
AQL: A Declarative Artifact Query Language

Maroun Abi Assaf1(&), Youakim Badr1, Kablan Barbar2,
and Youssef Amghar1

1 University of Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205,
69621 Lyon, France

{maroun.abi-assaf,youakim.badr,

youssef.amghar}@insa-lyon.fr
2 Faculty of Sciences, Lebanese University, Fanar Campus,

Jdeidet, Lebanon
kbarbar@ul.edu.lb

Abstract. Business Artifacts have recently emerged as a compelling paradigm
to develop data-centric processes, supporting flexible and knowledge intensive
business processes. Artifact-centric process models, as an alternative to prede-
fined activity-centric process models, are easy to be understood and managed by
non-IT specialists. Artifacts are also complex entities, which include information
models, states, services and transition rules. They interact with each other,
updating their information models and evolve following their lifecycles. Despite
the increasing glamour that was raised on artifacts from research and business
communities, the lack of expressive languages to manipulate and interrogate
them, limits their widespread usage. In this paper, we define a declarative
Artifact Query Language (AQL) that relies on a relational schema to define,
manipulate, and query artifact types. The AQL takes full-advantage of the
well-established SQL to manipulate the relational schema and relieves casual
users from the need to directly deal with SQL’s statements and the underlying
relational model (i.e., relations, keys constraints, and constructing complex
queries).

Keywords: Artifact types � Domain specific languages � Query languages �
Compilers � SQL abstraction layer

1 Introduction

Traditionally, business processes have been modeled as workflows of activities. The
primary disadvantage of such approach is the separation between data models and
process aspects of businesses [5]. An alternative and more recent approach is the
artifact-centric process modeling approach [14], which combines both data and their
manipulation into cohesive and modular units known as business artifacts or artifact
types in a broad sense. The artifact-centric approach demonstrates many advantages
and benefits including; enabling a natural modularity and componentization of business
processes, facilitating business transformations and organizational changes and pro-
viding a framework of varying levels of abstraction to develop business processes to
name a few [5, 8]. On the other hand, being complex entities, artifacts require suitable

© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 119–133, 2016.
DOI: 10.1007/978-3-319-44039-2_9

methods and technologies in order to be implemented and treated efficiently.
Nonetheless, artifacts have attracted much attention from the research communities.
Few initiatives attempt to manage them recently as graphical-based models (i.e. Arti-
flow) or as data objects using relational databases (SQL) or data-centric dynamic
system (DCDS) [7, 16]. Since artifacts are complex models, including attribute-value
pairs information model, state-based lifecycles, and transitions that invoke services to
move artifacts from a current state to a new state of their lifecycle. These initiatives
show their limits and do not allow end-users to benefit from the full potential and
flexibility that artifacts can provide. In fact, graphical-based models often focus on
defining and running artifact processes. They are thus not convenient for querying
artifacts. However, using relational databases to manage artifact structures require
nested and tedious queries taking into account table relationships, constraints, depen-
dencies and their keys. As a result, a declarative and expressive artifact language
becomes essential to efficiently manage artifact types. Such language opens an era for
using artifacts beyond business processes and builds new class of applications in
various domains. For example, artifact types can represent connected devices or urban
entities in the context of smart cities.

An artifact specific language should be compatible with the artifact model. Firstly,
it should consider that an artifact, as a cohesive entity, could be created, updated or
dropped as the need arises. Moreover, artifacts have to interact with each other through
events in order to exchange necessary information and update their lifecycles. Sec-
ondly, artifacts must evolve in a state-based lifecycle starting at an initial state, passing
in intermediate states, and ending in one of their final states. As a result, an artifact
specific language should not only meet all these requirements and challenges but it
should also be simple enough in order to be used by non-IT specialists within and
beyond business processes.

In this paper, we propose the Artifact Query Language (AQL) that is specifically
designed to take full advantage of the artifact model. The AQL is a high-level
declarative language that deals with defining and manipulating artifacts at the business
logic level. It is based-on the SQL and extends it with artifact domain specific state-
ments. The AQL relieve users from dealing with multiple tables, primary and foreign
keys constraints, and constructing complex SQL queries that include joins and nested
sub-queries. As a result, The AQL is intended to be used by non-IT specialists and
enables them to write queries that focus on the artifact logic instead of dealing with
technical details related to SQL and artifact complex structure management. Moreover,
the AQL can co-exist with graphical based artifact systems such as Artiflow [16]. The
proposed AQL is an abstraction layer over SQL and translates all its queries into
underlying SQL queries. The semantics of the AQL is thus expressed in terms of the
relational model.

The remaining of the paper is organized as follows. Section 2 describes the syntax
of AQL and provides query examples. Section 3 presents the semantics of AQL
expressed in terms of the relational model whereas Sect. 4 illustrates the prototype
implementation. Related works and similar initiatives are discussed in Sect. 5. Finally,
Sect. 6 concludes the work and provides future perspectives.

120 M. Abi Assaf et al.

2 Syntax

The Artifact Query Language (AQL) is a high-level language that is based-on the
relational database SQL. Since it is an abstraction layer over SQL, it follows the syntax
of SQL statements, with some variations, but provides a simplified syntax that is
translated into SQL queries. The AQL consists of the Artifact Definition Language
(ADL) to define artifact classes, and the Artifact Manipulation Language (AML) to
manage artifact instances.

Thus, ADL includes a statement to define artifact classes. For example, the Create
Artifact statement allows the definition of a list of simple and complex data attributes,
references to child artifact classes, and a list of states, representing stages of artifact
lifecycles [4]. As for the AML, it includes statements to instantiate, manipulate and
interrogate artifact instances. For example, the New statement instantiates new artifact
instances; the Update statement updates simple attribute types and states; the Insert
Into and Remove From statements are used to insert and remove (business) objects
(complex attributes values) and child artifacts (reference attributes values) respectively
into and from artifacts; the Delete statement deletes artifact instances altogether from
the database; the Retrieve statement retrieves artifact instances that meet conditions.

In the following sections, we first describe a scenario to illustrate the AQL with
query examples for each of its statements. We secondly introduce in details the syntax
of ADL and AML statements.

2.1 Example Scenario

In order to illustrate the AQL queries through a scenario, we define business processes
related to the candidate admission application in an academic program. In this scenario,
the business process in a university begins with the candidate submitting his applica-
tion to the secretary of the Master program. The secretary creates a new application file
to process the candidature and records personnel information such as; first name, last
name and age. The secretary then collects and scans required documents including a
CV, diplomas, and motivation letters. If all required documents are presented, the
secretary marks the application as complete, otherwise the application is marked as
incomplete and is rejected. After that, the master program chair inspects all complete
applications and checks if they are eligible. If an application is not eligible, the can-
didature is rejected; otherwise the candidate is selected to be interviewed by academic
committee members on a specified date and location. During the interview, notes and
decisions about the candidate are taken by the committee members. If needed, addi-
tional interviews can also be scheduled for the same candidate. Finally, interviews are
evaluated and decisions are made about whether candidates are accepted or rejected.

We identify two artifacts in the candidate admission process; (1) The Candidate
Application Artifact (CAA), which deals with processing candidate applications and
tracks various decisions made about them, and (2) The Candidate Interview Artifact
(CIA), which deals with interviewing candidates, collecting and evaluating interviews’
information. In the following sections, we rely on these artifacts to formulate query
examples.

AQL: A Declarative Artifact Query Language 121

2.2 Artifact Definition Language

The Artifact Definition Language (ADL) is used to define an artifact class or artifact
type with respect to the artifact model. It consists of a list of data attributes and a list of
states. Data attributes can be of three types: simple type, complex type, and reference
type.

1. The simple attribute types represent simple types such as Boolean, Integer, Real or
String. Simple attribute can only store one value at a time. For example the
FirstName attribute type in the Candidate Application Artifact may have the string
value “John.”

2. The complex attribute types represent complex structures that are made up of one or
more simple attribute types. These complex structures describe the (business) ob-
jects that can be inserted and/or removed from artifacts. For example, the Docu-
ments complex attribute type in the Candidate Application Artifact is formed from a
tuple of three simple attribute types: Type, Title, and URL. Complex attribute types
have a cardinality of one or many. For example, several Documents can be inserted
into the Candidate Application Artifact.

3. The reference attribute types in a master artifact represent references to child arti-
facts related to the master artifact. Reference attribute types have a cardinality of
one or many. In other words, a reference type attribute can store a list of references
to several artifact instances. For example, an Interviews reference attribute type in
the Candidate Application Artifact refers to the Candidate Interview Artifact and
thus, may have a list of one or more references to Candidate Interview Artifact
instances.

4. In addition, the list of states in the artifact class describes possible stages of the
artifact’s lifecycle. These states include initial, final, or intermediate states. An
artifact instance can only be in one state of its lifecycle at a time. For example, the
Candidate Interview Artifact instance may have the accepted state during its
processing.

The Create Artifact statement is illustrated in Fig. 1(a) and shows the example of
defining the Candidate Application Artifact (CAA). ApplicationArtifactId, FirstName,
LastName and Age are simple attribute types. Documents is a complex attribute type.
Whereas Interviews is a reference attribute type pointing to the Candidate Interview
Artifact (CIA). Initialized, Created, Rejected, Complete, Interviewed, and Accepted
denote states of its artifact lifecycle in which Initialized is the initial state, Rejected and
Accepted are two final states, and remaining states are intermediate states. Figure 1(b)
illustrates the grammar of the Create Artifact Statement.

2.3 Artifact Manipulation Language

The Artifact Manipulation Language (AML) consists of six statements to instantiate,
modify and retrieve artifact instances.

122 M. Abi Assaf et al.

2.3.1 Instantiate Statement
Since artifacts denote complex data structures that are composed of simple, complex
and reference attribute types and a list of states, several tuples must be inserted into two
or more tables in the underlying relational database when creating new artifact
instances. The traditional SQL’s INSERT statement is thus not sufficient to create
several tuples. Hence, the New statement instantiate a new artifact instance and ini-
tializes its attributes values and state.

The New statement exhibits several modes of uses. The first mode creates a new
artifact instance and initializes some of its simple attributes as illustrated in Fig. 2(1)
where a Candidate Application Artifact instance is created with 100543 as the value of
its ApplicationArtifactId attribute. Additionally, its state is automatically initialized to
its initial state “initialized” as defined in the Create Artifact query in Fig. 1.

In order to initialize the artifact to a particular state, the “Set State To StateName”
clause must be used as illustrated in Fig. 2(2) where in addition to initializing the
ApplicationArtifactId, FirstName, LastName and Age, the state is initialized to “Cre-
ated”. The New statement can also be used to initialize complex attributes as illustrated
in in Fig. 2(3) where three documents including a CV, a diploma, and a recommen-
dation letter are inserted into the new Candidate Application Artifact instance. Finally,
the New statement can be used to initialize reference attributes as illustrated in Fig. 2(4)

Fig. 1. Create artifact statement

Fig. 2. New query examples

AQL: A Declarative Artifact Query Language 123

where two references to Candidate Interview Artifact instances with InterviewArtifactId
respectively equal to 205465 and 206721 are inserted into the new CandidateAppli-
cationArtifact instance. Figure 3 illustrates the grammar of the New statement.

2.3.2 Modification Statements
Modification of artifact instances can be performed at several levels: (1) update simple
attribute values, (2) update states, (3) update tuples of complex attributes, (4) insert or
remove tuples of complex attributes, (5) insert or remove references to child artifacts,
and finally (6) delete artifact instances.

First, simple attribute values of artifact instances can be updated as in SQL using
the Update statement as illustrated in Fig. 4(1). Similarly, the states of artifact instances
can be updated using the Update statement as illustrated in Fig. 4(2).

In this case, the “Set State To StateName” clause is used to specify the new state.
Finally, modifications of tuples of complex attributes are also performed using the
Update statement expressed with the “Update AttributeName In ArtifactName” clause

Fig. 3. New statement grammar

Fig. 4. Modification query examples

124 M. Abi Assaf et al.

to indicate in which artifact the complex attribute is located. Figure 4(3) illustrates an
example where the Type attribute of the document with the title “Bachelor in CS” in
the Candidate Application Artifact instance (id 100543) is updated with the value
“Certificate”.

Inserting tuples of complex attributes into artifact instances can be performed using
the “Insert AttributeName Into ArtifactName” clause to indicate in which artifact the
complex attribute is located and specifying a list of tuples to be inserted (see Fig. 4(4)).
Similarly, inserting a reference into a child artifact in a given artifact can be performed
using the Insert Into statement (Fig. 4(5)). In this case the child artifact instance is
selected using the condition specified in the “Where Condition” clause. Removing
complex attribute tuples and child artifact references from artifact instances can be
performed using the Remove From statement as illustrated in Fig. 4(6) and 4(7). The
Remove From statement functions in the same way as the Insert Into statement. Finally,
deletion of artifact instances can be performed using the Delete statement as illustrated
in Fig. 4(8). In this case, the artifact instance including its complex attributes tuples and
child artifact references are deleted. Figure 5 illustrates the grammar of modification
statements where the production rules for the WHERECLAUSE are omitted and listed
instead in Fig. 7 for readability concerns.

2.3.3 Retrieve Statement
Artifact instances and their content can be retrieved using the Retrieve statement, which
is an abstraction statement over SQL’s SELECT statement. Retrieving artifact instances
according to the values of their simple attributes and state is performed as illustrated in
Fig. 6(1). All information related to the artifact instance including the values of its
simple attributes, state, tuples of its complex attributes, and artifact instances of its
reference attributes are retrieved by default. The “Only” keyword restricts the retrieval
of values to simple attributes and states of the master artifact (see Fig. 6(2)). Retrieving
artifact instances according to the values of their complex attributes is performed using
the “Include” operator as illustrated in Fig. 6(3). The asterisk symbol (*) is used to
match any string of characters. In this case, the retrieved artifact instances should have
two documents with the Title respectively equal to “Bachelor in Computer Science”
and “Recommendation Letter from Professor”. Retrieving artifact instances according

Fig. 5. Modification statements grammar

AQL: A Declarative Artifact Query Language 125

to their child artifacts is performed as illustrated in Fig. 6(4). In this case, the “Having”
operator is used to specify the condition that the child artifacts should meet. Finally,
retrieving only the values of complex or reference attributes can be achieved using the
“Retrieve AttributeName From ArtifactName” clause (see Fig. 6(5) and (6)).

Figure 7 illustrates the grammar of the Retrieve statement.

3 AQL Semantics

This section defines the semantics of AQL in terms of the Relational Model. Firstly we
formalize the notion of an artifact class based on [4] and secondly we describe every
AQL statement with its operational semantics using relational model concepts as
described in [2].

We start by assuming the existence of the following pairwise disjoint countably
infinite sets: D for constants; i.e. data values. C of artifact names. A of attribute names.
STS of artifact states. Tprim of primitive types, including Boolean, Integer, Real or
String. Tcom of complex types, where elements of T com are subsets of A, and T of
types, where T ¼ Tprim [T com [C.

Fig. 6. Retrieve query examples

Fig. 7. Retrieve statement grammar

126 M. Abi Assaf et al.

We also give some simple notations for relations and relation schemas. For a given
relation schema R, we denote by schema(R) � A the set of attributes in R. The primary
key of R is denoted by key(R) � schema(R). A tuple t over R is an element of
D schema Rð Þj j, and a relation r over R is a finite set of tuples over R such that r � D|schema

(R)|. We also assume the existence of a relation states over a relation schema States used
to store information about states of lifecycles with schema(States) = {Artifact, State,
Type} and key(States) = {Artifact, State}.

We also make use of the following relational algebra operators; selection, pro-
jection, cartesian product and assignment. Selection is denoted by σc(r) where a subset
of tuples that meet condition c is selected from the relation r. Projection is denoted by
πa1,…,an(r) where the result is a relation of n attributes obtained by erasing from the
relation r the attributes that are not listed in a1,…,an. Cartesian product is denoted by
r1 × r2 where the result is a relation that combines r1 and r2. Relational algebra
expressions can be constructed using selection, projection and Cartesian product
operators in addition to mathematical union and set difference operators. Assignment is
denoted by r ← E where the result of the relational algebra expression E is assigned to
the relation r. Using the assignment operator, we can define insert, delete and update
operations on relations. Inserting a tuple t into a relation r is defined as r ← r [t.
Deleting a tuple t from a relation r is defined as r ← r − t. Updating a tuple t in a
relation r is defined as r ← r – t [t′ where t′ is the updated tuple.

3.1 Artifact Definition Language

The Create Artifact statement of ADL is used to define artifact classes according to the
structure defined in Definition 1.

Definition 1 (Artifact Class). An Artifact Class C is a tuple (C, A, τ, Q, s, F) where
C 2 C is a class name, A � A is a finite set of attributes, τ: A → T is a total mapping,
Q � STS is a finite set of states, and s 2 Q, F � Q are respectively initial and final
states.

Taking as an example the Create Candidate Application Artifact query of Fig. 1, we
would have: C = CAA, A = {ApplicationArtifactId, FirstName, LastName, Age, Docu-
ments, Interviews}, τ(ApplicationArtifactId) = Integer, τ(FirstName) = String, τ(Last-
Name) = String, τ(Age) = Integer, τ(Documents) = {Type, Title, URL} where
τ(Type) = String, τ(Title) = String and τ(URL) = String, τ(Interviews) = CIA,
Q = {Initialized, Created, Rejected, Complete, AwaitingInterview, Interviewed, Accep-
ted}, s = Initialized, and finally, F = {Rejected, Accepted}.

The defined artifact is implemented in the relational model according to the fol-
lowing semantics:

First, a relation schema Cr that represents the artifact class C is created. Cr will
contain the simple attributes of C such that schema(Cr) = {a | a 2 A and τ(a) 2 Tprim}.
In addition to two more attributes: apk = concat(C, “_PK”) is the primary key of Cr

such that key(Cr) = apk, and ast = State is the current state of the artifact. In our

AQL: A Declarative Artifact Query Language 127

example, we obtain the relation schema CAA(CAA_PK, ApplicationArtifactId, First-
Name, LastName, Age, State).

Second, for every complex attribute acom such that acom 2 A and τ(acom) 2 Tcom, we
create an associated relation schema Ar containing the simple attributes constituting
acom such that schema(Ar) = {a | a 2 τ(acom) and τ(a) 2 Tprim}. Additionally, schema
(Ar) will contain a primary key attribute apk such that key(Ar) = apk and apk = concat
(acom, “_PK”). Moreover, schema(Ar) will also contain a reference to the artifact in the
form of a foreign key afk of Cr such that afk = concat(Cr, “_FK”). In our example, we
obtain the relation schema Documents(Documents_PK, CAA_FK, Type, Title, URL).

Third, for every reference attribute aref of C such that aref 2 A and τ(aref) 2 C, we
create an associated relation schema Ar that contains the foreign keys of the parent and
child artifacts such that schema(Ar) = {aparent, achild | aparent = concat(C, “_PFK”) and
achild = concat(τ(aref), “_CFK”)}. Additionally, both foreign keys will form the pri-
mary key of Ar such that key(Ar) = {aparent, achild}. In our example, we obtain the
relation schema Interviews(CAA_PFK, CIA_CFK) which is used to store many-to-
many references between Candidate Application Artifacts and Candidate Interview
Artifacts.

Finally, for every state q of C, we insert a tuple t into the relation states such that; 1)
states ← states [{(C, q, “default”)} if q 2 Q and q ≠ s and q 62 F. 2) states ←
states [{(C, q, “initial”)} if q 2 Q and q = s. 3) states ← states [{(C, q, “final”)}
if q 2 Q and q 2 F.

3.2 Artifact Manipulation Language

We now describe the semantics of AML.

(1) The new statement instantiate artifact instances by inserting necessary tuples into
the different relations constituting the artifact. The first insert operation inserts a
tuple with values of simple attributes and artifact state into the corresponding
artifact relation: artifact ← artifact [{(kparent, v1,…, vn, state)} where kparent is
the primary key of the artifact. If the state is not specified in the query, the initial
state of the artifact is retrieved and used from the states relation using the
expression: πState(σArtifact=artifactname∧Type=‘initial’(states)). Similarly, if the state is
specified in the query, it is validated using the expression: σArtifact=artifact-
name∧State=statename(states). Then, for every complex attribute tuple, an insert
operation is performed on the corresponding complex attribute relation: attcom-
plex ← attcomplex [{(katt, kparent, v1,…,vn)} where katt is the primary key of the
inserted tuple and kparent is the foreign key of the parent artifact. Similarly, for
every reference attribute value, an insert operation is performed on the corre-
sponding reference attribute relation: attreference ← attreference [{(kparent, kchild)}.
In this case, kparent is the foreign key of the parent artifact and kchild is the foreign
key of the child artifact. kchild is retrieved according to the specified condition
using the expression: πArtifact_PK(σcondition(artifact)).

128 M. Abi Assaf et al.

(2) The update statement updates simple attributes of artifacts and complex attributes,
in addition to the states of artifacts. First, updating simple attributes and states of
artifacts is performed by retrieving the required tuple from the artifact relation
using a selection operation: t ← σcondition(artifact) where condition is the con-
dition specified in the query. Then, an update operation is performed on the
artifact relation: artifact ← artifact – t [t′ where t′ is the updated tuple. On the
other hand, updating complex attributes requires a Cartesian product operation in
order to retrieve the correct tuple from the complex attribute relation: t ← πschema

(attcomplex)(σcondition∧Artifact_PK=Artifact_FK(artifact × attcomplex). Then, an update
operation can be performed on the complex attribute relation: attcom-
plex ← attcomplex – t [t′ where t′ is the updated tuple.

(3) The insert statement inserts tuples into complex or reference attributes relations.
First, inserting a tuple (v1,…,vn) into a complex attribute is performed by
retrieving the primary key of the correct artifact using a projection and selection
operations: kparent ← πArtifact_PK(σcondition(artifact)). Then, an insert operation is
performed on the complex attribute relation as follow: attcomplex ← attcomplex [
{(katt, kparent, v1,…,vn)}. Similarly, inserting a tuple into a reference attribute is
performed by retrieving both primary keys of the parent and child artifacts using
projection and selection operations: kparent ← πArtifact_PK(σcparent(artifact)) where
cparent is the condition related to the parent artifact. And kchild ← πArti-
fact_PK(σcchild(artifact)) where cchild is the condition related to the child artifact.
Then, an insert operation is performed on the reference attribute relation as follow:
attreference ← attreference [{(kparent, kchild)}.

(4) The remove statement deletes tuples from complex or reference attribute relations.
Removing a tuple t from a complex attribute relation is performed similarly to the
update statement for complex attributes. But, a delete operation is used instead of
an update operation: attcomplex ← attcomplex − t. On the other hand, removing a
tuple from a reference attribute relation is performed similarly to the insert
statement for reference attributes. But, a delete operation is used instead of an
insert operation: attreference ← attreference − {(kparent, kchild)}.

(5) The delete statement deletes tuples from artifact relations, in addition to all related
tuples from complex and reference attribute relations. First, all tuples from all
complex and reference attribute relations are deleted as described in the remove
statement. Then similarly, the tuple corresponding to the artifact is deleted from
the artifact relation.

(6) The retrieve statement selects tuples that meet certain conditions from artifact
relations, in addition to related tuples from complex and child artifact relations.
First, tuples from the artifact relation that meet the condition on simple attributes
and state of the artifact are selected using: r1 ← σcparent(artifact) where cparent is
the condition related to the simple attributes and state of the artifact. Second, for
conditions on the complex attributes of the artifact, expressed using the “include”
keyword, further selections are performed on the Cartesian product of r1 and the
related complex attribute relation attComplex such as: σccomplex∧Artifact_PK=Arti-

fact_FK(r1 × attComplex) where attComplex is the complex attribute relation, and
ccomplex is the condition related to the complex attribute. Similarly, for conditions
on the reference attributes of the artifact, expressed using the “having” keyword,

AQL: A Declarative Artifact Query Language 129

a selection is performed on the Cartesian product of r1, the reference attribute
relation attreference, and the artifact relation artifact: σcchild∧r1.Artifact_PK=Arti-
fact_PFK∧Artifact_CFK=artifact.Artifact_PK(r1 × attreference × artifact).

4 Implementation

Using the semantics described in Sect. 3, we have implemented a compiler that
translates AQL into SQL. The compiler relies on the AQL grammar described in Sect. 2
and an extended attribute grammar that uses synthesized and inherited attributes to
generate SQL queries from AQL queries. Figure 8 illustrates an example of an AQL
production rule where AttName, AttType, AList, RefAtt, MetaType, Sal and Sql are
synthesized attributes and ArtName is an inherited attribute. In this production rule
several cases exist. (1) If the data attribute has simple type MetaType
(ATTRIBUTETYPE) ==“simple”, then it is appended to a list of simple type data
attributes Sal(ATTRIBUTE). (2) If the data attribute has complex type MetaType
(AttributeType) ==“complex”, then its CREATE TABLE SQL query is generated and
assigned to Sql(ATTRIBUTE). (3) Similarly, if the data attribute has reference type
MetaType(AttributeType) ==“reference”, then its CREATE TABLE SQL query is
generated and assigned to Sql(ATTRIBUTE).

The compiler relies on the Java Xtext framework to develop our domain-specific
language and conduct lexical and syntax analysis and code generation. It connects to a
MySQL server as a back-end database. The compiler interface translates queries written
in AQL into SQL and then executes them.

Fig. 8. Attribute grammar example

130 M. Abi Assaf et al.

5 Related Works

Artifacts have gained a lot of attention from a theoretical perspective to formally
defining artifacts and studying their properties. Many works have tackled challenges
related to lifecycle modeling, conformance, validation, verification, operational
semantics and synthesis problems [4, 5, 8]. However, there is still a lot of room for
developing artifact-based management systems. The SQL for Business Artifacts
(BASQL) introduced in [10] was a first attempt to describe SQL-like statements to
define and manipulate artifacts. BASQL still treats business artifacts as traditional
relations made of simple type attributes, and as such, instances are manipulated and
interrogated using normal SQL statements, operating on relations. On the other hand,
many works have focused on defining syntactical and graphical languages to define
artifact processes. Works in [13] have introduced the Business Entities and Business
Entity Definition Language (BEDL). The BEDL is an XML-based language that
specifies business artifact process models, including, Business Entities (or Artifacts),
Lifecycles, Access Policies, and Notifications. The BEDL only deals with defining
business artifact processes and does not introduce statements to manipulating or
interrogating business artifact instances. Business artifact processes are also defined
using Active XML (AXML) [1, 3]. A business artifact instance is written as an XML
document with embedded function calls. The business artifact process is thus executed
by invoking embedded functions and assigning their results to business artifact attri-
butes. The AXML artifact model is concerned with defining and executing the artifact
process and does not deal with manipulating and interrogating business artifact
instances. Several graphical languages and notations have been developed to define
business artifact processes. Authors in [12, 14] introduce a graphical notation to model
business artifact lifecycles as finite-state machines. This graphical notation is based on
three modeling constructs: Task, Repository, and Flow Connectors. A similar notation
is introduced in [11] where the artifact-centric model is called Artifact Conceptual Flow
or ArtiFlow (named EZ-Flow in [15]). On the other hand, business artifact lifecycles
are declaratively modeled using the Guard-Stage-Milestone (GSM) notations [6, 9]. By
using Guards, Stages and Milestones as modeling primitives, the GSM notation allows
parallelism and hierarchies in business artifact lifecycles. Roughly speaking, graphical
languages and notations focus on defining and executing business artifact processes but
they do not include statements to specifically manage business artifact instances. To the
best of our knowledge, no work, prior to this work, has focused on defining a
declarative language that specifically manipulates and interrogates artifacts with focus
on the artifact model regardless its underlying data and structure.

6 Conclusion

Artifacts, as a process modeling approach, advocate the unification of data and processes
and offer many advantages to their users. Despite recent advances in the field of artifacts,
defining, manipulating and interrogating artifacts are still in their infancy. In this paper,
we presented the Artifact Query Language (AQL) that seeks to define, manipulate, and
interrogate artifacts with declarative SQL-like statements. Future works include the

AQL: A Declarative Artifact Query Language 131

addition of statements to create business rules and services in AQL and the automatic
generation of services’ method stubs in a procedural programming language. In order to
support Artifact streams, we are seeking to extend the AQL with continuous querying
capabilities with sliding windows and apply them to high throughput real-time streams
in the context of smart cities.

Acknowledgments. This work is generously supported by the 2015 COOPERA funding pro-
gram of the Rhône-Alpes Region.

References

1. Abiteboul, S., Bourhis, P., Galland, A., Marinoiu, B.: The AXML artifact model. The 16th
International Symposium on Temporal Representation and Reasoning, pp. 11–17 (2009)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-Wesley,
Reading (1995)

3. Abiteboul, S., Segoufin, L., Vianu, V.: Modeling and verifying active XML artifacts. IEEE
Data Engineering Bulletin 32(3), 10–15 (2009)

4. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of
artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

5. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business
operations and processes. Bulletin IEEE Comput. Soc. Techn. Committee Data Eng. 32(3),
3–9 (2009)

6. Damaggio, E., Hull, R., Vaculín, R.: On the equivalence of incremental and fixpoint
semantics for business artifacts with Guard–Stage–Milestone lifecycles. Inf. Syst.l 38(4),
561–584 (2013)

7. Heath III, F(., Boaz, D., Gupta, M., Vaculín, R., Sun, Y., Hull, R., Limonad, L.: Barcelona:
A design and runtime environment for declarative artifact-centric bpm. In: Basu, S.,
Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 705–709.
Springer, Heidelberg (2013)

8. Hull, R.: Artifact-centric business process models: brief survey of research results and
challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332,
pp. 1152–1163. Springer, Heidelberg (2008)

9. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath III, F.T., Hobson,
S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P.N.: Business artifacts with
Guard-Stage-Milestone lifecycles: Managing artifact interactions with conditions and events.
In: Proceedings of the 5th ACM International Conference on Distributed Event-based
System, pp 51–62 (2011)

10. Joseph, H.R., Badr, Y.: Business artifact modeling: A framework for business artifacts in
traditional database systems. In: Enterprise Systems Conference (ES 2014), pp. 13–18
(2014)

11. Liu, G., Liu, X., Qin, H., Su, J., Yan, Z., Zhang, L.: Automated realization of business
workflow specification. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave
2009. LNCS, vol. 6275, pp. 96–108. Springer, Heidelberg (2010)

12. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and behavior using
business artifacts. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES
2007. LNCS, vol. 4495, pp. 324–339. Springer, Heidelberg (2007)

132 M. Abi Assaf et al.

13. Nandi, P., Koenig, D., Moser, S., Hull, R., Klicnik, V., Claussen, S., Kloppmann, M.,
Vergo, J.: Data4BPM, Part 1: Introducing Business Entities and the Business Entity
Definition Language (BEDL). IBM Corporation, Riverton (2010)

14. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Syst. J. 42(3), 428–445 (2003)

15. Xu, W., Su, J., Yan, Z., Yang, J., Zhang, L.: An artifact-centric approach to dynamic
modification of workflow execution. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A.,
Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M.,
Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 256–273. Springer,
Heidelberg (2011)

16. Zhao, D., Liu, G., Wang, Y., Gao, F., Li, H., Zhang, D.: A-Stein: A prototype for
artifact-centric business process management systems. International Conference on Business
Management and Electronic Information 1, 247–250 (2011)

AQL: A Declarative Artifact Query Language 133

	AQL: A Declarative Artifact Query Language
	Abstract
	1 Introduction
	2 Syntax
	2.1 Example Scenario
	2.2 Artifact Definition Language
	2.3 Artifact Manipulation Language
	2.3.1 Instantiate Statement
	2.3.2 Modification Statements
	2.3.3 Retrieve Statement

	3 AQL Semantics
	3.1 Artifact Definition Language
	3.2 Artifact Manipulation Language

	4 Implementation
	5 Related Works
	6 Conclusion
	Acknowledgments
	References

