Dynamic Ontology-Based Sensor Binding

Pascal Hirmer!®) | Matthias Wieland!, Uwe Breitenbiicher?,
and Bernhard Mitschang?!

! Institute of Parallel and Distributed Systems, University of Stuttgart,
Universitatsstr. 38, Stuttgart, Germany
{pascal .hirmer,matthias.wieland,
bernhard.mitschang}@informatik.uni-stuttgart.de
Institute of Architecture of Application Systems, University of Stuttgart,
Universitatsstr. 38, Stuttgart, Germany
uwe.breitenbucher@informatik.uni-stuttgart.de

)

Abstract. In recent years, the Internet of Things gains more and
more attention through cheap hardware devices and, consequently, an
increased interconnection of them. These devices equipped with sensors
and actuators form the foundation for so called smart environments that
enable monitoring as well as self-organization. However, an efficient sen-
sor registration, binding, and sensor data provisioning is still a major
issue for the Internet of Things. Usually, these steps can take up to
days or even weeks due to a manual configuration and binding by sensor
experts that furthermore have to communicate with domain-experts that
define the requirements, e.g. the types of sensors, for the smart environ-
ments. In previous work, we introduced a first vision of a method for
automated sensor registration, binding, and sensor data provisioning. In
this paper, we further detai I and extend this vision, e.g., by introducing
optimization steps to enhance efficiency as well as effectiveness. Further-
more, the approach is evaluated through a prototypical implementation.

Keywords: Internet of Things - Sensors + Ontologies - Data provisioning

1 Introduction and Motivation

Today, the paradigm called Internet of Things (IoT) gains more and more impor-
tance in many different domains [16]. The IoT is generally based on the inte-
gration of sensors and actuators to allow monitoring and self-organization of
what is called smart environments. For example, by an aggregation of raw sen-
sor data, high level information — so called situations — can be derived, which
enables automated adaptation of smart environments to occurring events. This
enables new approaches such as advanced manufacturing — oftentimes referred
to as Industry 4.0 [8] — smart homes or smart cities [16]. For example, automated
exception recognition in a production environment as described in [9] can lead
to severely reduced costs due to a faster repair and, as a consequence, a faster
resumption of the production process.

© Springer International Publishing Switzerland 2016

J. Pokorny et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 323-337, 2016.
DOI: 10.1007/978-3-319-44039-2_22

324 P. Hirmer et al.

However, though there are many IoT applications, the registration and bind-
ing of sensors and actuators is still a great challenge. A manual binding is a
complex and tedious task that requires technical knowledge about the sensors,
actuators, and the environment. To realize a manual sensor binding, adapters
have to be manually created and deployed for each sensor to extract its data and
to provision it to sensor-driven applications. Furthermore, these steps are error-
prone and can take hours or even days to be processed manually: a sensor expert
has to configure the sensors, install a sensor gateway, bind the sensors, implement
the sensor data provisioning, and establish interfaces to applications that intend
to consume the sensor data. By doing so, he constantly has to communicate
with domain-experts that define the requirements for the smart environment.
Furthermore, nowadays environments are very dynamic, i.e., the contained sen-
sors and actuators may change constantly, e.g., when a smart phone is carried
into a smart home environment. To cope with these issues, we need a means for
efficient, on-demand binding of sensors and actuators. In real-world scenarios,
efficiency and accuracy are of vital importance. The drawbacks that come with
a manual registration can lead to high costs due to occurring errors, a tedious,
time-consuming registration process and, furthermore, omits building dynamic
smart environments. In previous work [5], we worked on a first approach by
introducing a vision of a method for on-demand automated sensor registration,
binding, and sensor data provisioning. The goal of the method is to reduce the
manual steps to the modeling of sensors and things using ontologies. All other
steps (sensor binding, sensor data provisioning) can be processed automatically
in milliseconds instead of hours or even days when conducting them manually.
By doing so, we can reduce occurring errors that are more likely with manual
processing and, as a consequence, save costs.

In this paper, we further enhance this method by introducing new optimiza-
tion steps that can further improve the efficiency. Furthermore, we elaborate
the details of this method, which was only described as a vision in our previous
work, and we introduce a system architecture to realize the method. Finally, we
provide a prototypical implementation that is the basis of a first detailed evalua-
tion of our approach. This implementation is currently in productive use within
the open source IoT project SitOPT!. In the context of this paper, things are
physical devices containing an arbitrary amount of sensors. As a consequence,
sensors cannot be things themselves.

Motivating Scenario: We present the motivating scenario as depicted in Fig. 1
to explain our approach: In a typical production environment, the machines on
the shop floor are monitored in an ad-hoc manner by a sensor-driven application
that consumes raw sensor data and derives high-level situations. These situations
describe changing states of the machines. The following situations can occur: (i)
Running indicates that the machine is running without any errors, (ii) Critical
indicates an emerging error that could lead to the machine’s failure, e.g., if a
sensor measures an increasing temperature, and (iii) Failed indicates that the

! https://github.com/mormulms/SitOPT.

https://github.com/mormulms/SitOPT

Dynamic Ontology-Based Sensor Binding 325

Machine Monitor

Machine Expertg" '7 Machine 1 Critical X
4,

Machine 3 Failed X

Push
Notification

‘ Sensor-driven Application (Situation Recognition) ‘

’ Sensor Adapter Platform ‘
Machines @M) F‘f-’) @‘M F’N)
with sensors

Fig. 1. Motivating scenario: monitoring machines on the shop floor

machine has failed due to an occurred error detected by one or more sensors.
To enable such a situation recognition, all available sensors of a machine have
to be monitored. To realize this, the sensors somehow have to be connected
to the situation recognition system. This requires: (i) creating and deploying
adapters to connect the recognition system to each individual physical sensor,
and (ii) provisioning of the sensor data to the situation recognition system.
Important aspects such as efficiency and sensor availability are of vital impor-
tance to enable a reliable recognition of occurring situations. However, even if
all required adapters are available, e.g. by using integration technologies such
as FIWARE? or OneM2M?, connecting each physical sensor manually to the
respective applications, in this case the situation recognition system, is — as
described in Sect. 1 —, a tedious, time-consuming and error-prone task: different
types of sensors have to be managed, adapters need to be selected, and physical
endpoints of sensors must be configured in the respective application. Thus, to
increase the efficiency of building sensor-driven applications, we need an auto-
mated means to dynamically bind applications to the required sensors by using
software-defined specifications. The approach presented in this paper copes with
these issues by enabling an automated sensor registration and a dynamic, auto-
mated sensor binding and provisioning based on an ontology model to enable
scenarios such as situation recognition in smart environments.

The remainder of this paper is structured as follows: In Sects.2 and 3, the
main contribution of this paper is presented. In Sect. 4, we describe related work.
After that, in Sect. 5, we evaluate the approach through a prototypical imple-
mentation. Finally, in Sect.6, we give a summary of the paper and an outlook
on future work.

2 Dynamic Ontology-Based Sensor Binding

This section and the following Sect. 3 present the main contribution of this paper
by introducing a system architecture and a method for dynamic sensor binding

2 https://www.fiware.org/.
3 http://www.onem2m.org/.

https://www.fiware.org/
http://www.onem2m.org/

326 P. Hirmer et al.

Sensor

! Sensor-driven Applications i Adapter Sensor ,
i (Situation Recognition, Dashboards, loT, etc.) ! Repository Ontology m . N
push | Streaming, Flow Engines ; L 4 &
: CEP, ... = ;
‘ [

SensorData | N\ T

Provisioning pull
‘ % Resource Management
M

Sensor
Expert

Create
Resource

Register
Sensors/Objects

Platform (RMP)
Broker \—ISerwce

Sensor Data Storage ‘

Sensor Registry

Sensor

Adapter Sensor Sensor Sensor
Platform Ada ter 1 Ada terZ Ada ter n

(Type 2) S S N

=
Phy5|caITh|ngs Q ﬂ 4 f
: with Sensors QF"B

Tools Transport Material

Domain
Expert

Fig. 2. Architecture for on-demand sensor binding and sensor data provisioning

and sensor data provisioning. In the context of this paper, sensor data provi-
sioning means to enable sensor-driven applications retrieving the required sensor
data, e.g., via REST interfaces or MQTT. Figure 2 depicts the overall architec-
ture of our approach. The components and interaction steps marked in bold are
newly added to the architecture introduced in previous work [6]. The architecture
consists of the following main components: (i) the sensor registry, which stores
meta-information about the physical things and sensors, (ii) the sensor ontology,
containing sensor binding information, (iii) the sensor adapters — stored in the
sensor adapter repository — that extract the data from the sensors and can be
deployed directly on a thing or on an adapter platform, and (iv) the Resource
Management Platform that provisions the sensor data as remotely accessible
resources (pull) or via a publish-subscribe approach (push) using a message
broker. The support of a pull and a push-based provisioning of sensor data is
necessary due to different needs of sensor-driven applications. Some applications,
e.g. streaming systems, require the data as soon as they occur because they are
working directly on the sensor data stream. Other applications, e.g., flow-based
applications, require the data on-demand, i.e. independent of the sensor’s reac-
tion, e.g., when a certain step in the flow is reached. This requires a means to
store sensor data in the sensor data storage and provide them when needed. The
components of our architecture are further described in the following. Security
and privacy features are out of scope of this paper, however, they are part of our
approach and system architecture.

2.1 Sensor Registry

The sensor registry component provides a means to register sensors to the
Resource Management Platform (RMP), which enables binding the sensors,
receiving their data and providing them through a pull approach (e.g., by REST

Dynamic Ontology-Based Sensor Binding 327

l xsd:string ‘ ’ ‘ rmpa:

T T frequency

rmpa: rmpa:
name type

rmpa:
adapter_impl

rmp:offersAccess

rmpa:
geolocation
—e

rdfs:domain rmpa:

————— > rdfs:subClassOf category
C> owl:DataTypeProperty @prefix owl: <http://www.w3.0rg/2002/07/owl#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
[owl:ObjectProperty @prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>
@prefix rmp: <http://www.sitopt.com/rmp/ontology-schema#>
O owl:Class @prefix rmpa: <http://www.sitopt.com/rmp/ontology-schema-attributes#>

Fig. 3. Partial ontology of our approach based on SensorML

resources) or a push approach (e.g., by MQTT). To register a thing manually
or automatically to the RMP, only a unique ID of a thing containing one or
more sensors, e.g., in the motivating scenario a production machine, has to be
provided. In this case, all sensors of the thing will be registered. In case only
specific sensors of a thing should be registered, unique sensor IDs have to be
provided as well. Providing such an easy-to-use registration entry point enables
usage by domain users without any extensive knowledge of sensor technology.
Although this is a simple registration step, if performed manually for hundreds
of individual sensors, this becomes a time-consuming, error-prone task and is,
therefore, not appropriate. Because of that, an automated registration is recom-
mended and supported by our approach. The detailed sensor and thing binding
information is stored in an ontology, which is described in the next section.

2.2 Sensor Ontology

The sensor ontology used in our approach to model things and sensors
(cf. Fig.3) — modeled by a sensor expert — is based on the Sensor Model Lan-
guage* (SensorML), an XML-based model that enables defining things, sensors,
their properties as well as their relations. In our adapted ontology, the follow-
ing elements are contained: (i) the super type Object that is either inherited
to the type (ii) Sensor or (iii) Thing, and (iv) Adapters that are attached to
the sensors. Objects are defined as all things that are involved in sensor-driven
applications and the sensors observing them. For example, a real world object
like a machine with built-in sensors. However, there are also objects in the world
that are not observable by sensors. These are not covered in this paper. Sensors
and things have several specific attributes such as their quality, category, etc.

4 http://www.opengeospatial.org/standards/sensorml.

http://www.opengeospatial.org/standards/sensorml

328 P. Hirmer et al.

Some attributes, e.g., their ID or geolocation, are defined in the Object they are
derived from. Adapters provide a reference to a sensor-specific adapter implemen-
tation in the sensor adapter repository. This information is of vital importance to
enable sensor binding and sensor data provisioning. In our approach, we decided
to use ontologies to model and manage this information instead of SensorML,
because SensorML is a complex and detailed language containing a large amount
of elements and properties that are not needed in our lightweight approach. For
our approach, we therefore only pick the core concepts of SensorML. However,
we exploit the structure of SensorML to define our ontology using the Resource
Description Framework (RDF) and the Web Ontology Language (OWL). This
approach is similar to the one presented in [13]. Our ontology is depicted in an
abstracted manner in Fig.3. As default, we are using our lightweight ontology
in this approach, because SensorML-based XML documents are cumbersome to
process.

2.3 Resource Management Platform

The Resource Management Platform (RMP) combines two paradigms for pro-
visioning sensor data: (i) a pull approach by providing sensor data as uniform
REST resources, and (ii) a (e.g., queue-based) publish-subscribe (push) app-
roach for enabling direct notification whenever a sensor value occurs. Which
of the approaches is used depends on the sensor-driven application. The pull
approach guarantees that a sensor value is present when needed, whereas the
push approach provisions sensor data as soon as they occur but cannot deliver
the latest sensor values on-demand. This enables usage by all kinds of sensor-
driven applications, e.g., the one presented in the motivating scenario. Most
importantly, it works without any additional software besides approved Internet
technologies that are nowadays available in nearly all devices.

In the pull approach, REST-based resources can be accessed by sensor-driven
applications using a (e.g., HTTP) GET request. To be able to provide sensor data
on demand, which is necessary to support this pull-based approach, a persistent
sensor data storage has to be provided, which is able to store the data to be
available when it is needed. Additionally to the sensor data, a timestamp has to
be provided describing when the data was produced because the quality of sensor
data typically decreases with time passing. The sensor data is provided using
REST resources accessible through the following URL schema: < protocol >:
// < RMP.URL > / < thing_.id > |/ < sensor_id > for a specific sensor
value and < protocol >: // < RMP.URL > | < thing_id > / for a list of all
sensor values of a thing. The quality of a sensor value is at least dependent on
its accuracy, staleness, as well as on the maturity of the value. In addition to
this pull-based approach, we further enable a push-based approach to provision
the sensor data. By using approved publish-subscribe queuing technologies such
as MQTT, we are able to allow queue registration on certain sensors so the
sensor-driven applications can be automatically notified once sensor data occur
and are able to process them immediately. The information that is sent to the
sensor-driven application is the same as in the pull approach.

Dynamic Ontology-Based Sensor Binding 329

2.4 Sensor Adapter Platform

Sensor adapters provide access to the sensors. That is, they connect to the
sensors’ physical interfaces (e.g., serial interfaces) and extract the values that
are produced. For example, these sensor adapters could be lightweight scripts
deployed directly on the things or on external platforms to retrieve the sen-
sor values from a serial interface, or more sophisticated platforms (FIWARE,
OneM2M, OpenMTC, etc.) using approved Machine-to-Machine standards such
as ETSI°. With respect to our approach, the sensor values are passed to the
Resource Management Platform including a timestamp, the sensor ID, the type
of the sensor, the corresponding thing, and the quality [12] of the sensor value.
There are two types of quality regarding sensors: (i) the sensor quality, which is
specific to a certain sensor type and influences the quality of all values produced
(e.g., the average deviation), and (ii) the quality of a sensor value (e.g., its spe-
cific staleness). The sensor quality information is stored in the ontology and does
not have to be provided by the adapters. However, the adapter has to compute
a single quality measure for each value that is passed. This requires knowledge
about the definition of quality in the context of the sensor, but enables a better
quality-aware usage and further processing of sensor values.
In general, there are two types of adapters as depicted in Fig. 2:

(i) Local Adapters (Type 1, Fig. 2): Local adapters are running on the same
thing that contains the sensors. Usually, some kind of runtime environment or
operating system is provided to deploy the sensor adapters onto the thing. This
makes it easy to receive and pass sensor values to the RMP, preconditioned that
the thing is connected to a network. The passing of the values can be conducted
using approved protocols such as HTTP or MQTT.

(ii) Remote Adapters (Type 2, Fig. 2): Remote adapters are the regular case.
If the corresponding thing does not offer any means to deploy an adapter or if
a single sensor does not offer a means for direct access and is deployed without
a corresponding thing, e.g., a temperature sensor attached to a wall, remote
sensor adapter platforms are used for binding. Remote sensor adapters can, e.g.,
be deployed on micro controllers and are able to connect to the sensors, receive
their values and pass them to the RMP. We recommend using approved M2M
platforms such as FIWARE, OneM2M or OpenMTC supporting a wide range of
sensor types and M2M communication standards to deploy remote adapters.

3 Method for Dynamic Ontology-Based Sensor Binding

The architecture described in the previous section is applied through the method
depicted in Fig. 4. It covers the whole sensor lifecycle, from the registration to
its deactivation. Based on our previous work that presented the vision for this
method, we add several optimizations to the method steps and provide more

5 http://www.etsi.org/technologies-clusters/technologies/m2m.

http://www.etsi.org/technologies-clusters/technologies/m2m

330 P. Hirmer et al.

Sensor
Adapters

Sensor Data
Provisioning

Automated
Sensor Binding

Ontology
Traversal

Registration Deactivation

1 1 1 1 1
i\ Thingor 1 | Ontology- 1 . Choose 1 | Choose Mode: 1 | Delete Thing 1
I Sensor-based | i based or native | ! Optimal Sensor . I “On Request” | | orSensor |
i Registration ! i SensorML ! s ! 1 or “Always On” ! i Information !
N e e = —— N -~ N e e e - N e e e e = N - -

N

Method artifact (__)Method Step | _ ! Optional Optimization Step

Fig. 4. Optimized method for dynamic sensor binding

details. The purpose of these optimizations is providing concepts for improving
the method throughout the whole sensor lifecycle. The optimizations are not yet
fully detailed, this, and further optimizations, will be part of our future work.
We show that a full automation of this method is possible, which is necessary
to achieve our goal to minimize human interaction during this process.

Step 1: Registration of Sensors

In the first step of the method, sensors are registered to the Resource Manage-
ment Platform. By doing so, an unique identifier of the thing to be registered
and, if specific associated sensors should be registered, also unique identifiers of
the sensors have to be specified. Detailed information of sensors and things are
contained in the sensor ontology (cf. Step 2). In case a thing or a sensor is not
known, i.e., is not represented in the ontology, an ontology snippet describing
their properties has to be added to the registration, which will be processed in
the next Step 2. In the following, we assume that the ontology is modeled cor-
rectly and contains all sensors and things of the specific domain our approach is
applied to, in the motivating scenario e.g. the shop floor.

Optimization: Registration of Things

The registration can contain either a “whole” thing (e.g., a production machine)
or specific sensors of a thing. Registering a whole thing makes sense if all sensors
of this thing should be registered and, as a consequence, are relevant for further
processing. If only some of the sensors are relevant for sensor data provisioning,
it makes sense to register them individually. This can save costs due to a more
energy efficient solution.

Step 2: Ontology Traversal

Based on the information provided by the registration of Step 1, additional,
specific information about things and sensors are retrieved from the ontology in
Step 2. The ontology describes technical sensor information that are necessary for

Dynamic Ontology-Based Sensor Binding 331

an automated registration, binding, and sensor data provisioning. Furthermore,
it can also be used as meta-data source by sensor-driven applications. These
information include sensor specifications (accuracy, frequency, ...), information
about sensor access, i.e., about sensor binding in terms of the corresponding
adapter in the sensor adapter repository, and about the contained sensors of a
thing. The sensor ontology is partly depicted in Fig.3. On sensor registration,
we traverse the ontology and search for the corresponding entry of the sensor or
thing. Once the relevant sensor information is found, it can be used for auto-
mated sensor binding, which is described next.

Optimization: Use Native SensorML or Ontology

Due to the fact that these concepts are of vital importance in our approach,
we decided to use ontologies as default option. However, in case of small, clear
scenarios, e.g., describing a closed, non-extendable environment, an XML-based
representation, such as native SensorML, is also supported by our approach.

Step 3: Automated Sensor Binding / Sensor Adapter Deployment
The next step is the automated sensor binding and, furthermore, the provisioning
of the sensor data, which is based on the sensor information that was extracted
from the ontology in Step 2. To enable sensor binding, we need a means to
extract the sensor data from the corresponding sensors. This requires adapters,
as described in Sect. 2.4, which are connecting to the sensors’ serial interfaces,
extract the data, and send it to the Resource Management Platform (e.g., using
HTTP or MQTT). The great advantage of our approach is that the adapters do
not have to care about sensor data provisioning to sensor-driven applications,
because they send the data directly to the centralized RMP that manages the
provisioning for them. Note that the data being produced by the sensors is non-
stopping, i.e., the adapter has to be up and running. Techniques for guaranteeing
such a high availability shows high complexity and is out of scope in this paper.

As described before, the sensor adapters are deployed automatically. First,
the adapters are retrieved from the sensor adapter repository, then they are
parameterized (e.g., with the RMP’s URL). The information which adapter is
needed to bind the sensor(s) defined by the registration was extracted from the
ontology in Step 2. There are several possibilities how an adapter deployment
can be realized: if the sensor is connected to a thing that is containing a powerful
runtime environment such as, e.g., a Raspberry Pi, the adapter can be deployed
directly using, e.g., SSH connections or more sophisticated approaches such as
TOSCA [2]. However, in most cases this is not possible. Because of that, the
adapters have to be deployed on external platforms, either self-implemented or
using approved middleware, such as FIWARE, OneM2M or OpenMTC, that
are capable to connect to the sensors, even if, e.g., they are embedded into
a production machine, using Machine-to-Machine standards. The information
how to bind a sensor is stored entirely in the ontology and has been extracted
in Step 2.

332 P. Hirmer et al.

Optimization: Choose Optimal Sensor

In many cases, things contain more than one sensor of a certain type and it
makes sense to choose the most suitable one. The dynamic sensor binding of
our approach enables such an optimization by enabling binding of sensors that
are most suitable for a specific scenario, e.g., in regard to energy efficiency or
accuracy. Note that this step is highly dependent on the use case scenario and,
furthermore, on its non-functional requirements.

Step 4: Sensor Data Provisioning

After the sensor adapters are deployed and activated, they start sending data to
the RMP. However, the data can only be accessed by the sensor-driven applica-
tions after the fourth step is processed, the sensor data provisioning. In this step,
the interfaces to the sensor-driven applications are established. The sensor data
provisioning step represents the integration of all components, from the sensor
adapters to the sensor data provisioning through the RMP. After the automated
adapter provisioning (Step 3), the RMP is informed that the registered sensors
have started sending their data. By doing so, entries in the sensor data storage
as well as corresponding REST resources are created for each sensor to provision
its data to enable the pull approach. Furthermore, we create topics in a queue
for each sensor and publish these topics to the sensor-driven applications that
can subscribe to them to enable the push approach. After this step, the sensor
data are available to sensor-driven applications.

Optimization: Choose Sensor Mode “On Request” or “Always On”
Sensors can be operated in two different modes. In the on request mode, the
sensor is inactive only requiring minimal energy consumption. Sensor values
are requested on-demand by the sensor adapters, which leads to the sensors to
change to an active state, send the value and then return to an inactive state
again. The main advantage is a reduced energy consumption, which makes sense
when using battery-powered sensors, however, receiving sensor values will be less
efficient. The second mode always on is the regular case, e.g., if sensors are built
into things such as production machines as described in the motivating scenario.
In this case the sensor is always in an active state. Of course, this behavior costs
more energy, however, receiving sensor data can be realized more efficiently.

Step 5: Deactivation

The last step is the deactivation of sensors and/or things once they are not
needed anymore. To do so, the thing and the type of the sensor have to be
provided to the sensor registry. Based on this information, the sensor registry
finds running sensors of a thing with the corresponding type, connects to the
adapters to terminate it, clears the values from the sensor data storage, and
removes the REST resources and the topics in the queue. Deactivation of sensors
saves energy and costs.

Optimization: Delete Thing or Sensor Information (Partially)

The deactivation of sensors and things can be conducted in two manners: (i)
completely deleting the stored information, or (ii) partially deleting it. When
choosing the complete deletion, the entry in the registry is removed, the sensor

Dynamic Ontology-Based Sensor Binding 333

adapter is undeployed, and the corresponding part in the ontology is deleted.
By doing so, the space and costs needed for executing the sensor adapter and
storing these information can be reduced. When selecting the partial deletion,
the user can select which parts should be deleted. For example, if the sensor will
be re-registered in the near future, it makes sense to keep the adapter deployed.

4 Related Work

The related work can be separated into the following areas: (i) automated sensor
binding, (ii) middleware to access sensor data, and (iii) ontologies for sensor
modeling.

Automated Sensor Binding: Hauswirth et al. [4] present a similar approach
by the introduction of the Global Sensor Network (GSN) to bind stream-based
data sources such as sensors without any programming effort. By doing so, sen-
sors are abstracted by a virtual representation to allow processing of the data
using SQL-like queries. In contrast, our approach separates these steps strictly.
After the ontology-based dynamic sensor binding is finished, the data is provi-
sioned to sensor-driven applications. The standard IEEE1451.2 defines so called
Transducer Electronic Data Sheets (TEDS) [10] to enable self-description of sen-
sors. In addition, dynamic plug and play binding of sensors to networks is enabled
through a standardized interface. In contrast to this standard, we do not focus
on the physical binding of sensors. Our goal is an easy provisioning of sensor data
to sensor-driven applications. However, in our approach, standards such as the
IEEE1451.2 could be used for physical sensor binding. Li et al. and Vogler et al.
[11,17] introduce an approach for IoT application deployment using TOSCA.
However, they do not cope with the direct binding of sensors and actuators, i.e.,
they assume that the binding is done through specific sensor gateways. In con-
trast, we propose a generic approach that does not depend on sensor gateways.
Furthermore, although the authors claim that no pre-configuration is necessary,
the papers show that a configuration of the sensor gateways is needed in order
for the approach to work. In our approach, no pre-configuration of devices is
necessary at all.

Middleware to Access Sensor Data: Similar to our approach, Ishaq
et al. [7] introduce an approach for sensor access through a REST interface.
To realize this, Ishaq et al. assume a sensor network bound to a gateway, which
allows accessing the sensors. In our approach, we do not necessarily assume
such a gateway because we manage the sensor binding ourselves. However, the
REST-based provisioning of sensor data is similar to our approach. Machine-
to-Machine (M2M) gateways such as FIWARE, OneM2M, OpenMTC®, Ope-
nloT [15], or GSN [1] have gained a lot of attention recently. These gateways
serve as layer between physical sensors and “virtual” sensor data. Our approach
in this paper does not try to compete with these approved platforms but rather
uses them, i.e., we provide a more abstracted layer on top. This layer enables

5 www.open-mtc.org)/.

http://www.open-mtc.org/

334 P. Hirmer et al.

binding things and not specific sensors. Furthermore, it enables sensor data pro-
visioning to sensor-driven applications exclusively using Internet technologies.
Note that these approved gateways can be used to realize the sensor binding in
our approach (cf. Sect.2.4). The service-oriented middleware SStreaMWare [3]
enables managing heterogeneous sensor data. SStreaMWare can both handle
data streams and distributed sensor networks. To access stream-based data,
SStreaMWare provides a schema for sensor data representation, which enables
execution of queries based on the data streams. The management of sensors is
based on the things observed, which is similar in our approach.

Ontologies for Sensor Modeling: The knowledge repository OntoSensor [13]
enables modeling and management of sensors. It combines SensorML, IEEE
SUMO, ISO 19115, OWL and GML. By combining these approved description
languages, a wide range of sensors can be modeled. However, OntoSensor descrip-
tions can become heavy-weight and complex. In contrast, our goal is designing
a lightweight ontology for sensor modeling and management. To realize this, we
use a subset of SensorML in contrast to the heavy-weight OntoSensor model. The
ontology DCON [14] enables modeling of activity context. To enable this, differ-
ent OSCAF ontologies” are combined to create a so called Personal Information
Model: DDO (for Devices), DPO (for Presence), and DCON [14] for represen-
tation of user activity context. In contrast to the specialized DCON ontology,
the goal of our approach is to be more generic, i.e., to support many differ-
ent domains. Furthermore, we do not focus on the user, i.e., the things are the
main focus. In general, persons should not be monitored for privacy reasons. In
summary, this related work focuses on specific aspects like the access of sensors
using gateways, or the execution of queries on sensor data streams or in a sen-
sor network. The goal of our approach is to provide an easy-to-use ontology for
the Internet of Things that combines sensor registration, binding of the sensors,
and sensor data provisioning. Whereat the binding of a concrete sensor is done
indirectly based on the things that are monitored by the sensors. Furthermore,
our approach allows a separation of concerns, since the sensor data processing is
specified separately, e.g., in the situation recognition as described in [6], based
on situation templates that can be mapped onto different execution systems.
Additionally, our approach allows the integration of heterogeneous sensor types
in a standard way as REST resources or through a publish-subscribe model so
that they can be accessed by multiple clients and in parallel.

5 Prototypical Evaluation

The presented system architecture has been implemented as a prototype and
is currently applied to the project SitOPT (cf. acknowledgments). In SitOPT,
the prototype has been integrated to provide a situation recognition system with
sensor data. Based on this data, situations are derived that lead to adaptations of
workflows. The following technologies have been used in this prototype (Fig.5):

7 http:/ /www.semanticdesktop.org/ontologies/.

http://www.semanticdesktop.org/ontologies/

Dynamic Ontology-Based Sensor Binding 335

Resource Management Platform (Node.js) Sensor Ontology

(OWL / Jena)
Queue Broker (MQTT)
Sensor Data Storage

. Sensor Registry
REST Interface (Node.js) (MongoDB)

(Node.js)

Fig. 5. Technologies used for the prototypical implementation

The sensor registry was implemented using NodeJS, offering an user interface
as well as a programmatic interface, accessible through HTTP requests. The
sensor ontology is accessed using SPARQL requests, furthermore, we use SSH
to deploy sensor adapters. As the adapter repository, we use the native file sys-
tem. The ontology is in the Web Ontology Language (OWL) 1.1% format, which
is accessed through SPARQL requests. To support this, we used the Apache
Jena? framework. Furthermore, to enable an easier access that does not require
SPARQL, we also implemented a REST-based interface that abstracts from it.
Similar to the Sensor Registry, the Resource Management Platform is imple-
mented in NodeJS!'?, which offers high efficiency. The limitations of such a light-
weight solution regarding robustness are of minor importance in our approach,
because in most IoT use case scenarios, e.g., lost sensor values are not critical to
the sensor-driven applications and efficiency is much more important. As sensor
data storage, we use the schemaless NoSQL database mongodb!!, which allows
high efficiency, scalability, and data replication. The direct push approach was
realized using MQTT'? and the Mosquitto'®> MQTT broker. As also mentioned
in [5], we conducted runtime measurements of our prototype for evaluation pur-
poses using a machine with a Core i5-3750K @3.4 GHz and 8 GB RAM. We
measured the average runtime of the method’s steps based on 10 measurements:
(i) the sensor registration took 1,91 ms, (ii) the ontology traversal 6,73 ms, and
(iii) the adapter deployment 139,63 ms. The measurements show that we could
achieve the efficiency goals of this paper (cf. Sect. 1). In the future, we will con-
duct several load tests to evaluate how the implementation can cope with a large
amount of sensors.

6 Summary and Future Work

This paper presents an approach for optimized ontology-based sensor registration
and sensor data provisioning. In this paper, we provide details and optimizations
for the introduced system architecture and method. By doing so, we created an
easy-to use solution for sensor-driven applications to bind sensors and access

8 www.w3.org/2004/OWL/.
9 https://jena.apache.org/.

10 http://nodejs.org/.

' http:/ /www.mongodb.org/.
2 http://mqtt.org/.

13 http://mosquitto.org/.

www.w3.org/2004/OWL/
https://jena.apache.org/
http://nodejs.org/
http://www.mongodb.org/
http://mqtt.org/
http://mosquitto.org/

336 P. Hirmer et al.

their data within milliseconds in contrast to a manual processing of these steps
that can take up to hours or even days. This goal was achieved as described in
our evaluation. Furthermore, we offer a flexible means to provision sensor data
to sensor-driven applications. By providing two means for provisioning, a pull
and a push based approach, we enable usage by a wide range of applications,
both stream-based or static.

In the future, we will extend our prototypical implementation with data
level security, privacy and robustness features and, furthermore, we will work on
performance and scalability issues. In addition, we will concentrate on interfacing
sensor-driven applications.

Acknowledgment. This work is partially funded by the DFG project SitOPT
(610872) and by the BMWi project SmartOrchestra (01MD16001F).

References

1. Aberer, K., Hauswirth, M., Salehi, A.: Zero-programming sensor network deploy-
ment. In: Proceedings of the Service Platforms for Future Mobile Systems (SAINT
2007) (2007)

2. Bingz, T., Breitenbiicher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q.Z., Daniel, F. (eds.) Advanced Web Services, pp. 527-549. Springer, New York
(2014)

3. Gurgen, L., Roncancio, C., Labbé, C., Bottaro, A., Olive, V.: SStreaMWare: a
service oriented middleware for heterogeneous sensor data management. In: Inter-
national Conference on Pervasive Services (2008)

4. Hauswirth, M., Aberer, K.: Middleware support for the “Internet of Things”. In:
5th GI/ITG KuVS Fachgespriach “Drahtlose Sensornetze” (2006)

5. Hirmer, P., Wieland, M., Breitenbiicher, U., Mitschang, B.: Automated sensor reg-
istration, binding and sensor data provisioning. In: Proceedings of the CAiSE 2016
Forum at the 28th International Conference on Advanced Information Systems
Engineering (2016). Accepted for publication

6. Hirmer, P., Wieland, M., Schwarz, H., Mitschang, B., Breitenbiicher, U., Leymann,
F.: SitRS - a situation recognition service based on modeling and executing situa-
tion templates. IBM Research Report (2015)

7. Ishaq, I., Hoebeke, J., Rossey, J., De Poorter, E., Moerman, 1., Demeester, P.:
Facilitating sensor deployment, discovery and resource access using embedded web
services. In: 2012 Sixth International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), pp. 717-724, July 2012

8. Jazdi, N.: Cyber physical systems in the context of Industry 4.0. In: 2014 IEEE
International Conference on Automation, Quality and Testing, Robotics (2014)

9. Kassner, L.B., Mitschang, B.: MaXCept-Decision Support in exception handling
through unstructured data integration in the production context. an integral part
of the smart factory. In: Proceedings of the 48th Hawaii International Conference
on System Sciences (2015)

10. Lee, K.: IEEE 1451: a standard in support of smart transducer networking. In:
Proceedings of the 17th IEEE Instrumentation and Measurement Technology Con-
ference, IMTC 2000 (2000)

11.

12.

13.

14.

15.

16.

17.

Dynamic Ontology-Based Sensor Binding 337

Li, F., Vogler, M., ClaeSSens, M., Dustdar, S.: Towards automated IoT application
deployment by a cloud-based approach. In: 2013 IEEE 6th International Conference
on Service-Oriented Computing and Applications, pp. 61-68, December 2013
Reiter, M., et al.: Quality of data driven simulation workflows. In: 2012 8th IEEE
International Conference on e-Science (2012)

Russomanno, D.J., Kothari, C.R., Thomas, O.A.: Building a sensor ontology: a
practical approach leveraging ISO and OGC models. In: IC-AT (2005)

Scerri, S., Attard, J., Rivera, I., Valla, M.: DCON: interoperable context represen-
tation for pervasive environments. In: AAAT Workshops (2012)

Saldatos, J., et al.: OpenloT: open source Internet-of-Things in the cloud. In:
Podnar Zarko, I., Pripuzi¢, K., Serrano, M. (eds.) FP7 OpenloT Project Workshop
2014. LNCS, vol. 9001, pp. 13-25. Springer, Heidelberg (2015)

Vermesan, O., Friess, P.: Internet of Things: Converging Technologies for Smart
Environments and Integrated Ecosystems. River Publishers, Aalborg (2013)
Vogler, M., Schleicher, J., Inzinger, C., Dustdar, S.: A scalable framework for
provisioning large-scale IoT deployments. ACM Trans. Internet Technol. 16(2),
11:1-11:20 (2016). http://doi.acm.org/10.1145/2850416

http://doi.acm.org/10.1145/2850416

	Dynamic Ontology-Based Sensor Binding
	1 Introduction and Motivation
	2 Dynamic Ontology-Based Sensor Binding
	2.1 Sensor Registry
	2.2 Sensor Ontology
	2.3 Resource Management Platform
	2.4 Sensor Adapter Platform

	3 Method for Dynamic Ontology-Based Sensor Binding
	4 Related Work
	5 Prototypical Evaluation
	6 Summary and Future Work
	References

