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Abstract. Although spatial database applications and location based
systems require the execution of several types of searching operations
over spatial data, works related to encrypted spatial data address a lim-
ited set of searching operations, restricting their use in real applications.
This article proposes an encryption scheme that enables circular range
search, rectangular range search and kNN operation over encrypted spa-
tial data. Also, we have compared the encryption functions of our scheme
with other encryption schemes and, even though the results have shown
a similar performance, our work allows the execution of circular and
rectangular range searches by using a unique encryption scheme.
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1 Introduction

A solution for protecting data confidentiality is using cryptography, in which data
are encrypted in the user environment before being sent to a cloud. Nevertheless,
searching operations executed over encrypted data require decryption, which
may cause a processing overhead or compromise data confidentiality when the
decryption is carried out in the cloud. Thus, encryption techniques for spatial
data are addressed in literature, and allow calculations and operations to be
executed directly over encrypted spatial data. The use of these techniques aims
to reduce the overhead caused by encryption on data processing and avoid data
decryption in unsafe environments.

Among the proposed schemes found in the literature, there are Circular
Range Search Encryption (CRSE) [1], which enable circular range search; Scal-
able Multidimensional Range Search (MAPLE) [2,3], both enabling the exe-
cution of rectangular range searches over encrypted data; Asymmetric Scalar
Product Encryption (ASPE) [4], which allows comparisons to be made between
encrypted points stored in a database and encrypted query points used as para-
meters in k nearest neighbor operations; Distance Preserving Transformation
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(DPT) [5], which preserves the real distance between the encrypted data; and
the work in [6] that enables rectangular range searches over nodes of an encrypted
R-tree by using an asymmetric scalar product encryption scheme.

These schemes represent the state-of-the-art theory in the area of spatial data
encryption. They are nevertheless limited to using a single type of geometry as
search predicate (i.e. either circular range or rectangular range) that restricts
their use in spatial database applications. Therefore, proposing a scheme that
supports the use of different predicates in searches is the focus of this paper. We
introduce the following contributions to the area: two encryption schemes - with
a trade-off between security strength and performance - that encrypt spatial
data and enable circular and rectangular searches, named CR-ASPE (Asym-
metric Scalar Product Encryption for Circular and Rectangular range search); a
formalization of the correctness of the scheme’s operations; a security analysis;
and a performance evaluation.

This article is organized as follows: Sect. 2 presents the main concepts used
in this article; Sect. 3 discusses related work; Sect. 4 explains the problem to
be solved; Sect. 5 presents CR-ASPE; Sect. 6 contains a performance evaluation
comparing CR-ASPE with ASPE and DPT schemes; and, finally, Sect. 7 con-
cludes the paper and addresses future work.

2 Basic Concepts

Before introducing our work, we briefly present some concepts used through this
article.

2.1 Types of Range Search over Spatial Data

Range searches over spatial data usually receive as input a set of geometric
objects P and a region R in a space, and are aimed at retrieving a subset of P
that is inside or intersects R. The region R may assume different formats, such
as circle, halfspace, rectangle, and polygon. Thus, we introduce the preliminary
concepts of the following operations.

The k Nearest Neighbor (kNN) operation searches for the closest k objects
from a point of interest. kNN is frequently used in data mining, machine learning
and recommendation systems [4]. The circular range search inspects all points
that are within the radius of interest. The range comprises all points at the same
distance r from a central point, where r represents the radius of the n-sphere.

A halfspace is a space resulting from the division of an Euclidean space by a
hyperplane. In order to execute halfspace range searches, two equidistant points
with respect to the hyperplane (named anchor points) are chosen. They must be
collinear and the line formed by them must be perpendicular to the hyperplanes.
Thus, halfspace range search receives a point as input and indicates in which
halfspace it is located based on the distance to the closest anchor point [6].

A third concept is that of rectangular range search, which is important
for spatial data because it is constantly used in r-tree operations as Minimum
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Bounding Rectangle (MBR) [7]. A MBR is the minimal rectangle necessary to
envelop a bi-dimensional geometric object. If we consider each rectangle’s edge
as the hyperplane that divides a halfspace, we can represent a rectangular range
search as a conjunction of four halfspace range searches.

2.2 Data Splitting and Addition of Artificial Dimensions

[4] proposed two techniques aiming to increase the security level of encrypted
spatial data, which are based on the number of dimensions of the spatial data,
such as latitude, longitude, altitude and velocity. The first technique is the Ran-
dom Asymmetric Splitting, where each dimension of spatial data is split. In
order to split it, we may have a random bit vector that indicates which positions
should be split. For example, in a three-dimensional space, consider a bit vec-
tor = (0, 1, 1), and a point p = (5, 3, 2); two split vectors are randomly picked,
such as pa = (5,−2,−7) and pb = (5, 5, 9); ergo, p = pa + pb · bitvector. The
second technique is the addition of artificial dimensions to the spatial data. This
method attributes random values to artificial dimensions in a way that the scalar
product of two asymmetric points over the artificial dimension value is 0, preserv-
ing the result of scalar product and increasing the number of data dimensions.
As it is an asymmetric method, it splits query points by using the inverse of the
bit vector when bitvector[i] = 0; otherwise, it does not.

2.3 Levels of Attacker’s Knowledge

Regarding the security of encrypted spatial data, we assume that an attacker may
obtain knowledge about encrypted spatial data stored in outsourced databases.
This knowledge may enable three attack levels [4]: level 1, when the attacker has
access to all encrypted data; level 2, when the attacker has access to all encrypted
data and a subset of unencrypted data; and level 3, when the attacker has access
to all encrypted data, a subset of unencrypted data and the correspondence
between unencrypted data and equivalent encrypted data.

3 Related Work

Although there are several works that present solutions to performing opera-
tions over encrypted scalar data such as numbers, dates and keywords [8,9],
such solutions are no applicable to spatial data. In plain spatial data, circular
or rectangular range searches, among others, are calculated from the distance
between spatial geometries. Thus, one alternative would be to encrypt the spa-
tial data preserving the distance. However, the distance preservation is subject
to attacks [10] that limit the use of some schemes, such as distance-recoverable
encryption (DRE) schemes. Such DRE schemes, e.g. Distance Preserving Trans-
formation (DPT) [5], encrypt spatial data by moving them to a different space,
but preserving all distances between them. Hence, if an attacker has access to a
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subset of plain data and encrypted data, he is able to discover the correspondence
between plain data and encrypted data, which may reveal the encryption key.

Related work in this area propose different techniques to encrypt spatial data
without revealing the distance between two points [1–4,6]. Nevertheless, to the
best of our knowledge, those are able to execute only one type of search over
spatial data.

Predicate encryption [1,11,12] is an encryption scheme that generates tokens
as predicates, which are used to verify whether a piece of encrypted data sat-
isfy their constraints by executing an inner product. In [2,3], the authors pro-
pose schemes based on predicate encryption to allow rectangular searches to be
executed on encrypted R-trees, reducing the search complexity from O(n) to
O(log n). In [1] a predicate-based encryption scheme to execute circular range
searches is presented.

ASPE was proposed in [4] to execute kNN operations over encrypted data
without using any data structures. ASPE encrypts query points and database
points in two different ways - by using a invertible matrix to encrypt the database
points in addition to its inverted matrix to encrypt query points, avoiding an
attack based on distance preservation between unencrypted data and encrypted
data, hence avoiding distance recovery. In [4], two different schemes were pro-
posed, i.e. ASPE 1 and ASPE 2. The difference between them is the insertion
of additional dimensions to increase the number of variables in encrypted point
compositions and a random splitting of the points to improve the security of the
scheme at the expense of performance.

Our work aims to support circular range search, rectangular range search and
kNN operations using a single scheme, in addition to providing security against
honest-but-curious attackers with different levels of knowledge.

4 Problem Definition

The distance between encrypted spatial values should not preserve the distance
between the corresponding spatial values, as it may reveal the spatial data
[4,10]. Thus, for security reasons, several works have proposed encryption
schemes which are not based on distance for computing searches on encrypted
spatial data [1–4,6]. However, these schemes only allow for a single type of
searching, limiting their functionality.

For example, consider two systems using encrypted spatial databases, namely
system A and system B. Systems A and B have adopted encryption schemes that
enable circular range searching and rectangular range searching on encrypted
spatial data, respectively. Suppose a user wants to find restaurants within 2 km
from his current location, which characterizes a case of circular range searching.
By using system A, the user can find all restaurants that satisfy his condition,
as it is capable of performing circular range searching on encrypted spatial data.
On the other hand, using system B will return false candidates. Then, suppose
a user wants to analyze a disease in a rectangular area, such as a district or a
street, in order to extract the number of infected people. By using system B, the
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user can obtain the exact number of infected people since system B can execute
rectangular range searching on encrypted spatial data, whereas using system
A will not ensure that all infected people will be selected. Finally, suppose a
user wants to call a taxi, and expects that a limited number of taxi drivers can
receive his call. This is a typical use of kNN computation. In this case, circular
range searching and rectangular range searching cannot determine the drivers
who are closest to the user’s location, hence, neither system A nor system B will
be able to perform this computation. Therefore, systems A and B have limited
functionalities due to their encryption schemes.

In order to fulfill the aforementioned limitations, this work proposes an
encryption scheme for spatial data that allows circular range searching, rec-
tangular range searching and kNN operations directly over encrypted spatial
data.

5 CR-ASPE

We propose an asymmetric product scalar encryption for circular and rectangu-
lar searches without compromising security or losing performance, named CR-
ASPE, and detailed as follows.

5.1 Basic CR-ASPE

CR-ASPE enables comparisons over the encrypted data without preserving the
distance between spatial points. The CR-ASPE asymmetry consists of encrypt-
ing the data point without preserving distance between them, and encrypting a
query point to allow the comparison with encrypted data points. Therefore, we
can compare two encrypted data points and define which is closer to a reference
point using a scalar product. The comparison is possible through the use of a
invertible matricial key. We present the basic functions of CR-ASPE, as follows:

CR-ASPE Scheme 1

Key: a (d+2)×(d+2) invertible matrix M , where d is the number of dimensions
of plain data, such as latitude, longitude, altitude.

Tuple encryption function Ed: Given a point from database p, the function
creates a (d+2)-dimensional point p̂ = (pT ,−0.5||p||2, 1)T and encrypts it,
p′ = MT p̂.

Search encryption function Eq: Given a query point q and a random
number r > 0, the function creates a (d+2)-dimensional point q̂ =
r(qT , 1,−0.5||q||2)T and encrypts it, q′ = M−1q̂. The factor r makes it pos-
sible to randomize the query point, in case the user submits it twice.

Decryption function D: Given an encrypted point p′ from the database, the
function extracts the original point, p = πdM

T−1
p′ where πd = (Id, 0, 0) is a

d × (d + 2) projection matrix and Id is a d × d identity matrix.
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Distance comparison operator Ae: Given two encrypted points p′
1 and p′

2

and an encrypted query point, the function calculates whether p′
1 is closer

to q′ than p′
2 is, assessing if (p′

1 − p′
2) · q′ > 0. This function is sufficient to

run the kNN operation, which compares the database points with a reference
point two-by-two using a distance comparison operator.

To support circular and rectangular range searches, some functions must be
introduced into a preprocessor module on the data owner side. The auxiliary
functions are presented below for each search.

Circular Range Search. To adapt a circular range search to a comparison
between encrypted points, we must select a random point in boundary circle
and encrypt it as a data point b′. Thus, to a given encrypted point p′ from
encrypted database, it is possible to discover if q′ is closer to p′ or to b′ using the
distance comparison operator. The necessary functions to enable circular range
search are listed below.

1. Get Circle Point (qcenter, distance) → qcenter + distance. Given a point
(qcenter) and a distance, this function will pick a random point in the circle
formed by qcenter as center and distance as its radius.

2. Circular Range Encryption (p,q) → (p′,q′). Given a circle’s boundary
point (p) from Function 1 and the query point (q), it encrypts them, using
the encryption functions of the scheme, returning p′ and q′.

3. Circular Range Search (p′
1,p

′
2,q

′) → {True, False}. It is executed on the
outsourced database. Given a point from an encrypted database (p′

1), the
encrypted point (p′

2) and the encrypted query point (q′) from Function 2, it
runs a scalar product operation to verify whether p′

1 is nearer to q′ than p′
2

is, using the distance comparison operator. If it is, then the point satisfies the
circle range search; otherwise, the point is beyond the circle’s boundaries.

The Function 1 generates a random database point even if the circle’s center
is the same. Therefore, in the case the same search is executed twice, encrypted
query and generated database point are unlikely to recur, avoiding that an
attacker recognizes that the same search is executing again. For the same reason,
encrypted searches do not reveal any information about the radius. Moreover, it
is not possible to distinguish whether an operation is a circular range search or
a kNN operation, as they are all based on distance comparison.

Rectangular Range Search. To execute rectangular range searches, our app-
roach uses halfspace range searches to assess whether a point is inside of a rec-
tangle. Each one of a rectangle’s edge is a line that separates the inner region of
the rectangle from the outer region. Therefore, a rectangular range search will be
transformed into a conjunction of halfspace range searches. This transformation
is made by the following functions:

1. Generate Anchor Points ((rA1 , rA2 , ..., ..., rAn ), (rB1 , rB2 , ..., ..., rBn )) →
((q<1 , q<2 , ..., ..., q<n ), (q≥

1 , q≥
2 , ..., ..., q≥

n )). Given two vertices (rA and rB)
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in a rectangle, which are linked by an edge, this algorithm will choose a line
perpendicular to said edge. Then, it will randomly pick two points (q< and
q≥) which are in the line and equidistant from the edge (q< and q≥).

2. Encrypt Rectangle. For each pair of linked vertices of the rectangle, two
query points are generated by the function in item 1 and encrypted using the
same random number (r).

3. Rectangle Search Operator (((q<1 ’,q≥
1 ’),...,(q<4 ’,q≥

4 ’)),p′) → {True, False}.
Given four pairs of anchor points encrypted by Function 2 and a point from an
encrypted database (p′), for each pair (q<i ’, q≥

i ’), it will run a scalar product
operation in the outsourced database to verify whether p′ is nearer to q<i ’
or to q≥

i ’ using the distance comparison operator. If it is always near to q<i ’,
then the point satisfies the rectangular range search; otherwise, the point is
beyond the rectangle’s boundaries.

Function 1 randomly picks two anchor points. Therefore, in the case the same
search is executed twice, the anchor points are unlikely to recur, avoiding that
an attacker will link the search with a previously executed search.

Correctness. The operations are calculated using the scalar product over the
encrypted data, without including false results. We present the Theorem1 for
kNN and circular range search and Theorem2 for rectangular range search to
guarantee their results.

Theorem 1. Let p′
1 and p′

2 be encrypted points of the database and q′ the
encrypted reference point. Thus, the scheme determines whether p1 or p2 is closer
to q by evaluating if (p′

1 − p′
2) · q′ > 0.

Proof. Note that,

(p′
1 − p′

2) · q′ = (p′
1 − p′

2)
T q′

(p′
1 − p′

2) · q′ = (MT p̂1 − MT p̂2)TM−1q̂

(p′
1 − p′

2) · q′ = (p̂1 − p̂2)T q̂

This scalar product can be represented by

= (p1 − p2)T (rq) + (−0.5||p1||2 + 0.5||p2||2)r + 0.5||q||2 − 0.5||q||2
= 0.5r(||p2||2 − ||p1||2 + 2(p1 − p2)T q)

= 0.5r(||p2||2 − 2pT2 q + ||q||2 − ||p1||2 + 2pT1 q − ||q||2)
= 0.5r(d(p2, q) − d(p1, q))

where d is the Euclidean distance between two points. Thus,

0.5r(d(p2, q) − d(p1, q)) > 0 ⇔ d(p2, q) > d(p1, q)

Therefore, if the condition is satisfied, p1 is closer to the reference point q. �
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In case of a circular range search, the search preprocessor transformation
ensures radius = d(p2,q), hence 0.5r(d(p2, q)−d(p1, q)) > 0 ⇔ radius > d(p1, q).
Therefore, if the condition is satisfied, p1 is inside the circle range search.

Theorem 2. Let p′ be an encrypted point of the database, q′
1 and q′

2 be the
two encrypted anchor points, q<’ and q≥’ respectively. Therefore, the scheme
determines whether p is inside the rectangle by evaluating if p′ · (q′

1 − q′
2) > 0.

Proof. Note that,

p′ · (q′
1 − q′

2) = p′T (q′
1 − q′

2)

p′ · (q′
1 − q′

2) = (MT p̂)T (M−1q̂1 − M−1q̂2)

p′ · (q′
1 − q′

2) = p̂T (q̂1 − q̂2)

Since r is the same in q1 and q2, this scalar product can be represented by

= pT r(q1 − q2) + (−0.5||p||2 + 0.5||p||2)r + (−0.5||q1||2 + 0.5||q2||2)r
= 0.5r(||q2||2 − ||q1||2 + 2pT (q1 − q2))

= 0.5r(||p||2 − 2pT q2 + ||q2||2 − ||p||2 + 2pT q1 − ||q1||2)
= 0.5r(d(p, q2) − d(p, q1))

where d is the Euclidean distance between two points. Hence,

0.5r(d(p, q2) − d(p, q1)) > 0 ⇔ d(p, q2) > d(p, q1)

Accordingly, if the condition is satisfied, p is inside the rectangle. �

Security Analysis

Theorem 3. If a level-3 attacker knows d+2 plain points P = {x1, x2, ..., xd+2}
and their corresponding encrypted points E(P ) = {x′

1, x
′
2, ..., x

′
d+2}, he can

recover the key K.

Proof. As the attacker knows the plain points and the corresponding encrypted
points, he can set up a system of equations to solve K, Kx̂i = x′

i for i = 1 to
d + 2, where x̂i = (xi,−0.5||xi||2, 1)T . �

Theorem 4. Scheme 1 is resistant to brute force attacks with level-2 knowledge.

Proof. As a level-2 attacker does not know the correspondence among the points
in P and the encrypted points in E(DB), he may try finding it using a brute-
force attack. As presented in Theorem 3, at least d + 2 points are necessary to
discover the key of our scheme. Thus, if |P | > d + 2, a subset of P may be
selected to discover the key, dividing P into two sets, a validating set (Pv) and
a training set (Pt) where |Pt| = d + 2. The initial step is to randomly pick
d + 2 encrypted points from E(DB) to set up equations with Pt in order to
discover the key. Then, the result key Ki is verified against points in Pv; if



CR-ASPE 191

submitting Pv to an encryption function with Ki generates points from E(DB),
Ki is valid; otherwise, Ki is not valid. However, a brute-force attack may test
all combinations of correspondences of Pt and E(DB), i.e. An

d+2 tries, where
n = |E(DB)|. For an example with 50000 encrypted bi-dimensional pieces of
data, if an attacker is able to set up and solve 1 million systems of equations per
second, it would take over 300 years to compute all combinations. �

Besides brute force attacks, Principle Component Analysis (PCA) [10] may
be used to link the correlation of dimensions of known points in P and the
correlation of dimensions of encrypted points in E(DB). However, CR-ASPE
does not preserve the correlation of dimensions, since each encrypted dimension
is a linear combination of all dimensions of original data. An attack based on
duplicate analysis [13] retrieves information from repeated occurrences of data
in small domains. CR-ASPE is also resistant to duplicate analysis, due to linear
combination of dimensions, i.e. even if a dimension is from a small domain, the
domain of an encrypted dimension will not be the same.

5.2 Enhanced CR-ASPE Scheme

In Sect. 5.1, we proposed the trivial solution for executing kNN operations, rec-
tangular range search and circular range search. However, CR-ASPE 1 is not
secure against an attacker who knows a subset of unencrypted spatial points, the
set of encrypted spatial points and the correspondence between them, as shown
in Theorem 3, since the attacker may set up and solve the system of equations
to recover the key. Therefore, we proposed an enhanced CR-ASPE scheme, CR-
ASPE 2, which uses the two techniques of Sect. 2: random asymmetric splitting
and adding artificial dimensions, increasing the difficulty to crack.

Key: two d′ ×d′ invertible matrices M1 and M2, a bit vector S with d′ elements
and a vector w with d′ − (d + 2) random numbers, where d is the number
of dimensions of plain data and d′ is the number of dimensions of encrypted
data.

Tuple encryption function Ed: Given a point from database p, the function
creates a d′-dimensional point where the first d + 2 dimensions are p̂ =
(pT ,−0.5||p||2, 1)T . Then, for i = d + 2 to d′, if Si = 1, p̂[i] = wi−(d+2);
otherwise, p̂[i] = randomnumber. For the last dimension, where Si = 0, the
result of the scalar product of artificial dimensions p̂ by w must be equal to
zero; consequently, p̂[i] is a number whose value makes this result true. This
creates a pair of points (p̂a, p̂b). For i = 1 to d′, if Si = 1, it randomly splits
p̂[i] into p̂a[i] and p̂b[i]; otherwise, p̂a[i] = p̂[i] and p̂b[i] = p̂[i] too. Lastly, it
encrypts them, returning a pair (p′

a = MT
1 p̂a, p′

b = MT
2 p̂b).

Query encryption function Eq: Given a query point q and a random number
r > 0, the function creates a d′-dimensional point where the first d + 2
dimensions are q̂ = r(qT , 1,−0.5||q||2)T . Then, for i = d + 2 to d′, if Si = 0,
q̂[i] = wi−(d+2); otherwise, q̂[i] = randomnumber. For the last dimension,
where Si = 1, the result of the scalar product of q̂ by w must be equal to
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one; consequently, q̂[i] is a number whose value makes this result true. This
creates a pair of points (q̂a, q̂b). For i = 1 to d′, if Si = 0, it randomly splits
q̂[i] into q̂a[i] and q̂b[i]; otherwise, q̂a[i] = q̂[i] and q̂b[i] = q̂[i] too. Lastly, it
encrypts them, returning a pair (q′ = M−1

1 q̂a, q′ = M−1
2 q̂b).

Decryption function D: Given a pair of encrypted points (p′
a, p

′
b) from the

database, the function extracts the original points, pa = πdM
T−1

1 p′
a and

pb = πdM
T−1

2 p′
b, where πd = (Id, 0, 0) is a d × d′ projection matrix and

Id is a d × d identity matrix. After that, if Si = 0, p[i] = pa[i]; otherwise
p[i] = pa[i] + pb[i].

Distance comparison operator Ae: Given two pairs of encrypted points (p′
1a,

p′
1b) and (p′

2a, p′
2b), and a pair of encrypted query points (q′

a, q′
b), the function

calculates whether p′
1 is closer to q′ than p′

2 is, assessing if (p′
1a − p′

2a) · q′
a +

(p′
1b − p′

2b) · q′
b > 0.

Security Analysis. The use of Random Asymmetric Splitting generates 2d

possible configurations, since a bit vector is used to split an original point. In
addition to that, adding artificial dimensions will increase the number of dimen-
sions of encrypted data. Therefore, both techniques may be combined to increase
the number of possible configurations to 2d

′
in relation to Scheme 1. Thus, a CR-

ASPE with 128 dimensions is equivalent to an AES with a 128 bits key size.

Theorem 5. The CR-ASPE 2 scheme is resistant to a level-3 attacker.

Proof. Although the attacker has a knowledge H = {E(DB), P, I}, he does not
know the splitting configuration of encrypted points. Hence, for each point pi in
P , he has to suppose a random pair of encrypted point (p′

ia, p
′
ib) in order to set

up two systems of equations, MT
1 p̂ia = p′

ia and MT
2 p̂ib = p′

ib, where M1 and M2

are unknown matrices from the key. Thus, the attacker does not have sufficient
equations to discover the matrices, rendering the scheme resistant to a level-3
attack. �

The incorporated techniques (i.e. random asymmetric splitting and adding
artificial dimensions) do not affect the correctness of search functions. However,
by raising the security strength, they impact performance, since the complexity
of these operations vary according to the number of dimensions.

6 Performance Evaluation

We compared our schemes in terms of performance with the ASPE schemes 1
and 2 proposed in [4] and the DPT scheme presented in [5], since [4] proposed
the asymmetric scalar product encryption, and [5] is able to execute searches
based on distance. We have conducted the experiments on a computer with
2.60 GHz i7 Intel Core processor, 16 GB RAM and Windows 8.1. All schemes
where implemented using Python version 2.7.10. The performance evaluation was
based on common functions of all schemes: encryption, decryption, kNN, circular



CR-ASPE 193

range search and rectangular range search. As [4,5] cannot perform circular range
search and rectangular range search functions on encrypted spatial data, we have
to decrypt all data on ASPE and DPT schemes before running the search.

For the experiments, we have firstly generated two sets of random data. The
first set generated n-data points with four dimensions, where n varied from
10,000 to 100,000. The second set was generated with d dimensions and 50,000
data points, where d varied from 10 to 100. On CR-ASPE 2 and ASPE 2, we
adopted d′ = 80 to secure our data; however, when d ≥ 80, we adopted d′ = d+2
on our scheme and d′ = d+1 on ASPE. Secondly, we used a real dataset, Shuttle,
which may be found in UCI repository [14], containing 58,000 spatial data points
with 9 dimensions. We have executed each operation on the schemes 100 times
and calculated an arithmetic average with them.

6.1 Experimental Results

We have evaluated the encryption, decryption, kNN, circular range search and
rectangular range search functions varying the number of data dimensions and
collecting the time in seconds in order to analyze the overhead caused by the arti-
ficial dimensions on the enhanced scheme (CR-ASPE 2) in relation to our sim-
plest scheme (CR-ASPE 1). In order to analyze the complexity of the proposed
functions, we also varied the number of spatial objects encrypted, collecting the
time consumed for each case in seconds.

In Fig. 1b, it becomes clear that even when the number of dimensions of plain
data is close to the number of dimensions used to encrypt data by enhanced
schemes, the time consumed by the encryption function of both CR-ASPE 1
and ASPE 1 were around 11 % and 12 % of the time consumed by CR-ASPE
2 and ASPE 2, respectively. The results presented in Fig. 1a have shown that
the cost grew linearly. Moreover, the time consumed by the encryption function
of our simplest scheme was around 60 % higher than that of DPT’s function in
Fig. 1a. Nevertheless, the tendency of encryption functions of the ASPE schemes
in comparison to ours was the same (around 3 % of difference) in Figs. 1a and b.
Such result was expected because both use asymmetric scalar product encryp-
tion. In Fig. 1d, we have observed that the time consumed by the decryption
function of the DPT scheme was higher than that of the first ASPE scheme and
our first proposed scheme, because it has to invert a rotation matrix, multiply
it by the encrypted point and subtract the result by a translation matrix. That
means an extra operation when compared to the decryption functions of our
schemes and ASPE schemes. Furthermore, we notice that even when the num-
ber of data dimensions is close to the number of dimensions used to encrypt data
by schemes that use additional dimensions to encrypt data, the time consumed
by the encryption function of CR-ASPE 1 and ASPE 1 was around 19 % and 20 %
of the time consumed by CR-ASPE 2 and ASPE 2 respectively. Figure 1c shows
that the cost had grown linearly. Moreover, the time consumed by the encryption
function of our simplest scheme was around 8 % bigger than DPT’s decryption
function in Fig. 1c. Nevertheless, the tendency of decryption functions of the
ASPE schemes in comparison to ours was the same (around 2 % of difference)
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Time consumed by encryption, decryption and kNN operations.

in Figs. 1c and d, as both use asymmetric scalar product encryption. Regard-
ing the kNN operation in Figs. 1e and f, we noticed that the time consumed by
all schemes did not change when dimensions varied. Furthermore, in Fig. 1f, the
difference between the time consumed by kNN operation of CR-ASPE 1 and CR-
ASPE 2 was around 3 %. We suppose it happened due to the optimized NumPy
function to multiply matrices. The kNN function has a O(n log n) complexity,
which is detailed in Fig. 1e. Moreover, the time consumed by CR-ASPE 1’s kNN
function was around 55 % smaller than DPT’s kNN function (Fig. 1e). It hap-
pened because the DPT scheme calculates the distance between the encrypted
database point and the encrypted reference point, while CR-ASPE 1 executes
one scalar product.

Due to ASPE schemes’ limitation to execute circular search over encrypted
data, ASPE 1 and ASPE 2 schemes must decrypt all data before running the
circular range search. Thus, the time consumed by them is bigger than CR-ASPE
and DPT schemes. The time consumed by circular range search of CR-ASPE 1
and CR-ASPE 2 is around 13 % and 27 % respectively of the time consumed by
DPT in Fig. 2b, since CR-ASPE schemes execute a scalar product to verify the
condition. Figure 2a has shown that the cost linearly grew. Moreover, the time
consumed by circular search in CR-ASPE 1 and CR-ASPE 2 schemes was around
10 % and 1 % of the time consumed by circular search in ASPE 1 and ASPE 2
respectively. Figure 2d depicts the advantage of CR-ASPE schemes over ASPE
schemes. As the ASPE schemes must decrypt all data to execute rectangular
range searches while CR-ASPE and DPT schemes search over the encrypted
data, the time consumed by them is evidently bigger. The time consumed by
rectangular range search in CR-ASPE 1 and CR-ASPE 2 is around 70 % and
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114 % respectively of the time consumed by DPT. Figure 2c indicates that the
cost grew linearly. Moreover, the time consumed by rectangular search in CR-
ASPE 1 and CR-ASPE 2 schemes was around 2 % and 0.5 % of that consumed
in ASPE 1 and ASPE 2, respectively.

(a) (b) (c) (d)

Fig. 2. Time consumed by circular and rectangular range searches.

Our experiment results confirm that the encryption and decryption functions
of CR-ASPE schemes have similar performance to ASPE schemes’ functions,
despite being more costly than encryption and decryption functions of DPT
schemes. On the other hand, the circular range search, rectangular range search
and kNN operation of CR-ASPE schemes were faster than the kNN function of
DPT schemes.

Table 1. Execution times in seconds using real data (n = 58, 000 and d = 9).

ASPE 1 ASPE 2 CR-ASPE 1 CR-ASPE 2 DPT

ENC 1.71799 39.37519 1.61879 39.80141 1.08499

DEC 3.93868 75.82168 3.94564 77.95755 2.16277

KNN 1.05159 1.13221 1.10023 1.116808 1.81489

CRS 4.21793 77.40803 0.11913 0.24631 0.28225

RRS 3.91887 76.56150 0.46885 0.80529 0.54054

For the real dataset, we have obtained the results of time consumed in seconds
by encryption (ENC), decryption (DEC), kNN, circular range search (CRS) and
rectangular range search (RRS) functions for each scheme shown in Table 1.
The results present the same behavior as the experiment over artificial datasets,
evidencing the schemes do not lose performance when handling real data.

7 Conclusion

We proposed two encryption schemes for spatial data. CR-ASPE 2 is secure
against attackers that have knowledge of a subset of plain spatial data, a set
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of encrypted spatial data and the correspondence between them. While the
encryption functions of CR-ASPE 1 scheme were not resistant to level-3 attacks,
but approximately six times faster. Furthermore, in both CR-ASPE schemes,
searches are executed over encrypted spatial data, an improvement on [1–4,6],
reducing the functional gap between spatial databases and encrypted spatial
databases.

We have compared our work with other encryption schemes and concluded
that although our work supports more types of searches, its encryption functions
have a similar performance to other ASPE schemes. Moreover, we presented
proofs showing that each scheme correctly performs the searches.

The proposed schemes will be used to encrypt data structures as R-trees
[7] or spatial indexes [15] in future works. Another work could implement these
schemes in an EDBMS-like model [8] in order to support encrypted spatial data.
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