Optimizing Query Performance with Inverted
Cache in Metric Spaces

Matej Antol®™) and Vlastislav Dohnal

Faculty of Informatics, Masaryk University, Botanicka 68a, Brno, Czech Republic
{xantol,dohnal}@fi.muni.cz
https://www.fi.muni.cz

Abstract. Similarity searching has become widely available in many
on-line archives of multimedia content. Querying such systems starts
with either a query object provided by user or a random object provided
by the system, and proceeds in more iterations to improve user’s satis-
faction with query results. This leads to processing many very similar
queries by the system. In this paper, we analyze performance of two rep-
resentatives of metric indexing structures and propose a novel concept
of reordering search queue that optimizes access to data partitions for
repetitive queries. This concept is verified in numerous experiments on
real-life image dataset.

Keywords: Similarity search - Nearest-neighbors query - Metric space -
Inverted cache - Query optimization

1 Introduction

Multimedia retrieval systems have been becoming more and more applied to
organize data archives of unstructured content, for example, photo stocks. Such
systems provide content-based retrieval of data objects (e.g., images), so a user
may find visually similar images to a given one. If he or she is not satisfied with
the result, clicking on an interesting image in the answer may give better answer.
This is called browsing. In another retrieval scenario, users may not have any
particular search intent, but they rather like to inspect a multimedia collection.
Here, a query-by-example search is not suitable in the first phases, because the
user may not have any query object. So, the user would prefer a categorized view
of data and then to dive into categories via regular query-by-example search to
explore the collection. This is called multimedia exploration [4,15]. Such scenarios
share the property that many queries issued to the system are alike, so search
algorithms may optimize repeated queries to save computational resources.

In common database technology, the query efficiency is typically supported
by various indexing structures, storage layouts and disk caching/buffering tech-
niques. So the number of disk I/Os needed to answer a query is greatly reduced.
In modern retrieval systems, analogous approaches are used too. However,
to handle more complex and unstructured data, they are extended to high-
dimensional spaces or even distance spaces where no implicit coordinate system

© Springer International Publishing Switzerland 2016
J. Pokorny et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 60-73, 2016.
DOI: 10.1007/978-3-319-44039-2_5

Optimizing Query Performance 61

is defined [19]. The problem of dimensionality curse then often appears [6]. In
particular, it states that indexing structures stop exhibiting logarithmic com-
plexity in query evaluation but rather become linear [7,8]. This is typically
attributed to the fact that many data partitions must be visited by an indexing
mechanism due to high overlaps among them. Efficiency is then improved by
further filtering conditions and optimized node-splitting strategies in the index-
ing structures [9,22] or by sacrificing precision in query results (approximate
querying) [1,12,13].

In this paper, we study the issue of evaluating repeated queries and propose a
solution that prioritize data partitions during query evaluation to deliver query
results earlier. Instead of caching answers to particular queries, our proposal
stores usefulness of data partitions and localizes such information to increase
effectiveness of accessing data partitions during evaluation of new queries. More-
over, this concept is generally applicable to any metric indexing structure [24].

The paper is structured as follows. In the next section, we summarize related
work. The necessary background of similarity searching and indexing is given in
Sect. 3. Analysis of performance of current indexes that motivates our work is
presented in Sect. 4. The proposal of so-called Inverted Cache Index is described
in Sect. 5 and its evaluation is in Sect. 6. Contributions of this paper and possible
future extensions are summarized in Sect. 7.

2 Related Work

There are many approaches [8,24] for indexing metric spaces that were developed
as generally applicable to a large variety of domains. To process large datasets,
they are designed as disk oriented. The data partitioning principles are typi-
cally based on (i) hierarchical clustering (e.g. M-tree [9]), where each subtree
is covered by a preselect data object (pivot) and a covering radius; (ii) voronoi
partitioning (e.g. M-index [17]), where subtrees are formed by assigning objects
to the closest pivot; and (iii) precomputed distances (e.g. LAESA [23]), where no
explicit structure is built, but rather distances among data objects are stored.

Optimizations of query-evaluation algorithms are based on extending a hier-
archical structure with additional precomputed distance to strengthen filtering
capabilites, e.g. M*-tree [21], cutting local pivots [18]; or on exploiting large
number of pivots in a very compact and reusable way, e.g. permutation prefix
index [11]. These techniques, however, does not analyze the stored data and
accesses to them, but rather constrain data partitions as much as possible.

Another way to make query evaluation much faster is to trade accuracy —
approximate searching. There are many approaches that apply early-termination
and relaxed-branching strategies to stop searching when query result does
improve marginally. A recent approach called spatial approximation sample hier-
archy [13] builds an approximated near-neighbor graph and does not exploit tri-
angle inequality to filter out irrelevant data partitions. This was further improved
and combined with cover trees to design Rank Cover Tree [12].

Distance Cache [20] is a main-memory structure that maintains dynamic
information to determine tight lower- and upper-bounds of distances between

62 M. Antol and V. Dohnal

data objects. This information is collected based on previous querying and is
applied to newly posed queries. So it is applicable to any metric indexing struc-
ture, which is the resemblance with the approach proposed in this paper. Dis-
tance Cache may independently provide further filtering power to our proposal.
We expect it would mainly contribute to M-tree’s performance rather than to
M-index’es, so our results on M-tree with Distance Cache would approach the
ones on M-index.

A cache-like structure for similarity queries, called Snake Table, was proposed
in [2]. It is a dynamically-built structure for optimizing all queries corresponding
to one user session. It remembers results of all queries processed so far and
constructs a linear AESA over them. It accelerates future queries. This approach
behaves clearly as a traditional cache.

3 Background

We assume unstructured data are modeled in metric space and organized in
appropriate indexing techniques here. Before presenting experience with metric
structures that motivated our work, we summarize the necessary background.

3.1 Metric Space and Similarity Queries

The metric space M is defined as a pair (D, d) of a domain D representing data
objects and a pair-wise distance function d : D x D — R that satisfies:

Va,y € D,d(z,y) >0 non-negavity,
Va,y € D,d(x,y) = d(y, x) symmetry,

Va,y € D,z =y < d(z,y) =0 identity,

Va,y,z € D,d(z,z) < d(z,y) + d(y, 2) triangle inequality.

The distance function is used to measure similarity between two objects. The
shorter the distance is, the more similar the objects are. Consequently, a sim-
ilarity query can be defined. There are many query types [10] but the range
query and k-nearest neighbor query are most important ones. The range query
R(q,r) specifies all database objects within the distance of r from ¢. In partic-
ular, R(q,r) = {olo € X,d(q,0) < r}, where X C D is the database to search
in. In this paper, we primarily focus on k-nearest neighbors query since it is
more convenient for users. The user wants to retrieve k& most similar objects to
a query: kNN(q) = A,|A|=kAVoe A,pe X — A,d(q,0) <d(q,p).

3.2 Indexing and Query Evaluation

To organize a database to answer similarity queries efficiently, many index-
ing structures have been proposed [24]. Their principles are twofold: (i) recur-
sively applied data partitioning/clustering defined by a preselected data object
called pivot and a distance threshold, and (ii) in effective object filtering using
lower-bounds on distance between a database object and a query object. These
principles are firstly surveyed in [8].

Optimizing Query Performance 63

960Q

[+ [[rtt+][+4+ [[+4+ | [+4++][+++ [++++]

Fig. 1. Partitioning principles of M-tree (left) and M-index (right)

In this paper, we use a traditional index M-tree [9] and a more recent tech-
nique M-index [17]. Both these structures create an internal hierarchy of nodes
partitioning data space into many buckets — an elementary object storage. Please
refer to Fig. 1 for principles of their organization. M-tree organizes data objects
in compact clusters created in the bottom-up fashion, where each cluster is rep-
resented by a pair (p,r¢) — a pivot and a covering radius, i.e. distance from the
pivot to the farthest object in the cluster. On the other hand, M-index applies
Voronoi-like partitioning using a predefined set of pivots in the top-down way.
In this case, clusters are formed by objects that have the cluster’s pivot as the
closest one. On next levels, the objects are reclustered using the other pivots,
i.e. eliminating the pivot that formed the current cluster. Buckets of both the
structures store objects in leaf nodes, as is exampled in the illustration. So we
use leaf node and bucket interchangeably.

An algorithm to evaluate a kNN query constructs a priority queue of nodes
to access. The priority is defined in terms of a lower bound on distance between
the node and the query object. So a probability of node to contain relevant data
objects is estimated this way. In detail, the algorithm starts with initializing
the queue with the root node of hierarchy. Then it repeatedly pulls the head of
priority queue until the queue is empty. The algorithm terminates immediately,
if the head’s lower bound is greater than the distance of current k** neighbor
to the query object. If the pulled element represents a leaf node, its bucket is
accessed and all data objects stored in there are checked against the query, so
query’s answer is updated. If it is a non-leaf node, all its children are inserted
into the queue with correct lower bounds estimated. M-tree defines the lower
bound for a node (p,r¢) and a query object ¢ as the distance d(q,p) — r¢. For
space constraints, we do not include additional M-tree’s node filtering principles
as well as the M-index’s approach that is elaborate too.

4 Index Structure Effectiveness

Interactivity of similarity queries is the main driving force to make content-
based information retrieval widely used [14]. In the era of Big Data, near real-
time execution of similarity queries over massive data collections is even more

64 M. Antol and V. Dohnal

| [N

v (=] o] 193]

o o o o
Frequency

w B w

o o o

o o o

Occurrence of given query
=
(%)
o

o

0 100 200 300 400 500 600 700 800 900 0

Unique queries ordered by frequency Distance

Fig. 2. Distribution of top-1000 unique Fig.3. Density of distances among
queries ordered by their appearances top-1000 query objects

important, because it allows various analytics to be implemented [5]. In this
section, we present motivating arguments based on experience with a real-life
content-based retrieval system.

4.1 Query Statistics

From Google Analytics, we have obtained statistics about queries processed in
a demonstration application [16]. This application implements content-based
retrieval on the CoPhIR data-set [3] consisting of 100 million images. The appli-
cation’s web interface' shows similar images to a query image chosen randomly
from 100 preselected images. Then the user may browse the collection by clicking
“Visually similar”, or obtain a new query by a regular keyword search. Thus this
application fits our motivating browsing and exploring scenarios perfectly.

Figure 2 shows absolute frequencies of individual top-1000 queries that were
executed during the application’s life time (launched in Nov. 2008). This power-
law like distribution is attributed to the way of presenting an initial search to
a new website visitor. Figure 3 depicts density of distances among these queries,
so the reader may observe there are very similar query objects as well as distinct
ones. This proves that the users were also browsing the data collection.

4.2 Indexing Structure Performance

The main drawbacks of indexing structures in metric spaces are a high amount of
overlaps of their substructures, and not very precise estimation of lower bounds
on distances between data objects and a query object. So the kNN-query eval-
uation algorithm often accesses large portion of indexing structure’s buckets to
obtain precise answer to a query. In Fig. 4, we present the progress of recall while
constraining the number of accessed buckets.

The selected indexing structure representatives were populated with 1 mil-
lion data objects from the CoPhIR dataset and 30NN queries for the top-1000
query objects were evaluated. The figures present average values of recall of such

! http://mufin.fi.muni.cz/imgsearch /similar.

http://mufin.fi.muni.cz/imgsearch/similar

Optimizing Query Performance 65

g 50 Tso
1)

= 40 < 49

30 30

20 -e-original mtree 200 20

10 -e-original mtree 2000
0 10

0 1000 2000 3000 4000 5000 6000 7000 8000

0 100 200 300 400 500 600 700 800 900
Accessed buckets

Accessed buckets

(a) M-tree 200 (b) M-tree 2000
100 100
90 90
80 80
70 70
B 60 = 60
3 50 3 50
= 40 = 40
30 30

20 -e-original mindex 200 20
10 10
0 0
0 5000 10000 15000 20000 25000 30000 0 500 1000 1500 2000 2500 3000
Accessed buckets Accessed buckets
(¢) M-index 200 (d) M-index 2000

Fig. 4. Recall of 30NN for increasing number of accessed buckets of M-tree and M-index
and different bucket capacities (200 and 2,000)

queries. We have tested two configurations for both M-tree and M-index. The
capacity of buckets was constrained to 200 and 2,000 objects to have bushier
and more compact structures. Table 1 summarizes information about them. To
this end, M-index’s building algorithm was initialized with 128 pivots picked at
random from the dataset and the maximum depth of M-index’s internal hier-
archy was limited to 8. From the statistics, we can see that M-tree can adapt
to data distribution better than M-index and does not create very low occupied
buckets, so M-tree is more compact data structure.

From the query evaluation point of view, which is the main point of interest
of this paper, both the structures need to access large amounts of buckets to

Table 1. Structure details of tested indexing techniques.

Indexing Bucket | Buckets | Avg. bucket | Hierarchy | Internal node
structure capacity | in total | occupation |height capacity
M-tree 200 200 11,571 |43 % 4 50

M-tree 2000 | 2,000 1,124 |44 % 3 100

M-index 200 200 62,049 |8% 8 not defined
M-index 2000 | 2,000 10,943 |4.6% 8 not defined

66 M. Antol and V. Dohnal

obtain 100 % recall. M-tree needs to check objects in 8,100 (70 %) and 1,000
(89 %) buckets for 200 and 2,000 bucket capacities, respectively. M-index visits
30,000 (47 %) and 6,500 (58 %) buckets for 200 and 2,000 bucket capacities,
respectively. To complete 95 % recall, the requirements are lower — 40 % and
53% for M-tree versus 12% and 13 % for M-index. From these results, we can
conclude that both the structures are not very effective in accessing buckets with
relevant data early. M-index’s principle of partitioning, however, is much more
effective in early stages of searching because it can get 50 % of correct objects
within 1 percent of accessed buckets. M-tree locates only about 15 % of correct
objects within the same ratio. In M-tree with 2,000 bucket size, the average
number of leaf nodes containing 30 nearest neighbors is 17.

5 Inverted Cache Index

In this section, we propose a technique for prioritizing nodes in indexing hierar-
chies to locate relevant data objects earlier. This technique is based on exploiting
knowledge of accessing data partitions during query evaluation. So, a query eval-
uation algorithm can adaptively re-order its priority queue with respect to use-
fulness of the current node, i.e. the node’s chance to contribute to query result.
We call this technique Inverted Cache Index (ICI), since it does not record the
queries processed so far, but rather the number of times a given partition/bucket
(or data object) contributed to the final result of such queries.

Each object and node in an indexing structure has a memory of its historical
accesses. This memory is used for storing ICI value. After completing evaluation
of a query, its final answer is checked and ICI value is increased for each object
as well as for the object’s leaf node and all its ancestors. ICI values are later
used to update estimated lower bounds in the priority queue in the algorithm.
In fact, mutual distances between data objects and queries are updated based
on popularity. This procedure is captured in pseudo-code in Algorithm 1.

In the following, we propose two different procedures to apply ICI to the
estimates of distances between a node and a query. General principle of such
procedures is to create local attractive force to make accessed data parts closer
to the query or repulsive force for unaccessed or distant data. In addition, we
evaluate two ways of incrementing ICI in the experiments.

5.1 Naive ICI

To modify priorities of individual nodes in algorithm’s priority queue, we propose
a naive solution that mitigates influence of highly accesses data, but still respects
the original distance:

logrcr = logpase (ICT + base), (1)

do’r‘ig (2)

drcr = .
logrcr

Optimizing Query Performance 67

Algorithm 1. Algorithm for kNN query evaluation incorporating ICI.

Input: a query Q = k-NN(g), an indexing structure hierarchy root
Output: List of objects satisfying the query Q.res
Q.res — @ {init query result}
PQ «— {(root,0)} {init priority queue with root and zero as the lower bound}
while P(Q is not empty do
e — PQ.poll {get the first element from the priority queue}
if Q.res[k].distance > e.lower Bound then
break {terminate if e cannot contain objects closer than k‘" neighbor}
end if
for all a € e.getChildren() {check all child nodes} do
if a.isLeaf() then
update @Q.res with a.objects
else
n.lower Bound < get estimate of lower-bound on distance between a and Q
{e.g. M-tree’s original alg. uses (d(Q.q, a.pivot) — a.radius) here}
n.distICI «— apply drcr on original distance between node’s pivot and Q.q
insert n into PQ)
end if
end for
sort PQ by distIC1 of each PQ’s element
end while
for all o € Q.res {increment ICI of object, its leaf node and all parents } do
call incrICT on o {an integer stored at the object}
call inerICT on o.getLeaf() and its parents {an integer stored at the node}
end for
return Q.res

To make the values of logarithm always positive, we add the value of base to ICI
(which is zero for unaccessed data). It is also the only parameter of this method.
Finally, the value of d;¢y is then used to sort the priority queue.

However, this procedure does not create the necessary attractive/repulsive
forces with respect to distance. In particular, the shrinking factor applied on
distance is constant for constant ICI. An example is given in Fig. 5.

5.2 Extended ICI

This procedure is inspired by the gravitation law and general dynamics of forces
between physical objects. In this scenario, the value of ICI can be understood
as a mass of an object/node, which determines an attraction force that pulls it
to a query. The strength of it is straightforwardly updated with the power of
distance. In naive ICI, this force is constant regardless the distance to query.
Extended ICI is defined as follows:

logrcr
—_——, (3)
(domg)p’uﬂ“ + 1

max

powerjcry =

68 M. Antol and V. Dohnal

=
'S

12 -e-Original 20
(] .
210 -+Naive ICI 70
£ g -=ExtendediCl — 60 -
e S 5o -e-original mtree 200
g6 & 10 -=-mtree 200 Ib
%‘7 4 30 ~—mtree 200 qd
2 20 mtree 200 qdg
0 10 ——mtree 200 qdg-freq
0

61 2 3 4 5 6 7 8 95 10 0 1000 2000 3000 4000 5000 6000 7000 8000
Distance after ICI computation Accessed buckets
Fig.5. Comparison of naive and Fig. 6. Progress of recall for different
extended ICI = 20 for increasing origi- strategies to order priority queue
nal distance

drcr = M, (4)
powerrcy
where log;cr is defined in Eq. 1 and d;;,4; stands for the maximum distance in
metric space (for CoPhIR dataset, it is 10).
This procedure introduces a new parameter pwr, which is subject to exper-
imenting, but it brings necessary flexibility when different indexing structure is
used. The behavior of Extended ICI is exampled in Fig. 5.

6 Experiments

We report on an extensive comparison of the proposed ICI techniques with a
standard algorithm for precise KNN queries, i.e. no approximation was used.

The dataset used in experiments is a l-million-object subset of CoPhIR
dataset, where each object is formed by five MPEG-7 global descriptors (282
dimensional vector) and the distance function is a weighted sum of L; and Lo
metrics, for short. Please refer to [3] for complete description.

Since we focus on repeated queries, we used queries issued in the on-line image
retrieval demo (see Sect. 4.1) during the year of 2009 and queries executed during
January, 2010. The first set (Qy2009) contains 993 query objects and is used as
the learning set to adapt ICI values. The second set (Qm1y2010) is the testing
set to analyze the performance of metric indexing structures. In this set, there
are 1000 query objects, where about 10 % queries appear in the learning set and
the remaining 90 % queries are unique. All tests were performed for different
settings and structures to evaluate precise 30NN queries:

— M-tree with capacities of leaf/non-leaf nodes set to 200/50, 400/100 and
2,000/100 objects;

— Me-index built over 128 pivots and maximum tree depth of 8, node capacities
set to 200 and 2,000 objects;

— naive and extended ICI with different bases (5, 10) in log;cr and exponents
(2, 5, 10) in pwrrc;.

Further statistics about the structures are given in Sect. 4.2.

Optimizing Query Performance 69

6.1 Different Query Ordering Strategies

The first group of experiments focuses on determining the best setting of d;cor
distance measure. We used M-tree with leaf node capacity fixed to 200 only and
the other parameters fixed to log base 10 and to power of 2. We studied the
progress of recall at particular number of accessed nodes (buckets). The results
are depicted in Fig. 6, where the following approaches where compared:

original — M-tree’s algorithm for precise kNN evaluation (search queue ordered
by lower-bound distance = (d(g, pivot) — Tcovering);

Ib — naive ICI for dorig = d(g, pivot) — Tcovering:

qd — naive ICI for dyig = d(g, pivot);

qdg — extended ICI for dorig = d(g, pivot), ICI updated for unique queries only;

qdg-freq — same as “qdg”, but incrementing ICI for all queries (including
repeated queries).

The results show that the concept of ICI is valid as the query recall rises
faster. However, the original lower bound on distance must be replaced with
the real distance between the query object and a pivot (node’s representative).
The best results are exhibited by the extended ICI strategy with values of ICI
incremented for every query executed, i.e. including repeated queries. We will
examine this strategy thoroughly in the following sections.

6.2 Influence of Indexing Structure Bushiness

We focus on different leaf-node capacities of M-tree here. In particular, all three
configurations (200, 400, and 2,000) are compared in Fig. 7. Results clearly show
that the extended ICI with query frequency (blue curves in the figure) can out-
perform the original queue ordering regardless the number of leaf nodes. In addi-
tion, we have compared to variants of incrementing ICI values (lines incrIC1T in
Algorithm 1):

qc ICI value incremented by one in each node on the path from bucket to root;
incrICI(x):={x.ICI++}

or each node’s ICI value is increased by the normalized number of objects in the
final query answer that were found in the node’s subtree; the normalization
is done by the cardinality of query answer, which is 30in our scenario.
incrICI(x) :={x.ICI+=|subset(Q.res stored under x)| / [|Q.res|}

The variant gc apparently leads to very high values of ICI in nodes closer to
the root node, which misleadingly attracts irrelevant nodes too near the query
object. It has shown as ineffective in overall progress of recall. The variant or
has a good property of having the sum of ICI values over all nodes on the same
level equal to the number of processed queries, so we use it in all experiments if
not stated otherwise.

70 M. Antol and V. Dohnal

100

100
90 90
80 80
70 70
= 60 = 60
= =
8 s0 S s0 —
= 40 -e-original mtree 200 = 40 -e-original mtree 400
30 —~log 10 pwr 2 or 30 ~—log 10 pwr 2 or
20 -=-|og 10 pwr 2 qc 20 -=-log 10 pwr 2 g¢
10 10 -
0 0
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000
Accessed buckets Accessed buckets
(a) M-tree 200 (b) M-tree 400
100
90
80
70
— 60
g 50
40 i -e-original mtree 2000
zg ——log 10 pwr 2 or
-=-log 10 pwr 2 qc
10 g l0p q

0

0 100 200 300 400 500 600 700 800 S00
Accessed buckets

(c) M-tree 2,000

Fig. 7. Progress of recall for different M-tree configurations (qdg-freq) (Color figure
online)

100 100 e

90 90

80 80

70 70
= 60 —s-original mtree 200 = 60 " —e-original mtree 2000 |
g 50 -=-log 5 pwr 5 or g 50 -=-log 5 pwr 5 or
< 40 ~~log 10 pwr 2 or = 40 ~log 10 pwr 2 or

30 log 10 pwr 5 or 30 log 10 pwr 5 or

20 ——log 10 pwr 10 or 20 ——log 10 pwr 10 or

10 10

0 0 =
0 1000 2000 3000 4000 5000 6000 7000 8000 0 100 200 300 400 500 600 700 800 900
Accessed buckets Accessed buckets
(a) M-tree 200 (b) M-tree 2,000
100 o espSECOOBIICSISSO DD e DI P IOeDt

90

80

70
=60 'Tf - ; -s-original mindex 2000
g 50 { —e-original mindex 200 o8 10 2
g | g 10 pwr

40 | -=-log 10 pwr 2 log 10 5

30 ~-log 10 pwr 5 08 1o pwr

20 ‘;‘ log 10 pwr 10 log 10 pwr 10

10 |

0 =
0 5000 10000 15000 20000 25000 30000 0 500 1000 1500 2000 2500 3000
Accessed buckets Accessed buckets
(¢) M-index 200 (d) M-index 2,000

Fig. 8. Progress of recall while varying parameters of extended ICI (qdg-freq)

Optimizing Query Performance 71

6.3 Varying Parameters of Extended ICI

The last group of experiments examines the parameter of extended ICI, namely
the base of logarithm and the exponent of power. In Fig. 8, the progress of recall
is presented for both M-tree and M-index with leaf node capacities 200 and
2,000 objects. From the large number of combinations of log base and exponent,
we selected 5/5, 10/2, 10/5 and 10/10 only, because such settings were able to
exceed the performance of original kNN algorithm. As for M-tree, the results
quite clearly support the configurations 5/5 and 10/2 for 200 and 2,000 bucket
capacities, respectively. The results for M-index look very similar to the original
kNN algorithm in the figure. But we can still see higher efficiency for higher
values of recall. In particular, starting from 80 % recall, the extended ICI queue
ordering can access promising buckets earlier. Here, the best configuration is
10/5.

Table 2 presents details on the number of accessed buckets needed to obtain
50 % and 95 % recall of 30NN queries. It can be seen that the best results are
dependent on the indexing structure setup (bucket capacity), which is mainly
evident from the data concerning M-tree. High performance of original M-index’s
algorithm in early stages of query processing causes performance declination for
50 % recall. However, the improvement is eminent while considering higher values
of recall, which calls for applying our method to approximate kNN evaluation.
From the data, we can generally state that better results are obtained for M-
index than for M-tree. It is also noticeable that greater bucket sizes increases
the improvement achieved by ICI.

To sum up all the experiments, the concept of reordering priority queue with
respect to previous usefulness of data partitions proved as valid. Since disk-
oriented indexing structures prefer larger bucket capacities, the extended ICI
with log base of 10 and exponent in power of 5 is a good and universal choice.

Table 2. Improvement in query costs for 50 % and 95 % recall.

Setup information 50 % query completion 95 % query completion

Indexing Best setup | Original | Nodes | Total Original | Nodes | Total

structure (log-pwr) | nodes needed | improvement | nodes needed | improvement
needed needed

M-tree 200 5-5 1600 1000 37,5% 4600 4200 8,7%

M-tree 2000 | 10-2 210 160 23.8% 590 470 20,5 %

Me-index 200 |10-5 600 800 -33% 8000 6000 25 %

M-index 2000 | 10-5 100 130 —-30% 1500 950 37 %

7 Conclusion and Future Work

We have presented a new approach to query answering optimization in metric
spaces called Inverted Cache Index (ICI). Previous accesses to data partitions

72 M. Antol and V. Dohnal

are recorded and their participation on query answering is later used to give
search preference to such partitions. However, it is not blindly applied, but rather
the distance values in metric space are reflected to create proper attractive or
repulsive forces correspondingly.

Application of ICI presents multidimensional complexity as it is needed to
analyze behavior on different datasets, different indexing structures, and differ-
ent parameters of extended ICI formula. We have shown that more than 35 %
improvement is achieved to obtain 95% recall for a state-of-the-art indexing
structure — M-index. We consider this to be the greatest contribution here.

Since the whole concept is applicable to any hierarchical organization, we plan
to investigate it further. Additionally, ICI’s optimization of approximate query
evaluation is straightforward and we will investigate it in the future. Another
issue to study is to vary the amount of historical bucket-access recordings to take
into consideration. Its implementation is easy, but new findings may be obtained.
The ultimate goal would be a definition of procedure that could automatically
swap search queue ordering between ICI and the original priority depending on
current data distribution.

Acknowledgements. This work was supported by Czech Science Foundation project
GA16-18889S.

References

1. Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region proximity in metric spaces
and its use for approximate similarity search. ACM Trans. Inf. Syst. (TOIS) 21(2),
192-227 (2003)

2. Barrios, J.M., Bustos, B., Skopal, T.: Analyzing and dynamically indexing the
query set. Inf. Syst. 45, 37-47 (2014)

3. Batko, M., Falchi, F., Lucchese, C., Novak, D., Perego, R., Rabitti, F.,
Sedmidubsky, J., Zezula, P.: Building a web-scale image similarity search system.
Multimedia Tools Appl. 47(3), 599-629 (2009)

4. Beecks, C., Uysal, M.S., Driessen, P., Seidl, T.: Content-based exploration of multi-
media databases. In: Proceedings of the 11th International Workshop on Content-
Based Multimedia Indexing (CBMI), pp. 59-64. IEEE, June 2013

5. Beecks, C., Skopal, T., Schoffmann, K., Seidl, T.: Towards large-scale multimedia
exploration. In: Proceedings of the 5th International Workshop on Ranking in
Databases (DBRank), Seattle, WA, USA, pp. 31-33. VLDB Endowment (2011)

6. Bohm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: index
structures for improving the performance of multimedia databases. ACM Comput.
Surv. 33(3), 322-373 (2001)

7. Chévez, E., Marroquin, J.L., Navarro, G.: Overcoming the curse of dimensionality.
In: Proceedings of the European Workshop on Content-Based Multimedia Indexing
(CBMI), Toulouse, France, 25-27 October 1999, pp. 57-64 (1999)

8. Chévez, E., Navarro, G., Baeza-Yates, R.A., Marroquin, J.L.: Searching in metric
spaces. ACM Comput. Surv. (CSUR) 33(3), 273-321 (2001)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Optimizing Query Performance 73

Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity
search in metric spaces. In: Jarke, M., Carey, M.J., Dittrich, K.R., Lochovsky,
F.H., Loucopoulos, P., Jeusfeld, M.A. (eds.) Proceedings of the 23rd International
Conference on Very Large Data Bases (VLDB), Athens, Greece, 25-29 August
1997, pp. 426-435. Morgan Kaufmann (1997)

Deepak, P., Prasad, M.D.: Operators for Similarity Search: Semantics, Techniques
and Usage Scenarios. Springer, Heidelberg (2015)

Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-
larity search. Inf. Process. Manage. 48(5), 889-902 (2012)

Houle, M.E., Nett, M.: Rank-based similarity search: reducing the dimensional
dependence. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 136-150 (2015)
Houle, M.E., Sakuma, J.: Fast approximate similarity search in extremely high-
dimensional data sets. In: Proceedings of the 21st International Conference on
Data Engineering (ICDE), pp. 619-630, April 2005

Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia informa-
tion retrieval: state of the art and challenges. ACM Trans. Multimedia Comput.
Commun. Appl. 2(1), 1-19 (2006)

Mosgko, J., Loko¢, J., Grosup, T., Cech, P., Skopal, T., Lansky, J.: MLES: multi-
layer exploration structure for multimedia exploration. In: Morzy, T., Valduriez,
P., Bellatreche, L. (eds.) New Trends in Databases and Information Systems. Com-
munications in Computer and Information Science, vol. 539, pp. 135-144. Springer,
Switzerland (2015)

Novak, D., Batko, M., Zezula, P.: Generic similarity search engine demonstrated by
an image retrieval application. In: Proceedings of the 32nd International ACM Con-
ference on Research and Development in Information Retrieval (SIGIR), Boston,
MA, USA, p. 840. ACM (2009)

Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36, 721-733 (2011)
Oliveira, P.H., Traina Jr., C., Kaster, D.S.: Improving the pruning ability of
dynamic metric access methods with local additional pivots and anticipation of
information. In: Morzy, T., Valduriez, P., Ladjel, B. (eds.) ADBIS 2015. LNCS,
vol. 9282, pp. 18-31. Springer, Heidelberg (2015)

Samet, H.: Foundations of Multidimensional And Metric Data Structures. The
Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann,
San Francisco (2006)

Skopal, T., Lokoc, J., Bustos, B.: D-cache: universal distance cache for metric
access methods. IEEE Trans. Knowl. Data Eng. 24(5), 868-881 (2012)

Skopal, T., Hoksza, D.: Improving the performance of M-Tree family by nearest-
neighbor graphs. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007.
LNCS, vol. 4690, pp. 172-188. Springer, Heidelberg (2007)

Skopal, T., Pokorny, J., SnaSel, V.: Nearest neighbours search using the PM-
Tree. In: Zhou, L., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453,
pp. 803-815. Springer, Heidelberg (2005)

Vilar, J.M.: Reducing the overhead of the AESA metric-space nearest neighbour
searching algorithm. Inf. Process. Lett. 56(5), 265-271 (1995)

Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer, New York (2005)

	Optimizing Query Performance with Inverted Cache in Metric Spaces
	1 Introduction
	2 Related Work
	3 Background
	3.1 Metric Space and Similarity Queries
	3.2 Indexing and Query Evaluation

	4 Index Structure Effectiveness
	4.1 Query Statistics
	4.2 Indexing Structure Performance

	5 Inverted Cache Index
	5.1 Naïve ICI
	5.2 Extended ICI

	6 Experiments
	6.1 Different Query Ordering Strategies
	6.2 Influence of Indexing Structure Bushiness
	6.3 Varying Parameters of Extended ICI

	7 Conclusion and Future Work
	References

