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Abstract. Nowadays, we see an explosion in the number of Database
Management Systems (DBMS) in the market. Each one has its own
characteristics. This spectacular development of DBMS is mainly moti-
vated by the need for storing and exploiting the deluge of heteroge-
neous data for analytical purposes. As a consequence, companies and
users are faced with huge range of choices and sometimes it is hard for
them to find the relevant DBMS. Some Web sites such as DB-Engines
(http://db-engines.com/en/) provide monthly a classification of hun-
dreds of DBMS (303 in April 2016) using metrics related to usage and
user feedbacks. These criteria are not always sufficient to help com-
panies and users to make a good choice. Therefore, they have to be
enhanced by qualitative measurements obtained by testing the activ-
ities of DBMS for a set of non-functional requirements. In this per-
spective, some council such as Transaction Processing Council publish
non-functional requirement results of DBMS using their own benchmarks.
Another serious producer of test data is the researchers via their scien-
tific papers. Each year they publish a large amount of results of new
solutions. To facilitate the exploitation of these test results by small com-
panies and researchers from developing countries, the construction of a
test data repository connected to recommender system is an asset for com-
panies/users. In this paper, we first propose a repository for structuring
and storing test data. Secondly, a recommender system is built on the top
of this repository to advise companies to choose appropriate DBMS based
on their requirements. Finally, a proof of concept of our recommender sys-
tem is given to illustrate our proposal.

1 Introduction

Nowadays, every science discipline (e.g. smart Grids [22], health-care [18], and
telecommunication [5]) needs the services offered by the DBMS. The develop-
ment of efficient database applications represents a crucial issue for companies.
This issue has to deal with the diversity, the deluge of data, the emerging tech-
nologies, the continuously need for satisfying several non-functional requirements
(e.g., the usability, the quality, the security, the response time, the energy con-
sumption, etc.), etc. The diversity covers several aspects: (a) the manipulated
data, (b) the database models (relational, XML, Semantic, Graphs, etc.), (c) the
DBMS, (d) the deployment platforms (centralized, distributed/parallel, cloud,
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data clusters, etc.), (e) the type of workload (Online Transaction Processing
(OLTP), Online Analytical Processing (OLAP) or OLTP/OLAP) [1], etc. The V
of Big Data defining the volume makes the satisfaction of certain non-functional
requirements, such as performance, more difficult. This situation encourages data
management editors to propose solutions and new DBMS in order to fitful these
requirements. As a consequence, companies are faced to a problem of choos-
ing their DBMS. Recent initiatives have been launched for this purpose. For
instance, the objective of DB-Engines1 is to collect and present information on
DBMS and provides monthly a classification of hundreds of DBMS (303 in April
2016) using metrics related to usage and user feedbacks.

Note that the satisfaction of non-functional requirements strongly depends on
the used DBMS and the platform. Faced to the diversity of DBMS, a legitimate
question that companies have to ask when they develop new database projects
is: what is the favorite DBMS for my application?

An equivalent question has already been asked in 80s, when companies and
organizations start dealing with projects for new types of data and applications.
For instance, in [7], the authors attempt to select a DBMS for agricultural record
keeping for United States Department of Agriculture (USDA). Recently, with
the explosion of advanced platforms, several studies endeavor to evaluate a set
of non-functional requirements of a priori known DBMS deployed in a given
platform for a specific activity. In [10], the authors evaluate the performance of
the MongoDB deployed on a Hadoop platform for scientific data analysis. This
situation is easier for companies, since it supposes the knowledge of the DBMS
and the platform.

The response to the above question can be done thanks to the subjective
evaluation of the used non-functional requirements by performing intensive test-
ing activities. Note that a testing activity consists in stimulating a system in
order to observe its response [19]. A stimulus and a response both have val-
ues, which may coincide, as when the stimulus value and the response are both
real. In the context of the problem of choosing a DBMS, the stimulus includes
the values of parameters, e.g. the deployment platform setting, the database
schema/instances, the constraints, the access methods, and so on. Observations
include values of the metrics describing the used non-functional requirements.

Notice that the testing in the database covers all phases of the life cycle: user
requirement collection, conceptual [23], ETL (Extract, Transform, Load), logical,
deployment, physical [3] and analysis [12]. In this paper, we concentrate only on
the deployment phase in which the DBMS hosting the database application and
the platform are chosen.

Test activities are time and money consuming. As quoted in [15], Microsoft
spends 50 per cent of its development costs on testing. Big companies can spend
money to test their database solutions deployed in a DBMS. As a consequence,
they can tune their solutions to satisfy their requirements. Other organisms and
council such as Transaction Processing Council published regularly the perfor-
mance of well known DBMS and platforms based on their benchmark data2.

1 http://db-engines.com/en/.
2 www.tpc.org.
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For other companies with a large expertise in simulation, they can simulate the
behavior of a set of DBMS and develop mathematical cost models to evaluate the
different metrics measuring the asked non-functional requirements. To be more
accurate, these metrics have to consider relevant parameters of the database
environment such as the schema, the population, the workload, the deployment
platform, the DBMS, the used algorithms, the used optimization structures (e.g.
indexes, materialized views). Based on the results of the simulation, they can
choose the best DBMS that satisfies their requirements. Usually, companies con-
suming the database technology, especially those belonging to developing coun-
tries cannot afford the luxury of Big companies and they do not have enough
expertise to develop their own simulations. Thus, another alternative has to be
found.

On the other hand, the database community spent a great effort in testing
their findings. If we consider only database and information systems conferences
and journals, each year, more than 80 % of scientific papers provide intensive
experiments to evaluate and compare their proposals. This situation contributes
in generating a mass of test data that have to be analyzed. Through this paper,
we would like to think-tank about the following topic: are the available test data
well structured, presented and stored (in a transparency manner) to be publicly
exploited?

In this study, we propose a “DBLP-like”3 repository persisting test data to
offer researchers and companies the possibility to exploit it. Then, researchers
can make a good decision to choose their DBMS, platforms, etc. The reposi-
tory exploitation can be ensured by recommender systems and machine learning
techniques.

In this paper, we present in Sect. 2 basic definitions and concepts related to
our studied problem. Section 3 proposes our recommender system and its differ-
ent components. Section 4 reports a proof of concept for our proposal. Finally,
Sect. 5 concludes the paper and highlights some open issues.

2 Background

In this section, we first present the metrics measuring non-functional require-
ments that a DBMS has to satisfy, then the schema of our repository.

2.1 Database Benchmark Metrics

In the database field, the functional requirements describe the functionalities, the
functioning, and the usage of the DBMS and its components. They are specifying
a behavioral input/output system such as the calculation, data manipulation and
processing, identification, creation, insert, delete, update and others. In general,
they are detailed in the system design [16].

3 http://dblp.uni-trier.de/.
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Non-functional requirements [20], also called quality attributes are either
optional requirements or needs/constraints, they are detailed in system archi-
tecture. Non-functional requirements describe how the system will do. In the
context of the advanced databases, the non-functional requirements are usually
difficult to test. As a consequence, they are evaluated subjectively [6,14].

To evaluate a non-functional requirement corresponding to the deployment
phase, several metrics are used which have to be either maximized or minimized.
We can cite some traditional metrics:

– Query-per-Hour Performance (QphH@size): it is a measure used to determine
the performance of a database system. This metric represents the number of
queries executed for one hour relative to the size of the database. The TPC-H4

which is one of the most popular benchmarks uses this metric.
– Execution-time: it represents the time needed for execution resources of the

system to process a query.
– Latency or response time: it represents the time between the launch of a query

and the arrival-time of the first answer. The best response time value of a query
corresponds to its run-time.

– Throughput : it gives the number of queries performed per time.
– Utilization rate of a resource: it is the proportion of the time that the resource

is used in a given time.
– Transmission rate: it gives the number of tuples produced per time.

2.2 Test Data Repository

The basic idea behind our test data repository was inspired from the presence,
in numerous scientific papers of a section describing Experimental Study. The
analysis of this section allows us to identify repetitive informations that describe
the experimental environment and the obtained test results.

This environment contains: the used platforms, the DBMS, the operating sys-
tems, the database (schema and instances), the workload, the used algorithms,
the mathematical cost models, the hypothesis, the metrics (with their units), the
type of experiments (simulation, real), the used external material to compute
the cost of consumed resources such as the energy, etc. From a scientific paper,
we can deduce other information such that the affiliation of the authors, the
period of the test, etc. The test data represents the obtained measures of metrics
of non-functional requirements. Table 1 gives an example of the experimental
environment of [21] that deals with the problem of designing of an energy-
aware DBMS. The used metrics represent the consumed energy consumption,
the Inputs-Outputs (IO) and the CPU cost when executing a workload.

From these informations, we embodied a data warehouse schema ()as a star
schema) (Fig. 1) [4]. It is composed of the following dimensions:
Dim Platform, Dim Deployment, Dim DBMS, Dim OS, Dim Dataset, Dim
Query, Dim Algorithms, Dim AccessMethods, Dim Hypothesis, Dim Metrics,
Dim Laboratory and Dim Time.
The fact table contains the mathematical and real measures related to metrics
(CPU, IO, Network, Energy, etc.).
4 http://www.tpc.org/tpch/.
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Table 1. Testing environment

Laboratory LIAS/ENSMA

Time 14/05/2015

Platform Marque: Dell precision T1500

CPU: Intel Core i5 2.27GHz, Memory: 4GB of DDR3

Dataset Star Schema Benchmark (SSB), Size: 100GB

Operating System Ubuntu 14.04 LTS kernel 3.13

Workload Star schema Benchmark (SSB) queries

Deployment Centralized

Optimization Structures Materialized views

DBMS Oracle 11gR2

Algorithm Nondominated Sorting Genetic Algorithm NSGA II

Hypothesis Without cache

Metrics Response time CPU Cost IO Cost Energy

External material Watts UP? Pro ESa

Type of experiments material simulation and real
a https://www.wattsupmeters.com/

Fig. 1. Our test data repository

Our data warehouse can be exploited by traditional reporting tools (For
example, the OLAP Slice and Dice operations shown in Fig. 2), exploration [11,
17], data mining algorithms [2], etc.

https://www.wattsupmeters.com/
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Fig. 2. An example of OLAP slice and dice

3 A Recommender System for Choosing DBMS

To respond to the question that we asked in Introduction, we believe that
recommender systems may assist companies in selecting their favorite DBMS.
Recommender systems have been largely used in several domains. Three main
types of recommender systems exist: collaborative filtering, content-based and
knowledge-based. They differ from the information that they use to propose
recommendations. The collaborative filtering uses similarities between users
and items. Content-based uses static information about users or items. How-
ever, knowledge-based depends on informations that are obtained directly from
users [13].

3.1 Components of Our Recommender System

The recommendation scenario in our context is the following: We assume that
a company/user comes up with a database application with its characteristics
related to the database schema, the workload, the platform, etc., and wants get-
ting an advise to choose a relevant DBMS that fulfills its requirements. These
informations are described through a document called the manifest. Two cate-
gories of information are available: (i) given information and (ii) missing infor-
mation. The first category defines the valued attributes that a company has,
whereas the second one represents the attributes with missing values that the
company is looking for.

Note that all attributes used in the manifest belong to the schema of our
warehouse. Figure 3 represents an example of a manifest, in which the DBMS
and performance metric (estimating QphH) are missing. This means that the
company is looking for a DBMS and its performance for its application. Our
recommender system has to consider the manifest explores the warehouse to
find fragment of test data corresponding to the manifest, and then propose the
company a DBMS. To highlight the work-flow related to the test seeking, we
describe the steps shown in Fig. 4.
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Fig. 3. Example of a manifest

Fig. 4. Overview of the test warehouse-like repository usage

(A) The company chooses to play the role of a test seeker.
(B) The seeker interface transforms the request to a set of queries to select all

the dimensions with their values and the metrics (without values) which
exist in the test repository.

(C) The seeker interface loads the result of B and presents it to the company
(e.g. seeker). This instance corresponds to an empty Manifest.

(D) The company enriches the manifest by expressing it needs based on the
existing content. Of course, users can add new values related to the dimen-
sions when it is necessary. However, adding new metrics is not possible,
because the objective is to orient designers to choose a test configuration
depending on the metrics that exist in the repository.

(E) The seeker interface generates from the manifest a set of appropriate SQL
queries to explore the test repository.

(F) Based on the manifest queries and the repository content, a set of possible
tests and their specific configurations, in which missing informations are
replaced by the recommended values, are proposed to the seeker via the
interface. Note that this problem is quite similar to the problem of clus-
tering with missing data [24]. Several research efforts have been done to
solve the above-mentioned problem. Usually, they propose algorithms and
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methods to predict the missing values [24]. These algorithms are defined
at the attribute level and not at the dimension level. This motivates us
to develop our own algorithm. The basic idea is to discard the dimensions
which are not expressed in the manifest. Based on the obtained results, we
estimate the attributes values of unknown dimension(s). This can be done
by using machine learning techniques (Fig. 5). The details of this algorithm
is presented in Sect. 3.2.

(G) Finally, the user can download information related to the proposed solution.
Note that the searching results shall correspond to a repository containing
one or several tests depending on the seeker requests. The aim is to allow
seekers to download customized repositories referring to their needs.

Fig. 5. The structure of recommender system

3.2 Machine Learning Algorithms

At the beginning, we used a linear regression technique to deal with our problem.
However, the obtained results were poor in terms of prediction. This is due to
occurrences of DBMS in the repository which are not enough for prediction. For
instance, in our repository, there is 40 tests involving MS SQL Server, but only
10 for Oracle DBMS.

To avoid the problem of occurrences of tests, we use another algorithm based
on similarity between Manifest and tests. Before detailing this algorithm, some
definitions are given.

Definition 1. The similarity is a comparison between two objects to determine
the most important and useful relations between them [8].

Definition 2. The distance is the inverse measure of the similarity. Several
distance functions exists such as Euclidean distance defined as follows:
Let P1(x1, x2, ..., xk) and P2(y1, y2, ..., yk) be two points of a vector space. The
distance between P1 and P2 is given by the following equation:

Distance =

√
√
√
√

k∑

i=1

(xi − yi)2 (1)
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Let x and y be two scalable values. x and y are similar if they verify the following
relations [9]:

Relative relation :
x

y
≈ 1 if

x

y
∈ [1 − ε,

1
1 − ε

]

Absolute relation : x − y ≈ 0 if |x − y| ∈ [0, ε]
(2)

where ε is the smallest value in the scale of x or y. Among the two above
relations, the relative relation fits better our problem. Therefore, the similarity
can be assimilated to the ratio between the estimated and the real measures.

Definition 3. Normalization. It is a property of the similarity and requires
that all values belonging to the interval [0, 1]. There are various normalizations
in statistics. Let X = {x1, x2, . . . , xn} be a sample of n valued items. The nor-
malized value of xi may be given by:

N =
xi − Min(xi)

Max(xi) − Min(xi)
(3)

If the distance (D) is normalized, the similarity S is can be given by: S = 1−D.
Now, we have all ingredients to describe and illustrate our algorithm. Let

us consider an office design company comes with a Manifest, where DBMS and
performance metric that estimate QphH are missing. Since the following lines
describe the algorithm, Table 2 shows the whole process and its results step by
step.

– step 1: analyzing of the company Manifest to identify the presence of
dimensions;

– step 2: getting a fragment of the data cube satisfying these dimensions (using
Slice and Dice);

– step 3: normalizing all the dimension’s values using formula 3;
– step 4: computing the similarity between the company Manifest and each

instance of the data cube fragment. Note that an instance represents a test;
– step 5: selecting the best propositions based on the result of sorting. Indeed,

tests are sorted in relation to similarity results for each DBMS.
– step 6: the company can choose its favorite DBMS based on its requirements

such as price.

Our algorithm can be extended by considering missing measures, by extracting
the fragment of the data cube corresponding on the given dimensions.

4 Proof of Concept

To stress our proposal, we consider real test data available at the TPC website.
They correspond to the execution cost (in a single stream) of queries running on
four well-known DBMS: Oracle, MS SQL Server, DB2 and Sybase. These data
are manually inserted into our repository (about ten tests of each DBMS). Two
cases of manifest are considered (Table 3).
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Table 2. Example process of our recommender system

Algorithm’s steps Example

Step 1
Input: Manifest

Step 2
Input: DW TEST

Output:

Step 3 and 4
Input: Table in
above with the
following formulas:
1, 3 and S

Step 5 and 6
Result:

Table 3. The cases of the experimental study

Dataset Workload Platform DBMS

Case 1 � � � ?

Case 2 � � ? ?
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Fig. 6. Excerpt of the manifest corresponding to case 1

Case 1. It corresponds to the scenario where a company looks for a DBMS. It
can expresses its requirement through a manifest as it is shown in Fig. 6.

This means that the user would like to know the response-time of the TPC-H
queries (i.e. Q3, Q7, Q19) depending on specific platform and dataset. Moreover,
referring to the result related the response-time metric; we can recommend a list
of suitable DBMS that matches its requirements.

Table 4. Q3, Q7, Q19 response time(s) with four DBMS

Oracle MS SQL Server DB2 Sybase

Q3 6.80 5.40 102.50 35.50

Q7 34.30 2.80 677.80 37.50

Q19 50.30 2.50 262.20 19.30

Similarity 0.74 0.81 0.48 0.49

Table 4 represents the results obtained that shows the response time of Q3,
Q7, Q19 with MS SQL Server, Oracle, DB2 and Sybase. So, according to the
obtained results, we can sort the found DBMSs. In first position, we find MS
SQL Server which shows performances of speed (Response time) Q3 = 4.37 s,
Q7= 2.26 * 0.99 s and Q19 = 2.02 s (Response time * Similarity). The overall
performance of that Sybase and DB2 DBMS is high. Notice that Sybase outper-
forms Oracle for the query Q19. Therefore, we can recommend MS SQL Server
to satisfy this manifest.

Case 2. It corresponds to the scenario in which a company looks for both a
DBMS and a platform. Its manifest is shown in Fig. 7. Let us assume that this
company uses the same configuration used in the case 1, except the platform is
missing. We would like to precise that in Case 2, the company does not ignore
the platform dimension, but it looks for a relevant platform and a DBMS.
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Fig. 7. Excerpt of the manifest that corresponds to the case 2

Table 5. Selected DBMS and platforms based on the response-times of Q3, Q7, Q19

Oracle MS SQL Server DB2 Sybase

CPU 1.3 2.8 1.9 2.8

Proc 64 4 8 2

Threads 64 120 32 4

Cores 64 60 16 4

Memory 256 1536 32 16

Q3 6.8 4.7 27.3 1429.4

Q7 34.3 2.8 150.4 573.8

Q19 50.3 2.3 163.6 469.2

Similarity 0.99 0.97 0.98 0.93

Table 5 represents the results obtained that shows the response-times of
queries Q3, Q7, Q19. These response-times are categorized based on DBMS and
the platform configurations. We can see that MS SQL Server is the best DBMS
according to the computed response-times. Moreover, it is related to the follow-
ing platform configuration (i.e. CPU: 2.8 GHz - Proc: 4 - Threads: 120 - Cores:
60 - Memory: 1536 GB).

5 Related Work

Before reviewing the important organisms and councils whose the main activity
is publishing test data, let us notice that in our recent work [4], concerns the static
part of warehouse. We only concentrated on proposing a test data repository and
we show the interest of using model-driven engineering techniques to perform
this design and describe the manifest.

The transaction processing council offers a large panoply of benchmarks
covering: transaction processing - OLTP (TPC-C TPC-E), Decision Support
(TPC-H, TPC-DS, TPC-DI), virtualization (TPC-VMS, TPCx-V), Big Data
(TPCx-HS, TPCx-BB) and common specifications (TPC-Energy, TPC-Pricing).
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This council works in close collaboration with industrial partners by delivering
them trusted results.

In computational science such as physics and automatics, we recently assist
in the development of repository persisting the results of experiments and
simulations. The cTuning repository5 is open-source, customizable Collective
Knowledge Repository for physics domain. It aggregates developments, ideas
and techniques, and allows users to share, cross-link and reference any object
and knowledge (workloads, data sets, tools, optimization results, predictive mod-
els, etc.) as a reusable component with a unified JSON API via GitHub. AiiDA6

is a flexible and scalable informatics’ infrastructure to manage, preserve, and
disseminate the simulations, data, and work-flows of modern-day computational
science to ensure reproducibility.

6 Conclusion

The data warehousing and recommender systems have been applied in numer-
ous domains manipulating huge amount of historical data. Scientific papers,
councils and research foundations represent rich test data sources that have
to be exploited by researchers and companies for developing countries. In this
paper, we attempt to federate the database community around the importance
of the available test data and to motivate them to build “DBLP-like” reposi-
tory that can play the role of a test data warehouse. Its dimensions represent
several aspects of a test environment: database, dataset, workload, platform,
DBMS, algorithms, hypothesis, non-functional requirements, unit of measure,
etc. The fact table of our warehouse contains all measures corresponding to met-
rics describing non-functional requirements. This warehouse can be used either
by traditional OLAP tools for exploration and reposting activities or by systems
recommending companies the relevant DBMS based on their manifest. Two case
studies are given and showed the utility of our approach.

Our paper opens several issues: (i) the development of comprehensive forms
allowing researchers putting their test results in the repository, (ii) providing a
mechanism making our system trustworthy and (iii) generalization of our repos-
itory to consider other phases of the life cycle of database design such as con-
ceptual, logical and ETL.
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