fixed point (7.51)
switches from stable to unstable (see Fig. 7.18). _e1e and _e2e denote the intersection
points of this curve with the axis s = 0. Therefore, the interval _e1e ; _e

2
e

� 	
represents

the maximal interval for the applied strain-rate _ee in which a temporal instability can
appear when _e0 ! 1. Formulas (7.59) may give a direct hint about the way the
mechanical parameters influence the range of the imposed engineering strain-rate _ee
for which a jerky flow can occur.

Furthermore, one can show that

@ _ee1
@A

\0 and
@ _ee2
@A

[ 0;
@ _ee1
@x1

[ 0 and
@ _ee2
@x1

\0;
@ _ee1
@tD

\0 and
@ _ee2
@tD

\0; ð7:60Þ

which lead to the following conclusions.

Remark 1 If the parameter A, A[ e, increases, then the interval ð_e1e ; _e2eÞ expands,
while in the opposite case shrinks.

Remark 2 If the parameter x1 increases, then the interval ð_e1e ; _e2eÞ shrinks, while in
the opposite case expands.

Remark 3 If the parameter tD decreases both the values of _e1e and _e2e increase.

The curve s = strð_eeÞ has a maximum at

_e3e = _e3eðA;x1; tD;m; nÞ = x1

tDðx3Þ1=n
2 x1

tDð1þ 1=m=nÞ1=n
;
x1

tD

 !
; ð7:61Þ

where x3 is the solution of the equation expðxÞ = Axð1þmnð1� xÞÞ in the interval
ðx2; x1Þ and 1\x3\1þ 1=ðmnÞ\x1. Indeed, this follows by analyzing its
derivative,

dstrð_eeÞ
d_ee

¼ Bm

ð_eeÞ2
�1þAZð_eeÞ expð�Zð_eeÞÞ½ m�1

1� AZð_eeÞð1þmnð1� Zð_eeÞÞÞ expð�Zð_eeÞÞ½ :
ð7:62Þ

The maximum value at this point smaxtr = strð_e3eÞ determines the maximum value
of the characteristic time s, or equivalently, the minimum value of the characteristic
strain-rate factor _e0 for which the fixed point (7.51) can become an unstable focus.
This global maximum point is denoted by t = t ð_e3e ; smaxtr Þ in Fig. 7.18.
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Let us note that there are two positive curves across which the discriminant D
change its sign, i.e. the eigenvalues change from real to complex (see Fig. 7.18).
These are

s ¼ s�D ð_eeÞ ¼
1
_ee
Bm 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AZð_eeÞ expð�Zð_eeÞÞ

p� 2m
: ð7:63Þ

The graph of the function s ¼ s�D ð_eeÞ intersects the axis s = 0 at the points _e1e and
_e2e defined by (7.57), where it reaches its minimum value. There are also two local
maxima at the points

_e4e 	
x1

tDðx4Þ1=n
2 _e3e ;

x1

tD

� �
; and _e5e 	

x1

tDðx5Þ1=n
2 ð_e2e ;1Þ; ð7:64Þ

where x5 and x4 are the two solutions of the equation expðxÞ ¼ Axð1þmnð1� xÞÞ2,
with the property that x5 2 ð0; x2Þ and x4 2 ð1; x3Þ. Indeed, this follows by ana-
lyzing the expression of the derivative of this function, i.e.

ds�D ð_eeÞ
d_ee

¼ Bm

ð_eeÞ2
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AZð_eeÞ expð�Zð_eeÞÞ

ph i2m�1

� �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AZð_eeÞ expð�Zð_eeÞÞ

p
ð1þmnð1� Zð_eeÞÞÞ

h i
:

ð7:65Þ

The maximum value of the function sD� at the point _e4e determines the maximum
value of the characteristic time s, or equivalently, the minimum value of the
characteristic strain-rate factor _e0 for which the fixed point (7.51) can become an
unstable node. These local maximum points are denoted by p = p _e4e ; sD�ð_e4eÞ

� 	
and

q = q _e5e ; sD�ð_e5eÞ
� 	

in the bifurcation plane from Fig. 7.18.

7.4.2 Calibration of Mechanical Parameters

We analyze in the following the mechanical parameters of the model of dynamic
strain ageing (DSA) presented in Sect. 7.2 and the way their values lead to the
appearance of the PLC effect. Among these parameters we distinguish a first set,
summarized in Table 7.1 which is related mainly to the classical elastic-viscoplastic
approach used, and a second set, responsible for the evolution of the ageing time,
i.e. of the DSA effect, which is shown in Table 7.2.

Material characterization and parameter identification from tension tests at a
reference strain-rate for elastic-viscoplastic constitutive models of McCormick type
has been considered, for instance, by Zhang et al. (2001) (for AlMgSi alloy),
Benallal et al. (2008a) (for AA5083-H116 alloy plates), Böhlke et al. (2009) (for
aluminium alloy 2024).
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The term rHðepÞ which describes the effect of stress hardening associated with
the dislocation density evolution in the stress flow (7.21) is given by a Voce-type
equation in Zhang et al. (2001); Böhlke et al. (2009), by an extended Voce-rule in
Benallal et al. (2008a, b) or by a power law in Zhang et al. (2012). This part of the
constitutive approach does not influence the way the temporal instabilities related
with the PLC effect manifests. We adopt here the same Voce-type equation as in
Böhlke et al. (2009) (see Table 7.1), but we consider different values for the
parameters m, rD and _e0. These latter quantities affect the stress component of the
equilibrium point (7.51) and the kinetics of the viscoplastic processes in general.
Only the elastic Young modulus E from Table 7.1, which is present in condition
(7.54), influences the range of unstable PLC behavior.

The effect of DSA is accounted for by the additive term rBðep; taÞ in the flow
stress, given by relation (7.23), and includes the material parameters tD and n of the
Cottrell-Bilby-Louat ageing kinetics. The maximum value of this contribution to
the flow stress, i.e. r1 þ epr2, corresponds to the saturation of the local solute
concentration on dislocations temporarily arrested at localized obstacles. This sat-
uration value of the DSA related stress term is often considered constant (see
Table 7.2). A linear plastic strain dependence has been introduced by Böhlke et al.
(2009), instead of a plastic strain dependence introduced in the argument of the
exponential function of the Cottrell-Bilby-Louat relation in Zhang et al. (2001).

Let us note that, parameter tD, i.e. the characteristic time for solute diffusion
across dislocations, intervenes only in formula of the stress component of the
equilibrium point (7.51) and does not affect condition (7.54), that is, it does not
influence the appearance of PLC effect. A discussion on how tD is temperature
dependent is done in Mesarovics (1995). We choose here for tD the same value as in
Böhlke et al. (2009).

According to the strain ageing kinetics proposed by Cottrell and Bilby (1949) the
exponent n is 2/3. Starting with the paper by Springer and Schwink (1991) an
exponent of 1=3 has been used. Indeed, Ling and McCormick (1993) found that, for
the Al-Mg-Si alloy, the exponent 1/3 is more appropriate to describe their results of
strain-rate sensitivity measurements and this value is now accepted in the literature
(see Table 7.2). Moreover, Ling et al. (1993) claim that the 1/3 value reflects pipe
diffusion controlled strain ageing kinetics.

The evolution of the ageing time ta in the DSA process is governed by the
evolution Eq. (7.25) which includes essentially the material function
XðepÞ = x1 þ epx2. Its value represents a strain increment produced when all
arrested dislocations overcome localized obstacles and advance to the next pinned
configuration. Mesarovics (1995) has evaluated by using the Orowan law (7.6) and
some estimations of the densities of mobile and immobile dislocations that
X ffi 10�4. The value of parameter X appears as essential in condition (7.54).
Concerning the way X varies with the plastic strain Zhang et al. (2001) assumed the
non-linear expression (7.7) while Böhlke et al. (2009) the linear one.

From Table 7.2 we see that for the mechanical parameters used by Zhang et al.
(2001); Böhlke et al. (2009) condition (7.54) is not satisfied. Therefore, there is no
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engineering strain-rate _ee and no characteristic strain-rate factor _e0 for which the
stress-strain curve of a homogeneous process, i.e. solution of the system (7.47), can
be serrated. In other words, for these mechanical parameters the PLC effect can not
occur. That is why, we used in this paper a larger value for r1, just as in Benallal
et al. (2008a) and a lower value for x1, like in Zhang et al. (2001). With this choice
condition (7.54) is fulfilled for A = 8.23 which is much larger than Euler’s number
e. We show in what follows how, under these circumstances, the unstable behavior
specific for the PLC effect is captured.

We also notice that for themechanical parameters used byBenallal et al. (2008a, b),
Zhang et al. (2012) condition (7.54) is satisfied for a value of A slightly larger than e.

Further we illustrate how the stability/instability domains described by the
curves (7.56) and (7.63) allow identification of the ranges of variation of the
characteristic time s = 1=_e0 and of the engineering strain _ee for which the PLC
effect can appear. A similar bifurcation analysis can be done if one varies other
material parameters of the model which are responsible for the PLC effect i.e., x1,
tD, r1, rD, m.

For the mechanical parameters in the fifth column in Tables 7.1 and 7.2 we have
determined the main features of the bifurcation plane represented in Fig. 7.18 and
we have summarized the corresponding results in Table 7.3.

Thus, if we choose the characteristic strain-rate factor _e�0 = 3:5� 10�6 s�1 then
the intersection points of the horizontal line s� = 1=_e�0 with the curves which
delimitate the domains of stability/unstability of the equilibrium point show that the
range of the engineering strain-rate _ee for which a jerky flow can appear is
(2:37� 10�5 s�1; 3:91� 10�3 s�1). Indeed, this interval corresponds to the line
segment (b, e) in Fig. 7.18 for which the fixed point is an unstable focus. This result
is in agreement with the fact that the PLC effect can occur only for a range of
engineering strain-rate and the numerical values obtained are appropriate to the
ranges found experimentally.

According to the properties of the curves (7.56) and (7.63) in the bifurcation
plane, if s� increases (i.e. _e�0 = 1=s� decreases), but without exceeding the value
corresponding to the maximum point t, then the corresponding unstable focus
interval for _ee shrinks. For s� = 5:40� 109 s (i.e. for _e�0 = 1:85� 10�10 s�1Þ the
unstable interval reduces to the point e ¼ 1:97� 10�4 s�1.

If s� decreases (i.e., if _e�0 = 1=s� increases) then the corresponding interval of _ee
for which the fixed point is an unstable focus expands. The maximum interval is
attained when s� ! 0, that is _ee 2 _e1e = 7:99� 10�6 s�1; _e2e = 1:05� 10�1 s�1

� 	
(see Table 7.3 and Fig. 7.18). Therefore, we can adjust the interval of the imposed
strain-rate _ee for which serrated curves appear with that found in laboratory tests for
which the PLC effect manifests by an appropriate choice of the characteristic
strain-rate factor _e0.

Moreover, the range of _ee for which the equilibrium point (7.51) is an unstable
point can be adapted, according to Remark 1–3 in Sect. 7.4.1, by increasing or
decreasing the values of A, or x1, or tD. We can also show that when m increases

388 C. Făciu



then the maximum values of the functions s = strð_eeÞ and s ¼ sD�ð_eeÞ attained at
the points t, p and q increase.

In order to exemplify how the prediction of this bifurcation analysis is in
agreement with the behavior of the solution of the autonomous nonlinear ODE
system (7.50) we have considered for a fixed characteristic strain-rate factor _e�0, or
equivalently a fixed s� (see Table 7.3), different increasing values of the imposed
strain-rate _ee, which covers in a successive manner the stable/unstable zones in
Fig. 7.18.

If the pair ðs�; _eeÞ lies in the stable node region, for instance below s ¼ sD�ð_eeÞ,
for _ee\_e1e (see Fig. 7.18) then the homogeneous solution in the viscoplastic domain
is represented in Fig. 7.19. The process starts at the boundary between the elastic

Table 7.3 Type of equilibrium point (7.51) for parameters in Tables 7.1 and 7.2 and coordinates
of the points in bifurcation plane from Fig. 7.18

Stability/Unstability intervals Point on Fig. 7.18 ε̇e (s−1) τ (s) ε̇ 0 = 1/τ (s−1)

Stable node interval ↑ ↑
a 5.99×10−7 2.85×105 3.5×10−6

Stable focus interval ↓ ↓
ε̇ 1
e 7.99×10−6 0 ∞

Stable focus interval ↑ ↑
b 2.37×10−5 2.85×105 3.5×10−6

Unstable focus interval ↓ ↓
c # # #

Unstable focus interval
t 1.97×10−4 5.40×109 1.85×10−10

Unstable focus interval
p 2.25×10−4 14.93 6.69×10−2

Unstable focus interval
d # # #

Unstable focus interval ↑ ↑
e 3.91×10−3 2.85×105 3.5×10−6

Stable focus interval ↓ ↓
ε̇ 2
e 1.05×10−1 0 ∞

Stable focus interval ↑ ↑
f 12.8 2.85×105 3.5×10−6

Stable node interval ↓ ↓

# There is no intersection between the graph of s ¼ sD� ð_eeÞ and s� = 1=_e�0 = 2:85� 105 s
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and viscoplastic domain, i.e. the initial condition ðr; taÞ satisfies relations
r = Ee = r0 þ r1ð1� expð�ðe=_ee=tDÞnÞ and ta = e=_ee.

One can see that there is no stress decay and the ageing time increases as long as
the stress increases to its equilibrium value rfxeq = 211:5 MPa, and afterwards the

ageing time decays at the value of the waiting time tfxa = x1=_ee = 72 s.
If the pair ðs�; _eeÞ lies in the stable focus area, that is, between the points a and

b in Fig. 7.18, then the homogeneous solution in the viscoplastic domain is illus-
trated in Fig. 7.20. One observes the appearance of a first stress decay followed by
some small oscillations before to reach the equilibrium stress rfxeq = 214:4 MPa. The
ageing time behaves in the same manner, although the oscillations are not visible at
the scale of the figure, and it stabilizes at the value of the waiting time
tfxa = x1=_ee = 3:6 s.
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Fig. 7.19 Stable Node Interval _ee = 5� 10�7 s�1 and _e�0 = 3:5� 10�6 s�1 (s� = 2:85� 105 s).
Homogeneous process described by (7.50). a Phase portrait. b Stress and ageing time versus strain
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When the imposed strain-rate _ee enters the estimated range of instability, that is,
when the pair ðs�; _eeÞ lies in the unstable focus area between the points b and e in
Fig. 7.18, then the homogeneous solution in the viscoplastic domain is represented
in Fig. 7.21. After a first drop of the stress and of the ageing time large oscillations,
almost periodic, around the equilibrium point (rfx = 196:8 MPa; tfxa = 0:036 s)
appear. The amplitude of the stress drop is around 23 MPa.

In this case the trajectories of the solutions in the phase plane spiral toward a
stable limit cycle. This behavior illustrates that the nonlinear system is able to
describe self-sustained oscillations. It is worth noting that the limit cycle shows a
slow dynamics during one part of the cycle followed by a fast dynamics during the
remaining part of the cycle. Indeed, one sees that the periodic oscillations consist of
a slow increase of the stress which is followed by an abrupt fall in stress. This
slow-fast dynamic process is in agreement with the characteristics of the PLC effect.

Oscillations of this type resemble with the so called “relaxation oscillations” of
dynamical systems containing a small parameter which lead to singular perturba-
tion. The prototype of this behavior is the van der Pol oscillator (see Strogatz 1994).
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Fig. 7.20 Stable Focus Interval _ee = 10�5 s�1 and _e�0 = 3:5� 10�6 s�1 (s� = 2:85� 105 s).
Homogeneous process described by (7.50). a Phase portrait. b Stress and ageing time vs. strain

7 The PLC effect—A study on plastic instabilities and pattern formation 391



Characteristic of the relaxation oscillations is the presence of phases in the cycle
with different time scales: a phase of slow change followed by a short phase of rapid
change in which the system practically jumps to the next stage of slow variation. In
general, the specificity of these relaxation oscillations is that in a single period the
solution describes two slow-fast alternation accompanied by two discontinuities,
while for our nonlinear system (7.50) the solution experiences in a single period
only one slow-fast alternation.

When, by increasing the imposed strain-rate, the pair ðs�; _eeÞ enters again into a
stable focus region, that is, it lies between the points e and f in Fig. 7.18, then the
homogeneous process in the viscoplastic domain is represented in Fig. 7.22. The
behavior of the solution is similar with that in Fig. 7.20, with the difference that the
first stress drop is much more important and the oscillations are more visible before
the solution reaches the equilibrium point (rfx = 190:4 MPa; tfxa = 0:0036 s).

We have also considered the case when the pair ðs; _eeÞ belongs to the unstable
node area, that is, it lies below the curve s ¼ sD�ð_eeÞ; for _ee 2 ð_e1e ; _e2eÞ in Fig. 7.18.
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Homogeneous process described by (50). a Phase portrait. b Stress and ageing time vs. strain

392 C. Făciu



For instance, if we choose _ee = 2:25� 10�4 s�1, which corresponds to the local
maximum point p, it follows that in order to be in the unstable area, according to
Table 7.3, it is necessary that s be less than 14.93 s, or equivalently _e0 be greater
than 6:69� 10�2 s�1. Such a situation is illustrated in Fig. 7.23. The same as in the
case of the unstable focus fixed point the trajectories in the phase plane have the
property that they approach a stable limit cycle. Numerical solutions illustrated in
Fig. 7.23a show stable spirals giving rise to a limit cycle and to almost ‘‘periodic’’
oscillations. In this case both the stress and the ageing time show much larger
oscillations around the equilibrium point (rfx = 179:5 MPa; tfxa = 0:1636 s). The
amplitude of the stress drop increases to 50 MPa.

During a single period we record a slow and two fast variations of the solution.
Indeed, the limit cycle consists of an extremely slow increase of the stress followed
by a sudden discharge and a sudden rise of the stress. During the stress drop the
ageing time reaches its minimum value, while it suffers a sudden increases during
the sudden rise of the stress. This behavior is not typical to the PLC effect, but
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illustrates how the nonlinear ODE system describes self-sustained oscillations for a
large value of _e0.

The serrated stress-strain curves obtained in Figs. 7.21b and 7.23b show two
important characteristic features: they are “horizontal” and have constant amplitude.
The first is due to the fact that the strain hardening is neglected, while the second is
a consequence of the assumption that the stress accounting for the PLC effect rB
does not depend on ep, according to the constitutive relations (7.48) used in the
bifurcation analysis.

Let us consider now the general case of the elastic-viscoplastic model with the
strain hardening term rHðepÞ described by the Voce rule (7.22) and the term
rBðta; epÞ, responsible for the DSA effect, described by (7.23). The mechanical
parameters are given in the fifth column in Tables 7.1 and 7.2.
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Fig. 7.23 Unstable Node Area _ee = 2:2� 10�4 s�1 and _e0 = 6: s�1 (s = 0:16 s). Homogeneous
process described by (7.50). a Phase portrait. b Stress and ageing time vs. strain
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In this case, the homogeneous process is described by the non-autonomous
system (7.47) which includes both the elastic and the viscoplastic case. The
numerical solutions obtained for three imposed engineering strain-rates _ee are
illustrated in Fig. 7.24.

The solution obtained for _ee = 10�3 s�1 has to be compared with the solution
obtained in Fig. 7.21 when the fixed point is an unstable focus. One observes how
the hardening rule leads to an increasing stress-strain serrated curve. Like in
Fig. 7.21b there is an initial large stress drop, followed by large oscillations, but
having now an increasing amplitude which ranges from 25.6 to 49.5 MPa. That is
due to the fact that in the viscoplastic deformation process the term r0 þ epr1 which
characterizes the saturation value of the DSA related stress term increases with
plastic strain. This gradually increasing amplitude is in agreement with experi-
mental facts (see for instance Fig. 7.1).

Moreover, it should be noted that a sawtooth is composed by a stress drop,
which is a fast viscoplastic and dissipative process, while the reloading part, having
the slope of the elastic Young modulus E, is a slow elastic process.

In the case of the higher strain-rate _ee = 10�2 s�1 the bifurcation analysis has
predicted for the autonomous system, according to Fig. 7.22b, a stress-strain curve
which is not serrated, since in this case we are outside the interval of instability
described in Table 7.3. In the general case of the non-autonomous system (7.47) we
see in Fig. 7.24 that the stress-strain curve preserves the same features as in the
stable focus case for lower values of the engineering strain ee. Indeed, there is in the
beginning a large stress drop followed by small oscillations which are damped and
continued with a nice increasing smooth curve. If the strain becomes larger one can
see that a serrated curve appears reflecting an unstable behavior of PLC type. This
behavior is in agreement with the remarks in Sect. 7.4.1 that by increasing the value
of the parameter A = nr1

x1E
the range of imposed strain-rate _ee for which the

Fig. 7.24 Elastic-viscoplastic homogeneous process with strain hardening described by the
non-autonomous system (7.47) for three imposed engineering strain-rates: _ee = 10�3 s�1,
_ee = 10�2 s�1 and _ee = 10�1 s�1 when _e0 = 3:5� 10�6 s�1 (s = 2:85� 105 s)
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autonomous ODE system (7.50) has an unstable behavior expands. Indeed, in this
case, if we consider the non-autonomous system (7.47) with frozen coefficients at ep

then the parameter which characterizes the instability read as AðepÞ = nðr1 þ r2epÞ
x1E

and
is increasing with the plastic strain. This explains the appearance of oscillations at
this strain-rate for large value of the engineering strain ee.

If the strain-rate increases again by an order of magnitude, i.e. to 10�1s�1, one
sees that the solution does not show unstable behavior for the range of strain in the
figure, behavior which is in agreement with the stability/instability analysis.

Thus, the graphs obtained in Fig. 7.24 correspond to spatially homogeneous
processes whose initial data are (7.45)1 which is an ideal case since from the
beginning we have supposed a linear distribution of the velocity in the bar. The real
process corresponds to the initial-boundary value problem (7.42) which introduces
from the start a small shock perturbation. This perturbation leads to spatial inho-
mogeneous solutions which have been analyzed in Sect. 7.3.3.1.

Therefore, the graphs in Fig. 7.24 have to be compared with those obtained in
Fig. 7.13 for the non-homogeneous case. The similarities between the stress-strain
curves confirm the bifurcation analysis performed and their differences highlight the
influence of localization phenomena.

7.5 Conclusions and Outlook

The analyzed constitutive model for dynamic strain ageing provides a macroscopic
description of the temporal and spatial features of the Portevin-Le Chatelier plastic
instabilities in satisfactory agreement with experimental results. We have shown
that, depending on the tensile testing conditions, the model describes both the
serrated yielding and the staircase response. The sensitivity of the model to the
boundary conditions can capture the influence of the testing machine on the stress -
engineering strain curves as it is met in practice.

In order to improve the calibration of the mechanical parameters for critical
conditions on PLC effect two directions require further analysis. The first one
concerns the properties of the solutions of the autonomous dynamical system
(7.50). We have seen that the appearance of a serrated stress-strain curve, i.e. of the
unstable PLC behavior, is related to a Hopf bifurcation and that the emerging
solution is a limit cycle in the phase plane. The shape and size of the limit cycle
allows to estimate the amplitude of the periodic stress drops. But to find analytically
the shape of the limit cycle for a dynamical system based on its equations is a tough
problem. Therefore, in order to determine how the mechanical parameters of the
model influence the serrations of a stress - strain curve one need to find a good
estimate of a trapping region for the trajectories. That means to find a closed
connected set in which all trajectories are confined (see Strogatz 1994).

A second direction is to investigate the influence of the parameters of the model
on the localization phenomena which may develop in the dynamic strain ageing
process. That means to perform a spatial stability analysis of the solutions of the
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PDEs system (7.41). For doing this we have to analyze the stability of spatially
homogeneous solutions to infinitesimal perturbations which is a necessary condi-
tion for the nucleation and propagation of strain bands.

Acknowledgments The author acknowledges support from the Romanian Ministry of Education
and Research through Project PCCE ID-100/2010.

Appendix: Numerical Scheme

The numerical scheme used to solve the initial–boundary value problems (7.42)–
(7.44) for the hyperbolic semilinear system of PDEs (7.41) is a variant of the
standard method of characteristic (see for instance Mihăilescu-Suliciu and Suliciu
1985). A time integration step condition is used to ensure the numerical stability.

Let us note that by introducing the notations

p = rþ
ffiffiffiffiffiffi
qE

p
v; q = r�

ffiffiffiffiffiffi
qE

p
v; r = r� Ee; ð7:66Þ

we can write the system (7.41) in its characteristic form

@p
@t

� C
@p
@X

= ~Gðp; q; r; taÞ; @q
@t

þC
@q
@X

= ~Gðp; q; r; taÞ; ð7:67Þ

@r
@t

= ~Gðp; q; r; taÞ; @ta
@t

= ~Hðp; q; r; taÞ; ð7:68Þ

where C ¼ ffiffiffiffiffiffiffiffiffi
E=q

p
is the longitudinal wave speed and

ð~G; ~HÞðp; q; r; taÞ = ðG;HÞðe; r; taÞ = ðG;HÞ 1
E

pþ q
2

� r
� 

;
pþ q
2

; ta

� �
:

Along the constant characteristic directions of the system the following relations
are satisfied

dp = ~Gðp; q; r; taÞdt on dX = � Cdt;

dq = ~Gðp; q; r; taÞdt on dX = Cdt;

dr = ~Gðp; q; r; taÞdt on dX = 0;

dta = ~Hðp; q; r; taÞdt on dX = 0:

ð7:69Þ

The numerical solution is build in agreement to the stencil in Fig. 7.25. We
partition the domain in space using a mesh X0,…, Xi,…, XN and in time using a
mesh t0,…, tj,… . We assume a uniform partition both in space and in time, so the
difference between two consecutive space points will be h and between two
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consecutive time points will be s. We denote by uðXi; tjÞ = u j
i the values of a

generic function u at the mesh points.
The first order numerical approximation is a set of four function ðp; q; r; taÞ

defined on the above mesh and satisfying the following iterative relations

pjþ 1
i � p j

i

s
� C

h
p j
iþ 1 � p j

i

� 	
= ð1� mÞ~Gj

i þ m~Gj
iþ 1;

qjþ 1
i � q j

i

s
þ C

h
q j
i � q j

i�1

� 	
= ð1� mÞ~Gj

i þ m~Gj
i�1;

rjþ 1
i = r ji þ s~Gj

i ; tjþ 1
a i = t ja i þ s~H j

i ;

ð7:70Þ

where the Courant number m has to satisfy condition

m 	 C
s
h
� 1; ð7:71Þ

in order to ensure the numerical stability of the scheme (see Richtmyer and Morton
1967).

The iterative relations for this explicit scheme can be written as

pjþ 1
i = ð1� mÞ p j

i þ s~Gj
i

� 	þ m p j
iþ 1 þ s~Gj

iþ 1

� 	
;

qjþ 1
i = ð1� mÞ q j

i þ s~Gj
i

� 	þ m q j
i�1 þ s~Gj

i�1

� 	
;

rjþ 1
i = r ji þ s~Gj

i ; tjþ 1
a i = t ja i þ s~H j

i ;

ð7:72Þ

or in terms of initial variables r, e, v, ta the first approximation becomes

rjþ 1
i = ð1� mÞr j
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m
2

r j
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2
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m
2
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i Þ

� 
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i = ð1� mÞv ji þ

m
2

v jiþ 1 þ v ji�1
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2

1ffiffiffiffiffiffi
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p r j
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i�1
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þ s
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1ffiffiffiffiffiffi
qE

p Gj
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1
E
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i

� 
� s

1
E
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a i = t ja i þ sH j
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ð7:73Þ
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Fig. 7.25 Stencil for the
method of characteristics
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The second order numerical approximation is a set of four function

p
ð2Þ
; q
ð2Þ
; r
ð2Þ
; ta
ð2Þ� �

defined on the mesh and satisfying the following iterative relations

p
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i

 !
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2
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 !
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i

 !
þ m

2
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i

 !
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i = r ji þ
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i þ G

ð1Þjþ 1

i

 !
; ta

ð2Þjþ 1
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s
2
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i þ H

ð1Þjþ 1

i

 !
;

ð7:74Þ

where G
ð1Þjþ 1

i ¼ ~Gðpjþ 1
i ; qjþ 1

i ; rjþ 1
i ; ta

jþ 1
i Þ and H

ð1Þjþ 1

i ¼ ~H pjþ 1
i ; qjþ 1

i ; rjþ 1
i ; ta

jþ 1
i

� 
are computed using the first approximation (7.72).

The second order numerical approximation in terms of initial variables r, e, v, ta
becomes

r
ð2Þjþ 1

i ¼ ð1� mÞ r j
i þ

s
2

Gj
i þ G

ð1Þjþ 1

i

 ! !
þ m

2
r j
iþ 1 þ jr j

i�1

� 	þ m
2

ffiffiffiffiffiffi
qE

p
ðv jiþ 1 � v ji�1Þ

þ m
s
4

2G
ð1Þjþ 1

i þGj
iþ 1 þGj

i�1Þ
 !

;

v
ð2Þjþ 1

i ¼ ð1� mÞv ji þ
m
2

v jiþ 1 þ v ji�1

� 	þ m
2

1ffiffiffiffiffiffi
qE

p r j
iþ 1 � r j

i�1

� 	
þ m

s
4

1ffiffiffiffiffiffi
qE

p Gj
iþ 1 � Gj

i�1

� 	
;

e
ð2Þjþ 1

i ¼ e ji þ
1
E

r
ð2Þjþ 1

i � r j
i

� �
� s
2E

Gj
i þ G

ð1Þjþ 1

i

 !
;

ta
ð2Þjþ 1

i ¼ t ja iþ
s
2

H j
i þ H

ð1Þjþ 1

i

 !
;

ð7:75Þ

where G
ð1Þjþ 1

i ¼ G ejþ 1
i ; rjþ 1

i ; tjþ 1
a i

� 
and H

ð1Þjþ 1

i = H ejþ 1
i ; rjþ 1

i ; tjþ 1
a i

� 
are com-

puted using the first approximation (7.73).
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Boundary conditions
The left boundary condition vð0; tÞ = V�, or equivalently, pð0; tÞ � qð0; tÞ ¼

2
ffiffiffiffiffiffi
qE

p
V�, for the strain controlled experiment (7.42), leads to the following itera-

tive relations.
The first order approximation at the node X0 read as
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ð7:76Þ

and the second order approximation is
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where G
ð1Þjþ 1

0 ¼ G ejþ 1
0 ; rjþ 1

0 ; tjþ 1
a 0

� 
and H

ð1Þjþ 1

0 = H ejþ 1
0 ; rjþ 1

0 ; tjþ 1
a 0

� 
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puted using the first approximation given by relations (7.76).
The left boundary condition rð0; tÞ = S�ðtÞ, or equivalently, pð0; tÞþ qð0; tÞ =

2S�ðtÞ, for the stress controlled experiment (7.42), leads to the following iterative
relations.

The first order approximation at the node X0 read as
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ð7:78Þ

and the second order approximation is
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where G
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a 0
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and H
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are

computed using the first approximation given by relations (7.78).
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