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Abstract. Traditional modeling approaches and information systems
assume static entities that represent all information and attributes
at once. However, due to the evolution of information systems to
increasingly context-aware and self-adaptive systems, this assumption
no longer holds. To cope with the required flexibility, the role concept
was introduced. Although researchers have proposed several role mod-
eling approaches, they usually neglect the contextual characteristics of
roles and their representation in database management systems. Unfortu-
nately, these systems do not rely on a conceptual model of an information
system, rather they model this information by their own means leading to
transformation and maintenance overhead. So far, the challenges posed
by dynamic complex entities, their first class implementation, and their
contextual characteristics lack detailed investigations in the area of data-
base management systems. Hence, this paper, presents an approach that
ties a conceptual role-based data model and its database implementa-
tion together, to directly represent the information modeled conceptu-
ally inside a database management system. In particular, we propose a
formal database model to describe roles and their contextual information
in compartments. Moreover, to provide a context-dependent role-based
database interface, we extend RSQL by compartments. Finally, we intro-
duce RSQL Result Net to preserve the contextual role semantics as well
as enable users and applications to both iterate and navigate over results
produced by RSQL. In sum, these means allow for a coherent design of
more dynamic, complex software systems.

Keywords: Role model - Query language + Contextual database -
Result net

1 Introduction

Software systems are an essential part of today’s life where people and devices are
connected anywhere and anytime to anyone. Additionally, new devices featuring
novel technologies must be integrated into running systems without downtime.
Thus, software systems have become more complex today while this trend con-
tinues. Traditional approaches, like UML or ER, fail frequently' when confronted

! For a concrete example, we refer to [18, p. 88 et sqq.].
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with requirements of highly complex, dynamic, and context-sensitive systems.
Basically, they assume static entities, although real objects evolve over time and
act dynamically. From a modeling and programming perspective, these issues
have been addressed by introducing the role concept [18], but most of the exist-
ing approaches neglect the contextual aspect of roles [13]. In contrast, database
systems, as integral part of modern software systems, lack the notion of dynam-
ically evolving and context-dependent data objects leading to problems during
design time and run time, when the role concept is implemented in the conceptual
design and programming languages. During the design phase for instance, role
semantics need to be transformed into simple DBMS data model semantics, i.e.,
relations. This process abstracts all context-dependent information and mixes
it with entity and relationship information. The run time issues are a conse-
quence of the design time problems and the DBMS’s inability to represent role
semantics explicitly. A DBMS stores the data by means of its data model, which
in turn provides the underlying semantics. Hence, highly specialized mapping
engines are required to persist run time objects in a database and all mapping
engines in the software system need to be synchronized to avoid inconsistency.
This results in an increased transformation and management overhead between
the applications and the DBMS. Finally, there is no external DBMS interface
aware of the transformation incurred by the mapping engine. This hinders users
to query and navigate their contextual data model in a coherent way.

To overcome these design time and run time issues as well as account for
the often neglected context-dependent information three major goals have to be
achieved. In the first place, a data model as foundation capable of represent-
ing evolving complex data objects is required. Secondly, a redesigned external
DBMS interface is required enabling users and applications to query on the same
semantical level as role-based programming languages. Finally, a novel result rep-
resentation is needed to preserve the role-based semantics in query results. The
first issue is addressed by defining the Compartment Role Object Model [14] based
RSQL Data Model featuring roles and compartments for context-dependent
information representation. As external database interface we propose a con-
textual extension to RSQL, a query language for role-based data. Finally, we
tackle the third issue by presenting the RSQL Result Net that preserves the
context-dependent and role-based semantics between a software system and the
database.

The remainder is structured as follows: The following Sect. 2 details the run-
ning example and describes its domain. Sect. 3 introduces the context-dependent
RSQL Data Model consisting of a type level and instance level definitions. This
is followed by the description of RSQL’s query language specifications in Sect. 4.
Afterwards, the notion of our novel RSQL Result Net and navigational opera-
tions are detailed in Sect.5. The related work is elaborated in Sect. 6. Finally,
Sect. 7 concludes the contributions.

2 Running Example

To highlight the merits of role-based data modeling, we model a small banking
application as our real world scenario, extracted from [17]. In this scenario, a
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Fig. 1. Role modeling example of a small banking application
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Fig. 2. Instance of the role modeling example (Fig. 1)

bank manages its customers, their accounts, as well as transactions. Customers
can be persons, companies, as well as other banks. Additionally, customers may
own several savings and checking accounts, and perform transactions between
accounts of potentially different types. In detail, transactions embody the process
of transferring money from one account to another. In addition, we specify that
checking accounts must have exactly one owner, whereas savings accounts can
have multiple owners. This fact is reflected by the respective cardinality con-
straints. Similarly, we require that one source account is linked to exactly one
target account. Figure 1 depicts a possible role-based data model for this bank-
ing application. It encompasses a Bank as a compartment containing the roles
MoneyTransfer, Customer, CheckingAccount, and SavingsAccount. The Transac-
tion compartment orchestrates the money transfer between Accounts by means
of the roles Source, Target, and the trans relationship constrained by one-to-
one cardinality on both ends. Finally, Persons, Companies, Banks can play the
role of a Customer and Accounts the roles CheckingAccount, SavingsAccount,
Source, and Target. A simplified instance of this data model is shown in Fig. 2. It
comprises two Bank compartment instances, BetaBank and DeltaBank. The
former manages (among others) the Customers TetaBank and Andrea who
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individually own a CheckingAccount in this bank. In contrast, the Delta-
Bank has the Person Peter as well as the former Bank BetaBank as Cus-
tomers. Moreover, this compartment instance contains a CheckingAccount owned
by Peter and a SavingsAccount owned by both Peter and the BetaBank.
Additionally, the DeltaBank compartment instance contains the Transaction
compartment Trl playing the MoneyTransfer m1l. Therein, Account4 and
Accountl play the roles Source s1 and Target t1, respectively, and thus, repre-
sent a transaction from BetaBank’s savings account to TetaBank’s checking
account. Each role is placed at the border of its respective player. For brevity,
we left out the individual attributes. Henceforth, the data model is used as a
running example.

3 Formal Foundation

This section introduces a data model featuring the notion of compartments and
context-dependent roles. In particular, this data model is strongly influenced by
the combined formal model for roles [14] and Dynamic Typles [11,12]. Thus, a
subset of the former is employed as formal foundation to extend the notion of
dynamic tuples and represent compartments with context-dependent roles.

Generally, we distinguish between three meta types: Natural Types, Com-
partment Types, and Role Types. To discern these kinds, three ontological
properties are employed, i.e., Rigidity, Foundedness, and Identity [5-7,16]. Both
Natural Type and Compartment Types are classified as rigid with a unique
identity, whereas only the latter is founded. In contrast to them, Role Types
are not rigid [8] and founded with a derived identity. Consequently, Person
and Account are considered Natural Types, whereas Bank and Transaction
as Compartment Types (cf. Fig.1). Role instances depend on the identity of
their player and the existence of their context [16] (i.e., compartment). Hence,
instances of a rigid type can play instances of role types. For brevity, we omit
attributes and relationships from these definitions and focus on the notion
of compartments.

Definition 1 (Schema). Let NT, RT, and CT be mutual disjoint sets of Nat-
ural Types, Role Types, and Compartment Types, respectively. Then a Schema is
a tuple S = (NT, RT, CT, fills, parts) where fills C (NTUCT) x RT is a relation
and parts : CT — 28T s a total function for which the following azioms hold:

Vrt € RT 3t € (NTUCT) : (t,rt) € fills (1)
Vet € CT : parts(ct) # (2)
Vrt € RT 3let € CT : rt € parts(ct) (3)

In particular, the schema definition collects the three entity kinds into their
respective sets. Moreover, it defines two relations between those entity kinds.
First, fills declares that a rigid type (either compartment or natural type) fulfills
arole type, such that each role type is filled by at least one rigid type (1). Second,
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parts collects the set of role types contained in each compartment type. In detail,
it is required that there is no empty compartment type, i.e., where parts returns
an empty set (2), and each role type is part of exactly one compartment type (3).

On the instance level natural types, role types, and compartment types
are instantiated to naturals, roles, and compartments, respectively to handle
context-dependent information of roles [14].

Definition 2 (Instance). Let S be a schema and N, R, and C be mutual
disjoint sets of Naturals, Roles, and Compartments, then an instance of S is
a tuple i = (N, R, C, type, plays), where type : (N — NT)U (R — RT)U (C —
CT) is a labeling function and plays C (N UC) x C x R a relation. Moreover,
O := N UC denotes the set of all objects ini. To be a valid instance of schema
S, instance i must satisfy the following axioms:

Y(o,c,r) € plays : (type(o), type(r)) € fills A type(r) € parts(type(c)) (4)
V(0,¢,7), (0,¢,7") € plays : v # v = type(r) # type(r') (5)
Vre RJloe O eceC: (o,cr) € plays (6)

In general, an instance of a schema is a collection of compartment, role, and
natural instances together with their individual interrelations. In particular, the
type function maps each instance to its type. Moreover, the plays-relation is
the instance level equivalent of the fills relation and the parts function, as it
identifies those objects (either natural or compartment) playing a role in a certain
compartment. Valid instances are required to be consistent to a schema, i.e.,
they satisfy the three axioms. In detail, axiom (4) ensures the conformance of
the plays relation to fills and parts on the type level (4). Next, axioms (5)
and (6) enforce that an object can play only one role of a certain type in one
compartment and that each role has exactly one player and is contained in a
distinct compartment, respectively. Notably objects can still play multiple roles
of the same type simultaneously, however these roles must be part of distinct
compartments, e.g., a person can play multiple customer roles as long as they
belong to different banks. This allows us to define Dynamic Tuples for complex
context-dependent entities.

Definition 3 (Dynamic Tuple). Let S be a schema, i a valid instance of S,
and o € O is an object of type t, i.e., type(o) = t. A Dynamic Tuple d = (o, F, P)
s then defined with respect to the played roles and featured roles given as:

F:={{r|(r,rt) € F,} | rt € RT} with F, := {(r, type(r)) | (o, _,r) € plays}
P :={{r|(r,rt) € B} | rt € RT} with P, := {(r,type(r)) | (_,0,7) € plays}

In detail, a dynamic tuple is defined to capture the current rigid instance, all
the roles it currently plays, and all the roles it contains. However, as an object
can play and contain multiple roles of the same type, they are grouped by their
type into the set F' of filled roles and P of participating roles, respectively. If
the set of currently filled or participating roles is empty, i.e., no role is played
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or featured in a given object, the corresponding set is empty, denoted as (). In
sum, this definition captures both dimensions of dynamic complex entities. Still,
such entities exist in many different configurations with respect to types of the
played and participating roles.

Definition 4 (Configuration). Let S be a schema andt € NT UCT a type;
then a Configuration of an instance of t is given as ¢ = (t, FT,PT), where
FT C {rt | (ot,rt) € fills} and PT C parts(t). In particular, a given dynamic
tuple d = (o, F, P) (with type(o) =t) in a valid instance i of S is in exactly one
Configuration ¢, = (t, {rt | (_,rt) € E,},{rt | (_,7t) € P,}).

In this way, a configuration of an instance is determined by the types of roles
currently played and contained. Thus, playing multiple roles of the same role
type as well as containing multiple roles of the same type simultaneously does not
affect the configuration. To illustrate these definitions, we discuss the following
three dynamic tuples which are an expansion of instances depicted in Fig. 2:

dAccount1 Z:(ACCOU’IZtl, {{Cal}; {tl}}a Q))
dpettaBank :=(DeltaBank, ), {{c1, c2, c3}, {sa1, sas}, {cas, cas}, {m1, ma, ms}})

vy =(Try, {{ma}}, {{s1}, {t1}})

The first dynamic tuple represents Account; that plays both a CheckingAc-
count and a Target role, but no participating roles, because the account
is a natural instance. Consequently, its configuration is ¢; = (Account,
{ CheckingAccount, Target},0). In contrast, the Bank DeltaBank currently
does not play any role, but has multiple participating roles of type Cus-
tomer, CheckingAccount, SavingsAccount and MoneyTransfer. As such, co =
(Bank, 0, { Customer, CheckingAccount, SavingsAccount, Money Transfer}) is its
configuration. For each of these types there is a separate set of roles in F.
Last but not least, the compartment Tr; is playing the MoneyTransfer role
and is featuring a Source and a Target role. In turn, its configuration is
cs = (Transaction, { MoneyTransfer}, { Source, Target}). In conclusion, dynamic
tuples of natural instances can only have filled roles, whereas compartment types
can have both filled and participating roles.

To conclude the definition of dynamic tuples, we define both endogenous
and exogenous relations. The former allows us to navigate into the filled and
participating roles of a particular dynamic tuple, whereas the latter allows to
navigate from one dynamic tuple to another by means of a particular role.

Definition 5 (Endogenous Relations). Let i = (N, R, C, type, plays) be a
valid instance of an arbitrary schema S, o € O an object in i, and d = (o, F,i)

the corresponding dynamic tuple. Then d plays a role r € R iff (r,_) € F,.
Similarly, d features a role r € R iff (r, )€ P,.

Basically, this lifts the notion of playing and featuring roles to the level of
dynamic tuples. Consider, for instance, the dynamic tuple dr,, currently plays
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my and features s; and t;. While these relations allow to navigate within a
dynamic tuple, the Ezogenous Relations permit navigation between dynamic
tuples.

Definition 6 (Exogenous Relations). Let i = (N, R,C,type, plays) be a
valid instance of an arbitrary schema S, o,p € O be two objects in i, and a =
(0, Fu, Pa), b= (p, Fy, Py) their respective dynamic tuples. Then a is featured in
b with r € R, iff a plays r and b features r. Similarly, its inverse is denoted as
b contains r played by a.

In general, featured in and contains represent the various interrelations between
objects on the instance level lifted to dynamic tuples. For instance, the dynamic
tuple d Account, 1S featured in the transaction d ., (playing the role ¢1). Next, the
transaction dpy, itself is featured in the dpeitaBank (playing my), which also con-
tains the dpetaBank. In sum, both relations are used to build our novel result set
graph and provide role-based data access (see Sect. 5). In particular, endogenous
relations are utilized to enable users to navigate within a dynamic tuple while
exogenous relations are used to navigate from one dynamic tuple to another one.

4 RSQL Query Language

To fully support context-dependent roles, a novel query language is required
capturing the previously defined notions. Thus, we introduce compartments as
first-class citizen in RSQL to retain the contextual role-based semantics in the
DBMS’s communication interface. In detail, we discuss the syntax and semantics
of RSQL’s extended SELECT statements and how this is related to the data
model’s concepts defined in Sect. 3.

4.1 RSQL Syntax

RSQL consists of three language parts, the data definition language (DDL), the
data manipulation language (DML), and the data query language (DQL). Based
on our previous work [11,12], DDL and DML for compartments are straight
forward, hence we focus on the DQL only.

The data query language consists of a SELECT statement, that is illustrated
in Extended Backus-Naur Form (EBNF) in Fig.3. Generally, that statement
consists of three parts: (i) projection, (ii) schema selection, and (iii) an attribute
filter. The first one limits the result to the specified types and attributes. The
schema selection is the most complex part, specifying configurations of the
desired dynamic tuples and dependencies between them. In general, the schema
selection consists of a nonempty set of {config-expressions), each specifying a set
of valid configurations. Those will be used in query processing to decide, whether
a dynamic tuple is in a query-relevant configuration. A (config-expression) itself
contains three parts: (i) the rigid type, (ii) a featuring clause describing the par-
ticipating dimension of the data model, and (iii) a playing clause denoting the
filling dimension. Both, the participating and filling dimension are optional in a
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(select) ::= SELECT (projection-clause) FROM {from-clause)
(WHERE (where-clause))?

(from-clause) ::= {(config-expression) (, (config-expression))*

(config-exzpression) ::= (rigid-name) {abbreviation)
(FEATURING (log-expression))? (PLAYING (log-exzpression))?

(log-ezpression) == (rt-def) | (log-expression) (junctor) (log-ezpression)
(rt-def) == ((rt-name))? (rtAbbreviation)
(op) == AND | OR | XOR

Fig. 3. Data query language syntax

(config-expression). Additionally, the featuring clause is only allowed, if the rigid
is a compartment type, because natural types cannot feature role types. Finally,
an optional WHERE clause completes the SELECT statement. Here, users declare
the value-based filter for resulting dynamic tuples.

Example Query. The example shown in Fig. 4 is based on the schema presented
in Fig. 1 and illustrates an RSQL query involving four (config-expressions). This
particular query searches for bank customers of a bank and their outgoing money
transfer related information from a checking account or savings account, i.e.
all transactions where that particular bank customer sends money to another
account. The first (config-expression) references all configurations consisting of
the compartment Bank as rigid type and have at least the role type Customer in
the playing clause. The second (config-expression) aims at Accounts that either
play roles of the type CheckingAccount or SavingsAccount, and Source. These
(config-expressions) have one dimension only, because its rigid type is a natural
type. The transaction is referenced in the third (config-ezpression) and describes
a set of configurations that has a Transaction as rigid type and at least one role
of type MoneyTransfer. Additionally, the Source role of the Accounts, specified
in the second (config-expression), has to participate in this compartment, which
is denoted in the featuring clause by rereferencing the abbreviation of the desired
role types. This (config-expression) is two-dimensional, because it describes the
internal and external expansion of this particular compartment type. The last

SELECT * FROM Bank bc PLAYING Customer c,
Account a PLAYING (CheckingAccount ca
XOR SavingsAccount sa) AND Source s,
Transaction t FEATURING s PLAYING MoneyTransfer m,
Bank b FEATURING m AND c AND (ca XOR sa)

Fig. 4. Example SELECT query
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(config-expression) describes the Bank compartment type that ties the roles
previously described, together.

4.2 Data Model Concepts in RSQL

RSQL is a specially tailored query language for the role-based contextual data
model defined in Sect. 3, thus, the data model concepts are directly represented
in RSQL. In detail, RSQL leverages the two main features complex schema
selection and overlapping Dynamic Tuples. The first feature is based on the
idea that entities may start or stop playing several roles during runtime, and
thus, change their schema dynamically. This is captured in configurations, that
enable a complex object definition consisting of a rigid type and role types
in two dimensions. Hence, instances of that certain type never change their
type, but may vary their schema by changing the configuration. RSQL realizes
this complex schema selection by a (config-expression) that defines the minimal
schema a valid entity needs to have. The second feature is based on the two-
dimensionality of roles which requires a role to be part of two different dynamic
tuples; once in the filling dimension and once in the participating dimension. This
overlapping information can be utilized in query writing to denote interrelated
(config-expressions). Thus, a role type may be part of several (config-expressions)
because the corresponding configurations overlap. The example query, shown in
Fig. 4, exhibits several overlapping (config-expressions), for instance, the first
one consisting of a compartment type Bank bc which has to play Customer c
role. There, the Customer role type is present in the filling dimension denoted in
the playing clause. Additionally, the same Customer role ¢ is part of the Bank
b compartment type, but in the participating dimension. Consequently, the first
and fourth (config-expressions) overlap in the role type Customer.

5 RSQL Result Net

To preserve the role-based contextual semantics in the result, we introduce the
RSQL Result Net (RuN) enabling users to iterate over dynamic tuples and
navigate along the roles to connected dynamic tuples. In particular, the naviga-
tion leverages the overlapping roles of dynamic tuples. The query result itself is
an instance of the previously defined data model, hence, the query language is
self-contained. Generally, RulN provides various dynamic tuples that are inter-
connected to each other by overlapping roles. Moreover, only queried role types
are included in the result’s dynamic tuples, even if the stored dynamic tuples
play or feature additional roles.

RuN offers two general options to navigate in the result. Firstly, endogenous
navigation path (Definition 5) to access dynamic tuple internal information. Sec-
ondly, exogenous navigation path (Definition 6) to jump from one dynamic tuple
or its roles to related dynamic tuples. Each RuN is accessed by a cursor that is
returned to users or applications. This cursor initially points to the first returned
dynamic tuple of the first referenced (config-expression). Generally, each cursor
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Fig. 5. Dynamic tuple navigation paths (excerpt)

provides the Nezt functionality to iterate over the set of type T', while T' can be
either a dynamic tuple or a role type. The Close functionality closes an open
cursor and finalizes the iteration process on a cursor. A complex example of
RuN is given in Fig.5 illustrating endogenous as well as exogenous navigation
paths. It is an extension of instance illustrated in Fig. 2 and the query shown in
Fig. 4 to show all navigation paths. For the sake of clarity, we omitted redundant
navigation paths in the illustration, but discuss more options in the explanation.

Endogenous Navigation. A dynamic tuple is by definition a combination of
a rigid type, the set of played roles, and a set of featured roles. While iter-
ating RSQL’s result net, users want to access information about roles played
by and featured in the current dynamic tuple. Functionalities providing access
to this information are realized by endogenous navigation paths, in particular,
by Plays and Features. Both options are based on the endogenous relation (see
Definition 5).

Using the Plays navigation path, users are able to access a set of played
roles in the filling dimension. This functionality can have two different inputs.
First, a dynamic tuple only and second a dynamic tuple and a set of role types.
The first one aims for accessing roles by their dynamic tuple definition, hence,
the complete dimension as tuple of role sets is returned. In contrast, the second
option accesses roles for a given role type and returns a new cursor to iterate over
the resulting set. Therefore, this function consumes not only a dynamic tuple,
but additionally a role type. Using the Features navigation path, users are able
to access a set of featured role sets in the participating dimension. Thus, the
Features set is created like the Plays set and these sets contain a set for each
queried role type. By definition this path is only available for dynamic tuples
having a compartment type as rigid type, because naturals cannot feature any
roles. This navigation path functionality consumes either a dynamic tuple or
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a dynamic tuple and a role type. The first input option returns the complete
dimension, whereas the second only roles of the specified type. In sum, both
endogenous functionalities work similar, but differ in the dimension they address.
Imagine the example RuN illustrated in Fig.5 and a cursor pointing on
the dynamic tuple BetaBank. Using Plays on this dynamic tuple by also
providing the role type Customer would return a new cursor to iterate over
the set of customer roles {¢3,c7}. Utilizing the Features functionality on this
dynamic tuples without providing a certain role type, the user will get the set
{{c4, c5, 6}, {sa3}, {cal, ca3, cad}, {m4, m5}}. Returning the tuple instead of a
set of roles gives users more flexibility in exploring roles of a dynamic tuple.

Exogenous Navigation. The exogenous navigation connects various dynamic
tuples to each other by information provided by the query and the schema. RuN
provides three exogenous navigation paths that are also illustrated in Fig. 5, but
with solid black arrows. The first exogenous navigation path to navigate through
RuN is an iteration implemented in the Next functionality that iterates over
equally configured dynamic tuples. For instance, imagine the example presented
in Fig.5 and the initial cursor pointing to BetaBank. The Next functionality
moves the cursor forward and gives access to the AlphaBank dynamic tuple.

The second exogenous navigation path is Played By and connects dynamic
tuples that share a particular role. Here, overlapping information of dynamic
tuples and the contains definition are leveraged to connect them. Technically,
the Played By navigation path is used to navigate from a role that is featured
in one dynamic tuple to the dynamic tuple this particular role is played in. To
be connected by this path, the first dynamic tuple shares a role of its participat-
ing dimension with another dynamic tuple in the filling dimension. Thus, this
functionality consumes a role and provides a dynamic tuple. Exemplarily, imag-
ine a cursor pointing to the customer c4 in the participating dimension of the
dynamic tuple BetaBank (accessing this particular role is explained in Endoge-
nous Navigation). Executing Played By on this particular role will return the
dynamic tuple TetaBank, because there customer ¢4 is in the filling dimension.

The third navigation path Featured By is the opposite of Played By. It also
takes advantage of the overlapping information, but, in contrast to Played By,
it connects dynamic tuples where the first one shares a role of its filling dimen-
sion with a role in the participating dimension of the other dynamic tuple. For
this connection the featured in relation specified in Definition 6 is utilized. Like
the Played By functionality, the Featured By consumes a role and returns the
related dynamic tuple to the user. For instance, imagine the role ¢3 in the filling
dimension of the dynamic tuple BetaBank, as illustrated in Fig.5. A Featured
By on this particular role aims for accessing the corresponding compartment
and, thus, returns the dynamic tuple DeltaBank.

Complex Navigation Example. This example navigation is based on the
query presented in Fig.4 and the RSQL Result Net depicted in Fig. 5. Assume,
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the initial cursor points to the BetaBank dynamic tuple. To explore the partic-
ipating customer roles, the user applies the Features functionality by providing
the role type Customer. This results in a cursor pointing on the customer role c4.
Next the user searches for information about the player of this particular role,
thus, uses the Played By functionality resulting in the dynamic tuple Teta-
Bank. Additionally, the user is interested in all other played customer roles of
the TetaBank. For this purpose, the user employs the Plays functionality by
also providing the Customer role type. The new cursor points to the role c2.
Finally, the user utilizes the Featured By navigation path and gets the dynamic
tuple DeltaBank to get the information about the compartment this role ¢2 is
featured in. Afterwards, the user continues with role ¢5 of the BetaBank by
iterating to the next role in the set of played customer roles. All cursors opened
to explore information related to customer role ¢4 will be closed automatically.
From the ¢5 role users can repeat the procedure they used while exploring infor-
mation regarding c4 or they go a different path?. After collecting all desired
information of customer roles featured in BetaBank, the user moves on with
the next dynamic tuple by applying the Next functionality resulting in the initial
RuN cursor moving to AlphaBank.

6 Related Work

The concept of roles was introduced in the late 1970 s by Bachman and Daya [1].
The idea of separating the core of an object from its context-dependent and fluent
parts has become popular especially in the modeling community. Steimann has
surveyed various role modeling approaches until 2000 [18] and based on this
research he defined 15 properties usually attached to the concept of roles. More
recent approaches in modeling and programming with role-based models are
detailed in [13]. Additionally, the authors extended Steimann’s properties to
capture context-dependent features.

In general, there are two trends in role-based and contextual data manage-
ment. Firstly, developing highly specialized mapping engines that map the role
semantics to traditional ones and store the data in conventional data stores.
Secondly, implementing new data models into a DBMS including new query
processing and data access techniques. Using specialized mapping engines sim-
plifies storing data by abstracting the database interface. However, the data
store remains the same, including the communication interface and result rep-
resentation. Standard SQL queries on relational stored role-based data provide
only relational results without any role-based and contextual semantics. Those
semantics are vanished in the mapping process and need to be reconstructed by
the mapping engine during run time. In the worst case, manual query writing
becomes impossible, because the role and contextual semantics are lost and role
related information is mixed with entity information. ConQuer [2], for instance,
is a query language for fact-oriented models featuring weak role semantics. How-
ever, ConQuer can be seen as mapping engine, because ConQuer queries are

2 The dynamic tuple the role ¢5 is played by, is not shown in the example.
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transformed into standard SQL queries. The user gets the impression of relying
on an Object Role Modeling [9] database, in fact the data store is a conven-
tional relational one. Furthermore, ConQuer focuses on the query language only
without considering the result representation at all. Moreover, mapping engines
from role-based software to traditional data stores exist. For instance, the Role
Relational Mapping [4] maps object-roles onto a relational representation for
persisting and evolving runtime objects. It was designed to store, evolve, and
retrieve role-based objects in a relational data store, hence, neither a query lan-
guage nor a proper result representation has been developed.

The second trend is represented, for example, by the Information Networking
Model (INM) [15] and DOOR [19]. The former features a data model, a query
language called IQL [10], and a key-value store implementation [3]. Because the
data model is hierarchically structured, they designed IQL XML-like. Further-
more, like the RSQL Result Net, IQL provides an INM instance as result. The
storage layer of the INM database is an adapted key-value store utilizing differ-
ent search strategies for query answering, but by design, the storage itself cannot
take advantage of the semantics of the data model. Rather, they implemented a
special INM layer inside of the DBMS that manages the meta information and
data access [3]. Another representative of the data model implementation option
can be seen in DOOR [19] designed to be an object store having role extensions
to handle role-semantics. The data model utilizes special playing semantics to
connect roles to their player, but lack the notion of compartments or contexts.
Nevertheless, the problems of object stores like unsupported views, limited num-
ber of consistency constraints, and highly complex query optimizations remain
unresolved and the external DBMS interface is undefined.

7 Conclusions

Today’s highly complex and dynamic evolving software systems pose new chal-
lenges to the modeling and programming community. As consequence of the
new requirements, the role concept has been established to describe dynamic
entity expansion. Unfortunately, most role-based approaches neglect the context-
dependent aspect of roles and do not provide a holistic view on software systems
by considering databases as integral part of them. This results in transforma-
tion overhead during design and run time as well as high effort in maintenance.
Within this paper, the design time issues were addressed by the RSQL Data
Model which builds the foundation for direct representation of roles and com-
partments in a DBMS. On this basis, we proposed a RSQL query language
extension to provide role-based contextual access to the database and to cope
with the run time issues. Furthermore, we introduced the RSQL Result Net to
preserve the contextual role semantics in results produced by RSQL query lan-
guage. In particular, we examined endogenous and exogenous navigation paths
in our result net to enable role-specific data access for interconnected dynamic
tuples. These connections are realized by overlapping information obtained from
the dynamic tuples, the schema, and the query.
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