
Fair Knapsack Pricing for Data Marketplaces

Florian Stahl1,2(B) and Gottfried Vossen1,2

1 ERCIS, WWU Münster, Münster, Germany
{flst,vossen}@wi.uni-muenster.de

2 Waikato Management School, The University of Waikato,
Hamilton, New Zealand

{fstahl,vossen}@waikato.ac.nz

Abstract. Data has become an important economic good. This has
led to the development of data marketplaces which facilitate trading
by bringing data vendors and data consumers together on one platform.
Despite the existence of such infrastructures, data vendors struggle to
determine the value their offerings have to customers. This paper explores
a novel pricing scheme that allows for price discrimination of customers
by selling custom-tailored variants of a data product at a price suggested
by a customer. To this end, data quality is adjusted to meet a customer’s
willingness to pay. To balance customer preferences and vendor inter-
est, a model is developed, translating fair pricing into a Multiple-Choice
Knapsack Problem and making it amenable to an algorithmic solution.

Keywords: Data pricing · Knapsack · Data marketplaces · Data quality

1 Introduction

Over the last decades, information has become an important production factor
which has led to a point at which data, the basic unit in which information is
exchanged, is increasingly being traded on data marketplaces [2,12,15]. Data
marketplaces are platforms allowing providers and consumers of data and data-
related services to interact with each other. A central problem is the determi-
nation of a price for data that is considered fair from both the customer and
the vendor perspective. We cast this problem into a universal-relation setting,
demonstrate the impact of data quality, and propose an algorithmic solution
based on the Multiple-Choice Knapsack Problem.

[1] argues that relational views can be interpreted as versions of the ‘infor-
mation good’ data – an assumption that will also be made here – and identifies
three open problems: (1) pricing of data updates; (2) pricing of integrated data
for complex value chains; and (3) pricing of competing data sources that provide
essentially the same data but in different quality.

The first challenge can be addressed by calculating the difference between
the full price of the new and the old product, which is similar to an approach
suggested in [23] for buying samples of XML data. The second problem may
be addressed by introducing an intermediary pricing for all providers refining
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 46–59, 2016.
DOI: 10.1007/978-3-319-44039-2 4



Fair Knapsack Pricing for Data Marketplaces 47

the raw data. This means that the raw data vendor operates using established
means; all vendors following in the value chain have to deal with the output
price of the lower level vendor as cost and build their prices accordingly.

The last question has been addressed in [21] on which this paper builds, by
presenting a quality-centric price pricing model. In particular, we will demonstrate
how the quality of relational data products can be adapted to match a buyer’s
willingness to pay by employing a Name Your Own Price (NYOP) model. We
thus achieve two things: Providers of data can discriminate customers so that they
realize the maximum price a customer is willing to pay, and customers receive a
product that is tailored to their own data quality needs and budgets. To start
with, providers offer their data at a price P and a given quality. If a customer is
willing to accept it, the deal is settled. Otherwise, if a customer wants to pay W <
P , then the quality is adjusted accordingly. This concept of trading data quality
for a discount was previously suggested in [23,24] and applied to both relational
as well as XML data; here we focus on relational data only. In contrast to this
previous work, which only considered one quality dimension each (completeness
and accuracy), we consider a larger number of quality dimensions (that can easily
be extended) and take user preferences into account.

Our setting is that of relational databases [7]. Data marketplaces host data
for a number of providers selling relational data with given attributes. For our
purposes, this data can be described as a relation r with n unique attributes
Ai and domains dom(Ai), 1 ≤ i ≤ n. The set of all attributes is denoted as
X = {A1, . . . , An}. Consequently, data is described as an instance r of relational
schema R with attribute set X. Most of the time, data providers will not sell
one relation only, but m > 1 relation instances {r1, . . . , rm}. When distinct
provider act on a given marketplace, we assume that each comes with its own
set of relations (thus, we do not delve into issues of providing a common schema
across providers or related questions).

Since customers will often require data from different relations, which then
need to be joined, we make the simplifying assumption that data providers’ offer-
ings come as a universal relation (u) [14]. We assume that, given {r1, . . . , rm}, u
is created by joining all m relations rj in such a way that no data is lost, using a
full outer join. This has the advantage that no further joins are necessary during
the formal elaborations in the remainder of this paper. Furthermore, any original
relation rj may be obtained by appropriate selections and projections over u.
Formally, the universal relation u can be defined as . Notice
that this requires attributes to be unique within each single database; however,
this can also be achieved by renaming. Since (a subset of) relational algebra is
good enough for querying a marketplace in our setting, we can guarantee that
the time for collocating data is negligible when calculating prices. Also, we cal-
culate the price based on the resulting view rather than the query itself. Given
that users shall receive a relational data product that matches their data quality
needs, it is supposed that users know their complete quality preferences and can
express them as a total order.

The remainder of this paper is organized as follows: Relevant quality crite-
ria will be described and the notation of utility introduced in Sect. 2. Section 3



48 F. Stahl and G. Vossen

will describe how a custom-tailored data product can be created based on a
customer’s willingness to pay, detailing the calculation of appropriate quality
levels as well as the creation of the final data product. The paper is concluded
in Sect. 4.

2 Quality-Based Pricing

In [21,22] a total of 21 quality criteria, originally identified as relevant in the
context of the Web in [17], have been reviewed regarding their applicability to
data marketplaces and specifically to the idea of versioning, i. e., the creation of
lower quality versions of a relational data product. This has resulted in seven
quality criteria that allow for continuous versioning (tailoring) which means that
for these criteria an arbitrarily large number of versions can be created automat-
ically. They will be referred to as V = {Accuracy, Amount of Data, Availability,
Completeness, Latency, Response Time, Timeliness}. For simplicity, only two
measures in V, which are all scaled in the interval [0, 1], will be demonstrated
here in detail, namely Completeness and Timeliness.

Completeness will be interpreted as a null-freeness score. To this end, we fol-
low the closed world assumption (CWA) [3], as it is not particularly relevant why
a value is missing; fact is it cannot be delivered to the customer. Furthermore, we
will suppose that all information necessary to calculate a quality score is avail-
able within the data. Thus, quality criteria such as consistency that cannot be
calculated without knowing the ground cannot be considered in this framework.
In contrast, completeness or null-freeness can be evaluated by measuring the
number of cells of a relation to be sold not containing a null-value (⊥) compared
to the maximum amount of data possible:

c(u) =
|{μ[A], μ ∈ u,A ∈ Xu|μ[A] �=⊥}|

|u| × |Xu| (1)

According to [3], Timeliness, i. e., the freshness of data, depends on a number of
characteristics, including (a) delivery time, i. e., the time at which the datum is
being delivered; (b) input time, i. e., the time at which the datum was entered
into the system; (c) age, i. e., the age of the datum when entered into the system;
and (d) volatility, i. e., the typical time period a datum keeps its validity. We
abstract from age, as it is assumed that time-sensitive data is entered into the
system immediately. Furthermore, in most cases it is only relevant when a datum
was last updated and how long it remains valid. Adopting the definition of [3],
the Timeliness of a record or tuple tμ is a function of delivery time (DT ), input
time (IT ), and volatility (v) defined as:

tμ(IT, v) = max
{
0, 1 − DT−IT

v

}
(2)

In order to make Timeliness measurable, we assume that a LastUpdated attribute
and a volatility constant v exist for each view u. Then, the overall timeliness score
can be calculated as average timeliness for all tuples in u:



Fair Knapsack Pricing for Data Marketplaces 49

tim(u) =

∑

μ∈u

tμ(μ[LastUpdated], v)

|u| (3)

In addition to the seven criteria that allow for continuous versioning, five crite-
ria have been established for which a limited number of versions can be created,
i. e., that allow for discrete versioning, collocated in G = {Customer Support,
Documentation, Security, Representational Conciseness, Representational Con-
sistency}. From this category, Customer Support will serve as an example. For
illustration purposes, suppose the following service levels:

1. E-mail support with a 48 h response guarantee;
2. Telephone support (9 to 5) and 24 h response time e-mail support;
3. 24/7 telephone and e-mail support.

To address all quality criteria we introduce Q = V ∪ G. Furthermore, the order
of quality criteria will be of importance, hence, from now on, a list of quality
criteria q will be used: q = (q1, . . . , qnq

) with nq = |Q| elements.
In micro-economics, it is a fundamental assumption that goods provide utility

and commonly micro economists investigate utility functions for a number of
goods [18]. In contrast, we will here focus on one relational data good and its
quality properties. Therefore, the utility or benefit function will be formalized as
b = f(q1, . . . , qnq

); here qi denotes the quality scores for the i-th quality criterion.
Moreover, it will be supposed that quality criteria are independent, i. e., that the
consumption of one quality criterion does not effect the utility of other quality
criteria. While this is not the case for extremes, e. g., an incomplete data set is
less likely to be accurate than a complete one, this is a necessary simplification to
handle all dimensions in the following. Two well-known function types commonly
serve as utility functions: logarithm functions (first and foremost the natural
logarithm) as well as any root function a

√
x, a ∈ N≥2.

We propose to create relational data product versions based on the expected
utility. Thus, the utility function is used to create ml utility-based versions or
levels so that bj − bj−1 = const., 1 < j ≤ ml. To this end, the quality scores
which by definition lie in the interval [0, 1] will be scaled to fit a sector of the
utility function’s domain [xmin, xmax], e. g., [0, 100] for the square root. It is
worth noting that data with some quality scores beneath a certain threshold
tq are useless. To address this, it is also possible to transform only the interval
[tq, 1], 0 ≤ tq ≤ 1 from the original score to the representative sector of the utility
function, i. e., at a quality score of tq the utility level of that quality score is 0. To
arrive at the necessary minimum quality score for each utility level, the inverted
utility function is used, e. g., x2 for

√
x.

In the following, we will use the square root function as it produces more
reasonable utility level intervals. A positive side-effect of using the square root
with, for instance, a domain of [1, 100] and ml = 10 utility levels, as done in this
paper, is that examples are more illustrative.

Now, the utility-based quality level vector l contains the concrete values of
the utility level lj in order. In the example manifestation presented here, we
suppose that lj = j, 1 ≤ j ≤ ml.



50 F. Stahl and G. Vossen

While this applies for those quality criteria that allow for continuous version-
ing (i. e., q ∈ V), for criteria that only allow for discrete versioning (i. e., q ∈ G)
a smaller number has to be chosen. Here, we suggest using three utility levels
l1 = 3, l2 = 6, l3 = 9 for q ∈ G – following Goldilocks principle, discussed in
[20], according to which 3 is a good number of versions in the absence of further
indicators. To differentiate between the utility level vectors of both sets, they
have an according superscript, resulting in the two vectors lV and lG. Since the
latter quality levels do not correspond to concrete quality scores, determining a
value for them is meaningless. Therefore, the amount of service for each level has
to be manually determined, as has been shown for Customer Support. Sample
figures for both variants are presented in Table 1, where levels for the second
type have been marked with an X.

Table 1. Used utility level mapped to versions; showing the required quality score
(QS).

Utility level (lj) 0 1 2 3 4 5 6 7 8 9 10

QS for q ∈ V 0 1 4 9 16 25 36 49 64 81 100

QS for q ∈ G 0 ⊥ ⊥ X ⊥ ⊥ X ⊥ ⊥ X ⊥

While in reality the utility provided by a certain quality level is likely to differ
between customers, the general trend is the same and will here be approximated
by the same function. Furthermore, we acknowledge that not all quality criteria
have the same importance for customers. For example, Completeness may be
more important for a customer than Timeliness because they want to do some
time-independent analysis, while for another customer Timeliness might be more
important because they base time-critical decisions on the data. To represent this
in the model, the utility gained from each qi’s quality score is weighted with a
user provided ωi that represents the importance of all quality criteria relative to
each other. To this end, users are asked to express their preferences as mentioned
earlier. This results in a weight vector ω = (ω1, . . . , ωnq

) for which
∑nq

i=1 ωi = 1
holds.

A weight matrix B can now be calculated for each user. This matrix shows
for which quality criterion qi with an according weight ωi what actual utility bij

can be reached for the different utility levels lVj and lGj . It is calculated as follows,
where the quality levels in lG are normalized:

bij =

⎧
⎨

⎩

ωi × lVj f. a. qi ∈ V

ωi × lGj×lVml

lGml

f. a. qi ∈ G

Inspired by [23,24], this work builds on the idea that providers offer data for
an ask price P and customers may suggest an alternative (lower) bid price W .
If W < P the quality of the data is adjusted to meet the price W suggested



Fair Knapsack Pricing for Data Marketplaces 51

by the customer. In contrast to [23,24] we consider an arbitrary number of
quality criteria. To this end, besides P providers have to specify the importance
of different quality criteria from their point of view. This may either be done
based on the cost the different quality criteria cause when being created or based
on the perceived utility of the different criteria. As argued in [21], the utility-
based approach is preferable; however, the cost-based approach can serve as
point of reference if no further information is available. Thus, similar to the user
weighting vector ω, providers define a weight vector κ = (κ1, . . . , κnq

) for which∑nq

i=1 κi = 1 holds.
For the actual attribution of individual prices to the different quality levels

and quality criteria, two fundamentally different approaches can be implemented.
In any case the overall price would be distributed to the different quality criteria
using κ, with the highest quality level being sold at κP . Then, prices can be
attributed to the different quality levels using the utility levels or using the
relative satisfaction of each quality criterion. The first will lead to linear prices
corresponding to the benefit, which is arguably a fair way of pricing a data
product. In this case, the price wij for each quality criterion qi at each quality
level lj is calculated using a formula of the form wij(P, κ, b), in detail:

wij = P × κi × bij

bi,nq

The alternative is to model prices linear to the actual quality scores required
to reach this level. This will result in increasing prices for the utility levels.
However, looking at it from the discount perspective, this means that the biggest
discount is granted for the sacrifice of the first utility level and then decreases.
The calculation of wij is in this case conducted based on the inverted utility
function wij(P, κ, l) = P × κi × b−1(lj) and the overall utility levels in l:

wij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P × κi × b−1(lVj )

b−1(lVml
)

f. a. qi ∈ V, 1 ≤ j ≤ lVml

P × κi × b−1(lGj )

b−1(lGml
)

f. a. qi ∈ G, 1 ≤ j ≤ lGml

Which of the two is the better alternative cannot be stated per set. There are
some quality scores, such as the amount of data, for which it is sensible to grant
a good discount if less data is to be delivered. In other cases such as accuracy it
might make more sense to scale prices according to the utility levels. That being
said, what model to choose is a business decision that has to be made for each
individual criterion depending on the attributes of the criterion as well as on the
intended fairness of the pricing model. Given the stronger decrease when using
the inverted utility function, the average price across all levels is smaller than
in the linear case, which speaks in favor of the latter model from a customer’s
perspective. After all, it is not important what product is actually delivered as
the cost of creating it is marginal. What is more important is that customers get
a fair discount for their scarifies of quality. This is achieved by either of them.



52 F. Stahl and G. Vossen

3 Fair Knapsack Pricing

The knapsack problem was already studied in 1897 and has been modified in
several ways since. One of them is Multiple-Choice Knapsack Problem (MCKP)
[11] used here. Instead of choosing items from one set of available items, they are
chosen from nq sets, an additional restriction being that from each set exactly
one item has to be chosen. Using the variables from the previous sections, pricing
can be formalized using the MCKP :

maximize

nq∑

i=1

ml∑

j=1

bijaij (4)

subject to

nq∑

i=1

ml∑

j=1

wijaij ≤ W (5)

and

ml∑

j=1

aij = 1, i = 1, . . . , nq (6)

and aij ∈ {0; 1}, i = 1, . . . , nq, j = 1, . . . , ml (7)

Equations 4 and 5 extend the original knapsack problem to multiple sets
to choose from. Equation 6 restricts the choice to one item per set, and Eq. 7
determines that items are indivisible.

In order to create a custom-tailored relational data product, we need to solve
a Multiple-Choice Knapsack Pricing Problem (MCKPP). This is non-trivial since
already the basic knapsack is NP-complete [8]. MCKP is also NP-complete [10],
as it can be reduced from the ordinary knapsack problem [11]. Consequently,
for a very large input, an exact solution cannot be expected within reasonable
time, so that approximations are necessary. Fortunately, MCKP can be solved
in pseudo-polynomial time using, for instance, dynamic programming or several
other algorithms [19]. Most algorithms start by solving the linear MCKP to
obtain an upper bound. For the linear MCKP the restriction aij ∈ {0; 1} has
been relaxed to aij ∈ [0, 1], which means it allows choosing a fraction of an
item [19].

Algorithm 1 presents a greedy algorithm to solve MCKPP. It has been
adapted from the one outlined in [11]. The main difference is that the origi-
nal algorithm contained a preparation step to derive the LP-extremes of each
set, which is not necessary for MCKPP because of the way in which the matrices
are constructed. The algorithm eventually results in a matrix A indicating which
items to choose, a value W − c̄, which represents the total cost of these items,
and a score z, indicating the total utility achieved. Moreover, it calculates the
so-called split item ast, i. e., the item that fits only partially into the knapsack,
where s indicates the criterion an t the level.



Fair Knapsack Pricing for Data Marketplaces 53

Algorithm 1. Greedy Algorithm to Solve MCKPP adapted From [11].
1: # Let i be the index for quality scores and n denote the number of quality scores;

j is the utility level index and m denotes the total number of levels.
2: #Initialize:
3: for i = 1 . . . n do
4: c̄ = W − wi1 � Residual weight
5: z = ui1 � Achieved utility
6: for j = 2; j < m do
7: b̃ij = bij − bi,j−1 � Incremental benefit matrix
8: w̃ij = wij − wi,j−1 � Incremental weight matrix

9: ẽij =
ũij

w̃ij
� Incremental efficiency matrix

10: end for
11: end for
12: #Sort:
13: L := sort(ẽij) � List of ẽij ; maintaining original indices
14: #Solve:
15: for all ẽij in L do
16: if c̄ − w̃ij > 0 then � If space left add to knapsack
17: z += p̃ij

18: c̄ −= w̃ij

19: aij = 1
20: ai,j−1 = 0
21: else � Split item ast has been found
22: ats = c̄

w̃ts

23: at,s−1 = 1 − ats

24: z += p̃st

25: break loop
26: end if
27: end for

At this point, we suppose that the number n of quality scores is strictly larger
than the number m of quality levels, with m ≤ 10. As a consequence, only n is
relevant while initialising the knapsack. Thus, the overall runtime of Algorithm 1,
has a running time of O(n log n) owing to the sorting in Line 13. This form of
a greedy-type algorithm is often used as a starting point for further procedures
such as branch-and-bound [11]. Furthermore, the split solution is generally a
good heuristic solution. However, It should be mentioned that the greedy algo-
rithm can perform arbitrarily bad. This means while it operates quickly, there
is no guarantee the solution produced is (close to) an optimal solution [11]. Yet,
ε-approximation algorithms exist provide certain performance guarantees. [9]
presents a binary search approximation algorithm running in time O(nt log nq),
where nq is the number of quality criteria and nt is the total number of items
over all quality criteria nt =

∑nq

i=1 mli
1. However, the guarantee is ε = 0.8, which

is still a considerably bad result even though the authors argue that the actual

1 mli is used to indicate that depending on whether qi ∈ V or qi ∈ G, ml
G or ml

V has
to be substituted.



54 F. Stahl and G. Vossen

performance may be much better than that. Using dynamic programming, a
fully polynomial time approximation scheme can be developed [11]. [13] presents
an ε-approximation that runs in O(nt log nt + ntnq

ε ), the first term being due to
sorting which might be omitted here. [11] presents a similar approach.

Approaches to solve MCKP optimally can be found [4–6,19]. Moreover,
MCKP can commonly be solved quickly in practice [6]. Given that in the
MCKPP the weights correlate with the benefits per definition, this results in
strongly correlated data instances, which are particularly hard for knapsack algo-
rithms, as no dominated items exist [11,19].

Once the appropriate quality levels have been calculated, the data needs to
be modified before being delivered. Largely, modifications to the quality can be
grouped into three categories:

1. The modification of accompanying services applying to q ∈ G, e. g., delivery
conditions and comprehensiveness of support ;

2. The modification of the data itself, e. g., decreasing the completeness;
3. The modification of the view on the data, e. g., a limited timeliness.

We argue that for any of the quality measures used in our framework, an
algorithm can be found that creates a quality decreased relational data prod-
uct according to a proposed discount. For accuracy, this has extensively been
described in [24], here, we consider algorithms to modify the Completeness as
representation of a quality measure that needs modification of the data itself as
well as Timeliness as representation of a quality criterion that needs modifica-
tion of a view. For Customer Support as representation for quality measures in
G, simply the calculated level of service has to be agreed on in a contract.

Obviously, the order in which the quality is decreased is important; for
instance, if null values are inserted first and then the accuracy is reduced, the
accuracy reduction might build on a wrong distribution. Therefore, we suggest to
apply criteria first that reduce the size, then lower the quality of further quality
metrics and reduce completeness last.

The first quality measure to be looked at in more detail is Complete-
ness, which we have defined as the number of non-null value cells divided by
the overall number of cells in Eq. 1. Alternatively and supposing that nv =
|{μ[A], μ ∈ u,A ∈ Xu|μ[A] = ⊥}|, this may be written as:

c(u) = 1 − nv

|u| × |Xu| (8)

Now, in order to reduce the completeness further, null values have to be inserted
at random. In the following u is the universal relation to be sold before any
modification and u∗ afterwards. The same applies to other relevant variables, nv

is the number of null values before and nvtarget after the quality modification, the
suffix indicating a target value. Furthermore, xmax denotes the maximum of the
domain of the utility function and x the utility score at the chosen level. To lower
the completeness the actual value for completeness has to be determined and the
target value for completeness has to be calculated based on the selected quality
level; consequently the target number of null values nvtarget can be calculated:



Fair Knapsack Pricing for Data Marketplaces 55

ct =
x

xmax
× c(u);

x

xmax
× c(u) != 1 − nvtarget

|u| × |Xu| (9)

which results in:

nvtarget =

⌊

|u| × |Xu| ×
(

1 − x

xmax
c(u)

)⌋

(10)

Note that the floor function has to be used in Eq. 10 to ensure nvtarget is an
integer, as no half null values exist. Alternatively, the ceiling function could be
used, this is at the providers discretion but would result in a slightly worse
quality. Based on this target value for null values nvtarget, a sample method to
achieve the modified data set u is described in [21]; it is omitted here for space
reasons. We now suppose that u′ is a modification of u with null values added.

Timeliness, as defined in Eq. 3, does not require an algorithm as it is con-
cerned with delayed delivery. However, it requires some calculus. In order to
further analyse it regarding the quality score, Eq. 2 hast to be plugged in to
result in:

tim(u) =

∑

μ∈u

max
{

0, 1 − DT−μ[LastUpdated∗]
v∗

}

|u| (11)

For better readability μ[LastUpdated∗] will be denoted as LU. Furthermore, the
max function can be omitted supposing that the target score ttarget = x

xmax
is

positive. Additionally |u| will be represented by n. Thus:

tim(u) =

∑

μ∈u

1 − DT−LU
v∗

n
(12)

Plugging in a target value ttarget yields

ttarget
!≥

∑

μ∈u

1 − DT−LU
v∗

n
⇔ ttarget × n × v∗ ≥ n × v∗ −

∑

μ∈u

DT − LU

(13)

Given that only LU is variable:

ttarget × n × v∗ ≥ n × v∗ −
⎛

⎝n × DT −
∑

μ∈u

LU

⎞

⎠ (14)

1
n

×
∑

μ∈u

LU ≤ v∗ × (ttarget − 1) + DT (15)



56 F. Stahl and G. Vossen

Equation 15 shows what the average timeliness depending on the target value
ttarget should be and could also be written as:

AvgLU(t) ≤ v∗ × (ttarget − 1) + DT or LUtarget ≤ v∗ × (ttarget − 1) + DT

The delivery time will always be the current time. Thus, it will be represented by
the variable now, which will be replaced by the current timestamp upon query
time. This allows for further modification to result in

LUtarget ≤ now − v∗ × (1 − ttarget).

Introducing a delay function:

d(v∗, ttarget) := v∗ × (1 − ttarget) results in LUtarget ≤ now − d(v∗, ttarget)

At first sight one might require each data set to have an average timeliness not
greater than LUtarget. However, using the overall average of a data set is slightly
problematic, as this allows the selection of data that is very old together with
very fresh data and then only use the fresh data. To avoid this, the timeliness of
any record is required to be not greater than LUtarget. In this way it is ensured
that records with a timeliness worse than or equal to what has been paid for is
delivered. In practical terms customers do query a view u∗ on u such that:

u∗ = σμ[LastUpdated∗]≤now−d(v,ttarget)(u)

In this model it is important that when records are updated, the origi-
nal record is kept so that customers can still access the older record rather
than receiving an empty result set. This might seem to complicate matters for
providers; from a practical point of view, they will only need to store a number of
versions as no customer will complain about getting fresher data than expected.

Finally, addressing the question of pricing competing data sources based on
quality, MCKPP can be applied to multiple vendors as well. In this case not
the scores of one provider have to be mapped to the quality levels but the best
scores of all providers have to be used to determine the quality levels. This
may results in a scenario where some providers might not be able to deliver all
quality criteria at the highest level. Subsequently a MCKPP has to be solved
for all providers given a customer’s query and preference individually. In doing
so, it can be determined which provider offers the best product for a customer
at the given bid price W .

4 Conclusions and Future Work

In this paper, we have demonstrated a pricing model that allows providers of
relational data products to apply a Name Your Own Price scheme. This enables
them to tap into the willingness-to-pay of customers who would otherwise not
buy their (relational) data product. By adjusting the quality it can be ensured



Fair Knapsack Pricing for Data Marketplaces 57

that a customer gets exactly what they pay for, so that a form of fair pricing
results. In fact, using this model providers do not have to specify a price publicly
at all. They also could use an internal price P and still apply the same pricing
model. While this would require users to bid exactly the price they are willing to
pay it lacks transparency. An alternative would be advertising a price P p > P
publicly. This would result in additional profits from customers paying a price
W for which P ≤ W ≤ P p holds.

With developing a quality-based pricing model, it has been shown that pric-
ing on a data marketplace can be expressed as a MCKP. The components that
influence MCKPP are Quality Criteria, Customer Info comprising the prefer-
ence vector ω and a bid price W , Provider Info comprising a weighting vector
κ and an ask price P , a versioning function b, a weighting function w, and a
Quality Adaptation Algorithm for each Quality Criterion. It is a distinct feature
of this model that all components can be adjusted to match the needs of data
marketplace providers as well as the needs of data providers. An implementa-
tion is an important future work in order to evaluate the algorithm presented
in Sect. 3 in the context of pricing. In this regard, the question of whether the
linear MCKPP might be an alternative for quality criteria in V, as they allow
for unlimited versions to be created, is interesting.

Conducting experiments, some work has to be invested into the question of
how to actually create the required relational data products on the spot as this
might also take a considerable amount of time. For the methods presented in
this paper, it can be said that run time is negligible as every record has to be
processed at most once, yielding O(n), where n denotes the number of requested
tuples. However, other adaptations might be more difficult.

We have excluded the issue of potential cannibalization from our discus-
sion, i. e., that customers who would have bought expensive products switch to
a cheaper version when it becomes available, which is an organizational aspect
subject to future research. Furthermore, it should be evaluated whether this pric-
ing model is indeed perceived as fair. To this end, an alternative pricing scheme
could be experimented with, in which not all prices are calculated automatically
but users are provided with feedback regarding the actual quality levels while
entering their prices and preferences. In this case they would know what qual-
ity level they receive and can experiment with input variables. This might also
increase the perceived fairness. Moreover, truth revelation might be an issue [16].
The question remains if customers can actually cheat the system by not men-
tioning their true preference. At this point, the argument is that if the algorithm
used indeed delivers optimal results, then customers cannot cheat the system as
it delivers a custom-tailored product for exactly the suggested price.



58 F. Stahl and G. Vossen

References

1. Balazinska, M., Howe, B., Koutris, P., Suciu, D., Upadhyaya, P.: A discussion on
pricing relational data. In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, W.-
C., Fourman, M. (eds.) Buneman festschrift 2013. LNCS, vol. 8000, pp. 167–173.
Springer, Heidelberg (2013)

2. Balazinska, M., et al.: Data markets in the cloud: an opportunity for the database
community. PVLDB 4(12), 1482–1485 (2011)

3. Batini, C., et al.: Data Quality: Concepts, Methodologies and Techniques. Data-
Centric Systems and Applications. Springer, Heidelberg (2006)

4. Dudziński, K., et al.: Exact methods for the knapsack problem and its generaliza-
tions. Eur. J. Oper. Res. 28(1), 3–21 (1987)

5. Dyer, M., et al.: A branch and bound algorithm for solving the multiple-choice
knapsack problem. J. Comput. Appl. Math. 11(2), 231–249 (1984)

6. Dyer, M., et al.: A hybrid dynamic programming/branch-and-bound algorithm
for the multiple-choice knapsack problem. J. Comput. Appl. Math. 58(1), 43–54
(1995)

7. Garcia-Molina, H., et al.: Database Systems: The Complete Book. Pearson Edu-
cation Limited, Upper Saddle River (2013)

8. Garey, M.R., et al.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York (1979)

9. Gens, G., et al.: An approximate binary search algorithm for the multiple-choice
knapsack problem. Inf. Process. Lett. 67(5), 261–265 (1998)

10. Ibaraki, T., et al.: The multiple choice knapsack problem. J. Oper. Res. Soc. Jpn.
21, 59–94 (1978)

11. Kellerer, H., et al.: Knapsack Problems. Springer, Berlin (2004)
12. Koutris, P., et al.: Toward practical query pricing with QueryMarket. In: SIGMOD

Conference, pp. 613–624 (2013)
13. Lawler, E.L.: Fast approximation algorithmsfor knapsack problems. In: 18th

Annual Symposium on Foundations of Computer Science, pp. 206–213 (1977)
14. Maier, D., et al.: On the foundations of the universal relation model. ACM TODS

9(2), 283–308 (1984)
15. Muschalle, A., Stahl, F., Löser, A., Vossen, G.: Pricing approaches for data markets.

In: Castellanos, M., Dayal, U., Rundensteiner, E.A. (eds.) BIRTE 2012. LNBIP,
vol. 154, pp. 129–144. Springer, Heidelberg (2013)

16. Narahari, Y., et al.: Dynamic pricing models forelectronic business. Sadhana (Acad.
Proc. Eng. Sci.) 30(2 & 3), 231–256 (2005). Indian Academy of Sciences

17. Naumann, F.: Quality-Driven Query Answering for Integrated Information Sys-
tems. LNCS, vol. 2261. Springer, Heidelberg (2002)

18. Pindyck, R.S., et al.: Mikroökonomie. 8. überarbeitete Auflage. Pearson Deutsch-
land GmbH, München (2013)

19. Pisinger, D.: A minimal algorithm for the multiple-choice knapsack problem. Eur.
J. Oper. Res. 83(2), 394–410 (1995)

20. Shapiro, C., et al.: Information Rules: A Strategic Guide to the Network Economy.
Strategy/Technology/Harvard Business School Press, Boston (1999)

21. Stahl, F.: High-Quality Web Information Provisioning and Quality-Based Data
Pricing. Ph.D. thesis. University of Münster (2015)

22. Stahl, F., Vossen, G.: Data quality scores for pricing on data marketplaces. In:
Nguyen, N.T., Trawinńki, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS,
vol. 9621, pp. 215–224. Springer, Heidelberg (2016)



Fair Knapsack Pricing for Data Marketplaces 59

23. Tang, R., Amarilli, A., Senellart, P., Bressan, S.: Get a sample for a discount. In:
Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part
I. LNCS, vol. 8644, pp. 20–34. Springer, Heidelberg (2014)

24. Tang, R., Shao, D., Bressan, S., Valduriez, P.: What you pay for is what you get.
In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part
II. LNCS, vol. 8056, pp. 395–409. Springer, Heidelberg (2013)


	Fair Knapsack Pricing for Data Marketplaces
	1 Introduction
	2 Quality-Based Pricing
	3 Fair Knapsack Pricing
	4 Conclusions and Future Work
	References


