
 123

LN
CS

 9
80

9

20th East European Conference, ADBIS 2016
Prague, Czech Republic, August 28–31, 2016
Proceedings

Advances in Databases
and Information Systems

Jaroslav Pokorný · Mirjana Ivanovic
Bernhard Thalheim · Petr Šaloun (Eds.)

Lecture Notes in Computer Science 9809

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Jaroslav Pokorný • Mirjana Ivanović
Bernhard Thalheim • Petr Šaloun (Eds.)

Advances in Databases
and Information Systems
20th East European Conference, ADBIS 2016
Prague, Czech Republic, August 28–31, 2016
Proceedings

123

Editors
Jaroslav Pokorný
MFF
Charles University
Prague
Czech Republic

Mirjana Ivanović
Faculty of Sciences
University of Novi Sad
Novi Sad
Serbia

Bernhard Thalheim
Christian-Albrechts-Universität Kiel
Kiel
Germany

Petr Šaloun
VSB-Technical University Ostrava
Ostrava
Czech Republic

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-44038-5 ISBN 978-3-319-44039-2 (eBook)
DOI 10.1007/978-3-319-44039-2

Library of Congress Control Number: 2016946966

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The 20th East-European Conference on Advances in Databases and Information
Systems (ADBIS 2016) took place in Prague, Czech Republic, during August 28–31,
2016. The ADBIS series of conferences aims at providing a forum for the dissemination
of research accomplishments and at promoting interaction and collaboration between the
database and information systems research communities from Central and East
European countries and the rest of the world. The ADBIS conferences provide an
international platform for the presentation of research on database theory, development
of advanced DBMS technologies, and their advanced applications. As such, ADBIS has
created a tradition: its 20th anniversary edition in 2016 continued the series held in
St. Petersburg (1997), Poznan (1998), Maribor (1999), Prague (2000), Vilnius (2001),
Bratislava (2002), Dresden (2003), Budapest (2004), Tallinn (2005), Thessaloniki
(2006), Varna (2007), Pori (2008), Riga (2009), Novi Sad (2010), Vienna (2011),
Poznan (2012), Genoa (2013), Ohrid (2014), and Poitiers (2015). The conferences are
initiated and supervised by an international Steering Committee consisting of repre-
sentatives from Armenia, Austria, Bulgaria, Czech Republic, Cyprus, Estonia, Finland,
France, Germany, Greece, Hungary, Israel, Italy, Latvia, Lithuania, FYR of Macedonia,
Poland, Russia, Serbia, Slovakia, Slovenia, and the Ukraine.

The program of ADBIS 2016 included keynotes, research papers, thematic work-
shops, and a Doctoral Consortium. The conference attracted 85 paper submissions from
49 countries from all continents. After rigorous reviewing by the Program Committee
(108 reviewers from 36 countries in the Program Committee and additionally by
31 external reviewers), the 21 papers included in this LNCS proceedings volume were
accepted as full contributions, making an acceptance rate of 25 %. Springer sponsored
the ADBIS 2016 best paper award. Furthermore, the Program Committee selected
11 more papers as short contributions. The authors of the ADBIS papers come from
33 countries. The two workshop organizations acted on their own and accepted seven
papers for the BigDAP (37.7 acceptance rate) and DCSA (40 % acceptance rate)
workshops and three for the Doctoral Consortium. The BigDAP and DCSA workshop
had one invited paper each in order to enhance visibility and continuation. Short
papers, workshop papers, and the special ADBIS history survey paper are published in
a companion volume entitled New Trends in Databases and Information Systems in the
Springer series Communications in Computer and Information Science. All papers
were evaluated by at least three reviewers. The selected papers span a wide spectrum of
topics in databases and related technologies, tackling challenging problems and pre-
senting inventive and efficient solutions. In this volume, these papers are organized
according to the nine sessions: (1) Database Theory and Access Methods, (2) User
Requirements and Database Evolution, (3) Multidimensional Modeling and OLAP,
(4) ETL, (5) Transformation, Extraction and Archiving, (6) Modeling and Ontologies,
(7) Time Series Processing, (8) Performance and Tuning, (9) Advanced Query

Processing, (10) Approximation and Skyline, (11) Confidentiality and Trust. For this
edition of ADBIS 2016, we had three keynote talks: the first one by Erhard Rahm from
the University of Leipzig, Germany, on “The Case for Holistic Data Integration,” the
second one by Pavel Zezula from Masaryk University, Czech Republic, on “Similarity
Searching for Database Applications,” and the third one by Avigdor Gal, from Tech-
nion – Israel Institute of Technology, Israel, on “Big Data Integration.”

The best papers of the main conference and workshops were invited to be submitted
to special issues of the following journals: Information Systems and Informatica.

We would like to express our gratitude to every individual who contributed to the
success of ADBIS 2016. Firstly, we thank all authors for submitting their research
paper to the conference. However, we are also indebted to the members of the com-
munity who offered their precious time and expertise in performing various roles
ranging from organizational to reviewing roles – their efforts, energy, and degree of
professionalism deserve the highest commendations. Special thanks to the Program
Committee members and the external reviewers for their support in evaluating the
papers submitted to ADBIS 2016, ensuring the quality of the scientific program. We
also offer thanks to all the colleagues, secretaries, and engineers involved in the con-
ference and workshops organization, particularly Milena Zeithamlova (Action M
Agency) for her endless help and support. A special thank you to the members of the
Steering Committee, an in particular, its chair, Leonid Kalinichenko, and his vice chair,
Yannis Manolopoulos, for all their help and guidance.

The conference would not have been possible without our supporters and sponsors:
Faculty of Mathematics and Physics (Charles University in Prague), VSB – Technical
University of Ostrava, Czech Society for Cybernetics and Informatics (CSKI), and the
software companies Profinit, DCIT, and INTAX. Finally, we thank Springer for pub-
lishing the proceedings containing invited and research papers in the LNCS series. The
Program Committee work relied on EasyChair, and we thank its development team for
creating and maintaining it; it offered great support throughout the different phases
of the reviewing process.

June 2016 Jaroslav Pokorný
Mirjana Ivanović

Bernhard Thalheim
Petr Šaloun

VI Preface

Organization

Program Committee

Witold Abramowicz Poznan University of Economics, Poland
Bader Albdaiwi Kuwait University
Birger Andersson Royal Institute of Technology
Grigoris Antoniou University of Huddersfield, UK
Costin Badica University of Craiova, Romania
Marko Bajec University of Ljubljana, Slovenia
Ladjel Bellatreche ISAE - ENSMA
Andras Benczur Eotvos Lorand University, Hungary
Maria Bielikova Slovak University of Technology in Bratislava, Slovakia
Alexander Bienemann Christian-Albrechts-Universität zu Kiel, Germany
Miklos Biro Software Competence Center Hagenberg, Austria
Zoran Bosnic University of Ljubljana, Slovenia
Doulkifli Boukraa University of Jijel, Algeria
Drazen Brdjanin University of Banja Luka, Bosnia and Herzegovina
Stephane Bressan National University of Singapore
Bostjan Brumen University of Maribor, Slovenia
Zoran Budimac University of Novi Sad
Albertas Caplinsks Institute of Mathematics and Informatics
Barbara Catania DIBRIS-University of Genoa, Italy
Krzysztof Cetnarowicz AGH - University of Science and Technology of Krakow,

Poland
Ajantha Dahanayake Georgia College and State University, USA
Antje Duesterhoeft University of Applied Sciences, Wismar, Germany
Johann Eder Alpen Adria Universität Klagenfurt, Austria
Erki Eessaar Tallinn University of Technology, Estonia
Markus Endres University of Augsburg, Germany
Werner Esswein Technical University of Dresden, Germany
Georgios Evangelidis University of Macedonia, Thessaloniki, Greece
Flavio Ferrarotti Software Competence Center Hagenberg (SCCH),

Germany
Peter Fettke Institute for Information Systems at DFKI (IWi), Germany
Peter Forbrig University of Rostock, Germany
Flavius Frasincar Erasmus University Rotterdam, The Netherlands
Dirk Frosch-Wilke University of Applied Sciences Kiel, Germany
Jan Genci Technical University of Kosice, Slovakia
Janis Grabis Riga Technical University, Latvia
Gunter Grafe HTW Dresden

Giancarlo Guizzardi Federal University of Espírito Santo (UFES), Brazil
Hele-Mai Haav Tallinn University of Technology, Institute of Cybernetics,

Estonia
Theo Haerder TU Kaiserslautern, Germany
Mirjana Ivanovic University of Novi Sad, Serbia
Hannu Jaakkola Tampere University of Technology, Finland
Stefan Jablonski University of Bayreuth, Germany
Klaus P. Jantke Fraunhofer IDMT, Germany
Leonid Kalinichenko Institute of Informatics Problems RAS, Russia
Ahto Kalja Tallinn University of Technology, Estonia
Mehmed Kantardzic University of Louisville, USA
Dimitris Karagiannis University of Vienna, Austria
Zoubida Kedad University of Versailles, France
Mikhail Kogalovsky Market Economy Institute of the Russian Academy

of Sciences, Russia
Michal Kopecky Charles University in Prague
Michal Kratky VSB-Technical University of Ostrava, Czech Republic
John Krogstie IDI, NTNU
Wolfgang Lehner Technical University Dresden, Germany
Sebastian Link University of Auckland, New Zealand
Audrone Lupeikiene Vilnius University, Lithuania
Hui Ma Victoria University of Wellington, New Zealand
Leszek Maciaszek Wrocław University of Economics
Christian Mancas Ovidius University, Romania
Yannis Manolopoulos Aristotle University of Thessaloniki, Greece
Rainer Manthey University of Bonn, Germany
Manuk Manukyan Yerevan State University, Armenia
Karol Matiasko University of Zilina, Slovakia
Brahim Medjahed University of Michigan - Dearborn, USA
Dezso Miklos Hungarian Academy of Sciences, Hungary
Pavle Mogin Victoria University of Wellington, New Zealand
Tadeusz Morzy Poznan University of Technology, Poland
Pavol Navrat Slovak University of Technology, Slovakia
Martin Necasky Charles University in Prague
Boris Novikov St.-Petersburg University, Russia
Andreas Oberweis Universität Karlsruhe, Germany
Zoran Obradović Temple University, USA
Andreas L. Opdahl University of Bergen, Norway
George Angelos

Papadopoulos
University of Cyprus

Tomas Pitner Masaryk University, Czech Republic
Jan Platos VSB - Technical University of Ostrava, Czech Republic
Vedran Podobnik University of Zagreb, Croatia
Jaroslav Pokorny Charles University in Prague, Czech Republic
Boris Rachev Technical University of Varna, Bulgaria
Karel Richta Czech Technical University, Czech Republic

VIII Organization

Stefano Rizzi DEIS - University of Bologna, Italy
Viera Rozinajova Slovak University of Technology in Bratislava, Slovakia
Gunther Saake University of Magdeburg, Germany
Petr Saloun VSB-TU Ostrava, Czech Republic
Shiori Sasaki Keio University, Japan
Milos Savic University of Novi Sad, Serbia
Ingo Schmitt Technical University of Cottbus, Germany
Stephan Schneider Fachhochschule Kiel, Germany
Timos Selis RMIT University, Australia
Maxim Shishaev IIMM, Kola Science Center RAS, Russia
Volodimir Skobelev Glushkov Institute of Cybernetic of NAS of Ukraine
Tomas Skopal Charles University in Prague, Czech Republic
Bela Stantic Griffith University, Australia
Claudia Steinberger University Klagenfurt, Austria
Josef Steinberger University of West Bohemia, Czech Republic
Sergej Stupnikov Institute of Informatics Problems, Russian Academy

of Sciences, Russias
James Terwilliger Microsoft Corporation
Bernhard Thalheim Christian-Albrechts-Universität zu Kiel, Germany
Goce Trajcevski Northwestern University
Michal Valenta Czech Technical University in Prague, Czech Republic
Olegas Vasilecas Vilnius Gediminas Technical University, Lithuania
Goran Velinov UKIM, Skopje, FYR of Macedonia
Peter Vojtas Charles University in Prague
Gottfried Vossen University of Münster, Germany
Isabelle Wattiau CNAM and ESSEC
Gerald Weber University of Auckland, New Zealand
Tatjana Welzer University of Maribor, Slovenia
Robert Wrembel Poznan Unviersity of Technology, Poland
Anna Yarygina St. Petersburg University, Russia
Naofumi Yoshida Komazawa University, Japan
Arkady Zaslavsky Digital Productivity Flagship
Jaroslav Zendulka Brno University of Technology, Czech Republic
Koji Zettsu National Institute of Information and Communications

Technology (NICT), Japan

Additional Reviewers

Aboelfotoh, Hosam
Baryannis, George
Batsakis, Sotiris
Berkani, Nabila
Bork, Dominik
Braun, Richard
Broneske, David

Chen, Xiao
Dosis, Aristotelis
Egert, Philipp
Emrich, Andreas
Fekete, David
Gonzalez, Senen
Hussain, Zaid

Organization IX

Lacko, Peter
Lechtenborger, Jens
Lukasik, Ewa
Marenkov, Jevgeni
Mehdijev, Nijat
Meister, Andreas
Mettouris, Christos
Niepel, Ludovit
Normantas, Kestutis

Peska, Ladislav
Rehse, Jana
Robal, Tarmo
Rossler, Richard
Schomm, Fabian
Stupnikov, Sergey
Tec, Loredana
Zierenberg, Marcel

X Organization

Big Data Integration
(Abstract)

A. Gal

Technion – Israel Institute of Technology,
Faculty of Industrial Engineering & Management, Haifa, Israel

avigal@ie.technion.ac.il

Abstract. The evolution of data accumulation, management, analytics, and
visualization has recently led to coining the term big data. Big data encompasses
technological advancement such as Internet of things (accumulation), cloud
computing (management), and data mining (analytics), packaging it all together
while providing an exciting arena for new and challenging research agenda.
In the light of these landscape changes we analyze in this talk the impact of big
data on data integration, which involves the alignment of distributed, hetero-
geneous, and autonomously evolving data. Big data integration is about
matching social media with sensor data, putting it into use in applications such
as smart city, health informatics, etc. In particular, the talk will present
advancement in automatic tools for data integration and the changing role of
human experts.

Contents

ADBIS 2016 - Keynote Papers

Similarity Searching for Database Applications . 3
Pavel Zezula

The Case for Holistic Data Integration . 11
Erhard Rahm

Data Quality, Mining, Analysis and Clustering

Hashing-Based Approximate DBSCAN . 31
Tianrun Li, Thomas Heinis, and Wayne Luk

Fair Knapsack Pricing for Data Marketplaces . 46
Florian Stahl and Gottfried Vossen

Optimizing Query Performance with Inverted Cache in Metric Spaces 60
Matej Antol and Vlastislav Dohnal

Towards Automatic Argument Extraction and Visualization in a
Deliberative Model of Online Consultations for Local Governments 74

Robert Bembenik and Piotr Andruszkiewicz

Model-Driven Engineering, Conceptual Modeling

Towards a Role-Based Contextual Database . 89
Tobias Jäkel, Thomas Kühn, Hannes Voigt, and Wolfgang Lehner

Experimentally Motivated Transformations for Intermodel Links Between
Conceptual Models . 104

Zubeida C. Khan, C. Maria Keet, Pablo R. Fillottrani, and Karina Cenci

AQL: A Declarative Artifact Query Language . 119
Maroun Abi Assaf, Youakim Badr, Kablan Barbar, and Youssef Amghar

Data Warehouse and Multidimensional Modeling, Recommender Systems

Starry Vault: Automating Multidimensional Modeling from Data Vaults 137
Matteo Golfarelli, Simone Graziani, and Stefano Rizzi

Update Propagation Strategies for High-Performance OLTP 152
Caetano Sauer, Lucas Lersch, Theo Härder, and Goetz Graefe

http://dx.doi.org/10.1007/978-3-319-44039-2_1
http://dx.doi.org/10.1007/978-3-319-44039-2_2
http://dx.doi.org/10.1007/978-3-319-44039-2_3
http://dx.doi.org/10.1007/978-3-319-44039-2_4
http://dx.doi.org/10.1007/978-3-319-44039-2_5
http://dx.doi.org/10.1007/978-3-319-44039-2_6
http://dx.doi.org/10.1007/978-3-319-44039-2_6
http://dx.doi.org/10.1007/978-3-319-44039-2_7
http://dx.doi.org/10.1007/978-3-319-44039-2_8
http://dx.doi.org/10.1007/978-3-319-44039-2_8
http://dx.doi.org/10.1007/978-3-319-44039-2_9
http://dx.doi.org/10.1007/978-3-319-44039-2_10
http://dx.doi.org/10.1007/978-3-319-44039-2_11

A Recommender System for DBMS Selection Based on a Test Data
Repository . 166

Lahcène Brahimi, Ladjel Bellatreche, and Yassine Ouhammou

Spatial and Temporal Data Processing

Asymmetric Scalar Product Encryption for Circular and Rectangular Range
Searches . 183

Rodrigo Folha, Valeria Cesario Times, and Claudivan Cruz Lopes

Continuous Trip Route Planning Queries . 198
Yutaka Ohsawa, Htoo Htoo, and Tin Nilar Win

Enhancing SpatialHadoop with Closest Pair Queries 212
Francisco García-García, Antonio Corral, Luis Iribarne,
Michael Vassilakopoulos, and Yannis Manolopoulos

Integration Integrity for Multigranular Data . 226
Stephen J. Hegner and M. Andrea Rodríguez

Temporal View Maintenance in Wide-Column Stores
with Attribute-Timestamping Model . 243

Yong Hu, Stefan Dessloch, and Klaus Hofmann

Distributed and Parallel Data Processing

Minimization of Data Transfers During MapReduce Computations
in Distributed Wide-Column Stores . 261

Adam Šenk, Miroslav Hrstka, Michal Valenta, and Petr Kroha

Adaptive Join Operator for Federated Queries over Linked Data Endpoints . . . 275
Damla Oguz, Shaoyi Yin, Abdelkader Hameurlain, Belgin Ergenc,
and Oguz Dikenelli

Limitations of Intra-operator Parallelism Using Heterogeneous Computing
Resources. 291

Tomas Karnagel, Dirk Habich, and Wolfgang Lehner

H-WorD: Supporting Job Scheduling in Hadoop with Workload-Driven
Data Redistribution . 306

Petar Jovanovic, Oscar Romero, Toon Calders, and Alberto Abelló

XIV Contents

http://dx.doi.org/10.1007/978-3-319-44039-2_12
http://dx.doi.org/10.1007/978-3-319-44039-2_12
http://dx.doi.org/10.1007/978-3-319-44039-2_13
http://dx.doi.org/10.1007/978-3-319-44039-2_13
http://dx.doi.org/10.1007/978-3-319-44039-2_14
http://dx.doi.org/10.1007/978-3-319-44039-2_15
http://dx.doi.org/10.1007/978-3-319-44039-2_16
http://dx.doi.org/10.1007/978-3-319-44039-2_17
http://dx.doi.org/10.1007/978-3-319-44039-2_17
http://dx.doi.org/10.1007/978-3-319-44039-2_18
http://dx.doi.org/10.1007/978-3-319-44039-2_18
http://dx.doi.org/10.1007/978-3-319-44039-2_19
http://dx.doi.org/10.1007/978-3-319-44039-2_20
http://dx.doi.org/10.1007/978-3-319-44039-2_20
http://dx.doi.org/10.1007/978-3-319-44039-2_21
http://dx.doi.org/10.1007/978-3-319-44039-2_21

Internet of Things and Sensor Networks

Dynamic Ontology-Based Sensor Binding . 323
Pascal Hirmer, Matthias Wieland, Uwe Breitenbücher,
and Bernhard Mitschang

Tracking Uncertain Shapes with Probabilistic Bounds in Sensor Networks . . . 338
Besim Avci, Goce Trajcevski, and Peter Scheuermann

Author Index . 353

Contents XV

http://dx.doi.org/10.1007/978-3-319-44039-2_22
http://dx.doi.org/10.1007/978-3-319-44039-2_23

ADBIS 2016 - Keynote Papers

Similarity Searching for Database Applications

Pavel Zezula(B)

Faculty of Informatics, Masaryk University, Botanicka 68a, Brno, Czech Republic
zezula@fi.muni.cz

Abstract. Though searching is already the most frequently used appli-
cation of information technology today, similarity approach to searching
is increasingly playing more and more important role in construction of
new search engines. In the last twenty years, the technology has matured
and many centralized, distributed, and even peer-to-peer architectures
have been proposed. However, the use of similarity searching in numerous
potential applications is still a challenge. In the talk, four research direc-
tions in developing similarity search applications at Masaryk University
DISA laboratory are to be discussed. First, we concentrate on accelerating
large-scale face recognition applications and continue with generic image
annotation task for retrieval purposes. In the second half, we focus on data
stream processing applications and finish the talk with the ambition topic
of content-based retrieval in human motion-capture data. Applications
will be illustrated by online prototype implementations.

1 Introduction

Traditional database management systems have been in the 70th developed
around the notion of attribute data, which in principle are numbers and strings.
Data from such domains can be sorted, so the position of a specific item among
the others is always uniquely defined. Such property was exploited to build hier-
archical search mechanisms, such as the B-trees. The development in the infor-
mation retrieval community started even earlier and has produced numerous
concepts and technologies nowadays used in practical search engines. Though
their approach is based on similarity, they mostly consider processing text docu-
ments. The core of its success is the vector-space model with the cosine similarity
to assess closeness of documents containing words – keywords which are again
sortable. This certainly is a mature technology, based on efficient implementa-
tion through inverted files, and Google, Yahoo, and Microsoft (as well as several
others) have proved its validity by enormous commercial success. This is also an
excellent validation of the importance and usefulness of similarity in searching,
though it only solves a specific, undoubtedly very important, form of similarity.
An excellent textbook [1] provides a thorough and updated introduction to the
key Information Retrieval principles behind search engines.

Probably the main stream of research towards a more generic and extensible
form of similarity searching has, in the last 20 years, been developing around the
concept of mathematical metric space [14]. Though the origins of the topic are
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 3–10, 2016.
DOI: 10.1007/978-3-319-44039-2 1

4 P. Zezula

older, the boom started in the 1990s with the M-tree [5] and resulted in many
interesting scientific and technological achievements.

The metric space paradigm extends the range of indexable similarity mea-
sures but at the same time loses the possible advantage of coordinate systems to
define partitioning of search space. The main advantage is that such approach is
able to consider data domains, which are not sortable – typical for a majority of
contemporary digital data seen through their content descriptors. Since the sim-
ilarity is in fact measured as a dissimilarity, specifically a distance, the applied
techniques are often designated as distance searching.

Several key publications summarize achievements in this area. The first sur-
vey [4] includes results till the year 2000. It presents known approaches in original
taxonomy with the objective to discover core properties that would allow combi-
nation of existing principles to form future better proposals. The second survey
[7] divides existing methods for handling similarity search into two classes. The
first class directly indexes objects based on distances (distance-based indexing),
while the second is based on mapping to a vector space (mapping-based app-
roach). However, the main part of this article is dedicated to a survey of distance-
based indexing methods, and the mapping-based methods are only outlined. In
2006, a book named Similarity Search: The Metric Space Approach [21] presented
the state-of-the-art in developing index structures and supporting technologies
for searching complex data modeled as instances of a metric space. The metric
searching problems are also considered in the last edition of the encyclopedic
book by Hanan Samet [16] called Foundations of Multidimensional and Metric
Data Structures.

2 Similarity Search in Applications

Though a lot of progress has been done and several interesting similarity search
demonstration systems are already available, [11,12], the fact still is that the only
successful application of similarity searching is the text similarity search through
the vector-space model. Surprisingly, the attractive extensibility property – one
system used for many applications – of the metric space approach to similarity
searching, has not yet been fully exploited. There are examples of applications
in image search, audio (music) processing, and several others, but significance,
measured by commercial success, is marginal. Obviously, the technology is still
developing and no doubt, better theories, paradigms, and technological proposals
will appear in future. However the speed of spreading the more general similarity
search technology by new applications – even with promising business models –
is slow.

At Masaryk University, the Data Intensive Systems and Applications (DISA)
Laboratory is investigating an application of similarity search in several dimen-
sions. First, we consider the way how similarity search can be applied in the long
elaborated domain of face retrieval to speed up the search and make it scalable.
We also investigate application of similarity searching for image annotation and
study mechanisms which should be applied for similarity searching in streams

Similarity Searching for Database Applications 5

of data. Finally, we consider a very complex form of data, called motion cap-
ture data, to develop scalable similarity search and filtering mechanisms. In the
following, we shortly outline each of the activities.

2.1 Similarity Searching in Images of Human Faces

Face recognition is a problem of verifying or identifying a face appearing in a
given image. We focus on this problem from the retrieval perspective by searching
for database faces that belong to a person represented by a query face, based on
similarity of their characteristic features. The similarity is typically measured by
geometric properties and relationships between significant local features, such as
eyes, nose and mouth.

Similarity Measure. Most existing face similarity measures are designed to
deal with the specific problem, such as ambient illumination, partial occlusions,
rotated/profile faces, and low/high face resolution, which makes them depen-
dent on dataset properties. This is the reason why there is no global-winner
method outperforming all the others disregarding any environment. Our objec-
tive is to move towards such all-purpose approach by combining miscellaneous
similarity measures together. In particular, we propose a general fusion that nor-
malizes similarities of integrated measures and selects the most confidential one
to determine the final similarity of two faces [17]. Since each integrated measure
can return a distance value within a completely different range, such distance
is carefully normalized into interval [0, 1]. The normalized value expresses the
probability that two faces belong to the same person. The transformation to the
probability is based on learning the properties of each integrated measure from
provided training data. By integrating three OpenCV, NeuroTech and Luxand
similarity measures, we can achieve high-quality and more stable results, com-
pared to the integrated measures evaluated independently.

Multi-face Queries. We further significantly improve a retrieval quality by
employing the concept of multi-face queries along with optional relevance feed-
back. Multi-face queries allow us to specify several examples of query faces within
evaluation of a single query. Having specified a set of query faces, the similar-
ity is represented as the minimum distance between a given database face and
each query face. A typical usage of relevance feedback starts after evaluation of
a single-face query where a user is asked to mark the correctly retrieved faces,
i.e., the faces which belong to the same person as the query face. The manu-
ally marked faces are then exploited as the query faces for another query (the
second search iteration). By evaluating queries iteratively, we gradually increase
the number of query faces and, more importantly, significantly improve retrieval
effectiveness.

Efficient Retrieval. The characteristic features extracted for integrated sim-
ilarity approaches can occupy a very large space on hard-drives. To efficiently

6 P. Zezula

access these features for databases with millions of faces, we propose to apply a
specialized indexing algorithm. In the preprocessing step, we additionally con-
struct a metric-based structure to index the dataset faces by MPEG-7 features.
In the retrieval step, we utilize such index structure to efficiently retrieve a rea-
sonably large candidate set of faces, re-rank this set according to the proposed
fusion method, and select the most similar re-ranked faces as the query result.

2.2 Image Annotation

The objective of image annotation is to associate binary images with descriptive
metadata that will allow to apply text search or categorize the image data. Simi-
lar tasks have a long tradition in the machine learning field, which approaches the
problem by training statistical models for individual keywords. State-of-the-art
classification methods of this sort achieve very high accuracy, but their utilization
is costly in terms of learning time and requires large amounts of reliably-labeled
training data [19].

With the advance of content-based image retrieval, another paradigm
emerged, denoted as the search-based image annotation. To describe a query
image, a search-based annotation system first retrieves visually similar objects
from a suitable database of annotated images. Then it determines the most
probable keywords for the query by analyzing the descriptions of the similar
images. Since the analysis in the second phase typically uses tens or even hun-
dreds of similar images and performs some type of majority voting, the quality
of the reference data is not as crucial as with the machine learning techniques.
The main advantages of the search-based annotation are thus the possibility to
exploit large amounts of web data and also to eliminate the costly learning phase.
However, improving the annotation precision still represents a challenging open
issue.

The crucial part of any search-based annotation system is the algorithm
that determines which keywords from the similar images should be used for
the query. The baseline strategy is to take the most frequent keywords, more
advanced solutions take into consideration word co-occurrence, the distance of
individual images, etc. Within the DISA laboratory, we are developing a novel
algorithm that combines the information provided by efficient and effective CBIR
with semantic information retrieved from linguistic resources. Specifically, we
first select a set of initial candidate keywords from the descriptions of similar
images and give them a probability score proportional to their frequency and
the similarity of the respective images to the query image. Next, we search for
links between these keywords using several semantic relationships defined by the
WordNet lexical database, in particular the hypernymy, hyponymy, meronymy,
and holonymy. We also include new related keywords among the candidates for
annotation. After the identification of semantic relationships, we run a random-
walk-based algorithm over the graph of candidate keywords and their relation-
ships to determine the final probabilities of individual candidates.

The above-described algorithm is part of the MUFIN Image Annotation sys-
tem, which is discussed in more detail in [2]. The compete query processing

Similarity Searching for Database Applications 7

consists of three phases. First, a set of images similar to the query needs to be
retrieved, for which we utilize the MUFIN Image Search engine [12]. Specifi-
cally, we evaluate a 100-nearest neighbor query over the set of 20 million images
from the Profiset database, and we measure their visual similarity using the
DeCAF descriptors. Next, the presented keyword selection algorithm is run on
the descriptions of similar images. If a user-specified target vocabulary is avail-
able, the ranked keywords are mapped to it and re-ranked. Finally, the most
probable keywords are displayed to the user.

Our Image Annotation tool is intended for hinting descriptive keywords to
users who upload their images into web galleries. The annotation processing
takes about 300 ms on average, therefore it can be used in online applications.
To evaluate the quality of annotations, we participated in the ImageCLEF 2014
Scalable Image Annotation Task, where we achieved a close second place [3].

2.3 Stream Processing

In the current era of digital data explosion, it is necessary to develop novel
techniques to cope with the data velocity as well as volume. One of the impor-
tant processing paradigms is a continuous stream of arriving data items, where
each item needs to be evaluated according to the target application needs. For
instance, this can involve filtering some of the evaluated items, providing clas-
sification for each item, computing statistical information about the seen items,
storing selected items for later analysis, and so on.

Since the item evaluation can be costly, typically based on similarity, the
crucial property of a stream processing technique is its ability to keep-up with the
rate of the incoming data. This can be measured as throughput, i.e. the number
of items that can be processed per a time unit. Another important characteristic
of the stream processing is the delay, i.e. the difference between the time a given
item has entered the application and the time when the processing of this item is
finished. Depending on the application, various throughput and delay values are
acceptable. For example, an event detection system using a cluster of surveillance
cameras needs to cope with a constant throughput of images (according to the
number of cameras and their frame rate) but an acceptable delay is only a few
seconds, since an immediate response is required when a security incident is
detected. On the other hand, analysis of data crawled from the web can have
a very variable throughput depending on the actually crawled site but delay of
several hours is still acceptable.

In order to increase the throughput (and also to decrease the delay) it is
necessary either to drop some of the data or to apply parallelism. The first app-
roach can be used if the application does not require to process each and every
item, e.g. when some statistical property of the stream is computed. Various
methods for selecting the items that can be dropped for various operations can
be found in [15]. The other approach allows to keep-up with an increased speed
of the stream by increasing the parallelism of the processing. However, a single
computer has only a limited amount of resources, thus distributed processing
environment is necessary to scale. To ease the task of maintaining distributed

8 P. Zezula

applications, various paradigms and frameworks have been widely used, such
as the MapReduce or Grid computing. A performance comparison of four such
frameworks (namely the Hadoop, Apache Storm, Apache Spark, and Torque
Grid Resource Management System) has been published in [8]. In order to pre-
dict behavior of a distributed stream-processing application composed of various
tasks, an analytical model has been proposed in [9].

Since the data appearing in the stream can be practically random, the effi-
ciency of the processing can be increased if the similar data items are grouped
and then evaluated in a bulk. This idea was proposed and experimentally evalu-
ated in [10], where a reordering of the incoming data based on the metric-based
similarity was successfully applied to increase the throughput almost twice at
the cost of a small increase of the delays.

To further increase the efficiency of such techniques, dynamic replication
strategies and load balancing methods can be explored. Especially in the context
of the widely available cloud computing platforms, which provide cheap access
to vast numbers of computing resources that can be allocated on demand, the
scalability of such approaches can be practically unlimited.

2.4 Similarity Searching in Motion Capture Data

Motion capture data is a good example of complex unstructured data. This
spatio-temporal data digitally represents human movements in the form of 3D
trajectories of tracked human body joints. With the recent advances and avail-
ability of motion capturing technologies, there is a strong requirement for intelli-
gent management of such data, which has a great potential to be utilized in many
applications. For example, in sports to compare performance of athletes, in law-
enforcement to detect suspicious events, in health care to determine the success
of rehabilitative treatments, or in entertainment and gaming industry to syn-
thesize realistic acrobatic actions and fighting scenes. These applications require
support of subsequence similarity searching to access relevant parts within long
motion sequences. To do that, we need (1) a segmentation technique to partition
the long motion sequence into searchable parts (2) an effective similarity mea-
sure to compare a query against motions parts, and (3) a retrieval algorithm to
speedup the subsequence matching process.

Multi-level Segmentation. A segmentation technique partitions the rather
long data sequence into short segments that are better comparable with a query
sequence. We propose to partition the data sequence into segments in a way
that an arbitrary data subsequence overlaps with at least one segment in the
majority of frames. Consequently, having the query as a single segment, each
query-relevant data part highly overlaps with at least one data segment. The high
overlap ensures that relevant subsequences are always traceable just by searching
for similar segments. These segments are constructed in various sizes grouped in
levels. The search space of multi-level segmentation produces a minimal number
of segments with respect to the elasticity of the used similarity measure while
ensuring high searchability of the partitioned sequence.

Similarity Searching for Database Applications 9

Similarity Measure. Our motion feature is a high-dimensional vector repre-
sentation that keeps salient characteristics of the original motion sequence [20].
We employ an elastic similarity approach [6] that transforms a motion segment
into a visual image representation and processes it by computer vision techniques
to extract a 4,096-dimensional feature vector. These vectors demonstrate very
convenient properties of being (1) of a fixed size, (2) efficiently comparable by
the Euclidean distance, and (3) tolerant to a considerable degree of segmentation
error, which is particularly useful for subsequence matching.

Subsequence Retrieval. The goal of the subsequence searching is to locate
query-similar subsequences in the long data sequence [18]. In case of our multi-
level segmentation, only a single level is searched to locate the most similar
segments, since each segmentation level is responsible for covering a certain
interval of query sizes. The result contains segments that differ in length to the
query with a very small error, which can also be bounded by the user. Although
the result segments need not be perfectly aligned with relevant subsequences,
the overlap in the majority of frames is ensured. The feature vectors of segments
within each level can also be independently indexed to speedup the retrieval
process. By employing the PPP-codes index structure [13], we can possibly search
online in a sequence of 121-day long.

Acknowledgments. This research was supported by the Czech Science Foundation
project number P103/12/G084.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval - The Concepts
and Technology Behind Search, 2nd edn. ACM Press Books, Pearson (2011)

2. Batko, M., Botorek, J., Bud́ıková, P., Zezula, P.: Content-based annotation and
classification framework: a general multi-purpose approach. In: 17th International
Database Engineering & Applications Symposium, IDEAS 2013, Barcelona, Spain
- 09–11 October 2013, pp. 58–67 (2013)

3. Budikova, P., Batko, M., Botorek, J., Zezula, P.: Search-based image annota-
tion: extracting semantics from similar images. In: Mothe, J., et al. (eds.) CLEF
2015. LNCS, vol. 9283, pp. 327–339. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24027-5 36

4. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.: Searching in metric
spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

5. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: VLDB. pp. 426–435. Morgan Kaufmann (1997)

6. Elias, P., Sedmidubsky, J., Zezula, P.: Motion images: an effective representation
of motion capture data for similarity search. In: Amato, G., et al. (eds.) SISAP
2015. LNCS, vol. 9371, pp. 250–255. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25087-8 24

7. Hjaltason, G., Samet, H.: Index-driven similarity search in metric spaces. ACM
Trans. Database Syst. 28(4), 517–580 (2003)

http://dx.doi.org/10.1007/978-3-319-24027-5_36
http://dx.doi.org/10.1007/978-3-319-24027-5_36
http://dx.doi.org/10.1007/978-3-319-25087-8_24
http://dx.doi.org/10.1007/978-3-319-25087-8_24

10 P. Zezula

8. Mera, D., Batko, M., Zezula, P.: Speeding up the multimedia feature extraction: a
comparative study on the big data approach. Multimedia Tools and Applications,
pp. 1–21 (2016). http://dx.doi.org/10.1007/s11042-016-3415-1

9. Nalepa, F., Batko, M., Zezula, P.: Model for performance analysis of distrib-
uted stream processing applications. In: Chen, Q., Hameurlain, A., Toumani, F.,
Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 520–533. Springer,
Heidelberg (2015)

10. Nalepa, F., Batko, M., Zezula, P.: Enhancing similarity search throughput by
dynamic query reordering. In: Database and Expert Systems Applications - 27th
International Conference, DEXA 2016, Porto, Portugal, September 5–8, p. 15
(2016)

11. Novak, D., Batko, M., Zezula, P.: Generic similarity search engine demonstrated by
an image retrieval application. In: Proceedings of the 32nd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
Boston, MA, USA, July 19–23. p. 840 (2009)

12. Novak, D., Batko, M., Zezula, P.: Large-scale image retrieval using neural net
descriptors. In: Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval, Santiago, Chile, 9–13 August
2015, pp. 1039–1040 (2015)

13. Novak, D., Zezula, P.: Rank aggregation of candidate sets for efficient similarity
search. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA
2014, Part II. LNCS, vol. 8645, pp. 42–58. Springer, Heidelberg (2014)

14. O’Searcoid, M.: Metric Spaces. Springer, Heidelberg (2006)
15. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University

Press, New York (2011)
16. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Series in

Data Management Systems. Morgan Kaufmann, San Francisco (2006)
17. Sedmidubsky, J., Mic, V., Zezula, P.: Face image retrieval revisited. In: Amato,

G., et al. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 204–216. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-25087-8 19

18. Sedmidubsky, J., Valcik, J., Zezula, P.: A key-pose similarity algorithm for
motion data retrieval. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D.,
Scheunders, P. (eds.) ACIVS 2013. LNCS, vol. 8192, pp. 669–681. Springer,
Heidelberg (2013)

19. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7–12, 2015, pp. 1–9 (2015)

20. Valcik, J., Sedmidubsky, J., Zezula, P.: Assessing similarity models for human-
motion retrieval applications. Computer Animation and Virtual Worlds (2015)

21. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach, Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)

http://dx.doi.org/10.1007/s11042-016-3415-1
http://dx.doi.org/10.1007/978-3-319-25087-8_19

The Case for Holistic Data Integration

Erhard Rahm(B)

University of Leipzig, Leipzig, Germany
rahm@informatik.uni-leipzig.de

Abstract. Current data integration approaches are mostly limited to
few data sources, partly due to the use of binary match approaches
between pairs of sources. We thus advocate for the development of more
holistic, clustering-based data integration approaches that scale to many
data sources. We outline different use cases and provide an overview
of initial approaches for holistic schema/ontology integration and entity
clustering. The discussion also considers open data repositories and so-
called knowledge graphs.

1 Introduction

Data integration aims at providing uniform access to data from multiple sources
[17]. It has become a pervasive task for data analysis in business and scientific
applications. The most popular data integration approaches such as data ware-
houses or big data platforms utilize a physical data integration where the source
data is combined within a new dataset or database tailored for analysis tasks.
This is in contrast to virtual data integration where data entities remain in
their original data sources and are accessed at runtime, e.g., for federated query
processing. Federated query processing has also become popular in the so-called
Web of Data, also referred to as Linked Open Data (LOD), and is supported by
semantic links interconnecting different sources [63,67].

Key tasks for data integration include data preprocessing (data cleaning [62],
data enrichment), entity resolution (data matching) [13,20], entity fusion [9], as
well as matching and merging metadata models such as schemas and ontolo-
gies [7,61]. Data enrichment can often be achieved by linking entities and/or
metadata such as attribute names to background knowledge resources (e.g., dic-
tionaries, ontologies, knowledge graphs), which is a non-trivial mapping and data
integration problem in itself [68]. The different data integration tasks have been
the focus of a huge amount of research and development. Still, the mentioned
tasks are inherently complex and are in many cases not performed fully automat-
ically but incur a high degree of manual interaction. This is because data sources
may be of low data quality, may be unstructured or follow different data formats
(relational, JSON, etc.) and exhibit a high degree of semantic heterogeneity since
they are mostly developed independently for different purposes.

These problems increase with the number of data sources to be integrated.
As a result, most data integration approaches and efforts focus on only a few
data sources. Data matching and schema matching approaches mostly determine
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 11–27, 2016.
DOI: 10.1007/978-3-319-44039-2 2

12 E. Rahm

correspondences (links) between only two sources. While pairwise matching is a
building block for most data integration solutions, the sole generation of such
binary mapping approaches does not scale to many data sources as the number
of possible mappings increases quadratically with the number of sources. For
example, fully interlinking 200 LOD sources would require the determination
and maintenance of almost 20,000 mappings.

We thus see a strong and increasing need for holistic data integration
approaches that can integrate many data sources. To be scalable, holistic data
integration should not be limited to pairwise matching and integration of sources
but support a clustering-based integration of both metadata1 and instance data
to holistically combine the information from many sources. The need for such
holistic approaches is fueled by the availability of relevant data in millions of web-
sites and the provision of large data and metadata collections in public (open
data) repositories. Platforms such as data.gov, www.opensciencedatacloud.org,
datahub.io and webdatacommons.org contain thousands of datasets and millions
of web extractions (e.g., web tables) for many topics in different domains. There
are also repositories for metadata (schemas, ontologies) and mappings, e.g.,
schema.org, medical-data-models.org, Linked Open Vocabularies (lov.okfn.org),
BioPortal [52], and LinkLion [49], supporting the re-use of this information to
facilitate data integration tasks.

To achieve scalability to many sources, holistic data integration approaches
should be fully automatic or require only minimal manual interaction. It should
also be easily possible to add and utilize additional data sources and deal with
changes in the data sources. As with all data integration approaches, high effi-
ciency and high data integration quality need to be supported which becomes
more challenging due to the increased number of (heterogeneous) sources and
the typically much increased data volume. High efficiency asks for the utiliza-
tion of powerful (big data) platforms for parallel processing and blocking-like
techniques to reduce the search space for match tasks. Achieving high data inte-
gration quality and avoiding/minimizing manual interaction are contradictory
goals so that viable compromises need to be found.

The main goal of this paper is to motivate the need for holistic data integra-
tion with different use cases and to provide an overview of initial approaches. In
Sect. 2, we outline six use cases for holistic integration of metadata or entities.
Section 3 discusses approaches to match and merge many schemas and ontologies
as well as the use of open data repositories. In Sect. 4, we focus on the holistic
clustering of entities of different types, e.g. for LOD sources or to determine
knowledge graphs. Finally, we summarize our observations and discuss opportu-
nities for future research.

1 In this paper, we are only concerned with metadata in the form of schemas and
ontologies and their components like attributes or concepts. We are thus not consid-
ering the wide range of additional metadata (e.g., provenance information, creator,
creation time, etc.) despite their importance, e.g., for data quality.

The Case for Holistic Data Integration 13

2 Use Cases

Table 1 lists six examples for holistic data integration together with estimates on
the number of domains, the number of sources, features about the kind of data
integration (physical vs. virtual), and whether the focus is on data integration
for metadata (schemas/ontologies) and/or instance data. We also indicate the
kind of clustering and to what degree data integration can likely be automated.

The first two use cases, meta-search and the use of open data, focus on simple
schemas such as web forms or tables consisting of relatively few attributes. Meta-
search is a virtual data integration approach based on metadata integration.
The goal is to integrate the search forms of several databases of the so-called
hidden web to support a meta-search across all sources, e.g., for comparing
products from different online shops. Schema integration mainly entails grouping
or clustering similar attributes, which is simpler than matching and merging
complex schemas. As a result, scalability to dozens of sources is typically feasible.
Proposed approaches include Wise-Integrator and MetaQuerier [12,33].

A completely different situation is when there is an enormous number of
datasets such as web tables made available within open data repositories. The
physically collected datasets are typically from diverse domains and initially
not integrated at all. To enable their usability, e.g., for query processing, it is
useful to group the datasets into different domains and to semantically annotate
attributes. Google Fusion Tables has demonstrated the utilization of millions of
such semantically annotated web tables to better answer certain search queries
[4]. Semantically enriched attributes could also be used to match and cluster
datasets such as web tables within the repository. Problems similar to those
for open data repositories arise for so-called “data lake” approaches to collect
datasets in their original format for later use [27,55].

Table 1. Use cases for holistic data integration.

Use case Data integration #domains #sources Clustering? Degree of

automated

data

integration

(1) Meta-search Virtual Metadata 1 Low -

medium

Attributes Medium

(2) Open data Physical

collection

Primarily

metadata

Many Very high (Possible) High, but limited

integration

(3) Integrated

ontology

Physical Metadata 1+ Low -

medium

Concepts Low - medium

(4) Knowledge

graphs

Physical Data +

metadata

Many Low - high Entities +

concepts/

attributes

Medium - high

(5) Entity

search

engines

Physical Data

(+ metadata)

1 Very high Entities High

(6) Comparison

portal

Physical/

hybrid

Data

+ metadata

1+ High Entities High

14 E. Rahm

The next two use cases are concerned with physical data integration to deter-
mine integrated background knowledge resources such as large domain ontologies
or multi-domain knowledge graphs. In the first case (use case 3) the goal is to
semantically merge several related ontologies into a combined ontology to con-
sistently represent the knowledge of a domain. This implies the identification of
synonymous concepts across all source ontologies as well as the derivation of a
consistent ontology structure for these concepts and their relations. An example
of such an integration effort is the biomedical ontology UMLS Metathesaurus
[10] which currently (2016) combines more than three million concepts and more
than 12 million synonyms from more than 100 biomedical ontologies and vocabu-
laries. The integration process is highly complex and involves a significant effort
by domain experts. Another example for holistic metadata integration is the
construction of an integrated product catalog from several merchant-specific
catalogs, e.g., for price comparisons.

The generation of so-called knowledge graphs [18] is a related use case for
holistic data integration where concepts as well as entities from different sources
are physically integrated. Popular knowledge graphs in the Web of Data are
DBpedia, Yago and Wikidata [3,41,70,73] that extract information about mil-
lions of real-world entities (such as persons or locations) of different domains as
well as concepts from other resources such as Wikipedia or WordNet. The entities
are placed within a categorization or class (concept) hierarchy and interlinked
with a variety of semantic relationships. Web search engines such as Google or
Bing utilize even larger knowledge graphs [51] combining information from addi-
tional resources as well as from web pages and search queries. Knowledge graphs
can provide valuable background knowledge, e.g., to enrich entities mentioned
in text documents or to enhance the search results for web queries. Web-scale
knowledge graphs for many domains ask for highly automated data integration
methods but face substantial challenges regarding data quality and semantic het-
erogeneity [18,26]. So-called enterprise knowledge graphs focus on the datasets
relevant for an enterprise and their semantic integration [22].

Entity search engines such as Google Scholar or Bing Shopping (use case 5)
cluster corresponding entities such as publication records or product offers from
thousands to millions of data sources or web pages. The focus is on physical
clustering at the instance level. The quality and usability of clustering can be
improved by assigning the entities to categories, e.g., for products, which may be
arranged in a product catalog, e.g., organized as a hierarchical taxonomy. Com-
parison portals for hotel bookings, product offers, etc. (use case 6) are similar to
entity search engines in that they cluster comparable offers for the same prod-
uct or booking request. They are typically more selective in the sources they
include and may obtain their data in curated form rather than by extracting
the entities from web pages as in the case of Google Scholar. Data integration
is mostly physical but may also be virtual to retrieve the most recent informa-
tion, e.g., about the availability of bookable items such as flight seats or hotel
rooms. Furthermore, the categorization of entities along different dimensions is
the norm to enhance the browsing and search facilities for portal users. This kind
of use case involves highly challenging data integration problems, in particular

The Case for Holistic Data Integration 15

to automatically cluster a huge number of continuously updated product offers
from many sources within thousands of product categories described by different
sets of attributes and schemas [54].

The discussed use cases show that holistic data integration has wide applica-
bility with significant differences in the considered characteristics. All use cases
with a large number of sources utilize physical data integration and are primarily
focused on instance-level integration based on a clustering of matching entities.
By contrast, metadata integration is limited to a small to medium number of
sources and depends more on manual interaction to deal with the typically high
complexity. Holistic metadata integration can utilize a clustering of concept syn-
onyms as well as a clustering of attributes per concept or entity type. Virtual
data integration generally depends on metadata integration and is thus of limited
scalability for complex sources. Scalability of virtual integration is also impaired
by likely performance problems for queries involving many sources that typically
differ in their capacity, utilization and availability.

3 Holistic Integration of Schemas and Ontologies

Most work on the integration of schemas and ontologies has focused on the
pairwise matching of such models, i.e., determining semantically correspond-
ing elements such as pairs of matching schema attributes or ontology concepts
[7,21,61]. Matches are usually identified by a combination of techniques to deter-
mine the similarity of elements. This includes 1. the linguistic similarity of ele-
ment names (based on string similarity measures or synonym information from
background knowledge resources such as dictionaries), 2. the structural similar-
ity of elements (e.g., based on the similarity of ancestors and/or descendants)
and 3. the similarity of associated instance data. The set of determined match
correspondences forms a mapping between the two aligned schemas/ontologies.
Such match mappings are useful input to merge or integrate the respective mod-
els since they indicate the elements that should only be represented once in the
integrated result. In fact, several such mapping-based merge approaches have
been proposed for both schemas [58,59] and ontologies [64].

In the following, we first discuss proposed holistic match and merge
approaches for complex schemas and ontologies, including for LOD sources.
Afterwards we discuss proposed data integration approaches for simple schemas
such as web forms and web tables.

Complex Schemas and Ontologies. In principle, the pairwise matching and
merging can be applied to more than two models by incrementally matching and
merging two models at a time. For instance, one can use one of the schemas as
the initial integrated schema and incrementally match and merge the next source
with the intermediate result until all source schemas are integrated. Such a binary
integration strategy for multiple schemas has already been considered in early
work on schema integration [6], however based on a largely manual process. More
recently it has been applied within the Porsche approach [66] to automatically
merge many tree-structured XML schemas. The approach holistically clusters all

16 E. Rahm

matching elements in the nodes of the integrated schema. The placement of new
source elements not found in the (intermediate) integrated schema is based on
a simplistic heuristic only. A general problem of incremental merge approaches
is that the final merge result depends on the order in which the input schemas
are matched and merged.

The matching between many schemas and ontologies can be facilitated by
the re-use of previously determined mappings between such models, especially if
such mappings are available in repositories like Bio-Portal [52]. Such a re-use of
mappings has already been proposed in the 2001 survey [61] and several match
approaches are utilizing re-use techniques based on a repository of schemas and
mappings [16,43,65]. A simple and effective approach is based on the compo-
sition of existing mappings to quickly derive new mappings. In particular, one
can derive a new mapping between schemas S1 and S2 by composing existing
mappings, e.g., mappings between S1and Si and between Si and S2 for any
intermediate schema Si (Fig. 1 left). Such composition approaches have been
investigated in [23,28] and were shown to be very fast and also effective, espe-
cially if one can combine several such derived mappings for improved coverage
of the schemas to be matched. A promising strategy is to utilize a hub schema
(ontology) per domain to which all other schemas are mapped. Then one can
derive a mapping between any two schemas by composing their mappings with
the hub schema (Fig. 1 right).

The next step would be to integrate all schemas with the hub schema together
with a clustering of the matching elements. Such integrated hub ontologies have
been determined in the life sciences, e.g., UMLS [10] and Uberon [45], although
with the need of a large amount of manual work by domain experts to achieve
a high-quality integration result. A more automatic integration becomes feasi-
ble for the integration of simpler ontologies such as dictionaries or thesauri. An
example is the SemRep repository [2] combining millions of concepts and seman-
tic relations (equal, is-a, part-of, etc.) between them extracted from Wikipedia
as well as obtained from existing resources such as WordNet.

Pairwise matching has been applied in [35] to match the terms of more than
4000 web-extracted ontologies (including large LOD sources such as DBpedia)
with a total of more than 2 million terms. The match process using a state-of-
the-art match tool took about one year on six computers showing the insufficient
scalability of pairwise matching. A holistic matching of concepts in LOD sources
has been proposed in [25]. The authors first cluster the concepts within different
topical groups and then apply pairwise matching of concepts within groups to
finally determine clusters of matching concepts. For clustering and matching they
derive keywords from the concept labels and descriptions, determine associated
(trees of) categories in Wikipedia and use these to derive concept similarities
(similarly as for the BLOOMS match technique [36]). In the evaluation, the
authors originally considered 1 million concepts from which less than 30 % could
be annotated with Wikipedia categories. Topical grouping was then possible
for 162 K concepts (using the preferred configuration) that were assigned to
about 32 K groups with a maximal size of about 5 K concepts. Matching for

The Case for Holistic Data Integration 17

Fig. 1. Composition of mappings to match many schemas

the largest group took more than 30 h. The approach is an interesting first step
but it requires improved scalability and coverage, e.g., by applying additional
match techniques than the use of Wikipedia categories. Furthermore, clustering
is needed not only for concepts but also for LOD entities (Sect. 4).

Simple Schemas. The holistic integration of many schemas has mainly been
studied for simple schemas such as web forms and web tables (use cases 1 and 2).
As we will discuss in the following, previous work for web forms focused on their
integration within a mediated schema as well as on their categorization into
different domains. For web tables, the focus has been on the semantic annotation
and matching of attributes.

The integration of web forms has been studied to support a meta-search
across deep web sources [12,33]. Schema integration implies clustering all sim-
ilar attributes from the web forms, mainly based on the linguistic similarity of
the attribute names (labels) [60]. The approaches also observe that similarly
named attributes co-occuring in the same schema (e.g., FirstName and Last-
Name) do not match and should not be clustered together [31]. Das Sarma and
colleagues propose the automatic generation of a so-called probabilistic medi-
ated schema from n input schemas, which is in effect a ranked list of several
mediated schemas [14]. Their proposed approach only considers the more fre-
quently occurring attributes and uses their pairwise similarities for determining
the different mediated schemas.

The holistic integration of several schemas is generally only relevant for
schemas of the same application domain. For a very large number of schemas, it
is thus important to first categorize schemas by domain. Several approaches have
been proposed for the automatic domain categorization problem of web forms
[5,32,44], typically based on a clustering of attribute names and the use of fur-
ther features such as explaining text in the web page where the form is placed.
While approaches such as [5,32] considered the domain categorization for only
few predefined domains, Mahmnoud and Aboulnaga [44] cluster schemas into
a previously unknown number of domain-like groups that may overlap. In [19],
this approach has also been applied for a domain categorization of web tables
from a large corpus.

For huge collections of web tables the domain categorization is especially
important but cannot successfully be accomplished by only considering attribute
names which are often cryptic or very general. This is also a problem for further

18 E. Rahm

tasks such as finding related web tables (e.g., to answer queries or to extend
web tables with additional attributes) or matching attributes within a corpus of
web tables. Hence, it is necessary to consider additional information such as the
attribute (instance) values in tables as well as information from the table context
in the web pages [4]. Furthermore, it is necessary to semantically enrich attribute
information by utilizing external background information such as knowledge
graphs, in particular to determine the semantic data type or concept classes of
attributes, e.g., company, politician, date-of-birth, country, capital, population
etc. Also, relationships between attributes of the same table should be identified.
Such semantic enrichment approaches have been investigated in [15,30,42,72,74]
utilizing different knowledge resources such as Yago, DBpedia, or Probase. In
[72], Google researchers utilized web-crawled knowledge of about 60,000 classes
with at least 10 associated entities to find about 1.5 million “subject” attributes
in a web table corpus (about 8 times more than using the Wikipedia-based Yago
knowledge base).

The Infogather system [76] utilizes such enriched attribute information to
match web tables with each other. To limit the scope they determine topic-
specific schema match graphs that only consider schemas similar to a specific
query table. The match graphs help to determine matching tables upfront before
query answering and to holistically utilize information from matching tables.
Instance-based approaches to match the attributes of web tables considering the
degree of overlap in the attribute values have been used in [19].

Despite such approaches the information in open data repositories is not yet
sufficiently utilized. Attribute matching could be improved by considering both,
attribute metadata and instances, not just one of them. Further approaches could
apply physical data integration, e.g., to combine and cluster matching entities
from different tables or to extract entities to build or extend domain-specific
knowledge graphs.

4 Holistic Integration of Entities

Entity resolution (also called deduplication, object matching or link dis-
covery) [13,20] has mostly been investigated for finding matching entities2

(e.g. persons, products, publications, and movies) within a single source or
between two sources. For a single source, matching entities are typically grouped
within disjoint clusters such that any two entities in a cluster should match with
each other and no entity should match with entities of other clusters. For two
sources, the match result is mostly a binary mapping consisting of pairs of match-
ing entities (also called match correspondences or links). Binary match mappings
may be postprocessed to determine clusters of matching entities, e.g., by calcu-
lating the transitive closure of the correspondences and refining the resulting
connected components (clusters) to ensure that indirectly linked entities are
2 To be more precise, we can only find matching records referring to the same real-

word object. For simplification, we use the term “entity” to refer to both the records
as well as the real-world objects they describe.

The Case for Holistic Data Integration 19

really similar enough to stay in the same cluster [29,34,46]. Alternatively, one
can construct a similarity graph from the match correspondences and determine
subgraph clusters of connected and highly similar entities [24,57].

The match decision is typically based on the combined similarity of several
attribute values and possibly on the contextual similarity of entities. In current
systems, the combination of the similarity values for deriving a match decision is
either based on supervised classification models (learned from training examples)
or on manually determined match rules [38,48]. To achieve high efficiency for
large datasets, one has to avoid comparing each entity to all other entities. This is
made possible by utilizing so-called blocking strategies [13,53,75] and additional
filter techniques tailored to specific similarity or distance functions (e.g., the
triangle inequality for metric-space distance functions) [50]. Entity resolution
can also be performed in parallel on multiple processors and computing nodes,
e.g., on Hadoop platforms [37], to achieve additional performance improvements.

In the following, we first outline a general approach to holistically cluster
entities from many sources. We then discuss the use of such an approach for
LOD sources as well as for use cases of Sect. 2. Finally, we briefly discuss the
integration of entities into knowledge graphs.

Holistic Clustering of Entities. To holistically match entities from many
sources, the prevalent approaches for pairwise matching, e.g., within the Web of
Data, are no longer sufficient and viable. This is because one would need up to
n·(n−1)

2 binary match mappings for n data sources, i.e., up to 190 and 19,900
mappings for 20 and 200 sources, respectively. Since each mapping is already
expensive to determine for large datasets, it is obvious that the computational
effort to determine the mentioned number of mappings is infeasible for a large
number of sources. Holistic entity resolution thus should be clustering-based
by holistically determining match clusters such that all matching entities from
any source are combined in a single cluster. For n duplicate-free sources the
size of such a match cluster is limited to at most n entities. Each cluster of
k ≤ n entities represents k·(k−1)

2 match pairs and is thus a much more compact
representation than with the use of correspondences. The entities of a cluster
should have common attributes to determine the entity similarity but can also
have different additional attributes that complement each other. By combining
the different attributes of the entities in a cluster within a fused entity it is
possible to enrich the entity information across all sources as desirable for data
integration. The fused entity can serve as a cluster representative that is used
to match against further entities.

Clustering the entities across all sources can be performed with much less
effort than with determining the quadratic number of binary mappings. For
static sources, one can bootstrap the clustering process with one of the sources,
e.g., the largest one or a source with known high data quality, and use each of its
entities as an initial cluster (assuming duplicate-free sources). Then one matches
the entities of one source after another with the cluster representatives to decide
on the best-matching cluster or whether an entity should form a new cluster.
This process can be continued until all sources are matched and clustered. For

20 E. Rahm

Fig. 2. Holistic clustering of matching entities from multiple sources (clusters are
grouped by entity type and have a representative, e.g., rij for cluster cij of type Ti)

any entity of any source but the first, the number of match computations is
restricted by the number of clusters, which is limited by the total number of
distinct entities across all sources. The number of clusters to be considered can
be reduced by blocking techniques [13]. In particular, only entities of the same
semantic type or class need to be compared with each other, i.e. one should
maintain a separate set of clusters for every entity type. Once the entity clusters
are established it is relatively easy to match and add new entities from any
source, e.g., in a streaming-like manner. Figure 2 illustrates this process where
new entities of different types Ti from different sources Dl are matched with
the centrally maintained clusters (specifically with cluster representatives rij)
for this entity type. The entity type and other entity attributes may have to be
determined during a preprocessing step before the actual match and clustering
can begin.

Holistic Clustering of LOD Entities. A holistic clustering of entities is espe-
cially promising for LOD data integration which so far is solely based on the use
of binary mappings, mostly of type owl:sameAs [48]. While a large number of
such mappings has already been determined by different tools, the degree of
entity linking is still small. One step to improve the situation is to provide pre-
determined mappings within repositories such as LinkLion [49], and utilize these
mappings for deriving additional mappings, e.g., by their transitive composi-
tion as used in [11,28]. However, this approach is not sufficient given the large
number of LOD sources. Furthermore, existing mappings determined by auto-
matic tools are noisy so that their transitive composition can easily lead to
mappings of low quality.

The Case for Holistic Data Integration 21

Fortunately, it is possible to apply the sketched holistic entity clustering
for LOD sources, as recently proposed in [47]. The approach utilizes existing
mappings between n sources of a certain domain, e.g., geographical entities, to
determine the transitive closure between them and to postprocess these clus-
ters to ensure a high cluster quality. The approach distinguishes multiple entity
types, e.g. cities, mountains, lakes, etc. The entity types provided by the sources
are heterogeneous and have to be unified during preprocessing using a prede-
fined type mapping. Unfortunately, for many entities the type is not provided
so that it could happen that such untyped entities are clustered with entities
of a different type. Furthermore, errors in the input mappings can also lead to
wrong entity clusters. For these reasons, the approach postprocesses initially
determined clusters to split them to obtain clusters with highly similar entities
of the same type. An iterative merge process is also applied to allow entities
that have been separated due to a cluster split can be merged with other clus-
ters. The evaluation results showed that the approach clusters many previously
unconnected entities thereby resulting in a significantly improved degree of data
integration. Furthermore, many errors in the existing mappings could be elimi-
nated, especially by utilizing the type information, e.g., to separate entities with
the same names but different types (e.g., city vs. lake).

Further Use Cases. Holistic entity clustering can also be applied for use cases
5 and 6 of Sect. 2, e.g., to cluster publications or product offers. All such use cases
require extensive data preprocessing and cleaning to consolidate the entities for
matching and also to determine their semantic type since most sources contain
different kinds of entities. This is especially the case for product offers, making
the operation of a comprehensive price comparison site a highly challenging task.
This is because there are typically thousands of product categories each described
by different schemas and sets of attributes. Furthermore, there are millions of
products offered in thousands of online stores. In addition, product offers change
continually (especially on price) and the structure of offers and the attribute
values may vary substantially between merchants even for the same product. To
facilitate the continuous integration of changing product offers it is important to
separate the different product categories and maintain clusters of product offers
separately per product type. Product offers should ideally be matched with clean
product descriptions serving as cluster representatives. Before new product offers
can be matched it is first necessary to determine their product category which
can be supported by supervised classification approaches [71]. Furthermore, it is
often necessary to extract match-relevant features from text attributes in product
offers (e.g., about the manufacturer), to resolve abbreviations and to perform
further data cleaning [1]. Matching can then be restricted to the product offers
of the selected category and should be based on category-specific match criteria,
e.g., category-specific learned classification models [39].

Knowledge Graphs. The generation and continuous refinement of large-scale
knowledge graphs (use case 4) has similarities to the discussed maintenance of
product entities and offers within a large set of heterogeneous product cate-
gories. Knowledge graphs typically cover many domains and integrate entities

22 E. Rahm

and concepts extracted from Wikipedia, web pages, web search queries and other
knowledge resources such as domain ontologies, thesauri etc. [69]. Each entity
is typically classified within a large category system and interrelated with other
entities. Entities typically have a large number of attributes and attribute values
collected and clustered from the different sources [26]. Furthermore, it is desir-
able to keep track of entity changes over time so that historical versions of entities
can be provided [8]. In 2012, the Google knowledge graph contained already 570
million entities within 1500 entity types and 18 billion facts (attribute values,
relations) [18]. However, the majority of the automatically collected information
is error-prone [18] so that the overall data quality in web-scale knowledge graphs
is a massive problem.

To integrate new entities and achieve good data quality, one needs approaches
similar to the integration of product offers (categorization of entities, error detec-
tion, consolidation of attribute values, entity resolution, etc.), however, they
should be able to deal with an even greater scope and diversity of entities.
Bellare et al. discuss in [8] the construction of the Yahoo! knowledge graph
utilizing a Hadoop infrastructure; entity resolution is based on blocking and
pairwise matching followed by a postprocessing to generate entity clusters. Data
integration for knowledge graphs also requires the determination and continuous
evolution of a fine-grained category system which so far has been largely based on
manual decisions. Several studies have begun to address the data quality prob-
lems for knowledge graphs, in particular by verifying entity information from
multiple sources [18,40]. Paulheim discusses such recent approaches to refine
knowledge graphs in [56].

5 Conclusions and Outlook

Traditional data integration approaches that focus on few data sources need to
be extended substantially to holistically integrate many sources. In particular,
the prevalent pairwise matching of schemas and entities is not scalable enough.
The discussion of several use cases and current solutions indicates that holistic
data integration should be based on physical data integration as well as on the
use of clustering-based approaches to match entities and metadata (concepts,
attributes). Scalability for metadata integration is inherently complex and best
achieved for simple schemas such as web forms or web tables utilizing a cluster-
ing of attributes. Even in this case it is important to utilize large background
knowledge resources to semantically categorize and enrich attributes to facilitate
data integration. For holistic entity resolution we proposed a general clustering
strategy differentiating multiple entity types. Such a scheme can be utilized for
a holistic integration of LOD sources as well as for other use cases, e.g., to inte-
grate product offers from numerous online stores. The determination and main-
tenance of knowledge graphs is especially challenging as it implies the integration
of an extremely large number of entities within a huge number of categories. In
virtually all use cases, an extensive preprocessing of entities to consolidate and
categorize them is of paramount importance for their subsequent integration and

The Case for Holistic Data Integration 23

use. To limit the amount of manual work for holistic data integration, it seems
crucial to build up and re-use curated dictionaries (e.g., to resolve synonyms and
abbreviations), schema/ontology and mapping repositories.

The discussion has shown that there are many opportunities to develop new
or improved approaches for the holistic integration of metadata and instance
data. Open data collections need much more data integration to make them
usable, e.g. by categorizing their datasets, clustering entities or deriving domain-
specific knowledge graphs. The initial approaches for LOD need to be extended to
achieve holistic data integration for both metadata and entities. The approaches
for generating and using knowledge graphs need further improvements and eval-
uation, in particular for largely automatic holistic metadata integration as well
as for achieving high data quality. Furthermore, there is a growing need to sup-
port fast, near real-time integration of updates and new entities from different
sources and data streams. Lastly, scalability techniques including the use of par-
allel infrastructures and blocking need to be extended to meet the increased
performance requirements for holistic data integration.

Acknowledgments. I’d like to thank Sören Auer, Phil Bernstein, Peter Christen,
Victor Christen, Anika Groß, Sebastian Hellmann, Dinusha Vatsalan, Qing Wang and
Gerhard Weikum for helpful comments and feedback on an earlier version of this paper.

References

1. Arasu, A., Chaudhuri, S., Chen, Z., Ganjam, K., Kaushik, R., Narasayya, V.R.:
Experiences with using data cleaning technology for Bing services. IEEE Data Eng.
Bull. 35(2), 14–23 (2012)

2. Arnold, P., Rahm, E.: SemRep: A repository for semantic mapping. In: Proceedings
of the BTW, pp. 177–194 (2015)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia:
A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang,
D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R.,
Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol.
4825, pp. 722–735. Springer, Heidelberg (2007)

4. Balakrishnan, S., Halevy, A.Y., Harb, B., Lee, H., Madhavan, J., Rostamizadeh,
A., Shen, W., Wilder, K., Wu, F., Yu, C.: Applying web tables in practice. In:
Proceedings of the CIDR (2015)

5. Barbosa, L., Freire, J., Silva, A.: Organizing hidden-web databases by clustering
visible web documents. In: Proceedings of the ICDE, pp. 326–335 (2007)

6. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies
for database schema integration. ACM Comput. Surv. 18(4), 323–364 (1986)

7. Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping.
Data-Centric Systems and Applications. Springer, Heidelberg (2011)

8. Bellare, K., Curino, C., Machanavajihala, A., Mika, P., Rahurkar, M., Sane, A.:
WOO: A scalable and multi-tenant platform for continuous knowledge base syn-
thesis. PVLDB 6(11), 1114–1125 (2013)

9. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1 (2009)
10. Bodenreider, O.: The unified medical language system (UMLS): integrating bio-

medical terminology. Nucleic Acids Res. 32(suppl 1), D267–D270 (2004)

24 E. Rahm

11. Böhm, C., de Melo, G., Naumann, F., Weikum, G.: LINDA: distributed Web-of-
Data-scale entity matching. In: Proceedings of the CIKM, pp. 2104–2108 (2012)

12. Chang, K.C.-C., He, B., Zhang, Z.: Toward large scale integration: Building a
MetaQuerier over databases on the web. In: Proceedings of the CIDR (2005)

13. Christen, P.: Data Matching - Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, Heidelberg (2012)

14. Sarma, A.D. Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration
systems. In: Proceedings of the SIGMOD, pp. 861–874 (2008)

15. Deng, D., Jiang, Y., Li, G., Li, J., Yu, C.: Scalable column concept determination
for web tables using large knowledge bases. PVLDB 6(13), 1606–1617 (2013)

16. Do, H.-H., Rahm, E.: COMA: A system for flexible combination of schema match-
ing approaches. In: Proceedings of the VLDB, pp. 610–621 (2002)

17. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan
Kaufmann, San Francisco (2012)

18. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge Vault: A web-scale approach to probabilistic
knowledge fusion. In: Proceedings of the SIGKDD, pp. 601–610 (2014)

19. Eberius, J., Damme, P., Braunschweig, K., Thiele, M., Lehner, W.: Publish-time
data integration for open data platforms. In: Proceedings of the ACM Workshop
on Open Data (2013)

20. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. IEEE TKDE 19(1), 1–16 (2007)

21. Euzenat, J., Shvaiko, P., et al.: Ontology Matching. Springer, Heidelberg (2007)
22. Galkin, M., Auer, S., Scerri, S.: Enterprise knowledge graphs: A survey. Technical

report (2016). http://www.researchgate.net
23. Gross, A., Hartung, M., Kirsten, T., Rahm, E.: Mapping composition for matching

large life science ontologies. In: Proceedings of the ICBO (2011)
24. Gruenheid, A., Dong, X.L., Srivastava, D.: Incremental record linkage. PVLDB

7(9), 697–708 (2014)
25. Gruetze, T., Böhm, C., Naumann, F.: Holistic and scalable ontology alignment for

linked open data. In: Proceedings of the LDOW (2012)
26. Gupta, R., Halevy, A., Wang, X., Whang, S.E., Wu, F.: Biperpedia: An ontology

for search applications. PVLDB 7(7), 505–516 (2014)
27. Hai, R., Geisler, S., Quix, C.: Constance: An intelligent data lake system. In:

Proceedings of the SIGMOD (2016)
28. Hartung, M., Groß, A., Rahm, E.: Composition methods for link discovery. In:

Proceedings of the BTW Conference (2013)
29. Hassanzadeh, O., Chiang, F., Lee, H.C., Miller, R.J.: Framework for evaluating

clustering algorithms in duplicate detection. PVLDB 2(1), 1282–1293 (2009)
30. Hassanzadeh, O., Ward, M.J., Rodriguez-Muro, M., Srinivas, K.: Understanding

a large corpus of web tables through matching with knowledge bases-an empirical
study. In: Proceedings of the Ontology Matching Workshop (2015)

31. He, B., Chang, K.C.-C.: Statistical schema matching across web query interfaces.
In: Proceedings of the SIGMOD, pp. 217–228 (2003)

32. He, B., Tao, T., Chang, KC.-C.: Organizing structured web sources by query
schemas: A clustering approach. In: Proceedings of the CIKM, pp. 22–31 (2004)

33. He, H., Meng, W., Yu, C., Wu, Z.: WISE-Integrator: An automatic integrator of
web search interfaces for E-commerce. In: Proceedings of the 29th VLDB Confer-
ence (2003)

34. Hernández, M.A., Stolfo, S.J.: The merge/purge problem for large databases. ACM
SIGMOD Rec. 24(2), 127–138 (1995)

http://www.researchgate.net

The Case for Holistic Data Integration 25

35. Hu, W., Chen, J., Zhang, H., Qu, Y.: How matchable are four thousand ontologies
on the semantic web. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B.,
Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol.
6643, pp. 290–304. Springer, Heidelberg (2011)

36. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for
linked open data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496,
pp. 402–417. Springer, Heidelberg (2010)

37. Kolb, L., Thor, A., Rahm, E.: Dedoop: Efficient deduplication with hadoop.
PVLDB 5(12), 1878–1881 (2012)

38. Köpcke, H., Rahm, E.: Frameworks for entity matching: A comparison. Data
Knowl. Eng. 69(2), 197–210 (2010)

39. Köpcke, H., Thor, A., Thomas, S., Rahm, E.: Tailoring entity resolution for match-
ing product offers. In: Proceedings of the EDBT, pp. 545–550 (2012)

40. Lee, T., Wang, Z., Wang, H., Hwang, S.-W.: Web scale taxonomy cleansing.
PVLDB 4(12), 1295–1306 (2011)

41. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., et al.: DBpedia-a large-scale,
multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6(2),
167–195 (2015)

42. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables
using entities, types and relationships. PVLDB 3(1–2), 1338–1347 (2010)

43. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based schema match-
ing. In: ICDE, pp. 57–68 (2005)

44. Mahmoud, H.A., Aboulnaga, A.: Schema clustering and retrieval for multi-domain
pay-as-you-go data integration systems. In: Proceedings of the SIGMOD (2010)

45. Mungall, C.J., Torniai, C., Gkoutos, G.V., Lewis, S.E., Haendel, M.A., et al.:
Uberon, an integrative multi-species anatomy ontology. Genome Biol. 13(1), R5
(2012)

46. Naumann, F., Herschel, M.: An introduction to duplicate detection. Synthesis Lec-
tures on Data Management 2(1), 1–87 (2010)

47. Nentwig, M., Groß, A., Rahm, E.: Holistic entity clustering for linked data.
University of Leipzig, Technical report (2016)

48. Nentwig, M. Hartung, M., Ngomo, A.-C.N., Rahm, E.: A survey of current link
discovery frameworks. Semant. Web J. (2016)

49. Nentwig, M., Soru, T., Ngomo, A.-C.N., Rahm, E.: LinkLion: A link repository for
the web of data. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis,
I., Tordai, A. (eds.) ESWC Satellite Events 2014. LNCS, vol. 8798, pp. 439–443.
Springer, Heidelberg (2014)

50. Ngomo, A.-C.N., Auer, S.: LIMES - A time-efficient approach for large-scale link
discovery on the web of data. In: Proceedings of the IJCAI, pp. 2312–2317 (2011)

51. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

52. Noy, N., et al.: BioPortal: ontologies and integrated data resources at the click of
a mouse. Nucleic Acids Res. 37, W170–W173 (2009)

53. Papadakis, G., Ioannou, E., Niederée, C., Palpanas, T., Nejdl, W.: Beyond 100
million entities: large-scale blocking-based resolution for heterogeneous data. In:
Proceedings of the ACM Conference Web search and data mining, pp. 53–62 (2012)

26 E. Rahm

54. Papadimitriou, P., Tsaparas, P., Fuxman, A., Getoor, L.: TACI: Taxonomy-aware
catalog integration. IEEE TKDE 25(7), 1643–1655 (2013)

55. Pasupuleti, P., Purra, B.S.: Data Lake Development with Big Data. Packt Pub-
lishing Ltd., Birmingham (2015)

56. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation
methods. Semant. Web J. (2016)

57. Pershina, M., Yakout, M., Chakrabarti, K.: Holistic entity matching across knowl-
edge graphs. In: IEEE International Conference on Big Data, pp. 1585–1590 (2015)

58. Pottinger, R.A., Bernstein, P.A.: Merging models based on given correspondences.
In: Proceedings of the VLDB, pp. 862–873 (2003)

59. Radwan, A., Popa, L., Stanoi, I.R., Younis, A.: Top-k generation of integrated
schemas based on directed and weighted correspondences. In: Proceedings of the
SIGMOD, pp. 641–654 (2009)

60. Rahm, E.: Towards large-scale schema and ontology matching. In: Bellahsene, Z.,
Bonifati, A., Rahm, E. (eds.) Schema Matching and Mapping. Data-Centric Sys-
tems and Applications, pp. 3–27. Springer, Heidelberg (2011)

61. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10, 334–350 (2001)

62. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data
Eng. Bull. 23(4), 3–13 (2000)

63. Rakhmawati, N.A., Umbrich, J., Karnstedt, M., Hasnain, A., Hausenblas, M.:
A Comparison of Federation over SPARQL Endpoints Frameworks. In: Klinov,
P., Mouromtsev, D. (eds.) KESW 2013. CCIS, vol. 394, pp. 132–146. Springer,
Heidelberg (2013)

64. Raunich, S., Rahm, E.: Target-driven merging of taxonomies with ATOM. Inf.
Syst. 42, 1–14 (2014)

65. Saha, B., Stanoi, I., Clarkson, K.L.: Schema covering: a step towards enabling reuse
in information integration. In: ICDE, pp. 285–296 (2010)

66. Saleem, K., Bellahsene, Z., Hunt, E.: Porsche: Performance oriented schema medi-
ation. Inf. Syst. 33(7), 637–657 (2008)

67. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)

68. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: Issues, tech-
niques, and solutions. IEEE TKDE 27(2), 443–460 (2015)

69. Suchanek, F., Weikum, G.: Knowledge harvesting in the big-data era. In: Proceed-
ings of the SIGMOD, pp. 933–938 (2013)

70. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A large ontology from wikipedia
and wordnet. Web Semant. Sci. Serv. Agents World Wide Web 6(3), 203–217 (2008)

71. Sun, C., Rampalli, N., Yang, F., Doan, A.: Chimera: Large-scale classification using
machine learning, rules, and crowdsourcing. PVLDB 7(13), 1529–1540 (2014)

72. Venetis, P., Halevy, A., Madhavan, J., Paşca, M., Shen, W., Wu, F., Miao, G., Wu,
C.: Recovering semantics of tables on the web. PVLDB 4(9), 528–538 (2011)

73. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. CACM
57(10), 78–85 (2014)

The Case for Holistic Data Integration 27

74. Wang, J., Wang, H., Wang, Z., Zhu, K.Q.: Understanding tables on the web. In:
Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012 Main Conference 2012. LNCS, vol.
7532, pp. 141–155. Springer, Heidelberg (2012)

75. Whang, S.E., Menestrina, D., Koutrika, G., Theobald, M., Garcia-Molina, H.:
Entity resolution with iterative blocking. In: Proceedings of the SIGMOD, pp.
219–232 (2009)

76. Yakout, M., Ganjam, K., Chakrabarti, K., Chaudhuri, S.: Infogather: entity aug-
mentation and attribute discovery by holistic matching with web tables. In: Pro-
ceedings of the SIGMOD, pp. 97–108, (2012)

Data Quality, Mining, Analysis
and Clustering

Hashing-Based Approximate DBSCAN

Tianrun Li1, Thomas Heinis2(B), and Wayne Luk2

1 Tsinghua University, Beijing, China
2 Imperial College London, London, UK

t.heinis@imperial.ac.uk

Abstract. Analyzing massive amounts of data and extracting value
from it has become key across different disciplines. As the amounts of
data grow rapidly, however, current approaches for data analysis strug-
gle. This is particularly true for clustering algorithms where distance
calculations between pairs of points dominate overall time.

Crucial to the data analysis and clustering process, however, is that
it is rarely straightforward. Instead, parameters need to be determined
through several iterations. Entirely accurate results are thus rarely
needed and instead we can sacrifice precision of the final result to accel-
erate the computation. In this paper we develop ADvaNCE, a new
approach to approximating DBSCAN. ADvaNCE uses two measures to
reduce distance calculation overhead: (1) locality sensitive hashing to
approximate and speed up distance calculations and (2) representative
point selection to reduce the number of distance calculations. Our experi-
ments show that our approach is in general one order of magnitude faster
(at most 30x in our experiments) than the state of the art.

1 Introduction

Unlocking the value in the masses of the data stored and available to us has
become a primary concern. Medical data, banking data, shopping data and oth-
ers are all analysed in great detail to find patterns, to classify behaviour or
phenomena and to finally predict behaviour and progression. The outcome from
these analyses is ultimately hoped to predict behaviour of customers, to increase
sales in marketing [7], optimise diagnostic tools in medicine to detect disease
earlier, optimise medical treatments for better outcome [1] etc.

While there exists a plethora of tools and algorithms for the analysis and
clustering of data today, most of them have a considerable complexity: they
are very efficient on the small datasets we dealt with until recently but as the
amounts of data grow rapidly these algorithms do not scale well.

At the same time, data analysis rarely is a straightforward process. All clus-
tering algorithms require the tuning of parameters, e.g., number of clusters in
k-means, maximum distance (ε) in DBSCAN etc., and also the data prepara-
tion process frequently needs to be repeated, for example to adjust the level or
aggregation or similar. Clearly, throughout the process of iteratively improving
the analysis, the results need not be exact. Instead, by sacrificing little precision,
we can substantially accelerate each analysis and thus the overall process.
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 31–45, 2016.
DOI: 10.1007/978-3-319-44039-2 3

32 T. Li et al.

More formally, the problem we address is density-based clustering, i.e., given
a set of points P in d-dimensional space IRd, the goal is to group points into
clusters, i.e., to divide the points into dense areas separated by sparse areas.
Existing approaches generally differ in how dense and sparse areas are defined
but all approaches share that distance calculations account for the majority of
the execution time. By reducing the distance calculations and approximating
the remaining ones, we can trade accuracy for efficiency and scalability.

In this paper we propose ADvaNCE (Approximate DeNsity-Based
ClustEring), a novel approximation approach for DBSCAN. Our approach
reduces the overhead of calculating distances by: (a) using locality sensitive
hashing to approximate each distance calculation and (b) approximating the
dataset by only retaining representative points which summarize its structure.
The latter reduces the number of points and consequently also the number of
distance calculations.

ADvaNCE outperforms the classic DBSCAN by orders of magnitude (by sac-
rificing accuracy as little as 0.001 %) and state-of-the-art approximate DBSCAN
approaches by up to one order of magnitude (at most 30x). It scales well with an
increasing size of datasets for smaller ε’s and outperforms the state of the art.

2 DBSCAN and Its Challenges

We first discuss DBSCAN and then motivate ADvaNCE with experiments.

2.1 Revisting DBSCAN

DBSCAN is a density based clustering algorithm which requires two parameters:
ε and minPts. For every input point p, if the neighbourhood within radius ε
contains at least minPts number of points, p is a core point.

Definition 1. Point p is density reachable from point q if there exists a sequence
of points p1, p2, p3 ... pn such that either: (1) p1 = p and pn = q, (2) p1, p2, p3
... pn−1 are core points or (3) pi+1 is in the neighbourhood of pi with radius ε.

Fig. 1. Neighboring cells of c are in
red. (Color figure online)

Finding a cluster C in DBSCAN starts
from a single core point and recursively adds
all density-reachable points from points in
C until the cluster is complete. Points that
are neither core points nor density-reachable
from any core point are noise points and do
not belong to any cluster.

2.2 Grid-Based Optimization

Basic implementations of the DBSCAN algo-
rithm [10] compute distances between all

Hashing-Based Approximate DBSCAN 33

pairs of data points in the dataset in O(n2). A first proposed optimization uses
a KD-Tree [5] to reduce the number of distance calculations.

At the core of ADvaNCE is a grid-based optimization [12] that further
reduces the distance calculations. The grid of the approach has the same dimen-
sions as all points in the dataset and considerably reduces the number of distance
calculations: given the cell c in which a given point p is, we only have to search
cells c′ with dist(c, c′) < ε, i.e., the neighbouring cells N(c) (red in Fig. 1) to
find points within distance ε of p. The grid uses uniform spacing of the cells in
all dimensions, making assignment of points to cells straightforward.
The grid-based optimization on which ADvaNCE is based has four phases:

Grid Construction: In the first phase we map each point to the grid cell
enclosing it. To reduce the number of distance calculations, we choose the grid
cell width as ε√

D
with D as the dimension, guaranteeing that all points within

a cell are within distance ε of each other and thus form a cluster.

Determining Core Points: In the second phase we iterate over all grid cells.
If the grid cell width is set to ε√

D
, then the diagonal of the cell is ε and the

distance between any two points in the same cell is at most ε. If a cell c contains
more than minPts points, all the points inside c are core points.

Merge Clusters: We consider each non-empty cell as a small cluster and, if
two core points in two different cells are within distance less than ε of each
other, these two points belong to the same cluster. In this phase we thus identify
neighboring cells c1 and c2 which contain at least minPts and merge them into
one cluster if there exists core points p1 ∈ c1 and p2 ∈ c2 with dist(p1, p2) < ε.

Determine Border Points: Given a non-core point p in cell c (a cell with less
than minPts), we check all core points in neighbouring cells N(c) and find the
core point q with the minimum distance to p. In case the distance is smaller than
ε, p is a border point and belongs to the cluster of q else it is a noise point.

2.3 DBSCAN Challenges

A challenge of DBSCAN is the time needed for distance calculations which grows
rapidly with increasing dataset size, even for optimized implementations [12].

We show this with an experiment where we increase the size of randomly
generated 5D [11] datasets from 0.125 to 1 million and run DBSCAN with ε =
5000 and minPts = 100 [11]. As Fig. 2 shows, the share of total time needed for
distance computations grows rapidly to a substantial share of more than 60 %.

As we will show in the remainder of this paper, we speedup DBSCAN consid-
erably and enable it to scale by using approximation in two respects. First we use
approximation to reduce the total number of distance calculations and second
we use approximation to accelerate the remaining distance calculations. As we
will show, sacrificing only little precision to accelerate clustering considerably.

34 T. Li et al.

3 ADvaNCE Overview

ADvaNCE uses the key insight that the time needed to find clusters is driven
by the distance computations. While previous work [12] reduced this number,
it grows very fast for increasingly big datasets. With approximate computations
in a grid-based DBSCAN [12] ADvaNCE considerably accelerates clustering.

The first approximation reduces the number of neighboring cells to consider
and thus the number of distance calculations. Using locality sensitive hashing [2]
we can approximate distances between the points and efficiently test if two points
are within distance ε of each other.

Fig. 2. Share of overall time needed for
distance calculations.

A second approximation reduces the
points considered in each cell. Not all
points need to be considered to decide
if two grid cells containing core points
should be joined. To approximate the
result it sufficies to consider points near
the border of the cell: if each of two cells
has a point within distance ε of each other
then testing further points is futile.

Particularly, the former optimization
merges the cells with at least minPts
approximately and efficiently. It does,
however, only join a subset of neighbor-
ing cells and several iterations are needed
to join all neighboring cells. ADvaNCE
thus runs iteratively to join cells until the
result achieves the required precision.

4 ADvaNCE: Approximate Neighborhood

While the basic Grid based algorithm is very efficient in two dimensions and in
case the width of each cell is set to

D
√

ε
2 , in higher dimensions the number of N(c)

cells grows considerably. In five dimensions, for example, the cell width becomes
very small with ε/

√
(5) and N(c) contains 75 cells. Merging cells into clusters

will be very time consuming as all of N(c) has to be searched for every core point.
In the following we discuss how we can reduce N(c) through approximation.

4.1 Using Locality Sensitive Hashing to Approximate

Searching in the neighbouring cells N(c) is part of nearly all steps of grid-based
DBSCAN [12] and thus crucial. The idea of our approximate algorithm is to find
an approximate neighbour for each core point using locality sensitive hashing
(LSH [2]) instead of searching in the potentially large number of cells in N(c).

The LSH functions H we use are a set of random hyperplane projection
functions: given two points p, q in dimension D1 (dimension of input data), we
use H to project p and q into dimension D2, thereby approximating the distance
between them. The approximate distance between p and q then is:

Hashing-Based Approximate DBSCAN 35

1. if dist(p, q) < ε, then ∀Hi ∈ H, we have Hi(p) − Hi(q) < ε
2. if dist(p, q) > ε, then ∀Hi ∈ H, there is a considerable chance that Hi(p) −

Hi(q) > ε and there is a small possibility that Hi(p) − Hi(q) < ε

With these functions we construct a new grid NG in D2 with cellWidth = ε
and assign each point to the corresponding cell. Given a point p, we define the
cell c in the new grid NG that contains the approximate neighbours of p, denoted
by AN(p) and all points in c will serve as approximate neighbour points of p.
The algorithm is shown in pseudocode in Algorithm1.

Algorithm 1. HashAndAssign
Input: P : set of input points; ε: distance

threshold
Output: NG: grid in higher dimension
Data: D1: dimension of input; D2:

dimension to project to

Create D2 random hyperplane in D1 space
Initialise uniform grid NG in D2 space
with cellWidth = ε
foreach Point p ∈ P do

foreach i ∈ D2 do
dist[i] = distance between p and
hyperplane[i]

set coordinates of p in D2 to dist
assign p with coordinates dist to NG

It is possible that points
that are within the ε neigh-
bour sphere B(p, ε) can not
be found in a neighbour cell
in NG due to the approxima-
tion as in NG in D2 space
B(p, ε) may be split into two
parts. We address this issue
by iterating and accumulating
the hashing results to better
approximate the true ε neigh-
bours.

4.2 ADvaNCE-LSH -
LSH-Based DBSCAN

Algorithm 2. ADvaNCE-LSH - approxi-
mate, LSH-based DBSCAN
Input: P : set of input points; ε: distance

threshold; minPts: minimum
number of points to form a cluster

G = ConstructGrid(P)
DetermineCorePoints(G)
while true do

NG = HashAndAssign(P);
DetermineCorePointsHash(NG,P);
MergeClustersHash(NG,G,P);

DetermineBorderPointsHash(NG,G,P);

As a first approximation of
DBSCAN we propose ADva-
NCE-LSH which uses hash-
ing functions with a p-stable
distribution [9] (projecting to
8 dimensional space) to com-
pute NG. An overview in
pseudocode is given in Algo-
rithm2.

The Construct Grid and
Determine Core Points func-
tions are similar to the
functions used in the grid-
based DBSCAN implementa-
tion. The major difference is
in Determine Core Points
where we only mark the points as core points when the cell contains more than
minPts points and leave it to Determine Core Points Hash to find which of
the remaining points are core points.

The stop condition of the while loop in Algorithm2 can be set to a fixed
number of iterations, or to control the precision of the result better, we can use
termination conditions based on the number of core points or clusters.

36 T. Li et al.

The function Determine Core Points Hash and Determine Border Points
Hash are the approximate versions of Determine Core Points and Determine
Border Points described previously. In Determine Core Points Hash, for every
non-core point p, we count the number of points in AN(p) within ε of point p.
Although AN(p) is not equal to B(p, ε), we can converge to it through iterations.
The accumulation of AN(p) in successive iterations will converge to B(p, ε) and
we can gradually compute the full result. In Determine Border Points Hash
we find the nearest core point for every non-core points p in AN(p) generated
by LSH. This step is repeated several times to improve the accuracy.

The function Merge Clusters Hash illustrated in Algorithm3 approximates
Merge Clusters: if two core points p and q are in the same cell in NG (in D2)
and their distance is less than ε the two small clusters in D1 that contain p and
q are merged. We use a break in the loop to control when to stop merging.

5 ADvaNCE: Representative Points Approximation

Algorithm 3. Approximate Cluster Merg-
ing
Input: NG: grid in higher dimensions; G:

initial grid; P : set of points

foreach Point p ∈ P do
c ← cell in NG containing p
foreach Point q ∈ c do

if dist(q, p) < ε then
c1 ← cell in G containing p
c2 ← cell in G containing q
merge c1 and c2
break

In case of very dense datasets,
the number of points in cells
may be considerable lead-
ing to a bottleneck as we
have to calculate the distance
between all points in a cell to
points in neighbouring cells.
We use a further approxi-
mation to address this issue:
given minPts, which is the
minimum number points to
form a cluster, we set the
maximum number of points
in each cell to be maxNum
where maxNum > minPts and ignore the other points in the main iteration.

For every cell c in the original grid G there are three cases:

1. if |c| < minPts then we cannot (yet) determine whether the points in c are
core points and c is thus not affected by this approximation

2. if |c| ≥ minPts and |c| ≤ maxNum then all points in c are core points and
this cell will also not be affected by this approximation

3. if |c| > maxNum then it follows that |c| > minPts and all points in c are core
points. All points in c belong to the same cluster so we only need to identify
which cluster this cell c belongs to. Although we ignore |c|−maxNum points
we can still determine which cluster they belong to.

Key to this approximation approach is to set maxNum so that the informa-
tion lost is limited.

Hashing-Based Approximate DBSCAN 37

Fig. 3. Neighboring cells of c in
red. (Color figure online)

We select up to maxNum of the points
near the border of each cell and in the Merge
Clusters Hash function calculate the distance
to determine the relationship between cells.
The points at the border of each cell (blue in
Fig. 3) are the most useful in determining what
cells should be merged while the points near
the center (red in Fig. 3) are less so. ADvaNCE
thus first calculates the geometric center of all
points and takes the first maxNum points far-
thest from the geometric center.

6 ADvaNCE: Analytical Analysis

When using ADvaNCE it is crucial to understand its benefits and limitations.

6.1 ADvaNCE Result Accuracy

In the functions Determine Core Points Hash and Merge Clusters Hash we
use the approximate neighbors AN(p) based on LSH instead of the actual ε
neighbors B(p, ε) leading to decreased accuracy if:

1. Given a point p, the number of points in AN(p) is less than minPts, but
B(p, eps) has more than minPts. A core point p may thus not be identified.

2. Given two cells c1 and c2, two core points p1 ∈ c1, p2 ∈ c2 and dist(p1, p2) < ε,
but p1 and p2 are not in the same bucket after LSH. The two cells should be
merged but may not be.

In both scenarios merging clusters or identification of core points may not
occur. Crucial to ADvaNCE, however, is that it merges clusters in multiple itera-
tions and as the number of iterations grows, ADvaNCE will gradually determine
more core points and merge more clusters. The impact of these two scenarios on
the accuracy will thus decrease monotonically and the algorithm will converge.

Also, we still perform distance calculations for points in AN(p) to select the
points that are truly in B(p, ε) and use these points to determine core points or
merge clusters. We can therefore rule out that: (a) point p is determined as core
point but actually it is not and (b) two cells are merged together but is not.

6.2 Time Complexity

Level-i Cell Characteristics: The most time consuming part of ADvaNCE is
the iterations of hashing and merging. Since Determine Core Points Hash and
Merge Clusters Hash perform a linear search in the approximate neighborhood
AN(p), the expected size of AN , which is also the expected number of collisions
for each query point in LSH, is key to determining the runtime of each iteration.
We first discuss preliminaries, i.e., characteristics of level-i cells and the p-stable
hashing functions used before we reason about the time complexity.

38 T. Li et al.

Fig. 4. Cells next to the red
cell are level-0 cells. (Color
figure online)

Let P be the points in IRd where d is a constant
(dimensions) and we construct the original grid G
for all points in P . We start by defining level-i cells.

Definition 2. Level-i cells: For a point q we find
the cell c in G that contains q. Cells that are next
to c are level-0 cells. For level-i cells, the outer
cells that directly connect level-i cells are level-(i+1)
cells.

An example of level-i cells in a grid is shown in
Fig. 4: relative to the red cell, the yellow cells are
level-0 cells, the green cells are level-1 cells etc. The
number of level-i cells is

Ni = (2i + 3)d − (2i + 1)d = O(id−1)

For every point q in level − i cells, the minimum distance between q and p Mi is

Mi = i × cellWidth = i × ε√
d

The maximum number of points in level-i cell is a constant maxNum as we
discussed in the context of representative points approximation.

Hashing Functions Characteristics: If fp(t) is the probability density func-
tion of the absolute value of the p-stable distribution then for two vectors v1, v2
and with c = ||v1 − v2||, the probability of collision is:

p(c) = Pra,b[ha,b(v1) = ha,b(v2)] =
∫ r

0

1
c
fp(

t

c
)(1 − t

r
)dt

where a, b and r are parameters of LSH functions. We can also concatenate k
functions h in H as g(v) = h1(v), h2(v)...hk(v) giving a probability of collision:

pk(c) =
1
ck

[
∫ r

0

1
c
fp(

t

c
)(1 − t

r
)dt]k

With p (the possibility function defined by a p-stable LSH) and k (the number
of hash functions used) the number of collisions for a query point q then is:

E[#Collision] =
∑

x∈D

pk(‖q − x‖)

where pk(‖q − x‖) is the possibility of collision if two points with distance of
‖q − x‖ and D is the size of the dataset.

Time Complexity Analysis: Since we divide the whole dataset into cells
of levels, we can redefine the number of collision by level-i cells. In order to

Hashing-Based Approximate DBSCAN 39

determine an upper bound for the number of collisions, we assume that all points
in level-i cells have the distance Mi, the minimum distance they can have.

E[#Collision] =
∑

x∈D

pk(‖q − x‖)

∞∑

i=0

maxNum × Ni × pk(Mi) =
∞∑

i=0

maxNum × O(id−1) × pk(
iε√
d
)

∞∑

i=0

maxNum × O(id−1) × (

√
d

iε
)k = maxNum × (

√
d

ε
)k ×

∞∑

i=0

1
O(ik−d+1)

The expected number of collisions is proportional to an infinite series of i.
Given any dimension d we can always find k ≥ (d+1) and the infinite series of i
will consequently converge to a constant regardless of how big i is. The expected
number of collisions is the function (with the constant C).

= maxNum × (

√
d

ε
)k × C

The expected size of AN(p) thus is O(1). In function Determine Core Point
Hash and Merge Clusters Hash, we perform a linear search in AN for every
point, making the time complexity O(n). Also, the hashing is in O(n) and so
the time complexity of one whole iteration is O(n) too.

7 Experimental Evaluation

In this section we describe the experimental setup, perform a sensitivity analysis
on synthetic datasets and use real datasets to demonstrate ADvaNCE’s benefits.

7.1 Experimental Setup

The experiments are run on a Linux Ubuntu 2.6 machine equipped with Intel(R)
Xeon(R) CPU E5-2640 0 CPUs running at 2.5 GHz, with 64 KB L1, 256 KB L2
and 12 MB L3 cache and 8 GB RAM at 1333 MHz. The storage consists of 2 SAS
disks of 300 GB capacity each but is only used to read the data into memory.

7.2 Software Setup and Datasets

We compare our algorithm against the most recent approximate DBSCAN imple-
mentation, ρ−approximate DBSCAN available and set ρ to 0.001 as recom-
mended [11]. We use two different versions of our approach, the first using the
hashing approximation only (ADvaNCE-LSH) and the second using the point
reduction as well (ADvaNCE). Crucially, the stop criteria for ADvaNCE (for
both versions) is set so that it achieves the same accuracy as ρ−approximate
DBSCAN. Our approach is configured to use eight p-stable hashing functions.

40 T. Li et al.

Each algorithm implemented uses a single CPU core and is written in C++
(using g++ with −o3 turned on) while we use the executable provided for [11].
All execution times reported are average over five runs.

We use the same synthetic datasets as in [11] defined with a dimensionality d,
a restart probability ρrestart, a target cardinality and a noise percentage ρnoise.
With this we iteratively generate clusters: we start to generate a cluster and in
every step, with probability ρrestart, start generation of a new cluster.

We also use two real datasets [4] the Household dataset in 7D (measuring
power consumption in one household over 4 years with 2’049’280 data points)
as well as the KDD Cup ’99 dataset in 9D consisting of 4’898’431 data points
representing detected network intrusion events. All datasets are normalized in a
domain of [0, 10’000] in all dimensions.

7.3 Accuracy Metric

To measure the accuracy of the approximate result we use the omega-index [8].
The omega-index assess the similarity of two clusterings as the ratio of consistent
pairs of points, i.e., a point p needs to be in the same clusters in both clustering
results. A omega-index of 100 % means the result of an approach is precise.

7.4 Synthetic Data

The synthetic datasets are generated as described before. The DBSCAN para-
meter minPts is set to 100 [11]. maxNum for the representative points approx-
imation is set to

√
minPts × M where M is the maximum points per cell.

Increasing Dataset Size. In this first experiment we compare the execution
time of our approach with the most recent DBSCAN approximation technique.
We cannot compare it with a basic, accurate DBSCAN as this takes too long to
execute. We execute the experiment in 5, 7, and 9 dimensions and increase the
number of data points from 100’000 to 10 millions. ε is set to 5000.

As can be seen in Fig. 5, our approach using both approximations
(ADvaNCE) outperforms ρ−approximate DBSCAN [11] consistently and almost
up to two orders of magnitude (for 9 dimensions). As the number of dimensions
increases, the execution time of ρ−approximate DBSCAN grows. Our approach
on the other hand shows consistent performance and improves execution time
for an increasing number of dimensions. This is because approximation thorough
hashing works particularly well in higher dimensions. Overall our approach scales
better with an increasing number of points in the dataset.

The gap between the two versions of our approach narrows as the number of
dimensions grows. As the hash-based approximation improves with an increasing
dimensionality, the relative contribution of the representative points approxima-
tion shrinks and does not improve the overall results considerably.

Hashing-Based Approximate DBSCAN 41

Fig. 5. Average execution time in 5, 7 and 9 dimensions with increasing dataset size.

Increasing Epsilon. In a next experiment we compare the approaches with
increasing ε ranging from 5’000 to 50’000. Also here the precise DBSCAN version
takes too long to execute and we cannot include it in the results.

As the results in Fig. 6 show, for an increasing ε, the performance of
ρ−approximate DBSCAN improves at first but then degrades. Our approach
based on hashing alone does not perform well as the precision degrades the big-
ger the ε grows. Using the representative point approximation as well, however,
improves performance and it outperforms ρ−approximate DBSCAN.

For a very big ε (which is rarely used in real clustering applications), however,
the ρ−approximate DBSCAN outperforms ADvaNCE. This is due to the dataset
rather than the algorithm: the data points are normalized to an interval of [0,
10’000] in all dimensions. In these experiments, however, the ε finally grows to
50’000 and, for example, in 5D the cell width is almost 23’000, resulting in only

Fig. 6. Average execution time in 5, 7 and 9 dimensions with increasing ε.

42 T. Li et al.

5 cells in each dimension. With this few cells ADvaNCE cannot considerably
reduce and approximate the number of distance calculations.

Increasing Dimensions. We also test our approach with an increasing number
of dimensions and compare it with ρ−approximate DBSCAN. All other para-
meters are fixed: synthetic data with 3 million data points and ε = 5′000.

As the result in Fig. 7 shows, although concave down and appearing to con-
verge, the execution time of ρ−approximate DBSCAN grows faster than the one
of both ADvaNCE versions, resulting in a speed up of more than 10X.

Fig. 7. Average execution time
for experiments with an increasing
number of dimensions.

The relative difference between the two
versions of ADvaNCE indicates that the
higher the dimension, the more the hashing
approximation contributes to the result as
the execution time reduction thanks to the
representative points approximation dimin-
ishes with increasing dimension.

7.5 Real World Datasets

As a final litmus test of the overall exe-
cution time of ADvaNCE, we also compare
it against ρ−approximate DBSCAN on real
world data. More specifically, we execute
ADvaNCE and ρ−approximate DBSCAN on
the KDD cup ’99 dataset as well as on the
household dataset [4]. Given that the num-
ber of points per cell is rather unbalanced in

Fig. 8. Average execution time on real data with increasing dataset size.

Hashing-Based Approximate DBSCAN 43

the real world datasets, we set maxNum for the representative approximation
to

√
A × M where M is the maximum number of points in a cell and A is the

average number of points per cell.
In this experiment we measure the execution time for an increasing size of the

datasets. More precisely we start with a tenth of the dataset and then increase
it until we arrive at their full sizes.

As the results in Fig. 8 show, ADvaNCE outperforms ρ−approximate
DBSCAN by one order of magnitude. The trends are similar, but for an increas-
ing dataset size, ADvaNCE has the edge over ADvaNCE-LSH.

8 In-Depth Analysis

To understand the behavior of ADvaNCE, we analyze the performance of its
major building blocks Determine Core Point LSH and Merge Clusters LSH.
As the results in Fig. 9 (left) show, if we only use ADvaNCE-LSH (without the
representative points approximation) the time for determining core points will
increase from less than 0.1 s to exceeding 100 s as ε grows. This is because for
every non-core point we search all points in the approximate neighborhood to
see if it is a core point. If we limit the number of points in each cell through the
representative points approximation the execution time is curbed.

As Fig. 9 (right) shows, as ε grows, if we only use hashing algorithm but not
limit the number of points, the time for Merge Clusters LSH also increases.
The increase, however, is moderate, going from less than 1 second to 10 seconds.
In this step we only find one core point in the approximate neighborhood and
then merge cells for every point. As ε grows bigger, the number of points in the
approximate neighborhood also grows, but the time of this step consequently
does not change substantially.

Assessing the execution time of these two functions, we see that if we only
use ADvaNCE-LSH, the execution time will increase as epsilon grows because
of the time spent on Determine Core Points. The execution time of both opti-
mizations, however, remains virtually the same for an increasing ε.

9 Related Work

Several approximate DBSCAN versions have been developed in recent years.
ADBSCAN [15] is based on using range queries to discover clusters. It thus

reduces the number of range queries by defining skeletal points as the minimum
number of points where range queries (with radius ε) need to be executed to
capture all clusters. The problem of finding the skeletal points is NP-complete
but ADBSCAN uses a genetic algorithm to approximate the points.

IDBSCAN [6] works similarly and approximates and thus accelerates
DBSCAN through reducing the range or neighborhood queries needed. Instead
of executing a query for all points in the vicinity of a core point, IDBSCAN only
samples the neighorbood and executes a query on a subset of the points.

44 T. Li et al.

Fig. 9. Breakdown of the execution time of ADvaNCE.

l-DBSCAN [14] uses the concept of leaders to accelerate clustering. Leaders
are a concise but approximate representation of the patterns in the dataset. l-
DBSCAN first clusters the leaders and only then replaces the leaders by the
actual points from the dataset. With this l-DBSCAN outperforms the precise
version of DBSCAN by a factor of two.

ρ-approximate DBSCAN [11] guarantees the result of its clustering to be
between the exact result of DBSCAN with (ε,minPts) and (ε×(1+ρ),minPts).
The approach is based on a grid approach where data points are assigned to a grid
with cell width ε√

d
. For an exact result the algorithm has to connect/combine all

pairs of cells c1, c2 that (a) contain at least minPts and (b) contain two points
(p1 ∈ c1 and p2 ∈ c2) within distance of each other ε. This problem is known
as the biochromatic closest pair (BCP) and solving it precisely is exceedingly
costly but can be approximated (in ε × (1 + ρ)) in linear time.

Pardicle [13] accelerates the basic DBSCAN approach through paralleliza-
tion: after partitioning the multi-dimensional dataset into contiguous chunks,
DBSCAN finds clusters in each chunk in parallel on different cores. To account
for clusters that span several chunks, Pardicle samples and replicates the border
(of width ε) of each chunk and copies it to adjacent chunks, i.e., to the cores
computing clusters. Sampling accelerates but also approximates the result.

10 Conclusions

In this paper, we develop ADvaNCE, a novel approach for approximating
density-based clustering. ADvaNCE builds on a Grid-based optimization of
DBSCAN and uses two approximations to accelerate and enable scalability of
clustering. With distance calculations being the major cost factor when exe-
cuting of DBSCAN, ADvaNCE accelerates clustering by using approximation
(a) to speed up distance calculations and (b) to reduce the distance calculations
required.

Hashing-Based Approximate DBSCAN 45

Approximate clustering results oftentimes are sufficient as has been estab-
lished by related work [3]. Compared to the most recent algorithms in approx-
imate density-based clustering [11], ADvaNCE achieves the same accuracy but
does so more than one order of magnitude faster (30x) in the best case.

References

1. Adaszewski, S., Dukart, J., Kherif, F., Frackowiak, R., Draganski, B.: How early can
we predict Alzheimer’s disease using computational anatomy? Neurobiol. Aging
34(12), 2815–2826 (2013)

2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM 51(1), 117–122 (2008)

3. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: OPTICS: ordering points
to identify the clustering structure. In: SIGMOD 1999 (1999)

4. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013)
5. Bentley, J.L.: Multidimensional binary search trees used for associative searching.

Commun. ACM 18(9), 509–517 (1975)
6. Borah, B., Bhattacharyya, D.: An improved sampling-based DBSCAN for large

spatial databases. In: Conference on Intelligent Sensing and Information Processing
(2004)

7. Chen, M.-S., Han, J., Yu, P.: Data mining: an overview from a database perspective.
IEEE Trans. Knowl. Data Eng. 8(6), 866–883 (1996)

8. Collins, L.M., Dent, C.W.: Omega: a general formulation of the rand index of
cluster recoverysuitable for non-disjoint solutions. Multivar. Behav. Res. 23(2),
231–242 (1988)

9. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, SCG 2004 (2004)

10. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: Proceedings of the 2nd
International Conference on Knowledge Discovery and and Data Mining (1996)

11. Gan, J., Tao, Y.: DBSCAN revisited: mis-claim, un-fixability, and approximation.
In: SIGMOD 2015 (2015)

12. Gunawan, A.: A faster algorithm for DBSCAN. Master’s thesis, Technical
University of Eindhoven, March 2013

13. Patwary, M., Ali, M., Satish, N., Sundaram, N., Manne, F., Habib, S., Dubey, P.:
Pardicle: parallel approximate density-based clustering. In: Supercomputing 2014
(2014)

14. Viswanath, P., Pinkesh, R.: l-DBSCAN: a fast hybrid density based clustering
method. In: Proceedings of the Conference on Pattern Recognition (2006)

15. Yeganeh, S., Habibi, J., Abolhassani, H., Tehrani, M., Esmaelnezhad, J.: An
approximation algorithm for finding skeletal points for density based clustering
approaches. In: Symposium on Computational Intelligence and Data Mining (2009)

Fair Knapsack Pricing for Data Marketplaces

Florian Stahl1,2(B) and Gottfried Vossen1,2

1 ERCIS, WWU Münster, Münster, Germany
{flst,vossen}@wi.uni-muenster.de

2 Waikato Management School, The University of Waikato,
Hamilton, New Zealand

{fstahl,vossen}@waikato.ac.nz

Abstract. Data has become an important economic good. This has
led to the development of data marketplaces which facilitate trading
by bringing data vendors and data consumers together on one platform.
Despite the existence of such infrastructures, data vendors struggle to
determine the value their offerings have to customers. This paper explores
a novel pricing scheme that allows for price discrimination of customers
by selling custom-tailored variants of a data product at a price suggested
by a customer. To this end, data quality is adjusted to meet a customer’s
willingness to pay. To balance customer preferences and vendor inter-
est, a model is developed, translating fair pricing into a Multiple-Choice
Knapsack Problem and making it amenable to an algorithmic solution.

Keywords: Data pricing · Knapsack · Data marketplaces · Data quality

1 Introduction

Over the last decades, information has become an important production factor
which has led to a point at which data, the basic unit in which information is
exchanged, is increasingly being traded on data marketplaces [2,12,15]. Data
marketplaces are platforms allowing providers and consumers of data and data-
related services to interact with each other. A central problem is the determi-
nation of a price for data that is considered fair from both the customer and
the vendor perspective. We cast this problem into a universal-relation setting,
demonstrate the impact of data quality, and propose an algorithmic solution
based on the Multiple-Choice Knapsack Problem.

[1] argues that relational views can be interpreted as versions of the ‘infor-
mation good’ data – an assumption that will also be made here – and identifies
three open problems: (1) pricing of data updates; (2) pricing of integrated data
for complex value chains; and (3) pricing of competing data sources that provide
essentially the same data but in different quality.

The first challenge can be addressed by calculating the difference between
the full price of the new and the old product, which is similar to an approach
suggested in [23] for buying samples of XML data. The second problem may
be addressed by introducing an intermediary pricing for all providers refining
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 46–59, 2016.
DOI: 10.1007/978-3-319-44039-2 4

Fair Knapsack Pricing for Data Marketplaces 47

the raw data. This means that the raw data vendor operates using established
means; all vendors following in the value chain have to deal with the output
price of the lower level vendor as cost and build their prices accordingly.

The last question has been addressed in [21] on which this paper builds, by
presenting a quality-centric price pricing model. In particular, we will demonstrate
how the quality of relational data products can be adapted to match a buyer’s
willingness to pay by employing a Name Your Own Price (NYOP) model. We
thus achieve two things: Providers of data can discriminate customers so that they
realize the maximum price a customer is willing to pay, and customers receive a
product that is tailored to their own data quality needs and budgets. To start
with, providers offer their data at a price P and a given quality. If a customer is
willing to accept it, the deal is settled. Otherwise, if a customer wants to pay W <
P , then the quality is adjusted accordingly. This concept of trading data quality
for a discount was previously suggested in [23,24] and applied to both relational
as well as XML data; here we focus on relational data only. In contrast to this
previous work, which only considered one quality dimension each (completeness
and accuracy), we consider a larger number of quality dimensions (that can easily
be extended) and take user preferences into account.

Our setting is that of relational databases [7]. Data marketplaces host data
for a number of providers selling relational data with given attributes. For our
purposes, this data can be described as a relation r with n unique attributes
Ai and domains dom(Ai), 1 ≤ i ≤ n. The set of all attributes is denoted as
X = {A1, . . . , An}. Consequently, data is described as an instance r of relational
schema R with attribute set X. Most of the time, data providers will not sell
one relation only, but m > 1 relation instances {r1, . . . , rm}. When distinct
provider act on a given marketplace, we assume that each comes with its own
set of relations (thus, we do not delve into issues of providing a common schema
across providers or related questions).

Since customers will often require data from different relations, which then
need to be joined, we make the simplifying assumption that data providers’ offer-
ings come as a universal relation (u) [14]. We assume that, given {r1, . . . , rm}, u
is created by joining all m relations rj in such a way that no data is lost, using a
full outer join. This has the advantage that no further joins are necessary during
the formal elaborations in the remainder of this paper. Furthermore, any original
relation rj may be obtained by appropriate selections and projections over u.
Formally, the universal relation u can be defined as . Notice
that this requires attributes to be unique within each single database; however,
this can also be achieved by renaming. Since (a subset of) relational algebra is
good enough for querying a marketplace in our setting, we can guarantee that
the time for collocating data is negligible when calculating prices. Also, we cal-
culate the price based on the resulting view rather than the query itself. Given
that users shall receive a relational data product that matches their data quality
needs, it is supposed that users know their complete quality preferences and can
express them as a total order.

The remainder of this paper is organized as follows: Relevant quality crite-
ria will be described and the notation of utility introduced in Sect. 2. Section 3

48 F. Stahl and G. Vossen

will describe how a custom-tailored data product can be created based on a
customer’s willingness to pay, detailing the calculation of appropriate quality
levels as well as the creation of the final data product. The paper is concluded
in Sect. 4.

2 Quality-Based Pricing

In [21,22] a total of 21 quality criteria, originally identified as relevant in the
context of the Web in [17], have been reviewed regarding their applicability to
data marketplaces and specifically to the idea of versioning, i. e., the creation of
lower quality versions of a relational data product. This has resulted in seven
quality criteria that allow for continuous versioning (tailoring) which means that
for these criteria an arbitrarily large number of versions can be created automat-
ically. They will be referred to as V = {Accuracy, Amount of Data, Availability,
Completeness, Latency, Response Time, Timeliness}. For simplicity, only two
measures in V, which are all scaled in the interval [0, 1], will be demonstrated
here in detail, namely Completeness and Timeliness.

Completeness will be interpreted as a null-freeness score. To this end, we fol-
low the closed world assumption (CWA) [3], as it is not particularly relevant why
a value is missing; fact is it cannot be delivered to the customer. Furthermore, we
will suppose that all information necessary to calculate a quality score is avail-
able within the data. Thus, quality criteria such as consistency that cannot be
calculated without knowing the ground cannot be considered in this framework.
In contrast, completeness or null-freeness can be evaluated by measuring the
number of cells of a relation to be sold not containing a null-value (⊥) compared
to the maximum amount of data possible:

c(u) =
|{μ[A], μ ∈ u,A ∈ Xu|μ[A] �=⊥}|

|u| × |Xu| (1)

According to [3], Timeliness, i. e., the freshness of data, depends on a number of
characteristics, including (a) delivery time, i. e., the time at which the datum is
being delivered; (b) input time, i. e., the time at which the datum was entered
into the system; (c) age, i. e., the age of the datum when entered into the system;
and (d) volatility, i. e., the typical time period a datum keeps its validity. We
abstract from age, as it is assumed that time-sensitive data is entered into the
system immediately. Furthermore, in most cases it is only relevant when a datum
was last updated and how long it remains valid. Adopting the definition of [3],
the Timeliness of a record or tuple tμ is a function of delivery time (DT), input
time (IT), and volatility (v) defined as:

tμ(IT, v) = max
{
0, 1 − DT−IT

v

}
(2)

In order to make Timeliness measurable, we assume that a LastUpdated attribute
and a volatility constant v exist for each view u. Then, the overall timeliness score
can be calculated as average timeliness for all tuples in u:

Fair Knapsack Pricing for Data Marketplaces 49

tim(u) =

∑

μ∈u

tμ(μ[LastUpdated], v)

|u| (3)

In addition to the seven criteria that allow for continuous versioning, five crite-
ria have been established for which a limited number of versions can be created,
i. e., that allow for discrete versioning, collocated in G = {Customer Support,
Documentation, Security, Representational Conciseness, Representational Con-
sistency}. From this category, Customer Support will serve as an example. For
illustration purposes, suppose the following service levels:

1. E-mail support with a 48 h response guarantee;
2. Telephone support (9 to 5) and 24 h response time e-mail support;
3. 24/7 telephone and e-mail support.

To address all quality criteria we introduce Q = V ∪ G. Furthermore, the order
of quality criteria will be of importance, hence, from now on, a list of quality
criteria q will be used: q = (q1, . . . , qnq

) with nq = |Q| elements.
In micro-economics, it is a fundamental assumption that goods provide utility

and commonly micro economists investigate utility functions for a number of
goods [18]. In contrast, we will here focus on one relational data good and its
quality properties. Therefore, the utility or benefit function will be formalized as
b = f(q1, . . . , qnq

); here qi denotes the quality scores for the i-th quality criterion.
Moreover, it will be supposed that quality criteria are independent, i. e., that the
consumption of one quality criterion does not effect the utility of other quality
criteria. While this is not the case for extremes, e. g., an incomplete data set is
less likely to be accurate than a complete one, this is a necessary simplification to
handle all dimensions in the following. Two well-known function types commonly
serve as utility functions: logarithm functions (first and foremost the natural
logarithm) as well as any root function a

√
x, a ∈ N≥2.

We propose to create relational data product versions based on the expected
utility. Thus, the utility function is used to create ml utility-based versions or
levels so that bj − bj−1 = const., 1 < j ≤ ml. To this end, the quality scores
which by definition lie in the interval [0, 1] will be scaled to fit a sector of the
utility function’s domain [xmin, xmax], e. g., [0, 100] for the square root. It is
worth noting that data with some quality scores beneath a certain threshold
tq are useless. To address this, it is also possible to transform only the interval
[tq, 1], 0 ≤ tq ≤ 1 from the original score to the representative sector of the utility
function, i. e., at a quality score of tq the utility level of that quality score is 0. To
arrive at the necessary minimum quality score for each utility level, the inverted
utility function is used, e. g., x2 for

√
x.

In the following, we will use the square root function as it produces more
reasonable utility level intervals. A positive side-effect of using the square root
with, for instance, a domain of [1, 100] and ml = 10 utility levels, as done in this
paper, is that examples are more illustrative.

Now, the utility-based quality level vector l contains the concrete values of
the utility level lj in order. In the example manifestation presented here, we
suppose that lj = j, 1 ≤ j ≤ ml.

50 F. Stahl and G. Vossen

While this applies for those quality criteria that allow for continuous version-
ing (i. e., q ∈ V), for criteria that only allow for discrete versioning (i. e., q ∈ G)
a smaller number has to be chosen. Here, we suggest using three utility levels
l1 = 3, l2 = 6, l3 = 9 for q ∈ G – following Goldilocks principle, discussed in
[20], according to which 3 is a good number of versions in the absence of further
indicators. To differentiate between the utility level vectors of both sets, they
have an according superscript, resulting in the two vectors lV and lG. Since the
latter quality levels do not correspond to concrete quality scores, determining a
value for them is meaningless. Therefore, the amount of service for each level has
to be manually determined, as has been shown for Customer Support. Sample
figures for both variants are presented in Table 1, where levels for the second
type have been marked with an X.

Table 1. Used utility level mapped to versions; showing the required quality score
(QS).

Utility level (lj) 0 1 2 3 4 5 6 7 8 9 10

QS for q ∈ V 0 1 4 9 16 25 36 49 64 81 100

QS for q ∈ G 0 ⊥ ⊥ X ⊥ ⊥ X ⊥ ⊥ X ⊥

While in reality the utility provided by a certain quality level is likely to differ
between customers, the general trend is the same and will here be approximated
by the same function. Furthermore, we acknowledge that not all quality criteria
have the same importance for customers. For example, Completeness may be
more important for a customer than Timeliness because they want to do some
time-independent analysis, while for another customer Timeliness might be more
important because they base time-critical decisions on the data. To represent this
in the model, the utility gained from each qi’s quality score is weighted with a
user provided ωi that represents the importance of all quality criteria relative to
each other. To this end, users are asked to express their preferences as mentioned
earlier. This results in a weight vector ω = (ω1, . . . , ωnq

) for which
∑nq

i=1 ωi = 1
holds.

A weight matrix B can now be calculated for each user. This matrix shows
for which quality criterion qi with an according weight ωi what actual utility bij

can be reached for the different utility levels lVj and lGj . It is calculated as follows,
where the quality levels in lG are normalized:

bij =

⎧
⎨

⎩

ωi × lVj f. a. qi ∈ V

ωi × lGj×lVml

lGml

f. a. qi ∈ G

Inspired by [23,24], this work builds on the idea that providers offer data for
an ask price P and customers may suggest an alternative (lower) bid price W .
If W < P the quality of the data is adjusted to meet the price W suggested

Fair Knapsack Pricing for Data Marketplaces 51

by the customer. In contrast to [23,24] we consider an arbitrary number of
quality criteria. To this end, besides P providers have to specify the importance
of different quality criteria from their point of view. This may either be done
based on the cost the different quality criteria cause when being created or based
on the perceived utility of the different criteria. As argued in [21], the utility-
based approach is preferable; however, the cost-based approach can serve as
point of reference if no further information is available. Thus, similar to the user
weighting vector ω, providers define a weight vector κ = (κ1, . . . , κnq

) for which∑nq

i=1 κi = 1 holds.
For the actual attribution of individual prices to the different quality levels

and quality criteria, two fundamentally different approaches can be implemented.
In any case the overall price would be distributed to the different quality criteria
using κ, with the highest quality level being sold at κP . Then, prices can be
attributed to the different quality levels using the utility levels or using the
relative satisfaction of each quality criterion. The first will lead to linear prices
corresponding to the benefit, which is arguably a fair way of pricing a data
product. In this case, the price wij for each quality criterion qi at each quality
level lj is calculated using a formula of the form wij(P, κ, b), in detail:

wij = P × κi × bij

bi,nq

The alternative is to model prices linear to the actual quality scores required
to reach this level. This will result in increasing prices for the utility levels.
However, looking at it from the discount perspective, this means that the biggest
discount is granted for the sacrifice of the first utility level and then decreases.
The calculation of wij is in this case conducted based on the inverted utility
function wij(P, κ, l) = P × κi × b−1(lj) and the overall utility levels in l:

wij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P × κi × b−1(lVj)

b−1(lVml
)

f. a. qi ∈ V, 1 ≤ j ≤ lVml

P × κi × b−1(lGj)

b−1(lGml
)

f. a. qi ∈ G, 1 ≤ j ≤ lGml

Which of the two is the better alternative cannot be stated per set. There are
some quality scores, such as the amount of data, for which it is sensible to grant
a good discount if less data is to be delivered. In other cases such as accuracy it
might make more sense to scale prices according to the utility levels. That being
said, what model to choose is a business decision that has to be made for each
individual criterion depending on the attributes of the criterion as well as on the
intended fairness of the pricing model. Given the stronger decrease when using
the inverted utility function, the average price across all levels is smaller than
in the linear case, which speaks in favor of the latter model from a customer’s
perspective. After all, it is not important what product is actually delivered as
the cost of creating it is marginal. What is more important is that customers get
a fair discount for their scarifies of quality. This is achieved by either of them.

52 F. Stahl and G. Vossen

3 Fair Knapsack Pricing

The knapsack problem was already studied in 1897 and has been modified in
several ways since. One of them is Multiple-Choice Knapsack Problem (MCKP)
[11] used here. Instead of choosing items from one set of available items, they are
chosen from nq sets, an additional restriction being that from each set exactly
one item has to be chosen. Using the variables from the previous sections, pricing
can be formalized using the MCKP :

maximize

nq∑

i=1

ml∑

j=1

bijaij (4)

subject to

nq∑

i=1

ml∑

j=1

wijaij ≤ W (5)

and

ml∑

j=1

aij = 1, i = 1, . . . , nq (6)

and aij ∈ {0; 1}, i = 1, . . . , nq, j = 1, . . . , ml (7)

Equations 4 and 5 extend the original knapsack problem to multiple sets
to choose from. Equation 6 restricts the choice to one item per set, and Eq. 7
determines that items are indivisible.

In order to create a custom-tailored relational data product, we need to solve
a Multiple-Choice Knapsack Pricing Problem (MCKPP). This is non-trivial since
already the basic knapsack is NP-complete [8]. MCKP is also NP-complete [10],
as it can be reduced from the ordinary knapsack problem [11]. Consequently,
for a very large input, an exact solution cannot be expected within reasonable
time, so that approximations are necessary. Fortunately, MCKP can be solved
in pseudo-polynomial time using, for instance, dynamic programming or several
other algorithms [19]. Most algorithms start by solving the linear MCKP to
obtain an upper bound. For the linear MCKP the restriction aij ∈ {0; 1} has
been relaxed to aij ∈ [0, 1], which means it allows choosing a fraction of an
item [19].

Algorithm 1 presents a greedy algorithm to solve MCKPP. It has been
adapted from the one outlined in [11]. The main difference is that the origi-
nal algorithm contained a preparation step to derive the LP-extremes of each
set, which is not necessary for MCKPP because of the way in which the matrices
are constructed. The algorithm eventually results in a matrix A indicating which
items to choose, a value W − c̄, which represents the total cost of these items,
and a score z, indicating the total utility achieved. Moreover, it calculates the
so-called split item ast, i. e., the item that fits only partially into the knapsack,
where s indicates the criterion an t the level.

Fair Knapsack Pricing for Data Marketplaces 53

Algorithm 1. Greedy Algorithm to Solve MCKPP adapted From [11].
1: # Let i be the index for quality scores and n denote the number of quality scores;

j is the utility level index and m denotes the total number of levels.
2: #Initialize:
3: for i = 1 . . . n do
4: c̄ = W − wi1 � Residual weight
5: z = ui1 � Achieved utility
6: for j = 2; j < m do
7: b̃ij = bij − bi,j−1 � Incremental benefit matrix
8: w̃ij = wij − wi,j−1 � Incremental weight matrix

9: ẽij =
ũij

w̃ij
� Incremental efficiency matrix

10: end for
11: end for
12: #Sort:
13: L := sort(ẽij) � List of ẽij ; maintaining original indices
14: #Solve:
15: for all ẽij in L do
16: if c̄ − w̃ij > 0 then � If space left add to knapsack
17: z += p̃ij

18: c̄ −= w̃ij

19: aij = 1
20: ai,j−1 = 0
21: else � Split item ast has been found
22: ats = c̄

w̃ts

23: at,s−1 = 1 − ats

24: z += p̃st

25: break loop
26: end if
27: end for

At this point, we suppose that the number n of quality scores is strictly larger
than the number m of quality levels, with m ≤ 10. As a consequence, only n is
relevant while initialising the knapsack. Thus, the overall runtime of Algorithm 1,
has a running time of O(n log n) owing to the sorting in Line 13. This form of
a greedy-type algorithm is often used as a starting point for further procedures
such as branch-and-bound [11]. Furthermore, the split solution is generally a
good heuristic solution. However, It should be mentioned that the greedy algo-
rithm can perform arbitrarily bad. This means while it operates quickly, there
is no guarantee the solution produced is (close to) an optimal solution [11]. Yet,
ε-approximation algorithms exist provide certain performance guarantees. [9]
presents a binary search approximation algorithm running in time O(nt log nq),
where nq is the number of quality criteria and nt is the total number of items
over all quality criteria nt =

∑nq

i=1 mli
1. However, the guarantee is ε = 0.8, which

is still a considerably bad result even though the authors argue that the actual

1 mli is used to indicate that depending on whether qi ∈ V or qi ∈ G, ml
G or ml

V has
to be substituted.

54 F. Stahl and G. Vossen

performance may be much better than that. Using dynamic programming, a
fully polynomial time approximation scheme can be developed [11]. [13] presents
an ε-approximation that runs in O(nt log nt + ntnq

ε), the first term being due to
sorting which might be omitted here. [11] presents a similar approach.

Approaches to solve MCKP optimally can be found [4–6,19]. Moreover,
MCKP can commonly be solved quickly in practice [6]. Given that in the
MCKPP the weights correlate with the benefits per definition, this results in
strongly correlated data instances, which are particularly hard for knapsack algo-
rithms, as no dominated items exist [11,19].

Once the appropriate quality levels have been calculated, the data needs to
be modified before being delivered. Largely, modifications to the quality can be
grouped into three categories:

1. The modification of accompanying services applying to q ∈ G, e. g., delivery
conditions and comprehensiveness of support ;

2. The modification of the data itself, e. g., decreasing the completeness;
3. The modification of the view on the data, e. g., a limited timeliness.

We argue that for any of the quality measures used in our framework, an
algorithm can be found that creates a quality decreased relational data prod-
uct according to a proposed discount. For accuracy, this has extensively been
described in [24], here, we consider algorithms to modify the Completeness as
representation of a quality measure that needs modification of the data itself as
well as Timeliness as representation of a quality criterion that needs modifica-
tion of a view. For Customer Support as representation for quality measures in
G, simply the calculated level of service has to be agreed on in a contract.

Obviously, the order in which the quality is decreased is important; for
instance, if null values are inserted first and then the accuracy is reduced, the
accuracy reduction might build on a wrong distribution. Therefore, we suggest to
apply criteria first that reduce the size, then lower the quality of further quality
metrics and reduce completeness last.

The first quality measure to be looked at in more detail is Complete-
ness, which we have defined as the number of non-null value cells divided by
the overall number of cells in Eq. 1. Alternatively and supposing that nv =
|{μ[A], μ ∈ u,A ∈ Xu|μ[A] = ⊥}|, this may be written as:

c(u) = 1 − nv

|u| × |Xu| (8)

Now, in order to reduce the completeness further, null values have to be inserted
at random. In the following u is the universal relation to be sold before any
modification and u∗ afterwards. The same applies to other relevant variables, nv

is the number of null values before and nvtarget after the quality modification, the
suffix indicating a target value. Furthermore, xmax denotes the maximum of the
domain of the utility function and x the utility score at the chosen level. To lower
the completeness the actual value for completeness has to be determined and the
target value for completeness has to be calculated based on the selected quality
level; consequently the target number of null values nvtarget can be calculated:

Fair Knapsack Pricing for Data Marketplaces 55

ct =
x

xmax
× c(u);

x

xmax
× c(u) != 1 − nvtarget

|u| × |Xu| (9)

which results in:

nvtarget =

⌊

|u| × |Xu| ×
(

1 − x

xmax
c(u)

)⌋

(10)

Note that the floor function has to be used in Eq. 10 to ensure nvtarget is an
integer, as no half null values exist. Alternatively, the ceiling function could be
used, this is at the providers discretion but would result in a slightly worse
quality. Based on this target value for null values nvtarget, a sample method to
achieve the modified data set u is described in [21]; it is omitted here for space
reasons. We now suppose that u′ is a modification of u with null values added.

Timeliness, as defined in Eq. 3, does not require an algorithm as it is con-
cerned with delayed delivery. However, it requires some calculus. In order to
further analyse it regarding the quality score, Eq. 2 hast to be plugged in to
result in:

tim(u) =

∑

μ∈u

max
{

0, 1 − DT−μ[LastUpdated∗]
v∗

}

|u| (11)

For better readability μ[LastUpdated∗] will be denoted as LU. Furthermore, the
max function can be omitted supposing that the target score ttarget = x

xmax
is

positive. Additionally |u| will be represented by n. Thus:

tim(u) =

∑

μ∈u

1 − DT−LU
v∗

n
(12)

Plugging in a target value ttarget yields

ttarget
!≥

∑

μ∈u

1 − DT−LU
v∗

n
⇔ ttarget × n × v∗ ≥ n × v∗ −

∑

μ∈u

DT − LU

(13)

Given that only LU is variable:

ttarget × n × v∗ ≥ n × v∗ −
⎛

⎝n × DT −
∑

μ∈u

LU

⎞

⎠ (14)

1
n

×
∑

μ∈u

LU ≤ v∗ × (ttarget − 1) + DT (15)

56 F. Stahl and G. Vossen

Equation 15 shows what the average timeliness depending on the target value
ttarget should be and could also be written as:

AvgLU(t) ≤ v∗ × (ttarget − 1) + DT or LUtarget ≤ v∗ × (ttarget − 1) + DT

The delivery time will always be the current time. Thus, it will be represented by
the variable now, which will be replaced by the current timestamp upon query
time. This allows for further modification to result in

LUtarget ≤ now − v∗ × (1 − ttarget).

Introducing a delay function:

d(v∗, ttarget) := v∗ × (1 − ttarget) results in LUtarget ≤ now − d(v∗, ttarget)

At first sight one might require each data set to have an average timeliness not
greater than LUtarget. However, using the overall average of a data set is slightly
problematic, as this allows the selection of data that is very old together with
very fresh data and then only use the fresh data. To avoid this, the timeliness of
any record is required to be not greater than LUtarget. In this way it is ensured
that records with a timeliness worse than or equal to what has been paid for is
delivered. In practical terms customers do query a view u∗ on u such that:

u∗ = σμ[LastUpdated∗]≤now−d(v,ttarget)(u)

In this model it is important that when records are updated, the origi-
nal record is kept so that customers can still access the older record rather
than receiving an empty result set. This might seem to complicate matters for
providers; from a practical point of view, they will only need to store a number of
versions as no customer will complain about getting fresher data than expected.

Finally, addressing the question of pricing competing data sources based on
quality, MCKPP can be applied to multiple vendors as well. In this case not
the scores of one provider have to be mapped to the quality levels but the best
scores of all providers have to be used to determine the quality levels. This
may results in a scenario where some providers might not be able to deliver all
quality criteria at the highest level. Subsequently a MCKPP has to be solved
for all providers given a customer’s query and preference individually. In doing
so, it can be determined which provider offers the best product for a customer
at the given bid price W .

4 Conclusions and Future Work

In this paper, we have demonstrated a pricing model that allows providers of
relational data products to apply a Name Your Own Price scheme. This enables
them to tap into the willingness-to-pay of customers who would otherwise not
buy their (relational) data product. By adjusting the quality it can be ensured

Fair Knapsack Pricing for Data Marketplaces 57

that a customer gets exactly what they pay for, so that a form of fair pricing
results. In fact, using this model providers do not have to specify a price publicly
at all. They also could use an internal price P and still apply the same pricing
model. While this would require users to bid exactly the price they are willing to
pay it lacks transparency. An alternative would be advertising a price P p > P
publicly. This would result in additional profits from customers paying a price
W for which P ≤ W ≤ P p holds.

With developing a quality-based pricing model, it has been shown that pric-
ing on a data marketplace can be expressed as a MCKP. The components that
influence MCKPP are Quality Criteria, Customer Info comprising the prefer-
ence vector ω and a bid price W , Provider Info comprising a weighting vector
κ and an ask price P , a versioning function b, a weighting function w, and a
Quality Adaptation Algorithm for each Quality Criterion. It is a distinct feature
of this model that all components can be adjusted to match the needs of data
marketplace providers as well as the needs of data providers. An implementa-
tion is an important future work in order to evaluate the algorithm presented
in Sect. 3 in the context of pricing. In this regard, the question of whether the
linear MCKPP might be an alternative for quality criteria in V, as they allow
for unlimited versions to be created, is interesting.

Conducting experiments, some work has to be invested into the question of
how to actually create the required relational data products on the spot as this
might also take a considerable amount of time. For the methods presented in
this paper, it can be said that run time is negligible as every record has to be
processed at most once, yielding O(n), where n denotes the number of requested
tuples. However, other adaptations might be more difficult.

We have excluded the issue of potential cannibalization from our discus-
sion, i. e., that customers who would have bought expensive products switch to
a cheaper version when it becomes available, which is an organizational aspect
subject to future research. Furthermore, it should be evaluated whether this pric-
ing model is indeed perceived as fair. To this end, an alternative pricing scheme
could be experimented with, in which not all prices are calculated automatically
but users are provided with feedback regarding the actual quality levels while
entering their prices and preferences. In this case they would know what qual-
ity level they receive and can experiment with input variables. This might also
increase the perceived fairness. Moreover, truth revelation might be an issue [16].
The question remains if customers can actually cheat the system by not men-
tioning their true preference. At this point, the argument is that if the algorithm
used indeed delivers optimal results, then customers cannot cheat the system as
it delivers a custom-tailored product for exactly the suggested price.

58 F. Stahl and G. Vossen

References

1. Balazinska, M., Howe, B., Koutris, P., Suciu, D., Upadhyaya, P.: A discussion on
pricing relational data. In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, W.-
C., Fourman, M. (eds.) Buneman festschrift 2013. LNCS, vol. 8000, pp. 167–173.
Springer, Heidelberg (2013)

2. Balazinska, M., et al.: Data markets in the cloud: an opportunity for the database
community. PVLDB 4(12), 1482–1485 (2011)

3. Batini, C., et al.: Data Quality: Concepts, Methodologies and Techniques. Data-
Centric Systems and Applications. Springer, Heidelberg (2006)

4. Dudziński, K., et al.: Exact methods for the knapsack problem and its generaliza-
tions. Eur. J. Oper. Res. 28(1), 3–21 (1987)

5. Dyer, M., et al.: A branch and bound algorithm for solving the multiple-choice
knapsack problem. J. Comput. Appl. Math. 11(2), 231–249 (1984)

6. Dyer, M., et al.: A hybrid dynamic programming/branch-and-bound algorithm
for the multiple-choice knapsack problem. J. Comput. Appl. Math. 58(1), 43–54
(1995)

7. Garcia-Molina, H., et al.: Database Systems: The Complete Book. Pearson Edu-
cation Limited, Upper Saddle River (2013)

8. Garey, M.R., et al.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York (1979)

9. Gens, G., et al.: An approximate binary search algorithm for the multiple-choice
knapsack problem. Inf. Process. Lett. 67(5), 261–265 (1998)

10. Ibaraki, T., et al.: The multiple choice knapsack problem. J. Oper. Res. Soc. Jpn.
21, 59–94 (1978)

11. Kellerer, H., et al.: Knapsack Problems. Springer, Berlin (2004)
12. Koutris, P., et al.: Toward practical query pricing with QueryMarket. In: SIGMOD

Conference, pp. 613–624 (2013)
13. Lawler, E.L.: Fast approximation algorithmsfor knapsack problems. In: 18th

Annual Symposium on Foundations of Computer Science, pp. 206–213 (1977)
14. Maier, D., et al.: On the foundations of the universal relation model. ACM TODS

9(2), 283–308 (1984)
15. Muschalle, A., Stahl, F., Löser, A., Vossen, G.: Pricing approaches for data markets.

In: Castellanos, M., Dayal, U., Rundensteiner, E.A. (eds.) BIRTE 2012. LNBIP,
vol. 154, pp. 129–144. Springer, Heidelberg (2013)

16. Narahari, Y., et al.: Dynamic pricing models forelectronic business. Sadhana (Acad.
Proc. Eng. Sci.) 30(2 & 3), 231–256 (2005). Indian Academy of Sciences

17. Naumann, F.: Quality-Driven Query Answering for Integrated Information Sys-
tems. LNCS, vol. 2261. Springer, Heidelberg (2002)

18. Pindyck, R.S., et al.: Mikroökonomie. 8. überarbeitete Auflage. Pearson Deutsch-
land GmbH, München (2013)

19. Pisinger, D.: A minimal algorithm for the multiple-choice knapsack problem. Eur.
J. Oper. Res. 83(2), 394–410 (1995)

20. Shapiro, C., et al.: Information Rules: A Strategic Guide to the Network Economy.
Strategy/Technology/Harvard Business School Press, Boston (1999)

21. Stahl, F.: High-Quality Web Information Provisioning and Quality-Based Data
Pricing. Ph.D. thesis. University of Münster (2015)

22. Stahl, F., Vossen, G.: Data quality scores for pricing on data marketplaces. In:
Nguyen, N.T., Trawinńki, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS,
vol. 9621, pp. 215–224. Springer, Heidelberg (2016)

Fair Knapsack Pricing for Data Marketplaces 59

23. Tang, R., Amarilli, A., Senellart, P., Bressan, S.: Get a sample for a discount. In:
Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part
I. LNCS, vol. 8644, pp. 20–34. Springer, Heidelberg (2014)

24. Tang, R., Shao, D., Bressan, S., Valduriez, P.: What you pay for is what you get.
In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part
II. LNCS, vol. 8056, pp. 395–409. Springer, Heidelberg (2013)

Optimizing Query Performance with Inverted
Cache in Metric Spaces

Matej Antol(B) and Vlastislav Dohnal

Faculty of Informatics, Masaryk University, Botanicka 68a, Brno, Czech Republic
{xantol,dohnal}@fi.muni.cz

https://www.fi.muni.cz

Abstract. Similarity searching has become widely available in many
on-line archives of multimedia content. Querying such systems starts
with either a query object provided by user or a random object provided
by the system, and proceeds in more iterations to improve user’s satis-
faction with query results. This leads to processing many very similar
queries by the system. In this paper, we analyze performance of two rep-
resentatives of metric indexing structures and propose a novel concept
of reordering search queue that optimizes access to data partitions for
repetitive queries. This concept is verified in numerous experiments on
real-life image dataset.

Keywords: Similarity search · Nearest-neighbors query · Metric space ·
Inverted cache · Query optimization

1 Introduction

Multimedia retrieval systems have been becoming more and more applied to
organize data archives of unstructured content, for example, photo stocks. Such
systems provide content-based retrieval of data objects (e.g., images), so a user
may find visually similar images to a given one. If he or she is not satisfied with
the result, clicking on an interesting image in the answer may give better answer.
This is called browsing. In another retrieval scenario, users may not have any
particular search intent, but they rather like to inspect a multimedia collection.
Here, a query-by-example search is not suitable in the first phases, because the
user may not have any query object. So, the user would prefer a categorized view
of data and then to dive into categories via regular query-by-example search to
explore the collection. This is called multimedia exploration [4,15]. Such scenarios
share the property that many queries issued to the system are alike, so search
algorithms may optimize repeated queries to save computational resources.

In common database technology, the query efficiency is typically supported
by various indexing structures, storage layouts and disk caching/buffering tech-
niques. So the number of disk I/Os needed to answer a query is greatly reduced.
In modern retrieval systems, analogous approaches are used too. However,
to handle more complex and unstructured data, they are extended to high-
dimensional spaces or even distance spaces where no implicit coordinate system
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 60–73, 2016.
DOI: 10.1007/978-3-319-44039-2 5

Optimizing Query Performance 61

is defined [19]. The problem of dimensionality curse then often appears [6]. In
particular, it states that indexing structures stop exhibiting logarithmic com-
plexity in query evaluation but rather become linear [7,8]. This is typically
attributed to the fact that many data partitions must be visited by an indexing
mechanism due to high overlaps among them. Efficiency is then improved by
further filtering conditions and optimized node-splitting strategies in the index-
ing structures [9,22] or by sacrificing precision in query results (approximate
querying) [1,12,13].

In this paper, we study the issue of evaluating repeated queries and propose a
solution that prioritize data partitions during query evaluation to deliver query
results earlier. Instead of caching answers to particular queries, our proposal
stores usefulness of data partitions and localizes such information to increase
effectiveness of accessing data partitions during evaluation of new queries. More-
over, this concept is generally applicable to any metric indexing structure [24].

The paper is structured as follows. In the next section, we summarize related
work. The necessary background of similarity searching and indexing is given in
Sect. 3. Analysis of performance of current indexes that motivates our work is
presented in Sect. 4. The proposal of so-called Inverted Cache Index is described
in Sect. 5 and its evaluation is in Sect. 6. Contributions of this paper and possible
future extensions are summarized in Sect. 7.

2 Related Work

There are many approaches [8,24] for indexing metric spaces that were developed
as generally applicable to a large variety of domains. To process large datasets,
they are designed as disk oriented. The data partitioning principles are typi-
cally based on (i) hierarchical clustering (e.g. M-tree [9]), where each subtree
is covered by a preselect data object (pivot) and a covering radius; (ii) voronoi
partitioning (e.g. M-index [17]), where subtrees are formed by assigning objects
to the closest pivot; and (iii) precomputed distances (e.g. LAESA [23]), where no
explicit structure is built, but rather distances among data objects are stored.

Optimizations of query-evaluation algorithms are based on extending a hier-
archical structure with additional precomputed distance to strengthen filtering
capabilites, e.g. M∗-tree [21], cutting local pivots [18]; or on exploiting large
number of pivots in a very compact and reusable way, e.g. permutation prefix
index [11]. These techniques, however, does not analyze the stored data and
accesses to them, but rather constrain data partitions as much as possible.

Another way to make query evaluation much faster is to trade accuracy –
approximate searching. There are many approaches that apply early-termination
and relaxed-branching strategies to stop searching when query result does
improve marginally. A recent approach called spatial approximation sample hier-
archy [13] builds an approximated near-neighbor graph and does not exploit tri-
angle inequality to filter out irrelevant data partitions. This was further improved
and combined with cover trees to design Rank Cover Tree [12].

Distance Cache [20] is a main-memory structure that maintains dynamic
information to determine tight lower- and upper-bounds of distances between

62 M. Antol and V. Dohnal

data objects. This information is collected based on previous querying and is
applied to newly posed queries. So it is applicable to any metric indexing struc-
ture, which is the resemblance with the approach proposed in this paper. Dis-
tance Cache may independently provide further filtering power to our proposal.
We expect it would mainly contribute to M-tree’s performance rather than to
M-index’es, so our results on M-tree with Distance Cache would approach the
ones on M-index.

A cache-like structure for similarity queries, called Snake Table, was proposed
in [2]. It is a dynamically-built structure for optimizing all queries corresponding
to one user session. It remembers results of all queries processed so far and
constructs a linear AESA over them. It accelerates future queries. This approach
behaves clearly as a traditional cache.

3 Background

We assume unstructured data are modeled in metric space and organized in
appropriate indexing techniques here. Before presenting experience with metric
structures that motivated our work, we summarize the necessary background.

3.1 Metric Space and Similarity Queries

The metric space M is defined as a pair (D, d) of a domain D representing data
objects and a pair-wise distance function d : D × D �→ R that satisfies:

∀x, y ∈ D, d(x, y) ≥ 0 non-negavity,
∀x, y ∈ D, d(x, y) = d(y, x) symmetry,
∀x, y ∈ D, x = y ⇔ d(x, y) = 0 identity,
∀x, y, z ∈ D, d(x, z) ≤ d(x, y) + d(y, z) triangle inequality.

The distance function is used to measure similarity between two objects. The
shorter the distance is, the more similar the objects are. Consequently, a sim-
ilarity query can be defined. There are many query types [10] but the range
query and k-nearest neighbor query are most important ones. The range query
R(q, r) specifies all database objects within the distance of r from q. In partic-
ular, R(q, r) = {o|o ∈ X, d(q, o) ≤ r}, where X ⊂ D is the database to search
in. In this paper, we primarily focus on k-nearest neighbors query since it is
more convenient for users. The user wants to retrieve k most similar objects to
a query: kNN(q) = A, |A| = k ∧ ∀o ∈ A, p ∈ X − A, d(q, o) ≤ d(q, p).

3.2 Indexing and Query Evaluation

To organize a database to answer similarity queries efficiently, many index-
ing structures have been proposed [24]. Their principles are twofold: (i) recur-
sively applied data partitioning/clustering defined by a preselected data object
called pivot and a distance threshold, and (ii) in effective object filtering using
lower-bounds on distance between a database object and a query object. These
principles are firstly surveyed in [8].

Optimizing Query Performance 63

Fig. 1. Partitioning principles of M-tree (left) and M-index (right)

In this paper, we use a traditional index M-tree [9] and a more recent tech-
nique M-index [17]. Both these structures create an internal hierarchy of nodes
partitioning data space into many buckets – an elementary object storage. Please
refer to Fig. 1 for principles of their organization. M-tree organizes data objects
in compact clusters created in the bottom-up fashion, where each cluster is rep-
resented by a pair (p, rc) – a pivot and a covering radius, i.e. distance from the
pivot to the farthest object in the cluster. On the other hand, M-index applies
Voronoi-like partitioning using a predefined set of pivots in the top-down way.
In this case, clusters are formed by objects that have the cluster’s pivot as the
closest one. On next levels, the objects are reclustered using the other pivots,
i.e. eliminating the pivot that formed the current cluster. Buckets of both the
structures store objects in leaf nodes, as is exampled in the illustration. So we
use leaf node and bucket interchangeably.

An algorithm to evaluate a kNN query constructs a priority queue of nodes
to access. The priority is defined in terms of a lower bound on distance between
the node and the query object. So a probability of node to contain relevant data
objects is estimated this way. In detail, the algorithm starts with initializing
the queue with the root node of hierarchy. Then it repeatedly pulls the head of
priority queue until the queue is empty. The algorithm terminates immediately,
if the head’s lower bound is greater than the distance of current kth neighbor
to the query object. If the pulled element represents a leaf node, its bucket is
accessed and all data objects stored in there are checked against the query, so
query’s answer is updated. If it is a non-leaf node, all its children are inserted
into the queue with correct lower bounds estimated. M-tree defines the lower
bound for a node (p, rc) and a query object q as the distance d(q, p) − rc. For
space constraints, we do not include additional M-tree’s node filtering principles
as well as the M-index’s approach that is elaborate too.

4 Index Structure Effectiveness

Interactivity of similarity queries is the main driving force to make content-
based information retrieval widely used [14]. In the era of Big Data, near real-
time execution of similarity queries over massive data collections is even more

64 M. Antol and V. Dohnal

Fig. 2. Distribution of top-1000 unique
queries ordered by their appearances

Fig. 3. Density of distances among
top-1000 query objects

important, because it allows various analytics to be implemented [5]. In this
section, we present motivating arguments based on experience with a real-life
content-based retrieval system.

4.1 Query Statistics

From Google Analytics, we have obtained statistics about queries processed in
a demonstration application [16]. This application implements content-based
retrieval on the CoPhIR data-set [3] consisting of 100 million images. The appli-
cation’s web interface1 shows similar images to a query image chosen randomly
from 100 preselected images. Then the user may browse the collection by clicking
“Visually similar”, or obtain a new query by a regular keyword search. Thus this
application fits our motivating browsing and exploring scenarios perfectly.

Figure 2 shows absolute frequencies of individual top-1000 queries that were
executed during the application’s life time (launched in Nov. 2008). This power-
law like distribution is attributed to the way of presenting an initial search to
a new website visitor. Figure 3 depicts density of distances among these queries,
so the reader may observe there are very similar query objects as well as distinct
ones. This proves that the users were also browsing the data collection.

4.2 Indexing Structure Performance

The main drawbacks of indexing structures in metric spaces are a high amount of
overlaps of their substructures, and not very precise estimation of lower bounds
on distances between data objects and a query object. So the kNN-query eval-
uation algorithm often accesses large portion of indexing structure’s buckets to
obtain precise answer to a query. In Fig. 4, we present the progress of recall while
constraining the number of accessed buckets.

The selected indexing structure representatives were populated with 1 mil-
lion data objects from the CoPhIR dataset and 30NN queries for the top-1000
query objects were evaluated. The figures present average values of recall of such

1 http://mufin.fi.muni.cz/imgsearch/similar.

http://mufin.fi.muni.cz/imgsearch/similar

Optimizing Query Performance 65

(a) M-tree 200 (b) M-tree 2000

(c) M-index 200 (d) M-index 2000

Fig. 4. Recall of 30NN for increasing number of accessed buckets of M-tree and M-index
and different bucket capacities (200 and 2,000)

queries. We have tested two configurations for both M-tree and M-index. The
capacity of buckets was constrained to 200 and 2,000 objects to have bushier
and more compact structures. Table 1 summarizes information about them. To
this end, M-index’s building algorithm was initialized with 128 pivots picked at
random from the dataset and the maximum depth of M-index’s internal hier-
archy was limited to 8. From the statistics, we can see that M-tree can adapt
to data distribution better than M-index and does not create very low occupied
buckets, so M-tree is more compact data structure.

From the query evaluation point of view, which is the main point of interest
of this paper, both the structures need to access large amounts of buckets to

Table 1. Structure details of tested indexing techniques.

Indexing Bucket Buckets Avg. bucket Hierarchy Internal node

structure capacity in total occupation height capacity

M-tree 200 200 11,571 43% 4 50

M-tree 2000 2,000 1,124 44% 3 100

M-index 200 200 62,049 8% 8 not defined

M-index 2000 2,000 10,943 4.6 % 8 not defined

66 M. Antol and V. Dohnal

obtain 100 % recall. M-tree needs to check objects in 8,100 (70 %) and 1,000
(89 %) buckets for 200 and 2,000 bucket capacities, respectively. M-index visits
30,000 (47 %) and 6,500 (58 %) buckets for 200 and 2,000 bucket capacities,
respectively. To complete 95 % recall, the requirements are lower – 40 % and
53 % for M-tree versus 12 % and 13 % for M-index. From these results, we can
conclude that both the structures are not very effective in accessing buckets with
relevant data early. M-index’s principle of partitioning, however, is much more
effective in early stages of searching because it can get 50 % of correct objects
within 1 percent of accessed buckets. M-tree locates only about 15 % of correct
objects within the same ratio. In M-tree with 2,000 bucket size, the average
number of leaf nodes containing 30 nearest neighbors is 17.

5 Inverted Cache Index

In this section, we propose a technique for prioritizing nodes in indexing hierar-
chies to locate relevant data objects earlier. This technique is based on exploiting
knowledge of accessing data partitions during query evaluation. So, a query eval-
uation algorithm can adaptively re-order its priority queue with respect to use-
fulness of the current node, i.e. the node’s chance to contribute to query result.
We call this technique Inverted Cache Index (ICI), since it does not record the
queries processed so far, but rather the number of times a given partition/bucket
(or data object) contributed to the final result of such queries.

Each object and node in an indexing structure has a memory of its historical
accesses. This memory is used for storing ICI value. After completing evaluation
of a query, its final answer is checked and ICI value is increased for each object
as well as for the object’s leaf node and all its ancestors. ICI values are later
used to update estimated lower bounds in the priority queue in the algorithm.
In fact, mutual distances between data objects and queries are updated based
on popularity. This procedure is captured in pseudo-code in Algorithm 1.

In the following, we propose two different procedures to apply ICI to the
estimates of distances between a node and a query. General principle of such
procedures is to create local attractive force to make accessed data parts closer
to the query or repulsive force for unaccessed or distant data. In addition, we
evaluate two ways of incrementing ICI in the experiments.

5.1 Näıve ICI

To modify priorities of individual nodes in algorithm’s priority queue, we propose
a näıve solution that mitigates influence of highly accesses data, but still respects
the original distance:

logICI = logbase(ICI + base), (1)

dICI =
dorig
logICI

. (2)

Optimizing Query Performance 67

Algorithm 1. Algorithm for kNN query evaluation incorporating ICI.
Input: a query Q = k-NN(q), an indexing structure hierarchy root
Output: List of objects satisfying the query Q.res

Q.res ← ∅ {init query result}
PQ ← {(root, 0)} {init priority queue with root and zero as the lower bound}
while PQ is not empty do

e ← PQ.poll {get the first element from the priority queue}
if Q.res[k].distance > e.lowerBound then

break {terminate if e cannot contain objects closer than kth neighbor}
end if
for all a ∈ e.getChildren() {check all child nodes} do

if a.isLeaf() then
update Q.res with a.objects

else
n.lowerBound ← get estimate of lower-bound on distance between a and Q
{e.g. M-tree’s original alg. uses (d(Q.q, a.pivot) − a.radius) here}
n.distICI ← apply dICI on original distance between node’s pivot and Q.q
insert n into PQ

end if
end for
sort PQ by distICI of each PQ’s element

end while
for all o ∈ Q.res {increment ICI of object, its leaf node and all parents } do

call incrICI on o {an integer stored at the object}
call incrICI on o.getLeaf() and its parents {an integer stored at the node}

end for
return Q.res

To make the values of logarithm always positive, we add the value of base to ICI
(which is zero for unaccessed data). It is also the only parameter of this method.
Finally, the value of dICI is then used to sort the priority queue.

However, this procedure does not create the necessary attractive/repulsive
forces with respect to distance. In particular, the shrinking factor applied on
distance is constant for constant ICI. An example is given in Fig. 5.

5.2 Extended ICI

This procedure is inspired by the gravitation law and general dynamics of forces
between physical objects. In this scenario, the value of ICI can be understood
as a mass of an object/node, which determines an attraction force that pulls it
to a query. The strength of it is straightforwardly updated with the power of
distance. In näıve ICI, this force is constant regardless the distance to query.
Extended ICI is defined as follows:

powerICI =
logICI

(dorig

dmax
)pwr + 1

, (3)

68 M. Antol and V. Dohnal

Fig. 5. Comparison of näıve and
extended ICI = 20 for increasing origi-
nal distance

Fig. 6. Progress of recall for different
strategies to order priority queue

dICI =
dorig

powerICI
, (4)

where logICI is defined in Eq. 1 and dmax stands for the maximum distance in
metric space (for CoPhIR dataset, it is 10).

This procedure introduces a new parameter pwr, which is subject to exper-
imenting, but it brings necessary flexibility when different indexing structure is
used. The behavior of Extended ICI is exampled in Fig. 5.

6 Experiments

We report on an extensive comparison of the proposed ICI techniques with a
standard algorithm for precise kNN queries, i.e. no approximation was used.

The dataset used in experiments is a 1-million-object subset of CoPhIR
dataset, where each object is formed by five MPEG-7 global descriptors (282
dimensional vector) and the distance function is a weighted sum of L1 and L2

metrics, for short. Please refer to [3] for complete description.
Since we focus on repeated queries, we used queries issued in the on-line image

retrieval demo (see Sect. 4.1) during the year of 2009 and queries executed during
January, 2010. The first set (Qy2009) contains 993 query objects and is used as
the learning set to adapt ICI values. The second set (Qm1y2010) is the testing
set to analyze the performance of metric indexing structures. In this set, there
are 1000 query objects, where about 10 % queries appear in the learning set and
the remaining 90 % queries are unique. All tests were performed for different
settings and structures to evaluate precise 30NN queries:

– M-tree with capacities of leaf/non-leaf nodes set to 200/50, 400/100 and
2,000/100 objects;

– M-index built over 128 pivots and maximum tree depth of 8, node capacities
set to 200 and 2,000 objects;

– näıve and extended ICI with different bases (5, 10) in logICI and exponents
(2, 5, 10) in pwrICI .

Further statistics about the structures are given in Sect. 4.2.

Optimizing Query Performance 69

6.1 Different Query Ordering Strategies

The first group of experiments focuses on determining the best setting of dICI

distance measure. We used M-tree with leaf node capacity fixed to 200 only and
the other parameters fixed to log base 10 and to power of 2. We studied the
progress of recall at particular number of accessed nodes (buckets). The results
are depicted in Fig. 6, where the following approaches where compared:

original – M-tree’s algorithm for precise kNN evaluation (search queue ordered
by lower-bound distance = (d(q, pivot) − rcovering);

lb – näıve ICI for dorig = d(q, pivot) − rcovering;
qd – näıve ICI for dorig = d(q, pivot);
qdg – extended ICI for dorig = d(q, pivot), ICI updated for unique queries only;
qdg-freq – same as “qdg”, but incrementing ICI for all queries (including

repeated queries).

The results show that the concept of ICI is valid as the query recall rises
faster. However, the original lower bound on distance must be replaced with
the real distance between the query object and a pivot (node’s representative).
The best results are exhibited by the extended ICI strategy with values of ICI
incremented for every query executed, i.e. including repeated queries. We will
examine this strategy thoroughly in the following sections.

6.2 Influence of Indexing Structure Bushiness

We focus on different leaf-node capacities of M-tree here. In particular, all three
configurations (200, 400, and 2,000) are compared in Fig. 7. Results clearly show
that the extended ICI with query frequency (blue curves in the figure) can out-
perform the original queue ordering regardless the number of leaf nodes. In addi-
tion, we have compared to variants of incrementing ICI values (lines incrICI in
Algorithm 1):

qc ICI value incremented by one in each node on the path from bucket to root;
incrICI(x):={x.ICI++}

or each node’s ICI value is increased by the normalized number of objects in the
final query answer that were found in the node’s subtree; the normalization
is done by the cardinality of query answer, which is 30 in our scenario.
incrICI(x):={x.ICI+=|subset(Q.res stored under x)| / |Q.res|}

The variant qc apparently leads to very high values of ICI in nodes closer to
the root node, which misleadingly attracts irrelevant nodes too near the query
object. It has shown as ineffective in overall progress of recall. The variant or
has a good property of having the sum of ICI values over all nodes on the same
level equal to the number of processed queries, so we use it in all experiments if
not stated otherwise.

70 M. Antol and V. Dohnal

(a) M-tree 200 (b) M-tree 400

(c) M-tree 2,000

Fig. 7. Progress of recall for different M-tree configurations (qdg-freq) (Color figure
online)

(a) M-tree 200 (b) M-tree 2,000

(c) M-index 200 (d) M-index 2,000

Fig. 8. Progress of recall while varying parameters of extended ICI (qdg-freq)

Optimizing Query Performance 71

6.3 Varying Parameters of Extended ICI

The last group of experiments examines the parameter of extended ICI, namely
the base of logarithm and the exponent of power. In Fig. 8, the progress of recall
is presented for both M-tree and M-index with leaf node capacities 200 and
2,000 objects. From the large number of combinations of log base and exponent,
we selected 5/5, 10/2, 10/5 and 10/10 only, because such settings were able to
exceed the performance of original kNN algorithm. As for M-tree, the results
quite clearly support the configurations 5/5 and 10/2 for 200 and 2,000 bucket
capacities, respectively. The results for M-index look very similar to the original
kNN algorithm in the figure. But we can still see higher efficiency for higher
values of recall. In particular, starting from 80 % recall, the extended ICI queue
ordering can access promising buckets earlier. Here, the best configuration is
10/5.

Table 2 presents details on the number of accessed buckets needed to obtain
50 % and 95 % recall of 30NN queries. It can be seen that the best results are
dependent on the indexing structure setup (bucket capacity), which is mainly
evident from the data concerning M-tree. High performance of original M-index’s
algorithm in early stages of query processing causes performance declination for
50 % recall. However, the improvement is eminent while considering higher values
of recall, which calls for applying our method to approximate kNN evaluation.
From the data, we can generally state that better results are obtained for M-
index than for M-tree. It is also noticeable that greater bucket sizes increases
the improvement achieved by ICI.

To sum up all the experiments, the concept of reordering priority queue with
respect to previous usefulness of data partitions proved as valid. Since disk-
oriented indexing structures prefer larger bucket capacities, the extended ICI
with log base of 10 and exponent in power of 5 is a good and universal choice.

Table 2. Improvement in query costs for 50 % and 95% recall.

Setup information 50% query completion 95% query completion

Indexing Best setup Original Nodes Total Original Nodes Total

structure (log-pwr) nodes needed improvement nodes needed improvement

needed needed

M-tree 200 5-5 1600 1000 37,5% 4600 4200 8,7%

M-tree 2000 10-2 210 160 23.8% 590 470 20,5%

M-index 200 10-5 600 800 −33% 8000 6000 25%

M-index 2000 10-5 100 130 −30% 1500 950 37%

7 Conclusion and Future Work

We have presented a new approach to query answering optimization in metric
spaces called Inverted Cache Index (ICI). Previous accesses to data partitions

72 M. Antol and V. Dohnal

are recorded and their participation on query answering is later used to give
search preference to such partitions. However, it is not blindly applied, but rather
the distance values in metric space are reflected to create proper attractive or
repulsive forces correspondingly.

Application of ICI presents multidimensional complexity as it is needed to
analyze behavior on different datasets, different indexing structures, and differ-
ent parameters of extended ICI formula. We have shown that more than 35 %
improvement is achieved to obtain 95 % recall for a state-of-the-art indexing
structure – M-index. We consider this to be the greatest contribution here.

Since the whole concept is applicable to any hierarchical organization, we plan
to investigate it further. Additionally, ICI’s optimization of approximate query
evaluation is straightforward and we will investigate it in the future. Another
issue to study is to vary the amount of historical bucket-access recordings to take
into consideration. Its implementation is easy, but new findings may be obtained.
The ultimate goal would be a definition of procedure that could automatically
swap search queue ordering between ICI and the original priority depending on
current data distribution.

Acknowledgements. This work was supported by Czech Science Foundation project
GA16-18889S.

References

1. Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region proximity in metric spaces
and its use for approximate similarity search. ACM Trans. Inf. Syst. (TOIS) 21(2),
192–227 (2003)

2. Barrios, J.M., Bustos, B., Skopal, T.: Analyzing and dynamically indexing the
query set. Inf. Syst. 45, 37–47 (2014)

3. Batko, M., Falchi, F., Lucchese, C., Novak, D., Perego, R., Rabitti, F.,
Sedmidubsky, J., Zezula, P.: Building a web-scale image similarity search system.
Multimedia Tools Appl. 47(3), 599–629 (2009)

4. Beecks, C., Uysal, M.S., Driessen, P., Seidl, T.: Content-based exploration of multi-
media databases. In: Proceedings of the 11th International Workshop on Content-
Based Multimedia Indexing (CBMI), pp. 59–64. IEEE, June 2013

5. Beecks, C., Skopal, T., Schöffmann, K., Seidl, T.: Towards large-scale multimedia
exploration. In: Proceedings of the 5th International Workshop on Ranking in
Databases (DBRank), Seattle, WA, USA, pp. 31–33. VLDB Endowment (2011)

6. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: index
structures for improving the performance of multimedia databases. ACM Comput.
Surv. 33(3), 322–373 (2001)

7. Chávez, E., Marroqúın, J.L., Navarro, G.: Overcoming the curse of dimensionality.
In: Proceedings of the European Workshop on Content-Based Multimedia Indexing
(CBMI), Toulouse, France, 25–27 October 1999, pp. 57–64 (1999)

8. Chávez, E., Navarro, G., Baeza-Yates, R.A., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. (CSUR) 33(3), 273–321 (2001)

Optimizing Query Performance 73

9. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity
search in metric spaces. In: Jarke, M., Carey, M.J., Dittrich, K.R., Lochovsky,
F.H., Loucopoulos, P., Jeusfeld, M.A. (eds.) Proceedings of the 23rd International
Conference on Very Large Data Bases (VLDB), Athens, Greece, 25–29 August
1997, pp. 426–435. Morgan Kaufmann (1997)

10. Deepak, P., Prasad, M.D.: Operators for Similarity Search: Semantics, Techniques
and Usage Scenarios. Springer, Heidelberg (2015)

11. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-
larity search. Inf. Process. Manage. 48(5), 889–902 (2012)

12. Houle, M.E., Nett, M.: Rank-based similarity search: reducing the dimensional
dependence. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 136–150 (2015)

13. Houle, M.E., Sakuma, J.: Fast approximate similarity search in extremely high-
dimensional data sets. In: Proceedings of the 21st International Conference on
Data Engineering (ICDE), pp. 619–630, April 2005

14. Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia informa-
tion retrieval: state of the art and challenges. ACM Trans. Multimedia Comput.
Commun. Appl. 2(1), 1–19 (2006)

15. Moško, J., Lokoč, J., Grošup, T., Čech, P., Skopal, T., Lánský, J.: MLES: multi-
layer exploration structure for multimedia exploration. In: Morzy, T., Valduriez,
P., Bellatreche, L. (eds.) New Trends in Databases and Information Systems. Com-
munications in Computer and Information Science, vol. 539, pp. 135–144. Springer,
Switzerland (2015)

16. Novak, D., Batko, M., Zezula, P.: Generic similarity search engine demonstrated by
an image retrieval application. In: Proceedings of the 32nd International ACM Con-
ference on Research and Development in Information Retrieval (SIGIR), Boston,
MA, USA, p. 840. ACM (2009)

17. Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36, 721–733 (2011)

18. Oliveira, P.H., Traina Jr., C., Kaster, D.S.: Improving the pruning ability of
dynamic metric access methods with local additional pivots and anticipation of
information. In: Morzy, T., Valduriez, P., Ladjel, B. (eds.) ADBIS 2015. LNCS,
vol. 9282, pp. 18–31. Springer, Heidelberg (2015)

19. Samet, H.: Foundations of Multidimensional And Metric Data Structures. The
Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann,
San Francisco (2006)

20. Skopal, T., Lokoc, J., Bustos, B.: D-cache: universal distance cache for metric
access methods. IEEE Trans. Knowl. Data Eng. 24(5), 868–881 (2012)

21. Skopal, T., Hoksza, D.: Improving the performance of M-Tree family by nearest-
neighbor graphs. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007.
LNCS, vol. 4690, pp. 172–188. Springer, Heidelberg (2007)

22. Skopal, T., Pokorný, J., Snášel, V.: Nearest neighbours search using the PM-
Tree. In: Zhou, L., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453,
pp. 803–815. Springer, Heidelberg (2005)

23. Vilar, J.M.: Reducing the overhead of the AESA metric-space nearest neighbour
searching algorithm. Inf. Process. Lett. 56(5), 265–271 (1995)

24. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer, New York (2005)

Towards Automatic Argument Extraction
and Visualization in a Deliberative Model of Online

Consultations for Local Governments

Robert Bembenik(✉) and Piotr Andruszkiewicz

Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19,
00-665 Warsaw, Poland

{R.Bembenik,P.Andruszkiewicz}@ii.pw.edu.pl

Abstract. Automatic extraction and visualization of arguments used in a long
online discussion, especially if the discussion involves a large number of
participants and spreads over several days, can be helpful to the people
involved. The main benefit is that they do not have to read all entries to get
to know the main topics being discussed and can refer to existing arguments
instead of introducing them anew. Such discussions take place, i.e., on a
deliberative platform being developed under the ‘In Dialogue’ project. In this
paper we propose a framework allowing for automatic extraction of argu‐
ments from deliberations and visualization. The framework assumes extrac‐
tion of arguments and argument proposals, sentiment analysis to predict
whether argument is negative or positive, classification to decide how the
arguments are related and the use of ontology for visualization.

Keywords: Automatic argumentation extraction · Argumentation visualization ·
Argument mining · Natural language processing

1 Introduction

Deliberative model of online consultations for local governments is being prepared
within the frames of the project ‘In Dialogue’1. The goal of the project is to develop an
internet platform supporting public consultations, whose participants are city halls and
citizens. The internet platform is envisioned as a multifunctional tool allowing for online
debates of different types: synchronous textual debates, asynchronous textual debates,
and synchronous voice debates. An argument mapping tool is supposed to support
textual debates mainly by ordering the arguments presented throughout the discussion
as well as providing the visualization of the arguments and relations between them. Not
only does such a tool help citizens but also it serves moderators during discussion and
summary report creation.

It is easy to lose track of the main course of the discussion, especially when the
discussion is longer with many people engaged. At the end of the discussion it is not

1 http://www.wdialogu.uw.edu.pl/en/.

© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 74–86, 2016.
DOI: 10.1007/978-3-319-44039-2_6

http://www.wdialogu.uw.edu.pl/en/

always clear what arguments led to the conclusion, if such was reached. If the results of
the debate are important, and this is the case in the ‘In Dialogue’ project, we would like
to be able to backtrack to the arguments presented during the deliberation. Finding the
arguments requires reading the whole script (potentially several times), which is a time
consuming and daunting task. Isolating arguments and presenting them visually simpli‐
fies the analysis of arguments appearing in the discussion.

In this paper we propose a framework for automatic argument extraction and visu‐
alization for the purpose of the ‘In Dialogue’ project. The framework utilizes methods
from the fields of artificial intelligence, natural language processing and data mining.

The rest of the paper is organized as follows. Section 2 presents related work
concerning argument visualization and argument extraction methods. Section 3 intro‐
duces a framework for automatic argument extraction and visualization. Section 4
concludes the paper.

2 Related Work

This section summarizes approaches reported in the literature concerning methods of
extracting and visualizing arguments.

2.1 Argument Visualization

In [23] argument visualization is characterized as being related to debating among many
individuals or parties and constituting a presentation of reasoning in which the evidential
relationships among claims are made wholly explicit using graphical or other non-verbal
techniques. What is more, the structure should allow for reasoning involving proposi‐
tions standing in logical or evidential relationships with each other, and thus forming
evidential structures.

There exist different argument visualization methods. Most assume the use of boxes
and arrows, though their usage differs between systems that implement them. Boxes
usually contain full, grammatical, declarative sentences being [1]: reasons (pieces of
evidence in support of some claim), claims (ideas which somebody says are true),
contentions (claims supported by reasons) or objections (pieces of evidence against
contentions). The correct way to map the argument is to display the reasoning, i.e., boxes
contain claims, not whole arguments. The boxes are linked with lines/arrows repre‐
senting relations allowing for reasoning. Other forms of argument visualization are
argument matrices and argument threads. In argument matrices rows and columns
represent argument components and cells represent relations between the components.
Argument threads allow to capture debate results in a compact form and thus help
understand what has been discussed with no need to duplicate existing arguments [13].

Many software systems have been built to date to support argumentation and argu‐
ment visualization. One of the possible categorizations of these tools is division
according to the number of users into [16]: single user argumentation systems (aimed
at individuals to structure their thoughts, e.g., Carneades), small group argumentation
systems (useful for developing argumentation skills, learning skills of persuasion,

Towards Automatic Argument Extraction and Visualization 75

e.g., Belvedere), and community argumentation systems (supporting large groups of
participants and contributions; visualization uses discussion/argument threads aside
from graphs, e.g. DebateGraph, Collaboratorium). We will briefly outline argument
visualization methods in the most representative systems for each group.

Visualization in Carneades [5] is based on the Carneades Argumentation Framework
(CAF) [10, 11]. CAF is built upon a formal, mathematical model of argument evaluation
applying proof standards to determine the defensibility of arguments and the accepta‐
bility of statements on an issue-by-issue basis.

An argument graph constructed in Carneades plays a role comparable to a set of
formulas in logic. There are two kinds of nodes in the graph: statement nodes and argu‐
ment nodes. The edges of the graph link up the premises and conclusions of the argu‐
ments. Each statement is represented by at most one node in the graph. An example of
an argument graph representing arguments from the law domain is given in Fig. 1.

Fig. 1. Arguments and argument graph in Carneades [10]

Pro arguments are indicated using ordinary arrowheads, con arguments with open-
dot arrowheads. Ordinary premises are represented as edges with no arrowheads,
presumptions with closed-dot arrowheads and exceptions with open-dot arrowheads.
The direction of the edge is always from the premise to the argument. A statement may
be used in multiple arguments and as a different type of premise in each argument. Cycles
are not allowed.

Belvedere is a multiuser, graph-based diagramming tool for scientific argumentation.
It is used for argument representation and visualization [16]. The tool uses ontologies
and provides feedback. Users of Belvedere are required to categorize their statements
as data, hypothesis or unspecified. The statements are then linked using relations of type:
for, against, or unspecified. The system uses a simplified ontology containing two
distinctions: empirical vs. theoretical, consistency vs. inconsistency [20]. The system
visualizes the argumentation in the form of a graph and a matrix. A sample argument
visualization in the form of a graph and a matrix is given in Fig. 2(a) and (b), accordingly.

76 R. Bembenik and P. Andruszkiewicz

a) b)

Fig. 2. Argument visualization in Belvedere in the form of: (a) a graph, (b) a matrix.

The matrix representation organizes hypotheses (or solutions) along one axis, and
empirical evidence (or criteria) along another, with matches between the two being
expressed symbolically in the cells of the matrix.

Deliberatorium [13] is a tool that helps structure large-scale argumentation (such as
wikis, blogs and discussion forums), which is useful in situations where many people
express their views on a problem at hand to find the best solution. The system authors
argue that commonly used technologies have serious shortcomings in deliberative envi‐
ronment: lack of systematicness and repetitiveness, which make it hard for users to locate
useful information. Forum latecomers cannot see all important arguments in the discus‐
sion and have a good understanding of the whole discussion possibly having many
digressions and off-topics unless they read it from the beginning, which is very rarely
practiced.

To mitigate shortcomings of the existing methods the Collaboratorium system makes
the deliberation evident by grouping and structuring the argumentation. Users of the
system belong to one of the three groups: moderators, authors and readers/voters.
Moderators are in charge of filtering out noise and rejecting off-topic posts, as well as
making sure the argument map is well structured, i.e., all posts are properly divided into
individual and non-redundant issues, ideas and arguments, and are located in the relevant
branch of the argument map.

The system functions in the following manner. Authors post issues, ideas and
pro/con arguments. Issues and ideas are posted only as single, short sentences. Argu‐
ments are posted using an online form consisting of a scheme containing conclusion and
grounds. All users of the system can rate arguments and ideas. New posts are given a
status of “pending” and only moderators can accept them which results in publication.
The point of such a procedure is to limit bad or provocative posts triggering low-value
discussion threads. A sample resultant argument map is presented in Fig. 3.

The tools commonly used in argumentation visualization require training, lots of
time and effort to produce the final visualization. As [2] points out: “a trained analyst
can take weeks to analyze one hour of debate” in order to make its visualization. That
is the reason we do not plan to make detailed visualizations of complete debates. Our
intention is to extract the main topics in the discussion and the main arguments pro and
contra. The idea is rather to help many participants (potentially hundreds of people) of
a long debate become familiar with the main topics in the discussion than to draw a
detailed visualization of the complete debate.

Towards Automatic Argument Extraction and Visualization 77

2.2 Approaches to Automatic Extraction of Argumentation Components

The approaches to argumentation visualization/mapping presented in the previous
section are manual: one has to feed the visualizing component with manually extracted
elements, such as: statement, premise and argument (in the case of the Carneades
system), data, hypothesis or unspecified (in the case of the Belvedere system), or issue,
idea, argument (in the case of the Deliberatorium system). It would be desirable to
automate the process of extracting argumentation components necessary to realize the
visualization. One way to achieve this is by using argumentation mining.

Argumentation mining is a relatively new challenge in discourse analysis [3, 12]. It
can be defined as such discourse analysis that involves automatic identification of argu‐
mentation within a document, i.e., the premises, conclusion, and type of each argument,
as well as relationships between pairs of arguments in the document [12]. In the literature
one can find approaches to argumentation mining, that are promising, i.e. they achieve
a good level of success, but still there is a considerable gap dividing them from becoming
production systems. Argumentation mining approaches presented in the literature are
mostly intended for analysis of official documents (such as legal cases), customer
reviews of consumer products (such as reviews available at Amazon.com), or for auto‐
matic analysis of debates (such as debates available e.g. at Debatepedia.org).

Argumentation mining methods reviewed below are used to identify arguments in
text and their polarization (positive, negative), as well as relations between arguments.

In [3] the authors consider the problems of identification of the illocutionary
force of individual units and identification of relations between units. They specify
three features of dialogue context allowing for dialogical argument mining: ‘(i) illo‐
cutionary forces, (ii) indexicality of locutions, i.e. locutions in which illocutionary
force or propositional content cannot be identified without considering moves that
precede a given indexical locution, (iii) transitions between dialogical moves that
anchor forces of indexical locutions’. The partial implementation of an argument
mining system with the assumed specifications is realized using TextCoop plat‐
form. The purpose is to show that a dialogue can be decomposed into meaningful
dialogue text units using a dedicated grammar that can identify and delimit such
units and how an illocutionary force can be assigned to each of these units.

Fig. 3. Sample on-line argument map generated in Deliberatorium [13]

78 R. Bembenik and P. Andruszkiewicz

The conducted tests showed an 85 % effectiveness for the first task and 78 % accu‐
racy for the other. The results of the task of anchoring illocutionary forces to transi‐
tions have been reported in the paper to be under implementation.

[9, 12] posit that argumentation mining would benefit from dedicated corpuses
possessing annotations such as: data, warrant, conclusion and argumentation scheme of
each argument; multiple arguments for the same conclusion; chained relationships
between arguments.

[25] considers a semi-automated approach to argumentative analysis. The authors
take into consideration arguments present in online product reviews, and in particular
reviews taken from Amazon.com, concerning a selected model of a digital camera. The
approach consists of five layers of analysis: a consumer argumentation scheme - CAS
(dedicated to buying a camera and built of related to that activity premise and conclusion
schemes), a set of discourse indicators (indicators of premise, e.g.: after, as, for, since;
conclusion, e.g.: therefore, consequently; contrast, e.g.: but, except, not), sentiment
terminology (from highly positive to highly negative), a user model (user’s parameters:
age, gender, etc.; context of use; constraints: cost, portability, etc.; quality expectations),
a domain model. To find these components the authors used GATE, JAPE, and ANNIC
open source tools. The corpus is iteratively searched for properties instantiating the
argumentation scheme, identifying attacks. After gathering instantiated arguments in
attack relations the argumentation framework is evaluated. The premises instantiate the
CAS in a positive (for buying the camera) or negative (against buying the camera) way.

Argumentation structure detection has been reported in [4]. It bases on calculating
textual entailment to detect support and attack relations between arguments in a corpus
of online dialogues from Debatepedia stating user opinions. To detect the relations an
EDITS system is used. The approach is two-step: assignment of relations to the data set
(0.67 accuracy was reported); how bad assignment influences evaluation of the accepted
arguments (mistakes in the assignment propagate, but the results are still satisfying).

In [24] the authors argue that many evaluative expressions with a heavy semantic
load are in fact arguments and that the association of an evaluative expression with the
discourse structure must be interpreted as an argument. The authors develop a global
semantic representation for these constructions and perform tests using the TextCoop
platform. The reported tests show high effectiveness of discovering discourse relations
(justification, reformulation, illustration, precision, comparison, consequence, contrast,
concession) in terms of precision and recall. The goal of discovering these relations is
to determine why consumers or citizens are happy or not with a given product or deci‐
sion. The authors observe that to be able to automatically synthesize any text in the
proposed manner a very rich semantic lexicon and a set of inferential patterns are needed.

[22] focuses on finding argument-conclusion relationships in German discourses.
They follow an approach consisting of the following steps: manual discourse linguistic
argumentation analysis (the aims of this stage are discourse relevant arguments identi‐
fication, formation of argument classes and determination of significance of an argument
in the discourse), text mining (PoS tagging and linguistic annotation, polarity detection),
data merge. The results of the analysis are words indicating argument-conclusion rela‐
tionship (such as because, since, also, …). The words, however, do not indicate where

Towards Automatic Argument Extraction and Visualization 79

the argument or conclusion starts or ends and additional steps are required to identify
the extent of these, e.g. text windows left and right to the conclusive.

3 Automatic Argument Extraction and Visualization Framework

While the solutions presented in Sect. 2.1 assume indication of thesis, solution,
proposal2, and arguments for or against them, they do not take into account any autom‐
atized support in creating a structure of proposals and arguments. Approaches presented
in Sect. 2.2 try to systematize the process of dividing a text document of various domains
into structured parts. However, they do not show how to maintain the whole process,
from extraction through additional transformations and relations assignments to storage
and visualization of arguments, proposals of a debate. In this section we analyze the
possible support of Artificial Intelligence (AI) in argument mapping and propose a
framework that employs AI techniques in order to reduce human workload.

Results of debates may be of different types, however, they have at least one common
property, they are of unstructured form, e.g., script of an online or direct debate. In order
to transform unstructured text into structured relations of proposals and arguments, we
propose to employ Text Mining/Natural Language Processing (NLP) algorithms that
automatically extract proposals and arguments placed in text. Moreover, we show how
to connect the arguments with relations and store results in a flexible manner.

3.1 Overview of the Framework

Our framework aims at reducing human workload in creation of a structured represen‐
tation of a debate. Thus, we consider the whole process of unstructured text transfor‐
mation into debate results stored according to a knowledge representation.

Figure 4 shows the framework for automatic extraction of proposals and arguments,
their simplification, transformation with accordance to a knowledge representation and
visualization. The source of data is an unstructured text, e.g., a script of an online or
direct debate, or an unstructured forum. The input is processed by means of Text Mining/
NLP techniques in order to extract proposals and arguments and their relations. Option‐
ally, proposals and arguments may be verified and changed by a human at this stage.
The next step is to transform proposals and arguments to obtain simpler, more infor‐
mative or combined into one if e.g. two or more arguments are the same. After trans‐
formation human interaction may also be performed. Then proposal and arguments are
stored in a knowledge base according to a knowledge representation. All aforementioned
steps are described in details in the following sections.

2 We will use the term proposal in the paper that means the concept of thesis, proposal and
solution.

80 R. Bembenik and P. Andruszkiewicz

Script of a

debate

Proposal1

. argument1 +

. argument2 +

. argument3 -

…...

Proposal1

. argument1,2 +

. argument3 -

…...

Proposal1

argument1,2

argument3

Extraction Transformation Representation

Fig. 4. Framework for automatic argumentation mapping and visualization

3.2 Proposals and Arguments Extraction

In order to help human in making results of a debate structured, algorithms for automatic
extraction can be employed. They use supervised approach, hence we need to collect a
corpus which contains annotated debate scripts; that is, scripts with tagged proposals
and arguments. We plan to use scripts of the debates that are being run within our project
and annotate them. Having the corpus collected, we need to transform text data to be
used in extraction algorithms. The first step is preprocessing, which consists of stop
words removal, stemming or lemmatization, and transformation of letters to lower case.
Then we divide a corpus into: training, validation, and test sets. Training set is used to
learn a model, validation set to choose the best parameters for a model, and test set is
used in final evaluation of a model.

Recently Conditional Random Fields (CRF) [7, 14, 26] models are the state-of-the-
art in information extraction by sequence labeling. Linear-chain Conditional Random
Fields model is often used [21] in sequence labeling. It assumes that text is a sequence
of tokens that have a label assigned to each token; that is, proposal, argument, none in
our case. A token is characterized by neighboring tokens and other features that are
based on these tokens. We propose to use lemmatized tokens, their part of speech tags,
argument introduction words; that is, words that introduce arguments, e.g., because, as
a binary indicator and proposal introduction words, e.g., propose, solution.

Trained linear-chain CRF is used to predict proposals and arguments. Moreover, the
number of labels can be increased to distinguish positive-argument and negative-argu‐
ment. The procedure of training and using linear-chain CRF modes stays the same. We
can also predict whether an argument is positive or negative by using one of sentiment
analysis methods described in [8, 15]. Most recently models used in sentiment analysis,
that are worth to be mentioned and used, are deep neural networks models [19].

As an example we can consider the following part of a debate script: ‘The location
of a primary school is really important. I propose to build the school at Markan street,
because many people living nearby could send their children to that school.’ It consists
of a proposal and an argument. The CRF model would annotate the aforementioned
example with the following entities: ‘The location of a primary school is really impor‐
tant. I propose to <proposal begin> build the school at Markan street <proposal end>,
because <argument begin> many people living nearby could send their children to that
school <argument end>.’

Towards Automatic Argument Extraction and Visualization 81

If the corpus contains annotated relations between proposals and arguments, we may
also predict relations that connect arguments with their proposals and even sub-arguments
and arguments. Assuming that extraction of proposals and arguments is done at the begin‐
ning, we create a classifier that predicts whether an argument is related to the proposal. To
this end an SVM classifier may be employed based on bag of word features calculated for
words of a considered proposal and argument, or argument and sub-argument.

The solution presented herein is language dependent in a sense that the main steps
of it do not depend on language, however, their implementations are different for various
languages, e.g., for English we need to use English stemmer and for Polish we use a
stemmer developed for this language.

The aforementioned CRF and SVM models predict proposals, arguments as well as
relations between them and create a structure presented in Fig. 4. (depicted in the second
block and obtained by extraction). It may be verified and improved by a human to ensure
the high quality of extraction.

3.3 Proposals and Arguments Transformation

Having proposals and arguments extracted, within our framework we perform their
transformation to simplify them and make them shorter; that is, more dense in the sense
of carried information. Simpler and containing aggregated information proposals and
arguments let a user understand ideas behind a debate more easily. To this end, we
propose to calculate semantic similarity between two arguments or two proposals and
decide whether they are semantically equivalent. If so, we choose the shorter one and
remove the longer proposal/argument. Children of a removed proposal/argument, e.g.,
arguments that are related to a proposal, are attached to the shorter proposal/argument
and then checked against the semantically equivalent with other proposals/arguments.

Semantic equivalence may be calculated using recursive autoencoders [18]. This
algorithm uses word embedding vectors to represent words and trains recursive autoen‐
coders to represent a sentence. On top of these vectors a classifier is built in order to
judge whether two sentences are semantically equivalent. Despite the fact that recursive
autoencoders are trained in an unsupervised manner, the classifier needs annotated
corpus. However, the classifier may be reduced to simple similarity of vectors and a
given threshold to avoid the need for an annotated corpus.

Let us consider as a transformation example that there are two arguments discovered
by the CRF model: (i) many people living nearby could send their children to that school;
(ii) in this location there are so many blocks of flats that many residents would be happy
to have a school nearby. The algorithm compares these two arguments and decides that
the semantic similarity is high, thus the second argument can be removed and the first
argument, as the shorter one, is left.

This step may also be verified by human in order to assure high quality of the results.

3.4 Proposals and Arguments Storage

As we have proposals, attributes, and the relations extracted, we need to store them in
a knowledge base according to a knowledge representation. In our framework we use

82 R. Bembenik and P. Andruszkiewicz

ontology to model proposals, arguments and their relations. The main two concepts are:
proposal and argument. We add extracted proposals, arguments, as instances of concepts
proposal, argument, respectively. We also model relations between them by introducing
is-argument-of-proposal and is-sub-argument. Moreover, positive and negative argu‐
ments are indicated by properties. Modeling proposals, arguments and their relations by
means of ontology is motivated by its flexibility. We can add additional relations, e.g.,
connecting arguments that are semantically similar to some extent, however, have not
been merged. Moreover, we can define relations, for instance, sibling-argument, and
use inference to connect instances that are coupled by these relations. This ontology
structure can be transformed to the form of the AIF ontology’s Argument Network [6]
to enable integration with external visualization tools.

Independently of existing tools the ontology of proposals and arguments can be
easily visualized to support the process of debate analysis (please refer to Sect. 3.5).

3.5 The System

Currently in our system we implemented structure for proposals and arguments storing.
We also designed and implemented visualization module. The example visualization is
shown in Fig. 5. It contains one additional element compared to these considered in
Sect. 3.1, namely a question (represented by the most left-up rectangle without rounded
corners). During a debate several questions can be asked in order to get to know opinions
of residents on a given topic. Each question has its own proposals (blue rectangles with
rounded corners) that is followed by positive (green) or negative (red) arguments. Argu‐
ments may have their own arguments (e.g., negative red argument). Our framework will
be empirically verified as we currently implement extraction module based on SVM
classifier and Conditional Random Fields. Next step is the transformation of proposals
and arguments and storage. All modules will be verified on real debates scripts that are
being gathered during consultations run within the project. Moreover, the system can

Fig. 5. Proposals and arguments visualization implemented in the system. (Color figure online)

Towards Automatic Argument Extraction and Visualization 83

be verified during real consultations as it serves as automation of the process. After the
automated part a clerk verifies the proposals and arguments according to the debates
script. Positive results of this verification will prove the usefulness of our system. The
debates are conducted in Polish, however, we are going to support English in order to
verify the applicability of our framework for different languages.

4 Conclusions

In this paper, we investigated the task of automatic extraction and visualization of
proposals and arguments in the context of online consultations conducted by local
governments. Firstly, we discussed approaches to visualization and (semi–)automatic
extraction of proposals and arguments presented in the literature. Secondly, we proposed
a framework allowing for automatic extraction of arguments from deliberations. The
proposed framework assumes extraction of arguments and argument proposals, senti‐
ment analysis to predict whether argument is negative or positive, and classification to
decide how the arguments are related. Moreover, the framework facilitates the trans‐
formation of proposals and arguments (simplification and clustering) in order to combine
those that are semantically equivalent and, in consequence, to help participants and
moderators by simplifying the analysis of a debate. Meaningful and simplified proposals
and arguments are stored according to a knowledge representation method, ontology in
our case.

The proposed framework is currently under implementation within the project ‘In
Dialogue’. Storage for proposals and arguments has already been implemented. Further‐
more, we presented the example visualization of proposals and arguments provided by
our implemented module. The system will be used in the process of summarizing
debates. It will automatically prepare a summary by extracting proposals and arguments
and their relations. A clerk who needs to summarize a debate will have an automatically
created logical structure of a debate that he/she only needs to refine. The system will
reduce time spent on summary preparation.

As the consultations run within the ‘In Dialogue’ project are conducted in Polish,
we implement the proposed framework for this language. However, we also plan to
support English. In order to prepare the system to process English, we will need to apply
language dependent NLP components, like stemmer, part of speech tagger, named entity
recognizer. We will also need to retrain CRF, SVM models and recursive autoencoders
on English training sets.

The results of the consultations being run within the project will be used in our
framework in order to train supervised models. Then, the framework will be tested in
forthcoming consultations and, in the end, it will be made available for local govern‐
ments in order to support citizens and moderators during consultations.

84 R. Bembenik and P. Andruszkiewicz

References

1. Argument Mapping, http://www.austhink.com/critical/pages/argument_mapping.html
2. Bex, F., Lawrence, J., Snaith, M., Reed, C.: Implementing the argument web. Commun. ACM

56(10), 66–73 (2013)
3. Budzynska, K., Janier, M., Kang, J., Reed, C., Saint-Dizier, P., Stede, M., Yaskorska, O.:

Towards argument mining from dialogue. In: COMMA, pp. 185–196 (2014)
4. Cabrio, E., Villata, S.: Combining textual entailment and argumentation theory for supporting

online debates interactions. In: Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Short Papers, vol. 2, pp. 208–212. Association for
Computational Linguistics (2012)

5. Carneades tools for argument (re)construction, evaluation, mapping and interchange. http://
carneades.github.io/

6. Chesñevar, C., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., McGinnis, J.,
Vreeswijk, G., Willmott, S.: Towards an argument interchange format. Knowl. Eng. Rev.
21(04), 293–316 (2006)

7. Cuong, N.V., Chandrasekaran, M.K., Kan, M.Y., Lee, W.S.: Scholarly document information
extraction using extensible features for efficient higher order semi-CRFs. In: Proceedings of
the 15th ACM/IEEE-CE on Joint Conference on Digital Libraries, pp. 61–64. ACM (2015)

8. Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4), 82–
89 (2013)

9. Ghosh, D., Muresan, S., Wacholder, N., Aakhus, M., Mitsui, M.: Analyzing argumentative
discourse units in online interactions. In: Proceedings of the First Workshop on
Argumentation Mining, pp. 39–48 (2014)

10. Gordon, T.F., Walton, D.N.: The Carneades argumentation framework - using presumptions
and exceptions to model critical questions. In: Dunne, P.E., Bench-Capon, T.B.C. (eds.)
Computational Models of Argument. Proceedings of COMMA-06, pp. 195–207. IOS Press,
Amsterdam (2006)

11. Gordon, T.F., Prakken, H., Walton, D.: The Carneades Model of Argument and Burden of
Proof. Elsevier Science, Amsterdam (2007)

12. Green, N.: Towards creation of a corpus for argumentation mining the biomedical genetics
research literature. In: Proceedings of the First Workshop on Argumentation Mining, pp. 11–
18 (2014)

13. Gürkan, A., Iandoli, L., Klein, M., Zollo, G.: Mediating debate through on-line large-scale
argumentation: evidence from the field. Inform. Sci. 180(19), 3686–3702 (2010)

14. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for
segmenting and labeling sequence data. (2001)

15. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–
167 (2012)

16. Scheuer, O., Loll, F., Pinkwart, N., McLaren, B.M.: Computer-supported argumentation: a
review of the state of the art. Int. J. Comput. Support. Collaborative Learn. 5(1), 43–102
(2010)

17. Schneider, D.C., Voigt, C., Betz, G.: Argunet - a software tool for collaborative argumentation
analysis and research. In: 7th Workshop on Computational Models of Natural Argument
(CMNA VII) (2007)

18. Socher, R., Huang, E.H., Pennin, J., Manning, C. D., Ng, A.Y.:Dynamic pooling and
unfolding recursive autoencoders for paraphrase detection. In: Advances in Neural
Information Processing Systems, pp. 801–809 (2011)

Towards Automatic Argument Extraction and Visualization 85

http://www.austhink.com/critical/pages/argument_mapping.html
http://carneades.github.io/
http://carneades.github.io/

19. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive
deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), vol. 1631, p.
1642 (2013)

20. Suthers, D.D.: Representational guidance for collaborative inquiry. In: Andriessen, J., Baker,
M., Suthers, D. (eds.) Arguing to Learn, pp. 27–46. Springer, Netherlands (2003)

21. Sutton, C., McCallum, A.: Piecewise training for undirected models. arXiv preprint arXiv:
1207.1409 (2012)

22. Trevisan, B., Jakobs, E.M., Dickmeis, E., Niehr, T.: Indicators of argument-conclusion
relationships. An approach for argumentation mining in german discourses. In: ACL 2014,
176, 104 (2014)

23. Van Gelder, T.: Enhancing deliberation through computer supported argument visualization.
Visualizing argumentation, pp. 97–115. Springer, London (2003)

24. Villalba, M.P.G., Saint-Dizier, P.: Some facets of argument mining for opinion analysis.
COMMA 245, 23–34 (2012)

25. Wyner, A., Schneider, J., Atkinson, K., Bench-Capon, T.J.: Semi-automated argumentative
analysis of online product reviews. COMMA 245, 43–50 (2012)

26. Zhang, W., Ahmed, A., Yang, J., Josifovski, V., Smola, A.J.: Annotating needles in the
haystack without looking: product information extraction from emails. In: Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 2257–2266. ACM (2015)

86 R. Bembenik and P. Andruszkiewicz

http://arxiv.org/abs/1207.1409
http://arxiv.org/abs/1207.1409

Model-Driven Engineering, Conceptual
Modeling

Towards a Role-Based Contextual Database

Tobias Jäkel1(B), Thomas Kühn2, Hannes Voigt1, and Wolfgang Lehner1

1 Database Technology Group, Technische Universität Dresden, Dresden, Germany
{tobias.jaekel,hannes.voigt,wolfgang.lehner}@tu-dresden.de

2 Software Technology Group, Technische Universität Dresden, Dresden, Germany
thomas.kuehn3@tu-dresden.de

Abstract. Traditional modeling approaches and information systems
assume static entities that represent all information and attributes
at once. However, due to the evolution of information systems to
increasingly context-aware and self-adaptive systems, this assumption
no longer holds. To cope with the required flexibility, the role concept
was introduced. Although researchers have proposed several role mod-
eling approaches, they usually neglect the contextual characteristics of
roles and their representation in database management systems. Unfortu-
nately, these systems do not rely on a conceptual model of an information
system, rather they model this information by their own means leading to
transformation and maintenance overhead. So far, the challenges posed
by dynamic complex entities, their first class implementation, and their
contextual characteristics lack detailed investigations in the area of data-
base management systems. Hence, this paper, presents an approach that
ties a conceptual role-based data model and its database implementa-
tion together, to directly represent the information modeled conceptu-
ally inside a database management system. In particular, we propose a
formal database model to describe roles and their contextual information
in compartments. Moreover, to provide a context-dependent role-based
database interface, we extend RSQL by compartments. Finally, we intro-
duce RSQL Result Net to preserve the contextual role semantics as well
as enable users and applications to both iterate and navigate over results
produced by RSQL. In sum, these means allow for a coherent design of
more dynamic, complex software systems.

Keywords: Role model · Query language · Contextual database ·
Result net

1 Introduction

Software systems are an essential part of today’s life where people and devices are
connected anywhere and anytime to anyone. Additionally, new devices featuring
novel technologies must be integrated into running systems without downtime.
Thus, software systems have become more complex today while this trend con-
tinues. Traditional approaches, like UML or ER, fail frequently1 when confronted
1 For a concrete example, we refer to [18, p. 88 et sqq.].

c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 89–103, 2016.
DOI: 10.1007/978-3-319-44039-2 7

90 T. Jäkel et al.

with requirements of highly complex, dynamic, and context-sensitive systems.
Basically, they assume static entities, although real objects evolve over time and
act dynamically. From a modeling and programming perspective, these issues
have been addressed by introducing the role concept [18], but most of the exist-
ing approaches neglect the contextual aspect of roles [13]. In contrast, database
systems, as integral part of modern software systems, lack the notion of dynam-
ically evolving and context-dependent data objects leading to problems during
design time and run time, when the role concept is implemented in the conceptual
design and programming languages. During the design phase for instance, role
semantics need to be transformed into simple DBMS data model semantics, i.e.,
relations. This process abstracts all context-dependent information and mixes
it with entity and relationship information. The run time issues are a conse-
quence of the design time problems and the DBMS’s inability to represent role
semantics explicitly. A DBMS stores the data by means of its data model, which
in turn provides the underlying semantics. Hence, highly specialized mapping
engines are required to persist run time objects in a database and all mapping
engines in the software system need to be synchronized to avoid inconsistency.
This results in an increased transformation and management overhead between
the applications and the DBMS. Finally, there is no external DBMS interface
aware of the transformation incurred by the mapping engine. This hinders users
to query and navigate their contextual data model in a coherent way.

To overcome these design time and run time issues as well as account for
the often neglected context-dependent information three major goals have to be
achieved. In the first place, a data model as foundation capable of represent-
ing evolving complex data objects is required. Secondly, a redesigned external
DBMS interface is required enabling users and applications to query on the same
semantical level as role-based programming languages. Finally, a novel result rep-
resentation is needed to preserve the role-based semantics in query results. The
first issue is addressed by defining the Compartment Role Object Model [14] based
RSQL Data Model featuring roles and compartments for context-dependent
information representation. As external database interface we propose a con-
textual extension to RSQL, a query language for role-based data. Finally, we
tackle the third issue by presenting the RSQL Result Net that preserves the
context-dependent and role-based semantics between a software system and the
database.

The remainder is structured as follows: The following Sect. 2 details the run-
ning example and describes its domain. Sect. 3 introduces the context-dependent
RSQL Data Model consisting of a type level and instance level definitions. This
is followed by the description of RSQL’s query language specifications in Sect. 4.
Afterwards, the notion of our novel RSQL Result Net and navigational opera-
tions are detailed in Sect. 5. The related work is elaborated in Sect. 6. Finally,
Sect. 7 concludes the contributions.

2 Running Example

To highlight the merits of role-based data modeling, we model a small banking
application as our real world scenario, extracted from [17]. In this scenario, a

Towards a Role-Based Contextual Database 91

Fig. 1. Role modeling example of a small banking application

Fig. 2. Instance of the role modeling example (Fig. 1)

bank manages its customers, their accounts, as well as transactions. Customers
can be persons, companies, as well as other banks. Additionally, customers may
own several savings and checking accounts, and perform transactions between
accounts of potentially different types. In detail, transactions embody the process
of transferring money from one account to another. In addition, we specify that
checking accounts must have exactly one owner, whereas savings accounts can
have multiple owners. This fact is reflected by the respective cardinality con-
straints. Similarly, we require that one source account is linked to exactly one
target account. Figure 1 depicts a possible role-based data model for this bank-
ing application. It encompasses a Bank as a compartment containing the roles
MoneyTransfer, Customer, CheckingAccount, and SavingsAccount. The Transac-
tion compartment orchestrates the money transfer between Accounts by means
of the roles Source, Target, and the trans relationship constrained by one-to-
one cardinality on both ends. Finally, Persons, Companies, Banks can play the
role of a Customer and Accounts the roles CheckingAccount, SavingsAccount,
Source, and Target. A simplified instance of this data model is shown in Fig. 2. It
comprises two Bank compartment instances, BetaBank and DeltaBank. The
former manages (among others) the Customers TetaBank and Andrea who

92 T. Jäkel et al.

individually own a CheckingAccount in this bank. In contrast, the Delta-
Bank has the Person Peter as well as the former Bank BetaBank as Cus-
tomers. Moreover, this compartment instance contains a CheckingAccount owned
by Peter and a SavingsAccount owned by both Peter and the BetaBank.
Additionally, the DeltaBank compartment instance contains the Transaction
compartment Tr1 playing the MoneyTransfer m1. Therein, Account4 and
Account1 play the roles Source s1 and Target t1, respectively, and thus, repre-
sent a transaction from BetaBank’s savings account to TetaBank’s checking
account. Each role is placed at the border of its respective player. For brevity,
we left out the individual attributes. Henceforth, the data model is used as a
running example.

3 Formal Foundation

This section introduces a data model featuring the notion of compartments and
context-dependent roles. In particular, this data model is strongly influenced by
the combined formal model for roles [14] and Dynamic Typles [11,12]. Thus, a
subset of the former is employed as formal foundation to extend the notion of
dynamic tuples and represent compartments with context-dependent roles.

Generally, we distinguish between three meta types: Natural Types, Com-
partment Types, and Role Types. To discern these kinds, three ontological
properties are employed, i.e., Rigidity, Foundedness, and Identity [5–7,16]. Both
Natural Type and Compartment Types are classified as rigid with a unique
identity, whereas only the latter is founded. In contrast to them, Role Types
are not rigid [8] and founded with a derived identity. Consequently, Person
and Account are considered Natural Types, whereas Bank and Transaction
as Compartment Types (cf. Fig. 1). Role instances depend on the identity of
their player and the existence of their context [16] (i.e., compartment). Hence,
instances of a rigid type can play instances of role types. For brevity, we omit
attributes and relationships from these definitions and focus on the notion
of compartments.

Definition 1 (Schema). Let NT , RT , and CT be mutual disjoint sets of Nat-
ural Types, Role Types, and Compartment Types, respectively. Then a Schema is
a tuple S = (NT,RT,CT,fills, parts) where fills ⊆ (NT ∪CT)×RT is a relation
and parts : CT → 2RT is a total function for which the following axioms hold:

∀rt ∈ RT ∃t ∈ (NT ∪ CT) : (t, rt) ∈ fills (1)
∀ct ∈ CT : parts(ct) �= ∅ (2)
∀rt ∈ RT ∃!ct ∈ CT : rt ∈ parts(ct) (3)

In particular, the schema definition collects the three entity kinds into their
respective sets. Moreover, it defines two relations between those entity kinds.
First, fills declares that a rigid type (either compartment or natural type) fulfills
a role type, such that each role type is filled by at least one rigid type (1). Second,

Towards a Role-Based Contextual Database 93

parts collects the set of role types contained in each compartment type. In detail,
it is required that there is no empty compartment type, i.e., where parts returns
an empty set (2), and each role type is part of exactly one compartment type (3).

On the instance level natural types, role types, and compartment types
are instantiated to naturals, roles, and compartments, respectively to handle
context-dependent information of roles [14].

Definition 2 (Instance). Let S be a schema and N , R, and C be mutual
disjoint sets of Naturals, Roles, and Compartments, then an instance of S is
a tuple i = (N,R,C, type, plays), where type : (N → NT) ∪ (R → RT) ∪ (C →
CT) is a labeling function and plays ⊆ (N ∪ C) × C × R a relation. Moreover,
O := N ∪ C denotes the set of all objects in i. To be a valid instance of schema
S, instance i must satisfy the following axioms:

∀(o, c, r) ∈ plays : (type(o), type(r)) ∈ fills ∧ type(r) ∈ parts(type(c)) (4)
∀(o, c, r), (o, c, r′) ∈ plays : r �= r′ ⇒ type(r) �= type(r′) (5)
∀r ∈ R ∃!o ∈ O ∃!c ∈ C : (o, c, r) ∈ plays (6)

In general, an instance of a schema is a collection of compartment, role, and
natural instances together with their individual interrelations. In particular, the
type function maps each instance to its type. Moreover, the plays-relation is
the instance level equivalent of the fills relation and the parts function, as it
identifies those objects (either natural or compartment) playing a role in a certain
compartment. Valid instances are required to be consistent to a schema, i.e.,
they satisfy the three axioms. In detail, axiom (4) ensures the conformance of
the plays relation to fills and parts on the type level (4). Next, axioms (5)
and (6) enforce that an object can play only one role of a certain type in one
compartment and that each role has exactly one player and is contained in a
distinct compartment, respectively. Notably objects can still play multiple roles
of the same type simultaneously, however these roles must be part of distinct
compartments, e.g., a person can play multiple customer roles as long as they
belong to different banks. This allows us to define Dynamic Tuples for complex
context-dependent entities.

Definition 3 (Dynamic Tuple). Let S be a schema, i a valid instance of S,
and o ∈ O is an object of type t, i.e., type(o) = t. A Dynamic Tuple d = (o, F, P)
is then defined with respect to the played roles and featured roles given as:

F :={{r | (r, rt) ∈ Fo} | rt ∈ RT} with Fo := {(r, type(r)) | (o, , r) ∈ plays}
P :={{r | (r, rt) ∈ Po} | rt ∈ RT} with Po := {(r, type(r)) | (, o, r) ∈ plays}

In detail, a dynamic tuple is defined to capture the current rigid instance, all
the roles it currently plays, and all the roles it contains. However, as an object
can play and contain multiple roles of the same type, they are grouped by their
type into the set F of filled roles and P of participating roles, respectively. If
the set of currently filled or participating roles is empty, i.e., no role is played

94 T. Jäkel et al.

or featured in a given object, the corresponding set is empty, denoted as ∅. In
sum, this definition captures both dimensions of dynamic complex entities. Still,
such entities exist in many different configurations with respect to types of the
played and participating roles.

Definition 4 (Configuration). Let S be a schema and t ∈ NT ∪ CT a type;
then a Configuration of an instance of t is given as c = (t, FT, PT), where
FT ⊆ {rt | (ot, rt) ∈ fills} and PT ⊆ parts(t). In particular, a given dynamic
tuple d = (o, F, P) (with type(o) = t) in a valid instance i of S is in exactly one
Configuration co = (t, {rt | (, rt) ∈ Fo}, {rt | (, rt) ∈ Po}).

In this way, a configuration of an instance is determined by the types of roles
currently played and contained. Thus, playing multiple roles of the same role
type as well as containing multiple roles of the same type simultaneously does not
affect the configuration. To illustrate these definitions, we discuss the following
three dynamic tuples which are an expansion of instances depicted in Fig. 2:

dAccount1 :=(Account1, {{ca1}, {t1}}, ∅)
dDeltaBank :=(DeltaBank , ∅, {{c1, c2, c3}, {sa1, sa2}, {ca2, ca5}, {m1,m2,m3}})

dTr1 :=(Tr1, {{m1}}, {{s1}, {t1}})

The first dynamic tuple represents Account1 that plays both a CheckingAc-
count and a Target role, but no participating roles, because the account
is a natural instance. Consequently, its configuration is c1 = (Account ,
{CheckingAccount ,Target}, ∅). In contrast, the Bank DeltaBank currently
does not play any role, but has multiple participating roles of type Cus-
tomer, CheckingAccount, SavingsAccount and MoneyTransfer. As such, c2 =
(Bank , ∅, {Customer ,CheckingAccount ,SavingsAccount ,MoneyTransfer}) is its
configuration. For each of these types there is a separate set of roles in F .
Last but not least, the compartment Tr1 is playing the MoneyTransfer role
and is featuring a Source and a Target role. In turn, its configuration is
c3 = (Transaction, {MoneyTransfer}, {Source,Target}). In conclusion, dynamic
tuples of natural instances can only have filled roles, whereas compartment types
can have both filled and participating roles.

To conclude the definition of dynamic tuples, we define both endogenous
and exogenous relations. The former allows us to navigate into the filled and
participating roles of a particular dynamic tuple, whereas the latter allows to
navigate from one dynamic tuple to another by means of a particular role.

Definition 5 (Endogenous Relations). Let i = (N,R,C, type, plays) be a
valid instance of an arbitrary schema S, o ∈ O an object in i, and d = (o, F, P)
the corresponding dynamic tuple. Then d plays a role r ∈ R iff (r,) ∈ Fo.
Similarly, d features a role r ∈ R iff (r,)∈Po.

Basically, this lifts the notion of playing and featuring roles to the level of
dynamic tuples. Consider, for instance, the dynamic tuple dTr1 currently plays

Towards a Role-Based Contextual Database 95

m1 and features s1 and t1. While these relations allow to navigate within a
dynamic tuple, the Exogenous Relations permit navigation between dynamic
tuples.

Definition 6 (Exogenous Relations). Let i = (N,R,C, type, plays) be a
valid instance of an arbitrary schema S, o, p ∈ O be two objects in i, and a =
(o, Fa, Pa), b = (p, Fb, Pb) their respective dynamic tuples. Then a is featured in
b with r ∈ R, iff a plays r and b features r. Similarly, its inverse is denoted as
b contains r played by a.

In general, featured in and contains represent the various interrelations between
objects on the instance level lifted to dynamic tuples. For instance, the dynamic
tuple dAccount1 is featured in the transaction dTr1 (playing the role t1). Next, the
transaction dTr1 itself is featured in the dDeltaBank (playing m1), which also con-
tains the dBetaBank . In sum, both relations are used to build our novel result set
graph and provide role-based data access (see Sect. 5). In particular, endogenous
relations are utilized to enable users to navigate within a dynamic tuple while
exogenous relations are used to navigate from one dynamic tuple to another one.

4 RSQL Query Language

To fully support context-dependent roles, a novel query language is required
capturing the previously defined notions. Thus, we introduce compartments as
first-class citizen in RSQL to retain the contextual role-based semantics in the
DBMS’s communication interface. In detail, we discuss the syntax and semantics
of RSQL’s extended SELECT statements and how this is related to the data
model’s concepts defined in Sect. 3.

4.1 RSQL Syntax

RSQL consists of three language parts, the data definition language (DDL), the
data manipulation language (DML), and the data query language (DQL). Based
on our previous work [11,12], DDL and DML for compartments are straight
forward, hence we focus on the DQL only.

The data query language consists of a SELECT statement, that is illustrated
in Extended Backus-Naur Form (EBNF) in Fig. 3. Generally, that statement
consists of three parts: (i) projection, (ii) schema selection, and (iii) an attribute
filter. The first one limits the result to the specified types and attributes. The
schema selection is the most complex part, specifying configurations of the
desired dynamic tuples and dependencies between them. In general, the schema
selection consists of a nonempty set of 〈config-expressions〉, each specifying a set
of valid configurations. Those will be used in query processing to decide, whether
a dynamic tuple is in a query-relevant configuration. A 〈config-expression〉 itself
contains three parts: (i) the rigid type, (ii) a featuring clause describing the par-
ticipating dimension of the data model, and (iii) a playing clause denoting the
filling dimension. Both, the participating and filling dimension are optional in a

96 T. Jäkel et al.

Fig. 3. Data query language syntax

〈config-expression〉. Additionally, the featuring clause is only allowed, if the rigid
is a compartment type, because natural types cannot feature role types. Finally,
an optional WHERE clause completes the SELECT statement. Here, users declare
the value-based filter for resulting dynamic tuples.

Example Query. The example shown in Fig. 4 is based on the schema presented
in Fig. 1 and illustrates an RSQL query involving four 〈config-expressions〉. This
particular query searches for bank customers of a bank and their outgoing money
transfer related information from a checking account or savings account, i.e.
all transactions where that particular bank customer sends money to another
account. The first 〈config-expression〉 references all configurations consisting of
the compartment Bank as rigid type and have at least the role type Customer in
the playing clause. The second 〈config-expression〉 aims at Accounts that either
play roles of the type CheckingAccount or SavingsAccount, and Source. These
〈config-expressions〉 have one dimension only, because its rigid type is a natural
type. The transaction is referenced in the third 〈config-expression〉 and describes
a set of configurations that has a Transaction as rigid type and at least one role
of type MoneyTransfer. Additionally, the Source role of the Accounts, specified
in the second 〈config-expression〉, has to participate in this compartment, which
is denoted in the featuring clause by rereferencing the abbreviation of the desired
role types. This 〈config-expression〉 is two-dimensional, because it describes the
internal and external expansion of this particular compartment type. The last

Fig. 4. Example SELECT query

Towards a Role-Based Contextual Database 97

〈config-expression〉 describes the Bank compartment type that ties the roles
previously described, together.

4.2 Data Model Concepts in RSQL

RSQL is a specially tailored query language for the role-based contextual data
model defined in Sect. 3, thus, the data model concepts are directly represented
in RSQL. In detail, RSQL leverages the two main features complex schema
selection and overlapping Dynamic Tuples. The first feature is based on the
idea that entities may start or stop playing several roles during runtime, and
thus, change their schema dynamically. This is captured in configurations, that
enable a complex object definition consisting of a rigid type and role types
in two dimensions. Hence, instances of that certain type never change their
type, but may vary their schema by changing the configuration. RSQL realizes
this complex schema selection by a 〈config-expression〉 that defines the minimal
schema a valid entity needs to have. The second feature is based on the two-
dimensionality of roles which requires a role to be part of two different dynamic
tuples; once in the filling dimension and once in the participating dimension. This
overlapping information can be utilized in query writing to denote interrelated
〈config-expressions〉. Thus, a role type may be part of several 〈config-expressions〉
because the corresponding configurations overlap. The example query, shown in
Fig. 4, exhibits several overlapping 〈config-expressions〉, for instance, the first
one consisting of a compartment type Bank bc which has to play Customer c
role. There, the Customer role type is present in the filling dimension denoted in
the playing clause. Additionally, the same Customer role c is part of the Bank
b compartment type, but in the participating dimension. Consequently, the first
and fourth 〈config-expressions〉 overlap in the role type Customer.

5 RSQL Result Net

To preserve the role-based contextual semantics in the result, we introduce the
RSQL Result Net (RuN) enabling users to iterate over dynamic tuples and
navigate along the roles to connected dynamic tuples. In particular, the naviga-
tion leverages the overlapping roles of dynamic tuples. The query result itself is
an instance of the previously defined data model, hence, the query language is
self-contained. Generally, RuN provides various dynamic tuples that are inter-
connected to each other by overlapping roles. Moreover, only queried role types
are included in the result’s dynamic tuples, even if the stored dynamic tuples
play or feature additional roles.

RuN offers two general options to navigate in the result. Firstly, endogenous
navigation path (Definition 5) to access dynamic tuple internal information. Sec-
ondly, exogenous navigation path (Definition 6) to jump from one dynamic tuple
or its roles to related dynamic tuples. Each RuN is accessed by a cursor that is
returned to users or applications. This cursor initially points to the first returned
dynamic tuple of the first referenced 〈config-expression〉. Generally, each cursor

98 T. Jäkel et al.

Fig. 5. Dynamic tuple navigation paths (excerpt)

provides the Next functionality to iterate over the set of type T , while T can be
either a dynamic tuple or a role type. The Close functionality closes an open
cursor and finalizes the iteration process on a cursor. A complex example of
RuN is given in Fig. 5 illustrating endogenous as well as exogenous navigation
paths. It is an extension of instance illustrated in Fig. 2 and the query shown in
Fig. 4 to show all navigation paths. For the sake of clarity, we omitted redundant
navigation paths in the illustration, but discuss more options in the explanation.

Endogenous Navigation. A dynamic tuple is by definition a combination of
a rigid type, the set of played roles, and a set of featured roles. While iter-
ating RSQL’s result net, users want to access information about roles played
by and featured in the current dynamic tuple. Functionalities providing access
to this information are realized by endogenous navigation paths, in particular,
by Plays and Features. Both options are based on the endogenous relation (see
Definition 5).

Using the Plays navigation path, users are able to access a set of played
roles in the filling dimension. This functionality can have two different inputs.
First, a dynamic tuple only and second a dynamic tuple and a set of role types.
The first one aims for accessing roles by their dynamic tuple definition, hence,
the complete dimension as tuple of role sets is returned. In contrast, the second
option accesses roles for a given role type and returns a new cursor to iterate over
the resulting set. Therefore, this function consumes not only a dynamic tuple,
but additionally a role type. Using the Features navigation path, users are able
to access a set of featured role sets in the participating dimension. Thus, the
Features set is created like the Plays set and these sets contain a set for each
queried role type. By definition this path is only available for dynamic tuples
having a compartment type as rigid type, because naturals cannot feature any
roles. This navigation path functionality consumes either a dynamic tuple or

Towards a Role-Based Contextual Database 99

a dynamic tuple and a role type. The first input option returns the complete
dimension, whereas the second only roles of the specified type. In sum, both
endogenous functionalities work similar, but differ in the dimension they address.

Imagine the example RuN illustrated in Fig. 5 and a cursor pointing on
the dynamic tuple BetaBank. Using Plays on this dynamic tuple by also
providing the role type Customer would return a new cursor to iterate over
the set of customer roles {c3, c7}. Utilizing the Features functionality on this
dynamic tuples without providing a certain role type, the user will get the set
{{c4, c5, c6}, {sa3}, {ca1, ca3, ca4}, {m4,m5}}. Returning the tuple instead of a
set of roles gives users more flexibility in exploring roles of a dynamic tuple.

Exogenous Navigation. The exogenous navigation connects various dynamic
tuples to each other by information provided by the query and the schema. RuN
provides three exogenous navigation paths that are also illustrated in Fig. 5, but
with solid black arrows. The first exogenous navigation path to navigate through
RuN is an iteration implemented in the Next functionality that iterates over
equally configured dynamic tuples. For instance, imagine the example presented
in Fig. 5 and the initial cursor pointing to BetaBank. The Next functionality
moves the cursor forward and gives access to the AlphaBank dynamic tuple.

The second exogenous navigation path is Played By and connects dynamic
tuples that share a particular role. Here, overlapping information of dynamic
tuples and the contains definition are leveraged to connect them. Technically,
the Played By navigation path is used to navigate from a role that is featured
in one dynamic tuple to the dynamic tuple this particular role is played in. To
be connected by this path, the first dynamic tuple shares a role of its participat-
ing dimension with another dynamic tuple in the filling dimension. Thus, this
functionality consumes a role and provides a dynamic tuple. Exemplarily, imag-
ine a cursor pointing to the customer c4 in the participating dimension of the
dynamic tuple BetaBank (accessing this particular role is explained in Endoge-
nous Navigation). Executing Played By on this particular role will return the
dynamic tuple TetaBank, because there customer c4 is in the filling dimension.

The third navigation path Featured By is the opposite of Played By. It also
takes advantage of the overlapping information, but, in contrast to Played By,
it connects dynamic tuples where the first one shares a role of its filling dimen-
sion with a role in the participating dimension of the other dynamic tuple. For
this connection the featured in relation specified in Definition 6 is utilized. Like
the Played By functionality, the Featured By consumes a role and returns the
related dynamic tuple to the user. For instance, imagine the role c3 in the filling
dimension of the dynamic tuple BetaBank, as illustrated in Fig. 5. A Featured
By on this particular role aims for accessing the corresponding compartment
and, thus, returns the dynamic tuple DeltaBank.

Complex Navigation Example. This example navigation is based on the
query presented in Fig. 4 and the RSQL Result Net depicted in Fig. 5. Assume,

100 T. Jäkel et al.

the initial cursor points to the BetaBank dynamic tuple. To explore the partic-
ipating customer roles, the user applies the Features functionality by providing
the role type Customer. This results in a cursor pointing on the customer role c4.
Next the user searches for information about the player of this particular role,
thus, uses the Played By functionality resulting in the dynamic tuple Teta-
Bank. Additionally, the user is interested in all other played customer roles of
the TetaBank. For this purpose, the user employs the Plays functionality by
also providing the Customer role type. The new cursor points to the role c2.
Finally, the user utilizes the Featured By navigation path and gets the dynamic
tuple DeltaBank to get the information about the compartment this role c2 is
featured in. Afterwards, the user continues with role c5 of the BetaBank by
iterating to the next role in the set of played customer roles. All cursors opened
to explore information related to customer role c4 will be closed automatically.
From the c5 role users can repeat the procedure they used while exploring infor-
mation regarding c4 or they go a different path2. After collecting all desired
information of customer roles featured in BetaBank, the user moves on with
the next dynamic tuple by applying the Next functionality resulting in the initial
RuN cursor moving to AlphaBank.

6 Related Work

The concept of roles was introduced in the late 1970 s by Bachman and Daya [1].
The idea of separating the core of an object from its context-dependent and fluent
parts has become popular especially in the modeling community. Steimann has
surveyed various role modeling approaches until 2000 [18] and based on this
research he defined 15 properties usually attached to the concept of roles. More
recent approaches in modeling and programming with role-based models are
detailed in [13]. Additionally, the authors extended Steimann’s properties to
capture context-dependent features.

In general, there are two trends in role-based and contextual data manage-
ment. Firstly, developing highly specialized mapping engines that map the role
semantics to traditional ones and store the data in conventional data stores.
Secondly, implementing new data models into a DBMS including new query
processing and data access techniques. Using specialized mapping engines sim-
plifies storing data by abstracting the database interface. However, the data
store remains the same, including the communication interface and result rep-
resentation. Standard SQL queries on relational stored role-based data provide
only relational results without any role-based and contextual semantics. Those
semantics are vanished in the mapping process and need to be reconstructed by
the mapping engine during run time. In the worst case, manual query writing
becomes impossible, because the role and contextual semantics are lost and role
related information is mixed with entity information. ConQuer [2], for instance,
is a query language for fact-oriented models featuring weak role semantics. How-
ever, ConQuer can be seen as mapping engine, because ConQuer queries are
2 The dynamic tuple the role c5 is played by, is not shown in the example.

Towards a Role-Based Contextual Database 101

transformed into standard SQL queries. The user gets the impression of relying
on an Object Role Modeling [9] database, in fact the data store is a conven-
tional relational one. Furthermore, ConQuer focuses on the query language only
without considering the result representation at all. Moreover, mapping engines
from role-based software to traditional data stores exist. For instance, the Role
Relational Mapping [4] maps object-roles onto a relational representation for
persisting and evolving runtime objects. It was designed to store, evolve, and
retrieve role-based objects in a relational data store, hence, neither a query lan-
guage nor a proper result representation has been developed.

The second trend is represented, for example, by the Information Networking
Model (INM) [15] and DOOR [19]. The former features a data model, a query
language called IQL [10], and a key-value store implementation [3]. Because the
data model is hierarchically structured, they designed IQL XML-like. Further-
more, like the RSQL Result Net, IQL provides an INM instance as result. The
storage layer of the INM database is an adapted key-value store utilizing differ-
ent search strategies for query answering, but by design, the storage itself cannot
take advantage of the semantics of the data model. Rather, they implemented a
special INM layer inside of the DBMS that manages the meta information and
data access [3]. Another representative of the data model implementation option
can be seen in DOOR [19] designed to be an object store having role extensions
to handle role-semantics. The data model utilizes special playing semantics to
connect roles to their player, but lack the notion of compartments or contexts.
Nevertheless, the problems of object stores like unsupported views, limited num-
ber of consistency constraints, and highly complex query optimizations remain
unresolved and the external DBMS interface is undefined.

7 Conclusions

Today’s highly complex and dynamic evolving software systems pose new chal-
lenges to the modeling and programming community. As consequence of the
new requirements, the role concept has been established to describe dynamic
entity expansion. Unfortunately, most role-based approaches neglect the context-
dependent aspect of roles and do not provide a holistic view on software systems
by considering databases as integral part of them. This results in transforma-
tion overhead during design and run time as well as high effort in maintenance.
Within this paper, the design time issues were addressed by the RSQL Data
Model which builds the foundation for direct representation of roles and com-
partments in a DBMS. On this basis, we proposed a RSQL query language
extension to provide role-based contextual access to the database and to cope
with the run time issues. Furthermore, we introduced the RSQL Result Net to
preserve the contextual role semantics in results produced by RSQL query lan-
guage. In particular, we examined endogenous and exogenous navigation paths
in our result net to enable role-specific data access for interconnected dynamic
tuples. These connections are realized by overlapping information obtained from
the dynamic tuples, the schema, and the query.

102 T. Jäkel et al.

Acknowledgments. This work is funded by the German Research Foundation
(DFG) within the Research Training Group “Role-based Software Infrastructures for
continuous-context-sensitive Systems” (GRK 1907).

References

1. Bachman, C.W., Daya, M.: The role concept in data models. In: International
Conference on Very Large Data Bases, pp. 464–476. VLDB Endowment (1977)

2. Bloesch, A., Halpin, T.: Conquer: a conceptual query language. In: Thalheim, B.
(ed.) ER 1996. LNCS, vol. 1157, pp. 121–133. Springer, Heidelberg (1996)

3. Chen, L., Yu, T.: A semantic DBMS prototype. In: Parsons, J., Chiu, D. (eds.) ER
Workshops 2013. LNCS, vol. 8697, pp. 257–266. Springer, Heidelberg (2014)

4. Götz, S., Richly, S., Aßmann, U.: Role-based object-relational co-evolution. In:
Proceedings of 8th Workshop on Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE 2011) (2011)

5. Guarino, N., Carrara, M., Giaretta, P.: An ontology of meta-level categories. In:
Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth
International Conference, pp. 270–280. Morgan Kaufmann (1994)

6. Guarino, N., Welty, C.A.: An overview of OntoClean. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies, pp. 201–220. Springer, Heidelberg (2009)

7. Guizzardi, G.: Ontological foundations for structure conceptual models. Ph.D.
thesis, Centre for Telematics and Information Technology, Enschede, Netherlands
(2005)

8. Guizzardi, G., Wagner, G.: Conceptual simulation modeling with onto-UML. In:
Proceedings of the Winter Simulation Conference, WSC 2012, pp. 5:1–5:15. Winter
Simulation Conference (2012)

9. Halpin, T.: ORM/NIAM object-role modeling. In: Handbook on Architectures of
Information Systems (1998)

10. Hu, J., Fu, Q., Liu, M.: Query processing in INM database system. In: Chen, L.,
Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 525–536.
Springer, Heidelberg (2010)

11. Jäkel, T., Kühn, T., Hinkel, S., Voigt, H., Lehner, W.: Relationships for dynamic
data types in RSQL. In: Datenbanksysteme für Business, Technologie und Web
(BTW) (2015)

12. Jäkel, T., Kühn, T., Voigt, H., Lehner, W.: RSQL - a query language for dynamic
data types. In: Proceedings of the 18th International Database Engineering &
Applications Symposium, pp. 185–194 (2014)

13. Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., Aßmann, U.: A metamodel family for
role-based modeling and programming languages. In: Combemale, B., Pearce, D.J.,
Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 141–160. Springer,
Heidelberg (2014)

14. Kühn, T., Stephan, B., Götz, S., Seidl, C., Aßmann, U.: A combined formal model
for relational context-dependent roles. In: International Conference on Software
Language Engineering, pp. 113–124. ACM (2015)

15. Liu, M., Hu, J.: Information networking model. In: Laender, A.H.F., Castano, S.,
Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp.
131–144. Springer, Heidelberg (2009)

16. Mizoguchi, R., Kozaki, K., Kitamura, Y.: Ontological analyses of roles. In: 2012
Federated Conference on Computer Science and Information Systems (FedCSIS),
pp. 489–496. IEEE (2012)

Towards a Role-Based Contextual Database 103

17. Reenskaug, T., Coplien, J.O.: The DCI architecture: a new vision of object-oriented
programming. An article starting a new blog: (14pp) (2009). http://www.artima.
com/articles/dci vision.html

18. Steimann, F.: On the representation of roles in object-oriented and conceptual
modelling. Data Knowl. Eng. 35(1), 83–106 (2000)

19. Wong, R., Chau, H., Lochovsky, F.: A data model and semantics of objects with
dynamic roles. In: 13th International Conference on Data Engineering, April 1997,
pp. 402–411. IEEE (1997)

http://www.artima.com/articles/dci_vision.html
http://www.artima.com/articles/dci_vision.html

Experimentally Motivated Transformations
for Intermodel Links Between

Conceptual Models

Zubeida C. Khan1,2, C. Maria Keet1(B), Pablo R. Fillottrani3,4,
and Karina Cenci3

1 Department of Computer Science, University of Cape Town,
Cape Town, South Africa
mkeet@cs.uct.ac.za

2 Council for Scientific and Industrial Research, Pretoria, South Africa
zkhan@csir.co.za

3 Departamento de Ciencias e Ingenieŕıa de la Computación,
Universidad Nacional del Sur, Bah́ıa Blanca, Argentina

{prf,kmc}@cs.uns.edu.ar
4 Comisión de Investigaciones Cient́ıficas,

Buenos Aires, Provincia de Buenos Aires, Argentina

Abstract. Complex system development and information integration at
the conceptual layer raises the requirement to be able to declare inter-
model assertions between entities in models that may, or may not, be
represented in the same modelling language. This is compounded by
the fact that semantically equivalent notions may have been represented
with a different element, such as an attribute or class. We first inves-
tigate such occurrences in six ICOM projects and 40 models with 33
schema matchings. While equivalence and subsumption are in the over-
whelming majority, this extends mainly to different types of attributes,
and therewith requiring non-1:1 mappings. We present a solution that
bridges these semantic gaps. To facilitate implementation, the mappings
and transformations are declared in ATL. This avails of a common, and
logic-based, metamodel to aid verification of the links. This is currently
being implemented as proof-of-concept in the ICOM tool.

1 Introduction

Complex system development requires one to develop models before implemen-
tation. Such models may be too large to deal with at once, so that a modular
approach is taken to conceptual model development, and they may represented
in different modelling languages. This requires a CASE tool, or at least a mod-
elling tool, that can manage modules and assertions of links between entities in
the different modules. There are only few tools that can do this, such as ICOM
[7] and Pounamu [20], which are at the proof-of-concept level and they allow
only, at most, equivalence and subsumption among classes and among relation-
ships, but not among attributes or roles, let alone have a way to handle, say,
that an entity is an attribute in one model and a class in another.
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 104–118, 2016.
DOI: 10.1007/978-3-319-44039-2 8

Experimentally Motivated Transformations for Intermodel Links 105

In addition, modelling choices are made during the data analysis stage, such
as choosing to make an attribute a simple one, a multivalued one, a composite
one, or a class, with the canonical example being Address, and whether Marriage
should be represented as a class or a relationship. Different choices are made
in different projects for their own reasons that may have seemed good choices
at the time. However, such differences do resurface during system integration.
While some transformation rules seem intuitively trivial, because they may be
so in the general abstract sense, the conceptual and syntax aspects are tricky in
the details and they are not readily specified formally and available, not even for
models represented in the same language, let alone across modelling languages.

While it is theoretically possible to generate a huge set of links and transfor-
mations, practically, only a subset of them are needed and yet others are logically
and ontologically not feasible. This leads to the following questions:

1. Taking ‘projects’ (sets of interlinked models) from one of such tools that allows
class and relationship intermodel assertions of equivalence and subsumption:
(a) Which type of intermodel assertions are actually used? (b) How often are
they used, compared to each other and compared to the models’ sizes? (c)
Which module scenario was used? (e.g., for system integration, for manag-
ing cognitive overload). Or: What is the primary reason behind intermodel
assertions, if possible to ascertain?

2. In an integration scenario, if not constrained by the limitations of the tool
regarding the implemented types of intermodel assertions, then which links
would be used or needed, including any possible between-type intermodel
assertions?

To answer these questions, we conducted an experimental evaluation with six
ICOM projects, and added 9 more integration scenarios to it using publicly avail-
able models in different languages on the same universe of discourse, involving
40 models overall in 33 schema matchings. We describe and analyse several types
of intermodel links and for those that relate different types of entities—either in
the same conceptual data modelling language or across languages—we present a
structure that bridges the semantic gap. While this could have been formalised in
a logic, we valued applicability and therefore used the well-known Model-Driven
Engineering’s ATL-style notation [12] for the transformation specifications, and
use a common metamodel [14] to mediate between models represented in differ-
ent languages.

In the remainder of the paper we first report on the experimental assess-
ment of intermodel links in Sect. 2. The specification of the transformations is
presented in Sect. 3. We compare it with related work and justify the approach
taken in Sect. 4, discuss in Sect. 5, and conclude in Sect. 6.

2 Experimental Assessment of Intermodel Assertions

The purpose of the experimental evaluation is to analyse existing conceptual
data models on intermodel assertions among them.

106 Z.C. Khan et al.

2.1 Materials and Methods

The assessment has been designed in two complementary experiments:

1. Analyse existing intermodel assertions: (i) Collect model sets from ICOM
projects; (ii) For each project in the set: (a) analyse its contents and inter-
model assertions, by measuring most frequently linked concept type, most fre-
quently linked relationship type, and number of intermodel links; (b) Analyse
the project to determine whether it is an integration project or a module
project; (iv) Repeat steps 2–3 for each model in each set.

2. Simulated system integration scenarios:
i. Collect model sets (online-sourced) in several subject domains with each

at least two models in either UML, EER, or ORM.
ii. For each model set, link the models to the other one(s) in the set—

2 at a time—by using intermodel assertions manually, unconstrained by
whether a tool would support such links. Concerning the links, the follow-
ing decisions have been taken: (1) there are equivalence and subsumption
links; (2) those that have a 1:1 mapping regarding the metamodel [14] are
counted as ‘full’ links; (3) there are entities that are very similar (e.g., an
attribute with or without a data type, different constraints), which are
‘half’ links; (4) those links that require some transformation (e.g., class
to relationship) are ‘trans’ links; (5) concerning class hierarchies, there
also may be ‘implied’ links.

iii. Analyse the collected intermodel assertions by measuring most frequently
linked concept type, most frequently linked relationship type, number of
intermodel links, number of transformations.

iv. Repeat steps 2–3 for each model pair in each set.

The materials consisted of six ICOM projects each with intermodel asser-
tions, covering domains about telecommunications, college, governance, and
taxation created by the students at UNS. The second model set covers nine
‘projects’, each containing three models in either UML, EER, or ORM, and
each covering a different domain (bank, car insurance, flights, hospital, hotel,
library, movie, sales, and university systems).

2.2 Results and Discussion

The models and the analyses are available at http://www.meteck.org/SAAR.
html and the results are summarised and discussed in this section.

Five of the six ICOM projects contain links between two models, and one
contains links between three models. There are a total of 25 links, with an
average of 4.17 links per project. There are 194 entities in the set of projects of
which thus 25*2 = 50 entities (25 %) are linked. The links are mainly equivalence
and subsumption, with one being a disjointness link. 14 object types and 11
relationships were involved, with the breakdown as included in Table 1. Four
of these projects were created for integration purposes, and the remaining two
were created to manage cognitive overload, by splitting up large models into

http://www.meteck.org/SAAR.html
http://www.meteck.org/SAAR.html

Experimentally Motivated Transformations for Intermodel Links 107

Table 1. Total links by type for the ICOM projects and for the simulated integration
scenarios. OT = Object Type; VT = Value Type; att. = attribute; id. = identifer.

Link type Subdivision Comments

Links that can be declared in ICOM (projects/scenarios)

Equivalence (6/106) Among OTs (4/72) Probably fewer logically

Among attributes (0/26)

Among relationships (2/8)

Subsumption (18/27) Among OTs (9/16)

Among relationships (9/11) Due to cardinality
constraint differences

Disjointness (1/1) Among OTs (1/1)

New link types (scenarios only)

‘Half’ links (64) ‘Missing datatype’ between
ER and UML (56)

Relationship constraint
mismatch (4)

Neither subsumption nor
equivalence

Composite attribute ‘leaves’
(2)

Attribute constraint
mismatch (2)

Both UML attribute,
different cardinality

Implied subsumption (12) Excluding the hospital
models, where it was
too confusing to do
manually

Transformation links (48) Attribute - Identifier (18) UML attr. vs ER/ORM id.

Attribute - VT (13)

Attribute - OT (5)

Weak OT - OT (4)

Composite - Attribute (3)

Relationship - Aggregate (2)

Relationship - OT (1)

Associative OT - OT (1)

OT - Nested OT (1)

separate subject domain modules. An example of the latter is the project about a
telecommunication data warehouse and a model with customer call information.

In order to uncover information about conceptual data model modules, we
classify these projects according to the framework for ontology modularity [15].
This module classification is used to determine use-cases for creating modules,

108 Z.C. Khan et al.

Table 2. Classifying the ICOM projects using the framework for modularity.

Use-case Type Technique Property

Cognitive overload
projects

Maintenance Subject domain A priori Pre-assigned no.
of modules

Validation

Collaboration Overlapping

Reuse

Integration projects Comprehension High-level
abstraction

Manual Source model

Proper subset

(Depth)
Abstraction

techniques that are used to create the modules, and properties that the modules
exhibit. The projects on cognitive overload correspond to the subject domain
modules of the framework where the conceptual model is subdivided according
to the subject domains; the projects on system integration correspond the high-
level abstraction modules of the framework; further details are shown in Table 2.

For the projects created for integration, the most frequently linked relation-
ship type is split equally between equivalence and subsumption, and the most
frequently linked entity is split equally between object type and relationship for
the four projects. For the projects created for managing cognitive overload, the
most frequently linked relationship type is subsumption, and the most frequently
linked entity is split equally between object type and relationship.

Now we consider the simulated integration scenarios. An example of man-
ually aligned models is shown in Fig. 1, where the solid lines link entities of
the same type (e.g., the object types er:Airplane and uml:Aircraft), the long-
dashes dashed lines link semantically very similar entities (e.g., a full attribute,
as in uml:Airport.name and an attribute without data type, er:Airport.name),
and the short-dashes dashed line requires some transformation, such as between
er:Airplaine.Type (an attribute) and uml:Aircraft Type (a class) and between
er:Air-port.Code (an identifier, without data type) and uml:Airport.ID (a plain
attribute, with data type). In these projects, there are 9.5 links in each 2-model
integration scenario (a total of 257), with the model size alike depicted in Fig. 1.

The aggregates of the types of entities involved in the intermodel assertions
follow from the data included in Table 1. Attributes are the ones involved most,
with 119 in the ‘source’ and 108 in the ‘target’. However, they are also the ones
that occur most—by a large margin—in UML Class Diagrams and EER dia-
grams [13], and, as can be seen also from Fig. 1, once a class can be linked, there
typically are also one or more attributes that can be linked.

As summarised and illustrated above, we identify two main kinds of links:
those that relate elements that are homogeneous in the unifying metamodel [14],

Experimentally Motivated Transformations for Intermodel Links 109

ID
name

Airline
ID
arrival_time
departure_time

Flight

AIRPLANE

TypeSeatsReg No

AIRPORTLANDS
ON

Code

Name

Country

City

AIRLINES

OWNED
BY

FLIES

FLIGHT

A name

Code

Flight

Arr_time Dep_time

Dep_dateArr_date

To

From

Class

TRAVELS
ON

HAS
BOOKING

BOOKING
OFFICE

BOOKS
TICKET

1

NM

N

1

N

N1

1
N

id

name

ID
name

Airport

name
repair
landed

Aircraft

name
Aircraft Type

name
Pilot

Pilot3 Pilot2

Pilot1

1

1

1

1

*

*

*
*

*
*

*

1

1

*

*

*

*

1..n

2..n

o ers

owns

arrives to

departs from

uses Driven by

is of

Navigator of

Copilot of
Captain of

Fig. 1. The intermodel assertions between the EER and UML Flights models. Solid
curvy line: links entities of the same type; long-dashes dashed line: links entities that
are semantically very similar; short-dashes dashed line: requires some transformation.

and those transformations that relate heterogeneous metamodel elements. The
former are further classified into traditional equivalence, subsumption and dis-
jointness links between compatible elements, which preserve the semantics of
each individual model. These links cover more that half of the identified links
(see Table 1), and relate compatible homogeneous entities of the original, pos-
sibly heterogeneous, models in the metamodel mappings; e.g., UML Class and
EER and ORM Entity type are the same. They are homogeneous in the meta-
model because they are instances of the same type, i.e., object type, attribute, or
relationship, and they are compatible because they exhibit coherent properties,
e.g., both attributes are ids, or the subsumed relationship has a more specific car-
dinality constraint than the containing one. Both original models maintain their
respective semantics without changes. ‘Half links’ are 24.8 % of the total number
of links, relating homogeneous entities that do not exhibit compatible properties
or constraints. The types of the mismatch in these constraints are described in
Table 1. These ‘half’ links may be represented by equivalence axioms, but one
or both original models then would have to be updated with new constraints.
Any supporting tool, ideally with the aid of an automated reasoner, will have
to notify the conceptual modeller of these updates in order to decide on their
relevance for each model. Finally, the least common type of homogeneous links
are already implied subsumption by the models semantics. These links do not
need any new axiom and can be handled by an automated reasoner. The links
representing transformations are analysed in next section.

110 Z.C. Khan et al.

3 Entity Transformations

Many options exist to specify transformations both at the level of overall archi-
tecture, and for each component in the architecture, which logics, implemen-
tation languages, and technologies. Generally, for intermodel assertions, there
are two input models with some intermodel assertions, a (formalised) meta-
model that the entities in the models are mapped into, the transformation rules,
and then the final check that the output of the rules indeed matches with the
other model. An orchestration to execute and verify the intermodel assertions
is depicted in Fig. 2, where we focus on an architecture for checking the links.
There is already a mapping from each type of entity into the metamodel and
back in the form of a table [14] and basic rules [6], so that, instead of defining
very many transformation rules between individual languages in a mesh struc-
ture, one simply can classify a model element into the metamodel, especially
when the metamodel drives the modelling environment. This is therefore not
further elaborated on in the model mappings.

For transformation rules, we consider principally those that are across lan-
guages, that require type conversions, which are not covered by regular mappings
(like in [6]), those that can appear between entities that occur most often in
conceptual models. The latter is based on the experimental evaluation reported
in [13] of 101 UML class diagrams, ER/EER, ORM/ORM2 models. They are
mainly Object type, binary Relationship, Attribute (with the attribute-value type
conversion as specified in [6]), Single identifier, Mandatory constraint, Object type
cardinality, and Subsumption between object types. The rules assume that the
models, called Model1 and Model2, are syntactically correct. This means that,

map entities of M1 and
M2 into MM

input model M1
and M2 in language

X and Y, resp.

algorithms

output model M12
or NO

ISBN:string
Author:string

Book

Author
(ID) name

has

ISBN:string
Author:string

Book

Author
(ID)

name
has

vocabulary +
list of entities to map,

transform, approximate,
or not

formalised
metamodel

Book
(ISBN)writes

Book
(ISBN)writes

input inter-model
assertions

process inter-model assertion using the
transformation rules and compare

output with element in M2

Fig. 2. General approach for validating intermodel assertions (based on [6]).

Experimentally Motivated Transformations for Intermodel Links 111

rule Att<-->OT {
from

a : Model1.MM!Attribtue (a.range(dt)),
o : Model2.MM!ObjectType

to
newO : InterModel.MM!ObjectType (newO.hasAttribute <-- a1),
a1 : InterModel.MM!Attribute (a1.domain <-- newO,

a1.range<--dt, a1.of <-- co),
e : InterModel.MM!EqualityConstraint(e.declaredOn(a),

e.declaredOn(a1)),
co : InterModel.MM!CardO (co.cardinalityConstraint <-- cc,

co.attribute <-- a1, co.objectType <-- newO),
sid : InterModel.MM!SingleIdentification (sid.declaredOn <-- a1,

sid.identifies <-- newO, sid.mandatory <-- mc),
m : IntereModel.MM!Mandatory (m.declaredOn <-- a1.contains),
cc : InterModel.MM!CardinalityConstraint (cc.maximumCardinality <-- 1,

cc.minimumCardinality <-- 1),
s : InterModel.MM!Subsumption (s1.super <-- newO, s1.sub <-- o)

}

Fig. 3. Attribute ↔ Object Type transformation specified as an ATL rule.

Fig. 4. Graphical rendering of the rule Attribute↔Object Type output; see text for
details.

e.g., in the attribute to object type rule, an attribute indeed is a binary relation-
ship between an object type C and a data type D. The main design objective
of these rules is that we only allow equivalence, disjointness, and subsumption
axioms between homogeneous metamodel entities. To do so, we introduce a third
model, called Intermodel, that keeps all intermediate metamodel entities that
are necessary to implement the transformation rule, which is a proper fragment
of the complete metamodel. This implies that the original link has no direction,
without source and target models. It is just a link relating entities in two models,
and we have to cope with this difference.

Prioritising the rules that are useful based on the most used entities, we
describe the rules for Attribute ↔ Object type, Attribute ↔ Single identifier, Object
type ↔ Relationship, and Weak Object Type ↔ Object Type, whereas the rule for
Attribute ↔ Value type has been presented already in [6]. The here omitted
transformations can also be described as ATL rules.

In the Attribute ↔ Object Type rule, an attribute A �→ C × D becomes an
object type A′ with a new stub attribute a �→ A′ × D and has a relationship R
to an object type C. The rule in ATL-style notation is depicted in Fig. 3, and
the intuition of the rule is depicted in Fig. 4. It introduces a new object type
(newO) in InterModel, which is a “proxy” element for the object type and it is
identified by the new attribute a1 which is equivalent to the original attribute a

112 Z.C. Khan et al.

rule Att<-->ID {
from

a1 : Model1.MM!Attribtue (a1.domain(o1)) ,
a2 : Model2.MM!Attribute (a2.range(dt), a2.domain(o2)),
ic2 : Model2.MM!IdentificationConstraint (ic.declaredOn(a2),

ic.identifies(o2)),
to

e : InterModel.MM!EqualityConstraint(e.declaredOn(a1),
e.declaredOn(a1)),

ic : InterModel.MM!IdentificationConstraint (
ic.declaredOn(a1), ic.identifies(o1)),

co : InterModel.MM!CardO (co.cardinalityConstraint <-- cc,
co.attribute <-- a1, co.objectType <-- o1),

cc : InterModel.MM!CardinalityConstraint (
cc.maximumCardinality <-- 1,
cc.minimumCardinality <-- 1),

m : InterModel.MM!Mandatory (m.declaredOn <-- a1.contains,
a1.contains.plays <-- dt)

}

Fig. 5. Attribute ↔ Id transformation specified as an ATL rule.

rule OT<-->Rel {
from

o : Model1.MM!ObjectType,
r : Model2.MM!Relationship

to
newRel : InterModel.MM!Relationship (newRel.contains(newRol)),
newRol : InterModel.MM!Role (newRol.linkedTo(rp)),
cc : InterModel.MM!CardinalityConstraint (

cc.maximumCardinality <-- 1,
cc.minimumCardinality <-- 1, cc.of(rp)),

rp : InterModel.MM!RolePlaying (rp.plays(o)),
s : InterModel.MM!Subsumption (

s.super(newR), s.sub(r))
}

Fig. 6. Object Type ↔ Relationship transformation specified as an ATL rule.

from Model1. The specification of a1 includes its domain, range, and the fact that
it is an identifier for newO. The latter is characterised by a SingleIdentification
constraint (a mandatory and a 1:1 cardinality constraint between the attribute
and the object type). A subsumption between newO and the original object type
o in Model2 closes the connection between the original two elements.

Any automated reasoning results on each of the (formalised) original models
—obtained by, e.g., a Description Logic-based reasoner—do not change by this
transformation rule. Considering the three models together, we have a one-to-
one correspondence between attribute values and object type instances. In case
the connected object type exhibits additional constraints that are not consistent
with the identification constraint in its attribute, an automated reasoner would
detect the inconsistency of the conjoining model, and the tool would suggest the
user to remove it or change the constraints.

The Attribute ↔ Single identifier rule is shown in Fig. 5. There is a ‘silent’
data type (placeholder), so only the equality between the attributes and
the identification constraint for the non-key attribute has to be added to
InterModel. A mandatory and 1:1 cardinality constraints must also be included.

Experimentally Motivated Transformations for Intermodel Links 113

rule WOT<-->OT {
from

w : Model1.MM!WeakObjectType,
o : Model2.MM!ObjectType

to
newO : InterModel.MM!ObjectType,
s1 : InterModel.MM!Subsumption (

s.super(o), s.sub(newO)),
s2 : InterModel.MM!Subsumption (

s.super(newO), s.sub(w))
}

Fig. 7. Weak Object Type ↔ Object Type transformation specified as an ATL rule.

Reasoning services on the conjoining three models would result in an equivalence
axiom between the containing object types. In case constraints attached to both
attributes are not consistent, the tool would suggest either to remove the rule
or to modify the constraints.

Regarding the Object type ↔ Relationship transformation, the rule introduces
in InterModel a new Relationship newR and a new Role newRol that holds a
unique 1:1 role attached to the object type (see Fig. 6). The original relationship
is subsumed by this new relationship. Subtle issues relating participating con-
straints for the original object types and relationships may arise when reasoning
is applied to the conjoining three models, and several changes may be suggested
by the tool. For example, new cardinality constraints, subsumption, or equiva-
lences may appear, in addition to inconsistencies between them. This shows the
necessity in the tool for both graphical editing and reasoning services.

Finally, the Weak Object Type ↔ Object Type transformation involves creat-
ing in Intermodel a new object type which inherits the identification constraints
of the original object type in Model2, and making it a subsumee of the weak
object type. The rule is shown in Fig. 7.

All the rules described here, as well as those rules of the ‘half’ links type,
involve possible updates in the original models after reasoning over the whole
set of models that essentially form one logical theory in the background. Con-
straints from one model may propagate to the other through the proposed links.
A conceptual model design tool that follows this approach will have to present
the changes to the user together with supporting justifications and the designer
would have to decide to accept the changes, or delete the links.

To conclude this section, it is important to remark that we have shown a
way to specify common transformation links between heterogeneous entities in
different conceptual models, in a first step without altering their meaning. The
transformations are specified as ATL rules, showing its feasibility for represen-
tation in any other related formalism. These rules together with the policy in
covering the rest of the links described at the beginning of this section, cover
the most important links identified in our experiment.

114 Z.C. Khan et al.

4 Related Work

The general problem addressed in this paper is not new, especially works on
1:1 transformations, but there are scant results on intermodel assertions across
conceptual data modelling languages and pairing different types of element in a
sound way. Atzeni et al. [1] has similarities to our approach, in the sense of using
a “supermodel”, but a scope of only transforming, say, an ER model into a UML
Class diagram—rather than also intermodel assertions between them—and no
‘type transformations’. It also covers fewer types of entities, and glosses over
subtle issues such as ER’s identifier and a UML attribute that ought to have
had an {id}. Their follow-up paper provides an in-depth formal framework to
handle rules with Datalog and reason over them [2], which may be useful, but not
the rules either, i.e., not what exactly should be verified. The other, and more
application-oriented, system is the Pounamu tool for visual modelling [20], which
perhaps could be extended with the here presented transformation rules, pro-
vided the metamodel would be extended with the more recent language features
(like UML’s {id}) and the rules added. We also considered Eclipse’s metamodel
of the Eclipse Modeling Framework [https://eclipse.org/modeling/emf/], so as
to recast our metamodel and the UML, EER, and ORM2 fragments as Eclipse
models, but it is not expressive enough to represent them, and therewith con-
strain the rules. For instance, the EMF metamodel does not deal with roles,
relationships, and cardinalities, or constrain attributes to be declared only for
classes and relationships, which, however, are necessary to be declared some-
where in order to enable validation of intermodel assertions.

Concerning the representation of the rules for the entity conversions, several
proposals other than ATL exist to specify model transformations as a whole or of
certain elements. From a rigorous logic-based viewpoint, Distributed Description
Logics (DDL) might be an option, and a few types of conversions have been
defined at an abstract level, covering concept↔role and attribute↔role using
so-called “bridge rules” [9]. These two types of transformations do not cover
the full range needed for intermodel assertions in conceptual models, nor do
the DDL DLs have all the features of the main conceptual modelling languages.
Module interaction with a logic-based approach has been investigated for the
Semantic Web as well. OWL itself only supports whole-module imports [18],
however, and applied ε-connections are used for 1:1 mappings only [4]. The
Distributed Ontology Language (DOL, http://ontoiop.org) [17] may be useful,
as it provides a language to integrate logic-based models that may be represented
in different languages. DOL was accepted for standardisation by the OMG in
March 2016 and is in the preliminary stages regarding the software infrastructure
and conformance of logics suitable for conceptual data modelling languages.

Model Driven Engineering typically uses any of graph, rule, or imperative-
based languages for model transformations, such as Triple Graph Grammars
(TGG) [10], OMG’s Query/View/Transformation (QVT) [19], and Eclipse’s
Atlas Transformation Language (ATL) [12] that is a modified version of OMG’s
OCL. QVT was designed principally for a UML-to-relational mapping, and is
thus difficult to reuse for our setting. TGG seems exceedingly suitable, but either

https://eclipse.org/modeling/emf/
http://ontoiop.org

Experimentally Motivated Transformations for Intermodel Links 115

the underlying formalism will have to be integrated with the metamodel first,
or, if the diagrammatic option is chosen, be manually redesigned for implemen-
tation in ICOM, thus requiring double work, and with its main implementa-
tion in Eclipse, then still faces those limitations as mentioned above. ATL is
implementation-oriented and tailored to handling data types, with an intuitive
notation and very similar to our implementation-independent rule-based nota-
tion of the metamodel-mediated rules-based approach [6]. Therefore, we used
ATL-style notation in the type conversion rules. While there indeed is a general
downside to ATL of having to know the metamodel (compared to the concrete
syntax-based graph transformation and Attributed Graph Grammar) [11], we do
know it and the rules have to be specified only once for system implementation,
not by users of the intermodel assertions, hence that downside is not applicable.
Purely implementation-oriented approaches, such as the type transformations
for programs using lambda calculus and Haskell [16], are too narrowly focussed
and therewith not easily adaptable to the generic conceptual modelling setting.

5 Discussion

Design decisions for each conceptual model are usually taken in the isolated
context of the application for that model. When the time arrives to integrate it
with other models, a gap between different representations must be bridged using
intermodel links. Our exploration for their usage showed that a wide variety of
links are needed, ranging from trivial equivalence to complex transformation
between model elements. For the links used, and in order to answer questions 1a
and 1b from Sect. 1, links between homogeneous entities are used most widely, of
which equivalence axioms are the majority. They are followed by the ‘half-links’,
subsumption, transformation, implied subsumption, and disjointness. From the
point of view of tools, currently there is lack of support for all of these links The
diversity of these links shown in Sect. 2 make it necessary for tools to improve
the assistance in developing the correct balance between a coherent and close
model integration and the preservation of each individual model semantics.

The experimental evaluation also showed that with actual projects, subsump-
tions are used most, while the integration simulation scenarios brought to the
fore the links between attributes—not available in tools—with as close second
object types, and there were many more equivalences in the integration scenarios
than in the ICOM projects. This difference may be attributed to the low number
of projects and, perhaps (not tested), the modeller. The experimental evaluation
projects were created for either integration purposes or modules for managing
cognitive overload. Both equivalence and subsumption are considered the most
frequently linked relationship type for the integration projects while subsump-
tion is the most frequently linked relationship type for the cognitive overload
projects, thus, for the ICOM projects, there is no significant correlation between
the type of project and the links in them.

The main issues with links between elements in the models revolved around
attributes, with mismatches on datatype and cardinality. We had expected more

116 Z.C. Khan et al.

Attribute ↔ Object type and Relationship ↔ Object type across-type links, as
such decisions feature prominently in the modelling process. Why this is not
the case is an aspect of further investigation. One could evaluate more models,
though the number was substantial in the experiment, and perhaps retrieve real
models from industry. That said, one faces a chicken-and-egg problem with the
experimental approach in this case: if the feature is not available—such as the
advanced intermodel links—then it will not be used so will be hard to find, and
one would need a tool to check whether the links in the scenarios are correct,
but the counting of the links needs to feed into the tool development so as to
assert them.

Most of the rules can be easily incorporated in integration tools with sub-
sumption, equivalence, and disjointness axioms between homogeneous elements.
However, there is still space for complex rules that require more elaborate mech-
anisms in order to be supported. The ATL rules in Sect. 3 express these mecha-
nisms in an implementation-oriented way.

Rule results are represented in a separate, intermediate model which holds all
new elements. This scheme allows for both preserving each model semantics while
making feasible a closer integration. Close integration with reasoning services are
necessary for tools in this case so as to go beyond the syntax and semantics of the
modelling languages and also deduce useful information about the consistency of
the linked model. ATL rules can be easily modified or extended in case the result
patterns require different translations. In this light, connections with ontology
patterns [5] are left as possible future work.

A general issue with model transformation is testing for correctness [3] to
answer the question: will the metamodel + ATL rules do the right thing? While
our metamodel is complex, it is formalized for easier processing where its con-
straints direct the checking of the intermodel assertions [6]. For the basic trans-
formation rules, an implementation to compare transformation outputs with an
oracle—deemed a problem in [3]—will not be an issue practically despite that the
graph isomorphism problem is NP-complete, because the scope of an intermodel
assertion is a small fragment of the model localized to the entities involved in
that intermodel assertion, not the whole model. We are currently implementing
the first step—models related to the metamodel—in the ICOM tool [8].

Regarding verification of the models, it is possible to use the metamodel to
verify the models’ syntax and send the portion of the models that fall within
a suitable decidable fragment of first order logic to the automated reasoner to
detect inconsistencies and other deductions, which is already possible in ICOM
[7]. While not all language features can be formalised in a decidable language,
most of those computationally thorny features (e.g., antisymmetry) are not used
anyway [13], hence, this is a feasible solution.

Finally, while the details are becoming quite tedious, it will result in an easy
interface that hides all the technicalities, syntax, and ontological issues, so that
the modeller can focus on the universe of discourse.

Experimentally Motivated Transformations for Intermodel Links 117

6 Conclusions

Intermodel assertions are typically more equivalence than subsumption asser-
tions, and mainly among classes and among attributes. When the modeller has
the flexibility, there are also links between different types of language features,
such as attribute↔value type, attribute↔object type, and plain attribute ↔
composite attribute. To be able to handle such assertions in a modelling tool,
we availed of the unifying metamodel and creatively used the ATL language in
particular to declare rules for the intermodel assertions, thereby bridging this
semantic gap. This is achieved by transforming the relevant fragment of the
source models into a temporary ATL target model that is a proper fragment of
the metamodel in order to check whether the assertion is acceptable. We are cur-
rently implementing a proof-of-concept of this approach by extending the ICOM
tool. We also aim to work on a proof of correctness of transformation rules.

Acknowledgments. This work is based in part upon research supported by the
National Research Foundation of South Africa (Project UID90041) and the Argen-
tinean Ministry of Science and Technology.

References

1. Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P.A., Gianforme, G.: Model-
independent schema translation. VLDB J. 17(6), 1347–1370 (2008)

2. Atzeni, P., Gianforme, G., Cappellari, P.: Data model descriptions and translation
signatures in a multi-model framework. AMAI 63, 1–29 (2012)

3. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.: Barriers
to systematic model transformation testing. Comm. ACM 53(6), 139–143 (2010)

4. Grau, B.C., Parsia, B., Sirin, E.: Combining OWL ontologies using ε-connections.
J. Web Sem. 4(1), 40–59 (2006)

5. Falbo, R.A., Guizzardi, G., Gangemi, A., Presutti, V.: Ontology patterns: clarifying
concepts and terminology. In: Proceedings of OSWP 2013 (2013)

6. Fillottrani, P.R., Keet, C.M.: Conceptual model interoperability: a metamodel-
driven approach. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS,
vol. 8620, pp. 52–66. Springer, Heidelberg (2014)

7. Fillottrani, P.R., Franconi, E., Tessaris, S.: The ICOM 3.0 intelligent conceptual
modelling tool and methodology. Semant. Web J. 3(3), 293–306 (2012)

8. Fillottrani, P.R., Keet, C.M.: A design for coordinated and logics-mediated con-
ceptual modelling. In: Proceedings of DL 2016, (in print). CEUR-WS, pp. 22–25,
Cape Town, South Africa, April 2016

9. Ghidini, C., Serafini, L., Tessaris, S.: Complexity of reasoning with expressive ontol-
ogy mappings. In: Proceedings of FOIS 2008, FAIA, vol. 183, pp. 151–163. IOS
Press (2008)

10. Golas, U., Ehrig, H., Hermann, F.: Formal specification of model transformations
by triple graph grammars with application conditions. Elect. Comm. EASST 39,
26 (2011)

11. Grønmo, R., Møller-Pedersen, B., Olsen, G.K.: Comparison of three model trans-
formation languages. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 2–17. Springer, Heidelberg (2009)

118 Z.C. Khan et al.

12. Jouault, F., Allilaire, F., Bzivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

13. Keet, C.M., Fillottrani, P.R.: An analysis and characterisation of publicly available
conceptual models. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L.,
López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 585–593. Springer, Heidelberg
(2015)

14. Keet, C.M., Fillottrani, P.R.: An ontology-driven unifying metamodel of UML class
diagrams, EER and ORM2. Data Knowl. Eng. 98, 30–53 (2015)

15. Khan, Z.C., Keet, C.M.: An empirically-based framework for ontology modular-
ization. Appl. Ontol. 10(3–4), 171–195 (2015)

16. Leather, S., Jeuring, J., Lh, A., Schuur, B.: Type-changing rewriting and semantics-
preserving transformation. Sci. Comp. Prog. 112, 145–169 (2015)

17. Mossakowski, T., Kutz, O., Codescu, M., Lange, C.: The distributed ontology,
modeling and specification language. In: Proceedings of WoMo 2013. CEUR-WS,
vol. 1081, Corunna, Spain, 15 September 2013

18. Motik, B., Patel-Schneider, P.F., Grau, B.C.: OWL 2 web ontology language: direct
semantics. W3C recommendation, W3C, 27 October 2009. http://www.w3.org/
TR/owl2-direct-semantics/

19. Object Management Group: Meta Object Facility (MOF) 2.0 -
Query/View/Transformation Specification. http://www.omg.org/spec/QVT/
1.2

20. Zhu, N., Grundy, J., Hosking, J.: Pounamu: a metatool for multi-view visual lan-
guage environment construction. In: Proceedings of VLHCC 2004, Rome, 25–29
September 2004

http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.omg.org/spec/QVT/1.2
http://www.omg.org/spec/QVT/1.2

AQL: A Declarative Artifact Query Language

Maroun Abi Assaf1(&), Youakim Badr1, Kablan Barbar2,
and Youssef Amghar1

1 University of Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205,
69621 Lyon, France

{maroun.abi-assaf,youakim.badr,

youssef.amghar}@insa-lyon.fr
2 Faculty of Sciences, Lebanese University, Fanar Campus,

Jdeidet, Lebanon
kbarbar@ul.edu.lb

Abstract. Business Artifacts have recently emerged as a compelling paradigm
to develop data-centric processes, supporting flexible and knowledge intensive
business processes. Artifact-centric process models, as an alternative to prede-
fined activity-centric process models, are easy to be understood and managed by
non-IT specialists. Artifacts are also complex entities, which include information
models, states, services and transition rules. They interact with each other,
updating their information models and evolve following their lifecycles. Despite
the increasing glamour that was raised on artifacts from research and business
communities, the lack of expressive languages to manipulate and interrogate
them, limits their widespread usage. In this paper, we define a declarative
Artifact Query Language (AQL) that relies on a relational schema to define,
manipulate, and query artifact types. The AQL takes full-advantage of the
well-established SQL to manipulate the relational schema and relieves casual
users from the need to directly deal with SQL’s statements and the underlying
relational model (i.e., relations, keys constraints, and constructing complex
queries).

Keywords: Artifact types � Domain specific languages � Query languages �
Compilers � SQL abstraction layer

1 Introduction

Traditionally, business processes have been modeled as workflows of activities. The
primary disadvantage of such approach is the separation between data models and
process aspects of businesses [5]. An alternative and more recent approach is the
artifact-centric process modeling approach [14], which combines both data and their
manipulation into cohesive and modular units known as business artifacts or artifact
types in a broad sense. The artifact-centric approach demonstrates many advantages
and benefits including; enabling a natural modularity and componentization of business
processes, facilitating business transformations and organizational changes and pro-
viding a framework of varying levels of abstraction to develop business processes to
name a few [5, 8]. On the other hand, being complex entities, artifacts require suitable

© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 119–133, 2016.
DOI: 10.1007/978-3-319-44039-2_9

methods and technologies in order to be implemented and treated efficiently.
Nonetheless, artifacts have attracted much attention from the research communities.
Few initiatives attempt to manage them recently as graphical-based models (i.e. Arti-
flow) or as data objects using relational databases (SQL) or data-centric dynamic
system (DCDS) [7, 16]. Since artifacts are complex models, including attribute-value
pairs information model, state-based lifecycles, and transitions that invoke services to
move artifacts from a current state to a new state of their lifecycle. These initiatives
show their limits and do not allow end-users to benefit from the full potential and
flexibility that artifacts can provide. In fact, graphical-based models often focus on
defining and running artifact processes. They are thus not convenient for querying
artifacts. However, using relational databases to manage artifact structures require
nested and tedious queries taking into account table relationships, constraints, depen-
dencies and their keys. As a result, a declarative and expressive artifact language
becomes essential to efficiently manage artifact types. Such language opens an era for
using artifacts beyond business processes and builds new class of applications in
various domains. For example, artifact types can represent connected devices or urban
entities in the context of smart cities.

An artifact specific language should be compatible with the artifact model. Firstly,
it should consider that an artifact, as a cohesive entity, could be created, updated or
dropped as the need arises. Moreover, artifacts have to interact with each other through
events in order to exchange necessary information and update their lifecycles. Sec-
ondly, artifacts must evolve in a state-based lifecycle starting at an initial state, passing
in intermediate states, and ending in one of their final states. As a result, an artifact
specific language should not only meet all these requirements and challenges but it
should also be simple enough in order to be used by non-IT specialists within and
beyond business processes.

In this paper, we propose the Artifact Query Language (AQL) that is specifically
designed to take full advantage of the artifact model. The AQL is a high-level
declarative language that deals with defining and manipulating artifacts at the business
logic level. It is based-on the SQL and extends it with artifact domain specific state-
ments. The AQL relieve users from dealing with multiple tables, primary and foreign
keys constraints, and constructing complex SQL queries that include joins and nested
sub-queries. As a result, The AQL is intended to be used by non-IT specialists and
enables them to write queries that focus on the artifact logic instead of dealing with
technical details related to SQL and artifact complex structure management. Moreover,
the AQL can co-exist with graphical based artifact systems such as Artiflow [16]. The
proposed AQL is an abstraction layer over SQL and translates all its queries into
underlying SQL queries. The semantics of the AQL is thus expressed in terms of the
relational model.

The remaining of the paper is organized as follows. Section 2 describes the syntax
of AQL and provides query examples. Section 3 presents the semantics of AQL
expressed in terms of the relational model whereas Sect. 4 illustrates the prototype
implementation. Related works and similar initiatives are discussed in Sect. 5. Finally,
Sect. 6 concludes the work and provides future perspectives.

120 M. Abi Assaf et al.

2 Syntax

The Artifact Query Language (AQL) is a high-level language that is based-on the
relational database SQL. Since it is an abstraction layer over SQL, it follows the syntax
of SQL statements, with some variations, but provides a simplified syntax that is
translated into SQL queries. The AQL consists of the Artifact Definition Language
(ADL) to define artifact classes, and the Artifact Manipulation Language (AML) to
manage artifact instances.

Thus, ADL includes a statement to define artifact classes. For example, the Create
Artifact statement allows the definition of a list of simple and complex data attributes,
references to child artifact classes, and a list of states, representing stages of artifact
lifecycles [4]. As for the AML, it includes statements to instantiate, manipulate and
interrogate artifact instances. For example, the New statement instantiates new artifact
instances; the Update statement updates simple attribute types and states; the Insert
Into and Remove From statements are used to insert and remove (business) objects
(complex attributes values) and child artifacts (reference attributes values) respectively
into and from artifacts; the Delete statement deletes artifact instances altogether from
the database; the Retrieve statement retrieves artifact instances that meet conditions.

In the following sections, we first describe a scenario to illustrate the AQL with
query examples for each of its statements. We secondly introduce in details the syntax
of ADL and AML statements.

2.1 Example Scenario

In order to illustrate the AQL queries through a scenario, we define business processes
related to the candidate admission application in an academic program. In this scenario,
the business process in a university begins with the candidate submitting his applica-
tion to the secretary of the Master program. The secretary creates a new application file
to process the candidature and records personnel information such as; first name, last
name and age. The secretary then collects and scans required documents including a
CV, diplomas, and motivation letters. If all required documents are presented, the
secretary marks the application as complete, otherwise the application is marked as
incomplete and is rejected. After that, the master program chair inspects all complete
applications and checks if they are eligible. If an application is not eligible, the can-
didature is rejected; otherwise the candidate is selected to be interviewed by academic
committee members on a specified date and location. During the interview, notes and
decisions about the candidate are taken by the committee members. If needed, addi-
tional interviews can also be scheduled for the same candidate. Finally, interviews are
evaluated and decisions are made about whether candidates are accepted or rejected.

We identify two artifacts in the candidate admission process; (1) The Candidate
Application Artifact (CAA), which deals with processing candidate applications and
tracks various decisions made about them, and (2) The Candidate Interview Artifact
(CIA), which deals with interviewing candidates, collecting and evaluating interviews’
information. In the following sections, we rely on these artifacts to formulate query
examples.

AQL: A Declarative Artifact Query Language 121

2.2 Artifact Definition Language

The Artifact Definition Language (ADL) is used to define an artifact class or artifact
type with respect to the artifact model. It consists of a list of data attributes and a list of
states. Data attributes can be of three types: simple type, complex type, and reference
type.

1. The simple attribute types represent simple types such as Boolean, Integer, Real or
String. Simple attribute can only store one value at a time. For example the
FirstName attribute type in the Candidate Application Artifact may have the string
value “John.”

2. The complex attribute types represent complex structures that are made up of one or
more simple attribute types. These complex structures describe the (business) ob-
jects that can be inserted and/or removed from artifacts. For example, the Docu-
ments complex attribute type in the Candidate Application Artifact is formed from a
tuple of three simple attribute types: Type, Title, and URL. Complex attribute types
have a cardinality of one or many. For example, several Documents can be inserted
into the Candidate Application Artifact.

3. The reference attribute types in a master artifact represent references to child arti-
facts related to the master artifact. Reference attribute types have a cardinality of
one or many. In other words, a reference type attribute can store a list of references
to several artifact instances. For example, an Interviews reference attribute type in
the Candidate Application Artifact refers to the Candidate Interview Artifact and
thus, may have a list of one or more references to Candidate Interview Artifact
instances.

4. In addition, the list of states in the artifact class describes possible stages of the
artifact’s lifecycle. These states include initial, final, or intermediate states. An
artifact instance can only be in one state of its lifecycle at a time. For example, the
Candidate Interview Artifact instance may have the accepted state during its
processing.

The Create Artifact statement is illustrated in Fig. 1(a) and shows the example of
defining the Candidate Application Artifact (CAA). ApplicationArtifactId, FirstName,
LastName and Age are simple attribute types. Documents is a complex attribute type.
Whereas Interviews is a reference attribute type pointing to the Candidate Interview
Artifact (CIA). Initialized, Created, Rejected, Complete, Interviewed, and Accepted
denote states of its artifact lifecycle in which Initialized is the initial state, Rejected and
Accepted are two final states, and remaining states are intermediate states. Figure 1(b)
illustrates the grammar of the Create Artifact Statement.

2.3 Artifact Manipulation Language

The Artifact Manipulation Language (AML) consists of six statements to instantiate,
modify and retrieve artifact instances.

122 M. Abi Assaf et al.

2.3.1 Instantiate Statement
Since artifacts denote complex data structures that are composed of simple, complex
and reference attribute types and a list of states, several tuples must be inserted into two
or more tables in the underlying relational database when creating new artifact
instances. The traditional SQL’s INSERT statement is thus not sufficient to create
several tuples. Hence, the New statement instantiate a new artifact instance and ini-
tializes its attributes values and state.

The New statement exhibits several modes of uses. The first mode creates a new
artifact instance and initializes some of its simple attributes as illustrated in Fig. 2(1)
where a Candidate Application Artifact instance is created with 100543 as the value of
its ApplicationArtifactId attribute. Additionally, its state is automatically initialized to
its initial state “initialized” as defined in the Create Artifact query in Fig. 1.

In order to initialize the artifact to a particular state, the “Set State To StateName”
clause must be used as illustrated in Fig. 2(2) where in addition to initializing the
ApplicationArtifactId, FirstName, LastName and Age, the state is initialized to “Cre-
ated”. The New statement can also be used to initialize complex attributes as illustrated
in in Fig. 2(3) where three documents including a CV, a diploma, and a recommen-
dation letter are inserted into the new Candidate Application Artifact instance. Finally,
the New statement can be used to initialize reference attributes as illustrated in Fig. 2(4)

Fig. 1. Create artifact statement

Fig. 2. New query examples

AQL: A Declarative Artifact Query Language 123

where two references to Candidate Interview Artifact instances with InterviewArtifactId
respectively equal to 205465 and 206721 are inserted into the new CandidateAppli-
cationArtifact instance. Figure 3 illustrates the grammar of the New statement.

2.3.2 Modification Statements
Modification of artifact instances can be performed at several levels: (1) update simple
attribute values, (2) update states, (3) update tuples of complex attributes, (4) insert or
remove tuples of complex attributes, (5) insert or remove references to child artifacts,
and finally (6) delete artifact instances.

First, simple attribute values of artifact instances can be updated as in SQL using
the Update statement as illustrated in Fig. 4(1). Similarly, the states of artifact instances
can be updated using the Update statement as illustrated in Fig. 4(2).

In this case, the “Set State To StateName” clause is used to specify the new state.
Finally, modifications of tuples of complex attributes are also performed using the
Update statement expressed with the “Update AttributeName In ArtifactName” clause

Fig. 3. New statement grammar

Fig. 4. Modification query examples

124 M. Abi Assaf et al.

to indicate in which artifact the complex attribute is located. Figure 4(3) illustrates an
example where the Type attribute of the document with the title “Bachelor in CS” in
the Candidate Application Artifact instance (id 100543) is updated with the value
“Certificate”.

Inserting tuples of complex attributes into artifact instances can be performed using
the “Insert AttributeName Into ArtifactName” clause to indicate in which artifact the
complex attribute is located and specifying a list of tuples to be inserted (see Fig. 4(4)).
Similarly, inserting a reference into a child artifact in a given artifact can be performed
using the Insert Into statement (Fig. 4(5)). In this case the child artifact instance is
selected using the condition specified in the “Where Condition” clause. Removing
complex attribute tuples and child artifact references from artifact instances can be
performed using the Remove From statement as illustrated in Fig. 4(6) and 4(7). The
Remove From statement functions in the same way as the Insert Into statement. Finally,
deletion of artifact instances can be performed using the Delete statement as illustrated
in Fig. 4(8). In this case, the artifact instance including its complex attributes tuples and
child artifact references are deleted. Figure 5 illustrates the grammar of modification
statements where the production rules for the WHERECLAUSE are omitted and listed
instead in Fig. 7 for readability concerns.

2.3.3 Retrieve Statement
Artifact instances and their content can be retrieved using the Retrieve statement, which
is an abstraction statement over SQL’s SELECT statement. Retrieving artifact instances
according to the values of their simple attributes and state is performed as illustrated in
Fig. 6(1). All information related to the artifact instance including the values of its
simple attributes, state, tuples of its complex attributes, and artifact instances of its
reference attributes are retrieved by default. The “Only” keyword restricts the retrieval
of values to simple attributes and states of the master artifact (see Fig. 6(2)). Retrieving
artifact instances according to the values of their complex attributes is performed using
the “Include” operator as illustrated in Fig. 6(3). The asterisk symbol (*) is used to
match any string of characters. In this case, the retrieved artifact instances should have
two documents with the Title respectively equal to “Bachelor in Computer Science”
and “Recommendation Letter from Professor”. Retrieving artifact instances according

Fig. 5. Modification statements grammar

AQL: A Declarative Artifact Query Language 125

to their child artifacts is performed as illustrated in Fig. 6(4). In this case, the “Having”
operator is used to specify the condition that the child artifacts should meet. Finally,
retrieving only the values of complex or reference attributes can be achieved using the
“Retrieve AttributeName From ArtifactName” clause (see Fig. 6(5) and (6)).

Figure 7 illustrates the grammar of the Retrieve statement.

3 AQL Semantics

This section defines the semantics of AQL in terms of the Relational Model. Firstly we
formalize the notion of an artifact class based on [4] and secondly we describe every
AQL statement with its operational semantics using relational model concepts as
described in [2].

We start by assuming the existence of the following pairwise disjoint countably
infinite sets: D for constants; i.e. data values. C of artifact names. A of attribute names.
STS of artifact states. Tprim of primitive types, including Boolean, Integer, Real or
String. Tcom of complex types, where elements of T com are subsets of A, and T of
types, where T ¼ Tprim [T com [C.

Fig. 6. Retrieve query examples

Fig. 7. Retrieve statement grammar

126 M. Abi Assaf et al.

We also give some simple notations for relations and relation schemas. For a given
relation schema R, we denote by schema(R) � A the set of attributes in R. The primary
key of R is denoted by key(R) � schema(R). A tuple t over R is an element of
D schema Rð Þj j, and a relation r over R is a finite set of tuples over R such that r � D|schema

(R)|. We also assume the existence of a relation states over a relation schema States used
to store information about states of lifecycles with schema(States) = {Artifact, State,
Type} and key(States) = {Artifact, State}.

We also make use of the following relational algebra operators; selection, pro-
jection, cartesian product and assignment. Selection is denoted by σc(r) where a subset
of tuples that meet condition c is selected from the relation r. Projection is denoted by
πa1,…,an(r) where the result is a relation of n attributes obtained by erasing from the
relation r the attributes that are not listed in a1,…,an. Cartesian product is denoted by
r1 × r2 where the result is a relation that combines r1 and r2. Relational algebra
expressions can be constructed using selection, projection and Cartesian product
operators in addition to mathematical union and set difference operators. Assignment is
denoted by r ← E where the result of the relational algebra expression E is assigned to
the relation r. Using the assignment operator, we can define insert, delete and update
operations on relations. Inserting a tuple t into a relation r is defined as r ← r [t.
Deleting a tuple t from a relation r is defined as r ← r − t. Updating a tuple t in a
relation r is defined as r ← r – t [t′ where t′ is the updated tuple.

3.1 Artifact Definition Language

The Create Artifact statement of ADL is used to define artifact classes according to the
structure defined in Definition 1.

Definition 1 (Artifact Class). An Artifact Class C is a tuple (C, A, τ, Q, s, F) where
C 2 C is a class name, A � A is a finite set of attributes, τ: A → T is a total mapping,
Q � STS is a finite set of states, and s 2 Q, F � Q are respectively initial and final
states.

Taking as an example the Create Candidate Application Artifact query of Fig. 1, we
would have: C = CAA, A = {ApplicationArtifactId, FirstName, LastName, Age, Docu-
ments, Interviews}, τ(ApplicationArtifactId) = Integer, τ(FirstName) = String, τ(Last-
Name) = String, τ(Age) = Integer, τ(Documents) = {Type, Title, URL} where
τ(Type) = String, τ(Title) = String and τ(URL) = String, τ(Interviews) = CIA,
Q = {Initialized, Created, Rejected, Complete, AwaitingInterview, Interviewed, Accep-
ted}, s = Initialized, and finally, F = {Rejected, Accepted}.

The defined artifact is implemented in the relational model according to the fol-
lowing semantics:

First, a relation schema Cr that represents the artifact class C is created. Cr will
contain the simple attributes of C such that schema(Cr) = {a | a 2 A and τ(a) 2 Tprim}.
In addition to two more attributes: apk = concat(C, “_PK”) is the primary key of Cr

such that key(Cr) = apk, and ast = State is the current state of the artifact. In our

AQL: A Declarative Artifact Query Language 127

example, we obtain the relation schema CAA(CAA_PK, ApplicationArtifactId, First-
Name, LastName, Age, State).

Second, for every complex attribute acom such that acom 2 A and τ(acom) 2 Tcom, we
create an associated relation schema Ar containing the simple attributes constituting
acom such that schema(Ar) = {a | a 2 τ(acom) and τ(a) 2 Tprim}. Additionally, schema
(Ar) will contain a primary key attribute apk such that key(Ar) = apk and apk = concat
(acom, “_PK”). Moreover, schema(Ar) will also contain a reference to the artifact in the
form of a foreign key afk of Cr such that afk = concat(Cr, “_FK”). In our example, we
obtain the relation schema Documents(Documents_PK, CAA_FK, Type, Title, URL).

Third, for every reference attribute aref of C such that aref 2 A and τ(aref) 2 C, we
create an associated relation schema Ar that contains the foreign keys of the parent and
child artifacts such that schema(Ar) = {aparent, achild | aparent = concat(C, “_PFK”) and
achild = concat(τ(aref), “_CFK”)}. Additionally, both foreign keys will form the pri-
mary key of Ar such that key(Ar) = {aparent, achild}. In our example, we obtain the
relation schema Interviews(CAA_PFK, CIA_CFK) which is used to store many-to-
many references between Candidate Application Artifacts and Candidate Interview
Artifacts.

Finally, for every state q of C, we insert a tuple t into the relation states such that; 1)
states ← states [{(C, q, “default”)} if q 2 Q and q ≠ s and q 62 F. 2) states ←
states [{(C, q, “initial”)} if q 2 Q and q = s. 3) states ← states [{(C, q, “final”)}
if q 2 Q and q 2 F.

3.2 Artifact Manipulation Language

We now describe the semantics of AML.

(1) The new statement instantiate artifact instances by inserting necessary tuples into
the different relations constituting the artifact. The first insert operation inserts a
tuple with values of simple attributes and artifact state into the corresponding
artifact relation: artifact ← artifact [{(kparent, v1,…, vn, state)} where kparent is
the primary key of the artifact. If the state is not specified in the query, the initial
state of the artifact is retrieved and used from the states relation using the
expression: πState(σArtifact=artifactname∧Type=‘initial’(states)). Similarly, if the state is
specified in the query, it is validated using the expression: σArtifact=artifact-
name∧State=statename(states). Then, for every complex attribute tuple, an insert
operation is performed on the corresponding complex attribute relation: attcom-
plex ← attcomplex [{(katt, kparent, v1,…,vn)} where katt is the primary key of the
inserted tuple and kparent is the foreign key of the parent artifact. Similarly, for
every reference attribute value, an insert operation is performed on the corre-
sponding reference attribute relation: attreference ← attreference [{(kparent, kchild)}.
In this case, kparent is the foreign key of the parent artifact and kchild is the foreign
key of the child artifact. kchild is retrieved according to the specified condition
using the expression: πArtifact_PK(σcondition(artifact)).

128 M. Abi Assaf et al.

(2) The update statement updates simple attributes of artifacts and complex attributes,
in addition to the states of artifacts. First, updating simple attributes and states of
artifacts is performed by retrieving the required tuple from the artifact relation
using a selection operation: t ← σcondition(artifact) where condition is the con-
dition specified in the query. Then, an update operation is performed on the
artifact relation: artifact ← artifact – t [t′ where t′ is the updated tuple. On the
other hand, updating complex attributes requires a Cartesian product operation in
order to retrieve the correct tuple from the complex attribute relation: t ← πschema

(attcomplex)(σcondition∧Artifact_PK=Artifact_FK(artifact × attcomplex). Then, an update
operation can be performed on the complex attribute relation: attcom-
plex ← attcomplex – t [t′ where t′ is the updated tuple.

(3) The insert statement inserts tuples into complex or reference attributes relations.
First, inserting a tuple (v1,…,vn) into a complex attribute is performed by
retrieving the primary key of the correct artifact using a projection and selection
operations: kparent ← πArtifact_PK(σcondition(artifact)). Then, an insert operation is
performed on the complex attribute relation as follow: attcomplex ← attcomplex [
{(katt, kparent, v1,…,vn)}. Similarly, inserting a tuple into a reference attribute is
performed by retrieving both primary keys of the parent and child artifacts using
projection and selection operations: kparent ← πArtifact_PK(σcparent(artifact)) where
cparent is the condition related to the parent artifact. And kchild ← πArti-
fact_PK(σcchild(artifact)) where cchild is the condition related to the child artifact.
Then, an insert operation is performed on the reference attribute relation as follow:
attreference ← attreference [{(kparent, kchild)}.

(4) The remove statement deletes tuples from complex or reference attribute relations.
Removing a tuple t from a complex attribute relation is performed similarly to the
update statement for complex attributes. But, a delete operation is used instead of
an update operation: attcomplex ← attcomplex − t. On the other hand, removing a
tuple from a reference attribute relation is performed similarly to the insert
statement for reference attributes. But, a delete operation is used instead of an
insert operation: attreference ← attreference − {(kparent, kchild)}.

(5) The delete statement deletes tuples from artifact relations, in addition to all related
tuples from complex and reference attribute relations. First, all tuples from all
complex and reference attribute relations are deleted as described in the remove
statement. Then similarly, the tuple corresponding to the artifact is deleted from
the artifact relation.

(6) The retrieve statement selects tuples that meet certain conditions from artifact
relations, in addition to related tuples from complex and child artifact relations.
First, tuples from the artifact relation that meet the condition on simple attributes
and state of the artifact are selected using: r1 ← σcparent(artifact) where cparent is
the condition related to the simple attributes and state of the artifact. Second, for
conditions on the complex attributes of the artifact, expressed using the “include”
keyword, further selections are performed on the Cartesian product of r1 and the
related complex attribute relation attComplex such as: σccomplex∧Artifact_PK=Arti-

fact_FK(r1 × attComplex) where attComplex is the complex attribute relation, and
ccomplex is the condition related to the complex attribute. Similarly, for conditions
on the reference attributes of the artifact, expressed using the “having” keyword,

AQL: A Declarative Artifact Query Language 129

a selection is performed on the Cartesian product of r1, the reference attribute
relation attreference, and the artifact relation artifact: σcchild∧r1.Artifact_PK=Arti-
fact_PFK∧Artifact_CFK=artifact.Artifact_PK(r1 × attreference × artifact).

4 Implementation

Using the semantics described in Sect. 3, we have implemented a compiler that
translates AQL into SQL. The compiler relies on the AQL grammar described in Sect. 2
and an extended attribute grammar that uses synthesized and inherited attributes to
generate SQL queries from AQL queries. Figure 8 illustrates an example of an AQL
production rule where AttName, AttType, AList, RefAtt, MetaType, Sal and Sql are
synthesized attributes and ArtName is an inherited attribute. In this production rule
several cases exist. (1) If the data attribute has simple type MetaType
(ATTRIBUTETYPE) ==“simple”, then it is appended to a list of simple type data
attributes Sal(ATTRIBUTE). (2) If the data attribute has complex type MetaType
(AttributeType) ==“complex”, then its CREATE TABLE SQL query is generated and
assigned to Sql(ATTRIBUTE). (3) Similarly, if the data attribute has reference type
MetaType(AttributeType) ==“reference”, then its CREATE TABLE SQL query is
generated and assigned to Sql(ATTRIBUTE).

The compiler relies on the Java Xtext framework to develop our domain-specific
language and conduct lexical and syntax analysis and code generation. It connects to a
MySQL server as a back-end database. The compiler interface translates queries written
in AQL into SQL and then executes them.

Fig. 8. Attribute grammar example

130 M. Abi Assaf et al.

5 Related Works

Artifacts have gained a lot of attention from a theoretical perspective to formally
defining artifacts and studying their properties. Many works have tackled challenges
related to lifecycle modeling, conformance, validation, verification, operational
semantics and synthesis problems [4, 5, 8]. However, there is still a lot of room for
developing artifact-based management systems. The SQL for Business Artifacts
(BASQL) introduced in [10] was a first attempt to describe SQL-like statements to
define and manipulate artifacts. BASQL still treats business artifacts as traditional
relations made of simple type attributes, and as such, instances are manipulated and
interrogated using normal SQL statements, operating on relations. On the other hand,
many works have focused on defining syntactical and graphical languages to define
artifact processes. Works in [13] have introduced the Business Entities and Business
Entity Definition Language (BEDL). The BEDL is an XML-based language that
specifies business artifact process models, including, Business Entities (or Artifacts),
Lifecycles, Access Policies, and Notifications. The BEDL only deals with defining
business artifact processes and does not introduce statements to manipulating or
interrogating business artifact instances. Business artifact processes are also defined
using Active XML (AXML) [1, 3]. A business artifact instance is written as an XML
document with embedded function calls. The business artifact process is thus executed
by invoking embedded functions and assigning their results to business artifact attri-
butes. The AXML artifact model is concerned with defining and executing the artifact
process and does not deal with manipulating and interrogating business artifact
instances. Several graphical languages and notations have been developed to define
business artifact processes. Authors in [12, 14] introduce a graphical notation to model
business artifact lifecycles as finite-state machines. This graphical notation is based on
three modeling constructs: Task, Repository, and Flow Connectors. A similar notation
is introduced in [11] where the artifact-centric model is called Artifact Conceptual Flow
or ArtiFlow (named EZ-Flow in [15]). On the other hand, business artifact lifecycles
are declaratively modeled using the Guard-Stage-Milestone (GSM) notations [6, 9]. By
using Guards, Stages and Milestones as modeling primitives, the GSM notation allows
parallelism and hierarchies in business artifact lifecycles. Roughly speaking, graphical
languages and notations focus on defining and executing business artifact processes but
they do not include statements to specifically manage business artifact instances. To the
best of our knowledge, no work, prior to this work, has focused on defining a
declarative language that specifically manipulates and interrogates artifacts with focus
on the artifact model regardless its underlying data and structure.

6 Conclusion

Artifacts, as a process modeling approach, advocate the unification of data and processes
and offer many advantages to their users. Despite recent advances in the field of artifacts,
defining, manipulating and interrogating artifacts are still in their infancy. In this paper,
we presented the Artifact Query Language (AQL) that seeks to define, manipulate, and
interrogate artifacts with declarative SQL-like statements. Future works include the

AQL: A Declarative Artifact Query Language 131

addition of statements to create business rules and services in AQL and the automatic
generation of services’ method stubs in a procedural programming language. In order to
support Artifact streams, we are seeking to extend the AQL with continuous querying
capabilities with sliding windows and apply them to high throughput real-time streams
in the context of smart cities.

Acknowledgments. This work is generously supported by the 2015 COOPERA funding pro-
gram of the Rhône-Alpes Region.

References

1. Abiteboul, S., Bourhis, P., Galland, A., Marinoiu, B.: The AXML artifact model. The 16th
International Symposium on Temporal Representation and Reasoning, pp. 11–17 (2009)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-Wesley,
Reading (1995)

3. Abiteboul, S., Segoufin, L., Vianu, V.: Modeling and verifying active XML artifacts. IEEE
Data Engineering Bulletin 32(3), 10–15 (2009)

4. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of
artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

5. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business
operations and processes. Bulletin IEEE Comput. Soc. Techn. Committee Data Eng. 32(3),
3–9 (2009)

6. Damaggio, E., Hull, R., Vaculín, R.: On the equivalence of incremental and fixpoint
semantics for business artifacts with Guard–Stage–Milestone lifecycles. Inf. Syst.l 38(4),
561–584 (2013)

7. Heath III, F(., Boaz, D., Gupta, M., Vaculín, R., Sun, Y., Hull, R., Limonad, L.: Barcelona:
A design and runtime environment for declarative artifact-centric bpm. In: Basu, S.,
Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 705–709.
Springer, Heidelberg (2013)

8. Hull, R.: Artifact-centric business process models: brief survey of research results and
challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332,
pp. 1152–1163. Springer, Heidelberg (2008)

9. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath III, F.T., Hobson,
S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P.N.: Business artifacts with
Guard-Stage-Milestone lifecycles: Managing artifact interactions with conditions and events.
In: Proceedings of the 5th ACM International Conference on Distributed Event-based
System, pp 51–62 (2011)

10. Joseph, H.R., Badr, Y.: Business artifact modeling: A framework for business artifacts in
traditional database systems. In: Enterprise Systems Conference (ES 2014), pp. 13–18
(2014)

11. Liu, G., Liu, X., Qin, H., Su, J., Yan, Z., Zhang, L.: Automated realization of business
workflow specification. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave
2009. LNCS, vol. 6275, pp. 96–108. Springer, Heidelberg (2010)

12. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and behavior using
business artifacts. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES
2007. LNCS, vol. 4495, pp. 324–339. Springer, Heidelberg (2007)

132 M. Abi Assaf et al.

13. Nandi, P., Koenig, D., Moser, S., Hull, R., Klicnik, V., Claussen, S., Kloppmann, M.,
Vergo, J.: Data4BPM, Part 1: Introducing Business Entities and the Business Entity
Definition Language (BEDL). IBM Corporation, Riverton (2010)

14. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Syst. J. 42(3), 428–445 (2003)

15. Xu, W., Su, J., Yan, Z., Yang, J., Zhang, L.: An artifact-centric approach to dynamic
modification of workflow execution. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A.,
Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M.,
Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 256–273. Springer,
Heidelberg (2011)

16. Zhao, D., Liu, G., Wang, Y., Gao, F., Li, H., Zhang, D.: A-Stein: A prototype for
artifact-centric business process management systems. International Conference on Business
Management and Electronic Information 1, 247–250 (2011)

AQL: A Declarative Artifact Query Language 133

Data Warehouse and Multidimensional
Modeling, Recommender Systems

Starry Vault: Automating Multidimensional
Modeling from Data Vaults

Matteo Golfarelli(B), Simone Graziani, and Stefano Rizzi

DISI, University of Bologna, V.le Risorgimento 2, 40136 Bologna, Italy
{matteo.golfarelli,simone.graziani2,stefano.rizzi}@unibo.it

Abstract. The data vault model natively supports data and schema
evolution, so it is often adopted to create operational data stores. How-
ever, it can hardly be directly used for OLAP querying. In this paper we
propose an approach called Starry Vault for finding a multidimensional
structure in data vaults. Starry Vault builds on the specific features of
the data vault model to automate multidimensional modeling, and uses
approximate functional dependencies to discover out of data the infor-
mation necessary to infer the structure of multidimensional hierarchies.
The manual intervention by the user is limited to some editing of the
resulting multidimensional schemata, which makes the overall process
simple and quick enough to be compatible with the situational analysis
needs of a data scientist.

Keywords: Data vault · Data warehouse design · Multidimensional
modeling

1 Introduction

Since their adoption as an enabling technology for information systems, one of
the goal of databases has been to provide a unified, integrated, and consistent
repository for all enterprise data; this repository should act has a hub for differ-
ent activities such as process coordination, auditing, historical data storage, etc.
Among the solutions devised in this direction we mention Master Data Man-
agement and ERPs in the area of operational systems; in the area of business
intelligence, Operational Data Stores and, more recently, data lakes. Another
solution that has been progressively gaining attention and diffusion since its offi-
cial release in 2000 is the data vault, a practitioner-driven proposal for designing
a database that provides long-term historical storage of data coming in from
multiple sources. The main goals of the data vault can be summarized as (i)
maximize resilience to change in the business environment when storing histor-
ical data; (ii) accommodate data regardless of their quality and of their confor-
mity to standard and business rules; and (iii) enable parallel loading so that very
large implementations can scale out without the need of major redesign. While

This work was partly supported by the EU-funded project TOREADOR (contract
n. H2020-688797).

c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 137–151, 2016.
DOI: 10.1007/978-3-319-44039-2 10

138 M. Golfarelli et al.

the 1.0 version of the data vault was strictly relational, version 2.0 (released in
2015) relies on Hadoop-Hive for delivering scalability and performance at a big
data level. However, in spite of its undeniable informative value, a data vault is
not suitable for direct multidimensional querying both for performance reasons
(it is not optimized for OLAP workloads) and because it is hardly supported by
OLAP front-ends.

In this paper we propose an approach called Starry Vault aimed at finding
a multidimensional structure in data vaults so that their data can be fed into
a data warehouse (DW) for OLAP querying. On the one hand, our approach
builds on the specific features of the data vault model to automate multidimen-
sional modeling, on the other it uses approximate functional dependencies [7] to
discover out of data the information necessary to infer the structure of multidi-
mensional hierarchies. The Starry Vault approach is mainly aimed at being used
at design time, to support a supply-driven design of a DW from a source data
vault [18]. However, the manual intervention by the user is limited to some edit-
ing of the resulting multidimensional schemata, which makes the overall process
simple and quick enough to be also compatible with the situational analysis
needs typical of a data scientist.

2 Related Work

The data vault model has hardly been explored in the academic literature.
Besides the official model specification [14], to the best of our knowledge only
a couple of works were made: [11], which provides a conceptualization of the
data vault physical model, and [13], which describes an approach for designing
DWs where the data vault model is used instead of the standard star/snowflake
schemata to physically implement the multidimensional model. On the other
hand, there are evidences that the data vault can be used in agile design con-
texts [6], and some CASE tools generate DW schemata based on the data vault
model (e.g., Quipu [16]).

The problem of how to support or even automate the design of DWs has been
widely explored. In particular, in supply-driven approaches multidimensional
modeling starts from an analysis of data sources—which is in line with the goal
of this paper. The first approaches to supply-driven design date back to the late
90’s [3,10,12,15] and propose algorithms that create multidimensional schemata
starting from Entity-Relationship diagrams or relational schemata. The basic
idea is that of following the functional dependencies (FDs) expressed in the
source schema to build the multidimensional hierarchies. In the following years,
there have been some attempts to obtain multidimensional schemata out of XML
source data (e.g., [5]). In this case, the main problem is that some FDs are not
intensionally expressed, so they must be checked extensionally, i.e., by properly
querying the XML database at design time.

The main inspiration for our current work comes from the supply-driven
approaches that use relational schemata as a source. However, these approaches
cannot be smoothly reused in our case because (i) while in traditional (normal-
ized) relational databases all FDs are made explicit, several FDs are normally

Starry Vault: Automating Multidimensional Modeling from Data Vaults 139

CustomerSID
CustomerCode
Timestamp

EmployeeSID
EmployeeCode
Timestamp

ClassSID
ClassCode
Timestamp

OrderSID
OrderNumber
Timestamp

CustClassSID
CustomerSID
ClassSID
Timestamp

CustOrderSID
CustomerSID
OrderSID
EmployeeSID
Timestamp

LineItemSID
OrderSID
ProductSID
Timestamp

H_Customer L_CustClass H_Class

H_Employee

H_Order

H_Product

L_LineItem

L_CustOrder

CustomerSID
Timestamp
FirstName
LastName
Phone
Email

CustomerSID
Timestamp
Address
City
County
State

CustomerSID
Timestamp
Score
Loyalty

S_Customer

S_CustAddress

S_CustRating

ClassSID
Timestamp
Description
Superclass

S_Class

EmployeeSID
Timestamp
FirstName
LastName
Address
City
County
State
Phone

S_Employee

ProductSID
ProductCode
Timestamp

ProductSID
Timestamp
Name
Color
Weight

S_Product

LineItemSID
Timestamp
Quantity
Amount
VAT

S_LineItem
OrderSID
Timestamp
Date
TotalAmount
Discount

S_Order

Fig. 1. A sale data vault. Grey boxes, hexagons, and dashed boxes represent hubs,
links, and satellites, respectively; additional FDs are shown with thick dashed arrows

hidden in data vaults; (ii) the peculiar structure of data vaults, lets us make some
specific assumptions which are not possible with traditional relational databases;
(iii) while relational-based approaches do not use many-to-many relationships for
design, these must always be considered when designing from data vaults. On
the other hand, the idea of querying data vaults to establish the missing FDs is
borrowed from the approaches using XML sources.

Among the works on supply-driven design of DWs, some also consider the
problem of supporting the designer in detecting potential facts. For instance,
in [15] all the entities with numeric fields are selected as candidate facts. Not
only the presence of measures, but also table cardinality is considered to iden-
tify facts in [10], while in [12] all entities with a high number of many-to-one
relationships are candidates to become facts. A model-driven approach to detect
fact is proposed in [1], based on a heuristics that considers the cardinality and
in-degree of each table, together with its ratio of numerical fields. Finally, in [17]
potential facts are selected by searching specific topological patterns in source
data. The criteria we use in this work for ranking candidate md-schemata are
partially inspired and adapted from the ones mentioned above.

3 Data Vault Basics

The data vault model was conceived by Dan Linstedt in 1990 and then released
in 2000 as a public domain modeling method [14]. Its basic goal is that of dealing
with data and schema changes by separating the business keys (that are basically
stable, because they uniquely identify a business entity) and the associations
between them, from their descriptive attributes (that may change frequently).
The data vault is based on three components [8]:

140 M. Golfarelli et al.

– Hubs. A hub is a table that models a core concept of business; each of its
tuples corresponds to a single business object with a unique enterprise-wide
key, and is timestamped with the moment that object was first loaded into
the database. The primary key of a hub is always a surrogate key.

– Links. A link is a table that models a business relationship between hubs.
To establish this relationship, a link includes foreign keys referencing the
hubs/links involved. Like a hub, it has a surrogate as the primary key and it
includes a load timestamp. To ensure that the schema can be easily evolved,
all relationships are modeled as potentially many-to-many regardless of their
actual multiplicity.

– Satellites. A satellite is a table that includes a set of attributes describing one
hub or one link. Its primary key combines a foreign key that references the
corresponding hub/link with a timestamp, so that multiple temporal version
of attribute values can be stored.

Example 1. The simple data vault we will use as a working example models sale
orders and is shown in Fig. 1 (adapted from [8]).

4 Formal Background

In this section we give a graph-based formalization of data vaults and multi-
dimensional schemata, which will be respectively the input and output of our
design algorithm.

Definition 1 (Data Vault Schema). A data vault schema (briefly, dv-
schema) is a directed graph V = (T, F) where T = TH ∪ TL ∪ TS and:

1. TH , TL, and TS are, respectively, sets of hub, link, and satellite tables;
2. each arc 〈t, t′〉 in F represents an FD from a foreign key of table t to the

primary key of table t′, which we will denote with t → t′ to emphasize that
one tuple of t determines one tuple of t′;

3. F ⊆ (TS × (TH ∪ TL)) ∪ (TL × TH);
4. exactly one arc exits from each satellite s ∈ TS (entering a hub or a link);
5. at least two arcs exit from each link.

Given point (3) of Definition 1, all FDs explicitly modeled in a dv-schema take
either form s → h, s → l, or l → h. Each hub in h ∈ TH has one busi-
ness key, denoted BusKey(h). Each satellite s has a set of business attributes,
BusAttr(s); for each hub or link t, we denote with BusAttr(t) the union of the
sets of business attributes included in all satellites s such that s → t.

Example 2. With reference to the sale data vault in Fig. 1, it is TH = {H Customer,
H Order,H Employee,H Class,H Product}, TL = {L CustClass, L CustOrder,
L LineItem}, and TS = {S Customer,S CustAddress,S CustRating, . . .}. An exam-
ple of arc is 〈L CustClass,H Class〉, which corresponds to the inter-table FD
L CustClass → H Class. Finally, it is BusKey(H Customer) = CustomerCode
and BusAttr(H Customer) = {FirstName, LastName,Phone,Email,Address,City,
County,State,Score, Loyalty}.

Starry Vault: Automating Multidimensional Modeling from Data Vaults 141

Fig. 2. Process architecture of the Starry Vault approach

Definition 2 (Multidimensional Schema). A multidimensional schema (or
md-schema) is a directed acyclic graph M = (A,E) where each node in A is an
attribute, each arc in E is an FD involving two attributes, and there exists one
node f ∈ A, called fact, such that each other node in A can be reached from
f through a directed path (which implies that f has no entering arcs). The set
of direct children of f is partitioned into a set of dimensions, D, and a set of
measures, M . All measures in M are leaves of M. For each dimension d ∈ D,
the subgraph of M that can be reached from d is called a hierarchy.

5 The Starry Vault Approach

A functional overview of the approach we use to obtain an md-schema out of a
source dv-schema is sketched in Fig. 2; three processes are included:

1. Hub-To-Hub FD Detection. This process aims at detecting additional FDs
not explicitly modeled in the dv-schema, in particular those between two or
more hubs connected by a link, by querying the source data vault.

2. Md-Schema Discovery and Ranking. A set of candidate facts is heuristically
determined; for each of them, a draft md-schema is built based on both the
FDs explicitly modeled in the dv-schema and those detected by process (1).
The md-schemata obtained are then heuristically ranked based on how com-
prehensive they are from the intensional and extensional points of view.

3. Md-Schema Enrichment. The user selects one or more draft md-schemata,
then edits and enriches them based on her knowledge of the application
domain. To further improve the quality of the md-schemata, additional FDs
hidden in satellites can be discovered by querying the source data vault.

5.1 Hub-To-Hub FD Detection

In a dv-schema each relationship between two or more hubs is modeled through
a link that contains the foreign keys referencing the connected hubs. As already
mentioned, this implies that all relationships are modeled as if they were many-
to-many, so it is not possible to determine if there are any FDs between two
hubs (i.e., if a relationship is really many-to-many or is actually many-to-one)
based on the dv-schema alone. For instance, looking at Fig. 1 it is impossible to

142 M. Golfarelli et al.

say if the binary relationship between customer and classes is many-to-many or,
more realistically in this case, many-to-one.

Things get even more complex with n-ary relationships, like the one expressed
by L CustOrder that features three branches. Indeed, in this case there are dif-
ferent possibilities:

1. The relationship between the hubs involved really has many-to-many mul-
tiplicity in all directions. In particular, in case of the L CustOrder link, this
would mean that one order can be made by several customers with the sup-
port of several employees.

2. The relationship has many-to-one multiplicity from one branch towards the
others. In our example, this happens if one order is always made by one
customer with the support of one employee.

3. There are mixed multiplicities from the same branch. For instance, this is the
case if one order is always made by one customer with the support of several
employees.

Note that, while in a standard relational schema only case (1) corresponds to
a good design practice for normalization reasons (in the other cases the n-ary
relationship should be substituted by n − 1 binary relationships, each with its
multiplicity), within a dv-schema all three cases are considered equally good for
the sake of maintainability.

To disambiguate relationship multiplicities in all cases above and detect FDs
with reasonable confidence, we must resort to the data stored in the source data
vault. Clearly, there is a chance that an FD holds for the specific data stored at
design time but does not hold in general in the application domain, which means
that it will probably be contradicted in the future when new data will be added.
Fortunately, since data vaults usually host great amounts of data, these can
realistically be considered to be representative of the application domain. More
probably, the data will be affected by noise in the form of errors (e.g., spelling
errors) that “hide” an existing FD. The tool we use to cope with this issue are
approximate functional dependencies (AFDs) [7], i.e., FDs that “almost hold”,
which normally arise when there is a natural FD between attributes but data
are dirty or present exceptions. Given AFD a � b, where a and b are attributes,
one way to define its approximation e(a � b) is to count the minimum number
of distinct values of ab that must be removed to enforce a → b. We will then
consider a � b to hold if e(a � b) < ε, where ε is a threshold.

The approach we adopt to detect AFDs is an adaptation of the well-known
Tane algorithm [7]. Given a table r with schema R, Tane computes all the
valid AFDs X � a with X ⊆ R and a ∈ R \ X by relying on a level-wise
(small-to-big) enumeration strategy to navigate the search space of all possible
subsets of R (i.e., the containment lattice). Though Tane applies a set of pruning
rules to avoid computing/returning trivial and non-minimal dependencies, its
complexity remains exponential due to the number of candidate attribute sets X.
Specifically, the worst-case complexity of Tane is O(|r| + |R|2.5)2|R|), where |r|
is the cardinality of table r and |R| is its number of attributes. Noticeably, since
our goal here is to build hierarchies, we can restrict our search to simple AFDs

Starry Vault: Automating Multidimensional Modeling from Data Vaults 143

(|X| = 1). In the remainder of this section we describe an original enumeration
strategy that works for simple AFDs and cuts the complexity of Tane down to
O(|r| · |R2|) in the worst case and to O(|r| · |R|) in the best one.

Let us start by considering “traditional” FDs. Given schema R, the set of
candidate FDs a → b, with a, b ∈ R, can be represented using an |R| × |R|
matrix Z whose rows and columns represent left- and right-hand sides of FDs,
respectively, so that Z[a, b] corresponds to a → b. If FD a → b is found to hold
on the stored data, cell Z[a, b] is set to true, otherwise it is set to false. A naive
approach to fill Z would check each single cell, i.e., each possible simple FD by
accessing data; actually, most checks can be avoided by orderly exploring the
cells of Z. Our exploration strategy requires the rows and columns of Z to be
ordered by descending cardinality of the corresponding attribute domain. Given
the ordered matrix, we initially note that only the cells over the diagonal must be
checked since (i) the cells on the diagonal correspond to trivial FDs like a → a,
and (ii) the cells below the diagonal correspond to unfeasible FDs like b → a with
|b| < |a|. Among the cells above the diagonal of Z, we can avoid checking those
corresponding to transitive FDs by applying the following exploration strategy:

– Rule 1 : First check the (unchecked) cells Z[a, b] such that |b| is maximum and,
among them, give priority to the one with minimum |a|.

– Rule 2 : If the FD corresponding to Z[b, c] is found to be true, set to true all
the FDs corresponding to cells Z[∗, c] such that Z[∗, b] holds.

To understand why Rules 1 and 2 avoid checking transitive FDs, consider FDs
a → b and b → c, which transitively imply a → c. Then it must be |c| ≤ |b| ≤ |a|,
so due to Rule 1 the check of a → c is scheduled after those of a → b and b → c.
But since b → c holds, Rule 2 sets a → c to true before it is checked.

According to the previous enumeration rule, the number of candidate FDs
that must be verified depends, given the number of attributes, on the num-
ber of transitive FDs in R. The worst case arises when no transitive FDs hold
between the attributes in R, because all the cells in the upper-right half of Z
(i.e., |R| × (|R| − 1)/2 cells) must be checked. The best case takes place when
the attributes of R are involved into a linear hierarchy, because the number of
checks drops to |R| − 1. Considering that the complexity of Tane is determined
by its enumeration strategy and that Tane checks the FDs in linear time, the
complexity of our approach turns out to be O(|r| · |R|2) and O(|r| · |R|) in the
worst and best cases respectively.

The enumeration strategy described above for traditional FDs relies on the
ordering of attributes. Unfortunately, when working with AFDs, we must allow
some tolerance on attribute cardinalities (hence, on the ordering of attributes)
to accommodate possible errors in data. Consider two attributes a and b such
that |a| � |b|. If we were searching for FDs, we would check for a → b and
not for b → a (Z[b, a] lies in the lower-left part of Z and would be skipped).
Conversely, when looking for AFDs, we must also consider the possibility that
the higher cardinality of a is due to some errors in data; in other words, we must
also check for b � a. In practice, this situation may occur if |a| − ε < |b| < |a|.
So, to preserve the correctness of our enumeration strategy when dealing with

144 M. Golfarelli et al.

AFDs, we must check both cells Z[a, b] and Z[b, a] whenever abs(|a| − |b|) < ε.
Obviously, as a side effect, our pruning capability will be slightly reduced since
some more cells need to be checked; however, the best and worst complexity
remain unchanged.

As mentioned at the beginning of this section, in this phase our goal is to
detect the FDs holding between hubs related by a link l, which we actually
achieve by detecting the AFDs involving the foreign keys in l. Specifically, given
dv-schema V = (T, F), let l ∈ TL be a link that connects hubs h1, . . . , hn ∈
TH , which means that l includes n foreign keys, k1, . . . kn, where ki references
hub hi. Considering Definition 1, this already implies l → hi for i = 1, . . . , n.
Additionally, we will say that hi → hj (1 ≤ i, j ≤ n, i
= j) if ki � kj . All
the FDs determined are stored into a metadata repository, to be used at the
next step for md-schema discovery and ranking. Note that, with reference to the
complexity of detecting these AFDs, it is |R| ≡ n and |r| ≡ |l|.
Example 3. In our sale example, we can realistically assume that an order is
made by one customer and that a customer belongs to one class. A customer
normally issues several orders, each normally including several lines. Finally, the
company will reasonably have more customers than employees. So, for instance,
within link L CustOrder it must be |OrderSID| > |CustomerSID| > |EmployeeSID|.
The first AFD checked is OrderSID � CustomerSID, which is found to be true.
Then CustomerSID � EmployeeSID is checked, and we assume it does not hold.
Finally, OrderSID � EmployeeSID is checked, and again we assume that this does
not hold in our application domain (i.e., several employees may be involved in the
same order). We assume that overall, based on the data stored, two additional
FDs are discovered for the sale dv-schema, namely H Order → H Customer and
H Customer → H Class (a customer belongs to one class). These two FDs are
shown in thick dotted lines in Fig. 1.

5.2 Md-Schema Discovery and Ranking

This process determines which elements of the source dv-schema are candidate
to play the role of fact and, for each of them, creates an md-schema. Since the
number of candidate facts may be large, the corresponding md-schemata are
heuristically ranked before they are presented to the user.

Candidate Selection. The selection of candidates is based on two specific
features of the data vault model:

– A satellite s contains a foreign key referencing the associated hub or link t,
which means that each tuple of s is related to exactly one tuple of t (s → t)
but several tuples of s are associated to the same tuple of t. However, since
satellite are normally used to historicize attribute values, we can safely assume
that, at each point in time, at most one tuple of s is valid for each tuple of t,
i.e., that t → s.

Starry Vault: Automating Multidimensional Modeling from Data Vaults 145

Algorithm 1. MDSConstruction(V)
Require: A dv-schema V = (T, F)
Ensure: A set of md-schemata {Ml}
1: for all l ∈ TL do � For each potential fact l...
2: A ← {l} ∪ BusAttr(l)
3: E ← {〈l, a〉 | a ∈ BusAttr(l)}
4: Ml ← (A, E) � ...initialize the md-schema with fact l...
5: for all h ∈ TH | 〈l, h〉 ∈ F do
6: Ml ← Explore(V, Ml, l, h) � ...and build a DAG
7: return {Ml}

– A hub h is connected to at least one link l (unless it is disconnected from all
other business concepts, in which case it is most probably not a fact candidate),
and l → h.

It follows that, for each satellite and hub in a dv-schema, there exists a link from
which that satellite or hub can be reached through at most two FDs (in case of
a satellite s of a hub h, it is l → h → s). So, since the algorithm we will use to
build an md-schema for each fact navigates FDs, we can restrict the set of fact
candidates to the set TL of links without loss of generality.

Md-Schema Construction. The goal of this step is to automatically build,
for each candidate fact (i.e., for each link) a draft md-schema starting from the
dv-schema and from the additional FDs previously discovered. To this end, all
the FDs (both those explicitly modeled by the dv-schema and the additional ones
discovered by accessing data) must be “navigated” starting from the candidate
fact, to build a DAG of attributes that will then be ranked and enriched in the
next phase to become an md-schema.

The pseudo-code for building draft md-schemata is sketched in Algorithms 1
and 2. Algorithm 1 iterates on all links in the source dv-schema. For each link l, it
initializes a draft md-schema Ml with fact l, adds the attributes of the satellites
of l (if any), and triggers procedure Explore to recursively build a hierarchy for
each hub connected to l.

The goal of Algorithm 2 is to extend Ml by “exploring” hub h. First it creates
a node labelled with the business key of h, k, and attaches it to the previous
node g (lines 1–3). All the attributes of its satellites are then attached to k (lines
6–7). To continue exploration, the algorithm now checks if there are additional
FDs from h to some other hub (lines 8–18). In particular, if there is an FD to at
least one hub z through link l, before triggering recursion on z (line 18) all the
satellite attributes of l must be added as children of k (lines 12–15). Repeated
explorations of parts of the source dv-schema when the same hub is reached
twice from different directions are avoided by marking a hub as explored when
it is reached for the first time (lines 4–5).

Example 4. In our sale example, three draft md-schemata are built for facts
L LineItem, L CustOrder, and L CustClass (two of them are shown in Fig. 3).

To better describe the construction algorithms, we follow them step by step
with reference to the first md-schema (the one of fact L LineItem). Firstly,

146 M. Golfarelli et al.

Algorithm 2. Explore(V,Ml, g, h)
Require: A dv-schema V, an md-schema Ml, a node g ∈ Ml, and a hub h ∈ TH

Ensure: An (extended) md-schema Ml

1: k ← BusKey(h)
2: A ← A ∪ {k} � Add business key k...
3: E ← E ∪ {〈g, k〉} � ...and its incoming arc to Ml

4: if h not explored yet then
5: Mark h as explored
6: A ← A ∪ BusAttr(h) � Add satellite attributes...
7: E ← E ∪ {〈k, a〉 | a ∈ BusAttr(h)} � ...and their arcs to Ml

8: for all l ∈ TL | 〈l, h〉 ∈ F do � For each link l connected to h...
9: Z ← {z ∈ TH | z 	= h ∧ 〈l, z〉 ∈ F} � ...find other hubs connected to l
10: if ∃z ∈ Z | h → z then
11: A ← A ∪ BusAttr(l)
12: E ← E ∪ {〈k, a〉 | a ∈ BusAttr(l)} � Add satellite attributes of l to Ml

13: for all z ∈ Z | h → z do � Use additional FDs to trigger recursion
14: Ml ← Explore(V, Ml, k, z)
15: return Ml

FirstName

LastName

Phone

Email

Address

City

County

State

Score

Loyalty

Discount

TotalAmount

Description

Superclass

C
lassC

ode

C
ustom

erC
ode

LineItem
Name

Color

Weight

Q
uantity

Am
ount

VAT

OrderNumber

ProductC
odeDate

FirstName

LastName

Phone

Email

Address

City

County

State

Score

Loyalty

Discount

TotalAmount

Description

Superclass

C
lassC

ode

C
ustom

erC
ode

CustOrder

OrderNumber

Date

Fig. 3. Draft md-schemata of facts L LineItem and L CustOrder

procedure MDSConstruction creates the fact node (in grey) and its satellite
children VAT, Amount, and Quantity. Then, procedure Explore is called twice for
hubs H Order and H Product. In the first case, Explore starts by creating node
OrderNumber (line 2), connecting it to node LineItem (line 3), and adding the
two satellite children (lines 6–7). Then, since link L CustOrder is connected to
H Order and FD H Order → L CustOrder holds (lines 8–12), Explore is called for
hub H Customer (L CustOrder has no satellites, so lines 13-15 have no effect).
When Explore is called for H Customer, 10 satellite children are added, then the
procedure is called again for hub H Class. Similarly for hub H Product.

Ranking. At the previous step, for each candidate fact l a draft md-schema
Ml = (Al, El) has been constructed. Now, the md-schemata obtained are ranked
to support the user in choosing the most comprehensive ones.

The ranking of md-schemata is based on a linear combination of three heuris-
tics that consider, for each candidate fact, (i) its cardinality, (ii) the number of
potential measures, and (iii) the number of potential attributes. While heuristics
(i) is extensional in nature because it is data-based, the remaining two (which are
partially inspired by [12]) are intensional because they consider the dv-schema.

Starry Vault: Automating Multidimensional Modeling from Data Vaults 147

(i) Business events are dynamic in nature and generated with high frequency,
so the tables that store them have a large number of instances. A link l ∈ TL

is more likely to be a fact if it has high cardinality [1].
(ii) Business events are quantitatively described by several measures, i.e.,

numerical attributes. We quantify the probability that a link l is a fact as
the number of numerical attributes that are functionally determined from
l, i.e., as the number of numerical attributes in Al \ l.

(iii) At query time, business events are selected and aggregated by users using
the dimensions and their levels. We quantify the probability that a link l
is a fact as the number of non-numerical attributes that are functionally
determined from l, i.e., as the number of non-numerical attributes in Al \ l.

Note that the last heuristics closely recalls the connection topology value, defined
in [12] as the number of entities that can be (either directly or indirectly) reached
within an Entity-Relationship diagram by starting from the fact and recursively
navigating many-to-one relationships.

Example 5. Heuristics (ii) and (iii) for the three sales draft md-schemata return
the following values for the number of numerical and non-numerical attributes:
7, 17 (L LineItem); 1, 13 (L CustClass); and 3, 14 (L CustOrder). Considering that
the cardinality of link L LineItem will surely be quite higher than the one of the
other two links (the cardinality of L CustClass is at most the same of H Customer
and a customer normally issues several orders; the cardinality of L CustOrder is
at most the same of H Order, and an order normally has several lines), we can
conclude that the top ranked md-schema is the one of fact L LineItem whatever
the weights of the linear combination of the three heuristics.

5.3 Md-Schema Enrichment

The last phase starts with the user selecting one or more draft md-schemata of
interest, supported by the ranking previously obtained. Some editing is normally
necessary at this stage, typically to remove uninteresting attributes from the md-
schema. Specific situations such as one-to-one relationships between hubs and
multiple arcs entering the same node in the md-schema must be also dealt with,
as discussed in [4]. Then, measures are chosen among the numerical attributes
in the md-schema. Finally, all the direct children of the fact that have not been
chosen as measures are labelled as dimensions, which completely defines the
output md-schema.

One further way to enrich the md-schema by making its hierarchies more
faithful to the application domain is to search for FDs hidden in satellites. In a
data vault, the grouping of attributes in satellites is generally oriented more to
cheap maintainability and querying than to normalization. For instance, in our
sale example, satellites S CustAddress and S Employee contain attributes City,
County, and State that are obviously related to one another, so the following
FDs hold: City → County and County → State. While in this simple case it will
probably be easy for the user to detect these FDs and manually add them to

148 M. Golfarelli et al.

the md-schema as a part of editing, in other cases the user may be unsure of
whether an FD holds or not, so automating FD detection is highly desirable.
How to cope with this issue is the subject of the remainder of this section.

When dealing with satellites, we must keep in mind that data vaults are
natively oriented to storing time-variant data, so we can expect that a single
tuple of a hub (or link) is related to several tuples in a connected satellite,
one for each version of data. As a consequence, if we used traditional FD (or
even AFD) discovery techniques on the S CustAddress satellite for instance, we
might not find the FD City → County in case a city has been moved to a different
county at some time. The most natural way to formalize this problem is by using
temporal FDs [9]. Intuitively, in its simplest form, a temporal FD a

T−→ b is an
FD that is valid within a time-variant relation at any time slice. In our example,
though City → County may be not true overall, it must be true at any time slice,
so City

T−→ County. If we also consider the possibility that a temporal FD holds
on most tuples of a satellite, we have approximate temporal FDs (ATFDs) [2],
i.e., FDs that are valid for specific time periods and possibly subject to errors.

In [2], the detection of ATFDs is achieved through some preprocessing that
turns them into AFDs, that can then be discovered using Tane [7]; this pre-
processing is made by temporally grouping either on sliding windows or on tem-
poral granules. The type of temporal evolution that is relevant to the Starry
Vault approach is captured by grouping on temporal granules, i.e., by parti-
tioning the values in the domain of the time attribute into indivisible groups
called granules. Examples of possible granularities are hours, days, months, etc.
To understand how this preprocessing works, consider a table r with schema
R = v ∪ W , where v and W are respectively a time attribute and a set of other
attributes. A new relation is created from r by adding a granule attribute g
whose domain is the set of granules included in the time-span described by the
instances of r. Intuitively, for each tuple in r, the value of v is converted into
its corresponding granule identifier. The new relation obtained is then processed
with Tane to discover AFDs of type g ∪ X � Y , with X,Y ⊆ W .

To apply this technique to a satellite s, we consider its timestamp and its
business attributes BusAttr(s), thus neglecting its foreign key. After the the
granule attribute g has been addded, the ATFDs can be computed using the
following variation of the enumeration strategy proposed in Sect. 5.1:

– Instead of searching for AFDs of the form a � b, we consider all AFDs of
the form ga � gb (i.e., due to the decomposition rule, ga � b), where a, b ∈
BusAttr(s). This means that the ordering for rows and columns in matrix Z
will be defined by the cardinality of ga rather than by that of a.

– The pruning rule seen in Sect. 5.1 would avoid checking all AFDs b � a with
|a| > |b| + ε. Conversely, in this case a check can be avoided if |ga| > |gb| + ε.

It is easy to see that the size of matrix Z is still |R|2 ≡ |BusAttr(s)|2 since we
are just adding the granule attribute g to both the left- and right-hand sides of
the AFDs. As to the correctness of the pruning rule, we remark that the error
e(ga � b) is defined as the minimum number of distinct values of gab that must

Starry Vault: Automating Multidimensional Modeling from Data Vaults 149

Table 1. Sample data for the S CustAddress satellite

CustomerSID Timestamp Address City County State Granule

1 1-1-2015 Gandalf Street Minas Tirith Gondor Middle-Earth January 2015

1 1-6-2015 Gandalf Street Minas Tirith Rohan Middle-Earth June 2015

2 1-3-2015 Frodo Road Minas Tirith Gondor Middle-Earth March 2015

2 1-6-2015 Frodo Road Minas Tirith Rohan Middle-Earth June 2015

FirstName
LastName

Phone
Address

City

County

State

Description
ClassCode

CustomerCode

Name

Color
ProductCode

LineItem

Quantity
Amount
TotalAmount
VAT
Discount
CustomerScore
ProductWeight Date

Superclass

Loyalty

Fig. 4. The enriched md-schemata of fact S LineItem (descriptive attributes, non usable
for aggregation, are underlined)

be removed to enforce ga → b; therefore, an error ε can at most impact on the
cardinality of b for an amount equal to ε itself.

Example 6. Consider the sample data for the S CustAddress satellite in Table 1,
showing that on June 1 the city of Minas Tirith has moved from the Gondor
county to that of Rohan. If we considered traditional FDs or even AFDs, we
would probably conclude that one city can belong to different counties (i.e., that
City � County). Let us consider ATFDs instead, choosing for instance a month
granularity. The table created after preprocessing has the new column Granule,
and it is easy to verify that Granule City → County, so City

T−→ County. The final
md-schema obtained from the draft md-schema of fact L LineItem (Fig. 3, top) is
depicted in Fig. 4 using the DFM notation [4]. Attribute OrderNumber has been
deleted and all numerical attributes have been chosen as measures; besides, the
missing FDs between City, County, and State have been added.

6 Conclusions

In this paper we have described the Starry Vault approach for detecting a mul-
tidimensional schema out of a source data vault. Both schema-based and data-
based FDs are used to this end, with a small intervention by the user. In par-
ticular we have shown how to use extensional techniques for discovering hidden
FDs, with some tolerance to errors in data and taking into account the temporal
aspects related to historicization, to automatically deliver the md-schemata that
better fit the business domain. To this end we have proposed an original explo-
ration strategy that allows to significantly reduce the complexity of the Tane

150 M. Golfarelli et al.

algorithm when applied to simple ATFDs. To the best of our knowledge, ours is
the first approach that adopts advanced types of FDs to infer md-schemata.

Automatic derivation of md-schemata is a widely explored topic in the DW
literature; nonetheless we believe that it is worth reconsidering it in the era of
big data and data science, in which the need for on-the-fly analyses creates a
strong requirement for a smarter design process. Based on these considerations,
our future work on this topic will be mainly focused on investigating ad hoc tech-
niques to support the data scientist in discovering a multidimensional structure
even in situations in which the source data are poorly-structured or schemaless,
as is the case for document databases.

References

1. Carmè, A., Mazón, J.-N., Rizzi, S.: A model-driven heuristic approach for detecting
multidimensional facts in relational data sources. In: Bach Pedersen, T., Mohania,
M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp. 13–24. Springer,
Heidelberg (2010)

2. Combi, C., Parise, P., Sala, P., Pozzi, G.: Mining approximate temporal functional
dependencies based on pure temporal grouping. In: Proceedings of ICDM Work-
shops, pp. 258–265, Dallas, USA (2013)

3. Golfarelli, M., Maio, D., Rizzi, S.: Conceptual design of data warehouses from E/R
schemes. In: Proceedings of HICSS, pp. 334–343, Kohala Coast, HI (1998)

4. Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Method-
ologies. McGraw-Hill, New York (2009)

5. Golfarelli, M., Rizzi, S., Vrdoljak, B.: Data warehouse design from XML sources.
In: Proceedings of DOLAP, pp. 40–47, Atlanta, Georgia (2001)

6. Hughes, R.: Agile Data Warehousing for the Enterprise. Elsevier Science,
Amsterdam (2015)

7. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: an efficient algorithm
for discovering functional and approximate dependencies. Comput. J. 42(2), 100–
111 (1999)

8. Hultgren, H.: Data vault modeling guide (2012). http://hanshultgren.files.
wordpress.com

9. Jensen, C.S., Snodgrass, R.T., Soo, M.D.: Extending existing dependency theory
to temporal databases. IEEE Trans. Knowl. Data Eng. 8(4), 563–582 (1996)

10. Jensen, M.R., Holmgren, T., Pedersen, T.B.: Discovering multidimensional struc-
ture in relational data. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK
2004. LNCS, vol. 3181, pp. 138–148. Springer, Heidelberg (2004)

11. Jovanovic, V., Bojicic, I.: Conceptual data vault model. In: Proceedings of SAIS,
vol. 23, pp. 1–6, Atlanta, Georgia (2012)

12. Kim, J., et al.: SAMSTARplus: an automatic tool for generating multi-dimensional
schemas from an entity-relationship diagram. Revista de Informática Teórica e
Aplicada 16(2), 79–82 (2009)

13. Krneta, D., Jovanovic, V., Marjanovic, Z.: A direct approach to physical data vault
design. Comput. Sci. Inf. Syst. 11(2), 569–599 (2014)

14. Linstedt, D.: DV modeling specification v1.09 (2013). http://danlinstedt.com
15. Phipps, C., Davis, K.C.: Automating data warehouse conceptual schema design

and evaluation. In: Proceedings of DMDW, pp. 23–32, Toronto, Canada (2002)

http://hanshultgren.files.wordpress.com
http://hanshultgren.files.wordpress.com
http://danlinstedt.com

Starry Vault: Automating Multidimensional Modeling from Data Vaults 151

16. QOSQO: QUIPU 1.1 Whitepaper (2016). www.datawarehousemanagement.org
17. Romero, O., Abelló, A.: A framework for multidimensional design of data ware-

houses from ontologies. Data Knowl. Eng. 69(11), 1138–1157 (2010)
18. Winter, R., Strauch, B.: A method for demand-driven information requirements

analysis in data warehousing projects. In: Proceedings of HICSS, p. 231, Big Island
(2003)

www.datawarehousemanagement.org

Update Propagation Strategies
for High-Performance OLTP

Caetano Sauer1(B), Lucas Lersch2,3, Theo Härder1, and Goetz Graefe4

1 TU Kaiserslautern, Kaiserslautern, Germany
{csauer,haerder}@cs.uni-kl.de
2 TU Dresden, Dresden, Germany

lucas.lersch@sap.com
3 SAP AG, Walldorf, Germany

4 Hewlett Packard Laboratories, Palo Alto, USA
goetz.graefe@hpe.com

Abstract. Traditional transaction processing architectures employ a
buffer pool where page updates are absorbed in main memory and asyn-
chronously propagated to the persistent database. In a scenario where
transaction throughput is limited by I/O bandwidth—which was typical
when OLTP systems first arrived—such propagation usually happens on
demand, as a consequence of evicting a page. However, as the cost of
main memory decreases and larger portions of an application’s working
set fit into the buffer pool, running transactions are less likely to depend
on page I/O to make progress. In this scenario, update propagation plays
a more independent and proactive role, where the main goal is to control
the amount of cached dirty data. This is crucial to maintain high per-
formance as well as to reduce recovery time in case of a system failure.
In this paper, we analyze different propagation strategies and measure
their effectiveness in reducing the number of dirty pages in the buffer
pool. We show that typical strategies have a complex parametrization
space, yet fail to robustly deliver high propagation rates. As a solution,
we propose a propagation strategy based on efficient log replay rather
than writing page images from the buffer pool. This novel technique not
only maximizes propagation efficiency, but also has interesting properties
that can be exploited for novel logging and recovery schemes.

1 Introduction

Database systems rely on persistent storage to provide the durability property
of “ACID” transactions. However, in order to deliver acceptable performance,
operations that modify data are usually performed in a volatile copy of data
objects in the buffer pool and later propagated to persistent storage. In a force
approach [5], such propagation happens at commit time at the latest, whereas
a no-force approach—which is used in the vast majority of database systems—
delays such propagation to an arbitrary point in time, relying on REDO logging to

L. Lersch—Work done while at TU Kaiserlsautern.

c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 152–165, 2016.
DOI: 10.1007/978-3-319-44039-2 11

Update Propagation Strategies for High-Performance OLTP 153

50k

100k

150k

200k
P
a
g
e
co

u
n
t

1000

3000

5000

0 1 2 3 4 5 6 7 8T
h
ro
u
g
h
p
u
t
(t
p
s)

Time (min)

Dirty pages

Transaction tput

Fig. 1. Dirty page backlog and its implication on system performance

provide durability. In the latter case, which is the focus of this paper, controlling
this delay is crucial for two main reasons: (1) it enables the efficient recycling of
buffer pool frames and log space for new transactions; and (2) it determines the
amount of recovery effort in case of a system failure.

Traditionally, main memory has been a limited resource, so that transaction
throughput was limited by the bandwidth of page read and write operations. In
this scenario, update propagation is almost exclusively used for reason 1 above:
cached pages must be evicted from the buffer pool to make room for pages
accessed by new transactions and, as a consequence, its updates are propagated
to persistent storage. However, as the capacity of main memory increases, which
has been a strong trend in the past years, typical workloads are less likely to
depend on page I/O to make progress. In this scenario, reason 1 becomes less
important, and the main role of update propagation becomes the minimization
of recovery effort—or reason 2 above. This work is motivated by the need to
re-evaluate update propagation strategies for this new crucial role.

The problem addressed in this work can be characterized by a race between
user transactions that modify pages and mark them dirty and system actions
that clean these pages. If the cleaning speed, i.e., the number of pages being
cleaned per second, does not match the dirtying speed of the workload, the accu-
mulated backlog may negatively impact system performance. This backlog can
be measured across two dimensions: number of dirty pages and accumulated log
volume. In the latter case, the issue appears when the log volume required for
REDO recovery fills up the entire log device, so that transactions cannot make
progress until some log space is freed. Since the length of REDO recovery is
determined by the dirty pages in the buffer pool, this means that an inefficiency
in page cleaning can lead to a complete halt of read-write transactions. In the
former case, if the number of dirty pages grows until it fills up the entire buffer
pool, the system eventually slows down as transactions must wait for page evic-
tion, despite their working set fitting into main memory. This can happen, for
instance, in the TPC-C workload, whose working set consists mainly of ware-
house and customer data as well as currently active orders. If page cleaning is
inefficient, dirty pages containing finished orders will linger in the buffer pool,

154 C. Sauer et al.

until no clean frames are available for inserting new orders and the system slows
down, becoming I/O-constrained even though there is abundant main memory
to hold the working set.

Figure 1 presents the problem graphically in two ways. On the right-hand
side, the problem is illustrated as an analogy of a sink full of water—running
transactions that make clean pages dirty are like a faucet filling up the sink, while
page cleaning corresponds to the drain. If the drain is not large enough, water will
accumulate in the sink, which in our case corresponds to the backlog discussed
above. Eventually, the sink fills up and the only way to avoid an overflow is
to close the faucet, i.e., the transaction throughput must be reduced. On the
left-hand side, the problem is shown in a real experiment which plots both the
number of dirty pages in the buffer pool as well as the transaction throughput
over time. On the top graph, the number of dirty pages grows until it reaches the
buffer pool size of 180,000 pages. At that point, which occurs at minute 3 of the
experiment, the transaction throughput drops substantially, from 5,000 to about
1,000 transactions per second. Such drop in throughput is a direct consequence
of the page cleaner not being able keep up with the running transactions.

This work makes two main contributions. First, we discuss and evaluate typ-
ical propagation strategies that write pages from the buffer pool into persistent
storage—this is the common technique used in state-of-the-art database systems,
and we refer to it as page-based propagation. Second, we propose a novel tech-
nique which propagates updates by replaying REDO log records in an efficient
way—we call this log-based propagation. The key to enabling this new technique
is a partially sorted log, which was introduced in previous work in the context
of archiving and recovery from media failures [11]. Rather than employing the
partially sorted organization only for media recovery, we exploit its log replay
efficiency to propagate updates as well, achieving a propagation strategy which
is completely decoupled from the buffer pool. An empirical evaluation of the new
method shows that it performs better than traditional strategies, maintaining a
controlled dirty page backlog.

In the remainder of this paper, Sect. 2 summarizes related work, including
a brief discussion of background techniques on which our approach is based,
a related family of instant recovery algorithms, and alternative approaches for
in-memory database system designs. Section 3 discusses page-based propagation
strategies, while Sect. 4 introduces our novel log-based approach. Experiments
that support our claims empirically are provided in Sect. 5. Finally, Sect. 6 dis-
cusses future work opportunities and concludes our findings.

2 Related Work

We divide related work into three main categories. First, we discuss the basic
system architecture on which our approach is based. Second, we briefly sum-
marize a family of techniques known as instant recovery [3]. Our approach for
log-based propagation relies on a log organization proposed for one of such tech-
niques. Third, we summarize update propagation strategies as implemented in
main-memory database system designs found in the literature.

Update Propagation Strategies for High-Performance OLTP 155

2.1 Background

Our approach is based on a traditional database system architecture, with
page-based data structures accessed via a buffer pool backed by SSD or HDD
devices [6]. Write-ahead logging with physiological log records as implemented in
ARIES [9] is also assumed. Since this work concerns only buffer management and
storage, it is orthogonal to concurrency control schemes—for both transaction
isolation and multi-threaded data structure access.

We assume that a system thread called page cleaner is responsible for flushing
pages from the buffer pool. Multiple threads can be used for multiple storage
drives. Checkpoints are of the fuzzy type and do not flush dirty pages [10]. If page
replacement is required, user threads simply wake up the cleaning service and
wait for a signal of completion. This design allows a centralization of all cleaning
aspects to a single system module. The page cleaner generates log records for
each write operation, which allows a more precise computation of the dirty page
set during checkpoints and log analysis, thus reducing the recovery effort in case
of a system failure [10].

2.2 Instant Recovery Techniques

A family of techniques known as instant recovery enables incremental, on-
demand recovery of individual pages from both system and media failures [3].
Our approach for log-based propagation is based on the partially sorted log data
structure, as employed in single-pass restore for the log archive [11]. However, it
goes beyond the scope of media recovery, relying on the partially sorted log for
update propagation during normal processing. As such, the partially sorted log
should be kept on lower-latency devices such as SSDs instead of on archive stor-
age. This also allows its usage for restart after a system failure and single-page
repair [3], since it provides faster log replay in general.

A further instant recovery technique known as write elision permits the evic-
tion of dirty pages from the buffer pool without flushing them first [3]. This
leaves the persistent page image out of date, and requires single-page repair the
next time it is fetched. In principle, write elision alleviates the backlog prob-
lem introduced in Fig. 1, because running transactions need not wait for a page
flush before acquiring an empty buffer pool frame. However, since the page on
disk remains out of date, its old log records cannot be recycled until the page is
repaired. This means that write elision reduces the dirty page backlog but not
the log backlog, and the situation depicted in Fig. 1 is likely to happen anyway,
unless the system has a chance to catch up during lower activity periods.

Rather than being an alternative technique, write elision complements log-
based propagation in which it eliminates the need to ever flush a page from
the buffer pool. Furthermore, it permits fast reaction in situations of memory
pressure, where evicting dirty pages is a better choice than evicting clean but
frequently accessed ones. Further advantages of combining log-based propagation
and write elision are discussed in Sect. 6 as future work.

156 C. Sauer et al.

2.3 In-Memory Database Systems

In-memory database systems are built on the assumption that the entire dataset
fits into main memory, but persistent storage is still required to provide transac-
tion durability. As such, some form of update propagation is still required, and
the backlog problem still exists in some form or another. Early work by Levy
and Silberschatz [7] already recognized the problem of page-based propagation
schemes in the context of main-memory databases. They proposed a log-based
approach similar to the one introduced in this work, but because the log is not
sorted or prepared in any way, log replay requires random I/O operations, which
can be multiple orders of magnitude slower than the page dirtying rate in main
memory. To circumvent this problem, the authors suggest increasing I/O band-
width with multiple disks in a striped configuration, but not only is the required
amount of disks impractical, it would be very sensitive to skew, thus not distrib-
uting the I/O operations equally among the disks. Our log-based propagation
approach fully utilizes the sequential write speed of a single device, thus being
more efficient and feasible.

The traditional propagation approach in most main-memory DBMS designs
is to maintain action- or transaction-consistent checkpoints [5] on persistent
storage. Propagation to this checkpoint should be performed concurrently to
transaction activity. A common approach—which is present in both early [1]
and modern [8] designs—is to put the database in a temporary copy-on-write
mode, flushing shadow versions of pages to the checkpoint file while transactions
make updates on copied images. The problem addressed in this research is thus
also present in such systems, since checkpointing of in-memory databases is very
similar to page cleaning as discussed here—the end goal is always to increase
propagation efficiency and diminish recovery times in case of failure.

As observed in recent research [4], the assumption of all data fitting in main
memory is unrealistic, and techniques of traditional disk-based systems—when
adapted for better in-memory performance—may be a better alternative to tech-
niques of main-memory DBMSs. This is especially true for recovery, since many
such systems have very inefficient and incomplete (in the sense that media fail-
ures are not considered) recovery schemes. This research represents a step in
the direction of optimizing traditional techniques for large memories, while still
supporting disk-resident data with high reliability.

3 Page-Based Propagation Strategies

As discussed in Sect. 2.1, page-based propagation is performed by the page
cleaner service. This section provides an overview of how the page cleaner works,
including its impact on the recovery effort in case of a system failure. Further-
more, we discuss a variety of policies that can be implemented to achieve the
two, sometimes conflicting, goals of page cleaning: reducing dirty page backlog
and recovery effort.

Update Propagation Strategies for High-Performance OLTP 157

3.1 Page Cleaner Algorithm

The page cleaner is an independent system thread, which runs continually in
a main loop described in Algorithm1. First, it waits for an activation signal,
which may come from threads waiting for eviction or log space recycling, or a
timeout if it is set to run periodically. Once activated, the cleaner collects a list
of candidate frame descriptors in a priority queue. This queue is used to order
frames according to some policy, such as oldest-first or hottest-first; these are
discussed in detail in Sect. 3.2.

Algorithm 1. Page cleaner main loop
1: procedure PageCleaner(bufferPool, policy, maxCandidates)
2: waitForActivation()
3: candidates ← createHeap(policy, maxCandidates)
4: writeBuffer ← allocateBuffer()
5: for all d in bufferPool.descriptors do
6: if d.isDirty() then
7: candidates.pushHeap(d)
8: end if
9: end for

10: clusters ← sortAndAggregateByPageID(candidates)
11: cleanLSN ← logTailLSN()
12: for all c in clusters do
13: latchAndCopy(c, writeBuffer)
14: flush(writeBuffer)
15: logPageF lush(c, cleanLSN)
16: bufferPool.updateCleanLSN(c, cleanLSN)
17: end for
18: end procedure

Once a list of candidates is collected, it is sorted by page ID in line 10 of
Algorithm 1. The purpose here is to form clusters of adjacent pages, which can
be flushed with a single write operation. For each cluster of pages, the cleaner
then latches their buffer pool frames in shared mode and copies their contents
into its internal write buffer. This is done to avoid holding a latch, and thus
delaying updating threads, for the entire duration of a synchronous write, which
is performed in line 14. These writes must be synchronous because marking a
page as clean before it is actually persisted may result in lost updates in case of
a system failure. After the flush operation completes, it is logged to support a
more precise estimation of the dirty page set during log analysis [10]. This step
is not required, but has benefits for more efficient recovery.

The last step of the algorithm is to mark the page as clean in the buffer pool.
Traditionally, the dirty state of each page is tracked with a Boolean flag on each
frame descriptor. Before setting the dirty flag to false, the cleaner must check
whether or not an update happened to the page while it was being flushed. An
alternative approach, which is used in our design, is to maintain an additional

158 C. Sauer et al.

LSN field instead of a Boolean flag in the page descriptor. This field, called
CleanLSN, contains some LSN value for which all previous updates on the page
are guaranteed to have been propagated; it is initialized with the PageLSN value
and updated by the cleaner every time a page is flushed. Using this mechanism,
a page is considered dirty if and only if PageLSN > CleanLSN . This approach
eliminates the need to keep track of PageLSN values of copied page images, and
can also be used to implement a cleaning policy that considers “how long ago”
a page was last flushed.

3.2 Page Cleaning Policies

Before discussing different page cleaning policies—and why it is important to
have them instead of collecting all dirty pages as candidates—it is important
to understand the impact that the cleaner has on the dirty page backlog and,
ultimately, on the recovery effort in case of a system crash.

The main efficiency measure of the page cleaner is its write bandwidth, i.e.,
how many pages it can write per second (or how large the “drain” is in the sink
analogy of Fig. 1). However, optimizing for write bandwidth does not necessarily
minimize the dirty page backlog, because—as mentioned in Sect. 1—the backlog
can be measured as not only the number of dirty pages, but also how much log
volume is covered by such pages. If the cleaner policy in use neglects the log
volume, the length of the REDO log scan required during recovery is not kept
under control, and a situation similar to that of Fig. 1 may happen when the
log device is full. Therefore, the goal of page cleaning policies is to reduce the
dirty page backlog—and consequently reducing the recovery effort—across two
dimensions: number of dirty pages and log volume.

A page cleaning policy can be defined as a sort order applied to candidate
buffer pool frames. This is implemented using a priority queue in the pushHeap
function of Algorithm1. Our work considers three policies: oldest first (lowest
CleanLSN value); coldest first (lowest reference counter value); and hottest first
(highest reference counter value). Each of these policies has its own benefits for
reducing the dirty page backlog. An empirical analysis is performed in Sect. 5.
For now, we briefly discuss these benefits, i.e., the rationale behind choosing one
policy over the others.

The oldest-first policy aims to flush dirty pages which have been lingering the
longest in the buffer pool. This is possible thanks to our CleanLSN mechanism
introduced earlier. The goal of this policy is to reduce the log volume of the
dirty page backlog, which in turn reduces the length of the REDO log scan
during recovery. However, it does not necessarily decrease the number of dirty
pages as much. For that, the coldest-first policy is more appropriate. It collects
pages which are referenced the least, using a reference counter maintained in
each frame descriptor. This reference counter can be reused by clock-based page
replacement policies. The rationale behind flushing coldest pages first is that
they are the less likely to become dirty again after flushing, and thus a significant
reduction of the dirty page set is expected. Furthermore, they are the most likely

Update Propagation Strategies for High-Performance OLTP 159

to be selected for eviction, so cleaning them also improves the performance of
the page replacement algorithm.

Finally, the policy of flushing hottest pages first may seem counter-intuitive,
but it plays an important role for on-demand recovery schemes like instant
restart [3]. In this case, it is worthwhile to reduce the recovery time of important
pages such as system catalogs and B-tree roots. Since these tend to be the mostly
accessed pages, this policy guarantees that they are always kept as up-to-date
as possible. However, cold dirty pages will linger in the buffer pool without ever
being flushed, and so the dirty page backlog is not reduced. Therefore, this policy
is better utilized in combination with one of the other policies.

3.3 Problems of Page-Based Propagation

The first problem of page-based propagation strategies is that they fail to sustain
maximum write throughput. Despite the access pattern not being completely
random, but jump-sequential thanks to the sorting of candidate frames, a large
clustered page write is rare. Such large writes are required to deliver maximum
throughput, especially in the case of synchronous writes.

A low write bandwidth alone is ineffective in reducing the dirty page backlog,
but the fact that cleaning policies have such a complex parametrization space
worsens the problem even further. Maximizing cleaner efficiency is a matter
of choosing the ideal parameters for any point in time of a given workload.
These parameters include not only the policy type, as discussed above, but also
the number of candidates to choose at each iteration and whether to prioritize
large clusters over single page writes—an additional dimension which was not
considered in Algorithm1.

Lastly, page-based propagation is tightly coupled to the buffer pool. As
already observed by Levy and Silberschatz [7], propagation always causes some
interference to normal transaction processing. The page cleaner loop presented
in Algorithm 1 requires latching each flushed page three times: first to collect it
as a candidate, then to copy it into the write buffer, and finally to update its
CleanLSN. Furthermore, each dirty page not flushed must be accessed, and thus
latched, at least once when collecting candidates. Despite being shared-mode
latches, these may cause noticeable interference in a scenario of intensive trans-
action activity, which is also when page cleaning should run more aggressively.

4 Log-Based Propagation—a Novel Technique

Log-based propagation solves the aforementioned problems of page cleaning.
First, its I/O pattern is purely sequential, which guarantees the best possible
cleaning throughput. Second, because propagation is driven by the log, there is
no need for any policy or prioritization scheme. Third, it does not interact with
the buffer pool, thus reducing interference and increasing separation of concerns.
This section introduces this new technique and elaborates on these advantages.

160 C. Sauer et al.

4.1 Partially Sorted Log

Log-based propagation could, in principle, rely on the transaction log to replay
updates on the active database, but this would be inefficient given the random
access pattern. This approach was proposed in related work [7], and the problem
is recognized by the authors, who suggest an impractically large RAID configu-
ration to match the bandwidth of transaction updates.

A better approach is to reorganize the log so that log replay is performed
sequentially. This idea was explored in previous work on single-pass restore [11],
a technique to recover from media failures in a single sequential pass over log
archive and backup. The technique consists of integrating a run generation phase
in the archiving process, so that the log archive is composed of sorted runs. A
run maps to a contiguous LSN range, but, within each run, log records are
sorted primarily by page identifier. During restore, these runs are then merged
to form a single sorted stream of log records. These two steps—run generation
and merge—correspond to an external merge sort procedure, but because they
are seamlessly integrated into normal processing and recovery, respectively, no
noticeable overhead or increased downtime is incurred. We refer to the original
publication for further details and experiments [11].

4.2 Log-Based Page Cleaner

Similar to its page-based counterpart, the log-based cleaner runs in a dedicated
thread. It runs Algorithm2, presented here in pseudo-code, in a main loop. On
each iteration, a subset of partitions in the partially sorted log is scanned, start-
ing on the LSN on which the previous iteration stopped—here called startLSN .
This delivers an iterator of log records sorted by page identifier (line 2).

Algorithm 2. Log-based cleaner main loop
1: function LogBasedCleaner(sortedLog, startLSN)
2: iter ← sortedLog.open(startLSN)
3: buffer ← allocateBuffer()
4: while iter.hasNext() do
5: logrec ← iter.get()
6: readSegment(buffer, logrec.pid)
7: replayLog(buffer, iter)
8: flush(buffer)
9: end while

10: return iter.endLSN
11: end function

The stream of sorted log records is processed one segment at a time, whereby
a segment is defined as a fixed-size set of contiguous pages. This size should be
such that scattered writes deliver good sequential write speed (e.g., 1 MB). Each
segment is first read into the cleaner’s internal buffer (line 6). Then, log replay

Update Propagation Strategies for High-Performance OLTP 161

is performed on this segment using the iterator, until the current log record
refers to a page outside the current segment or the iterator has finished. At this
point, the buffer is flushed into the persistent database and further segments
are processed until the log scan iterator has finished. The end of the LSN range
covered by the log scan is then returned to the caller—it will be used as the
startLSN on the next cleaner invocation.

Note that the algorithm has no reference to the buffer pool, which means
that the page cleaner is completely decoupled from it. This has not only archi-
tectural advantages, i.e., better modularization and separation of concerns, but
also performance benefits, since there is no latching or copying of pages in the
buffer pool. We illustrate this in Fig. 2. Traditional page-based propagation (on
the left-hand side of the diagram) propagates data directly from in-memory
data structures into persistent storage, creating a tight coupling between these
components; unlike log-based propagation (on the right-hand side), where the
components are independent. This decoupled design also has interesting proper-
ties that can be exploited in logging and recovery mechanisms—these are briefly
discussed in Sect. 6. One detail worth mentioning is that the need for tracking
dirty pages in the buffer pool is eliminated. However, this tracking is necessary
if eviction of dirty pages is not allowed, i.e., if write elision [3] is not supported.
To that end, an additional step is required in Algorithm2 to mark pages flushed
as clean. Because this design would introduce a dependency to the buffer pool
module, it is not completely decoupled, but still fairly loosely coupled when
compared with the traditional page cleaner.

Fig. 2. Coupling of persistent and in-memory components

The log-based propagation algorithm has a jump-sequential I/O pattern,
since segments are read and written in page-ID order, skipping segments for
which no log record is found. If a moderately large segment size is used (e.g., a
few megabytes for either SSD or HDD), this jump-sequential pattern fully utilizes
the device sequential speed. One performance concern is that segments must be
both read and written during propagation, which means that a single database
device would spend roughly only half of the time performing writes. Further-
more, the log archive must also be read using a merge pattern, which may incur
many random reads if too many log partitions are merged [11]. Thus, the I/O
activity of the log-based cleaner is more intense than the traditional page-based
approach. However, these problems are easily mitigated with simple software and

162 C. Sauer et al.

hardware measures. First, if the partially sorted log is stored with redundancy
(e.g., RAID-1)—which is a bare-minimal requirement for reliability—concurrent
reads and writes can be performed in parallel. Second, if the merge logic of
the log scan supports asynchronous read-ahead [2], then log reads are also per-
formed in parallel with update propagation. Furthermore, despite this intense
I/O behavior, the next section demonstrates that log-based propagation beats
the traditional page cleaner even with a single non-redundant database device.

5 Experiments

5.1 Write Bandwidth

Our first experiment analyzes the average write bandwidth sustained by 12 vari-
ations of page-based propagation strategies in comparison with the log-based
strategy. For this experiment, which uses the TPC-C benchmark, the buffer pool
is large enough to contain the whole dataset, which has initial size of 13 GB, and
SSD devices are used for both log and database files. With 20 concurrent clients
on a multi-core server, it delivers an average transaction throughput of 10,000
per second. Therefore, our goal here is to maximize pressure on the system and
analyze how the propagation strategies keep up. The results are shown in Fig. 3,
with strategies on the x-axis and write bandwidth plotted in MB/s with a log
scale on the y-axis.

2

4

8

16

32

64

128

hottest-2k

coldest-2k

oldest-2k

oldest-20k

coldest-20k

hottest-20k

hottest-200k

oldest-200k

coldest-200k

no-policy

clustered-32

clustered-8

log-based

W
ri
te

b
a
n
d
w
id
th

(M
B
/
s)

Propagation strategy

Fig. 3. Write bandwidth of different propagation strategies

The first nine strategies consist of the three policies described in Sect. 3.2
using three different sizes for the priority queue of candidate frames—2,000,
20,000 and 200,000. This corresponds roughly to 0.1 %, 1 %, and 10 % of the
application working set, respectively. We note that all of them are quite slow,
utilizing only from 3 to 5 MB/s write bandwidth. This is because most writes are
of single pages, which is inefficient even for SSD devices. Three other page-based
strategies are considered in this experiment. The first one, labeled “no-policy” is
a naive strategy in which every dirty frame is flushed, thus ignoring any prioriti-
zation policy. At ∼6 MB/s, it is slightly more efficient than the others, because

Update Propagation Strategies for High-Performance OLTP 163

more opportunities for large writes are found. The two “clustered” policies are
just like “no-policy”, but only page writes larger than a certain number of pages
are performed—here 8 and 32 pages. We note that the bandwidth is indeed
increased to about 18 MB/s, but the policy is not as effective because the larger
the minimum size is, the less likely it is that large-enough clusters are found;
this is why the 8-page policy is slightly faster than the 32-page policy. Finally,
the log-based propagation strategy, which has only a single variant, is by far
the most efficient, at 100 MB/s. The maximum bandwidth of the device is actu-
ally 200 MB/s, but, as discussed earlier, half of the time is spend performing
reads, which means that 100 MB/s is indeed the maximum possible speed for
this propagation strategy.

5.2 Backlog Reduction

The next experiment analyzes the effectiveness of propagation strategies in
reducing the dirty page backlog. We break down the execution of each experi-
ment into a time series of 20 min and measure the number of dirty pages as well
as the log volume covered by them, i.e., the length of the REDO log scan in case of
a system failure. Because the page-based policies introduced in Sect. 3.2 are very
inefficient with a single storage device, we consider—in addition to the scenario
of the previous experiment—a low-throughput scenario with ∼1,000 transactions
per second. With the lower dirtying speed, page-base strategies should be more
effective and interesting comparisons may be drawn.

The results are shown in Fig. 4. The two plots on the top correspond to the
low-throughput scenario, whereas the bottom plots are high-throughput ones.
The plots on the left-hand side measure the number of dirty pages in the buffer
pool, while the ones on the right-hand side measure the REDO length. For this
experiment, we consider only three page-based policies: oldest-first with 200,000
candidate frames; the clustered strategy with 8 pages; and a “mixed” policy
which is a special version of oldest-first—it ignores newly allocated, never-flushed
pages in 3/4 of the cleaner activations. We implemented this strategy to show
that mixing policies and adjusting parameters allows for more efficient cleaning
when tailored to a particular workload. Other strategy variants have similar
results and thus provide no additional insight.

For the low-throughput scenario, we observe that the clustered policy, as
expected, is not able to reduce the dirty page backlog despite delivering better
write bandwidth. The oldest-first policy is able to maintain a low dirty page
count between 20,000 and 30,000, but it performs just as bad as the clustered
strategy in controlling REDO length. Our mixed strategy tailored for this work-
load actually performs best on both criteria: it maintains a stable and low dirty
page count (after an initial period of instability) and is more effective than
the two other page-based policies in controlling REDO length. The log-based
propagation strategy maintains a higher dirty page count than the mixed and
oldest-first policies—this can be attributed to the natural backlog occurring due
to the delay between inserting a log record in the (unsorted) recovery log and
processing it in the partially sorted log. The zig-zag pattern is a consequence

164 C. Sauer et al.

0
10
20
30
40
50
60
70
80

0 2 4 6 8 10 12 14 16 18 20

D
ir
ty

p
a
g
es

(×
1
0
3
)

Time (minutes)

0
2
4
6
8

10
12
14

0 2 4 6 8 10 12 14 16 18 20

R
E
D
O

le
n
g
th

(G
B
)

Time (minutes)

0
200
400
600
800

1000
1200
1400
1600

0 2 4 6 8 10 12 14 16 18 20

D
ir
ty

p
a
g
es

(×
1
0
3
)

Time (minutes)

0
10
20
30
40
50
60
70
80

0 2 4 6 8 10 12 14 16 18 20

R
E
D
O

le
n
g
th

(G
B
)

Time (minutes)

mixed-200k oldest-200k clustered-8 log-based

Fig. 4. Backlog analysis for low- (top) and high-throughput (bottom) scenarios

of the log-based cleaning algorithm, which processes runs of the partially sorted
log and segments of multiple pages in batches. It performs slightly better than
the mixed policy in REDO length, but the main take-away here is that none
of the strategies is able to maintain it stable, suggesting that an adaptive app-
roach, possibly combining both log- and page-based propagation, might be more
appropriate.

In the high-throughput scenario, which is the main goal of our investigation,
log-based propagation performs better than the mixed and oldest-first policies,
but loses to the clustered approach in maintaining a low dirty page count. How-
ever, it is the only approach which is able to control the REDO length, with a
large margin to page-based strategies. Thus, these results clearly demonstrate
its superiority for the workload considered.

6 Outlook and Conclusion

This work deals with the problem of update propagation for high-performance
OLTP scenarios. Given the ever-increasing performance gap between in-memory
processing and I/O operations, as well as the decreasing costs of main mem-
ory, a database system’s buffer pool may get saturated with dirty data, unless
an efficient propagation strategy is employed. This makes it more challenging
to maintain a well-balanced system using hardware alone. The approaches pre-
sented here address the problem with software techniques, improving hardware
utilization and thus reducing costs.

We described a flexible page-based propagation tool (the page cleaner) and
analyzed its effectiveness under a variety of policies. Our empirical evaluation
shows that this traditional approach is not able to fully exploit the write band-
width of a single storage device. In addition to the inefficiency problem, we

Update Propagation Strategies for High-Performance OLTP 165

pointed out the tight coupling between buffer management and persistence mod-
ules in the traditional design. The storage manager of a database system is known
in the literature for having intricate dependencies between its components: con-
currency control, recovery, buffer management, and storage structures [6]. This
is not only an architectural problem for code maintenance, reusability, and evo-
lution, but also a performance problem for scalability of transactional workloads.

To solve these two problems—cleaning inefficiency and tight coupling—we
proposed a log-based propagation strategy. Instead of flushing dirty pages from
the buffer pool directly into persistent storage, an independent system com-
ponent propagates updates into the persistent database using log replay. To
support a sequential access pattern, a partially sorted log data structure is bor-
rowed from previous work in the context of recovery from media failures [11].
Our empirical evaluation shows that log-based propagation is able to fully uti-
lize the bandwidth of the database device, thus providing much higher cleaner
efficiency. In practice, this results in reduced operational costs, as less disks are
required to match in-memory performance and reach a balanced state. Lastly,
this novel propagation technique does not require any access to the buffer pool
data structures, simplifying the buffer manager implementation and increasing
separation of concerns in the system architecture.

References

1. DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M., Wood, D.A.:
Implementation techniques for main memory database systems. In: Proceedings of
SIGMOD, pp. 1–8 (1984)

2. Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv.
25(2), 73–170 (1993)

3. Graefe, G., Guy, W., Sauer, C.: Instant Recovery with Write-Ahead Logging: Page
Repair, System Restart, and Media Restore. Synthesis Lectures on Data Manage-
ment. Morgan & Claypool Publishers, San Rafael (2014)

4. Graefe, G., Volos, H., Kimura, H., Kuno, H.A., Tucek, J., Lillibridge, M., Veitch,
A.C.: In-memory performance for big data. PVLDB 8(1), 37–48 (2014)

5. Härder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Comput. Surv. 15(4), 287–317 (1983)

6. Hellerstein, J.M., Stonebraker, M., Hamilton, J.: Architecture of a Database Sys-
tem. Now Publishers Inc., Hanover (2007)

7. Levy, E., Silberschatz, A.: Log-driven backups: a recovery scheme for large memory
database systems. In: Proceedings of 5th Jerusalem Conference on Information
Technology, pp. 99–109 (1990)

8. Malviya, N., Weisberg, A., Madden, S., Stonebraker, M.: Rethinking main memory
OLTP recovery. In: Proceedings of ICDE, pp. 604–615 (2014)

9. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: ARIES: a trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst. 17(1), 94–162 (1992)

10. Sauer, C., Graefe, G., Härder, T.: An empirical analysis of database recovery costs.
In: RDSS (SIGMOD Workshops), Snowbird, UT, USA (2014)

11. Sauer, C., Graefe, G., Härder, T.: Single-pass restore after a media failure. In:
Proceedings of BTW. LNI, vol. 241. pp. 217–236 (2015)

A Recommender System for DBMS Selection
Based on a Test Data Repository

Lahcène Brahimi(B), Ladjel Bellatreche, and Yassine Ouhammou

LIAS/ISAE-ENSMA, Poitiers University, Futuroscope, Poitiers, France
{lahcene.brahimi,ladjel.bellatreche,yassine.ouhammou}@ensma.fr

Abstract. Nowadays, we see an explosion in the number of Database
Management Systems (DBMS) in the market. Each one has its own
characteristics. This spectacular development of DBMS is mainly moti-
vated by the need for storing and exploiting the deluge of heteroge-
neous data for analytical purposes. As a consequence, companies and
users are faced with huge range of choices and sometimes it is hard for
them to find the relevant DBMS. Some Web sites such as DB-Engines
(http://db-engines.com/en/) provide monthly a classification of hun-
dreds of DBMS (303 in April 2016) using metrics related to usage and
user feedbacks. These criteria are not always sufficient to help com-
panies and users to make a good choice. Therefore, they have to be
enhanced by qualitative measurements obtained by testing the activ-
ities of DBMS for a set of non-functional requirements. In this per-
spective, some council such as Transaction Processing Council publish
non-functional requirement results of DBMS using their own benchmarks.
Another serious producer of test data is the researchers via their scien-
tific papers. Each year they publish a large amount of results of new
solutions. To facilitate the exploitation of these test results by small com-
panies and researchers from developing countries, the construction of a
test data repository connected to recommender system is an asset for com-
panies/users. In this paper, we first propose a repository for structuring
and storing test data. Secondly, a recommender system is built on the top
of this repository to advise companies to choose appropriate DBMS based
on their requirements. Finally, a proof of concept of our recommender sys-
tem is given to illustrate our proposal.

1 Introduction

Nowadays, every science discipline (e.g. smart Grids [22], health-care [18], and
telecommunication [5]) needs the services offered by the DBMS. The develop-
ment of efficient database applications represents a crucial issue for companies.
This issue has to deal with the diversity, the deluge of data, the emerging tech-
nologies, the continuously need for satisfying several non-functional requirements
(e.g., the usability, the quality, the security, the response time, the energy con-
sumption, etc.), etc. The diversity covers several aspects: (a) the manipulated
data, (b) the database models (relational, XML, Semantic, Graphs, etc.), (c) the
DBMS, (d) the deployment platforms (centralized, distributed/parallel, cloud,
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 166–180, 2016.
DOI: 10.1007/978-3-319-44039-2 12

http://db-engines.com/en/

A Recommender System for DBMS Selection 167

data clusters, etc.), (e) the type of workload (Online Transaction Processing
(OLTP), Online Analytical Processing (OLAP) or OLTP/OLAP) [1], etc. The V
of Big Data defining the volume makes the satisfaction of certain non-functional
requirements, such as performance, more difficult. This situation encourages data
management editors to propose solutions and new DBMS in order to fitful these
requirements. As a consequence, companies are faced to a problem of choos-
ing their DBMS. Recent initiatives have been launched for this purpose. For
instance, the objective of DB-Engines1 is to collect and present information on
DBMS and provides monthly a classification of hundreds of DBMS (303 in April
2016) using metrics related to usage and user feedbacks.

Note that the satisfaction of non-functional requirements strongly depends on
the used DBMS and the platform. Faced to the diversity of DBMS, a legitimate
question that companies have to ask when they develop new database projects
is: what is the favorite DBMS for my application?

An equivalent question has already been asked in 80s, when companies and
organizations start dealing with projects for new types of data and applications.
For instance, in [7], the authors attempt to select a DBMS for agricultural record
keeping for United States Department of Agriculture (USDA). Recently, with
the explosion of advanced platforms, several studies endeavor to evaluate a set
of non-functional requirements of a priori known DBMS deployed in a given
platform for a specific activity. In [10], the authors evaluate the performance of
the MongoDB deployed on a Hadoop platform for scientific data analysis. This
situation is easier for companies, since it supposes the knowledge of the DBMS
and the platform.

The response to the above question can be done thanks to the subjective
evaluation of the used non-functional requirements by performing intensive test-
ing activities. Note that a testing activity consists in stimulating a system in
order to observe its response [19]. A stimulus and a response both have val-
ues, which may coincide, as when the stimulus value and the response are both
real. In the context of the problem of choosing a DBMS, the stimulus includes
the values of parameters, e.g. the deployment platform setting, the database
schema/instances, the constraints, the access methods, and so on. Observations
include values of the metrics describing the used non-functional requirements.

Notice that the testing in the database covers all phases of the life cycle: user
requirement collection, conceptual [23], ETL (Extract, Transform, Load), logical,
deployment, physical [3] and analysis [12]. In this paper, we concentrate only on
the deployment phase in which the DBMS hosting the database application and
the platform are chosen.

Test activities are time and money consuming. As quoted in [15], Microsoft
spends 50 per cent of its development costs on testing. Big companies can spend
money to test their database solutions deployed in a DBMS. As a consequence,
they can tune their solutions to satisfy their requirements. Other organisms and
council such as Transaction Processing Council published regularly the perfor-
mance of well known DBMS and platforms based on their benchmark data2.

1 http://db-engines.com/en/.
2 www.tpc.org.

http://db-engines.com/en/
www.tpc.org

168 L. Brahimi et al.

For other companies with a large expertise in simulation, they can simulate the
behavior of a set of DBMS and develop mathematical cost models to evaluate the
different metrics measuring the asked non-functional requirements. To be more
accurate, these metrics have to consider relevant parameters of the database
environment such as the schema, the population, the workload, the deployment
platform, the DBMS, the used algorithms, the used optimization structures (e.g.
indexes, materialized views). Based on the results of the simulation, they can
choose the best DBMS that satisfies their requirements. Usually, companies con-
suming the database technology, especially those belonging to developing coun-
tries cannot afford the luxury of Big companies and they do not have enough
expertise to develop their own simulations. Thus, another alternative has to be
found.

On the other hand, the database community spent a great effort in testing
their findings. If we consider only database and information systems conferences
and journals, each year, more than 80 % of scientific papers provide intensive
experiments to evaluate and compare their proposals. This situation contributes
in generating a mass of test data that have to be analyzed. Through this paper,
we would like to think-tank about the following topic: are the available test data
well structured, presented and stored (in a transparency manner) to be publicly
exploited?

In this study, we propose a “DBLP-like”3 repository persisting test data to
offer researchers and companies the possibility to exploit it. Then, researchers
can make a good decision to choose their DBMS, platforms, etc. The reposi-
tory exploitation can be ensured by recommender systems and machine learning
techniques.

In this paper, we present in Sect. 2 basic definitions and concepts related to
our studied problem. Section 3 proposes our recommender system and its differ-
ent components. Section 4 reports a proof of concept for our proposal. Finally,
Sect. 5 concludes the paper and highlights some open issues.

2 Background

In this section, we first present the metrics measuring non-functional require-
ments that a DBMS has to satisfy, then the schema of our repository.

2.1 Database Benchmark Metrics

In the database field, the functional requirements describe the functionalities, the
functioning, and the usage of the DBMS and its components. They are specifying
a behavioral input/output system such as the calculation, data manipulation and
processing, identification, creation, insert, delete, update and others. In general,
they are detailed in the system design [16].

3 http://dblp.uni-trier.de/.

http://dblp.uni-trier.de/

A Recommender System for DBMS Selection 169

Non-functional requirements [20], also called quality attributes are either
optional requirements or needs/constraints, they are detailed in system archi-
tecture. Non-functional requirements describe how the system will do. In the
context of the advanced databases, the non-functional requirements are usually
difficult to test. As a consequence, they are evaluated subjectively [6,14].

To evaluate a non-functional requirement corresponding to the deployment
phase, several metrics are used which have to be either maximized or minimized.
We can cite some traditional metrics:

– Query-per-Hour Performance (QphH@size): it is a measure used to determine
the performance of a database system. This metric represents the number of
queries executed for one hour relative to the size of the database. The TPC-H4

which is one of the most popular benchmarks uses this metric.
– Execution-time: it represents the time needed for execution resources of the

system to process a query.
– Latency or response time: it represents the time between the launch of a query

and the arrival-time of the first answer. The best response time value of a query
corresponds to its run-time.

– Throughput : it gives the number of queries performed per time.
– Utilization rate of a resource: it is the proportion of the time that the resource

is used in a given time.
– Transmission rate: it gives the number of tuples produced per time.

2.2 Test Data Repository

The basic idea behind our test data repository was inspired from the presence,
in numerous scientific papers of a section describing Experimental Study. The
analysis of this section allows us to identify repetitive informations that describe
the experimental environment and the obtained test results.

This environment contains: the used platforms, the DBMS, the operating sys-
tems, the database (schema and instances), the workload, the used algorithms,
the mathematical cost models, the hypothesis, the metrics (with their units), the
type of experiments (simulation, real), the used external material to compute
the cost of consumed resources such as the energy, etc. From a scientific paper,
we can deduce other information such that the affiliation of the authors, the
period of the test, etc. The test data represents the obtained measures of metrics
of non-functional requirements. Table 1 gives an example of the experimental
environment of [21] that deals with the problem of designing of an energy-
aware DBMS. The used metrics represent the consumed energy consumption,
the Inputs-Outputs (IO) and the CPU cost when executing a workload.

From these informations, we embodied a data warehouse schema ()as a star
schema) (Fig. 1) [4]. It is composed of the following dimensions:
Dim Platform, Dim Deployment, Dim DBMS, Dim OS, Dim Dataset, Dim
Query, Dim Algorithms, Dim AccessMethods, Dim Hypothesis, Dim Metrics,
Dim Laboratory and Dim Time.
The fact table contains the mathematical and real measures related to metrics
(CPU, IO, Network, Energy, etc.).
4 http://www.tpc.org/tpch/.

http://www.tpc.org/tpch/

170 L. Brahimi et al.

Table 1. Testing environment

Laboratory LIAS/ENSMA

Time 14/05/2015

Platform Marque: Dell precision T1500

CPU: Intel Core i5 2.27GHz, Memory: 4GB of DDR3

Dataset Star Schema Benchmark (SSB), Size: 100GB

Operating System Ubuntu 14.04 LTS kernel 3.13

Workload Star schema Benchmark (SSB) queries

Deployment Centralized

Optimization Structures Materialized views

DBMS Oracle 11gR2

Algorithm Nondominated Sorting Genetic Algorithm NSGA II

Hypothesis Without cache

Metrics Response time CPU Cost IO Cost Energy

External material Watts UP? Pro ESa

Type of experiments material simulation and real
a https://www.wattsupmeters.com/

Fig. 1. Our test data repository

Our data warehouse can be exploited by traditional reporting tools (For
example, the OLAP Slice and Dice operations shown in Fig. 2), exploration [11,
17], data mining algorithms [2], etc.

https://www.wattsupmeters.com/

A Recommender System for DBMS Selection 171

Fig. 2. An example of OLAP slice and dice

3 A Recommender System for Choosing DBMS

To respond to the question that we asked in Introduction, we believe that
recommender systems may assist companies in selecting their favorite DBMS.
Recommender systems have been largely used in several domains. Three main
types of recommender systems exist: collaborative filtering, content-based and
knowledge-based. They differ from the information that they use to propose
recommendations. The collaborative filtering uses similarities between users
and items. Content-based uses static information about users or items. How-
ever, knowledge-based depends on informations that are obtained directly from
users [13].

3.1 Components of Our Recommender System

The recommendation scenario in our context is the following: We assume that
a company/user comes up with a database application with its characteristics
related to the database schema, the workload, the platform, etc., and wants get-
ting an advise to choose a relevant DBMS that fulfills its requirements. These
informations are described through a document called the manifest. Two cate-
gories of information are available: (i) given information and (ii) missing infor-
mation. The first category defines the valued attributes that a company has,
whereas the second one represents the attributes with missing values that the
company is looking for.

Note that all attributes used in the manifest belong to the schema of our
warehouse. Figure 3 represents an example of a manifest, in which the DBMS
and performance metric (estimating QphH) are missing. This means that the
company is looking for a DBMS and its performance for its application. Our
recommender system has to consider the manifest explores the warehouse to
find fragment of test data corresponding to the manifest, and then propose the
company a DBMS. To highlight the work-flow related to the test seeking, we
describe the steps shown in Fig. 4.

172 L. Brahimi et al.

Fig. 3. Example of a manifest

Fig. 4. Overview of the test warehouse-like repository usage

(A) The company chooses to play the role of a test seeker.
(B) The seeker interface transforms the request to a set of queries to select all

the dimensions with their values and the metrics (without values) which
exist in the test repository.

(C) The seeker interface loads the result of B and presents it to the company
(e.g. seeker). This instance corresponds to an empty Manifest.

(D) The company enriches the manifest by expressing it needs based on the
existing content. Of course, users can add new values related to the dimen-
sions when it is necessary. However, adding new metrics is not possible,
because the objective is to orient designers to choose a test configuration
depending on the metrics that exist in the repository.

(E) The seeker interface generates from the manifest a set of appropriate SQL
queries to explore the test repository.

(F) Based on the manifest queries and the repository content, a set of possible
tests and their specific configurations, in which missing informations are
replaced by the recommended values, are proposed to the seeker via the
interface. Note that this problem is quite similar to the problem of clus-
tering with missing data [24]. Several research efforts have been done to
solve the above-mentioned problem. Usually, they propose algorithms and

A Recommender System for DBMS Selection 173

methods to predict the missing values [24]. These algorithms are defined
at the attribute level and not at the dimension level. This motivates us
to develop our own algorithm. The basic idea is to discard the dimensions
which are not expressed in the manifest. Based on the obtained results, we
estimate the attributes values of unknown dimension(s). This can be done
by using machine learning techniques (Fig. 5). The details of this algorithm
is presented in Sect. 3.2.

(G) Finally, the user can download information related to the proposed solution.
Note that the searching results shall correspond to a repository containing
one or several tests depending on the seeker requests. The aim is to allow
seekers to download customized repositories referring to their needs.

Fig. 5. The structure of recommender system

3.2 Machine Learning Algorithms

At the beginning, we used a linear regression technique to deal with our problem.
However, the obtained results were poor in terms of prediction. This is due to
occurrences of DBMS in the repository which are not enough for prediction. For
instance, in our repository, there is 40 tests involving MS SQL Server, but only
10 for Oracle DBMS.

To avoid the problem of occurrences of tests, we use another algorithm based
on similarity between Manifest and tests. Before detailing this algorithm, some
definitions are given.

Definition 1. The similarity is a comparison between two objects to determine
the most important and useful relations between them [8].

Definition 2. The distance is the inverse measure of the similarity. Several
distance functions exists such as Euclidean distance defined as follows:
Let P1(x1, x2, ..., xk) and P2(y1, y2, ..., yk) be two points of a vector space. The
distance between P1 and P2 is given by the following equation:

Distance =

√√√√
k∑

i=1

(xi − yi)2 (1)

174 L. Brahimi et al.

Let x and y be two scalable values. x and y are similar if they verify the following
relations [9]:

Relative relation :
x

y
≈ 1 if

x

y
∈ [1 − ε,

1
1 − ε

]

Absolute relation : x − y ≈ 0 if |x − y| ∈ [0, ε]
(2)

where ε is the smallest value in the scale of x or y. Among the two above
relations, the relative relation fits better our problem. Therefore, the similarity
can be assimilated to the ratio between the estimated and the real measures.

Definition 3. Normalization. It is a property of the similarity and requires
that all values belonging to the interval [0, 1]. There are various normalizations
in statistics. Let X = {x1, x2, . . . , xn} be a sample of n valued items. The nor-
malized value of xi may be given by:

N =
xi − Min(xi)

Max(xi) − Min(xi)
(3)

If the distance (D) is normalized, the similarity S is can be given by: S = 1−D.
Now, we have all ingredients to describe and illustrate our algorithm. Let

us consider an office design company comes with a Manifest, where DBMS and
performance metric that estimate QphH are missing. Since the following lines
describe the algorithm, Table 2 shows the whole process and its results step by
step.

– step 1: analyzing of the company Manifest to identify the presence of
dimensions;

– step 2: getting a fragment of the data cube satisfying these dimensions (using
Slice and Dice);

– step 3: normalizing all the dimension’s values using formula 3;
– step 4: computing the similarity between the company Manifest and each

instance of the data cube fragment. Note that an instance represents a test;
– step 5: selecting the best propositions based on the result of sorting. Indeed,

tests are sorted in relation to similarity results for each DBMS.
– step 6: the company can choose its favorite DBMS based on its requirements

such as price.

Our algorithm can be extended by considering missing measures, by extracting
the fragment of the data cube corresponding on the given dimensions.

4 Proof of Concept

To stress our proposal, we consider real test data available at the TPC website.
They correspond to the execution cost (in a single stream) of queries running on
four well-known DBMS: Oracle, MS SQL Server, DB2 and Sybase. These data
are manually inserted into our repository (about ten tests of each DBMS). Two
cases of manifest are considered (Table 3).

A Recommender System for DBMS Selection 175

Table 2. Example process of our recommender system

Algorithm’s steps Example

Step 1
Input: Manifest

Step 2
Input: DW TEST

Output:

Step 3 and 4
Input: Table in
above with the
following formulas:
1, 3 and S

Step 5 and 6
Result:

Table 3. The cases of the experimental study

Dataset Workload Platform DBMS

Case 1 � � � ?

Case 2 � � ? ?

176 L. Brahimi et al.

Fig. 6. Excerpt of the manifest corresponding to case 1

Case 1. It corresponds to the scenario where a company looks for a DBMS. It
can expresses its requirement through a manifest as it is shown in Fig. 6.

This means that the user would like to know the response-time of the TPC-H
queries (i.e. Q3, Q7, Q19) depending on specific platform and dataset. Moreover,
referring to the result related the response-time metric; we can recommend a list
of suitable DBMS that matches its requirements.

Table 4. Q3, Q7, Q19 response time(s) with four DBMS

Oracle MS SQL Server DB2 Sybase

Q3 6.80 5.40 102.50 35.50

Q7 34.30 2.80 677.80 37.50

Q19 50.30 2.50 262.20 19.30

Similarity 0.74 0.81 0.48 0.49

Table 4 represents the results obtained that shows the response time of Q3,
Q7, Q19 with MS SQL Server, Oracle, DB2 and Sybase. So, according to the
obtained results, we can sort the found DBMSs. In first position, we find MS
SQL Server which shows performances of speed (Response time) Q3 = 4.37 s,
Q7= 2.26 * 0.99 s and Q19 = 2.02 s (Response time * Similarity). The overall
performance of that Sybase and DB2 DBMS is high. Notice that Sybase outper-
forms Oracle for the query Q19. Therefore, we can recommend MS SQL Server
to satisfy this manifest.

Case 2. It corresponds to the scenario in which a company looks for both a
DBMS and a platform. Its manifest is shown in Fig. 7. Let us assume that this
company uses the same configuration used in the case 1, except the platform is
missing. We would like to precise that in Case 2, the company does not ignore
the platform dimension, but it looks for a relevant platform and a DBMS.

A Recommender System for DBMS Selection 177

Fig. 7. Excerpt of the manifest that corresponds to the case 2

Table 5. Selected DBMS and platforms based on the response-times of Q3, Q7, Q19

Oracle MS SQL Server DB2 Sybase

CPU 1.3 2.8 1.9 2.8

Proc 64 4 8 2

Threads 64 120 32 4

Cores 64 60 16 4

Memory 256 1536 32 16

Q3 6.8 4.7 27.3 1429.4

Q7 34.3 2.8 150.4 573.8

Q19 50.3 2.3 163.6 469.2

Similarity 0.99 0.97 0.98 0.93

Table 5 represents the results obtained that shows the response-times of
queries Q3, Q7, Q19. These response-times are categorized based on DBMS and
the platform configurations. We can see that MS SQL Server is the best DBMS
according to the computed response-times. Moreover, it is related to the follow-
ing platform configuration (i.e. CPU: 2.8 GHz - Proc: 4 - Threads: 120 - Cores:
60 - Memory: 1536 GB).

5 Related Work

Before reviewing the important organisms and councils whose the main activity
is publishing test data, let us notice that in our recent work [4], concerns the static
part of warehouse. We only concentrated on proposing a test data repository and
we show the interest of using model-driven engineering techniques to perform
this design and describe the manifest.

The transaction processing council offers a large panoply of benchmarks
covering: transaction processing - OLTP (TPC-C TPC-E), Decision Support
(TPC-H, TPC-DS, TPC-DI), virtualization (TPC-VMS, TPCx-V), Big Data
(TPCx-HS, TPCx-BB) and common specifications (TPC-Energy, TPC-Pricing).

178 L. Brahimi et al.

This council works in close collaboration with industrial partners by delivering
them trusted results.

In computational science such as physics and automatics, we recently assist
in the development of repository persisting the results of experiments and
simulations. The cTuning repository5 is open-source, customizable Collective
Knowledge Repository for physics domain. It aggregates developments, ideas
and techniques, and allows users to share, cross-link and reference any object
and knowledge (workloads, data sets, tools, optimization results, predictive mod-
els, etc.) as a reusable component with a unified JSON API via GitHub. AiiDA6

is a flexible and scalable informatics’ infrastructure to manage, preserve, and
disseminate the simulations, data, and work-flows of modern-day computational
science to ensure reproducibility.

6 Conclusion

The data warehousing and recommender systems have been applied in numer-
ous domains manipulating huge amount of historical data. Scientific papers,
councils and research foundations represent rich test data sources that have
to be exploited by researchers and companies for developing countries. In this
paper, we attempt to federate the database community around the importance
of the available test data and to motivate them to build “DBLP-like” reposi-
tory that can play the role of a test data warehouse. Its dimensions represent
several aspects of a test environment: database, dataset, workload, platform,
DBMS, algorithms, hypothesis, non-functional requirements, unit of measure,
etc. The fact table of our warehouse contains all measures corresponding to met-
rics describing non-functional requirements. This warehouse can be used either
by traditional OLAP tools for exploration and reposting activities or by systems
recommending companies the relevant DBMS based on their manifest. Two case
studies are given and showed the utility of our approach.

Our paper opens several issues: (i) the development of comprehensive forms
allowing researchers putting their test results in the repository, (ii) providing a
mechanism making our system trustworthy and (iii) generalization of our repos-
itory to consider other phases of the life cycle of database design such as con-
ceptual, logical and ETL.

References

1. Ahmad, M., Aboulnaga, A., Babu, S., Munagala, K.: Interaction-aware scheduling
of report-generation workloads. VLDB J. 20(4), 589–615 (2011)

2. Baralis, E., Meo, R., Psaila, G.: Data mining in data warehouses. In: SEBD, pp.
51–65 (1999)

5 http://ctuning.org/index.html.
6 http://www.aiida.net/.

http://ctuning.org/index.html
http://www.aiida.net/

A Recommender System for DBMS Selection 179

3. Bouchakri, R., Bellatreche, L., Hidouci, K.-W.: Static and incremental selection of
multi-table indexes for very large join queries. In: Morzy, T., Härder, T., Wrembel,
R. (eds.) ADBIS 2012. LNCS, vol. 7503, pp. 43–56. Springer, Heidelberg (2012)

4. Brahimi, L., Ouhammou, Y., Bellatreche, L., Ouared, A.: More transparency in
testing results: towards an open collective knowledge base. In: 10th IEEE Inter-
national Conference on Research Challenges in Information Science, pp. 315–320
(2016)

5. Chen, Q., Hsu, M., Dayal, U.: A data-warehouse/OLAP framework for scalable
telecommunication tandem traffic analysis. In: ICDE, pp. 201–210 (2000)

6. Chung, L., do Prado Leite, J.C.S.: On non-functional requirements in software
engineering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Con-
ceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 363–379.
Springer, Heidelberg (2009)

7. Cross, T.L., Lane, R.J., et al.: Selecting a database management system for agri-
cultural record keeping. Technical report (1988)

8. Cross, V.V., Sudkamp, T.A.:Similarity and compatibility in fuzzy set theory:
assessment and applications, vol. 93 (2002)

9. Dague, P., Travé-Massuyès, L.: Raisonnement causal en physique qualitative. Intel-
lectica 38, 247–290 (2004)

10. Dede, E., Govindaraju, M., Gunter, D., Canon, R.S., Ramakrishnan, L.: Perfor-
mance evaluation of a mongodb and hadoop platform for scientific data analysis.
In: Proceedings of the 4th ACM Workshop on Scientific Cloud Computing, pp.
13–20 (2013)

11. Furtado, P., Nadal, S., Peralta, V., Djedaini, M., Labroche, N., Marcel, P.: Materi-
alizing baseline views for deviation detection exploratory OLAP. In: DAWAK, pp.
243–254 (2015)

12. Golfarelli, M., Rizzi, S.: Data warehouse testing: a prototype-based methodology.
Inf. Softw. Technol. 53(11), 1183–1198 (2011)

13. Gomez-Uribe, C.A., Hunt, N.: The netflix recommender system: algorithms, busi-
ness value, and innovation. ACM Trans. Manage. Inf. Syst. 6(4), 13 (2016)

14. Gross, D., Yu, E.: From non-functional requirements to design through patterns.
Require. Eng. 6(1), 18–36 (2001)

15. Haftmann, F., Kossmann, D., Lo, E.: A framework for efficient regression tests on
database applications. VLDB J. 16(1), 145–164 (2007)

16. Lauesen, S.: Task descriptions as functional requirements. Softw. IEEE 20(2), 58–
65 (2003)

17. Ordonez, C., Chen, Z., Garćıa-Garćıa, J.: Interactive exploration and visualization
of OLAP cubes. In: ACM DOLAP, pp. 83–88 (2011)

18. Park, Y., Shankar, M., Park, B., Ghosh, J.: Graph databases for large-scale health-
care systems: a framework for efficient data management and data services. In:
Workshops Proceedings of the ICDE, pp. 12–19 (2014)

19. Pezzè, M., Zhang, C.: Automated test oracles: a survey. Adv. Comput. 95, 1–48
(2015)

20. Rosenmüller, M., Siegmund, N., Schirmeier, H., Sincero, J., Apel, S., Leich, T.,
Spinczyk, O., Saake, G.: Fame-DBMS: tailor-made data management solutions
for embedded systems. In: Proceedings of the 2008 EDBT Workshop on Software
Engineering for Tailor-Made Data Management, pp. 1–6 (2008)

21. Roukh, A., Bellatreche, L., Boukorca, A., Bouarar, S.: Eco-DMW: eco-design
methodology for data warehouses. In: ACM DOLAP, pp. 1–10 (2015)

180 L. Brahimi et al.

22. Siksnys, L., Thomsen, C., Pedersen, T.B.: MIRABEL DW: managing complex
energy data in a smart grid. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012.
LNCS, vol. 7448, pp. 443–457. Springer, Heidelberg (2012)

23. Tort, A., Olivé, A., Sancho, M.-R.: An approach to test-driven development of
conceptual schemas. Data Knowl. Eng. 70(12), 1088–1111 (2011)

24. Wagstaff, K.: Clustering with missing values: no imputation required. In: Banks,
D., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and
Data Mining Applications. Studies in Classification, Data Analysis, and Knowledge
Organization, pp. 649–658. Springer, Heidelberg (2004)

Spatial and Temporal Data Processing

Asymmetric Scalar Product Encryption
for Circular and Rectangular Range Searches

Rodrigo Folha1(B), Valeria Cesario Times1, and Claudivan Cruz Lopes2

1 Center of Informatics, Federal University of Pernambuco, Recife, PE, Brazil
{rbf2,vct}@cin.ufpe.br

2 Federal Institute of Education, Science and Technology of Paraiba,
Patos, PB, Brazil

claudivan@ifpb.edu.br

Abstract. Although spatial database applications and location based
systems require the execution of several types of searching operations
over spatial data, works related to encrypted spatial data address a lim-
ited set of searching operations, restricting their use in real applications.
This article proposes an encryption scheme that enables circular range
search, rectangular range search and kNN operation over encrypted spa-
tial data. Also, we have compared the encryption functions of our scheme
with other encryption schemes and, even though the results have shown
a similar performance, our work allows the execution of circular and
rectangular range searches by using a unique encryption scheme.

Keywords: Encrypted spatial database · Asymmetric scalar product
encryption · Circular range search · Rectangular range search

1 Introduction

A solution for protecting data confidentiality is using cryptography, in which data
are encrypted in the user environment before being sent to a cloud. Nevertheless,
searching operations executed over encrypted data require decryption, which
may cause a processing overhead or compromise data confidentiality when the
decryption is carried out in the cloud. Thus, encryption techniques for spatial
data are addressed in literature, and allow calculations and operations to be
executed directly over encrypted spatial data. The use of these techniques aims
to reduce the overhead caused by encryption on data processing and avoid data
decryption in unsafe environments.

Among the proposed schemes found in the literature, there are Circular
Range Search Encryption (CRSE) [1], which enable circular range search; Scal-
able Multidimensional Range Search (MAPLE) [2,3], both enabling the exe-
cution of rectangular range searches over encrypted data; Asymmetric Scalar
Product Encryption (ASPE) [4], which allows comparisons to be made between
encrypted points stored in a database and encrypted query points used as para-
meters in k nearest neighbor operations; Distance Preserving Transformation
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 183–197, 2016.
DOI: 10.1007/978-3-319-44039-2 13

184 R. Folha et al.

(DPT) [5], which preserves the real distance between the encrypted data; and
the work in [6] that enables rectangular range searches over nodes of an encrypted
R-tree by using an asymmetric scalar product encryption scheme.

These schemes represent the state-of-the-art theory in the area of spatial data
encryption. They are nevertheless limited to using a single type of geometry as
search predicate (i.e. either circular range or rectangular range) that restricts
their use in spatial database applications. Therefore, proposing a scheme that
supports the use of different predicates in searches is the focus of this paper. We
introduce the following contributions to the area: two encryption schemes - with
a trade-off between security strength and performance - that encrypt spatial
data and enable circular and rectangular searches, named CR-ASPE (Asym-
metric Scalar Product Encryption for Circular and Rectangular range search); a
formalization of the correctness of the scheme’s operations; a security analysis;
and a performance evaluation.

This article is organized as follows: Sect. 2 presents the main concepts used
in this article; Sect. 3 discusses related work; Sect. 4 explains the problem to
be solved; Sect. 5 presents CR-ASPE; Sect. 6 contains a performance evaluation
comparing CR-ASPE with ASPE and DPT schemes; and, finally, Sect. 7 con-
cludes the paper and addresses future work.

2 Basic Concepts

Before introducing our work, we briefly present some concepts used through this
article.

2.1 Types of Range Search over Spatial Data

Range searches over spatial data usually receive as input a set of geometric
objects P and a region R in a space, and are aimed at retrieving a subset of P
that is inside or intersects R. The region R may assume different formats, such
as circle, halfspace, rectangle, and polygon. Thus, we introduce the preliminary
concepts of the following operations.

The k Nearest Neighbor (kNN) operation searches for the closest k objects
from a point of interest. kNN is frequently used in data mining, machine learning
and recommendation systems [4]. The circular range search inspects all points
that are within the radius of interest. The range comprises all points at the same
distance r from a central point, where r represents the radius of the n-sphere.

A halfspace is a space resulting from the division of an Euclidean space by a
hyperplane. In order to execute halfspace range searches, two equidistant points
with respect to the hyperplane (named anchor points) are chosen. They must be
collinear and the line formed by them must be perpendicular to the hyperplanes.
Thus, halfspace range search receives a point as input and indicates in which
halfspace it is located based on the distance to the closest anchor point [6].

A third concept is that of rectangular range search, which is important
for spatial data because it is constantly used in r-tree operations as Minimum

CR-ASPE 185

Bounding Rectangle (MBR) [7]. A MBR is the minimal rectangle necessary to
envelop a bi-dimensional geometric object. If we consider each rectangle’s edge
as the hyperplane that divides a halfspace, we can represent a rectangular range
search as a conjunction of four halfspace range searches.

2.2 Data Splitting and Addition of Artificial Dimensions

[4] proposed two techniques aiming to increase the security level of encrypted
spatial data, which are based on the number of dimensions of the spatial data,
such as latitude, longitude, altitude and velocity. The first technique is the Ran-
dom Asymmetric Splitting, where each dimension of spatial data is split. In
order to split it, we may have a random bit vector that indicates which positions
should be split. For example, in a three-dimensional space, consider a bit vec-
tor = (0, 1, 1), and a point p = (5, 3, 2); two split vectors are randomly picked,
such as pa = (5,−2,−7) and pb = (5, 5, 9); ergo, p = pa + pb · bitvector. The
second technique is the addition of artificial dimensions to the spatial data. This
method attributes random values to artificial dimensions in a way that the scalar
product of two asymmetric points over the artificial dimension value is 0, preserv-
ing the result of scalar product and increasing the number of data dimensions.
As it is an asymmetric method, it splits query points by using the inverse of the
bit vector when bitvector[i] = 0; otherwise, it does not.

2.3 Levels of Attacker’s Knowledge

Regarding the security of encrypted spatial data, we assume that an attacker may
obtain knowledge about encrypted spatial data stored in outsourced databases.
This knowledge may enable three attack levels [4]: level 1, when the attacker has
access to all encrypted data; level 2, when the attacker has access to all encrypted
data and a subset of unencrypted data; and level 3, when the attacker has access
to all encrypted data, a subset of unencrypted data and the correspondence
between unencrypted data and equivalent encrypted data.

3 Related Work

Although there are several works that present solutions to performing opera-
tions over encrypted scalar data such as numbers, dates and keywords [8,9],
such solutions are no applicable to spatial data. In plain spatial data, circular
or rectangular range searches, among others, are calculated from the distance
between spatial geometries. Thus, one alternative would be to encrypt the spa-
tial data preserving the distance. However, the distance preservation is subject
to attacks [10] that limit the use of some schemes, such as distance-recoverable
encryption (DRE) schemes. Such DRE schemes, e.g. Distance Preserving Trans-
formation (DPT) [5], encrypt spatial data by moving them to a different space,
but preserving all distances between them. Hence, if an attacker has access to a

186 R. Folha et al.

subset of plain data and encrypted data, he is able to discover the correspondence
between plain data and encrypted data, which may reveal the encryption key.

Related work in this area propose different techniques to encrypt spatial data
without revealing the distance between two points [1–4,6]. Nevertheless, to the
best of our knowledge, those are able to execute only one type of search over
spatial data.

Predicate encryption [1,11,12] is an encryption scheme that generates tokens
as predicates, which are used to verify whether a piece of encrypted data sat-
isfy their constraints by executing an inner product. In [2,3], the authors pro-
pose schemes based on predicate encryption to allow rectangular searches to be
executed on encrypted R-trees, reducing the search complexity from O(n) to
O(log n). In [1] a predicate-based encryption scheme to execute circular range
searches is presented.

ASPE was proposed in [4] to execute kNN operations over encrypted data
without using any data structures. ASPE encrypts query points and database
points in two different ways - by using a invertible matrix to encrypt the database
points in addition to its inverted matrix to encrypt query points, avoiding an
attack based on distance preservation between unencrypted data and encrypted
data, hence avoiding distance recovery. In [4], two different schemes were pro-
posed, i.e. ASPE 1 and ASPE 2. The difference between them is the insertion
of additional dimensions to increase the number of variables in encrypted point
compositions and a random splitting of the points to improve the security of the
scheme at the expense of performance.

Our work aims to support circular range search, rectangular range search and
kNN operations using a single scheme, in addition to providing security against
honest-but-curious attackers with different levels of knowledge.

4 Problem Definition

The distance between encrypted spatial values should not preserve the distance
between the corresponding spatial values, as it may reveal the spatial data
[4,10]. Thus, for security reasons, several works have proposed encryption
schemes which are not based on distance for computing searches on encrypted
spatial data [1–4,6]. However, these schemes only allow for a single type of
searching, limiting their functionality.

For example, consider two systems using encrypted spatial databases, namely
system A and system B. Systems A and B have adopted encryption schemes that
enable circular range searching and rectangular range searching on encrypted
spatial data, respectively. Suppose a user wants to find restaurants within 2 km
from his current location, which characterizes a case of circular range searching.
By using system A, the user can find all restaurants that satisfy his condition,
as it is capable of performing circular range searching on encrypted spatial data.
On the other hand, using system B will return false candidates. Then, suppose
a user wants to analyze a disease in a rectangular area, such as a district or a
street, in order to extract the number of infected people. By using system B, the

CR-ASPE 187

user can obtain the exact number of infected people since system B can execute
rectangular range searching on encrypted spatial data, whereas using system
A will not ensure that all infected people will be selected. Finally, suppose a
user wants to call a taxi, and expects that a limited number of taxi drivers can
receive his call. This is a typical use of kNN computation. In this case, circular
range searching and rectangular range searching cannot determine the drivers
who are closest to the user’s location, hence, neither system A nor system B will
be able to perform this computation. Therefore, systems A and B have limited
functionalities due to their encryption schemes.

In order to fulfill the aforementioned limitations, this work proposes an
encryption scheme for spatial data that allows circular range searching, rec-
tangular range searching and kNN operations directly over encrypted spatial
data.

5 CR-ASPE

We propose an asymmetric product scalar encryption for circular and rectangu-
lar searches without compromising security or losing performance, named CR-
ASPE, and detailed as follows.

5.1 Basic CR-ASPE

CR-ASPE enables comparisons over the encrypted data without preserving the
distance between spatial points. The CR-ASPE asymmetry consists of encrypt-
ing the data point without preserving distance between them, and encrypting a
query point to allow the comparison with encrypted data points. Therefore, we
can compare two encrypted data points and define which is closer to a reference
point using a scalar product. The comparison is possible through the use of a
invertible matricial key. We present the basic functions of CR-ASPE, as follows:

CR-ASPE Scheme 1

Key: a (d+2)×(d+2) invertible matrix M , where d is the number of dimensions
of plain data, such as latitude, longitude, altitude.

Tuple encryption function Ed: Given a point from database p, the function
creates a (d+2)-dimensional point p̂ = (pT ,−0.5||p||2, 1)T and encrypts it,
p′ = MT p̂.

Search encryption function Eq: Given a query point q and a random
number r > 0, the function creates a (d+2)-dimensional point q̂ =
r(qT , 1,−0.5||q||2)T and encrypts it, q′ = M−1q̂. The factor r makes it pos-
sible to randomize the query point, in case the user submits it twice.

Decryption function D: Given an encrypted point p′ from the database, the
function extracts the original point, p = πdM

T−1
p′ where πd = (Id, 0, 0) is a

d × (d + 2) projection matrix and Id is a d × d identity matrix.

188 R. Folha et al.

Distance comparison operator Ae: Given two encrypted points p′
1 and p′

2

and an encrypted query point, the function calculates whether p′
1 is closer

to q′ than p′
2 is, assessing if (p′

1 − p′
2) · q′ > 0. This function is sufficient to

run the kNN operation, which compares the database points with a reference
point two-by-two using a distance comparison operator.

To support circular and rectangular range searches, some functions must be
introduced into a preprocessor module on the data owner side. The auxiliary
functions are presented below for each search.

Circular Range Search. To adapt a circular range search to a comparison
between encrypted points, we must select a random point in boundary circle
and encrypt it as a data point b′. Thus, to a given encrypted point p′ from
encrypted database, it is possible to discover if q′ is closer to p′ or to b′ using the
distance comparison operator. The necessary functions to enable circular range
search are listed below.

1. Get Circle Point (qcenter, distance) → qcenter + distance. Given a point
(qcenter) and a distance, this function will pick a random point in the circle
formed by qcenter as center and distance as its radius.

2. Circular Range Encryption (p,q) → (p′,q′). Given a circle’s boundary
point (p) from Function 1 and the query point (q), it encrypts them, using
the encryption functions of the scheme, returning p′ and q′.

3. Circular Range Search (p′
1,p

′
2,q

′) → {True, False}. It is executed on the
outsourced database. Given a point from an encrypted database (p′

1), the
encrypted point (p′

2) and the encrypted query point (q′) from Function 2, it
runs a scalar product operation to verify whether p′

1 is nearer to q′ than p′
2

is, using the distance comparison operator. If it is, then the point satisfies the
circle range search; otherwise, the point is beyond the circle’s boundaries.

The Function 1 generates a random database point even if the circle’s center
is the same. Therefore, in the case the same search is executed twice, encrypted
query and generated database point are unlikely to recur, avoiding that an
attacker recognizes that the same search is executing again. For the same reason,
encrypted searches do not reveal any information about the radius. Moreover, it
is not possible to distinguish whether an operation is a circular range search or
a kNN operation, as they are all based on distance comparison.

Rectangular Range Search. To execute rectangular range searches, our app-
roach uses halfspace range searches to assess whether a point is inside of a rec-
tangle. Each one of a rectangle’s edge is a line that separates the inner region of
the rectangle from the outer region. Therefore, a rectangular range search will be
transformed into a conjunction of halfspace range searches. This transformation
is made by the following functions:

1. Generate Anchor Points ((rA1 , rA2 , ..., ..., rAn), (rB1 , rB2 , ..., ..., rBn)) →
((q<1 , q<2 , ..., ..., q<n), (q≥

1 , q≥
2 , ..., ..., q≥

n)). Given two vertices (rA and rB)

CR-ASPE 189

in a rectangle, which are linked by an edge, this algorithm will choose a line
perpendicular to said edge. Then, it will randomly pick two points (q< and
q≥) which are in the line and equidistant from the edge (q< and q≥).

2. Encrypt Rectangle. For each pair of linked vertices of the rectangle, two
query points are generated by the function in item 1 and encrypted using the
same random number (r).

3. Rectangle Search Operator (((q<1 ’,q≥
1 ’),...,(q<4 ’,q≥

4 ’)),p′) → {True, False}.
Given four pairs of anchor points encrypted by Function 2 and a point from an
encrypted database (p′), for each pair (q<i ’, q≥

i ’), it will run a scalar product
operation in the outsourced database to verify whether p′ is nearer to q<i ’
or to q≥

i ’ using the distance comparison operator. If it is always near to q<i ’,
then the point satisfies the rectangular range search; otherwise, the point is
beyond the rectangle’s boundaries.

Function 1 randomly picks two anchor points. Therefore, in the case the same
search is executed twice, the anchor points are unlikely to recur, avoiding that
an attacker will link the search with a previously executed search.

Correctness. The operations are calculated using the scalar product over the
encrypted data, without including false results. We present the Theorem1 for
kNN and circular range search and Theorem2 for rectangular range search to
guarantee their results.

Theorem 1. Let p′
1 and p′

2 be encrypted points of the database and q′ the
encrypted reference point. Thus, the scheme determines whether p1 or p2 is closer
to q by evaluating if (p′

1 − p′
2) · q′ > 0.

Proof. Note that,

(p′
1 − p′

2) · q′ = (p′
1 − p′

2)
T q′

(p′
1 − p′

2) · q′ = (MT p̂1 − MT p̂2)TM−1q̂

(p′
1 − p′

2) · q′ = (p̂1 − p̂2)T q̂

This scalar product can be represented by

= (p1 − p2)T (rq) + (−0.5||p1||2 + 0.5||p2||2)r + 0.5||q||2 − 0.5||q||2
= 0.5r(||p2||2 − ||p1||2 + 2(p1 − p2)T q)

= 0.5r(||p2||2 − 2pT2 q + ||q||2 − ||p1||2 + 2pT1 q − ||q||2)
= 0.5r(d(p2, q) − d(p1, q))

where d is the Euclidean distance between two points. Thus,

0.5r(d(p2, q) − d(p1, q)) > 0 ⇔ d(p2, q) > d(p1, q)

Therefore, if the condition is satisfied, p1 is closer to the reference point q. �

190 R. Folha et al.

In case of a circular range search, the search preprocessor transformation
ensures radius = d(p2,q), hence 0.5r(d(p2, q)−d(p1, q)) > 0 ⇔ radius > d(p1, q).
Therefore, if the condition is satisfied, p1 is inside the circle range search.

Theorem 2. Let p′ be an encrypted point of the database, q′
1 and q′

2 be the
two encrypted anchor points, q<’ and q≥’ respectively. Therefore, the scheme
determines whether p is inside the rectangle by evaluating if p′ · (q′

1 − q′
2) > 0.

Proof. Note that,

p′ · (q′
1 − q′

2) = p′T (q′
1 − q′

2)

p′ · (q′
1 − q′

2) = (MT p̂)T (M−1q̂1 − M−1q̂2)

p′ · (q′
1 − q′

2) = p̂T (q̂1 − q̂2)

Since r is the same in q1 and q2, this scalar product can be represented by

= pT r(q1 − q2) + (−0.5||p||2 + 0.5||p||2)r + (−0.5||q1||2 + 0.5||q2||2)r
= 0.5r(||q2||2 − ||q1||2 + 2pT (q1 − q2))

= 0.5r(||p||2 − 2pT q2 + ||q2||2 − ||p||2 + 2pT q1 − ||q1||2)
= 0.5r(d(p, q2) − d(p, q1))

where d is the Euclidean distance between two points. Hence,

0.5r(d(p, q2) − d(p, q1)) > 0 ⇔ d(p, q2) > d(p, q1)

Accordingly, if the condition is satisfied, p is inside the rectangle. �

Security Analysis

Theorem 3. If a level-3 attacker knows d+2 plain points P = {x1, x2, ..., xd+2}
and their corresponding encrypted points E(P) = {x′

1, x
′
2, ..., x

′
d+2}, he can

recover the key K.

Proof. As the attacker knows the plain points and the corresponding encrypted
points, he can set up a system of equations to solve K, Kx̂i = x′

i for i = 1 to
d + 2, where x̂i = (xi,−0.5||xi||2, 1)T . �

Theorem 4. Scheme 1 is resistant to brute force attacks with level-2 knowledge.

Proof. As a level-2 attacker does not know the correspondence among the points
in P and the encrypted points in E(DB), he may try finding it using a brute-
force attack. As presented in Theorem 3, at least d + 2 points are necessary to
discover the key of our scheme. Thus, if |P | > d + 2, a subset of P may be
selected to discover the key, dividing P into two sets, a validating set (Pv) and
a training set (Pt) where |Pt| = d + 2. The initial step is to randomly pick
d + 2 encrypted points from E(DB) to set up equations with Pt in order to
discover the key. Then, the result key Ki is verified against points in Pv; if

CR-ASPE 191

submitting Pv to an encryption function with Ki generates points from E(DB),
Ki is valid; otherwise, Ki is not valid. However, a brute-force attack may test
all combinations of correspondences of Pt and E(DB), i.e. An

d+2 tries, where
n = |E(DB)|. For an example with 50000 encrypted bi-dimensional pieces of
data, if an attacker is able to set up and solve 1 million systems of equations per
second, it would take over 300 years to compute all combinations. �

Besides brute force attacks, Principle Component Analysis (PCA) [10] may
be used to link the correlation of dimensions of known points in P and the
correlation of dimensions of encrypted points in E(DB). However, CR-ASPE
does not preserve the correlation of dimensions, since each encrypted dimension
is a linear combination of all dimensions of original data. An attack based on
duplicate analysis [13] retrieves information from repeated occurrences of data
in small domains. CR-ASPE is also resistant to duplicate analysis, due to linear
combination of dimensions, i.e. even if a dimension is from a small domain, the
domain of an encrypted dimension will not be the same.

5.2 Enhanced CR-ASPE Scheme

In Sect. 5.1, we proposed the trivial solution for executing kNN operations, rec-
tangular range search and circular range search. However, CR-ASPE 1 is not
secure against an attacker who knows a subset of unencrypted spatial points, the
set of encrypted spatial points and the correspondence between them, as shown
in Theorem 3, since the attacker may set up and solve the system of equations
to recover the key. Therefore, we proposed an enhanced CR-ASPE scheme, CR-
ASPE 2, which uses the two techniques of Sect. 2: random asymmetric splitting
and adding artificial dimensions, increasing the difficulty to crack.

Key: two d′ ×d′ invertible matrices M1 and M2, a bit vector S with d′ elements
and a vector w with d′ − (d + 2) random numbers, where d is the number
of dimensions of plain data and d′ is the number of dimensions of encrypted
data.

Tuple encryption function Ed: Given a point from database p, the function
creates a d′-dimensional point where the first d + 2 dimensions are p̂ =
(pT ,−0.5||p||2, 1)T . Then, for i = d + 2 to d′, if Si = 1, p̂[i] = wi−(d+2);
otherwise, p̂[i] = randomnumber. For the last dimension, where Si = 0, the
result of the scalar product of artificial dimensions p̂ by w must be equal to
zero; consequently, p̂[i] is a number whose value makes this result true. This
creates a pair of points (p̂a, p̂b). For i = 1 to d′, if Si = 1, it randomly splits
p̂[i] into p̂a[i] and p̂b[i]; otherwise, p̂a[i] = p̂[i] and p̂b[i] = p̂[i] too. Lastly, it
encrypts them, returning a pair (p′

a = MT
1 p̂a, p′

b = MT
2 p̂b).

Query encryption function Eq: Given a query point q and a random number
r > 0, the function creates a d′-dimensional point where the first d + 2
dimensions are q̂ = r(qT , 1,−0.5||q||2)T . Then, for i = d + 2 to d′, if Si = 0,
q̂[i] = wi−(d+2); otherwise, q̂[i] = randomnumber. For the last dimension,
where Si = 1, the result of the scalar product of q̂ by w must be equal to

192 R. Folha et al.

one; consequently, q̂[i] is a number whose value makes this result true. This
creates a pair of points (q̂a, q̂b). For i = 1 to d′, if Si = 0, it randomly splits
q̂[i] into q̂a[i] and q̂b[i]; otherwise, q̂a[i] = q̂[i] and q̂b[i] = q̂[i] too. Lastly, it
encrypts them, returning a pair (q′ = M−1

1 q̂a, q′ = M−1
2 q̂b).

Decryption function D: Given a pair of encrypted points (p′
a, p

′
b) from the

database, the function extracts the original points, pa = πdM
T−1

1 p′
a and

pb = πdM
T−1

2 p′
b, where πd = (Id, 0, 0) is a d × d′ projection matrix and

Id is a d × d identity matrix. After that, if Si = 0, p[i] = pa[i]; otherwise
p[i] = pa[i] + pb[i].

Distance comparison operator Ae: Given two pairs of encrypted points (p′
1a,

p′
1b) and (p′

2a, p′
2b), and a pair of encrypted query points (q′

a, q′
b), the function

calculates whether p′
1 is closer to q′ than p′

2 is, assessing if (p′
1a − p′

2a) · q′
a +

(p′
1b − p′

2b) · q′
b > 0.

Security Analysis. The use of Random Asymmetric Splitting generates 2d

possible configurations, since a bit vector is used to split an original point. In
addition to that, adding artificial dimensions will increase the number of dimen-
sions of encrypted data. Therefore, both techniques may be combined to increase
the number of possible configurations to 2d

′
in relation to Scheme 1. Thus, a CR-

ASPE with 128 dimensions is equivalent to an AES with a 128 bits key size.

Theorem 5. The CR-ASPE 2 scheme is resistant to a level-3 attacker.

Proof. Although the attacker has a knowledge H = {E(DB), P, I}, he does not
know the splitting configuration of encrypted points. Hence, for each point pi in
P , he has to suppose a random pair of encrypted point (p′

ia, p
′
ib) in order to set

up two systems of equations, MT
1 p̂ia = p′

ia and MT
2 p̂ib = p′

ib, where M1 and M2

are unknown matrices from the key. Thus, the attacker does not have sufficient
equations to discover the matrices, rendering the scheme resistant to a level-3
attack. �

The incorporated techniques (i.e. random asymmetric splitting and adding
artificial dimensions) do not affect the correctness of search functions. However,
by raising the security strength, they impact performance, since the complexity
of these operations vary according to the number of dimensions.

6 Performance Evaluation

We compared our schemes in terms of performance with the ASPE schemes 1
and 2 proposed in [4] and the DPT scheme presented in [5], since [4] proposed
the asymmetric scalar product encryption, and [5] is able to execute searches
based on distance. We have conducted the experiments on a computer with
2.60 GHz i7 Intel Core processor, 16 GB RAM and Windows 8.1. All schemes
where implemented using Python version 2.7.10. The performance evaluation was
based on common functions of all schemes: encryption, decryption, kNN, circular

CR-ASPE 193

range search and rectangular range search. As [4,5] cannot perform circular range
search and rectangular range search functions on encrypted spatial data, we have
to decrypt all data on ASPE and DPT schemes before running the search.

For the experiments, we have firstly generated two sets of random data. The
first set generated n-data points with four dimensions, where n varied from
10,000 to 100,000. The second set was generated with d dimensions and 50,000
data points, where d varied from 10 to 100. On CR-ASPE 2 and ASPE 2, we
adopted d′ = 80 to secure our data; however, when d ≥ 80, we adopted d′ = d+2
on our scheme and d′ = d+1 on ASPE. Secondly, we used a real dataset, Shuttle,
which may be found in UCI repository [14], containing 58,000 spatial data points
with 9 dimensions. We have executed each operation on the schemes 100 times
and calculated an arithmetic average with them.

6.1 Experimental Results

We have evaluated the encryption, decryption, kNN, circular range search and
rectangular range search functions varying the number of data dimensions and
collecting the time in seconds in order to analyze the overhead caused by the arti-
ficial dimensions on the enhanced scheme (CR-ASPE 2) in relation to our sim-
plest scheme (CR-ASPE 1). In order to analyze the complexity of the proposed
functions, we also varied the number of spatial objects encrypted, collecting the
time consumed for each case in seconds.

In Fig. 1b, it becomes clear that even when the number of dimensions of plain
data is close to the number of dimensions used to encrypt data by enhanced
schemes, the time consumed by the encryption function of both CR-ASPE 1
and ASPE 1 were around 11 % and 12 % of the time consumed by CR-ASPE
2 and ASPE 2, respectively. The results presented in Fig. 1a have shown that
the cost grew linearly. Moreover, the time consumed by the encryption function
of our simplest scheme was around 60 % higher than that of DPT’s function in
Fig. 1a. Nevertheless, the tendency of encryption functions of the ASPE schemes
in comparison to ours was the same (around 3 % of difference) in Figs. 1a and b.
Such result was expected because both use asymmetric scalar product encryp-
tion. In Fig. 1d, we have observed that the time consumed by the decryption
function of the DPT scheme was higher than that of the first ASPE scheme and
our first proposed scheme, because it has to invert a rotation matrix, multiply
it by the encrypted point and subtract the result by a translation matrix. That
means an extra operation when compared to the decryption functions of our
schemes and ASPE schemes. Furthermore, we notice that even when the num-
ber of data dimensions is close to the number of dimensions used to encrypt data
by schemes that use additional dimensions to encrypt data, the time consumed
by the encryption function of CR-ASPE 1 and ASPE 1 was around 19 % and 20 %
of the time consumed by CR-ASPE 2 and ASPE 2 respectively. Figure 1c shows
that the cost had grown linearly. Moreover, the time consumed by the encryption
function of our simplest scheme was around 8 % bigger than DPT’s decryption
function in Fig. 1c. Nevertheless, the tendency of decryption functions of the
ASPE schemes in comparison to ours was the same (around 2 % of difference)

194 R. Folha et al.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Time consumed by encryption, decryption and kNN operations.

in Figs. 1c and d, as both use asymmetric scalar product encryption. Regard-
ing the kNN operation in Figs. 1e and f, we noticed that the time consumed by
all schemes did not change when dimensions varied. Furthermore, in Fig. 1f, the
difference between the time consumed by kNN operation of CR-ASPE 1 and CR-
ASPE 2 was around 3 %. We suppose it happened due to the optimized NumPy
function to multiply matrices. The kNN function has a O(n log n) complexity,
which is detailed in Fig. 1e. Moreover, the time consumed by CR-ASPE 1’s kNN
function was around 55 % smaller than DPT’s kNN function (Fig. 1e). It hap-
pened because the DPT scheme calculates the distance between the encrypted
database point and the encrypted reference point, while CR-ASPE 1 executes
one scalar product.

Due to ASPE schemes’ limitation to execute circular search over encrypted
data, ASPE 1 and ASPE 2 schemes must decrypt all data before running the
circular range search. Thus, the time consumed by them is bigger than CR-ASPE
and DPT schemes. The time consumed by circular range search of CR-ASPE 1
and CR-ASPE 2 is around 13 % and 27 % respectively of the time consumed by
DPT in Fig. 2b, since CR-ASPE schemes execute a scalar product to verify the
condition. Figure 2a has shown that the cost linearly grew. Moreover, the time
consumed by circular search in CR-ASPE 1 and CR-ASPE 2 schemes was around
10 % and 1 % of the time consumed by circular search in ASPE 1 and ASPE 2
respectively. Figure 2d depicts the advantage of CR-ASPE schemes over ASPE
schemes. As the ASPE schemes must decrypt all data to execute rectangular
range searches while CR-ASPE and DPT schemes search over the encrypted
data, the time consumed by them is evidently bigger. The time consumed by
rectangular range search in CR-ASPE 1 and CR-ASPE 2 is around 70 % and

CR-ASPE 195

114 % respectively of the time consumed by DPT. Figure 2c indicates that the
cost grew linearly. Moreover, the time consumed by rectangular search in CR-
ASPE 1 and CR-ASPE 2 schemes was around 2 % and 0.5 % of that consumed
in ASPE 1 and ASPE 2, respectively.

(a) (b) (c) (d)

Fig. 2. Time consumed by circular and rectangular range searches.

Our experiment results confirm that the encryption and decryption functions
of CR-ASPE schemes have similar performance to ASPE schemes’ functions,
despite being more costly than encryption and decryption functions of DPT
schemes. On the other hand, the circular range search, rectangular range search
and kNN operation of CR-ASPE schemes were faster than the kNN function of
DPT schemes.

Table 1. Execution times in seconds using real data (n = 58, 000 and d = 9).

ASPE 1 ASPE 2 CR-ASPE 1 CR-ASPE 2 DPT

ENC 1.71799 39.37519 1.61879 39.80141 1.08499

DEC 3.93868 75.82168 3.94564 77.95755 2.16277

KNN 1.05159 1.13221 1.10023 1.116808 1.81489

CRS 4.21793 77.40803 0.11913 0.24631 0.28225

RRS 3.91887 76.56150 0.46885 0.80529 0.54054

For the real dataset, we have obtained the results of time consumed in seconds
by encryption (ENC), decryption (DEC), kNN, circular range search (CRS) and
rectangular range search (RRS) functions for each scheme shown in Table 1.
The results present the same behavior as the experiment over artificial datasets,
evidencing the schemes do not lose performance when handling real data.

7 Conclusion

We proposed two encryption schemes for spatial data. CR-ASPE 2 is secure
against attackers that have knowledge of a subset of plain spatial data, a set

196 R. Folha et al.

of encrypted spatial data and the correspondence between them. While the
encryption functions of CR-ASPE 1 scheme were not resistant to level-3 attacks,
but approximately six times faster. Furthermore, in both CR-ASPE schemes,
searches are executed over encrypted spatial data, an improvement on [1–4,6],
reducing the functional gap between spatial databases and encrypted spatial
databases.

We have compared our work with other encryption schemes and concluded
that although our work supports more types of searches, its encryption functions
have a similar performance to other ASPE schemes. Moreover, we presented
proofs showing that each scheme correctly performs the searches.

The proposed schemes will be used to encrypt data structures as R-trees
[7] or spatial indexes [15] in future works. Another work could implement these
schemes in an EDBMS-like model [8] in order to support encrypted spatial data.

References

1. Wang, B., Li, M., Wang, H., Li, H.: Circular range search on encrypted spatial
data. In: 2015 IEEE Conference on Communications and Network Security (CNS),
pp. 182–190. IEEE (2015)

2. Wang, B., Hou, Y., Li, M., Wang, H., Li, H.: Maple: scalable multi-dimensional
range search over encrypted cloud data with tree-based index. In: Proceedings of
the 9th ACM Symposium on Information, Computer and Communications Secu-
rity, pp. 111–122. ACM (2014)

3. Wang, B., Hou, Y., Li, M., Wang, H., Li, H., Li, F.: Tree-based multi-dimensional
range search on encrypted data with enhanced privacy. In: Tian, J., Jing, J.,
Srivatsa, M. (eds.) SecureComm 2014, Part I. LNICST, vol. 152, pp. 374–394.
Springer, Heidelberg (2015)

4. Wong, W.K., Cheung, D.W.L., Kao, B., Mamoulis, N.: Secure kNN computation
on encrypted databases. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, pp. 139–152. ACM (2009)

5. Oliveira, S.R., Zaiane, O.R.: Privacy preserving clustering by data transformation.
J. Inf. Data Manag. 1(1), 37 (2010)

6. Wang, P., Ravishankar, C.V.: Secure and efficient range queries on outsourced
databases using rp-trees. In: 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pp. 314–325. IEEE (2013)

7. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: vol. 14.
ACM (1984)

8. Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting
confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, pp. 85–100. ACM (2011)

9. Lopes, C.C., Times, V.C., Matwin, S., Ciferri, R.R., de Aguiar Ciferri, C.D.:
Processing OLAP queries over an encrypted data warehouse stored in the cloud. In:
Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 195–207.
Springer, Heidelberg (2014)

10. Liu, K., Giannella, C.M., Kargupta, H.: An attacker’s view of distance pre-
serving maps for privacy preserving data mining. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 297–308.
Springer, Heidelberg (2006)

CR-ASPE 197

11. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

12. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

13. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pp. 563–574. ACM (2004)

14. Lichman, M.: UCI machine learning repository (2013)
15. Lopes Siqueira, T.L., Ciferri, R.R., Times, V.C., de Aguiar Ciferri, C.D.: A spatial

bitmap-based index for geographical data warehouses. In: Proceedings of the 2009
ACM Symposium on Applied Computing, pp. 1336–1342. ACM (2009)

Continuous Trip Route Planning Queries

Yutaka Ohsawa(B), Htoo Htoo, and Tin Nilar Win

Graduate School of Science and Engineering, Saitama University, Saitama, Japan
ohsawa@mail.saitama-u.ac.jp

Abstract. Given a current point q, a final destination point d, and a
set of data points categories to be visited during a trip, a trip route
planning query (TRPQ) determines the shortest route from q to d that
includes data points one each from given data points categories. After
the optimal route is determined, a user may sometimes deviate from
the route. In such cases, a new route is needed from the new current
position q′. For simple continuous queries, a method to calculate the
safe-region with the query result has been proposed. The safe-region is
the area where the query result is not changed. This paper proposes two
efficient methods called preceeding rival addition (PRA) and tardy rival
addition (TRA) algorithms to obtain the safe-region for TRPQ queries,
and a basic method as a comparison method. In two proposed algorithms,
PRA gives an accurate safe-region, and TRA gives an approximate safe-
region very fast. We evaluate the efficiency of the proposed methods
experimentally comparing to the basic method for TRPQ query.

Keywords: Safe-region · Trip route planning queries · Road network
distance

1 Introduction

A trip route planning query (TRPQ) is a spatial query to find an optimal trip
route from a current position to a final destination visiting data points selected
one each from specified data point sets in a trip. For example, a bank, a restau-
rant, and a gas station are specified to visit during the trip. Generally, a lot of
banks, restaurants, and gas stations can exist in the neighborhood of the route
to the final destination. Therefore, this query needs to select a sequence of data
points that gives the shortest trip route length.

Several types of variation of this query have been proposed [10–12]. In one
type, only visiting categories of data points are specified, but not the visiting
order. In another type, both visiting categories and the visiting order are spec-
ified. A special case, where the starting point and the final destination are the
same point, is called a multi-type nearest neighbor (MTNN) query.

Generally, these types of queries are very time consuming. Even when the
visiting order is uniquely specified (this query is called an optimal sequenced
route (OSR)), the cost becomes

∏M
i=1 |Ci|, where M is the number of categories

c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 198–211, 2016.
DOI: 10.1007/978-3-319-44039-2 14

Continuous Trip Route Planning Queries 199

to be visited, and |Ci| is the cardinality of each data point set. TRPQ needs to
find the optimal route from huge number of candidate routes.

After starting a trip following to the queried optimal route, the user may
veer the route by several reasons, for example, road construction, accident, and
carelessness. In such cases, the traveler needs to make a new query at the veered
position again. However, TRPQ is very time consuming query, and if the devi-
ation from the current route is small, the user may get the same route after the
repeated time consuming query. Thus, this paper proposes methods to generate
a safe-region with the result of the optimal route to overcome the deficiency in
the processing time.

Figure 1 shows an example of the safe-region. In this example, before reaching
the final destination d, three categories of data points are specified to visit. The
bold line shows the optimal trip route, and the dots marked area is the safe-
region. Even if a user veers from the optimal route, the route is still optimal
if the current position is in the safe-region. Therefore, the user will only need
to target to the first visiting point (p1) on the route if the user is still in the
safe-region. In this paper, we call this type of TRPQ as a continuous TRPQ
(CTRPQ) query.

Fig. 1. An example of the safe-region for TRPQ

The basic idea of the safe-region has been applied to several kinds of con-
tinuous queries, including k nearest neighbor (kNN) query, reverse k nearest
neighbor (RkNN) query, distance range query, and spatial skyline query. How-
ever, the time complexity for all of these queries is less than O(N), where N
is the cardinality of data points. On the other hand, the existing TRPQ query
discussed in this paper is very time consuming. This paper proposes two types
of efficient safe-region generation algorithms for TRPQ queries. To the best of
our knowledge, this is the first attempt to generate the safe-region for TRPQ

200 Y. Ohsawa et al.

queries. Through the experimental evaluations, our proposed algorithms outper-
form the simple safe-region generation method by repetition of TRPQ by two
to three orders of magnitude in the processing time.

The rest of the paper is organized as follows. Related work is described in
Sect. 2. In Sect. 3, properties of the safe-region in trip planning queries and basic
methods for trip planning query algorithm are described. In Sect. 4, two types
of safe-region generation methods are proposed. These methods are still time
consuming, and therefore, as an alternative, faster but approximate safe-region
generation method is proposed in Sect. 5. Experimental evaluations are shown
in Sect. 6. And finally, this paper is concluded in Sect. 7.

2 Related Work

Continuous queries for the moving objects have been actively researched since
2000s. They can be classified into three main categories based on (1) query types,
(2) Euclidean distance or road network distance, and (3) mobility of queries and
data objects.

In the literature, varieties of continuous queries have been researched, con-
sisting of range queries [1,2], kNN query [3], reverse NN (RNN) queries [4,5],
spatial semi-join queries [6], path NN query [7], and skyline query [8].

In continuous queries, researches have been mainly focused on Euclidean
distance in the pioneer studies. However, the movement of cars and humans
are constrained on a road network in practice. To the best of our knowledge,
Mouratidis et al. [3] first proposed a continuous query method in the road net-
work distance. In their approach, kNN objects are continuously monitored on
road networks, where the distance between a query and a data object is deter-
mined by the length of the shortest path connecting them.

Continuous queries are generally based on the client-server model, and the
task of a server is to continuously compute and update the result of each query
according to the location changes of the moving objects. Consequently, queries
are repeated periodically or a certain distance move. However, when the fre-
quency of updates becomes high, the load on the server becomes high.

To overcome overloads at the server side, Prabhakar et al. [2] proposed the
safe-region method. When a moving object issues a kNN or range query, the
server generates a safe-region in which the query result remains unchanged. By
the time the moving object leaves the safe-region, a new query result and the
safe-region are requested to the server.

Alternatively, Cheema et al. [9] proposed an efficient and effective monitor-
ing technique based on the concept of a safe-region for range queries on road
network distances. They also proposed safe-region generation method for contin-
uous RkNN queries. Although safe-region generation methods have been actively
researched, these algorithms were targeted to essentially fast query types.

On the other hand, several types of TRPQs have been proposed. Li et al.
[10] proposed a trip planning query (TPQ) that finds the shortest route from the
starting point to the destination by sequentially visiting each data point from

Continuous Trip Route Planning Queries 201

specified data categories sets. The visiting order is not specified in this query.
They proposed the minimum distance query (MDQ) algorithm, which gives the
optimal route, however, it requires enormous processing time. Sharifzadeh et al.
[11] proposed OSR queries, in which visiting order is explicitly considered. Chen
et al. [12] proposed multi-type partial sequenced route (MRPSR) query. In their
query, the visiting order of data point categories is specified by a set of rules,
and the computational complexity lies between TPQ and OSR queries.

Sharifzadeh et al. [13] proposed “additively weighted Voronoi diagram”
(AWVD) for fast OSR search. AWVD targets to OSR queries whose route is
terminated at the last visited data point, and it is not applicable to CTRPQ.
When a final destination is specified explicitly, AWVD must be constructed every
time for each destination. Furthermore, the number of visiting data categories
and the visiting order is usually specified when queries are invoked. In this sit-
uation, AWVD must be re-constructed every time when the visiting categories
and the visiting order are changed.

Nutanong et al. [14] proposed continuous detour query (CDQ) method, the
simplest type of TRPQ. However, their method can only be applicable when the
number of visiting data point categories is one. Additionally, their continuous
query aimed for the fast re-calculation of new query result, and their interest
was not on the generation of the safe-region.

Consequently, to the best of our knowledge, this paper is the first attempt
of the generation of the safe-region for continuous trip route planning queries.

3 Continuous Trip Route Planning Queries

3.1 Safe-Region for CTRPQ

On the continuous trip route planning query (CTRPQ), a current position of
a moving object (MO) moves continually. Figure 2 shows the outline of a safe-
region (SR) in a CTRPQ. When a moving object at q issues a query, the server
searches the optimal trip route (TR) and the SR, and then sends them to the
moving object. In this example, the optimal TR is the route visiting data points
p1 and p2 in order (M = 2), selected each from C1 and C2 respectively. The MO
always checks whether it remains inside of the SR, and when it leaves from the
SR, it requests a new optimal TR and the SR. On the other hand, when the MO
follows the route and reaches p1, belonging to the first visiting data category on
the optimal route, the MO issues new query starting from p1 and the visiting
category number is reduced to M−1 (from C2 to CM). The procedure is repeated
until the MO reaches the final visiting category (CM). After passing through the
data point in the last category, SR generation is not necessary anymore, because
the problem is changed only to the shortest path search to the destination, and
the whole road network is considered as an SR.

Definition 1 (Trip Planning Route). Given M categories of data point sets
Ci(1 ≤ i ≤ M), a current position q, and the final destination d, the trip planning
route (TPR) is a route that starts from q to d visiting each data point pi selected

202 Y. Ohsawa et al.

Fig. 2. Safe region in CTRPQ

one each from Ci(pi ∈ Ci). TPR is denoted by R1..M (q). The subscript [1..M]
shows to visit in order from category one to category M . The TPR visiting from
the first category is denoted by RM (q) for simplicity.

Definition 2 (Safe-Region: SR). A SR is the collection of the road link seg-
mentswhere queries give the same result. In otherwords, in the safe region,RM (q) =
RM (q′), where q is the initial query point and q′ is any position in the SR.

Therefore, while the MO remains in the SR, no new query is necessary even
if MO veers the trip route. The SR of the trip route (TR) satisfies the following
properties.

Property 1. Let the first visiting data point on the TR searched from a point
q be p1(∈ C1). The first visiting data point searched from any other point (q′) in
the SR is identical with p1.

Proof. The proof is by contradiction. If the first visiting point of the query from
q′ is p′

1(�= p1), the TR queried from q′ becomes RM (q′) �= RM (q). This result
contradicts the definition of the SR. Therefore, this property stands. ��
Property 2. When a TR is given, the rest of the route after visiting the data
point in the first category (C1) is uniquely determined except the case for plural
TRs with the same length.

Proof. The queried TR is the optimal (the shortest) route. Therefore, if the first
visiting data point (p1) is given, the rest of the TR is uniquely determined. ��

Therefore, to find the safe region, it is enough to search the area on the road
network where the first visiting point for the TRs is the same.

3.2 Basic Method for TRPQ

This section describes two types of algorithms used in the next Sect. 4. One is the
algorithm works on the road network, and the other one works in the Euclidean
distance.

Continuous Trip Route Planning Queries 203

Li et al. [10] proposed MDQ algorithm for the trip route query in the road
network distance. Sharifzadeh et al. [11] proposed the similar algorithm for OSR
query called progressive neighbor exploration (PNE). Both algorithms gradually
expand the search area by the similar way in Dijkstra’s algorithm. When a data
point from the first visiting category C1 is found, the algorithm starts a search
targeting to a data point from the second visiting category (C2). In parallel,
the search is continued for the next nearest data point in the first category.
Generally, when a data point belonging to the data set is Ck, the algorithm
starts searching a data point in Ck+1, and also continues the search for the next
nearest data point in Ck. Repeating this process, the search is terminated when
the search path reaches the final destination point d. This query is achieved by a
heap offering the record by ascending order of dN (q, n), which denotes the road
network distance between q and the current node n.

The above mentioned queries can be improved in the efficiency by using
A* algorithm in the shortest path search. The cost value of the heap Cst =
dN (q, n) is replaced with Cst = dN (q, n) + dE(n, d) instead, where dE(n, d) is
the Euclidean distance between n and d in A* algorithm. Based on this idea, Htoo
et al. [15] proposed an algorithm which outperformed the original A* algorithm
by more than two orders of magnitude in terms of processing time. The CTRPQ
algorithms described in Sect. 4.2 applies to this method [15].

TRPQ in Euclidean distance is considerably faster than in the road network
distance. The length of the TR obtained by Euclidean distance gives the lower
bound of the road network distance. Ohsawa et al. [16] proposed an efficient
algorithm for TRPQ in Euclidean distance. R-tree is used as the spatial index to
manage data points. The search descends the R-tree downward by referring to the
minimum distance between an MBR in R-tree and the route. The search process
is controlled by a heap, and the optimal route is found when the heap becomes
empty. This algorithm can find TR in two or three orders of magnitude faster
than the queries in road network distance (see Fig. 5 in Sect. 6). Therefore, TR
search method in Euclidean distance can be used for pruning the search space.

4 Safe-Region Generation Method for CTRPQ

4.1 Basis for Safe-Region Generation

In the following, the route length of a trip route RM (q) is denoted by LM (q).
The optimal route obtained by Euclidean distance is shown as RE

M (q), and the
length is denoted as LE

M (q). The TR starting from a data point p1 in C1 is
denoted by R2..M (p1), and the length by L2..M (p1).

Figure 3 shows the basis for safe-region generation. In the figure, q is the
current position of an MO, d is the final destination, the thick line shows
R3(q) where three kinds of data points are visited from q before reaching d. By
Property 2, the TPR queried by a data point in the SR always passes through
p1 as the first visiting point.

The SR to be generated is a region where the first visiting point on TR is p1.
Therefore, the SR can be obtained by expanding the area staring from p1 and

204 Y. Ohsawa et al.

Fig. 3. Rival data object

checking whether the first visiting point on the queried TR is p1 or not at the
expanding node. This area expansion is performed by the similar manner in the
Dijkstra’s algorithm, controlled by a minimum heap managing the records with
a format < c, n, � >. Here, n is the current noticed node, c is dN (p1, n), and � is
a road segment where one edge is n and the other edge is already visited node
by the node expansion. The heap is ordered by c value. And the record once
obtained by the heap is added to the closed set (CS) to avoid duplicated checks.

When the de-heaped record from PQ is r, the TR starting from r.n (RM (r.n))
is searched by the algorithm proposed in [15]. If the first visiting data point in
the TR meets p1, the link r.� is added into the SR. Then, the adjacent links to
r.n are obtained by the adjacency list, and the following procedure is done for
each link. Let the link be �p, and the opposite end point be np. If �p has not
been registered in CS, a new record < n.c+ |�p|, np, �p > is composed, and added
into the heap (PQ). The above sequence of steps is called the node expansion.
On the other hand, when the first visiting data point in the TR does not meet
p1, the node is not further expanded because the node is not included in the SR.
However, even in this case, a part of the link (r.�) can be included in the SR.
Therefore, if the query condition for a part of the link is satisfied, the part will
be added into the safe-region.

Generally, the SR is not given as a closed region in the similar way in the
region formed by Voronoi decomposition. For example, when data points in C1

are distributed around the center of the road network, the TR will contain the
same point even if the query point is located far away. In such case, the SR
becomes large, and the processing time becomes very long, because the process-
ing time is proportional to the number of nodes contained in the SR. We can
assume the moving objects do not veer far away from the TR route. Therefore,
we set an upper limit of node number contained in the SR, and when the number
is exceeded, we terminate the expansion of the SR, and send it to the moving
object.

4.2 Preceeding Rival Addition Algorithm

The basic algorithm described in the above needs long processing time, therefore,
to shorten the processing time is necessary in actual applications. The most time
consuming steps in the algorithm is the part to obtain the shortest TR at each
expanding node. Though, we can find one TR in a short time by using the

Continuous Trip Route Planning Queries 205

algorithm described in Sect. 3.2, it is repeated a large number of times at every
expanded node. Therefore, the total processing time to generate the safe-region
becomes very long.

As described above, the shape of an SR is affected by data points in C1

located neighborhood of p1. We call these objects affecting the shape of a SR
the rival objects (RO). If the TR length starting from each RO is obtained in
advance, the minimum TR length from any network nodes can be determined
easily. This method reduces the processing time to make SR substantially.

We need to find enough ROs to affect the shape of the SR rapidly. Therefore,
we search the candidate of RO by TR query in Euclidean distance. The length of
TR in Euclidean distance gives the lower bound of TR in road network distance,
i.e. LM (q) ≥ LE

M (q). Between the length of the TR starting p1(∈ C1) and a
length of a TR starting from p′

1(∈ C1), the following property stands.

Property 3. Let p1 be the first visiting point in a TR. When a network node
n is included in the SR of the TR, a data point p′

1(∈ C1) can be an RO if the
following inequality is satisfied.

L2:M (p1) + 2dN (p1, n) ≥ LE
M (p′

1) (1)

Proof. If the length of a TR passing through p′
1 is shorter than the TR passing

through p1, the following inequality stands.

L2:M (p1) + dN (p1, n) ≥ L2:M (p′
1) + dN (p′

1, n) (2)

By triangle inequality,

dN (p′
1, n) ≥ dE(p′

1, p1) − dN (p1, n) (3)

Then,

L2:M (p1) + dN (p1, n) ≥ L2:M (p′
1) + dE(p′

1, p1) − dN (p1, n)
≥ LE

M (p′
1) − dN (p1, n)

Therefore, the given inequality stands. ��
The procedure described in Sect. 4.1 enlarges the search area gradually while

the first visiting data point is p1. To perform this, the time consuming TR query
in road network distance must be repeated at every node. Therefore, we contrive
a method to shorten the processing time to form an SR by reducing the number
of the rival objects. While enlarging the SR, all possible rival objects that satisfy
Property 3 are searched. For each rival object (p′

1 ∈ C1), the length of the TR
(i.e. L2..M (p′

1)) is obtained in advance. In the preparation, the shortest TR route
starting from an expanding node n is obtained only by the shortest path search
between n and each rival object.

Algorithm 1 shows the pseudocode of the algorithm described above. The
parameter q is the current position of the MO, d is the final destination of the
trip, and M is the number of categories to be visited. Besides these parameters,

206 Y. Ohsawa et al.

Algorithm 1. PRA
1: function PRA(q, d, M)
2: PQ ← ∅
3: CS ← ∅
4: SR ← ∅, RO ← ∅
5: p1 ← initialize(s, d, M)
6: while PQ not empty do
7: r ← PQ.deleteMin()
8: CS ← CS ∪ r
9: AddCandidate(r, RO, p1)

10: minDist ← minDistInSet(r, RO)
11: if minDist < r.d then
12: SR ← SR∪clip(r.�, minDist)
13: else
14: SR ← SR ∪ r.�
15: end if
16: for all e ∈ getAdjacentLinks(r.n) do
17: if e.� not visited then
18: PQ.enqueue(< r.d + |e.�|, e.next, e.� >)
19: end if
20: end for
21: end while
22: return SR
23: end function

the procedure refers to R-tree indexes managing each data point set(Ci). They
are referred to RTree[i] (1 ≤ i ≤ M). The lines from 2 to 4 initialize the heap
PQ, the closed set CS, the result set of segments to be included in the SR, and
the set of the candidate rival objects RO.

The function initialize performs the following initialization steps.

(a) Find the optimal TR starting from q to d visiting M kinds of data points.
The SR is obtained for this TR.

(b) Put the following two records into PQ. Here, � is the road link on which p1
exists. a and b are the edges of �. �a and �b are parts of � divided at p1.

< L2:M (a) + |�a|, a, �a >,< L2:M (b) + |�b|, b, �b >

(c) Return the data point (p1) visiting to the first data point in the TR.

While PQ is not empty, lines from 6 to 21 are repeated. At line 7, a record
having minimum d value is de-heaped from PQ, and the record is registered into
CS at line 8.

In addCandidate, line 9 searches TR in Euclidean distance from r.n while
Eq. (1) is satisfied, and then the first visiting object in the searched Euclidean
TR is added into the rival object set RO. In this search, p1 and found rival
candidate objects are incrementally removed from set C1 (this means that it is
removed from RTree[1]).

Continuous Trip Route Planning Queries 207

Algorithm 2. AddCandidate
1: function addCandidate(r, RO, p1)
2: route ← RE

M (p1, d)
3: next ← route.p[1] � 1st visiting data point in route
4: while 2 × r.d > route.length do
5: if next �∈ RO then
6: RO ← RO ∪ next
7: end if
8: RTree[1].delete(next)
9: route ← RE

M (p1, d)
10: next ← route.p[1]
11: end while
12: end function

Algorithm 3. minDistInSet
1: function minDistInSet(r, RO)
2: minDist ← ∞
3: for all c ∈ RO do
4: dst ← c.shortestPath(r.n)
5: if dst < minDist then
6: minDist ← dst
7: end if
8: end for
9: return minDist

10: end function

Line 10 calculates the minimum distance from the current node r.n to the
rival object whose TR length is minimum. If the distance is smaller than r.d, it
means a route visiting the rival object is shorter than the route visiting p1, in
other words, r.n is not included in the SR. In this case, r.� is divided into two
segments, and the part TR passing through p1 which is shorter than the rival
object is added into SR. On the other hand, if the route visiting p1 is shorter,
the whole r.� is added into SR.

In line 16, all links neighboring to r.n are obtained by referring to the adja-
cency list. Then new records are composed, and then they are inserted into PQ.

Algorithm 2 obtains RO set incrementally. New objects, which satisfy the
Eq. (1), are obtained and added into RO. TR in Euclidean distance, starting
from p1 and visiting M data points, is searched incrementally in line 2, and the
first visiting data point (∈ C1) is assigned to the variable next. From line 4, a
new rival object (next) is being search, and while it satisfies Property 3, it is
added into RO.

Algorithm 3 finds the shortest TR route to reach r.n among the rival objects.
Each RO preserves the TR distance from the rival object to d. Therefore, the
total TR distance from a node n can be easily calculated by adding dN (n, c) to
the preserved length LN (2..M).

208 Y. Ohsawa et al.

5 Tardy Rival Addition Algorithm

In the algorithm described in the previous section, the number of rival objects
(RO) increased rapidly. Every time a candidate RO (o) is found by Euclidean
distance search, the TR from o visiting M − 1 categories must be determined
in the road network distance. Therefore, the total processing time increases in
proportion to the number of the ROs. In addition to determining the TR in
the road network distance, a found ROs must be removed from R-tree index to
perform incremental search in the CTRPQ algorithms (see line 8 in Algorithm 2).
For this deletion, R-tree index is needed to be copied into the main memory. To
solve these problems, we propose the following approximated algorithm called
tardy rival addition (TRA) algorithm.

The principle of TRA is to find the candidate rival objects by nearest neighbor
query targeting to C1 object from the currently noticed node. The search area is
gradually enlarged as the same with the basic algorithm and the PRA. During
the enlargement of the SR area, the nearest neighbor object in C1 is searched
except p1. And then, the object is added into the RO set. In this method, the
RO can be limited by the vicinity of the current node, therefore, the number of
the ROs is apt to be reduced.

On the other hand, this method can overlook the RO which makes an actual
shape of the SR. When enough ROs are not found, the size of the SR tends to be
enlarged larger than the actual size. However, by the result of the experiment,
this enlargement is less than a few percentage of the real SR size.

Fig. 4. Safe-region generation by TRA

Figure 4 shows a situation for the SR generation. In this figure, when node
n1 and n2 are checked, the route passing through p1 is the shortest because the
RO has not been included yet in SR (not enough for o1), and then the expansion
is continued. When node n4 is checked, the object o1 is found as an RO by
the NN search at n4, and the TR length passing through o1 is shorter than the
TR passing through p1 at node n4. In this case, apparently n4 is not included
in the SR. However, n2 and n1 also have a possibility that these nodes are not
included in the SR, because o1 has not been in the RO set when they are checked.
Therefore, the check is needed to trace back along the path to reach n4. In this
case, when n2 is tested again, n2 is found that it is not included in the SR, and
while testing on n1, it is found that it is included in the SR. In this situation,

Continuous Trip Route Planning Queries 209

the border of the SR is determined on the link between n1 and n2. A defect of
this method is that TRA does not guarantee to find enough exact RO to be an
exact shape of SR, because there can be a possibility of the existence of ROs
which have not been found yet.

In comparing with PRA, TRA does not need to remove the rival objects from
the R-tree, and thus the copy of the R-tree managing C1 is not necessary.

The flow of the procedure for the TRA is the same with PRA. The only
difference is in the function addCandidate. This algorithm is presented in
Algorithm 4. The function NN in line 2 returns the nearest neighbor in C1 but
except p1.

Algorithm 4. AddCandidate for TRA
1: function addCandidate(r, RO, p1)
2: next ← NN(RTree[1], r.n, p1)
3: RO ← RO ∪ next
4: end function

6 Experimental Results

To evaluate the algorithms proposed in this paper, we conducted several exper-
iments. The presented algorithms were implemented by Java. In these experi-
ments, we used a real road map (167 km2) with road network nodes 16,284 and
links 24,914 that covers an area of a city and generated data points sets with
various densities. For example, the density of 0.001 means a data point exists
once 1,000 road edges. The size of the area is not so large, however, this type of
query is apt to be used for a trip route search in a strange city for the user, and
the search area is restricted in a city.

Figure 5 compares the processing time of TRPQs in Euclidean distance and
the road network distance (by [15,16]). In the legend, M = 3N shows that
the number of visiting data point categories is 3 and queries in the road network
distance (by [15]). On the other hand, M = 3E shows that the number of visiting
categories are 3 and queries in Euclidean distance. As shown in this figure, the
queries in Euclidean distance are three orders of magnitude faster than in the
road network distance. This is the reason that we used TR query in Euclidean
distance for finding rival data objects.

Figure 6 compares the processing time of the basic method (BA), PRA, and
TRA when M = 3. The basic method requires very long processing time espe-
cially when the density of the data points is low. This is because when the
density is low, the size of the SR becomes larger, and according to the enlarge-
ment in size, the times to find TR in road network distance becomes large. The
processing time becomes low in accordance with the density increase. Contrary,
the processing time of PRA increases when the density becomes high. This is
because the number of the rival objects also increases when the density is high.
TRA shows stable and low processing time independent of the density.

210 Y. Ohsawa et al.

10-4

10-3

10-2

10-1

100

 0.001 0.002 0.005 0.01 0.02 0.05

Pr
oc

es
si

ng
 T

im
e

(s
)

Density

M=3N
M=3E

M=4N
M=4E

M=5N
M=5E

Fig. 5. Processing time of TRPQ by
incremental network expansion

100

101

102

 0.002 0.005 0.01 0.02

Pr
oc

es
si

ng
 T

im
e

(s
)

Density

BA
PRA
TRA

Fig. 6. Processing time for SR when
M = 3

100

101

102

 0.002 0.005 0.01 0.02

Pr
oc

es
si

ng
 T

im
e

(s
)

Density

BA
PRA
TRA

Fig. 7. Processing time
for SR when M = 4

100

101

102

 0.002 0.005 0.01 0.02

Pr
oc

es
si

ng
 T

im
e

(s
)

Density

BA
PRA
TRA

Fig. 8. Processing time
for SR when M = 5

100

101

102

 0.002 0.005 0.01 0.02

Pr
oc

es
si

ng
 T

im
e

(s
)

Density

PRA5
TRA5

PRA4
TRA4

PRA3
TRA3

Fig. 9. Search safe region
of next data point

Figures 7 and 8 show the processing time when M = 4 and M = 5 respec-
tively. According to the increase of M , the processing time of all algorithms
increase, however, PRA and TRA keep remaining lower processing time.

In a trip, after a MO has reached the first visiting data point, a new SR target-
ing to the second visiting data point is generated. Figure 9 shows the processing
time to generate the second SR in a trip. In this figure, only PRA and TPA are
compared, because BA needs long processing time especially when the density of
data points is low. The last number in the legend shows M number. For example,
PRA5 shows the result when M = 5, and the value shows the processing time
to generate the SR for the TR visiting the rest four data points.

7 Conclusion

This paper proposed three algorithms for safe-region generation methods in trip
route planning queries. Among them, PRA gives an accurate safe-region, and
TRA gives an approximate solution but faster than PRA, and the difference
from the accurate answer is only a few percentage in processing time. To the
best of our knowledge, this is the first proposal of the safe-region generation
method for trip planning queries.

Continuous Trip Route Planning Queries 211

The safe-region generation for TRPQ is a time consuming task, and even
TRA needs several seconds processing time. Moreover, the safe-region gener-
ation for TRPQ is practical when the visiting category number is less than 5.
Thus, TRA algorithm is more suitable for trip planning queries when the visiting
categories is less.

References

1. Gedik, B., Liu, L.: MobiEyes: distributed processing of continuously moving
queries on moving objects in a mobile system. In: Bertino, E., Christodoulakis, S.,
Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004.
LNCS, vol. 2992, pp. 67–87. Springer, Heidelberg (2004)

2. Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., Hambrush, S.: Query indexing
and velocity constrained indexing: scalable techniques for continuous queries on
moving objects. IEEE Trans. Comput. 51(10), 1124–1140 (2002)

3. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous nearest neigh-
bor monitoring in road networks. In: Proceedings of 32th VLDB, pp. 43–54 (2006)

4. Bentis, R., Jensen, C.S., Karčlauskas, G., Šaltenis, S.: Nearest and reverse nearest
neighbor queries for moving objects. VLDB J. 15(3), 229–250 (2006)

5. Xia, T., Zhang, D.: Continuous reverse nearest neighbor monitoring. In: Proceeding
of the 22nd International Conference on Data Engineering, p. 77 (2006)

6. Iwerks, G.S., Samet, H., Smith, K.P.: Maintenance of spatial semijoin queries on
moving points. In: Proceedings of VLDB (2004)

7. Chen, Z., Shen, H.T., Zhou, X., Yu, J.X.: Monitoring path nearest neighbor in
road networks. In: SIGMOD 2009, pp. 591–602 (2009)

8. Huang, Y.K., Chang, C.H., Lee, C.: Continuous distance-based skyline queries in
road networks. Inf. Syst. 37, 611–633 (2012)

9. Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Continuous monitor-
ing of distance based range queries. IEEE Trans. Knowl. Data Eng. 23, 1182–1199
(2011)

10. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.-H.: On trip planning
queries in spatial databases. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.)
SSTD 2005. LNCS, vol. 3633, pp. 273–290. Springer, Heidelberg (2005)

11. Sharifzadeh, M., Kalahdouzan, M., Shahabi, C.: The optimal sequenced route
query. Technical report, Computer Science Department, University of Southern
California (2005)

12. Chen, H., Ku, W.S., Sun, M.T., Zimmermann, R.: The multi-rule partial sequenced
route query. In: ACM GIS 2008, pp. 65–74 (2008)

13. Sharifzadeh, M., Shahabi, C.: Processing optimal sequenced route queries using
voronoi diagram. Geoinformatica 12, 411–433 (2008)

14. Nutanong, S., Tanin, E., Shao, J., Zahang, R., Ramamohanarao, K.: Continuous
detour queries in spatial networks. IEEE Trans. Knowl. Data Eng. 24(7), 1201–
1215 (2012)

15. Htoo, H., Ohsawa, Y., Sonehara, N., Sakauchi, M.: Optimal sequenced route query
algorithm using visited POI graph. In: Gao, H., Lim, L., Wang, W., Li, C., Chen,
L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 198–209. Springer, Heidelberg (2012)

16. Ohsawa, Y., Htoo, H., Sonehara, N., Sakauchi, M.: Sequenced route query in road
network distance based on incremental euclidean restriction. In: Liddle, S.W.,
Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part I. LNCS, vol. 7446,
pp. 484–491. Springer, Heidelberg (2012)

Enhancing SpatialHadoop with
Closest Pair Queries

Francisco Garćıa-Garćıa1, Antonio Corral1(B), Luis Iribarne1,
Michael Vassilakopoulos2, and Yannis Manolopoulos3

1 Department of Informatics, University of Almeria, Almeria, Spain
{paco.garcia,acorral,liribarn}@ual.es

2 Department of Electrical and Computer Engineering,
University of Thessaly, Volos, Greece

mvasilako@uth.gr
3 Department of Informatics, Aristotle University, Thessaloniki, Greece

manolopo@csd.auth.gr

Abstract. Given two datasets P and Q, the K Closest Pair Query
(KCPQ) finds the K closest pairs of objects from P×Q. It is an operation
widely adopted by many spatial and GIS applications. As a combination
of the K Nearest Neighbor (KNN) and the spatial join queries, KCPQ
is an expensive operation. Given the increasing volume of spatial data, it
is difficult to perform a KCPQ on a centralized machine efficiently. For
this reason, this paper addresses the problem of computing the KCPQ
on big spatial datasets in SpatialHadoop, an extension of Hadoop that
supports spatial operations efficiently, and proposes a novel algorithm in
SpatialHadoop to perform efficient parallel KCPQ on large-scale spatial
datasets. We have evaluated the performance of the algorithm in several
situations with big synthetic and real-world datasets. The experiments
have demonstrated the efficiency and scalability of our proposal.

Keywords: Closest pair queries · Spatial data processing · Spatial-
Hadoop · MapReduce

1 Introduction

Given two point datasets P and Q, the K Closest Pair Query (KCPQ) finds the
K closest pairs of points from P ×Q according to a certain distance metric (e.g.,
Manhattan, Euclidean, Chebyshev, etc.). The KCPQ has received considerable
attention from the database community, due to its importance in numerous
applications, such as spatial databases and GIS [1,2], data mining [3], metric
databases [4], etc. Since both the spatial join and the K Nearest Neighbor (KNN)
queries are expensive, especially on large datasets, KCPQ, as a combination of
both, is an even more costly query. Lots of researches have been devoted to

F. Garćıa-Garćıa et al.—Work funded by the MINECO research project [TIN2013-
41576-R] and the Junta de Andalucia research project [P10-TIC-6114].

c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 212–225, 2016.
DOI: 10.1007/978-3-319-44039-2 15

Enhancing SpatialHadoop with Closest Pair Queries 213

improve the performance of the KCPQ by proposing efficient algorithms [4,5].
However, all these approaches focus on methods that are to be executed in a
centralized environment.

With the fast increase in the scale of the big input datasets, processing large
data in parallel and distributed fashions is becoming a popular practice. A num-
ber of parallel algorithms for spatial joins [6,7], KNN joins [8,9] and top-K
similarity join [10] in MapReduce [11] have been designed and implemented.
But, to the authors’ knowledge, there is no research works on parallel and dis-
tributed KCPQ in large spatial data, which is a challenging task and becoming
increasingly essential as datasets continue growing.

Actually, extreme-scale data, parallel and distributed computing using
shared-nothing clusters is becoming a dominating trend in the context of data
processing and analysis. MapReduce [11] is a framework for processing and
managing large-scale datasets in a distributed cluster, which has been used for
applications such as generating search indexes, document clustering, access log
analysis, and various other forms of data analysis [12]. MapReduce was intro-
duced with the goal of providing a simple yet powerful parallel and distributed
computing paradigm, providing good scalability and fault tolerance mechanisms.

However, as also indicated in [13], MapReduce has weaknesses related to
efficiency when it needs to be applied to spatial data. A main shortcoming is
the lack of any indexing mechanism that would allow selective access to specific
regions of spatial data, which would in turn yield more efficient query processing
algorithms. A recent solution to this problem is an extension of Hadoop, called
SpatialHadoop [14], which is a framework that inherently supports spatial index-
ing on top of Hadoop. In SpatialHadoop, spatial data is deliberately partitioned
and distributed to nodes, so that data with spatial proximity is placed in the
same partition. Moreover, the generated partitions are indexed, thereby enabling
the design of efficient query processing algorithms that access only part of the
data and still return the correct result query. As demonstrated in [14], various
algorithms are proposed for spatial queries, such as range and KNN queries, spa-
tial joins and skyline query [15]. Efficient processing of KCPQ over large-scale
spatial datasets is a challenging task, and it is the main target of this paper.

Motivated by these observations, we first propose a general approach of
KCPQ for SpatialHadoop, using plane-sweep algorithms, and its improved ver-
sion, using the computation of an upper bound of the distance of the K-th closest
pair from sampled data points. The contributions of this paper are the following

– A novel algorithm in SpatialHadoop to perform efficient parallel KCPQ on
big spatial datasets,

– Improving the general algorithm with the computation of an upper bound of
the distance value of the K-th closest pair from sampled data,

– The execution of an extensive set of experiments that demonstrate the effi-
ciency and scalability of our proposal using big synthetic and real-world points
datasets.

This paper is organized as follows. In Sect. 2 we review related work on
Hadoop systems that support spatial operations, the specific spatial queries using

214 F. Garćıa-Garćıa et al.

MapReduce and provide the motivation for this paper. In Sect. 3, we present pre-
liminary concepts related to KCPQ and SpatialHadoop. In Sect. 4 the parallel
algorithm for processing KCPQ in SpatialHadoop is proposed, with an improve-
ment to make the algorithm faster. In Sect. 5, we present representative results
of the extensive experimentation that we have performed, using real-world and
synthetic datasets, for comparing the efficiency of the proposed algorithm, tak-
ing into account different performance parameters. Finally, in Sect. 6 we provide
the conclusions arising from our work and discuss related future work directions.

2 Related Work and Motivation

Researchers, developers and practitioners worldwide have started to take advan-
tage of the MapReduce environment in supporting large-scale data processing.
The most important contributions in the context of scalable spatial data process-
ing are the following prototypes: (1) Parallel-Secondo [16] is a parallel spatial
DBMS that uses Hadoop as a distributed task scheduler; (2) Hadoop-GIS [17]
extends Hive [18], a data warehouse infrastructure built on top of Hadoop with
a uniform grid index for range queries, spatial joins and other spatial operations.
It adopts Hadoop Streaming framework and integrates several open source soft-
ware packages for spatial indexing and geometry computation; (3) SpatialHadoop
[14] is a full-fledged MapReduce framework with native support for spatial data.
It tightly integrates well-known spatial operations (including indexing and joins)
into Hadoop; and (4) SpatialSpark [19] is a lightweight implementation of several
spatial operations on top of the Apache Spark in-memory big data system. It
targets at in-memory processing for higher performance. It is important to high-
light that these four systems differ significantly in terms of distributed comput-
ing platforms, data access models, programming languages and the underlying
computational geometry libraries.

Actually, there are several works on specific spatial queries using MapReduce.
This programming framework adopts a flexible computation model with a simple
interface consisting of map and reduce functions whose implementations can be
customized by application developers. Therefore, the main idea is to develop map
and reduce functions for the required spatial operation, which will be executed
on-top of an existing Hadoop cluster. Examples of such works on specific spatial
queries include: (1) Range query [20,21], where the input file is scanned, and
each record is compared against the query range. (2) KNN query [21,22], where
a brute force approach calculates the distance to each point and selects the
nearest K points [21], while another approach partitions points using a Voronoi
diagram and finds the answer in partitions close to the query point [22]. (3)
Skyline queries [15,25,26]; in [25] the authors propose algorithms for processing
skyline and reverse skyline queries in MapReduce; and in [15,26] the problem of
computing the skyline of a vast-sized spatial dataset in SpatialHadoop is studied.
(4) Reverse Nearest Neighbor (RNN) query [22], where input data is partitioned
by a Voronoi diagram to exploit its properties to answer RNN queries. (5) Spatial
join [14,21,23]; in [21] the partition-based spatial-merge join [24] is ported to

Enhancing SpatialHadoop with Closest Pair Queries 215

MapReduce, and in [14] the map function partitions the data using a grid while
the reduce function joins data in each grid cell. (6) KNN join [8,9,23], where
the main target is to find for each point in a set P , its KNN points from set
Q using MapReduce. Finally, (7) in [10], the problem of the top-K closest pair
problem (where just one dataset is involved) using MapReduce is studied.

The KCPQ (where two spatial datasets are involved) has received consider-
able attention from the spatial database community, due to its importance in
numerous applications. SpatialHadoop is equipped with a several spatial opera-
tions, including range query, KNN and spatial join [14], and other fundamental
computational geometry algorithms as polygon union, skyline, convex hull, far-
thest pair, and closest pair [26]. And recently, two new algorithms for skyline
query processing have been also proposed in [15]. And based on the previous
observations, efficient processing of KCPQ over large-scale spatial datasets using
SpatialHadoop is a challenging task, and it is the main motivation of this paper.

3 Preliminaries and Background

3.1 K Closest Pairs Query

The KCPQ discovers the K pairs of data elements formed from two datasets
that have the K smallest distances between them (i.e. it reports only the top
K pairs). It is one of the most important spatial operations when two spatial
datasets are involved. It is considered a distance-based join query, because it
involves two different spatial datasets and use distance functions to measure
the degree of nearness between pairs of spatial objects. The formal definition
of KCPQ for point datasets (the extension of this definition to other complex
spatial objects is straightforward) is the following:

Definition 1 (K Closest Pairs Query, KCPQ). Let P = {p0, p1, · · · , pn−1}
and Q = {q0, q1, · · · , qm−1} be two set of points in Ed, and a natural num-
ber K (K ∈ N,K > 0). The K Closest Pairs Query (KCPQ)) of P
and Q (KCPQ(P,Q,K) ⊆ P × Q) is a set of K different ordered pairs
KCPQ(P,Q,K) = {(p1, q1), (p2, q2), · · · , (pK , qK)}, with (pi, qi) �= (pj , qj), i �=
j, 1 ≤ i, j ≤ K, such that for any (p, q) ⊆ P×Q−{(p1, q1), (p2, q2), · · · , (pK , qK)}
we have dist(p1, q1) ≤ dist(p2, q2) ≤ · · · ≤ dist(pK , qK) ≤ dist(p, q).

This spatial query has been actively studied in centralized environments,
regardless whether both spatial datasets are indexed or not [1,2,5,28]. In this
context, recently, when the two datasets are not indexed and they are stored
in main-memory, a new plane-sweep algorithm for KCPQ, called Reverse Run,
was proposed in [5]. Additionally, two improvements to the Classic PS algorithm
for this spatial query were also presented. Experimentally, the Reverse Run PS
algorithm proved to be faster and it minimized the number of Euclidean dis-
tance computations. However, datasets that reside in a parallel and distributed
framework have not attracted similar attention.

216 F. Garćıa-Garćıa et al.

An example of this query using big data [14] could be to find the K closest
pairs of buildings and water resources (since you may examine of other, more
ecological, sources of water supply for buildings). Moreover, due to the growing
popularity of mobile and wearable location-aware devices that have access to the
Web, KCPQs on big data are expected to appear in emerging new applications.

3.2 SpatialHadoop

SpatialHadoop [14] is a full-fledged MapReduce framework with native sup-
port for spatial data. Notice that MapReduce [11] is a scalable, flexible and
fault-tolerant programming framework for distributed large-scale data analysis.
A task to be performed using the MapReduce framework has to be specified
as two phases: the Map phase is specified by a map function takes input (typ-
ically from Hadoop Distributed File System (HDFS) files), possibly performs
some computations on this input, and distributes it to worker nodes; and the
Reduce phase which processes these results as specified by a reduce function.
An important aspect of MapReduce is that both the input and the output of
the Map step are represented as Key/Value pairs, and that pairs with same key
will be processed as one group by the Reducer : map : (k1, v1) → list(k2, v2) and
reduce : k2, list(v2) → list(v3). Additionally, a Combiner function can be used
to run on the output of Map phase and perform some filtering or aggregation to
reduce the number of keys passed to the Reducer.

Fig. 1. SpatialHadoop system architecture [14].

Enhancing SpatialHadoop with Closest Pair Queries 217

SpatialHadoop, see in Fig. 1 its architecture, is a comprehensive extension to
Hadoop that injects spatial data awareness in each Hadoop layer, namely, the
language, storage, MapReduce, and operations layers. In the Language layer,
SpatialHadoop adds a simple and expressive high level language for spatial data
types and operations. In the Storage layer, SpatialHadoop adapts traditional
spatial index structures as Grid, R-tree and R+-tree, to form a two-level spatial
index [27]. SpatialHadoop enriches the MapReduce layer by new components to
implement efficient and scalable spatial data processing. In the Operations layer,
SpatialHadoop is also equipped with a several spatial operations, including range
query, KNNQ and spatial join. Other computational geometry algorithms (e.g.
polygon union, skyline, convex hull, farthest pair, and closest pair) are also
implemented following a similar approach [26]. Moreover, in this context, [15]
improved the processing of skyline query. Finally, we must emphasize that our
contribution (KCPQ as a spatial operation) is located in the Operations layer,
as we can observe in Fig. 1 in the highlighted box.

Since our main objective is to include the KCPQ into SpatialHadoop, we
are interested in the MapReduce and operations layers. MapReduce layer is
the query processing layer that runs MapReduce programs, taking into account
that SpatialHadoop supports spatially indexed input files. And the operation
layer enables the efficient implementation of spatial operations, considering the
combination of the spatial indexing in the storage layer with the new spatial
functionality in the MapReduce layer. In general, a spatial query processing in
SpatialHadoop consists of four steps: (1) Partitioning, where the data is par-
titioned according to a specific spatial index. (2) Pruning, when the query is
issued, where the master node examines all partitions and prunes those ones
that are guaranteed not to include any possible result of the spatial query. (3)
Local spatial query processing, where a local spatial query processing is performed
on each non-pruned partition in parallel on different machines. And finally, (4)
Global processing, where a single machine collects all results from all machines
in the previous step and compute the final result of the concerned query. And
we are going to follow this query processing schema to include the KCPQ into
SpatialHadoop.

4 KCPQ Algorithms in SpatialHadoop

In this section, we describe our approach to KCPQ algorithms on top of Spa-
tialHadoop. This can be described as a generic top-K MapReduce job that can
be parameterized by specific KCPQ algorithms. In general, our solution is simi-
lar to how distributed join algorithm [14] is performed in SpatialHadoop, where
combinations of blocks from each dataset are the input for each map task, when
the spatial query is performed. The reducer then emits the top-K results from
all mapper outputs. In more detail, our approach make use of two plane-sweep
KCPQ algorithms for main-memory resident datasets [5].

The plane-sweep technique has been successfully used in spatial databases to
report the result of KCPQ when the two datasets are indexed [1,2], and recently

218 F. Garćıa-Garćıa et al.

it has been improved for main-memory resident-point sets [5]. In this paper we
will use the algorithms presented in [5] and their improvements to adapt them
as MapReduce versions.

In [5], the Classic Plane-Sweep for KCPQ was reviewed and two new
improvements were also presented, when the point datasets reside in main mem-
ory. In general, if we assume that the two point sets are P and Q, the Classic
PS algorithm consists of the two following steps: (1) sorting the entries of the
two point sets, based on the coordinates of one of the axes (e.g. X) in increasing
order, and (2) combine one point (pivot) of one set with all the points of the
other set satisfying point.x − pivot.x ≤ δ, where δ is the distance of the K-th
closest pair found so far. The algorithm chooses the pivot in P or Q, follow-
ing the order on the sweeping axis. We must highlight that the search is only
restricted to the closest points with respect to the pivot, according to the cur-
rent distance threshold (δ). No duplicated pairs are obtained, since the points
are always checked over sorted sets.

In [5], a new plane-sweep algorithm for KCPQ was proposed for minimizing
the number of distance computations. It was called Reverse Run Plane-Sweep
algorithm and it is based on two concepts. First, every point that is used as a
reference point forms a run with other subsequent points of the same set. A
run is a continuous sequence of points of the same set that doesn’t contain any
point from the other set. During the algorithm processing, for each set, we keep
a left limit, which is updated (moved to the right) every time that the algorithm
concludes that it is only necessary to compare with points of this set that reside
on the right of this limit. Each point of the active run (reference point) is
compared with each point of the other set (comparison point) that is on the left
of the first point of the active run, until the left limit of the other set is reached.
And second, the reference points (and their runs) are processed in ascending
X-order (the sets are X-sorted before the application of the algorithm). Each
point of the active run is compared with the points of the other set (comparison
points) in the opposite or reverse order (descending X-order). Moreover, for each
point of the active run being compared with a current comparison point, there
are two cases: (1) if the distance (dist) between this pair of points (reference,
comparison) is smaller than the δ distance value, then the pair will be considered
as a candidate for the result, and (2) if the distance between this pair of points
in the sweeping axis (dx) is larger than or equal to δ, then there is no need to
calculate the distance (dist) of the pair, and we avoid this distance computation.

The two improvements presented in [5], called sliding window and sliding
semi-circle, can be applied both Classic and Reverse Run algorithms. For the
sliding window, the general idea consists of restricting the search space to the
closest points inside the window with width δ and a height 2 ∗ δ (i.e. [0, δ] in the
X-axis and [−δ, δ] in the Y -axis, from the pivot or the reference point). And for
the sliding semi-circle improvement, it consists of trying to reduce even more the
search space, we can only select those points inside the semi-circle (or half-circle)
centered in the pivot or in the reference point with radius δ.

Enhancing SpatialHadoop with Closest Pair Queries 219

The method for KCPQ in MapReduce is to adopt the top-K MapReduce
methodology. The basic idea is to have P and Q partitioned by some method
(e.g., grid) into n and m blocks of points. Then, every possible pair of blocks
(one from P and one from Q) is sent as the input for the Map phase. Each
mapper reads its pair of blocks and performs a KCPQ PS algorithm (Classic or
Reverse Run) between the local P and Q in that pair. That is, it finds KCPs
between points in the local block of P and in the local block of Q using a KCPQ
PS algorithm. To do so, each mapper sorts the local P and Q blocks in one axis
(e.g., X axis in ascending order) and then applies a particular KCPQ algorithm.
The K results from all mappers are sent to a single reducer that will in turn find
the global top-K of all the mappers. Finally, the results are written into HDFS
files, storing only the points coordinates and the distance between them.

Algorithm 1. KCPQ MapReduce General Algorithm
1: function MAP(P : set of points, Q: set of points, K: # pairs)
2: SortX(P)
3: SortX(Q)
4: KMaxHeap ← KCPQ(P, Q, k)
5: if KMaxHeap is not empty then
6: for all DistanceAndPair ∈ KMaxHeap do
7: output(null, DistanceAndPair)
8: end for
9: end if

10: end function

11: function COMBINE, REDUCE(null, P : set of DistanceAndPair, K: # pairs)
12: Initialize(CandidateKMaxHeap, K)
13: for all p ∈ P do
14: Insert(CandidateKMaxHeap, p)
15: end for
16: for all candidate ∈ CandidateKMaxHeap do
17: output(null, candidate)
18: end for
19: end function

In Algorithm 1 we can see our proposed solution for KCPQ in SpatialHadoop
which consists of a single MapReduce job. The Map function aims to find KCPs
between the local pair of blocks from P and Q with a particular KCPQ algorithm
(e.g. Classic or Reverse Run). KMaxHeap is a max binary heap used to keep record
of local selected top-K closest pairs that will be processed by the Reduce function.
The output of theMap function is in the formof a set ofDistanceAndPair elements,
pairs of points from P and Q and their distance. As in every other top-K pattern,
theReduce function canbeused in theCombiner tominimize the shufflephase.The
Reduce function aims to examine the candidate DistanceAndPair elements and
return the final KCP set. It takes as input a set of DistanceAndPair elements from

220 F. Garćıa-Garćıa et al.

every mapper and the number of pairs. It also employs a binary max heap, called
CandidateKMaxHeap, used to calculate the final result. Each DistanceAndPair p
is inserted into the heap if its distance value is less than the distance value of the
top element stored in the heap. Otherwise, that pair of points is discarded. Finally,
candidate pairs which have been stored in the heap are returned as the final result
and stored in the output file.

4.1 Improving the Algorithm

It can clearly be seen that the performance of the proposed solution will depend
on the number of blocks in which the sets of points are partitioned. That is, the
set of points P is partitioned into n blocks and the set of points Q is partitioned
in m blocks, then we obtain n×m combinations or map tasks. Plane-Sweep-based
algorithms use a δ value, which is the distance of the K-th closest pair found so
far, to discard those combinations of pairs of points that are not necessary to
consider as a candidate of the final result. As suggested in [10], we need to find
in advance an upper bound distance δ of the distance of the K-th closest pair of
the datasets. As we can see in Algorithm 2, we take a small sample from both
sets of points and calculate the KCPs using the same algorithm that is applied
locally in every mapper. Then, we take the largest distance from the result and
use it as input for mappers. That δ value assures us that there will be at least K
closest pairs if we prune pairs of points with larger distances in every mapper.

Furthermore, we can use this δ value in combination with the features of
indexing that provides SpatialHadoop to further enhance the pruning phase.
Before the map phase begins, we exploit the indexes to prune cells that cannot
contribute to the final result. CELLSFILTER takes as input each combination of
blocks/cells in which the input set of points are partitioned. Using SpatialHadoop
built-in function minDistance we can calculate the minimum distance between
two cells. That is, if we find a pair of blocks with points which cannot have a
distance value smaller than δ, we can prune that combination. Performing the
δ preprocessing filtering using 1 % samples of the input data we have obtained
results with a significant reduction of execution time.

5 Experimentation

In this section we present the results of our experimental evaluation. We
have used synthetic (Uniform) and real 2d point datasets to test our KCPQ
algorithms in SpatialHadoop. For synthetic datasets we have generated sev-
eral files of different sizes using SpatialHadoop built-in uniform generator [14].
For real datasets we have used three datasets from OpenStreetMap1: BUILD-
INGS which contains 115M records of buildings, LAKES which contains 8.4M
points of water areas, and PARKS which contains 10M records of parks and
green areas [14]. We have implemented and compared the KCPQ PS algorithms

1 Available at http://spatialhadoop.cs.umn.edu/datasets.html.

http://spatialhadoop.cs.umn.edu/datasets.html

Enhancing SpatialHadoop with Closest Pair Queries 221

Algorithm 2. Preprocessing δ Algorithm
1: function CALCULATEδ(P : set of points, Q: set of points, K: # pairs)
2: SampledP ← Sample(P, 1 %)
3: SampledQ ← Sample(Q, 1 %)
4: SortX(SampledP)
5: SortX(SampledQ)
6: KMaxHeap ← KCPQ(SampledP, SampledQ, K)
7: if KMaxHeap is not empty then
8: δDistanceAndPair ← pop(KMaxHeap)
9: δ ← δDistanceAndPair.Distance

10: output(δ)
11: end if
12: end function

13: function CELLSFILTER(C: set of cells, D: set of cells, δ: upper bound distance)
14: for all c ∈ C do
15: for all d ∈ D do
16: minDistance ← MinDistance(c, d)
17: if minDistance ≤ δ then
18: output(c, d)
19: end if
20: end for
21: end for
22: end function

(Classic and Reverse Run [5]). We have used two performance metrics, the run-
ning time and the number of complete distance computations of each algorithm.
All experiments are conducted on a cluster of 20 nodes on an OpenStack envi-
ronment. Each node has 1 vCPU with 2 GB of main memory running Linux
operating systems and Hadoop 1.2.1.

Our first experiment is to examine the effect of the preprocessing phase to
compute an upper bound of the distance value of the K-th closest pair (δ).
As shown in Fig. 2 the execution time for the algorithm without preprocessing
is smaller when using uniform datasets with less than 256 MB, see left graph.
However, in the experiment with two grid partitioned datasets of 256 MB the
execution time increases considerably reaching several hours. As any combination
of blocks is not removed, the calculation of KCPQ is performed on pairs of blocks
in which the value δ, that is being calculated, never exceeds the distance between
these points. As a result pruning is never performed locally and, therefore, the
calculation of all possible combinations of points is carried out. However, by
adding δ preprocessing phase there are combinations of blocks which are first
pruned obtaining times growing more or less linearly with the size of the datasets,
see Fig. 2 right graph. As an example, when using the complete dataset from
LAKES and PARKS only 25 out of 64 possible combinations are considered for
K = 1. In Table 1 all possible combinations of partitions are shown, considering
different percentages of the datasets (LAKES ×PARKS) and, with or without

222 F. Garćıa-Garćıa et al.

64 128 256 512
0

200

400

600

800

Mb

T
o
ta

l
T
im

e
(i
n

s)

Uniform Datasets

25 50 75 100
0

200

400

600

800

% of samples

T
o
ta

l
T
im

e
(i
n

s)

LAKESxPARKS

Without δ processing With δ processing

Fig. 2. Execution time vs. δ preprocessing phase.

Table 1. Number of combinations of partitions without or with using the δ preprocess-
ing phase.

% of Datasets Without δ With δ

25 4 3

50 12 6

75 56 20

100 64 25

the computation of the upper bound δ for K = 1 (for larger K values the
percentage of reduction was similar).

The second experiment aims to find which of the different plane-sweep KCPQ
algorithms has the best performance. The times obtained do not show significant
improvements between the different algorithms. This is due to various factors
such as reading disk speed, network delays, the time for each individual task,
etc. The metric shown in Fig. 3 is based on the number of times the algorithm
performs a full calculation of the distance between two points. As shown in
the left graph, any improvement (sliding window, semi-circle) on the Classic
or Reverse Run algorithm obtains a much smaller number of calculations. The
difference between these is not very noticeable being the semi-circle reverse run
algorithm the one with better results in most of the cases.

The third experiment studies the effect of different spatial partitioning tech-
niques included in SpatialHadoop. As shown in Fig. 3 right graph, the choice of a
partitioning technique greatly affects the execution time showing improvements
of 200 % when using Str or Str+ instead of Grid. Using Grid partitioned files
we get 211 combinations of blocks from input datasets while using Str/Str+
partitioned files just 78 combinations are obtained. As expected, there is no real
difference in using Str or Str+. This experiment is also useful to measure the
scalability of the KCPQ algorithms, varying the dataset sizes. We can see that
in our approach execution time increases linearly.

Enhancing SpatialHadoop with Closest Pair Queries 223

Classic Reverse

106

107

108

109

1010

plane-sweep algorithms

#
F
u
ll

D
is
ta

n
c
e

C
a
lc

u
la

ti
o
n
s BUILDINGSxLAKES

Normal Window Semi-circle

25 50 75 100
0

100

200

300

400

500

600

% of samples

T
o
ta

l
T
im

e
(i
n

s)

BUILDINGSxPARKS

Grid Str Str+

Fig. 3. Number of complete distance computation vs. KCPQ algorithm (left) and
execution time vs. partition technique (right).

The fourth experiment studies the effect of the increasing of the K value.
As show on Fig. 4 left graph, the total execution time grows very little as the
number of results to be obtained increases. It could be concluded that there is
no real impact on the execution time but it must be taken into account that
a higher K, the greater the possibility that pairs of blocks are not pruned and
more map tasks could be needed.

The fifth experiment aims to measure the speedup of the KCPQ algorithms,
varying the number of computing nodes (n). Figure 4 right graph shows the
impact of different node numbers on the performance of parallel KCPQ algo-
rithm. From this figure, it could be concluded that the performance of our app-
roach has direct relationship with the number of computing nodes. It could be
deduced that better performance would be obtained if more computing nodes
are added. When the number of computing nodes exceeds the number of map
tasks no improvement for that individual job is obtained.

In summary, the experimental results showed that:

– We have demonstrated experimentally the efficiency (in terms of total execu-
tion time and number of distance computations) and the scalability (in terms
of K values, sizes of datasets and number of computing nodes) of the proposed
parallel KCPQ algorithm.

– We have improved this algorithm by using the computation of an upper bound
δ of the distance of the K-th closest pair from sampled data.

– Both plane-sweep-based algorithms (Classic and Reverse Run) used in the
MapReduce implementation have similar performance in terms of execution
time, although the Reverse Run algorithm reduces slightly the number of
complete distance computations.

– The use of an spatial partitioning technique included in SpatialHadoop as
Str or Str+ (instead of Grid) improves notably the efficiency of the parallel
KCPQ algorithm. This is due to these variants index all partitions according
to an R-tree structure (i.e. it can be viewed as a global index of partitions).

224 F. Garćıa-Garćıa et al.

1 10 102 103 104 105
150

200

250

300

K: # of closest pairs

T
o
ta

l
T
im

e
(i
n

s)

BUILDINGSxLAKES

1 2 4 10 20

500

1,000

1,500

2,000

2,500

3,000

n: # of available computing nodes

T
o
ta

l
T
im

e
(i
n

s)

BUILDINGSxPARKS

Fig. 4. Execution time vs. K value (left) and execution time vs. n (right).

6 Conclusions and Future Work

The KCPQ is an operation widely adopted by many spatial and GIS applica-
tions. It returns the K closest pairs of spatial objects from the Cartesian Product
of two spatial datasets P and Q. This spatial query has been actively studied
in centralized environments, however, for parallel and distributed frameworks
has not attracted similar attention. For this reason, in this paper, we studied
the problem of answering the KCPQ in SpatialHadoop, an extension of Hadoop
that supports spatial operations efficiently. To do this, we have proposed a new
parallel KCPQ algorithm in MapReduce on big spatial datasets, adopting the
plane-sweep methodology. We have also improved this MapReduce algorithm
with the computation of an upper bound (δ) of the distance value of the K-th
closest pair from sampled data as a preprocessing phase. The performance of the
algorithm in various scenarios with big synthetic and real-world points datasets
has been also evaluated. And, the execution of such experiments has demon-
strated the efficiency (in terms of total execution time and number of distance
computations) and scalability (in terms of K values, sizes of datasets and num-
ber of computing nodes) of our proposal. Future work might cover studying of
KCPQ with other partition techniques not included in SpatialHadoop.

References

1. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest pair
queries in spatial databases. In: SIGMOD Conference, pp. 189–200 (2000)

2. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Algorithms
for processing K-closest-pair queries in spatial databases. Data Knowl. Eng. 49(1),
67–104 (2004)

3. Nanopoulos, A., Theodoridis, Y., Manolopoulos, Y.: C2P: clustering based on clos-
est pairs. In: VLDB Confernece, pp. 331–340 (2001)

4. Gao, Y., Chen, L., Li, X., Yao, B., Chen, G.: Efficient k-closest pair queries in
general metric spaces. VLDB J. 24(3), 415–439 (2015)

5. Roumelis, G., Vassilakopoulos, M., Corral, A., Manolopoulos, Y.: A new plane-
sweep algorithm for the K -closest-pairs query. In: Geffert, V., Preneel, B., Rovan,
B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 478–490.
Springer, Heidelberg (2014)

Enhancing SpatialHadoop with Closest Pair Queries 225

6. Zhang, S., Han, J., Liu, Z., Wang, K., Xu, Z.: SJMR: parallelizing spatial join with
MapReduce on clusters. In: CLUSTER Conference, pp. 1–8 (2009)

7. You, S., Zhang, J., Gruenwald, L.: Spatial join query processing in cloud: analyz-
ing design choices and performance comparisons. In: ICPP Conference, pp. 90–97
(2015)

8. Zhang, C., Li, F., Jestes, J.: Efficient parallel k-NN joins for large data in MapRe-
duce. In: EDBT Conference, pp. 38–49 (2012)

9. Lu, W., Shen, Y., Chen, S., Ooi, B.C.: Efficient processing of k nearest neighbor
joins using MapReduce. PVLDB 5(10), 1016–1027 (2012)

10. Kim, Y., Shim, K.: Parallel top-K similarity join algorithms using MapReduce. In:
ICDE Conference, pp. 510–521 (2012)

11. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI Conference, pp. 137–150 (2004)

12. Li, F., Ooi, B.C., Özsu, M.T., Wu, S.: Distributed data management using MapRe-
duce. ACM Comput. Surv. 46(3), 31:1–31:42 (2014)

13. Doulkeridis, C., Nørv̊ag, K.: A survey of large-scale analytical query processing in
MapReduce. VLDB J. 23(3), 355–380 (2014)

14. Eldawy, A., Mokbel, M.F.: SpatialHadoop: a MapReduce framework for spatial
data. In: ICDE Conference, pp. 1352–1363 (2015)

15. Pertesis, D., Doulkeridis, C.: Efficient skyline query processing in SpatialHadoop.
Inf. Syst. 54, 325–335 (2015)

16. Lu, J., Güting, R.H.: Parallel secondo: boosting database engines with hadoop. In:
ICPADS Conference, pp. 738–743 (2012)

17. Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J.H.: Hadoop-GIS:
a high performance spatial data warehousing system over MapReduce. PVLDB
6(11), 1009–1020 (2013)

18. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyck-
off, P., Murthy, R.: Hive - a warehousing solution over a MapReduce framework.
PVLDB 2(2), 1626–1629 (2009)

19. You, S., Zhang, J., Gruenwald, L.: Large-scale spatial join query processing in
cloud. In: ICDE Workshops, pp. 34–41 (2015)

20. Ma, Q., Yang, B., Qian, W., Zhou, A.: Query processing of massive trajectory data
based on MapReduce. In: CloudDB Conference, pp. 9–16 (2009)

21. Zhang, S., Han, J., Liu, Z., Wang, K., Feng, S.: Spatial queries evaluation with
MapReduce. In: GCC Conference, pp. 287–292 (2009)

22. Akdogan, A., Demiryurek, U., Kashani, F.B., Shahabi, C.: Voronoi-based geospa-
tial query processing with MapReduce. In: CloudCom Conference, pp. 9–16 (2010)

23. Wang, K., Han, J., Tu, B., Dai, J., Zhou, W., Song, X.: Accelerating spatial data
processing with MapReduce. In: ICPADS Conference, pp. 229–236 (2010)

24. Patel, J.M., DeWitt, D.J.: Partition based spatial-merge join. In: SIGMOD Con-
ference, pp. 259–270 (1996)

25. Park, Y., Min, J.K., Shim, K.: Parallel computation of skyline and reverse skyline
queries using MapReduce. PVLDB 6(14), 2002–2013 (2013)

26. Eldawy, A., Li, Y., Mokbel, M.F., Janardan, R.: CG Hadoop: computational geom-
etry in MapReduce. In: SIGSPATIAL Conference, pp. 284–293 (2013)

27. Eldawy, A., Alarabi, L., Mokbel, M.F.: Spatial partitioning techniques in Spatial-
Hadoop. PVLDB 8(12), 1602–1613 (2015)

28. Gutierrez, G., Sáez, P.: The k closest pairs in spatial databases - When only one
set is indexed. GeoInformatica 17(4), 543–565 (2013)

Integration Integrity for Multigranular Data

Stephen J. Hegner1(B) and M. Andrea Rodŕıguez2

1 Department of Computing Science,
Ume̊a University, 901 87 Ume̊a, Sweden

hegner@cs.umu.se
2 Departamento Ingenieŕıa Informática y Ciencias de la Computación,

Universidad de Concepción, Edmundo Larenas 219,
4070409 Concepción, Chile

andrea@udec.cl

Abstract. When data from several source schemata are to be inte-
grated, it is essential that the resulting data in the global schema be
consistent. This problem has been studied extensively for the monogran-
ular case, in which all domains are flat. However, data involving spatial
and/or temporal attributes are often represented at different levels of
granularity in different source schemata. In this work, the beginnings of
a framework for addressing data integration in multigranular contexts
are developed. The contribution is twofold. First, a model of multigran-
ular attributes which is based upon partial orders which are augmented
with partial lattice-like operations is developed. These operations are
specifically designed to model the kind of dependencies which occur
in multigranular modelling, particularly in the presence of aggregation
operations. Second, the notion of a thematic multigranular comparison
dependency, generalizing ordinary functional and order dependencies but
specifically designed to model the kinds of functional and order depen-
dencies which arise in the multigranular context, is developed.

1 Introduction

Data integration is the process of combining several databases, called the data
sources, each with its own schema and method of representation, into a single
schema for unified access. There are many theoretical issues which must be
addressed in order to achieve effective integration. For a survey of these, see for
example [19]. One of the most fundamental issues which must be addressed is
integrity — to the extent that the information in the source databases overlaps,
it must do so in a consistent fashion. Put another way, it must not be possible
to derive a contradiction when the databases are combined.

Virtually all existing work on data integration, and in particular on ensuring
integrity, has been conducted within the monogranular context, in which the
domain of each attribute is a simple set of values. In that setting, the problem
of integration integrity becomes one of ensuring that contradictions cannot arise
within a unified logical theory upon combining the various data sources [7,20].

c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 226–242, 2016.
DOI: 10.1007/978-3-319-44039-2 16

Integration Integrity for Multigranular Data 227

If such contradictions are detected, they may be resolved via so-called data clean-
ing [23]; in more formal work the idea of restoration of consistency is often called
repair [1,3].

In the multigranular context, the notion of contradiction becomes consider-
ably more complex. Consider a multigranular attribute APlc which represents
geographic locations, endowed with a natural poset structure defined by spatial
and temporal inclusion. For example, one may write Region VIII �APlc

Chile to
represent that Region VIII lies (entirely) within Chile. Such an attribute has
additional structure, however. It is also possible to assert that Chile is composed
of exactly fifteen nonoverlapping regions via a join-like rule of the following
form.1 ⊔

⊥
APlc

{Region R | I ≤ R ≤ XV } = Chile (r-Chile)

The symbol
⊔
⊥

APlc
means that its arguments join disjointly; that any pair

{Region i ,Region j} with i �= j is disjoint; i.e., nonoverlapping spatially. For the
most part, previous work on multigranular attributes has only modelled sub-
sumption (order) structure [8]. A main contribution of this paper is to provide
a model of data granules which supports rules such as (r-Chile) economically, as
well as a means to use them in the expression of constraints for data integration.

To illustrate the particular issues which arise in the multigranular framework,
consider integrating the two databases shown in Fig. 1. In each case, the schema
consists of the single relation scheme Rsumb〈APlc, ATim, BBth〉. A tuple of the form
〈p, s, n〉 represents that in region p, during time interval s, the total number
of births was n. The attribute APlc is as described above, ATim is similar but
represents time intervals, and BBth has numerical values representing birth totals.

Source database 1

APlc ATim BBth

Region I Q1Y2014 n1

Region II Q1Y2014 n2

.

Region XV Q1Y2014 n15

Source database 2

APlc ATim BBth

Chile Q1Y2014 b1
Chile Q2Y2014 b2
Chile Q3Y2014 b3
Chile Q4Y2014 b4

Fig. 1. Two multigranular source databases

From a monogranular perspective, it is clear that the functional dependency
(FD) APlcATim → BBth is the fundamental constraint with respect to these
semantics. If different sources provide data for different places and times, all
that need be checked is that the FD holds on a relation which combines the
sources. However, information overlap which may occur in the multigranular
context requires more complex constraints. In the above example, the semantics
require that the sum of the number of births over the regions for Q1Y2014 agree
with the value for all of Chile; that is, b1 =

∑15
i=1 ni. A further contribution of

1 Actually, there is no Region XIII; it is called Region RM; this detail is ignored here.

228 S.J. Hegner and M.A. Rodŕıguez

this paper is to show how the model of granularity which is developed may be
used as a foundation for expressing such constraints.

As suggested by the example above, all relations to be integrated are assumed
to have the same structure; only the granularities may differ. This simplification
is made in order to focus upon the main problem — to deal with multigranularity
— without complicating the investigation with questions about how the sources
are to be integrated, for example, as local-as-view versus global-as-view [19].

The topic of granularity in the representation of data has received consider-
able attention during the past twenty years. The modelling of time with a focus
upon granularity has been studied exhaustively [4], and was later adapted for use
in the context of spatial databases [2]. Integrity constraints concerning multi-
granular data, however, have received less attention. Related work in the spatial
domain includes studies concerning models for checking topological consistency
at multiple representations, as well as for data integration [11,12,18,26], with a
focus upon modelling the consistency of different representations of the same geo-
metric object. However, these works treat spatial constraints in isolation, without
considering the interaction with thematic attributes in a database model. In the
context of data warehousing, multigranular approaches have also been employed
[17], but largely to save space via aggregation; the issue of integrating data at
different granularities does not arise. Recently, functional dependencies and con-
ditional functional dependencies (CFDs) have been extended to the multigranu-
lar framework [6]. Another recent work addresses repairs of inconsistent data in
the spatial framework [24], but the kinds of constraints considered are not those
which characterize differences between data sources which are locally consistent.
In [27], rollup dependencies, which assert that certain thematic values (such as
tax rate) are invariant under rollup, are studied. However, they do not address
thematic values which vary with granularity, or which involve aggregation. That
which is new to the ideas developed in this paper, which distinguishes it from
that cited above, is the formulation and study of constraints which arise specif-
ically when different sources provide the same or similar data, but at different
levels of granularity. In particular, the emphasis is upon situations in which the
tie between the representations at differing granularities is one of aggregation
over attributes representing space or time.

The remainder of the paper consists of two main sections. In Sect. 2, the
ideas of multigranular attributes, with particular emphasis upon how to express
the kind of join and disjointness conditions which arise when rules such as
(r-Chile) require. In Sect. 3, the associated integration dependencies are devel-
oped in detail, and a sketch of the data structures necessary to implement them
efficiently is also given. Section 4 provides conclusions and further directions.

2 Relational Concepts in the Multigranular Setting

In this section, the fundamental notions which underlie a relational database
schema are extended to the multigranular framework. As such, this material
forms the underpinnings for constraint formulation which is developed in Sect. 3.

Integration Integrity for Multigranular Data 229

It is assumed that the reader is familiar with basic relational database theory,
as presented in [21]. However, even an introduction textbook, such as [13], should
provide further background for many of the ideas used here.

Notation 2.1 (Some Mathematical Notation). For any set S, Card(S)
denotes its cardinality. 2S denotes the set of all subsets of S. f(x) ↓ denotes
that the partial function f is defined on argument x. S1 ⊆f S2 indicates that S1

is a finite subset of S2 (while S1 ⊆ S2 denotes that S1 is any subset of S2, finite
or otherwise).

Z denotes the set of integers, N denotes the set of nonnegative integers, while
N+ = N \ {0}. Intervals are always of integers; [i, j] = {n ∈ Z | i ≤ n ≤ j}.

Definition 2.2 (Posets). For elaboration of the ideas surrounding partially
ordered sets (posets), see [9] for basic ideas and [15] for more advanced notions.
Only essential notation is reviewed here. A poset is a pair P = (P,≤P) in
which P is a set and ≤P is a partial order on P . P is upper bounded if it has
a greatest element �P . If it also has a least element ⊥P , then it is bounded.
The bounds may be indicated explicitly in the notation; i.e., P = (P,≤P ,�P),
P = (P,≤P ,⊥P ,�P). It will always be assumed that in a bounded poset, �P

and ⊥P are distinct elements.
For S ⊆ P , GLBP〈S〉 denotes the greatest lower bound of S (when it exists).

In [6], the definitions of granularity and granule are intertwined in a sin-
gle definition, that of a domain schema. In this paper, following the classical
approach for monogranular schemata [21, Sect. 1.2], the notion of an attribute
(and thus granularity) is defined first, with the associated notion of a domain
assignment (and thus granule assignment) for that attribute defined afterwards.

Concept 2.3 (Granulated Attributes). In the classical relational model, the
columns are labelled with attributes, with each attribute A assigned a set of
domain elements from which the values for A are taken. In the granulated app-
roach, each attribute consists of a partially ordered set of granularities. The
domain elements, called granules, also have a natural order structure which is
tied to the granularities. Formally, a granulated attribute A is defined by its
granularity poset Gran〈A〉 = (Gran〈A〉,≤Gran〈A 〉,�Gran〈A 〉), a finite upper-bounded
poset. The elements in Gran〈A〉 are called the granularity identifiers of A; or,
less formally, just the granularities of A. When the context of the operators is
clear, the subscripts may be dropped: Gran〈A〉 = (Gran〈A〉,≤,�).

The scheme Rsumb〈APlc, ATim, BBth〉 of Sect. 1 provides a context for exam-
ples. First of all, each of the three attributes has a coarsest granularity, which
recaptures no information about the domain value: �Gran〈APlc 〉 corresponds to all
of Chile, �Gran〈ATim 〉 lumps all time values into one, and �Gran〈BBth 〉 lumps all num-
bers into one. The spatial attribute APlc might have, in addition to �Gran〈APlc 〉,
Region, City, and NatRegion (identifying natural, as opposed to political, regions)
as granularities, with City ≤ Region ≤ �Gran〈APlc 〉 and NatRegion ≤ �Gran〈APlc 〉. It
has no least granularity, since a natural region of Chile may lie in two more polit-
ical regions. The temporal attribute ATim might have, in addition to �Gran〈ATim 〉,

230 S.J. Hegner and M.A. Rodŕıguez

QuarterYr, MonthYr, and WeekYr as granularities, with MonthYr ≤ QuarterYr
and WeekYr ≤ �Gran〈ATim 〉. Here QuarterYr represents a quarter of a given year;
similarly for MonthYr and WeekYr. �Gran〈ATim 〉 lumps together all of time. Note
that neither WeekYr ≤ MonthYr nor WeekYr ≤ QuarterYr holds, since a single
week may span two months or two quarters. It has no least granularity since the
overlap of a week and a month need not correspond to any granularity. Finally,
for the attribute BBth, fix maxr ∈ N+. For i ∈ [1,maxr], the granularity roundi

identifies rounding to i significant digits. In addition, the granularity round∞
represents no rounding at all, and is thus the least element of Gran〈BBth〉; i.e.,
round∞ = ⊥Gran〈BBth 〉. Thus ⊥Gran〈BBth 〉 = round∞ ≤ roundi ≤ roundj ≤ �Gran〈BBth 〉
for j < i. To elaborate these examples, it is necessary to have a representation
for granules as well. This issue is substantially more complex, and is examined
next.

Discussion 2.4 (Modelling the Space of Granules). Previous work on
multigranular attributes, including [6], have focused entirely upon the poset
structure of the granules, without means for the representation of join-like oper-
ations, such as that expressed in formula (r-Chile). In considering possible for-
mulations, it is important to keep in mind that the least upper bound (LUB) is
not always the desired join. It would be incorrect to express a constraint, similar
in form to (r-Chile), which expressed that Chile is composed of its cities, since
much of the country does not lie within the borders of any city, even though
Chile be the LUB of its cities in the poset of granules. To avoid such prob-
lems, one option might be to assume that the space of granules forms a lattice,
or at least a semilattice. However, this would result in an enormous number
of granules, including many which would be of no use, since any combination
of granules would itself be a granule. The approach taken here is to enhance
the poset structure of the granules with partial operations which only identify
combinations that are also known granules.

Concept 2.5. Subset-Based Bounded Posets One tempting approach to adding
constraints to the poset of granules is to allow partial join and meet rules. For
binary join and meet operations, the notion of a weak partial lattice [15, pp.
52–56] does exactly this. These ideas have been extended to operations of arbi-
trary finite arity via the notion of a generalized bounded weak partial lattice [16].
Unfortunately, as developed in some detail in [16], it is an NP-hard problem to
determine whether the added rules will force two elements to coalesce.

The solution forwarded here is to assume additional structure, which is always
satisfied in typical applications involving multigranular spatial and temporal
attributes. Specifically, a subset base for a bounded poset P = (P,�P ,⊥P ,�P)
is a pair 〈B, ι〉 in which B is a set, called the base set, and ι : P → B is an injective
function, called the concretization function, for which ι(�P) = B, ι(⊥P) = ∅,
and (∀p1, p2 ∈ P)((p1 ≤P p2) ⇔ (ι(p1) ⊆ ι(p2))). A subset-based bounded poset
(or SBBP for short) is a pair 〈P , 〈B, ι〉〉 in which P is a bounded poset and
〈B, ι〉 is a subset base for P . An SBBP is finite if P is a finite set; B need not
be finite.

Integration Integrity for Multigranular Data 231

To illustrate, consider a spatial attribute such as APlc. The set BAPlc
might

be the coordinates in a two-dimensional plane, or those of the surface of the
a sphere (representing the earth). The concretization function ιAPlc

would map
each geographic unit (city, region, country, park, etc.) to the set of points which
represent it. Note that the points involved need not even be countable, much
less finite. It is only the set of actual granules which need be finite. A similar
model, using point in time, applies to the temporal attribute ATim.

It must be emphasized that the subset base and concretization function are
in the background; it is not necessary to represent them explicitly, and in many
cases it will not be practical to represent them explicitly. Rather, it is only
necessary to know that they exist. This existence comes automatically with
spatial and temporal attributes. Mathematically, they guarantee that the poset
may be modelled as a ring of sets, which ensures distributivity of any associated
lattice operations [15, Ch. 2, Theorem 19], such as those defined in Concept 2.6.

Concept 2.6 (Rules for SBBPs). In the context of an SBBP, it is very easy
to add rules of the form required to express the kind of constraints needed on
granules. Let 〈P , 〈B, ι〉〉 be an SBBP. A join rule over 〈P , 〈B, ι〉〉 is of the form⊔

P
S = a with S ⊆ P and a ∈ P ; a disjointness rule over 〈P , 〈B, ι〉〉 is of the

form
�

P
{p1, p2} = ⊥P with p1, p2 ∈ P ; a disjoint join rule over 〈P , 〈B, ι〉〉 is of

the form
⊔
⊥

P
S = a with S ⊆ P and a ∈ P . The semantics of these rules are easily

specified. If ϕ is a rule, use |=〈P ,〈B,ι〉〉 ϕ to express that the rule is satisfied in P .
Then |=〈P ,〈B,ι〉〉

⊔
P
S = a iff

⋃{ι(s) | s ∈ S} = ι(a); |=〈P ,〈B,ι〉〉
�

P
{p1, p2} =

⊥P iff ι(p1) ∩ ι(p2) = ∅; |=〈P ,〈B,ι〉〉
⊔
⊥

P
S = a iff |=〈P ,〈B,ι〉〉

⊔
P
S = a and for

every p1, p2 ∈ S with p1 �= p2, |=〈P ,〈B,ι〉〉
�

P
{p1, p2} = ⊥P . It is clear that these

semantics are the correct ones for spatial and temporal attributes. It must be
emphasized once again that 〈B, ι〉 is in the background. For example, to know
that Chile is the disjoint union of its fifteen regions, as expressed in (r-Chile), it
is not necessary to know the precise geographic coordinates of the regions. It is
only necessary to know that their union covers all of Chile, without overlap.

Other rules, such a general meet rules, could be defined easily, but the above
selection has been chosen to support that which is needed to express common
constraints on granules.

The main notion of a granulated domain assignment, which, in contrast to
the formulation of [6], admits join rules as well as simple order statements, may
now be given.

Concept 2.7 (Granulated Domain Assignments). Let A be a granulated
attribute. A (granulated) domain assignment for A is a four-tuple GDAA =
(DomDomDomA , 〈BA , ιA〉,RulesA ,GrtoDomA) in which DomDomDomA = (DomA ,�A ,⊥A ,�A) is
a finite bounded poset, called the granulated domain of A, 〈BA , ιA〉 is a subset
base forDomDomDomA (so that 〈DomDomDomA , 〈BA , ιA〉〉 forms an SBBP), RulesA is a set of rules
over 〈DomDomDomA , 〈BA , ιA〉〉 (see Concept 2.6), and GrtoDomA : Gran〈A〉 → 2DomA is
a function which is subject to the following conditions.

232 S.J. Hegner and M.A. Rodŕıguez

(gda-i) GrtoDomA(�Gran〈A〉) = {�A}.
(gda-ii) (∀g ∈ DomA \ {⊥A})(∃G ∈ Gran〈A〉)(g ∈ GrtoDomA(G)).
(gda-iii) GrtoDomA(⊥A) = ∅.
(gda-iv) (∀G ∈ Gran〈A〉)(∀g1, g2 ∈ GrtoDomA(G))

(g1 �= g2 ⇒ (
�

A
{g1, g2} = ⊥A ∈ RulesA)).

(gda-v) (∀G1, G2 ∈ Gran〈A〉)((G1 ≤Gran〈A〉 G2) ⇔
(∀g1 ∈ GrtoDomA(G1))(∃g2 ∈ GrtoDomA(G2))(g1 �A g2)).

(gda-vi) For each ϕ ∈ RulesA , |=〈A,〈B,ι〉〉 ϕ.

The elements of DomA are called the granules of GDAA . If g ∈ GrtoDomA(G),
then g is said to be of granularity G or to have granularity G. If g1 �A g2,
then g2 is said to be coarser than g1, and g1 is said to be finer than g2. It is
also said that g2 subsumes g1 and that g1 is subsumed by g2. As illustrated in
(gda-iv) and (gda-vi), to avoid long subscripts, |=〈DomDomDomA ,〈B,ι〉〉 is shortened to
just |=〈A,〈B,ι〉〉 , and the subscripts in rules are also shortened from DomDomDomA to
just A; thus

⊔
DomDomDomA

S = a is written as just
⊔

A
S = a, for example. Condition

(gda-iv) asserts a fundamental property of granularities — that distinct granules
of the same granularity are disjoint, in the sense that their meet in the SBBP
of granules is ⊥A . In spatial and temporal modelling, this means that they do
not overlap. Condition (gda-v) relates the order of granularities to the order of
granules — G1 ≤Gran〈A〉 G2 just in the case that for every granule g1 of G1, there
is a coarser granule g2 of G2. Finally, (gda-vi) requires that each rule in RulesA
be satisfied in DomDomDomA .

For the three attributes of Rsumb〈APlc, ATim, BBth〉, granulated domain assign-
ments are completely straightforward. For APlc, the granules are geographic
regions, classified according to the granularities identified in Concept 2.3. For
example, Santiago and Concepción are granules of granularity City, while
Region VIII is a granule of granularity Region.

Similarly, ATim is assigned granules identifying time intervals. The granules
of BBth are just natural numbers, rounded as described in Concept 2.3. The
constraint of formula (r-Chile) in Sect. 1 may be represented easily in GDAAPlc

via
the single rule

⊔
⊥

R∈[I,XV]
APlc

Region R = Chile. Similarly, the constraint that Concepción

lies in Region VIII may be expressed using Concepción �APlc
Region VIII , which

is not a rule but just an order statement in the poset DomDomDomAPlc
.

The same granule may belong to more than one granularity. For example, it
is not inconceivable that a single granule could have granularity both City and
Region. This would happen were a city to constitute a region by itself.

An ordinary monogranular attribute A is recaptured by a granularity which
contains only �Gran〈A〉 and the granularity ⊥Gran〈A〉 with GrtoDomA(⊥Gran〈A〉) =
FlatDom〈A〉, the set of all values which are allowed for attribute A in tuples.
�Gran〈A〉 is something of an artifact. It contains a single granule which is coarser
than each element of FlatDom〈A〉. In view of (gda-i), such a granule is required.

Notation 2.8 (Convention). For the rest of this section, unless stated explic-
itly to the contrary, take A to be a granulated attribute and GDAA =

Integration Integrity for Multigranular Data 233

(DomDomDomA , 〈BA , ιA〉,RulesA ,GrtoDomA) to be a granulated domain assignment for
A with DomDomDomA = (DomA ,�A ,⊥A ,�A).

Observation 2.9 (Uniqueness of Subsuming Granules). Given g1, g2, g
′
2 ∈

DomDomDomA with g1 �A g2, g1 �A g′
2, and G2 ∈ Gran〈A〉 with g2, g

′
2 ∈ GrtoDomA(G2),

it must be the case that g2 = g′
2.

Proof. Let g1, g2, g
′
2 and G2 be as stated. By (gda-iv),

�
A
{g2, g

′
2} = ⊥A . However,

g1 �A

�
A
{g2, g

′
2}, whence it must be the case that g2 = g′

2. ��
Concept 2.10 (Coarsening). In order to support the management of source
data at differing granularities, it is often necessary to reduce them to a common
granularity. The operation of coarsening, which transforms a granule to a one at
a coarser granularity, is central to this idea. Formally, the function CoarsenA :
DomA×Gran〈A〉 → DomA is defined on 〈g1, G2〉 iff there is a g2 ∈ GrtoDomA(G2)
with g1 �A g2. In view of Observation 2.9, this g2 is unique whenever it exists.
In this case g2 = CoarsenA〈g1, G2〉, and is called the coarsening of g1 to G2. This
operation corresponds to MAP(g1, G2) of [6].

In the spatial context of APlc, the city of Concepción lies in
Region VIII of Chile. This would be represented by the coarsening
CoarsenAPlc

〈Concepción,Region〉 = Region VIII . Similarly, in the temporal con-
text of ATim, quarter 1 of year 2014 lies with 2014; this would be represented by
the coarsening CoarsenATim

〈Q1Y2014 ,Year〉 = 2014 .

Concept 2.11 (Thematic Attributes and Orderings). Following common
usage in geographic information systems [5], a thematic attribute is used to
record values associated with aggregating (e.g., spatial or temporal) attributes.
For example, in Rsumb〈APlc, ATim, BBth〉, BBth is thematic. When such attributes
have numerical domain values, there are often two distinct orders which are
used in modelling integrity under integration. First of all, granularities defined
by rounding, as explained in Concept 2.3, have a natural poset structure. How-
ever, there is also the natural order of numbers, independent of any gran-
ularity. This latter order is termed thematic. Formally, a thematic ordering
θA = {≤G

θA
| G ∈ Gran〈A〉} on GDAA assigns, for each granularity G ∈ Gran〈A〉,

a partial order ≤G
θA

to GrtoDomA(G), subject to the requirement that for
G1, G2 ∈ Gran〈A〉 with G1 ≤Gran〈A〉 G2, and all g1, g

′
1 ∈ GrtoDomA(G1), if

g1 ≤G1
θA

g′
1 then CoarsenA〈g1, G2〉 ≤G2

θA
CoarsenA〈g′

1, G2〉. In other words, the-
matic order must be preserved under coarsening. For BBth, the thematic order
is simple numerical order, while the granular order is based upon subsumption
of intervals, as elaborated in Concepts 2.3 and 2.7.

Concept 2.12 (Aggregation Operators on Thematic Orderings). Data
in a multigranular context are often statistical in nature. As such, thematic values
corresponding to coarser spatial or temporal regions may be aggregations of
those for finer ones. Therefore, a general formulation of an aggregation operator
is central to any effort to model data integration in such a context. Formally, let
θA = {≤G

θA
| G ∈ Gran〈A〉} be a thematic ordering on GDAA . An aggregation

operator on θA is a family

234 S.J. Hegner and M.A. Rodŕıguez

⊕A = {⊕G
A : MultisetsOf〈GrtoDomA(G)〉 → GrtoDomA(G) | G ∈ Gran〈A〉}

of functions such that the following two properties hold for any G ∈ Gran〈A〉.
(ag-i) For any g ∈ GrtoDomA(G),

⊕G
A{g} = g.

(ag-ii) For any finite multisets S1, S2 ⊆ GrtoDomA(G), if there is an injec-
tive multifunction h : S1 → S2 such that (∀g ∈ S1)(g ≤G

θA
h(g)), then

⊕G
A(S1) ≤G

θA

⊕G
A(S2).

In the above, MultisetsOf〈GrtoDomA(G)〉 denotes the set of all multisets of
GrtoDomA(G). A multiset, also called a bag, is similar to a set, except that
an element may have finitely many occurrences. A multifunction maps multi-
sets to multisets, with distinct occurrences of each element mapped possibly to
distinct elements. The idea should be clear. For aggregation operators such as
summation, it is necessary to treat each summand as a distinct element, even
for summands of the same value.

Summation, max, and min (using ≥ instead of ≤) all form aggregation oper-
ations on the natural thematic ordering of N, as sketched in Concept 2.11. On Z,
max and min form aggregation operations also, but summation does not, since it
does not respect the ordering condition. Operations which do not respect order,
such as averaging, are not aggregation operators in the sense defined here.

Concept 2.13 (Coarsening Tolerance). Coarsening and aggregation need
not commute with one another. For example, if the populations of the regions
which comprise a country are rounded before they are summed, the result will
be different than if they are summed first, and then rounded. Furthermore, data
obtained from different sources may vary slightly in thematic values, for any num-
ber of reasons. Such data should not automatically be classified as inconsistent.
Rather, it is appropriate to build a certain amount of tolerance into the integra-
tion constraints. To this end, the notion of a coarsening tolerance is introduced.
Formally, let θA = {≤G

θA
| G ∈ Gran〈A〉} be a thematic ordering on GDAA . A

coarsening tolerance τA (for equality) with respect to θA is a Gran〈A〉×N-indexed
family {τ

〈G,n〉
A ⊆ GrtoDomA(G) × GrtoDomA(G) | (G ∈ Gran〈A〉) ∧ (n ∈ N)} of

reflexive and symmetric relations for which the following three properties hold
for all n ∈ N.
(ct-i) τ

〈G,0〉
A = {(g, g) | g ∈ GrtoDomA(G)}.

(ct-ii) For G ∈ Gran〈A〉 and (g1, g2) ∈ τ
〈G,n〉
A , if g′

1, g
′
2 ∈ GrtoDomA(G) with

g1 ≤G
θA

g′
1 ≤G

θA
g′
2 ≤G

θA
g2, then (g′

1, g
′
2) ∈ τ

〈G,n〉
A as well.

(ct-iii) for G,G′ ∈ Gran〈A〉 with G ≤Gran〈A〉 G′, if (g1, g2) ∈ τ
〈G,n〉
A then

(CoarsenA〈g1, G′〉,CoarsenA〈g2, G′〉) ∈ τ
〈G′,n〉
A .

The value of n identifies the amount of deviation from equality which is
allowed, with larger n permitting larger differences. If (g1, g2) ∈ τ

〈G,n〉
A , then

g1 and g2 are within the specified limit of deviation from equality for tolerance
level n. Often, n will indicate the number of elements being aggregated, but
this is not absolutely necessary. By default, a coarsening tolerance specifies the
amount of deviation from equality which is allowed. However, for certain con-
straints, a deviation from order may also be specified. More specifically, given a

Integration Integrity for Multigranular Data 235

coarsening tolerance τ as above and a thematic ordering θA on GDAA , the asso-
ciated ordering tolerance is {τ

〈G,n,≤〉
A ⊆ GrtoDomA(G) × GrtoDomA(G) | (G ∈

Gran〈A〉) ∧ (n ∈ N)}, given relation by relation according to
τ

〈G,n,≤〉
A = τ

〈G,n〉
A ∪ {(g1, g2) ∈ GrtoDomA(G) × GrtoDomA(G) | g1 ≤G

θA
g2}.

In other words, τ
〈G,n,≤〉
A is obtained from τ

〈G,n〉
A by adding all tuples of gran-

ules of the form (g1, g2) with g1 ≤G
θA

g2. To facilitate parameterized use of

tolerances in formulas, τ
〈G,n〉
A may also be represented as τ

〈G,n,=〉
A .

Consider the thematic attribute BBth of the scheme Rsumb〈APlc, ATim, BBth〉,
and the associated notions developed in the penultimate paragraph of
Concept 2.3. Let the aggregation operator to be supported be summation

∑
,

with results rounded as specified by the granularity roundi. A useful tolerance
ωBBth

for the granularity roundi has summation accuracy 10−i times the number
n of items to be aggregated, so a suitable definition for ωBBth

at that level would
be ω

〈roundi,n〉
BBth

= {(k1, k2) | |k1 − k2| ≤ n × 10−i}. For i = 0, this matches the

identity tolerance; i.e., ω
〈round0,n〉
BBth

= {(k, k) | k ∈ N} for all n ∈ N.
Leaving the context of this example and returning to the general setting,

the identity tolerance IdTol
〈G,n〉
A is given by the set of relations which are the

identity on each set of granules; specifically, for each G ∈ Gran〈A〉 and each
n ∈ N, IdTol

〈G,n〉
A = {(g, g) | g ∈ GrtoDomA(G)}. Similarly, IdTol

〈G,n,≤〉
A =

{(g1, g2) | (g1, g2 ∈ GrtoDomA(G)) ∧ (g1 �A g2)}.

Concept 2.14 (Thematic Triples). For a thematic attribute, it will prove
convenient to assemble the thematic ordering, aggregation operator, and toler-
ance into one notational unit. Specifically, let A be a multigranular attribute. A
thematic triple for A is of the form 〈θA ,⊕A, τA〉, with θA a thematic ordering
on A, ⊕ an aggregation operator for θA , and τ a coarsening tolerance for θA . In
some cases, aggregation is not used, and so the choice of aggregation operator
does not matter. In that case, the thematic triple may be written as 〈θA , -, τA〉.
Definition 2.15 (Multigranular Relation Schemes). Let U be a set of gran-
ulated attributes. Extending the classical definition [21, 1.2], for k ∈ N+, a (k-
ary) multigranular relation scheme over U is an expression of the form R〈α〉,
where α = 〈A1, A2, . . . , Ak〉 ∈ Uk. The symbol R is called the relation name,
and the list α is called an attribute vector.

Given a granulated domain assignment GDAA (see Concept 2.7) for each A ∈
U, a data tuple for the attribute vector α = 〈A1, A2, . . . , Ak〉 is a k-tuple t ∈
DomA1 × DomA2 × . . . × DomAk

. The set of all data tuples for α is denoted
Tuples〈α〉. A database for the schema R〈α〉 is a set M ⊆ Tuples〈α〉. The set of
all databases for R〈α〉 is denoted DB(R〈α〉).

3 Constraints for Data Integration

In this section, the concepts developed in Sect. 2 are used to develop specifi-
cations for the most important kinds of dependencies for data integration in

236 S.J. Hegner and M.A. Rodŕıguez

the multigranular context. As noted in Sect. 1 integration is over copies of the
same schema, albeit with differing granularities. For further simplicity, it will be
assumed that all tuples to be integrated have been placed in a single relation.

Notation 3.1 (The Context). Throughout this section, take U to be a finite
universe of granulated attributes (Concept 2.3). In particular, assume that
{A1, A2, . . . , Ak, B} ⊆ U. Furthermore, for each A ∈ U, there is an associated
granulated domain assignment GDAA , (Concept 2.7).

Concept 3.2 (General Notions of TMCDs). The dependencies developed
in this section are called thematic multigranular comparison dependencies, or
TMCDs. They resemble ordinary functional and order dependencies [14,22,25]
in many ways, including that properties of a set of attributes determines those of
another. The general notation is A1A2 . . . Ak

�−→
(�,r)

〈B :〈θ,⊕, τ〉〉, in which the Ai’s

and B are attributes and 〈θ,⊕, τ〉 is a thematic triple for B. The dependencies
are classified along three dimensions. First, the comparison operator, shown as �
above, is either granular subsumption � or else equality. Second, the type, shown
as (�, r) above, indicates the nature of the expressions which are compared, and
will be explained further in the individual cases below. Finally, a dependency
may be unified or attributewise, with the latter indicated by underlining certain
attributes on the left-hand side. Although there are many variants in principle,
only two will be considered in this paper. Those of type (1, 1), which involve only
order conditions and no aggregation, are examined in Concept 3.4, while those
of types (⊥, 1) and (-, 1), which involve fundamental aggregation as illustrated
in the examples surrounding Rsumb of Sect. 1, are developed in Concept 3.5.

In contrast to the CFDs (conditional functional dependencies) of [6], the
TMCDs developed here are specifically oriented towards data integration. CFDs
are designed to recapture dependencies which hold only for certain granulari-
ties, with no support for aggregation or tolerance. TMCDs, on the other hand,
are designed to support these latter two concepts. The overlap of CFDs and
TCMDs is therefore minimal; they address complementary issues in the context
of constraints for multigranular schemata.

Definition 3.3 (Two Useful Functions). Before presenting the definitions
of specific TMCDs, it is necessary to introduce two special functions, which are
defined here for a generic granular attribute A.
GranSetOfA〈g〉 The function GranSetOfA : DomA → 2Gran〈A〉 returns the set

of granularities of the granule g.
CoarsenSetMUBA : The function CoarsenSetMUBA : 2DomA → 2Gran〈A〉

maps S ⊆ DomA to the minimal elements (under ≤Gran〈S〉) in the set
{G ∈ Gran〈A〉 | (∀g ∈ S)(CoarsenA〈g,G〉)↓}. In words, it returns the min-
imal granularities to which all elements of S coarsen.

Concept 3.4 (TMCDs of Expression Type (1, 1)). The template for a
TMCD of type (1, 1) is A1A2 . . . Ak

�−→
(1,1)

〈B :〈θ, -, τ〉〉. This is the simplest type

Integration Integrity for Multigranular Data 237

of a unified TMCD, and lies closest to ordinary functional dependencies (FDs)
and order dependencies (ODs). In particular, no aggregation is involved; this is
why the aggregation operator in the thematic triple is shown as a dash; its prop-
erties do not matter. Nevertheless, although basic, they are important because
a violation can flag fundamental inconsistencies, such as a city having a greater
population than the region which houses it. The parameter � is one of � or
equality (=), while the parameter (1, 1) indicates that the comparison opera-
tion involves only a single tuple on each side. The governing formula for the
comparison operation of granular subsumption (when � is �A) is shown below.

(∀t1 ∈ Tuples〈α〉)(∀t2 ∈ Tuples〈α〉)(∀G ∈ CoarsenSetMUBB〈{t1.B, t2.B}〉)
(((R〈t1〉 ∧ R〈t2〉) ∧ (

∧

j∈[1,k]

(t1.Aj �Aj
t2.Aj))

⇒ τ
〈G,1,≤〉
B 〈CoarsenB〈t1.B,G〉,CoarsenB〈t2.B,G〉〉)

To obtain the formula for equality, replace �Ai
with =, and τ

〈G,1,≤〉
B with τ

〈G,1〉
B .

Coarsening is essential in the multigranular environment. Consider the con-
crete case of the schema Rmaxp〈APlc, ATim, BPop〉, with A1 = APlc, A2 = ATim, and
B = BBth. Think of the context described in Sect. 2; specifically, consider τ bound
to ωBBth

, as described in Concept 2.13. There might be two tuples 〈p1, s1, n1〉 and
〈p2, s2, n2〉 such that p1 �APlc

p2 and s1 �ATim
s2. When applied to these two

tuples, with t1 = 〈p1, s1, n1〉 and t2 = 〈p2, s2, n2〉, the constraint requires that
n1 ≤ n2, up to coarsening to a common granularity and up to the tolerance
specified by ωBBth

. Concretely, if region p1 is contained in region p2, and time
interval s1 is contained in time interval s2, then the number of births in p1 during
s1 must be no larger than the number of births in p2 during s2.

Concept 3.5 (TMCDs of Expression Type (⊥, 1) and (-, 1)). Together
with those of type (1, 1) as described in Concept 3.4, these form the most impor-
tant types of constraints for verifying the integrity of multigranular data from
different sources. The template for this dependency, with � ∈ {⊥, -}, is

A1 . . . Ai−1AiAi+1 . . . Ak
�−→

(�,1)
〈B :〈θ,⊕, τ〉〉.

This type of constraint is attributewise; only one attribute on the left-hand
side (LHS) is allowed to vary in value amongst the tuples to be tested. The
values of those which are underlined are identical in all tuples considered. The
parameters (⊥, 1) and (-, 1) indicate that the comparison is between a set of
attribute values and a single value, with ⊥ indicating further that the set of
values forms a disjoint join and - indicating that the join need not be disjoint.
The general logical formula which covers all cases in which � is equality is
shown below, with the symbol

⊔
? representing one of

⊔
⊥ or

⊔
, depending upon

whether the type is (⊥, 1) or (-, 1). For inequality, replace ((
⊔
?

t1∈T1
Ait1.Ai) =

t2.Ai) with ((
⊔
?

t1∈T1
Ait1.Ai) �A t2.Ai) and τ

〈G,1〉
B with τ

〈G,1,≤〉
B . Due to space

238 S.J. Hegner and M.A. Rodŕıguez

limitations, only the case of � being equality will be discussed further, since the
most important modelling situations involve that operator.

(∀T1 ⊆f Tuples〈α〉)(∀t2 ∈ Tuples〈α〉)(∀G1 ∈ CoarsenSetMUBB〈{t.B | t ∈ T1}〉)
(∀G2 ∈ GranSetOfB〈t2.B〉)(∀G ∈ MUB〈{G1, G2}〉)

((
∧

t1∈T1

R〈t1〉) ∧ R〈t2〉 ∧ (
∧

t1∈T1
j∈[1,k]\{i}

(t1.Aj = t2.Aj)) ∧ ((
⊔
?

t1∈T1
Ai

t1.Ai) = t2.Ai)

⇒ τ
〈G,Card(T1)〉
B 〈CoarsenB〈

⊕

t1∈T1

G1

B
CoarsenB〈t1.B,G1〉, G〉,CoarsenB〈t2.B,G〉〉)

To keep things concrete, consider the cases in which the type is (⊥, 1). This
kind of constraint applies when an equality of the form

⊔
⊥

Ai
S = a holds in

GDAAi
. As a specific example, consider the scheme Rmaxp〈APlc, ATim, BPop〉 with

Ai associated with APlc. Suppose further that ⊕B is bound to summation. S
might be a set of disjoint regions which together are exactly the region a. More
concretely, if there are tuples {〈pi, t, ni〉 | i ∈ [1,m]} in the relation, and also a
tuple 〈p, t, n〉, with (

⊔
⊥

i∈[1,m]
APlc

pi) = p holding in GDAAPlc
, then the LHS of the rule

is matched and the equality
∑

i∈[1,m] ni = n should hold, modulo coarsening and
tolerance. This is exactly what the constraint specifies — that the population
of a region, at a given point in time, is the sum of the populations of a set
of disjoint regions which cover it completely, without overlap. The reason for
coarsening the elements from T1 first to G1, and then to G after aggregation,
is that it is always desirable to perform aggregation at the finest granularity
possible. While it would be possible to aggregate everything to G from the
start, this could possibly result in increased error in the aggregation. Inequality
arises in this same context when only some of the regions are considered; if
(

⊔
⊥

i∈[1,m]
APlc

pi) �APlc
p, then

∑
i∈[1,m] ni ≤ n, module coarsening and tolerance.

The corresponding nondisjoint constraint, with
⊔

Ai
replacing

⊔
⊥

Ai
, applies

when the aggregation operator does not require disjointness (e.g., max and min).

Discussion 3.6 (Discarding Attributewise Specification). In the case
that the same thematic order and aggregation operator is used with respect
to all attributes on the LHS of a TMCD, it is tempting to consider discarding
the attributewise specification, and combine all into one big dependency, which
might be represented as A1A2 . . . Ak

=−→
(�,1)

�〈B :〈θ,⊕, τ〉〉, with � ∈ {⊥, -}, with

the following logical formula for type (⊥, 1).

Integration Integrity for Multigranular Data 239

(∀T1 ⊆f Tuples〈α〉)(∀t2 ∈ Tuples〈α〉)(∀G1 ∈ CoarsenSetMUBB〈{t.B | t ∈ T1}〉)
(∀G2 ∈ GranSetOfB〈t2.B〉)(∀G ∈ MUB〈{G1, G2}〉)

((
∧

t1∈T1

R〈t1〉) ∧ R〈t2〉 ∧ (
∧

i∈[1,k]

(
⊔
⊥

t1∈T1
Ai

t1.Ai) = t2.Ai) ∧

⇒ τ
〈G,Card(T1)〉
B 〈CoarsenB〈

⊕

t1∈T1

G1

B
CoarsenB〈t1.B,G1〉, G〉,CoarsenB〈t2.B,G〉〉)

From a theoretical point of view, this definition is fine. However, without suitable
adaptation, it does not recapture what would normally be expected of such a
dependency. To illustrate, work within the context of Rsumb〈APlc, ATim, BBth〉,
with the rules

⊔
⊥

APlc
{p1, p2} =

⊔
⊥

APlc
{p3, p4} = p holding in GDAAPlc

and the
rules

⊔
⊥

A2
{s1, s2} =

⊔
⊥

A2
{s3, s4} = t holding in GDAATim

. Now, suppose that
T1 = {〈p1, s1, b1〉, 〈p2, s2, b2〉}, and t2 = 〈p, s, b〉 in the above formula. Assume
further that all values for attribute BBth are at the same granularity G, so no
coarsening is necessary. Furthermore, for simplicity, assume that the tolerance
τ is bound to the identity. Then the above rule mandates that b1 + b2 = b.
However, this is not realistic modelling. b1 is the number of births in region p1
during time s1, while b2 is the number of birth in region p2 during time interval
s2. To get the total number of births in region p during time interval t, it would
be necessary to find and add tuples of the form 〈p1, s2, b3〉 and 〈p2, s1, b4〉. Then,
and only then, would b1 + b2 + b3 + b4 = b hold. In other words, there must be a
tuple which captures every (place,time) point of an appropriate “rectangle” in
order to get the correct total number of births.

Unfortunately, things can become even more complex. Suppose instead that
T1 = {〈p1, s1, b1〉, 〈p2, s1, b2〉, 〈p3, s2, b3〉, 〈p4, s2, b4〉} and T2 = {〈p, s, b〉}. It is
easy to see that b1 + b2 + b3 + b4 = b must hold here as well. In other words,
different decompositions of p may be used for different corresponding values of
attribute ATim. From a formal point of view, the most elegant solution is to regard
A1A2 . . . Ak as a combined domain, and replace (

∧k
i=1(

⊔
⊥

t1∈T1
Ai

t1.Ai = t2.Ai))

with something of the form
⊔
⊥

t1∈T1
Ai

(t1.A1A2 . . . Ak = t2.A1A2 . . . Ak). However, it

seems that to implement something so complex efficiently is almost impossible.
Thus, it seems that attributewise specification is a necessity.

Discussion 3.7 (The Join Logic for Granulated Domain Assignments).
The presentation in this paper has focused upon the representation of constraints
for data integration in the multigranular environment, but not their implemen-
tation. Due to space limitations, a full discussion must be deferred to another
paper. Nevertheless, there is an issue which demands at least some brief discus-
sion. Looking particularly at the formula of Concept 3.5 for constraints of types
(⊥, 1) and (-, 1), it cannot help but be noted that quantification for T1 is over
sets of tuples, not just individual tuples. It might then be concluded that such
constraints cannot possibly be supported efficiently. However, it is not necessary
to check all subsets of tuples. Rather, it is sufficient to consider only those whose

240 S.J. Hegner and M.A. Rodŕıguez

combined values for attribute Ai match the LHS of some rule in the SBBP, closed
under deduction. This may be managed effectively using a propositional Horn
logic. Specifically, let A be an attribute, and let X be a set of rules of the form
g1 �A g2, with g1, g2 ∈ DomA , and of the form

⊔
S

= g, with S ⊆f DomA and
g ∈ DomA . The join logic of X, denoted JLogic〈X〉, is the propositional Horn
logic whose propositions are just the elements of DomA , with ⊥A representing
the statement which is always true and �A representing the statement which is
always false. The clauses Clauses〈JLogic〈X〉〉 of JLogic〈X〉 are given as follows.
First, if (g1 �A g2) ∈ X, then (g2 ⇒ g1) ∈ Clauses〈JLogic〈X〉〉. Second, if (

⊔
S

=
g) ∈ X, then (

∧
S ⇒ g) ∈ Clauses〈JLogic〈X〉〉 and (g ⇒ s) ∈ Clauses〈JLogic〈X〉〉

for all s ∈ S as well. The utility of this representation is that inference in propo-
sitional Horn logic has complexity Θ(n) or Θ(n · log(n)), depending upon how
proposition names are accessed [10]. Thus, inference which operates on joins and
order only, and not meets, may be performed very efficiently. Disjointness con-
ditions, necessary to support rules of the form

⊔
⊥

A
S = g, are not represented

in this logic, and so must be handled separately. This may be managed via
an auxiliary structure which maintains information on disjointness of all pairs of
granules. There are numerous data structures which may be employed to achieve
this efficiently, but space limitations preclude further discussion.

4 Conclusions and Further Directions

A method for incorporating join and disjointness rules into the granule structure
of multigranular relational attributes has been developed, and these methods
have then been applied to the problem of integrating data at different granular-
ities. A family of constraints, the TMCDs, are proposed as a means of checking
integrity under such data integration. There are several avenues for further study.

Data structures for effective implementation: The ideas developed
in this paper will only prove useful if they can be implemented effectively.
Although a few ideas along these lines are sketched in Discussion 3.7, a much
more complete investigation, with implementation, is necessary.

Query language: The work here proposes only constraints. An accompanying
query language which takes into account the special needs of the multigranular
framework must also be developed.

Integration with monogranular approaches: To keep the initial inves-
tigation as focused as possible, the context of this paper is limited to sources
based upon identical unirelational schemata, differing only in granularity. It
is important to extend it to aspects common to monogranular approaches; in
particular, multirelational sources based upon different schemata.

Acknowledgments. The work of M. Andrea Rodŕıguez, as well as a six-week visit of
Stephen J. Hegner to Concepción, during which many of the ideas reported here were
developed, were partly funded by Fondecyt-Conicyt grant number 1140428. Loreto
Bravo was initially a collaborator, but was unable to continue due to other commit-
ments. The authors gratefully acknowledge her contributions and insights during the
early phases of this investigation.

Integration Integrity for Multigranular Data 241

References

1. Arieli, O., Denecker, M., Bruynooghe, M.: Distance semantics for database repair.
Ann. Math. Artif. Intell. 50(3–4), 389–415 (2007)

2. Bertino, E., Camossi, E., Bertolotto, M.: Multi-granular spatio-temporal object
models: concepts and research directions. In: Norrie, M.C., Grossniklaus, M. (eds.)
Object Databases. LNCS, vol. 5936, pp. 132–148. Springer, Heidelberg (2010)

3. Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2011)

4. Bettini, C., Wang, X.S., Jajodia, S.: A general framework for time granularity and
its application to temporal reasoning. Ann. Math. Art. Intell. 22, 29–58 (1998)

5. Bonham-Carter, G.F.: Geographic Information Systems for Geoscientists: Mod-
elling with GIS. Pergamon, Oxford (1995)

6. Bravo, L., Rodŕıguez, M.A.: A multi-granular database model. In: Beierle, C.,
Meghini, C. (eds.) FoIKS 2014. LNCS, vol. 8367, pp. 344–360. Springer, Heidelberg
(2014)

7. Cal̀ı, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Data integration under
integrity constraints. Inf. Syst. 29(2), 147–163 (2004)

8. Camossi, E., Bertolotto, M., Bertino, E.: A multigranular object-oriented frame-
work supporting spatio-temporal granularity conversions. Int. J. Geogr. Inf. Sci.
20(5), 511–534 (2006)

9. Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (2002)

10. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional Horn clauses. J. Log. Program. 3, 267–284 (1984)

11. Egenhofer, M., Clementine, E., Felice, P.D.: Evaluating inconsistency among mul-
tiple representations. In: Spatial Data Handling, pp. 901–920 (1995)

12. Egenhofer, M., Sharma, J.: Assessing the consistency of complete and incomplete
topological information. Geogr. Syst. 1, 47–68 (1993)

13. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 6th edn. Addison
Wesley, Boston (2011)

14. Ginsburg, S., Hull, R.: Order dependency in the relational model. Theor. Comput.
Sci. 26, 149–195 (1983)

15. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag, Basel (1998)
16. Hegner, S.J.: Distributivity in incompletely specified type hierarchies: theory

and computational complexity. In: Dörre, J. (ed.) Computational Aspects of
Constraint-Based Linguistic Description II, DYANA, pp. 29–120 (1994)

17. Iftikhar, N., Pedersen, T.B.: Using a time granularity table for gradual granular
data aggregation. Fundam. Inform. 132(2), 153–176 (2014)

18. Kuijpers, B., Paredaens, J., den Bussche, J.V.: On topological elementary equiva-
lence of spatial databases. In: ICDT, pp. 432–446 (1997)

19. Lenzerini, M.: Data integration: a theoretical perspective. In: Popa, L., Abiteboul,
S., Kolaitis, P.G. (eds.) PODS, pp. 233–246. ACM (2002)

20. Lin, J., Mendelzon, A.O.: Merging databases under constraints. Int. J. Coop. Inf.
Syst. 7(1), 55–76 (1998)

21. Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville
(1983)

22. Ng, W.: An extension of the relational data model to incorporate ordered domains.
ACM Trans. Database Syst. 26(3), 344–383 (2001)

242 S.J. Hegner and M.A. Rodŕıguez

23. Rahm, E., Do, H.H.: Data cleaning: problems and current approaches. IEEE Data
Eng. Bull. 23(4), 3–13 (2000)

24. Rodŕıguez, M.A., Bertossi, L.E., Marileo, M.C.: Consistent query answering under
spatial semantic constraints. Inf. Syst. 38(2), 244–263 (2013)

25. Szlichta, J., Godfrey, P., Gryz, J.: Fundamentals of order dependencies. Proc.
VLDB Endow. 5(11), 1220–1231 (2012)

26. Tryfona, N., Egenhofer, M.J.: Consistency among parts and aggregates: a compu-
tational model. T. GIS 1(3), 189–206 (1996)

27. Wijsen, J., Ng, R.T.: Temporal dependencies generalized for spatial and other
dimensions. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O. (eds.) STDBM 1999.
LNCS, vol. 1678, pp. 189–203. Springer, Heidelberg (1999)

Temporal View Maintenance in Wide-Column
Stores with Attribute-Timestamping Model

Yong Hu1(B), Stefan Dessloch2, and Klaus Hofmann1

1 German Research Centre for Artificial Intelligence, Saarbrücken, Germany
{yong.hu,klaus.hofmann}@dfki.de

2 University of Kaiserslautern, Kaiserslautern, Germany
dessloch@cs.uni-kl.de

Abstract. Recently, there is a trend to build data warehousing based
on Wide-column stores (WCSs). Different from the relational database
systems, each column in a WCS can maintain multiple data versions. In
this paper, we study how to maintain the materialized temporal views
in WCS with attribute-timestamping model (ATM). As a WCS usually
contains a large number of columns, it is preferable to treat an update as
an individual class instead of a deletion/insertion pair. For propagating
temporal deltas, temporal queries are classified into various types and
the corresponding temporal delta propagation rules are defined.

Keywords: Wide-column stores · Materialized temporal view mainte-
nance · Attribute-timestamping model

1 Introduction

In recent years, “Big Data” has become an important topic in academia and
industry. In general, “Big Data” means the size/volume of data is far beyond
the ability of commonly used software tools. To solve such issue, a new type
of database systems called Wide-column stores (WCSs) emerge. In contrast to
the relational database systems (RDBMSs), besides the concepts of table, row
and column, WCSs introduce a new concept “Column family” to indicate all the
columns which belong to the same column family are stored contiguously on disk.
Moreover, each tuple in a WCS table is identified and distributed based on its
row key and each column stores multiple data versions with their corresponding
timestamps (TSs). Well-known examples are Google’s “BigTable” [1] and its
open-sourced counterpart “HBase” [2].

Obviously, a WCS table falls into the non-first normal form (NF 2) [3], as
the value of each column is a set of data versions instead of an atomic value.
The main benefit of NF 2 is that it can compact multiple tuples (compared to
first-normal-form 1NF) into a single one to reduce the data redundancy.

Recently, there is a trend to build data warehousing based on Wide-column
stores (WCSs). Besides storing the current values, a data warehouse (DW)
also maintains the time-related data, e.g. the sales of products in last 5 years.
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 243–257, 2016.
DOI: 10.1007/978-3-319-44039-2 17

244 Y. Hu et al.

Figure 1 displays the architecture of temporal DW based on WCSs. The data
sources (denoted by superscript I) have the default WCS table representations,
i.e. each data version has an explicit TS and its temporal interval (TI) is implic-
itly represented [4,5].

The ETL (extract, transform and load) processing monitors and reports the
data changes made at the source data, generates the corresponding TI for each
data item and applies a set of functions or rules to the extracted data. Each
extracted table (indicated by superscript T) in the data warehouse supports
the attribute-timestamping model (ATM) [4,5,7] in which each column stores
multiple data versions and each data version is associated with an explicit TI.
Furthermore, the extracted tables are utilized as base relations to construct the
temporal view definitions (denoted as ET (ST , ..., RT)). For performance reason,
we cache the results of temporal queries (materialized temporal views) in the
data warehouse (denoted as MT).

Figure 2 shows an example to illustrate the architecture described in Fig. 1.
Tables Network and Network’ represent the source table and DW table, respec-
tively. We define a MT called Fast-supplier by selecting internet suppliers whose
speed is greater than 1000K. For generating the contents of Fast-supplier, the
filter operation will first select the data versions which satisfy the predicate and

Fig. 1. Architecture of temporal data warehouse based on WCSs

Fig. 2. Example of temporal data warehouse based on WCSs

Temporal View Maintenance in WCS with Attribute-Timestamping 245

then chooses the corresponding data versions from the other columns which have
TI overlapping with the selected data versions.

Often, temporal queries in the data warehouse are periodically repeated and
the states of source tables vary over time. To refresh the state of MT (w.r.t.
the data changes made at the data sources), a complete view evaluation can be
performed (also known as “start-from-scratch”). However, this approach is time-
consuming and inefficient when the size of change data (deltas) is much smaller
than the size of whole base data. The more cost-effective way is the incremental
recomputation by only propagating the deltas to MT without evaluating the
unchanged data.

In the non-temporal context, the view maintenance has been extensively
studied for several decades [16]. In the temporal database context, the incre-
mental recomputation strategy is widely exploited to maintain the materialized
temporal views based on the tuple-timestamping model (TTM) [12,13,15]. TTM
is an extension of 1NF by appending additional columns to denote the temporal
validity for each row.

In this paper, we study the problem of how to maintain the materialized
temporal views in the WCSs with the attribute-timestamping model (ATM). To
achieve the incremental view maintenance, several challenges arise.

– When propagating temporal data changes (deltas), the traditional way is to
treat an update as a deletion/insertion pair. However, as a WCS usually main-
tains a large number of columns, such an approach is inefficient when only a
small part of columns are changed. Hence, a better way is to treat the update
as an individual class.

– As a DW often maintains the complete data history, no data will be deleted
or overwritten. Hence, the extracted deltas from data sources will be repre-
sented as insertion and TI update [6,18,19]. However, during the temporal
delta propagation, it is possible that a TI update can cause a view tuple dele-
tion. For example, the before state of an updated tuple satisfies the temporal
predicate but the after state not. Consequently, the temporal delta propaga-
tion is unclosed. We say a temporal delta processing is closed when the input
and output have the same delta types and no new delta types are generated.

– Although temporal delta propagation rules based on TTM have already been
defined [12,13], as ATM is far different from the TTM, not all the proposed
propagation rules (based on TTM) are suitable for ATM.

The rest of paper addresses aforementioned issues and is organized as follows:
Sect. 2 describes the related work and Sect. 3 introduces our previous work which
addressed the temporal data modeling and processing in WCS and temporal
change-data capture. Section 4 gives the algorithms for temporal view mainte-
nance based on ATM. Conclusions and future work are described in Sect. 5.

2 Related Work

In the non-temporal database context, the view maintenance problem has been
extensively studied for several decades, see survey [16]. In the temporal database

246 Y. Hu et al.

context, two approaches can be adopted to implement the materialized temporal
view maintenance.

1. Transforming temporal data and temporal queries into their correspond-
ing non-temporal counterparts, reusing the non-temporal view maintenance
approaches and rebuilding the temporal results based on the non-temporal
results.

2. Propagating temporal deltas based on temporal algebra. In general, this app-
roach requires temporal query classifications and generation of the corre-
sponding delta sets [12,13].

For the tuple-timestamping model (TTM), authors in [17] proposed two oper-
ators UNFOLD and FOLD to implement the temporal data transformation.
The UNFOLD operator will transform the interval-based representation into a
point-based representation. After finishing the query evaluation, FOLD opera-
tor coalesce the point-based tuples back to the interval-based tuples. The main
constraint of this approach is that the temporal query cannot contain the tempo-
ral comparisons. To overcome such limit, [14] proposed two temporal primitives
temporal split and temporal alignment. After transforming the temporal data, TI
is included in the table but treated as non-temporal attributes. Although these
approaches can be seamlessly used with the existed commercial database, the
transformations of temporal query and temporal data are time-consuming and
non-trivial.

Authors in [12,13] proposed the temporal delta propagation rules based on
TTM and temporal relational algebra. The temporal queries are classified into
τ -reducible and θ-reducible. τ -reducible query denotes the temporal query does
not contain the explicit temporal comparisons where the θ-reducible query does.
Based on different types of temporal queries, the corresponding temporal deltas
need to be generated. The rules for propagating temporal deltas looks the same
as the rules for their non-temporal counterparts [12].

Although the attribute-timestamping model (ATM) [7] has already been pro-
posed for a long time, to our best knowledge, no work addresses the issue of
materialized temporal view maintenance.

3 CTO Operator Model and Temporal Change-Data
Capture

In this section, we review our previous work, which can be seen as basis for this
paper. We first introduce the CTO operator model which is utilized to specify
the temporal query definitions based on ATM. Then, we explain how temporal
deltas can be represented.

3.1 CTO Operator Model

As already described in Sect. 1, tables in the DW (WCS) are modeled by ATM
in which each column contains multiple data versions and each data version is

Temporal View Maintenance in WCS with Attribute-Timestamping 247

attached to an explicit temporal interval (TI). For data processing, WCSs allow
users to write either low-level programs, such as the MapReduce [9] procedures
or utilize high-level languages, such as Pig Latin [10] or Hive [11]. However,
all these approaches require users to explicitly implement the temporal query
semantics.

Consequently, we defined a temporal operator model called CTO [4,5]. It
includes eight temporal data operators. However, in this paper, we only focus
on the most common utilized operators, namely, Project πc

A, Filter σc
p and Join

��
c
p. We use an example to illustrate the semantics of each operator. The formal

definitions can be found in [4,5]. Suppose we have two tables “Network” (N) and
“Company” (C) (shown in Fig. 3) and the following query.

Fig. 3. Temporal query processing example

Query 1. Display the name of the manager for companies with an inter-
net speed faster than 1000K. The corresponding CTO representation is: S =
πc

Manager(C ��
c
C.rk=N.Supplier (σc

N.Speed≥1000(N))).

Figure 3 shows the abstract syntax tree and the corresponding results for
Query 1. At first, the filter operation is applied to “Network” table and version
“1000K:[5, ∞)” is selected. To output a complete row, we choose the data ver-
sions from “Supplier” column which have the TI overlapping with [5, ∞). For
join operation, the names of internet suppliers and the row keys of the company
table are utilized as the join predicate. Besides checking the join predicate, two
joining attributes must also be valid during the same period of time. A projec-
tion always returns the row key column even if it is not specified as a projection
column.

248 Y. Hu et al.

3.2 Temporal Change-Data Capture

Different from RDBMSs, WCSs do not distinguish update with insertion. New
data versions are generated via “Put” commands. For deletions, various oper-
ation granularities can be specified, namely, version, column (col) and column-
family (cf).

Change-data capture (CDC) describes the data processing which detects and
extracts data changes made at the data sources. Our previous work [18,19] has
extensively studied the CDC issues in the context of WCSs. We classified the
deltas extracted from data sources SI as insertion ΔI , update �I and deletion
∇I . Note that �I is represented as a pair which indicates the before �−I and
after �+I state of the updated tuples.

For our temporal warehouse architecture, the above delta classifications has
to be adjusted. As base table ST in the data warehouse maintains a data history,
no current data will be ever deleted or overwritten. Hence, �I will be represented
as insertions ΔT and TI-updates �T where ∇I is represented as �T . To generate
TI for each extracted delta item, (1) each delta item in ΔI and �−I will be
attached to [TSgen,∞] where TSgen denotes when such data item is generated
and (2) for tuples in �+I and ∇I , TI is represented as [TSgen, TSop] where TSop

indicates when such data modifications occurred.
To physically represent temporal deltas, it is more natural to represent each

delta itemat theattribute-level.However, as a single versionmodification cancause
the modifications for multi-versions. We proposed an enhanced attribute-level delta
representation by attaching the unchanged columns to each delta item [18,19].

Fig. 4. CDC example

Figure 4 shows a CDC example. Suppose one put operation and one column-
deletion occurred at time point 10 and 12, respectively. The put operation is
classified as an update which causes a version insertion and a TI-update. For
the delete operation, it is translated into a TI-update. We use numbers 1–3
for Op (Operation type) to denote the version insertion, the after state and
the before state of TI-updated version, respectively. We attach the unchanged

Temporal View Maintenance in WCS with Attribute-Timestamping 249

column “Network:Supplier” to each delta item to facilitate the view maintenance.
More discussions between the attribute-level representation and the enhanced
attribute-level representation can be found in [18,19].

4 Temporal View Maintenance Based on ATM and CTO

For maintaining temporal views, temporal deltas are propagated based on dele-
tion and insertion where the update is represented as a deletion/insertion pair.
However, as a WCS table usually contains a large number of columns, the
previous strategy can be inefficient when only a small part of columns are
changed/updated. The more cost-effective way is to propagate updated deltas
as update itself.

For propagating temporal deltas based on ATM and CTO, several approaches
can be adopted.

1. Transforming ATM and CTO to their corresponding non-temporal counter-
parts and reusing the view maintenance methods for non-temporal views [16].
To achieve that, we use the TTM and temporal relational algebra as the inter-
mediate layer.

2. Transforming ATM and CTO to TTM and the temporal relational algebra and
reusing the incremental delta propagation rules defined for TTM [6,12,13].

3. Directly propagating temporal deltas based on ATM and CTO without addi-
tional temporal data and temporal the query transformations.

For performance reason, the third method is preferable.
As already seen in Sect. 3.2, temporal deltas extracted from data sources are

classified as insertions Δ and TI-updates �. � is represented as a pair which
contains the before �− and after �+ state of the updated tuples. However, during
temporal delta propagations, � can cause deletions ∇ which are not defined in
our temporal delta sets. In consequence, the temporal delta propagations are
unclosed. Figure 5 shows this example. Suppose we have the following query.

Query 2. Select internet suppliers whose speed is faster than 1000K and lasts
more than 9 days: σT

N.Speed≥1000K∧duration(N.Speed.TI)≥9(N). N is an alias of
“Network” and duration(TI) is calculated by TI.End − TI.Start.

V1 denotes the initial state of the temporal view. Δ and � represent the
deltas which are caused by an update that modifies the value of “Network:Speed”
column (from 1000 K to 900 K) at time point 10. When propagating temporal
deltas, �+ and Δ do not satisfy the filter predicate but �− does. In consequence,
tuple “Tom” in V1 needs to be deleted (V3 represents the new state of view). In
this situation, a new delta type deletion ∇ is generated.

However, if we modify the previous query to σT
N.Speed≥1000K(N), � will not

cause tuple deletion. Instead, the TI-update can be directly performed. The new
query result is shown in V2.

Due to the above example, we can notice that � can be handled as an indi-
vidual class when the temporal query does not have the explicit references to

250 Y. Hu et al.

Fig. 5. New generated delta types

time. Otherwise, a new delta type ∇ may be generated. Based on this observa-
tion, we classify the temporal queries to Snapshot-reducible [17] and Extended
Snapshot-reducible [17].

Definition 1 (Snapshot Reducibility). Let r1, ..., rn be temporal relations,
qt a temporal query and q the corresponding non-temporal query, TI = r1.T I ∪
... ∪ rn.T I, ςp(r) the timeslice operator. Query qt is snapshot-reducible iff ∀ti ∈
TI|ςti

(qt(r1, ..., rn)) = q(ςti
(r1)..., ςti

(rn)).

Obviously, snapshot reducibility does not apply to temporal operators with
predicates which explicitly reference to time (since TIs are removed by ςp(r) [14]).
Toovercome such issue,we canpropagateTI as non-temporal attributes andattach
it to each snapshot. To generate the extended snapshot, we define a new operator
κp(r) where κp(r) = (ςp(r), r.T I). The definition of Extended Snapshot Reducibil-
ity is given as follows.

Definition 2 (Extended Snapshot Reducibility). Let r1, ..., rn be tempo-
ral relations, qt a temporal query and q the corresponding non-temporal query,
TI = r1.T I ∪ ... ∪ rn.T I. Query qt is extended snapshot-reducible iff ∀ti ∈
TI|κti

(qt(r1, ..., rn)) = q(κti
(r1)..., κti

(rn)).

Lemma 1. Let q(r) be a temporal query. Δ and � represent inserted and TI-
updated deltas extracted from r.

– � can be propagated as update if q is snapshot-reducible.
– � has to be propagated as deletion/insertion pairs when q is extended snapshot-

reducible.

Proof. When q is snapshot-reducible, only non-temporal comparisons exist in
q. As � represents the TI updates, it can only affect the temporal view if the
non-temporal attributes of � satisfy the predicates in q. Hence, � can be prop-
agated as update itself. When q is extended snapshot-reducible, � can generate
the deleted deltas. Consequently, the temporal delta propagation is not closed,

Temporal View Maintenance in WCS with Attribute-Timestamping 251

namely, the temporal delta propagation generates a new delta type which is not
defined in its input. Hence, � should be represented as the deletion/insertion
pairs.

In a highly abstract level, the enhanced attribute-level delta representation
can be considered as an alternative of the row-level delta representation. Hence,
it is possible to reuse some of the temporal delta propagation rules defined for
tuple-timestamping model (TTM). However, several new challenges and opti-
mization opportunities arise.

– As the enhanced attribute-level representation maintains the meta-data for
each changed column, we can utilize this information to optimize the delta
propagation. For example, when a new generated data version is not included
in the projection attribute, there is no need to perform the incremental view
maintenance procedure over that data.

– Based on the state of the materialized view and temporal query predicates,
a version modification may cause either a version modification or modifica-
tions for multi-versions, e.g. a version deletion can lead to a tuple deletion. In
consequence, the delta propagation procedures should distinguish the types of
different outputs.

– As temporal delta is represented at the attribute-level, a mixed output will
be generated for join operator. We will discuss this issue in the Sects. 4.1.3
and 4.2.3.

The following sections address the issues mentioned above and describe
the algorithms for incrementally maintaining the temporal views based on the
snapshot-reducible and extended snapshot-reducible queries, respectively.

4.1 Snapshot-Reducible Queries

The main characteristics of a snapshot-reducible query is that it does not explic-
itly reference the time in the predicate. In consequence, � can be propagated as
update itself.

4.1.1 πc
A

To incrementally recompute πc
A operator, we introduce a new function Check.

The functionality of Check is to test whether the modified column is referenced
in projection attributes A. When Check returns true, Δ and � can be propa-
gated as πc

A(Δ) and πc
A(�), respectively. Otherwise, no output will be generated.

Table 1 shows the incremental procedures for πc
A.

4.1.2 σc
p

For the filter operation, a version insertion can cause a version insertion or inser-
tions for multi-versions. In the same way, a TI-update occurred to a version can
also cause a version TI-update or TI-updates for multi-versions. In consequence,
to distinguish those different operations, we use Imv and μmv to denote data

252 Y. Hu et al.

Table 1. Procedures for maintaining πc
A

Delta type Check View modifications

Δ F

Δ T πc
A(Δ)

� T πc
A(�)

� F

modifications for multiple versions and Iv and μv for a single version. I and μ
represent insertion and TI-update, respectively.

Different from πc
A, we cannot simply discard the delta items when they are

not referenced in the filter predicate p. The reason is that it is possible that
its correlated unchanged columns are satisfied with p. When Check(Δ) and
Check(�) are false, such delta items can only cause Iv or μv. The incremental
procedures of σc

p is described in Table 2.

Table 2. Procedures for maintaining σT
p

Delta type Check View modifications

Δ T Imv(σc
p(Δ))

Δ F Iv(σc
p(Δ))

� T μmv(σc
p(�))

� F μv(σc
p(�))

4.1.3 ��
c
p

To incrementally maintain the temporal join views R ��
c
p S, two join tables

are decomposed as R0, ΔR, �R, S0, ΔS and �S where R0 and S0 represent
the unchanged data from R and S, respectively. The incremental procedure for
R ��

c
p S is described in Table 3. For better readability, we use Schema(��c

p) to
denote the schema of R ��

c
p S and CC is a shorthand to reference the name of

the changed column.
In Table 3, three different situations are distinguished:

1. In both operands, join columns were modified.
2. Only in one operand, a join column was modified.
3. No join columns were modified.

We use an example in Fig. 6 to illustrate how the procedures in Table 3
can be used. Suppose we have N ��

c
N.Supplier=C.RK C, where N and C denote

“Network” and “Company”, respectively. Qo represents the initial join result.

Temporal View Maintenance in WCS with Attribute-Timestamping 253

Table 3. Procedures for maintaining ��
T
p

R S CheckR CheckS View modifications

R0 S0

R0 ΔS T T Imv(R0 ��
c
p ΔS)

R0 ΔS T F Iv(R0 ��
c
p ΔS)

R0 �S T T μmv(R0 ��
c
p �S)

R0 �S T F μv(R0 ��
c
p �S)

ΔR ΔS T T Imv(ΔR ��
c
p ΔS)

ΔR ΔS T F Imv(ΔR ��
c
p ΔS)

ΔR ΔS F T Imv(ΔR ��
c
p ΔS)

ΔR ΔS F F Imv(π
c
ΔR.CC,ΔS.CC(ΔR ��

c
p ΔS))

ΔR �S T T Imv(ΔR ��
c
p �+

S)

ΔR �S T F Imv(ΔR ��
c
p �+

S)

ΔR �S F T μmv(π
c
Schema(��c

p)−ΔR.CC(ΔR ��
c
p �S)), Iv(π

c
ΔR.CC(ΔR ��

c
p �+

S))

ΔR �S F F μv(π
c
�R.CC(ΔR ��

c
p �S)), Iv(π

c
�S.CC(�R ��

c
p �+

S))

�R �S T T μmv(�R ��
c
p �S)

�R �S T F μmv(�R ��
c
p �S)

�R �S F T μmv(�R ��
c
p �S)

�R �S F F μmv(π
c
�R.CC,�S.CC(�R ��

c
p �S))

Fig. 6. Example for incremental join procedures

For table “Network”, Check(Δn) = T and Check(�n) = T . As row key of
“Compay” is used in join predicate, every version-modification can be considered
implicitly modified the TI if the row key, Check(Δc) = T and Check(�c) = T .
To calculate the inserted and TI-updated values for Qo,

– Δn ��
c Δc = ∅.

– Δn ��
c �c = ∅.

– �+
n ��

c Δc = Δv. Multi-version insertions “Anna:[9,10)”, “1&1:[9,10)” and
“1000K:[9,10)” are generated.

254 Y. Hu et al.

– �n ��
c �c = �mv. The TI of all data versions belong to tuple “Tom/1&1”

will be modified from [5,∞) to [5, 9). Note that we represent �mv at row-level
for easy understanding and space reason.

For better understanding, we represent Imv and �mv at row level.

4.2 Extended Snapshot-Reducible Queries

When temporal query q is extended snapshot-reducible, q has an explicit refer-
ence to time, e.g. the filter operation contains a temporal predicate. In conse-
quence, � may cause deletions and the temporal delta propagations are hence
unclosed. To overcome such issue, we represent the extracted deltas as deletions
∇ and insertions Δ. The delta transformation between (Δ,�) and (Δ,∇) is
given as follows:

– Δ = Δ ∪ �+.
– ∇ = �−.

In the following, we give the algorithms for incrementally maintaining tem-
poral views based on ∇ and Δ.

4.2.1 πc
A

The incremental procedures for πc
A operator is described in Table 4.

Table 4. Procedures for maintaining πc
A

Delta type Check View modifications

Δ F

Δ T πc
A(Δ)

∇ T πc
A(∇)

∇ F

4.2.2 σc
p

The incremental procedures for σc
p operator is described in Table 5. As same as

version insertion, a version deletion can also cause multi-version modifications.
In consequence, we use Dmv and Dv to represent multiple version deletions and
single version deletion, respectively.

4.2.3 ��
c
p

To incrementally maintain the temporal join views R ��
c
p S, the join operands

are decomposed as R0, ΔR, ∇R, S0, ΔS and ∇S . The incremental procedure for
R ��

c
p S is described in Table 6.

The temporal delta propagation procedures for R0 ��
c
p ΔS and ΔR ��

c
p ΔS

can be found in Table 3.

Temporal View Maintenance in WCS with Attribute-Timestamping 255

Table 5. Procedures for maintaining σT
p

Delta type Check View modifications

Δ T Imv(σc
p(Δ))

Δ F Iv(σc
p(Δ))

∇ T Dmv(σc
p(∇))

∇ F Dv(σc
p(∇))

Table 6. Procedures for maintaining ��
T
p

R S CheckR CheckS View modifications

R0 ∇S T T Dmv(R0 ��
c
p ∇S)

R0 ∇S T F Dv(R0 ��
c
p ∇S)

ΔR ∇S T T

ΔR ∇S T F Imv(πc
schema(��c

p)−∇S .CC(ΔR ��
c
p ∇S))

ΔR ∇S F T Dmv(πc
schema(��c

p)−ΔR.CC(ΔR ��
c
p ∇S))

ΔR ∇S F F Iv(πc
ΔR.CC(ΔR ��

c
p ∇S)), Dv(πc

∇S .CC(ΔR ��
c
p ∇S))

∇R ∇S T T Dmv(∇R ��
c
p ∇S)

∇R ∇S T F Dmv(∇R ��
c
p ∇S)

∇R ∇S F T Dmv(∇R ��
c
p ∇S)

∇R ∇S F F Dv(πc
∇R.CC(∇R ��

c
p ∇S)), Dv(πc

∇S .CC(∇R ��
c
p ∇S))

4.3 Example

In this section, we give an example to combine various incremental procedures
together. Suppose we have two tables “Network” (N) and “Company” (C)
(See Fig. 7) and the following temporal view definition:
V = σc

N.Speed<1000∧duration(N.Speed.TI)<10(N) ��
c
N.Supplier=C.RK C.

The abstract syntax tree and the corresponding data (including base relations
and temporal deltas) are shown in Fig. 7. As the view definition contains the
temporal comparisons (duration(TI)), it is classified to the extended snapshot-
reducible. Hence, the temporal deltas are represented as deletion ∇ and insertion
Δ. Initially, V is empty. At time point 10, 1000 K is updated to 900 K. To
propagate such delta, Check(Δn) = true and Check(∇n) = true. For the filter
operation, delta item “10/Network/Speed/Tom/2” satisfies the predicate and
multi-version insertions are produced (the results are denoted as Δnf). For the
temporal join operation, Check(Δnf) = true. Table “Company” is viewed as
unchanged data, i.e. C0. We calculate Δnf ��

c C0 and Δj is generated.

256 Y. Hu et al.

Fig. 7. Example of temporal view maintenance with ATM

5 Conclusions and Future Work

In this paper, we study the problem of maintaining materialized temporal
views in the context of Wide-column stores (WCSs) with attribute-timestamping
model (ATM). As a WCS table usually contains a large number of columns, it is
better to treat the update as an individual class instead of a deletion/insertion
pair. However, as already shown in Sect. 4, an updated delta can cause a tuple
deletion which leads the temporal delta propagation unclosed. To overcome
such issue, we classify the temporal queries into the snapshot-reducible and
the extended snapshot-reducible. To maintain the snapshot-reducible queries, the
update can be propagated as update itself. For the extended snapshot-reducible
queries, an update needs to be represented as a deletion/insertion pair. We
described various temporal view maintenance procedures based on these two
temporal queries types. As delta items are represented at attribute-level, a set
of new temporal propagation rules are defined.

For future work, we plan to implement our algorithms based on MapReduce
and HBase to compare the performance between the full recomputation and the
view maintenance (incremental recomputation).

References

1. Cange, F., et al.: Bigtable: a distributed storage system for structured data. In:
OSDI (2006)

2. http://hbase.apache.org/

http://hbase.apache.org/

Temporal View Maintenance in WCS with Attribute-Timestamping 257

3. Colby, L.: A recursive algebra for nested relations. Technical report
4. Hu, Y., Dessloch, S.: Defining temporal operators for column oriented NoSQL

databases. JDM Journal, extended version for ADBIS (2014)
5. Hu, Y., Dessloch, S.: Defining temporal operators for column oriented NoSQL

databases. In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds.) ADBIS
2014. LNCS, vol. 8716, pp. 39–55. Springer, Heidelberg (2014)

6. Hu, Y., Dessloch, S.: Incrementally maintaining materialized temporal views in
column-oriented NoSQL databases with partial deltas. In: Morzy, T., Valduriez, P.,
Bellatreche, L. (eds.) ADBIS 2015. CCIS, vol. 539, pp. 88–96. Springer, Heidelberg
(2015)

7. Tansel, A.: Temporal relational data model. IEEE Trans. Knowl. Data Eng. 9(3),
464–479 (1997)

8. Kimbal, R., Kastera, J.: The Data Wareshouse ETL Toolkit. Wiley publishing,
Indianapolis (2004)

9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI (2004)

10. http://pig.apache.org/
11. http://hive.apache.org/
12. Yang, J., Widom, J.: Maintaining temporal views over non-temporal information

sources for data warehousing. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G.
(eds.) EDBT 1998. LNCS, vol. 1377, p. 389. Springer, Heidelberg (1998)

13. Yang, J., Widom, J.: Temporal view self-maintenance in a warehousing environ-
ment. In: EDBT, pp 395-412 (2000)

14. Digns, A., et al.: Temporal alignment. In: SIGMOD 2012, pp 433-444 (2012)
15. Jensen, C., et al.: Using differential techniques to efficiently support transaction

time. VLDB J. 2, 75–116 (1993)
16. Gupta, A., et al.: Maintenance of materialized views: problems, techniques and

applications. IEEE Data Eng. Bull. 18, 3–18 (1995)
17. Liu, L., Özsu, T.M. (eds.): Encyclopedia of Database Systems. Springer, Heidelberg

(2009)
18. Hu, Y., Dessloch, S.: Extracting deltas from column oriented NoSQL databases

for different incremental applications and diverse data targets. Elsevier Journals,
extended versions for ADBIS (2013)

19. Hu, Y., Dessloch, S.: Extracting deltas from column oriented NoSQL databases
for different incremental applications and diverse data targets. In: Catania, B.,
Guerrini, G., Pokorný, J. (eds.) ADBIS 2013. LNCS, vol. 8133, pp. 372–387.
Springer, Heidelberg (2013)

http://pig.apache.org/
http://hive.apache.org/

Distributed and Parallel Data Processing

Minimization of Data Transfers
During MapReduce Computations
in Distributed Wide-Column Stores

Adam Šenk, Miroslav Hrstka(B), Michal Valenta, and Petr Kroha

FIT, Czech Technical University, Prague, Czech Republic
hrstka.miroslav@gmail.com

{senkadam,valenta,petr.kroha}@fit.cvut.cz

Abstract. In this contribution, we present our original approach to
distributed wide-column store database tuning based on data locality
optimization. The main goal of the optimization is the reduction of
communication overhead in distributed environment during Map-Reduce
query evaluation. The optimization is realized by the minimisation of the
total number of key-value pairs emitted from mappers.

To achieve the goal, we combine several Map-Reduce optimization
methods, adapt them to wide-column store model and utilize them to
overcome architectural limitation. To prove our idea, we implemented the
proposed solution in HBase system that represents this class of DBMS.
We present our data, measurements, and tests. The evaluated results
support our idea that this method can significantly decrease data trans-
fers in the distributed system.

1 Introduction

Currently, many popular tools and frameworks for distributed data processing
are based on the MapReduce computational model. Its queries and tasks are
often called MapReduce jobs.

Distributed evaluation of MapReduce jobs in a computer cluster is based
on grouping data into appropriate groups to aggregate the data set into a rea-
sonable big sample. The aggregation requires data being members of the same
group to be located on appropriate computational node. Because the location of
data depends on concrete MapReduce jobs, i.e. on given queries, and because it
cannot be determined before the jobs is started, the evaluation of MapReduce
jobs includes a lot of data transfers between single nodes over computer network.
Thus, the network communication is an inconsiderable part of MapReduce job
processing. In big data processing, a small group of queries is usually repeated
again and again. So, we can try to find an optimal data location for a given set
of queries that occur mostly. It can be determined by collecting and analysing
statistical information about MapReduce jobs executed in the past. Such opti-
mization can decrease the number of data transfers realized by the computer
cluster during query evaluation.
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 261–274, 2016.
DOI: 10.1007/978-3-319-44039-2 18

262 A. Šenk et al.

In this paper, we introduce our approach to minimizing of the number of
data transfers in a distributed database during the MapReduce job evaluation.
Our solution is based on an unique combination of two methods. First, we use
specific statistical information collected during the MapReduce computation for
determining the optimal data localization. The goal is to recognize groups of
data that are supposed to be located on the same computational node. Second,
we deploy the In Mapper Combiner pattern to MapReduce queries. The sorting
of data according to determined locality and the integration of this pattern to
the MapReduce model lead to satisfactory optimization (the drop of key-value
pairs emitted by the map function is significant).

The paper is organized as follows. In Sect. 2, we present the related work. The
preliminary description of database management systems classified as Wide-
Column stores is given in Sect. 3. Our approach using In Mapper Combiner
in combination with minimal cuts of hypergraphs is described in Sect. 4. We
introduce our original solution for minimizing of key-value pairs emitted from
mappers in Wide-Column store database system. In Sect. 6, we describe the data
we used and the measurements we made, and we evaluate the results obtained.
Finally, in Sect. 7, we draw the conclusions and discuss possible future work.

2 Related Work

The widely used method for minimizing the number of data transfers between
computational nodes is called In Mapper Combining. The paper [5] describes how
to perform local grouping and aggregating of data before the framework starts
transferring data over computer cluster. However, the paper doesn’t describe
any optimization of data locality.

The optimization of data localization over computational cluster is described
in [6]. The paper introduces methods for collection of statistical information
about MapReduce jobs being computed on cluster. The optimal data locality is
then determined from collected statistical data. The methods works well with
MapReduce jobs that process data stored in distributed file system, but they
have to be improved if we want to deploy it into a Wide-Column store database
system. The problem is, that we have to overcome the data native data ordering
and distribution in Wide Column stores. The data repartitioning described in
this work is not applicable in the database context.

The improvement of data locality in reduce task is described in [9]. The
authors focused on scheduler optimization to ensure that the Reduce task will
run on appropriate computational node. The results show, that the presented
approach brings performance improvements. However, the optimization pre-
sented in this paper consider that the optimization of Map tasks is already
deployed in the system. But the Map task optimization for Wide-Column store
was not introduced yet.

Many papers focus on a locality optimization of concrete problem. In the
paper [8] is described an algorithm called Locality Sensitive Hashing which is
implemented on top of MapReduce. The authors compare the algorithm to tra-
ditional methods using R-tree and kd-tree. Even though the presented results

Minimization of Data Transfers During MapReduce Computations 263

are promising, the approach is not general enough and cannot be applied on
other problem but similarity search.

3 Preliminaries

In this section, we introduce a specific type of database management system -
Wide-Column Stores. First, we describe the basic principles. Second, we intro-
duce the HBase database system used in our work. Finally, we outline how the
MapReduce model works in HBase context.

3.1 Concepts and Data Model

The Wide-Column Stores are database management systems dedicated to hold
very large number of dynamic columns. A row in a Wide-Column Store is
uniquely identified by its row-key. The main concept making the rows dynamic
are columns. Their number and structure are not fixed in the complete table,
but the set of columns can be different for every row.

The Wide-Column Stores are able to work in distributed mode to handle
large amount of data. The distributed mode increases the system availability by
data partition, distribution, and replication. The data replication also enables
the database management system to handle failures of parts of distributed
environment.

Column-Family Store is a special case of Wide-Column Store, and it intro-
duces the concept of Column Families, which is a unit of table structure. It is a
super-column that is composed of the normal columns. The Table 1 is an exam-
ple of such format. Although HBase is classified as Column-Family Store, we
do not describe the difference between Wide-Column Store and Column-Family
Store model in details, because it is not important for the scope of this work.
Furthermore, it is possible to classify Column-Family model as a subtype of
Wide-Column Store.

In Table 1, we introduce the concept from above. This table will be used in
the whole paper to illustrate our method.

3.2 HBase

In our work, we use HBase [10] to implement and to test our approach. It is
a part of the Apache Hadoop [11] project derived from Google Big Table [2].
HBase is running on top of the HDFS [7]. We chose HBase because it is the typ-
ical representative member of Wide-Column Stores. The common Wide-Column
Store properties that are relevant and important in context of our work are:

– Distribution - HBase is a distributed system. It is able to run on multiple
nodes that are organized in a computer cluster. It uses the region concept
to enable data distribution and prevent any data loss caused by some fail of
computational node. HBase tables are internally divided into regions that are

264 A. Šenk et al.

Table 1. The illustrating example of data stored in Wide-Column Store. It represents
the personal information of couple of EU citizens.

Row-key CF: personal information CF: address

14562 Name Surename Gender City Country

Gorge Smith Male London England

23516 Name Surename Gender City Country

Lisa Davis Female London England

34162 Name Surename Gender City Country

John Bush Male Paris France

64283 Name Surename Gender City Country Street

Marry Davis Female London England Down st

89213 Name Surename Gender City Country

Hans Paul Male Berlin Germany

94013 Name Surename Gender City Country

Adam Ford Male London England

the basic elements of distribution. Regions are data subsets distributed over
the cluster. Beside that, regions are replicated over multiple nodes to prevent
data losses.

– MapReduce - HBase adapts the concept of MapReduce and provides MapRe-
duce API. We will describe the details of MapReduce model in Sect. 3.3. It
enables programmers to process and query data stored in HBase tables by
MapReduce jobs in parallel. The key-value pair input of a map function is
always a pair of a row-key and the corresponding row.

– Fast random access - Users can access concrete table rows directly using
HBase API. The table rows are accessible through their unique identifier -
row-key. Data in table regions are ordered lexicographically by their row-keys
to fasten random access search without index. This concept is the fundamental
one because HBase is constructed to store huge amount of data.

3.3 MapReduce

The MapReduce [3] framework is a programming model inspired by functional
programming for distributed data processing. The model is basically known and
does not need to be described in this paper. However, we want to point out some
important concepts typical for Wide-Column store and HBase, and to show one
example that we will use in our work for the description of our optimization.

During processing of data stored in HBase, the input of one map function is
one table row. It means that a map function is applied on all rows. Then the
data are grouped according their emit keys and proceeded in a reduce function.
There are much more data items (rows to process) than there is the number
of computers in a cluster (typically tens of computer and millions of rows). So,

Minimization of Data Transfers During MapReduce Computations 265

even though all maps and reduce functions can be processed in parallel, they
are distributed over cluster, and each node computes a set of the functions
sequentially. The process that computes a set of map functions on one computer
is called Mapper, and the process that computes a set of reduce functions on one
computer is called Reducer.

We present an example. We describe the MapReduce functionality using
Table 1 presented in Sect. 3.1. The goal of the data processing is to compute the
distribution of people across cities. The description of MapReduce computing of
this task follows.

The input of the map functions is the key-value pair (KEY, row of table).
The function produces the output key-value pair having the format (city, 1).
The Map function is applied on all rows in the data table, so the complete
intermediate result of the Map phase is: (London, 1), (Paris, 1), (London, 1),
(Berlin, 1), (London, 1). The pairs are grouped by the keys to be processed by
the reduce function.

The input of the reduce function is: (London,(1,1,1)), (Paris,(1)),
(Berlin,(1)). The reduce function computes a sum of all aggregated values, so the
result of the map reduce job is: (London,3), (Paris,1), (Berlin,1). The described
computation is visualized in Fig. 1.

Fig. 1. Exampel of MapReduce job procesing in HBase

4 Our Approach

In this chapter, we describe our approach to the problem how to minimize the
number of data transfers during the MapReduce evaluation in distributed Wide-
Column Stores.

4.1 The Problem Definition

Let us define the problem that we want to solve. The data table t stored in
Wide-Column Store database is distributed over computer cluster consisting of

266 A. Šenk et al.

n computational nodes N1, N2, ..., Nn. The cluster computes a set of m map
reduce jobs Job1, Job2, ...Jobm. During the evaluation of the job Jobi, there is
the emitted set of intermediate key-value pairs located on the node Nj having
size IRsizeij . The goal is to minimize the total number of emitted key-value
pairs in all jobs expressed by the function

∑n
i=1

∑m
j=1 IRsizeij .

In our work, we focus on minimizing the number of key-value pairs emitted by
Mapper. In the distributed environment, each emitted key-value pair can cause a
data transfer over the computer network. Moreover, the MapReduce framework
has to find the correct Reducer for each emitted key-value pair. So, even if the
key-value pair is not transferred over the network, and it is processed by the
Reducer located on the same node, it causes a computational overhead.

Our approach is based on unique combination of two optimization methods
and its adaptation on the HBase architecture. First, we introduce the In Map-
per Combiner pattern. Second, we describe data locality optimization method
based on query statistic. We focus on the Monitoring and Repartitioning con-
cepts known from [6] based on the Hypergraph model. Finally, we show how to
deploy the combination of these methods into HBase and how the optimization
influences the number of emitted key-value pairs.

4.2 In Mapper Combining

In Mapper Combiner is a software pattern for MapReduce programming that
reduces number of key-value pairs emitted from Mappers. The pattern is based
on the preliminary computation of the reduce function during Map phase in
Mappers. On the end of Map phase, before the intermediate results are grouped
and transferred to Reducers, the reduce function is performed locally on all
nodes. The local grouping of intermediate results is usually implemented by
Hash Table data structure. Even though the final computation is still performed
in Reduce function, the intermediate results are already pre-aggregated when
using this pattern.

To illustrate how the pattern works, we provide two pieces of pseudocode map
functions computing the distribution of people across the cities to demonstrate
the pattern functionality in Figs. 2 and 3.

function map(Array cities)

for all String city_name cities do

emit(city_name,1)

Fig. 2. Map function of MapReduce job that counts distribution of people across the
cities.

We demonstrate the functionality of the In Mapper Combiner on our running
example from Sect. 3.1. The example is outlined in Fig. 6 including the interme-
diate keys emitted by the Mapper with In Mapper Reducer deployed. The first
two rows of Table 1 are stored in the region A, which is placed on the Node 1,

Minimization of Data Transfers During MapReduce Computations 267

function map(Array words)

HashTable pairs

for all String city_name cities do

pairs.put(city_name,pairs[city_name]+1))

for all Pair pair pairs do

emit(pair.key(), pair.value())

Fig. 3. Demonstration of In Mapper Combiner pattern. Map function counting distri-
bution of people across the cities with In Mapper Combiner pattern deployed.

the second two rows are stored in the region B, which is placed on the Node
2, and the last row is place in the region C, which is placed on the Node 3.
As described above, the In Mapper Combiner performs the same action as the
reduce function, but it is applied before the intermediate key-values pairs are
emitted.

The indeterminate results with In Mapper Combiner deployed are shown in
Fig. 4, they are the following ones: The key-value pair emitted from the Node
1 is (London, 2), the key-value pairs emitted from the Node 2 are (Paris, 1),
(London, 1), and the key-value pair emitted from the Node 3 is (Berlin, 1).

Fig. 4. Emmited keys with In Mapper Comibner deployed

4.3 Data Locality Optimization

As we showed in previous section the In Mapper Combiner pattern pre-
aggregates the results in Mappers so that each Mapper emits only unique keys.
Our idea is following. If we reallocate the data before the Map-Reduce job is
computed, the efficiency of In Mapper Combiner will increase.

Our optimization is based on statistics collected from queries evaluated in the
system in the past. We define the optimal data locality as the data distribution
across the computer cluster that would minimize the total number of emitted
key-value pairs for all queries evaluated in the system during the time period
between t0 and tnow.

268 A. Šenk et al.

Query Monitoring. We developed our method for query statistic collecting
in order to gather data enabling the computation of optimal data locality. Our
system is based on query monitoring method introduced in [6]. We focus on
collection of the following information: set of keys emitted during map-reduce
jobs and list of data-items (table rows) producing concrete keys. The reason why
we collect such data is that we want to cluster data-items according to keys that
they produce and to locate the clusters on the same computational node.

In this paragraph, we describe the format of collected data. Consider a
table Ta consisting of n rows identified by unique identifies rid1, ..., ridn. Each
Map-Reduce query produces m intermediate keys in its Map phase denoted
as k1, ..., km. to each intermediated key k, we assign a list of row emitting
the key during their processing in Map phase. The collected data have format
< kx, list(ridy, ..., ridz) >, where kx represent one concrete emitted key, and
list(ridy, ..., ridz) represents set of unique identifiers of rows emitting the key.

Data Repartitioning. In this section, we discuss the methods for determina-
tion of optimal data locality. As we described in the beginning of this chapter,
the main idea is to locate maximum of rows producing same keys on the same
computational node. We introduce method for data clustering based on hyper-
graph model [6] that divides rows in clusters using minimal cut algorithm. The
method was deployed to our solution to improve the efficiency of In Mapper
Combiner pattern.

Let us define the hypergraph structure and describe how we used it for mod-
elling of the collected data. The hypergraph H = (HV ,HE) is a graph structure,
where each hyperedge e ⊆ HE can connect more than just two nodes v ⊆ HV .

We model each ridy as a node HVy
and each key kx as a hyperedge HEy

.
So, one edge HEx

representing key ky connects all vertices (HV1 , ...,HVn
) repre-

senting unique rows emitting the key in map phase during Map-Reduce query

Fig. 5. Hypergraph having six nodes and three hyperedges, generated from Table 1
during counting of people distribution over cities

Minimization of Data Transfers During MapReduce Computations 269

processing. The example of hypergraph generated from Table 1 during counting
of people distribution over cities is denoted on Fig. 5.

We apply the minimal cut algorithm on hypergraph to find an optimal data
clustering. The graph cut is defined as a partition of the hypergraph dividing
nodes into two or more disjoint subsets. The graph cut is minimal when the
number of edges among all cuts is minimal. Although the number of subsets can
be variable, it is equal to the number of computers in the cluster in our case.

Let us consider the rows represented by the hypernode HV beeing located in
the same data cluster located on the same computational node. Then, each cut
edge represents a data transfer from a computational node to another one during
the Map-Reduce query evaluation. Because the cut applied on the hypergraph
is minimal, then the number of data transfers is minimal, too. The Fig. 6 shows
emitted keys from the mapper during computation of people distribution across
the cities with hypergraph optimization deployed. As we can see, the number of
emitted keys is optimal and minimal.

Fig. 6. Emitted keys with both In Mapper Comibner and hypergraph optimization
deployed

5 Implementation

In this section, we outline how we implemented the optimization method into
Wide-Column Store HBase. We focus on the overcome of the HBase architecture
limitations.

5.1 In Mapper Combiner Deployment

As was described in Sect. 4.2, the In Mapper Combiner is a pattern that has to
be deployed in map function. We used standard HBase Java Api1 to implement
the pattern functionality.
1 https://hbase.apache.org/apidocs/.

https://hbase.apache.org/apidocs/

270 A. Šenk et al.

5.2 Monitoring Module

We integrated the monitoring module into RecordReader. It is a class of stan-
dard MapReduce library in Hadoop and HBase. It is responsible for parsing the
emitted key-value pairs. We extended the functionality of this class, so it collects
query statistic in an format and stores it into the designated database tables.

5.3 Minimal Cut Algorithm

To find a minimal cut of Hypergraph structure H = (HV ,HE) is a NP-Complete
problem [4]. We used a tool called PaToH (partitioning tool for hypergraphs) to
compute the solution. This tool is based on three phase algorithm that uses var-
ious bootom-up heuristics [1]. It is necessary to model a Hypergraph structure
before the minimal cut algorithm can be started. This phase is called combina-
tion, and it is optimal to compute it when the system is not under load. The
combination phase produces a hypergraph in such format that is defined by the
PaToH tool.

5.4 Optimal Data Locality in HBase

The database optimization is based on relocation and grouping appropriate rows
on the same computational node. In previous chapter, we outlined how to find
the optimal location. In this paragraph, we present the locality utilization in dis-
tributed wide-column store HBase. First, we introduce grouping of rows realized
by key modification. Then, we explain what is the region splitting policy, and we
choose the optimal one.

Key Prefix. As we mentioned in Sect. 3.2, one of the main HBase concepts is
the lexicographical row ordering. The HBase doesn’t provide any tool for the
row locality determination. A row cannot be assigned to the region or even to
the computational node. However, we show how this concept can be used for
grouping of rows.

We assign a unique numeric identifier gid to each group computed by the
min-cut algorithm mentioned above. The gid is added to the row key as a prefix.
This is applied to all rows in the table. The length lgid of all gids is the same, as
it is shown in Fig. 7. The key prefix concept ensures that the rows are naturally
sorted by HBase according to the belonging to the group determined by the
min-cut algorithm.

Region Split Policy. In the previous paragraph, we described how to order
table rows according to groups determined by the min-cut algorithm. Now, we
outline how the ensure that rows belonging to the same group will be located
on the same computational node. As explained above, the data distribution in
HBase across the cluster is realized by regions, which are the splits of the table.
Once a region size gets to a certain limit, it is automatically split into two regions.

Minimization of Data Transfers During MapReduce Computations 271

Fig. 7. Key Prefix concept used for row sorting

The limit and condition for splitting can be set by the RegionSplitPolicy API.
This API offers numerous region spliting policies representing various condition
for region splinting.

Our solution uses the KeyPrefixRegionSplitPolicy that is configured by the
length of the prefix lgid. It ensures that the regions are not split in the middle of
a group of rows having the same prefix. Because the rows with the same prefix
are always located in the same region, they are located on the same computer
node, too.

6 Experiments

In this section, we describe the data sets used in our experiments, and we intro-
duce all measurements that we did to discover how effective our method is.
Finally, we evaluate the results.

6.1 Data Sets

Our data represent a subset EU Citizens. The distribution of people between
cities and countries is based on reality. The structure of the data is shown in
Table 1, and it is as follows:

– Key - personal unique identifier
– column-family:PersonalData - holds the basic personal information:

• name
• surname
• gender

– column-family: Address - holds the info about address:
• city
• country

272 A. Šenk et al.

6.2 Measurement

To test and evaluate our proposal, we prepared two MapReduce jobs that we
run in HBase. Then, we measured the number of key-value pairs emitted from
the Mapper. All measurements were done on a single computer, but we emu-
lated distributed environment by dividing tables in various numbers of regions
(we described regions in Sect. 3.2). Note that we are not focusing on the overall
performance, but we focus on minimizing number of data transfers. Therefore,
we observe the number of emitted key-value pairs, so the measurement is not
affected by the fact that it is performed on one physical computer.

We performed our measurement on a data table with 106 rows having a struc-
ture described in the Sect. 6.1. We ran two prepared MapReduce jobs. The first
job computed the distribution of people among cities, the second job computed
the distribution of people among countries. The number of emitted key-value
pairs without any optimization is equal to the number of rows in both cases.

To show how our optimization method reduce number of emitted key-value
pairs, we performed two types of measurement. First, we deployed the In Map-
per Combiner and observed the number of emitted key-value pairs. Second, we
optimized the data locality in HBase and repeated the measurement. We per-
formed these procedures for various numbers of HBase regions. The comparisons
of results measured on HBase using the original and the optimized data locality
are shown in Table 2 and visualized in Figs. 8 and 9. As we can see, the reduc-
tion of data transfers caused by In Mapper Combiner deployment is considerable.
Nevertheless, it is even more significant, when the data locality is optimized by
hypergraph partition method.

7 Conclusion

In this contribution, we introduced our solution of the problem how to mini-
mize the amount of data transfers during MapReduce evaluation in distributed
Wide-Column Store database. We developed the unique combination of two opti-
mization methods. The first method is based on hypergraph partitioning, and
the second method is based on In Mapper Reducing pattern.

Table 2. Number of emitted Key-Values pairs for MapReduce job for various number
of regions

Query Regions

2 4 8 16 32

Count people in cities - no optimization 1242 1728 2646 4428 7911

Count people in cities - optimized 753 847 952 1645 2808

Count people in country - no optimization 32 64 127 254 509

Count people in country - optimized 18 23 24 31 56

Minimization of Data Transfers During MapReduce Computations 273

Fig. 8. Number of emitted Key-Values
pairs for MapReduce job counting the
distribution of people across cities

Fig. 9. Number of emitted Key-Values
pairs for MapReduce job counting the
distribution of people across countries

Next, we outlined the implementation of our optimization method using
HBase database system. We showed how to overcome all architectural limitation
of distributed Wide Column Store.

Finally, we performed a set of measurements on couple of data sets, and we
presented the results. Our results show that our approach brings a considerable
minimizing of data transfers, although the efficiency is dependent on the given
MapReduce job and on the data.

The future work will focus on the following aspects. First, we want to inte-
grate our solution directly into Wide-Column Stores database systems. Cur-
rently, we are using HBase APIs for optimization deployment. If we integrate our
optimization method directly into HBase architecture, the performance improve-
ments should be better. Second, we will focus on other MapReduce optimization,
i.e. on better localization of data during Reduce phase. Last, we want to deploy
our solution to highly distributed cluster consisting of tens of nodes and measure
the real impacts on overall performance.

Acknowledgments. This work was supported by the Grant Agency of the Czech
Technical University in Prague, grant No. SGS16/120/OHK3/1T/18.

References

1. Çatalyürek, Ü., Aykanat, C.: PaToH (partitioning tool for hypergraphs). In: Padua,
D. (ed.) Encyclopedia of Parallel Computing, pp. 1479–1487. Springer, USA (2011)

2. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. (TOCS) 26(2), 4 (2008)

3. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

4. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Springer
Science & Business Media, Berlin (2012)

274 A. Šenk et al.

5. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Morgan and
Claypool Publishers, San Rafael (2010)

6. Liroz-Gistau, M., Akbarinia, R., Agrawal, D., Pacitti, E., Valduriez, P.: Data
partitioning for minimizing transferred data in MapReduce. In: Hameurlain, A.,
Rahayu, W., Taniar, D. (eds.) Globe 2013. LNCS, vol. 8059, pp. 1–12. Springer,
Heidelberg (2013)

7. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. IEEE (2010)

8. Szmit, R.: Locality sensitive hashing for similarity search using MapReduce on
large scale data. In: K�lopotek, M.A., Koronacki, J., Marciniak, M., Mykowiecka,
A., Wierzchoń, S.T. (eds.) IIS 2013. LNCS, vol. 7912, pp. 171–178. Springer, Hei-
delberg (2013)

9. Tan, J., Meng, S., Meng, X., Zhang, L.: Improving reduce task data locality for
sequential map reduce jobs. In: 2013 Proceedings IEEE, INFOCOM, pp. 1627–
1635. IEEE (2013)

10. Vora, M.N.: Hadoop-hbase for large-scale data. In: 2011 International Conference
on Computer Science and Network Technology (ICCSNT), vol. 1, pp. 601–605.
IEEE (2011)

11. White, T.: Hadoop: The Definitive Guide, 3rd edn. O’Reilly Media Inc., USA
(2012)

Adaptive Join Operator for Federated Queries
over Linked Data Endpoints

Damla Oguz1,2,3(B), Shaoyi Yin2, Abdelkader Hameurlain2, Belgin Ergenc1,
and Oguz Dikenelli3

1 Department of Computer Engineering, Izmir Institute of Technology, Izmir, Turkey
{damlaoguz,belginergenc}@iyte.edu.tr

2 IRIT Laboratory, Paul Sabatier University, Toulouse, France
{yin,hameurlain}@irit.fr

3 Department of Computer Engineering, Ege University, Izmir, Turkey
oguz.dikenelli@ege.edu.tr

Abstract. Traditional static query optimization is not adequate for
query federation over linked data endpoints due to unpredictable data
arrival rates and missing statistics. In this paper, we propose an adaptive
join operator for federated query processing which can change the join
method during the execution. Our approach always begins with symmet-
ric hash join in order to produce the first result tuple as soon as possible
and changes the join method as bind join when it estimates that bind
join is more efficient than symmetric hash join for the rest of the process.
We compare our approach with symmetric hash join and bind join. Per-
formance evaluation shows that our approach provides optimal response
time and has the adaptation ability to the different data arrival rates.

Keywords: Distributed query processing · Linked data · Query feder-
ation · Join methods · Adaptive query optimization

1 Introduction

Linked data, which is a way of publishing and connecting structured data on
the web, provides connected distributed data across the web. In other words,
linked data creates a global data space on the web. Link traversal and query
federation are the two approaches for querying this space on the distributed
data sources. Link traversal [1] finds the related data sources during the query
execution whereas query federation [2] selects the related data sources before
the execution. In short, link traversal has the disadvantage of not guaranteeing
complete results. For this reason, we turn our attention to query federation.

Query federation divides the query into subqueries and distributes them to
the SPARQL endpoints of the selected data sources. The intermediate results
from the data sources are aggregated and the final results are generated. These
processes are employed via a federated query engine whose objective is to min-
imize the response time and the completion time. Response time refers to the

c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 275–290, 2016.
DOI: 10.1007/978-3-319-44039-2 19

276 D. Oguz et al.

time to receive the first result tuple whereas completion time refers to the time to
receive all the result tuples. Response time and completion time include commu-
nication time, I/O time and CPU time. Since the communication time dominates
the other costs, the main objective can be stated as to minimize the communica-
tion cost. Schwarte et al. [3] use heuristics in query optimization whereas Quilitz
and Leser [4], Gortlitz and Staab [5] and Wang et al. [6] concentrate on static
optimization which produces an execution plan at query compilation time and
uses statistics to estimate the cardinality of the intermediate results. However,
federated query processing is done on the distributed data sources on the web
which causes unpredictable data arrival rates. In addition, most of the statis-
tics are missing or unreliable. For these reasons, we think that adaptive query
optimization [7] is a need in this unpredictable environment. There are only
two engines ANAPSID [8] and ADERIS [9,10] which consider adaptive query
optimization for query federation. Acosta et al. [8] propose a non-blocking join
method based on symmetric hash join [11] and Xjoin [12] whereas Lynden et al.
[10] propose a cost model for dynamically changing the join order. To the best
of our knowledge, there is not any study that exploits an adaptive join operator
that aims to reduce both response time and completion time.

As mentioned earlier, communication time has the highest effect on overall
cost and therefore join method has an important role in query optimization.
However, there is not any study which changes the join method during the exe-
cution according to the data arrival rates. In this study, we propose an adaptive
join operator for federated query processing on linked data which can change the
join method during the execution by using adaptive query optimization. Perfor-
mance evaluation shows that our proposal has both the advantage of optimal
response time and the adaptation ability to the different data arrival rates. By
this adaptation ability, completion time is minimized as well.

The rest of the paper is organized as follows: Sect. 2 introduces our approach
for both single join queries and multi-join queries. Section 3 points out the results
of our performance evaluation. Section 4 presents a brief survey of query opti-
mization methods in relational databases and query federation over linked data.
Finally, we conclude the paper and give remarks for the future work in Sect. 5.

2 Proposed Adaptive Join Operator

Bind join [13] passes the bindings of the intermediate results of the outer relation
to the inner relation in order to filter the result set and is substantially efficient
when the intermediate results are small. Symmetric hash join [11] maintains a
hash table for each relation. Thus, symmetric hash join is a non-blocking join
method which produces the first result tuple as early as possible. Equations 1
and 2 [4] are the cost functions of bind join and symmetric hash join respectively,
where R1 and R2 are relations, card(R) is the number of tuples in R, ct is the
transfer cost for receiving one result tuple, and cr is the transfer cost for sending
a SPARQL query. R2′ is the relation with the bindings of R1. card(R2′) is equal
to card(R1��R2) when we assume that the common attribute values are unique.

Adaptive Join Operator for Federated Queries over Linked Data Endpoints 277

Equation 2 is used for nested loop join in [4]. However, the cost functions of nested
loop join and symmetric hash join are the same when only communication time
is considered.

cost(R1 ��BJ R2) = card(R1) · ct + card(R1) · cr + card(R2′) · ct (1)

cost(R1 ��SHJ R2) = card(R1) · ct + card(R2) · ct + 2 · cr (2)

Deciding the join method by using a cost model before the query execution
has some problems. The join cardinality, card(R1��R2), and the data arrival
rates of relations are unknown before the query execution. Using bind join can
cause response time problem if the data arrival rate of the first relation is slow.
On the other hand, symmetric hash join can produce the first result tuple as
soon as there is a match between R1 and R2, without waiting for all tuples of
R1 to arrive. However, if R2 is very large while join cardinality is low, the query
completion time of symmetric hash join can be longer than the completion time
of bind join. We notice that, the data arrival rates of relations are known after
a short time of execution. So, the remaining completion time can be estimated.
For these reasons, we propose to set the join method as symmetric hash join
in the beginning and to use cost functions after having information about the
data arrival rates of endpoints. We decide whether to change the join method as
bind join according to the cost estimations. In order to learn the cardinalities,
we send count queries in the beginning of the execution. As mentioned before,
the communication time dominates the I/O time and CPU time. So the cost of
count queries is negligible. In brief, our approach is based on the idea of changing
the join method during the query execution according to the data arrival rates.

2.1 Adaptive Join Operator for Single Join Queries

Adaptive join operator for single join queries is depicted in Algorithm1. Firstly,
we send count queries to the endpoints of datasets R1 and R2 in order to learn
their cardinalities. We always begin with symmetric hash join. During the execu-
tion, if all the tuples from one dataset arrive and the tuples from the other dataset
continue to arrive, we estimate the remaining time of continuing with symmetric
hash join and switching to bind join. We decide the join method according to
these cost estimations. If we switch to bind join, we emit the duplicate results
of symmetric hash join and bind join. The join cardinality estimation formula
and the remaining time estimation formulas will be presented in the following
subsections.

Join Cardinality and Remaining Time Estimations. In this subsection, we
introduce our join cardinality estimation formula and remaining time estimation
formulas for symmetric hash join and bind join. We use the estimated join cardi-
nality in order to estimate the remaining times. Equation 3 is our join cardinality
estimation formula where |Ri��Rj arrived| is the cardinality of Ri��Rj arrived, |Rj |
is the cardinality of Rj , and |Rj arrived| is the cardinality of arrived tuples of Rj .

278 D. Oguz et al.

Algorithm 1. Adaptive Join Operator for Single Join Queries
1 |R1| ←− cardinality of R1 received from the COUNT query
2 |R2| ←− cardinality of R2 received from the COUNT query
3 |R1arrived| ←− cardinality of arrived R1 tuples
4 |R2arrived| ←− cardinality of arrived R2 tuples
5 Set JOIN method as Symmetric Hash Join (SHJ)
6 while (|R1arrived| < |R1| or |R2arrived| < |R2|) do
7 if (|R1arrived| == |R1| and |R2arrived| < |R2| or

|R2arrived| == |R2| and |R1arrived| < |R1|) then
8 ERTSHJ ←− estimated remaining time if continued using SHJ
9 ERTBJ ←− estimated remaining time if switched to Bind Join (BJ)

10 if (ERTSHJ > ERTBJ) then
11 Set JOIN method as BJ
12 Emit the duplicate results of SHJ and BJ

13 end

14 end

15 end

We use this formula in order to calculate the estimated cardinality of Ri��Rj

when all the tuples of Ri arrive. We expect that there is a directional proportion
between the join cardinality and number of tuples of Rj .

JoinCardinalityestimation =
|Ri��Rj arrived| · |Rj |

|Rj arrived| (3)

As stated earlier, when all the tuples of Ri arrive, the algorithm estimates
the remaining time if adaptive join operator continues with symmetric hash join
and the remaining time if it changes the join method as bind join. We have an
idea about the data arrival rate of Rj during the execution, so the estimation is
possible. Equation 4 shows the estimated remaining time if adaptive join operator
continues with symmetric hash join where ERTSHJ is the estimated remaining
time if it continues with symmetric hash join, |Rj | is the cardinality of Rj ,
|Rj arrived| is the cardinality of arrived tuples of Rj , and tRj arrived is the time
for |Rj arrived| tuples to arrive.

ERTSHJ =
(|Rj |−|Rj arrived|) · tRj arrived

|Rj arrived| (4)

Equation 5 shows the estimated remaining time, ERTBJ , if the algo-
rithm switches to bind join where |Ri| is the cardinality of Ri, tSQ is
the time for sending one query to a SPARQL endpoint (≈ tRj arrived

|Rj arrived|),
|JoinCardinalityestimation| is the estimated cardinality of Ri��Rj , |Rj arrived| is
the cardinality of arrived tuples of Rj , and tRj arrived is the time for |Rj arrived|
tuples to arrive. The estimated remaining time for bind join includes sending all
tuples of Ri to the endpoint of Rj and the retrieving time of Ri��Rj from the
endpoint of Rj .

Adaptive Join Operator for Federated Queries over Linked Data Endpoints 279

ERTBJ = (|Ri| · tSQ) +
|JoinCardinalityestimation| · tRj arrived

|Rj arrived| (5)

2.2 Adaptive Join Operator for Multi-join Queries

Different from the single join queries, we use multi-way symmetric hash join [14]
in the beginning. The algorithm for multi-join queries is depicted in Algorithm2.
When all tuples from a relation arrive, called Ri, the algorithm estimates the
remaining time if adaptive join operator switches to bind join for each relation
which has a common attribute with Ri. The algorithm chooses the relation
with minimum estimated bind join cost, called Rj , and compares the estimated
remaining time if it changes the join method as bind join for Ri��Rj with the
estimated remaining time if the operator continues with multi-way symmetric
hash join for all relations. The above procedure is repeated every time a relation
is completely received.

Algorithm 2. Adaptive Join Operator for Multi-join Queries
1 S ←− {R1, R2, R3, ..., Rn}
2 MIN ERTBJ ←− ∞
3 BJ Candidate ←− Φ
4 Start MSHJ(S)
5 while (S is not empty) do
6 if (all the tuples of Ri arrive) then
7 ERTMSHJ ←− ERT if continued with MSHJ
8 foreach Rj having a common attribute with Ri do
9 ERTBJ Rij ←− ERT if switched to BJ for Ri and Rj

10 if (ERTBJ Rij < MIN ERTBJ) then
11 MIN ERTBJ ←− ERTBJ Rij

12 BJ Candidate ←− {Ri, Rj}
13 end

14 end
15 if (MIN ERTBJ < ERTMSHJ) then

16 Ŕi ←− BJ(Ri, Rj)

17 S ←− S − BJ Candidate + {Ŕi}
18 Run MSHJ(S) and eliminate duplicate results

19 end

20 end

21 end

Join Cardinality Estimation and Remaining Time Estimations. We
use the same formula to calculate the join cardinality estimation for single join
queries and multi-join queries. Thus, we use Eq. 3 for join cardinality estimation
for multi-join queries as well. We need this estimation in order to calculate the

280 D. Oguz et al.

estimated remaining time if adaptive join operator switches to bind join or if the
algorithm continues with multi-way symmetric hash join.

Equation 6 shows the estimated remaining time if adaptive join operator
uses bind join for Ri and Rj , and uses multi-way symmetric hash join for the
other relations which are involved in the query. |Ri| is the cardinality of Ri, tSQ

is the time for sending one query to the SPARQL endpoint containing Rj(≈
tRj arrived

|Rj arrived|), |Ri��Rj | is the estimated cardinality of Ri��Rj , |Rj arrived| is the
cardinality of arrived tuples of Rj , tRj arrived is the time for |Rj arrived| tuples
to arrive, ERTrest is the estimated remaining time for the rest of other relations
to arrive and it is calculated by using Eq. 7, where k ∈ (1, ..., n) and k �= i and
k �= j. Lastly, Eq. 7 shows the estimated remaining time if adaptive join operator
continues with multi-way symmetric hash join. Completion time is equal to the
maximum completion time of the relations which compose the query.

ERTBJ Rij
= max

(
(|Ri| · tSQ +

|Ri��Rj | · tRj arrived

|Rj arrived|);ERTrest

)
(6)

ERTMSHJ = max
((|Rk| − |Rk arrived|) · tRk arrived

|Rk arrived|
)

where k ∈ (1, ..., n) (7)

3 Performance Evaluation

In this section, we present the evaluation results on the performances of sym-
metric hash join/multi-way symmetric hash join, bind join and adaptive join
operator for single join queries and for multi-join queries. The reason of compar-
ing our proposal with symmetric hash join and bind join is as follows. Bind join
is the most popular join method in query federation engines and symmetric hash
join provides efficient response time by being a non-blocking join method [15]. As
stated in the previous sections, the goal of the query optimization in query feder-
ation is to minimize the response time and the completion time. For this reason,
we use response time and completion time as the evaluation metrics. Query cost
in distributed environment is mainly defined by communication cost. In order to
simulate the real network conditions and consider only the communication cost,
we conducted our experiments in the network simulator ns-3 1.

We assume that the size of all queries is the same and each result tuple is
considered to have the same size, as well. Each query size is accepted as 500
bytes whereas each result tuple size is employed as 250 bytes. Each count query
size is assumed as 750 bytes and the message size is set to 100 tuples. Each
selectivity factor is 0.5/

(
max(cardinality of R1, cardinality of R2)

)
[16]. We set

the low, medium and high cardinality as 1000 tuples, 5000 tuples and 10000
tuples respectively.

1 https://www.nsnam.org/.

https://www.nsnam.org/

Adaptive Join Operator for Federated Queries over Linked Data Endpoints 281

3.1 Performance Evaluation for Single Join Queries

In this subsection, we compare adaptive join operator (AJO) with symmetric
hash join (SHJ) and bind join (BJ) in two cases. We aim to show the impact of
data sizes in the first case whereas we focus on the effect of different data arrival
rates in the second case.

Impact of Data Sizes. The behaviors of the SHJ, BJ and AJO are analyzed
when the data arrival rates of both endpoints are fixed to 0.5 Mbps and the
delays to 10 ms while the data sizes of R1 and R2 are changed. In order to
analyze all conditions, we evaluated the response time and the completion time
when the data sizes of R1 and R2 are low-low (LL); low-medium (LM); low-high
(LH); medium-low (ML); medium-medium (MM); medium-high (MH); high-low
(HL); high-medium (HM) and high-high (HH) respectively.

As Fig. 1a shows, BJ has the worst response time for all conditions whereas
SHJ and AJO behave similar to each other. As the data sizes of R1 increases,
the response time of BJ increases as well due to waiting for the arrival of all
results of R1 and sending them to the endpoint of R2. On the other hand, SHJ
and AJO can generate the first result tuple as soon as there is a match between
R1 and R2, without waiting for all tuples of R1 to arrive. As shown in Fig. 1b,
the completion time of BJ is shorter than others when the cardinality of R1 is
low and the cardinality of R2 is medium or high. On the other hand, SHJ and
AJO perform better than BJ in seven of nine conditions. AJO’s completion time
is the best when the cardinality of R1 is medium or high and the cardinality of
R2 is low. Also, AJO’s completion time is faster than SHJ’s when the cardinality
of R1 is low and the cardinality of R2 is medium or high.

The speedup2 values between AJO and SHJ can be seen in Fig. 1c. Although
they have almost the same response time for all cases, the completion time of
AJO is 3 times as fast compared to SHJ when one of the relation’s cardinality is
high and the other one’s is low. As shown in Fig. 1d, AJO can provide speedup in
response time from 5.9 times to 45.5 times compared to BJ. AJO also provides
speedup in completion time up to 6 times except two cases.

Impact of Data Arrival Rates. In this case, we fixed the data arrival rate
of R1 to 2 Mbps and changed the data arrival rate of R2. We conducted the
simulations for two different cardinality options: (i) low cardinality of R1 and
high cardinality of R2; (ii) high cardinality of R1 and low cardinality of R2.

Low Cardinality of R1 and High Cardinality of R2. As Fig. 2a shows, the
response time of BJ is always longer than SHJ and AJO. The gap between
the response times of BJ and the others increases when the data arrival rate of
R2 gets slower. As shown in Fig. 2b, the completion time of BJ is better than
2 Speedup of x compared to y (response time) = response time of y / response time of x

Speedup of x compared to y (completion time) = completion time of y / completion
time of x.

282 D. Oguz et al.

(a) Response time (b) Completion time

(c) Speedup of AJO compared to SHJ (d) Speedup of AJO compared to BJ

Fig. 1. Data arrival rates of R1 and R2 are fixed

others for all conditions because the first relation’s cardinality is low. As the
data arrival rate of the second relation gets faster, the difference between BJ
and others decreases. The completion time of AJO is always faster than SHJ.

As shown in Fig. 2c, compared to SHJ, AJO has almost the same response
time, however it can provide speedup in completion time up to 3.4 times.
Although the speedup decreases while the second relation’s data arrival rate
increases, we expect it to be nearly 1 in the worst case. Compared to BJ, AJO
degrades completion time up to 0.8 times, however it can improve the response
time up to 4.9 times, as shown in Fig. 2d.

High Cardinality of R1 and Low Cardinality of R2. The results observed from
Fig. 3a are similar to the results in Fig. 2a. Since the cardinality of the first
relation is high in this case, response time of BJ is dramatically longer than SHJ
and AJO. The response times of SHJ and AJO are nearly the same.

As shown in Fig. 3b, the completion times of SHJ and AJO are shorter than
the completion time of BJ in all of the conditions because the first relation’s
cardinality is high. AJO performs better than SHJ in all the cases. Compared to
SHJ, AJO has almost the same response time, however the speedup in completion
time varies from 1.4 times to 2.2 times as shown in Fig. 3c. Compared to BJ,
AJO improves both the response time and the completion time as illustrated
in Fig. 3d. The speedup in response time increases from 11 times to 34.3 times
while the speedup in completion time varies from 2.8 to 6.2 times.

Adaptive Join Operator for Federated Queries over Linked Data Endpoints 283

(a) Response time (b) Completion time

(c) Speedup of AJO compared to SHJ (d) Speedup of AJO compared to BJ

Fig. 2. Data sizes of R1 and R2 are fixed with card(R1) � card(R2)

(a) Response time (b) Completion time

(c) Speedup of AJO compared to SHJ (d) Speedup of AJO compared to BJ

Fig. 3. Data sizes of R1 and R2 are fixed with card(R1) � card(R2)

284 D. Oguz et al.

3.2 Performance Evaluation for Multi-Join Queries

In this subsection, we compare AJO with multi-way symmetric hash join (MSHJ)
and BJ when there are three relations in the query. A query example that we
use in our experiments is shown below. R1 (service1) and R2 (service2) have a
common attribute, ?student, R2 and R3 (service3) have a common attribute,
?course.

SELECT ?student ?level ?course ?instructorName WHERE {

SERVICE <:service1> { ?student :name :studentName .

?student :level ?level . }

SERVICE <:service2> { ?student :enroll ?course . }

SERVICE <:service3> { ?course :instructor ?instructorName . }

}

Impact of Data Sizes. We fixed the data arrival rates of all relations to
0.5 Mbps and the delays to 10 ms. We conducted our experiments when the data
sizes of R1, R2, R3 are low-low-high (LLH); low-medium-high (LMH); and low-
high-high (LHH).

As Fig. 4a shows, the response times of MSHJ and AJO are almost the same
whereas BJ’s response time is substantially slower. BJ’s completion time is the
fastest as illustrated in Fig. 4b, because the first relation’s cardinality is low.
However, AJO’s completion time is much better than MSHJ and close to BJ’s.
BJ’s both response time and completion time would increase, if the first relation’s
cardinality were medium or high.

As shown in Fig. 4c, compared to MSHJ, AJO has almost the same response
time, however it can provide speedup in completion time up to 2.3 times. Speedup
values between AJO and BJ can be seen in Fig. 4d Compared to BJ, AJO
degrades completion time up to 0.85 times, however it can improve the response
time up to 5.75 times.

Impact of Data Arrival Rates. In order to show the impact of data arrival
rates on MSHJ, BJ and AJO, we fixed the data arrival rates of R1 and R3 to
2 Mbps and changed the data arrival rate of R2. We conducted the simulations
for two different cardinality options: (i) low cardinality of R1, high cardinality of
R2, and low cardinality of R3 (LHL); (ii) low cardinality of R1, high cardinality
of R2 and R3 (LHH).

Low Cardinality of R1, High Cardinality of R2, Low Cardinality of R3. Figure 5a.
shows that BJ performs worser response time than MSHJ and AJO in this case
as well. As can be seen from Fig. 5b, BJ’s completion time is faster than MSHJ
because the first relation’s cardinality is low. On the other hand, AJO performs
the best in seven of nine cases due to having the adaptation ability.

Compared to MSHJ, AJO has almost the same response time but it can pro-
vide speedup in completion time up to 3.4 times as shown in Fig. 5c. Compared

Adaptive Join Operator for Federated Queries over Linked Data Endpoints 285

(a) Response time (b) Completion time

(c) Speedup of AJO compared to MSHJ (d) Speedup of AJO compared to BJ

Fig. 4. Data arrival rates of R1, R2 and R3 are fixed

(a) Response time (b) Completion time

(c) Speedup of AJO compared to MSHJ (d) Speedup of AJO compared to BJ

Fig. 5. Data sizes of R1, R2 and R3 are fixed with card(R1) = card(R3) � card(R2)

286 D. Oguz et al.

to BJ, AJO can improve the response time and the completion time up to 5.8
times and 1.2 times respectively as illustrated in Fig. 5d.

Low Cardinality of R1, High Cardinality of R2, High Cardinality of R3. The
results observed from Fig. 6a are similar to the results in Fig. 5a. BJ has the worst
response time again, whereas MSHJ and AJO have almost the same response
time. However, as shown in Fig. 5b, BJ’s completion time is better than MSHJ’s
completion time which has the disadvantage of waiting all the tuples of R2 and
R3. On the other hand, AJO performs much better than MSHJ. Its completion
time is close to BJ’s completion time because it can change the join method
when it decides that is more efficient.

The speedup values between AJO and MSHJ can be seen from Fig. 6c. Com-
pared to MSHJ, AJO has almost the same response time but it can provide
speedup in completion time up to 3.4 times. Compared to BJ, AJO degrades
the completion time up to 0.8 times, however it can improve the response time
up to 3.5 times as shown in Fig. 6d.

(a) Response time (b) Completion time

(c) Speedup of AJO compared to MSHJ (d) Speedup of AJO compared to BJ

Fig. 6. Data sizes of R1, R2 and R3 are fixed with card(R1) � card(R2) = card(R3)

4 Related Work

Adaptive query optimization [7] responds to the unforeseen variations of run-
time environment to provide a better response time or more efficient CPU uti-
lization. In our concept, the run-time environment is on the web and the main

Adaptive Join Operator for Federated Queries over Linked Data Endpoints 287

objective is to minimize the response time and the completion time. Thus, adap-
tive query optimization is a need to manage the changing conditions of the
web. Although, adaptive query optimization is a new research area for linked
data, it has been studied in detail in relational databases. Evolutionary methods
which provide inter-operator adaptation, focus on generating plans that can be
switched during execution according to delays or estimation errors. Query scram-
bling [17], mid-query re-optimization [18], Tukwilla/ECA rules [19], progressive
query optimization [20–22] and proactive re-optimization [23] are some known
examples of evolutionary methods. On the other hand, revolutionary methods
provide intra-operator adaptation. First group of intra-operator methods are
adaptive operators like double hash join [19], XJoin [12] and mobile join [24,25],
where the operator itself is able to adapt its way of execution according to varia-
tions encountered during its execution. Second group of intra-operator methods
optimize the query processing in tuple level [26–31].

Another work for distributed database environment is also quite relevant
to our work. Khan et al. [32] propose an adaptive probing mechanism to have
statistics about the data and choose the optimal execution plan during query
execution. Compared to our work, the probe phase of their method delays the
response time since the first result tuple is generated before the end of probing
and decision for adaptability.

When we look at the adaptive methods of query federation engines on linked
data, we see only two adaptive methods, intra-operator adaptivity of ANAP-
SID [8] and inter-operator adaptivity of ADERIS [10]. ANAPSID focuses on
the problem of bursty data traffic and endpoint unavailability. In order to over-
come these problems, ANAPSID implements a non-blocking join method which
is based on symmetric hash join [11] and XJoin [12]. The proposed method
continues to produce new results when one of the endpoints becomes blocked.
ADERIS generates predicate tables for each predicate which cover the related
subjects and objects of that predicate. The first version of ADERIS [9] joins two
predicate tables as they become complete while the other predicate tables are
being generated. In the second version, Lynden et al. [10] propose an adaptive
cost model to determine the join order. In other words, ADERIS uses adaptive
query optimization by changing the join order during the execution. In addition
to these studies, Basca and Bernstein [33] propose a technique which gathers
statistics on the fly before query execution. It produces only the first k results.
In addition, Verborgh et al. [34] and Acosta et al. [35] focus on adaptive query
optimization for triple pattern fragments. However, triple pattern fragments are
beyond the scope of this paper.

Intra-operator adaptivity of ANAPSID and inter-operator adaptivity of
ADERIS have showed that adaptive query optimization is well suited to unpre-
dictable characteristics of linked data environment. Although they provide adap-
tive solutions for query federation, none of them use adaptive query optimiza-
tion in order to change the join method during the execution according to the
data arrival rates to minimize both response time and completion time at the
same time.

288 D. Oguz et al.

5 Conclusion

In this paper, we presented an adaptive join operator for single join queries and
multi-join queries which aims to minimize both response time and completion
time. It begins with symmetric hash join in order to provide optimal response
time and changes the join method to bind join when it decides that bind join is
more efficient than symmetric hash join for the rest of the query.

The results of the performance evaluation have shown the efficiency of the
proposed adaptive join operator. It has almost the same response time with
symmetric hash join and multi-way symmetric hash join, but it provides faster
completion time. Compared to bind join, adaptive join operator performs sub-
stantially better with respect to the response time and can also improve the
completion time. Bind join can provide slightly better completion time than
adaptive join operator when the first relation’s cardinality is low.

In conclusion, adaptive join operator provides both optimal response time
and completion time for single join queries and multi-join queries. It performs
quite well both in fixed and different data arrival rates. We plan to make exper-
iments with more joins. We are also motivated to consider the case where a
relation is distributed over multiple sources.

Acknowledgment. This work is partially supported by The Scientific and Techno-
logical Research Council of Turkey (TUBITAK).

References

1. Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL queries over the web of
linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309.
Springer, Heidelberg (2009)

2. Görlitz, O., Staab, S.: Federated data management and query optimization for
linked open data. In: Vakali, A., Jain, L.C. (eds.) New Directions in Web Data
Management 1. SCI, vol. 331, pp. 109–137. Springer, Heidelberg (2011)

3. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)

4. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

5. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID
descriptions. In: Proceedings of the Second International Workshop on Consuming
Linked Data (COLD 2011), CEUR Workshop Proceedings, Bonn, Germany, 23
October 2011, vol. 782 (2011). http://CEUR-WS.org

6. Wang, X., Tiropanis, T., Davis, H.C.: LHD: optimising linked data query process-
ing using parallelisation. In: Proceedings of the WWW 2013 Workshop on Linked
Data on the Web, Rio de Janeiro, Brazil, 14 May 2013 (2013)

7. Deshpande, A., Ives, Z., Raman, V.: Adaptive query processing. Found. Trends
Databases 1(1), 1–140 (2007)

http://CEUR-WS.org

Adaptive Join Operator for Federated Queries over Linked Data Endpoints 289

8. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an
adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011)

9. Lynden, S., Kojima, I., Matono, A., Tanimura, Y.: Adaptive integration of distrib-
uted semantic web data. In: Kikuchi, S., Sachdeva, S., Bhalla, S. (eds.) DNIS 2010.
LNCS, vol. 5999, pp. 174–193. Springer, Heidelberg (2010)

10. Lynden, S., Kojima, I., Matono, A., Tanimura, Y.: ADERIS: an adaptive query
processor for joining federated SPARQL endpoints. In: Meersman, R., et al. (eds.)
OTM 2011, Part II. LNCS, vol. 7045, pp. 808–817. Springer, Heidelberg (2011)

11. Wilschut, A.N., Apers, P.M.G.: Dataflow query execution in a parallel main-
memory environment. In: Proceedings of the First International Conference on
Parallel and Distributed Information Systems. PDIS 1991, pp. 68–77. IEEE Com-
puter Society Press (1991)

12. Urhan, T., Franklin, M.J.: XJoin: a reactively-scheduled pipelined join operator.
IEEE Data Eng. Bull. 23(2), 27–33 (2000)

13. Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing queries across
diverse data sources. In: Proceedings of the 23rd International Conference on Very
Large Data Bases, VLDB 1997, pp. 276–285. Morgan Kaufmann Publishers Inc.
(1997)

14. Viglas, S.D., Naughton, J.F., Burger, J.: Maximizing the output rate of multi-
way join queries over streaming information sources. In: Proceedings of the 29th
International Conference on Very Large Data Bases, VLDB 2003, vol. 29, pp. 285–
296. VLDB Endowment (2003)

15. Oguz, D., Ergenc, B., Yin, S., Dikenelli, O., Hameurlain, A.: Federated query
processing on linked data: a qualitative survey and open challenges. Knowl. Eng.
Rev. 30(5), 545–563 (2015)

16. Shekita, E.J., Young, H.C., Tan, K.L.: Multi-join optimization for symmetric mul-
tiprocessors. In: Proceedings of the 19th International Conference on Very Large
Data Bases, VLDB 1993, pp. 479–492. Morgan Kaufmann Publishers Inc. (1993)

17. Amsaleg, L., Franklin, M.J., Tomasic, A.: Dynamic query operator scheduling for
wide-area remote access. Distrib. Parallel Databases 6(3), 217–246 (1998)

18. Kabra, N., DeWitt, D.J.: Efficient mid-query re-optimization of sub-optimal query
execution plans. SIGMOD Rec. 27(2), 106–117 (1998)

19. Ives, Z.G., Florescu, D., Friedman, M., Levy, A., Weld, D.S.: An adaptive query
execution system for data integration. SIGMOD Rec. 28(2), 299–310 (1999)

20. Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H., Cilimdzic, M.:
Robust query processing through progressive optimization. In: Proceedings of the
2004 ACM SIGMOD International Conference on Management of Data, SIGMOD
2004, pp. 659–670. ACM (2004)

21. Kache, H., Han, W.S., Markl, V., Raman, V., Ewen, S.: POP/FED: progressive
query optimization for federated queries in DB2. In: Proceedings of the 32nd Inter-
national Conference on Very Large Data Bases, VLDB 2006, pp. 1175–1178. VLDB
Endowment (2006)

22. Han, W.S., Ng, J., Markl, V., Kache, H., Kandil, M.: Progressive optimization in
a shared-nothing parallel database. In: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2007, pp. 809–820.
ACM (2007)

23. Babu, S., Bizarro, P., DeWitt, D.: Proactive re-optimization. In: Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data, SIGMOD
2005, pp. 107–118. ACM (2005)

290 D. Oguz et al.

24. Arcangeli, J., Hameurlain, A., Migeon, F., Morvan, F.: Mobile agent based self-
adaptive join for wide-area distributed query processing. J. Database Manag.
(JDM) 15(4), 25–44 (2004)

25. Ozakar, B., Morvan, F., Hameurlain, A.: Mobile join operators for restricted
sources. Mob. Inf. Syst. 1(3), 167–184 (2005)

26. Avnur, R., Hellerstein, J.M.: Eddies: continuously adaptive query processing. SIG-
MOD Rec. 29(2), 261–272 (2000)

27. Raman, V., Deshpande, A., Hellerstein, J.M.: Using state modules for adaptive
query processing. In: Proceedings of the 19th International Conference on Data
Engineering, 5–8 March 2003, Bangalore, India, pp. 353–364 (2003)

28. Deshpande, A.: An initial study of overheads of eddies. SIGMOD Rec. 33(1), 44–49
(2004)

29. Deshpande, A., Hellerstein, J.M.: Lifting the burden of history from adaptive query
processing. In: Proceedings of the Thirtieth International Conference on Very Large
Data Bases, VLDB 2004, vol. 30, pp. 948–959. VLDB Endowment (2004)

30. Bizarro, P., Babu, S., DeWitt, D., Widom, J.: Content-based routing: different
plans for different data. In: Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB 2005, pp. 757–768. VLDB Endowment (2005)

31. Zhou, Y., Ooi, B.C., Tan, K., Tok, W.H.: An adaptable distributed query process-
ing architecture. Data Knowl. Eng. 53(3), 283–309 (2005)

32. Khan, L., McLeod, D., Shahabi, C.: An adaptive probe-based technique to optimize
join queries in distributed internet databases. J. Database Manag. 12(4), 3–14
(2001)

33. Basca, C., Bernstein, A.: Avalanche: putting the spirit of the web back into seman-
tic web querying. In: Proceedings of the ISWC 2010 Posters & Demonstrations
Track: Collected Abstracts, Shanghai, China, 9 November 2010 (2010)

34. Verborgh, R., et al.: Querying datasets on the web with high availability. In:
Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 180–196. Springer,
Heidelberg (2014)

35. Acosta, M., Vidal, M.E.: Networks of linked data eddies: an adaptive web query
processing engine for RDF data. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS,
vol. 9366, pp. 111–127. Springer International Publishing, Heidelberg (2015)

Limitations of Intra-operator Parallelism
Using Heterogeneous Computing Resources

Tomas Karnagel(B), Dirk Habich, and Wolfgang Lehner

Database Technology Group, Technische Universität Dresden, Dresden, Germany
{tomas.karnagel,dirk.habich,wolfgang.lehner}@tu-dresden.de

Abstract. The hardware landscape is changing from homogeneous
multi-core systems towards wildly heterogeneous systems combining dif-
ferent computing units, like CPUs and GPUs. To utilize these hetero-
geneous environments, database query execution has to adapt to cope
with different architectures and computing behaviors. In this paper, we
investigate the simple idea of partitioning an operator’s input data and
processing all data partitions in parallel, one partition per computing
unit. For heterogeneous systems, data has to be partitioned according to
the performance of the computing units. We define a way to calculate
the partition sizes, analyze the parallel execution exemplarily for two
database operators, and present limitations that could hinder significant
performance improvements. The findings in this paper can help system
developers to assess the possibilities and limitations of intra-operator par-
allelism in heterogeneous environments, leading to more informed deci-
sions if this approach is beneficial for a given workload and hardware
environment.

Keywords: Intra-operator parallelism · Heterogeneous systems ·
Dataflow parallelism · Data partitioning · GPU

1 Introduction

In the recent years, hardware changes shaped the database system architecture
by moving from sequential execution to parallel multi-core execution and from
disk-centric systems to in-memory systems. At the moment, the hardware is
changing again from homogeneous CPU systems towards heterogeneous systems
with many different computing units (CUs), mainly to reduce the energy con-
sumption to avoid Dark Silicon [5] or to increase the system’s performance since
homogeneous systems reached several physical limits in scaling [5].

The current challenge for the database community is to find ways to uti-
lize these systems efficiently. Heterogeneous systems combine different CUs, like
CPUs and GPUs, with different architectures, memory hierarchies, and inter-
connects, leading to different execution behaviors. Homogeneous systems can be
utilized by using uniformly partitioned data for all available CUs. The original
idea was presented in GAMMA [4] as dataflow parallelism, where data is split

c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 291–305, 2016.
DOI: 10.1007/978-3-319-44039-2 20

292 T. Karnagel et al.

and processed on multiple homogeneous processors. There, data partitioning is
easy, while skew in the data values, data transfers, and result merging already
complicate the approach.

We want to evaluate the same approach to heterogeneous systems in a fixed
scenario. Different from homogeneous systems, CUs in heterogeneous systems
have different execution performances depending on the operator and data sizes.
Therefore, we first define a way to find the ideal data partitioning according
to the different execution performances of the given CUs. Afterwards, the par-
titioned data is used to execute an operator, which computes a partial result.
Finally, the partial results of all CUs have to be merged. In this paper, we
analyze this approach for two operators, selection and sorting, on two different
heterogeneous systems to evaluate the advantages and disadvantages. We present
performance insides as well as occurring limitation to intra-operator parallelism
in heterogeneous environments. As a result, we show that the actual potential
of improvements is small, while the limitations and overheads can be significant,
sometimes leading to an even worse performance than single-CU execution.

In Sect. 2, we present intra-operator parallelism in more detail, before pre-
senting the operators and hardware environments for our analysis in Sect. 3.
Afterwards, we analyze the selection operator in Sect. 4 and the sort operator in
Sect. 5, before presenting learned lessons in Sect. 6.

2 Intra-operator Parallelism

As intra-operator parallelism in heterogeneous environments, we define the goal
of minimizing an operator’s execution by using all available heterogeneous com-
pute resources. This means dividing input data into partitions, executing the
operator on the given CUs, and merging the result in the end.

In the following, we discuss the general idea, an approach to find ideal par-
tition sizes, and the possible limitations of intra-operator parallelism.

Operator

Data on Host Computing Unit Data on Host

1

2

3 3 1 Full Input Data

2 Final Result

3 Data Transfer or
Direct Memory Access

Fig. 1. Operator execution on a single computing unit.

Limitations of Intra-operator Parallelism Using Heterogeneous Computing 293

2.1 General Idea

Our starting point is the general operator execution on an arbitrary computing
unit as shown in Fig. 1. We assume that the input data is initially stored in
the system’s main memory and that output data has to be stored in the same.
Therefore, all our assumptions and tests include input and output transfer, if the
CU is not accessing the main memory directly. We also assume that the operator
implementation is inherently parallel and utilizes the complete CU, which should
normally be the case when the operator is implemented with CUDA or OpenCL.

Having a system with heterogeneous resources, parallel execution between
multiple CUs becomes possible. At this point, we focus on single operator exe-
cution, therefore, we want to execute the same operator concurrently on multiple
CUs, each CU working on its own data partition. During operator execution, we
want to avoid communication overhead through multiple data exchanges, so we
choose an approach, where we partition the input data, execute the operator
atomically on each CU with the given partitions, and merge the result in the
end. Figure 2 illustrates this approach for two CUs.

While this approach is well studied for many operators in homogeneous sys-
tems, where multiple CPU cores or multiple CPU sockets are used, there is not
much information about heterogeneous systems. In a homogeneous setup, the
input data can be divided uniformly, since every CU needs the same amount
of execution time. In a heterogeneous system, different CUs perform differently,
so data has to be divided differently and multiple limitations could hinder the
execution. Mayr et al. [9] looked at intra-operator parallelism for heterogeneous
CPU clusters with the goal to prevent underutilization of available resources.
They also present a detailed overview of related work. We, however, look at het-
erogeneity within one node with CUs like CPUs and GPUs, leading to different
approaches and limitations.

Operator

Operator

Data on Host Data on Host
Sync

Merge

1

1

2

2

2

2

2

3

3

4

1 Data Partition 2 Data Transfer or
Direct Memory Access

3 Partial Result 4 Final Result

Computing Unit 1

Computing Unit 2

Fig. 2. Operator execution on two computing units.

294 T. Karnagel et al.

2.2 Determining the Partition Size

In a first assessment, we want to look at the potential of intra-operator paral-
lelism together with possible ways to determine the best data partition size.

The intuitive approach would be: when both CUs execute an operator with
the same runtime, then the data is divided by two (50/50) and the potential
speedup could be 2x. However, heterogeneous CUs usually show different exe-
cution behavior for an operator. There, even a slower CU can help improving
the overall runtime by processing a small part of the work, however, different
scenarios need to be considered. Figure 3 shows three scenarios of heterogeneous
execution. The execution time for different data sizes is given for cuA and cuB.
The goal for all three scenarios is to execute an operator with 80 MB of data
and to partition the input data to achieve the best combined runtime.

0 20 40 60 80

data size (MB)

ru
nt

im
e

(s
ec

)

0

20

40

60

80

100

(a) 1.74x speedup (42/58)

0 20 40 60 80

data size (MB)

ru
nt

im
e

(s
ec

)

0

20

40

60

80

100

(b) no speedup (0/100)

0 20 40 60 80

data size (MB)

ru
nt

im
e

(s
ec

)

0

20

40

60

80

100

(c) 2.25x speedup (46/54)

A
B

A

B

A
B

Fig. 3. Given two CUs (A, B) to simulate execution behavior in different setups. In
this example, 80 MB need to be partitioned on cuA and cuB.

In Fig. 3a, both CUs show equal execution time at 80 MB, however, the best
partition is not 50/50, but 42/58. This is caused by the slope of the execu-
tion behavior, resulting in different execution times for smaller data sizes. For
example, when dividing 50/50, cuA runs for 50 s and cuB for 40 s, therefore,
the concurrent execution would be 50 s (the maximum of both single-CU execu-
tions). This partitioning is not ideal. The goal is to achieve the same runtime
on both CUs, which is 46 s when using 42/58 as partitioning. The speedup com-
pared to a single-CU execution is 1.74x. Please note, for the remainder of the
paper, speedups are always relative to the best single-CU execution.

Figure 3b shows a similar scenario with a different outcome. Here no data
partition size is beneficial to improve the best single-CU execution. Parallel
execution has no potential to improve the runtime and should be avoided. On
the other side, if the execution behavior is exponential (Fig. 3c) then larger
improvements are possible.

The question is how to calculate the best data partition size for heterogeneous
CUs. Assuming we have k different CUs and we know the execution time (execk)

Limitations of Intra-operator Parallelism Using Heterogeneous Computing 295

of an operator for different data sizes (partitionk), we can calculate the total
execution time (exectotal) for a given input data size (data size) by:

exectotal = max
1≤k≤n

(execk(partitionk))

with
∑

1≤k≤n

partitionk = input data size

Finally, we have to minimize exectotal by adjusting the partition sizes
(partitionk) to achieve the best result. Essentially, this function finds the par-
tition sizes, where the execution for multiple CUs takes the same time. If that
is not possible, this function also allows single-CU execution if one partition
size is equal to input data size. Execution times for different data sizes can be
collected through previous test runs or can be estimated by using estimation
models [8].

2.3 Possible Limitations

While the presented function calculates ideal data partition sizes for ideal parallel
execution, there are many factors involved with parallel execution that could
potentially increase the overall runtime:

1. Under Utilization. For small data sizes, an operator might not be parallel
enough to fully utilize a CU, e.g., highly parallel CUs like GPU and Xeon
Phi, leading to slow execution. In that case, executing the operator with less
input data leads to only small runtime reductions (e.g., cuA in Fig. 3b).

2. Synchronization Overhead. Parallel executions have to be synchronized in
order to merge their results (as shown in Fig. 2). This synchronization could
lead to delays and communication overheads.

3. Merge Overhead. After synchronizing the executions, the intermediate
results have to be merged to generate a final result. This merge step strongly
depends on the operator. Some operators, like selection or projection, do not
have a time consuming merge step, while others, like joins or sortings, rely on
complex compute intensive merges, reducing the potential of intra-operator
parallelism significantly.

4. Shared HW Resources. CUs within one system are most likely to use
shared resources that could become a bottleneck when using all CUs simulta-
neously. This could be interconnects to the host memory, the memory or DMA
controller, or computing resources. When a workload produces contentions on
these resources, the performance might suffer.

5. Thermal Budget. Modern CUs reduce their frequency, and therefore their
performance, when a certain temperature threshold is reached. This is usually
caused by the CU itself, however, the temperature can also increase indirectly
through other CUs. The best example are tightly-coupled systems, where it
is possible through parallel execution, that both CUs produce enough heat
to force each other to reduce the frequency.

296 T. Karnagel et al.

With the possible limitations in mind, we analyze the parallel intra-operator
execution of two operators in two different heterogeneous systems.

3 Operator Implementation and Hardware Setup

To evaluate the potential and limitations of intra-operator parallelism in het-
erogeneous environments, we use two operators with different characteristics in
execution time, result size, and merging overhead. In detail, we choose a selec-
tion operator and a sort operator, however, our findings can be applied to other
operators by anticipating possible overheads, which are presented in this work.
We want to analyze parallel execution relative to its single-CU execution, so
the actual operator implementation is not the focus of our work, however, we
briefly present the implementation for completeness. All operators are imple-
mented in OpenCL, enabling them to be executed on all OpenCL-supporting
CUs, including most CPUs and GPUs. The operators are implemented as an
operator-at-a-time approach with column oriented data format.

Our selection operator scans an input column of 32 bit values and produces
a bitmap indicating values that satisfy the search condition. The implementation
is taken from Ocelot1 [6], an OpenCL based extension to MonetDB [3]. During
execution, each thread accesses 8 values from the input column, evaluates the
given search condition, and writes a one byte value to the output bitmap. Since
we are working with 32 bit values, the output is 1/32 of the size of the input.
Merging results of multiple runs can be done simply by aligning the results
contiguously in memory, which should introduce no additional merging overhead
for parallel execution.

Our sort operator is based on the radix sort from Merrill and Grimshaw [10].
The actual OpenCL implementation is taken from the Clogs library2, which has
been implemented and evaluated by Merry [11]. In our evaluation, we only sort
keys without payload, to avoid additional transfer costs. The operator execution
is more compute-intensive than the selection operator and data transfers are also
more significant, since the operator is not reducing the input values, leading to the
same data size for input and output. To merge two sorted results, we implement a
light-weight parallel merge for two CPU threads, where one thread starts merging
from the beginning and another thread starts merging from the end. Both threads
only merge the result until they processed half of the resulting values. We choose
this way of merging, to avoid overheads of highly parallel approaches like signifi-
cantly more comparisons (Bitonic Merge [2]) or defining equally sized correspond-
ing blocks in both sorted results [12].

For the analysis, we choose two different heterogeneous systems, to allow
a broad evaluation: a tightly-coupled system using an AMD Accelerated Process-
ing Unit (APU) that combines a CPU and an integrated GPU and a loosely-
coupled system using an Intel CPU and Nvidia GPU. Both systems combine a
CPU and a GPU, which is the most common setup for current heterogeneous
1 https://bitbucket.org/msaecker/monetdb-opencl.
2 http://clogs.sourceforge.net.

https://bitbucket.org/msaecker/monetdb-opencl
http://clogs.sourceforge.net

Limitations of Intra-operator Parallelism Using Heterogeneous Computing 297

Table 1. Tightly-coupled test system.

Type Model Frequency Cores Memory Connection

CPU AMD A10-7870K 3900 MHz 4 32 GB host

GPU integrated AMD Radeon R7 866 MHz 512 32 GB host

Table 2. Loosely-coupled test system.

Type Model Frequency Cores Memory Connection

CPU Intel Xeon E5-2680 v3 3300MHz 12 (24 with HT) 64 GB host

GPU Nvidia Tesla K80 875MHz 2496 12 GB PCIe3

systems. The tightly-coupled system consists of an APU combining two CUs on
one die (Table 1). The GPU shares the main memory with the CPU, so it can
actually access the CPU’s data directly, however, for our tests we noticed that
it is more beneficial to copy the data to the GPU region of the main memory
before execution. This way, the GPU data can not be cached by the CPU, avoid-
ing expensive cache snooping during GPU execution. The loosely-coupled system
combines two CUs as shown in Table 2. The Tesla K80 actually has two instances
of the same GPU on one GPU board, however, to isolate effects between hetero-
geneous CUs (CPU and GPU), we do not use the second GPU instance (Table 2
presents a single GPU instance).

4 Analysis of the Selection Operator

We begin with the analysis of the selection operator. In the following, we present
the initial test results and discuss general performance issues before examining
the executions on each CU separately in more detail.

4.1 General Observations

For the initial experiment, we execute the operator on each CU with input sizes
from 1024 values (4 KB) up to around 268 million values (1 GB). We capture the
execution behavior and apply our calculations from Sect. 2.2 to determine the
data partitioning. The calculated partitions are then used for the intra-operator
execution. To see the effects of data partitioning, we force the execution to use
at least a small part of data on each CU, not allowing single-CU execution, even
if our calculations would suggest it.

The test results are shown in Fig. 4. Single-CU execution behavior is similar
for both systems. For small data sizes, the execution time of a single CU does
not differ much, because the CUs are underutilized and show a constant OpenCL
initialization overhead. For larger data sizes, all CUs show linear scaling. Interest-
ingly, for both systems the best choice CU changes between 1 and 4 MB of data.

298 T. Karnagel et al.

data size (mb)

ru
nt

im
e

(m
s)

0.1

1

10

100

0.01 0.1 1 10 100 1000

CPU only
GPU only
parallel execution

(a) Tightly-coupled system.

data size (mb)

ru
nt

im
e

(m
s)

0.1

1

10

100

0.01 0.1 1 10 100 1000

CPU only
GPU only
parallel execution

(b) Loosely-coupled system.

Fig. 4. Selection operator executed on both test systems with different data sizes.

In the tightly-coupled system, the GPU is better for large data, because of the lim-
ited computational power of the CPU. For the loosely-coupled system, the CPU
is better because of the expensive data transfers to the GPU.

For both systems, the parallel version is generally not as good as expected.
For small data sizes, we see the same setup as previously discussed in Fig. 3b.
There is no potential for efficient parallel execution through the bad scaling
of each single-CU execution. Since we force data partitioning to avoid single-
CU execution, we observe at least the worst case performance of the two CUs
caused by static overheads and, additionally, we see a constant overhead for data
partitioning, CU synchronization, and final cleanup.

For large input data, these overheads should not be significant because of
the longer execution time and the better single-CU scaling. However, we still do
not achieve a significant performance improvement. In the following, executions
with large data sizes are examined separately for both systems.

4.2 Selection Operator on the Tightly-Coupled System

For large data sizes, limitations like underutilization or missing potential do
not apply, however, the parallel execution performance is worse than expected.
Therefore, we choose one setting, specifically 1 GB of input data, and analyze the
execution in more detail. We execute the operator with the fixed data size using
different partition ratios (CPU/GPU) from 100/0 to 0/100, i.e. from 100 % of
the data on the CPU to 100 % on the GPU. The result is shown in Fig. 5a. The
parallel execution does not show the expected performance of our calculations
and differs from the calculations especially for partition ratios where it should
be beneficial.

Is the Calculation Wrong? To evaluate if the problem lies in our calculations,
we rerun the experiment without parallel execution. That means we use the
data partitioning but execute the operators separately on each CU, not allowing

Limitations of Intra-operator Parallelism Using Heterogeneous Computing 299

Fig. 5. Extensive analysis of the parallel selection operator on the tightly-coupled
system (fixed to 1GB of data, except for (f)).

300 T. Karnagel et al.

parallel execution. Figure 5b shows that the calculation and the actual execution
are similar, confirming our calculation approach. Therefore, the performance
difference has to be caused by parallel execution itself.

Is Heat a Problem? Since our first test system is a tightly-coupled system,
we would expect the additional heat of parallel execution to be a problem,
forcing both CUs to reduce their frequency and therefore decrease in perfor-
mance. For evaluation, we rerun the three most interesting configurations mul-
tiple times while monitoring the frequencies of the CPU (using lscpu) and the
GPU (using aticonfig). Figure 5c shows the result. For the CPU, the peak fre-
quency is 3900 MHz, while it will reduce the frequency to 1700 MHz when idle.
For the GPU, the peak frequency is 866 MHz and 354 Mhz when idle. The results
show for each CU that peak frequencies are always used when a CU is executing
the operator, not supporting our the theory of reduced frequencies caused by
heat problems.

Are CU Synchronizations Interfering with Each Other? The OpenCL
calls are submitted asynchronously, therefore the parent thread is not blocking
for each function call, however, the parent thread has to synchronize in the end
in order to wait for the execution to finish. This synchronization might interfere
with execution, if multiple CUs are used. We profiled the CPU usage on thread
level, for more insides. The result is shown in Fig. 5d. One thread can use up to
100 % of one core, and since the system has four CPU cores, the total core usage
of all threads can not exceed 400 % (calculation similar to the Unix-tool top). The
presented numbers are averages over many measuring points for each partition
size, therefore, a low percentage can represent a thread running on 100 % for a
short time, while being idle for the rest of the execution. In Fig. 5d, the black line
represents CPU workers of OpenCL. There are four threads (one per core) with
similar execution behavior, so only one line is plotted, showing the average of
all 4 threads. For large data partitions on the CPU, the threads work constantly
at 100 %. For small CPU partitions, the runtime is defined by GPU execution,
and therefore the CPU runs at 100 % shortly, while being idle the rest of the
time, hence, the smaller core usage. So far, this is as expected. Surprisingly, the
parent thread has nearly no CPU usage, showing that the synchronization is not
the problem because, apparently, it is implemented using suspend and resume
instead of busy waiting.

In Fig. 5d, we see another thread which has not been created explicitly but,
however, has a significant CPU usage. We tested the same setup with single-CU
execution, noticing that this thread is only occurring when the GPU is used. We
suspect this thread to be a GPU control thread, that manages the GPU queues
and execution from the CPU side. With small data partitions on the GPU, this
thread is only running shortly, while it has a constant 60 % core usage, when
using the GPU for a longer time. This thread leads to contention on the CPU
resources. The interference is not significant for the skewed execution times, e.g.
for 90/10 the GPU runs only shortly, therefore the GPU thread interferes only
shortly, while for 10/90 the CPU runs shortly leaving the resources to the GPU
thread. However, for similar execution times of CPU and GPU, the interference

Limitations of Intra-operator Parallelism Using Heterogeneous Computing 301

is large, leading to a performance decrease of CPU and GPU. The CPU can not
use all its resources, hence, the slow down. The GPU, has a queue consisting of
input transfer, execution, and output transfer, where the queued commands are
not executed on time if the GPU thread is interrupted.

How to Avoid the Interference? Since we can not avoid the GPU controlling
thread, we could either accept the contention on the CPU resources and have the
operating system handle the thread switching, or we could reduce the number
of CPU cores used by OpenCL. This can be done with OpenCL device fission,
where we reduce the number of used cores by one. Other papers also propose
to leave one core idle for controlling CPU and GPU execution [7]. Figure 5e
shows the execution with only three CPU cores. Here, parallel execution and
calculation are similar. We can see that the CPU execution is about 25 % slower
with three cores instead of four, as it is expected. However, this also influences
the ideal data partition and the potential to achieve a speedup. With four cores,
the calculated speedup would be 1.54x while with three cores it is only 1.41x.
Adding the interference of CPU and GPU, parallel execution takes 181 ms with
four cores (35/65) and 164 ms with three cores (30/70), leading only to a small
difference. This effect can be seen when rerunning our initial experiment with
three CPU cores in Fig. 5f, which, unfortunately, does not show a significant
difference to the initial results.

4.3 Selection Operator on the Loosely-Coupled System

For the loosely-coupled system, we see different performance results as for the
tightly-coupled system. When looking at 1 GB of data with different partition
ratios, we see a nearly ideal performance according to our calculations (Fig. 6a).
The GPU runtimes are slightly unstable because different data sizes result in
a different degree of parallelism, leading to divergent GPU-internal scheduling,

Fig. 6. Selection operator executed on the loosely-coupled test system with 1 GB of
data and different partitions.

302 T. Karnagel et al.

which, in this case, is more visible on the Nvidia GPU than on the AMD GPU.
Additionally, the GPU runtime is slightly higher than expected. To solve this, we
did the same sequence of tests as for the previous test system. Our calculations
are correct according to the single-CU execution and power or heat issues are
unlikely, because the system is loosely-coupled, therefore, does not share a direct
power budget. When looking at the CPU utilization of each thread, we see
the same effect as before: one additional thread is controlling the GPU, and
therefore fighting for CPU resources. On the CPU side, there is no effect visible
because one additional thread does not interfere significantly in a 24 core system
(12 cores with Hyper-Threading). For the GPU, a delayed control thread leads to
delays in the queuing and longer execution times. We apply the same solution as
before: reducing the number of OpenCL CPU cores by one to 23 cores (Fig. 6b).
This improves the GPU performance while the CPU slowdown is not significant
(theoretically about 4 %). However, the GPU improvements are only marginal,
leading to no substantial improvements for the overall execution.

5 Analysis of the Sort Operator

The sort operator differs from the selection operator in many ways. In general,
the execution takes longer since there is more computation and multiple data
accesses. Therefore computational power and data bandwidths to the CUs dedi-
cated memories become important. On the other side, when executing in parallel,
the merge step can be significant for the performance.

5.1 Sort Operator on the Tightly-Coupled Systems

Figure 7a shows the evaluation result for tightly-coupled systems. The GPU is
always better than the CPU because the computational workload is more suited
for the GPUs parallelism. For small data, the CUs are bound by underutilization

Fig. 7. Sort operator executed on the tightly-coupled test system.

Limitations of Intra-operator Parallelism Using Heterogeneous Computing 303

Fig. 8. Sort operator executed on the loosely-coupled test system.

leading to no potential for parallel execution. For larger data, the parallel execu-
tion lies between the two single-CU executions, with the merge step seeming not
significant. In a closer analysis using 1 GB of data (Fig. 7b), the reason for the
parallel execution performance becomes obvious: the runtime between the CUs
differs by one order of magnitude, so that parallel execution does not rectify the
means of synchronization and merging. For this system, it would be best to use
only the GPU, without executing the operator in parallel.

5.2 Sort Operator on the Loosely-Coupled System

For the loosely-coupled system, the results are different since both CUs seem to
be equally good in executing the sort operator (Fig. 8a), which is ideal for parallel
execution. However, we see a significant overhead through merging for larger data
sizes. The close analysis in Fig. 8b illustrates the extent of the merge step through
the dotted lines above the actual CU executions. Please note, the merge step is
more significant for the overall runtime than with the tightly-coupled system
because, here, the execution is faster on each CU, while the runtime of the
merge is comparable for both systems. The calculated runtime bases on single-
CU execution without any merging overhead. The execution on the GPU varies
from the calculation, because of the additional GPU controlling thread. However,
optimizing the GPU execution would lead to only minor improvements because
the main difference between the single-CU parts and the actual execution is
caused by the merge step. It might be possible to optimize the merge further by,
e.g., adding range partitioning [1], however, the merge itself is unavoidable.

6 Lessons Learned

Concluding our analysis of two operators on two different evaluation systems, we
have encountered most limitations explained in Sect. 2.3. Underutilization and

304 T. Karnagel et al.

shared HW resources could be seen for every test. For the latter, only contention
on CPU cores was noticeable and especially for the tightly-coupled system the
impact was significant. Reserving one CPU core for controlling is a possible
solution, however, CPU performance suffers if there is only a small amount
of cores. Additionally, we have seen no potential if the single-CU differs too
much or if the merge step is too large compared to the actual execution. These
findings can be applied to many database operators or heterogeneous system, by
quantifying the merge overhead or CU performance.

Ideally for parallel execution, we need to have (1) CUs that perform an oper-
ator equally fast, (2) one CPU core reserved for controlling, and (3) a merge step
with no significant impact on the total execution time. If a merge step is needed,
however, it will always be an additional overhead compared to single-CU execu-
tion. To avoid this overhead, we thought about partitioning input data once and
run multiple operators in parallel on each others partial results without merg-
ing in between. While it is possible in homogeneous systems with uniform data
partitions, in heterogeneous systems, each operator needs differently sized data
partitions because different CUs execute an operator differently. For example,
the tightly-coupled system with 1 GB of data needs a 35/65 partition for the
selection and a 18/92 partition for the sort operator. Executing both operators
after each other using one global partitioning would lead to a skewed execution
time for CPU and GPU. It might be possible to find a partitioning for a chain
of operators, so that all CUs finish this chain at the same time, however, this
would only be possible if intermediate results do not need to be merged and it
is unclear if a the final execution time, using suboptimal partition sizes for the
single operators, is worth the effort.

All in all, we learned two major lessons from our experiments. (1) Given
the limited potential and possible limitations, it is hard to achieve any speedup
through intra-operator parallelism in heterogeneous environments and even for
ideal cases we only achieved a speedup of 1.52x (Selection on the loosely-coupled
system). It should always be considered if intra-operator parallelism is beneficial
or should be avoided. (2) During our analysis, we have seen different single-CU
execution behavior like different ideal CUs for the selection or always better CUs
for sorting on tightly-coupled systems. If parallel execution is not beneficial, at
least the placement of the execution should be considered, e.g., for the selection
on the tightly-coupled system changing from CPU execution on small data sizes
to GPU execution for large data sizes.

7 Conclusion

In this paper, we analyzed intra-operator parallelism for heterogeneous comput-
ing resources. We proposed an initial way to calculate good partition sizes and
presented possible limitations that could hinder parallel execution. In our analy-
sis, we used two operators with two different hardware setups and showed that
especially underutilization, shared resources, different execution performance,
and the merging step limit parallel execution. Therefore, it should be care-
fully considered if intra-operator parallelism between heterogeneous resources

Limitations of Intra-operator Parallelism Using Heterogeneous Computing 305

can achieve a performance improvement, which is worth the effort, or if the
resulting performance is worse and partitioning it should be avoided.

Acknowledgments. This work is funded by the German Research Foundation (DFG)
within the Cluster of Excellence “Center for Advancing Electronics Dresden”. Parts of
the hardware were generously provided by Dresden GPU Center of Excellence.

References

1. Albutiu, M.-C., Kemper, A., Neumann, T.: Massively parallel sort-merge joins in
main memory multi-core database systems. Proc. VLDB Endow. 5, 1064–1075
(2012)

2. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the
April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS 1968 (Spring),
New York, USA (1968)

3. Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the memory wall in MonetDB.
Commun. ACM 51(12), 77–85 (2008)

4. DeWitt, D.J., Gerber, R.H., Graefe, G., Heytens, M.L., Kumar, K.B.,
Muralikrishna, M.: GAMMA - a high performance dataflow database machine.
In: Proceedings of VLDB (1986)

5. Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, K., Burger, D.: Dark
silicon and the end of multicore scaling. In: ISCA, New York, USA. ACM (2011)

6. Heimel, M., Saecker, M., Pirk, H., Manegold, S., Markl, V.: Hardware-oblivious
parallelism for in-memory column-stores. PVLDB 6, 709–720 (2013)

7. Huismann, I., Stiller, J., Froehlich, J.: Two-level parallelization of a fluid mechanics
algorithm exploiting hardware heterogeneity. Comput. Fluids 117, 114–124 (2015)

8. Karnagel, T., Habich, D., Schlegel, B., Lehner, W.: Heterogeneity-aware operator
placement in column-store DBMS. Datenbank-Spektrum 14, 211–221 (2014)

9. Mayr, T., Bonnet, P., Gehrke, J., Seshadri, P.: Query processing with heteroge-
neous resources. Technical Report, Cornell University, March 2000

10. Merrill, D.G., Grimshaw, A.S.: Revisiting sorting for GPGPU stream architectures.
In: Proceedings of PACT 2010, New York, USA. ACM (2010)

11. Merry, B.: A performance comparison of sort and scan libraries for GPUs. Parallel
Process. Lett. 25(04), 1550007 (2015)

12. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for many-
core GPUs. In: Proceedings of IPDPS 2009, Washington, DC, USA. IEEE Com-
puter Society (2009)

H-WorD: Supporting Job Scheduling in Hadoop
with Workload-Driven Data Redistribution

Petar Jovanovic1(B), Oscar Romero1, Toon Calders2,3, and Alberto Abelló1

1 Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain
{petar,oromero,aabello}@essi.upc.edu

2 Universite Libre de Bruxelles, Brussels, Belgium
toon.calders@ulb.ac.be

3 University of Antwerp, Antwerp, Belgium
toon.calders@uantwerpen.be

Abstract. Today’s distributed data processing systems typically follow
a query shipping approach and exploit data locality for reducing network
traffic. In such systems the distribution of data over the cluster resources
plays a significant role, and when skewed, it can harm the performance
of executing applications. In this paper, we address the challenges of
automatically adapting the distribution of data in a cluster to the work-
load imposed by the input applications. We propose a generic algorithm,
named H-WorD, which, based on the estimated workload over resources,
suggests alternative execution scenarios of tasks, and hence identifies
required transfers of input data a priori, for timely bringing data close
to the execution. We exemplify our algorithm in the context of MapRe-
duce jobs in a Hadoop ecosystem. Finally, we evaluate our approach and
demonstrate the performance gains of automatic data redistribution.

Keywords: Data-intensive flows · Task scheduling · Data locality

1 Introduction

For bringing real value to end-users, today’s analytical tasks often require
processing massive amounts of data. Modern distributed data processing sys-
tems have emerged as a necessity for processing, in a scalable manner, large-scale
data volumes in clusters of commodity resources. Current solutions, including
the popular Apache Hadoop [13], provide fault-tolerant, reliable, and scalable
platforms for distributed data processing. However, network traffic is identified
as a bottleneck for the performance of such systems [9]. Thus, current schedul-
ing techniques typically follow a query shipping approach where the tasks are
brought to their input data, hence data locality is exploited for reducing net-
work traffic. However, such scheduling techniques make these systems sensitive
to the specific distribution of data, and when skewed, it can drastically affect
the performance of data processing applications.

At the same time, distributed data storage systems, typically independent
of the application layer, do not consider the imposed workload when deciding
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 306–320, 2016.
DOI: 10.1007/978-3-319-44039-2 21

H-WorD: Workload-Driven Data Redistribution in Hadoop 307

data placements in the cluster. For instance, Hadoop Distributed File System
(HDFS) places data block replicas randomly in the cluster following only the
data availability policies, hence without a guarantee that data will be uniformly
distributed among DataNodes [12]. To address this problem, some systems have
provided rules (in terms of formulas) for balancing data among cluster nodes,
e.g., HBase [1], while others like HDFS provided means for correcting the data
balancing offline [12]. While such techniques may help balancing data, they either
overlook the real workload over the cluster resources, i.e., the usage of data, or
at best leave it to the expert users to take it into consideration. In complex
multi-tenant environments, the problem becomes more severe as the skewness of
data can easily become significant and hence more harmful to performance.

In this paper, we address these challenges and present our workload-driven
approach for data redistribution, which leverages on having a complete overview
of the cluster workload and automatically decides on a better redistribution of
workload and data. We focus here on the MapReduce model [6] and Apache
Hadoop [13] as its widely used open-source implementation. However, notice
that the ideas and similar optimization techniques as the ones proposed in this
paper, adapted for a specific programming model (e.g., Apache Spark), could be
applied to other frameworks as well.

In particular, we propose an algorithm, named H-WorD, for supporting task
scheduling in Hadoop with Workload-driven Data Redistribution. H-WorD s-
tarts from a set of previously profiled MapReduce jobs that are planned for
execution in the cluster; e.g., a set of jobs currently queued for execution in a
batch-queuing grid manager system. It initializes the cluster workload, follow-
ing commonly used scheduling techniques (i.e., exploiting data locality, hence
performing query shipping). Then, H-WorD iteratively reconsiders the current
workload distribution by proposing different execution scenarios for map tasks
(e.g., executing map tasks on nodes without local data, hence performing also
data shipping). In each step, it estimates the effect of a proposed change to the
overall cluster workload, and only accepts those that potentially improve cer-
tain quality characteristics. We focus here on improving the overall makespan1

of the jobs that are planned for execution. As a result, after selecting execu-
tion scenarios for all map tasks, H-WorD identifies the tasks that would require
data shipping (i.e., transferring their input data from a remote node). Using
such information, we can proactively perform data redistribution in advance for
boosting tasks’ data locality and parallelism of the MapReduce jobs.

On the one hand, the H-WorD algorithm can be used offline, complementary
to existing MapReduce scheduling techniques, to automatically instruct redis-
tribution of data beforehand, e.g., plugged as a guided rebalancing scheme for
HDFS [2]. On the other hand, H-WorD can be used on the fly, with more sophis-
ticated schedulers, which would be able to take advantage of a priori knowing
potentially needed data transfers, and leveraging on idle network cycles to sched-
ule such data transfers in advance, without deferring other tasks’ executions.

1 We define makespan as the total time elapsed from the beginning of the execution
of a set of jobs, until the end of the last executing job [5].

308 P. Jovanovic et al.

Outline. The rest of the paper is structured as follows. Section 2 introduces a
running example used throughout the paper. Section 3 discusses the motivation
and presents the problem of data redistribution in Hadoop. Section 4 formalizes
the notation and presents the H-WorD algorithm. In Sect. 5, we report on our
experimental findings. Finally, Sects. 6 and 7 discuss related work and conclude
the paper, respectively.

2 Running Example

To illustrate our approach and facilitate the explanations throughout the paper,
we introduce a running example based on a set of three MapReduce WordCount2

jobs, with different input data sets. A MapReduce job executes in two consecutive
phases, namely map and reduce [6]. Map phase processes an input file from
HDFS. The file is split in logical data blocks of the same size (e.g., 64 MB
or 128 MB), physically replicated for fault tolerance, and distributed over the
cluster nodes. Each data block is processed by a single map task.

Table 1. Example MapReduce jobs

job ID file ID size (MB) #tasks durmapTask (s) durmapInTransfer (s)

1 f1 1920 15 40 6.34

2 f2 640 5 40 6.34

3 f3 1280 10 40 6.34

We profiled the example MapReduce jobs using an external tool, called
Starfish [8]. Starfish can create job profiles on the fly, by applying sampling
methods (e.g., while jobs are queued waiting for execution), or from previous
jobs’ executions. The portion of the profiles of the example jobs focusing on
map tasks are presented in Table 1. We trace the number of map tasks, the
average duration of each task (durmapTask), as well as the average duration of
transferring its input data block over the network (i.e., durmapInTransfer).

Furthermore, we consider a computing cluster with three computing nodes,
each with a capacity of 2CPUs and 2 GB of memory, connected through the

Fig. 1. Example cluster configuration and initial data distribution

2 WordCount Example: https://wiki.apache.org/hadoop/WordCount.

https://wiki.apache.org/hadoop/WordCount

H-WorD: Workload-Driven Data Redistribution in Hadoop 309

network with 100 Mbps of bandwidth (see Fig. 1). We deployed Hadoop 2.x on
the given cluster, including HDFS and MapReduce. In addition, for simplifying
the explanations, we configured HDFS for creating only one replica of each input
data block. In Fig. 1, we depict the initial distribution of the input data in the
cluster. Note that each input data block is marked as DBXfid, where X is an
identifier of a block inside a file, and fid is the id of the file it belongs to.

For reasons of simplicity, we configured all example jobs to require con-
tainers (i.e., bundles of node resources) with 1CPU and 1 GB of memory for
accommodating each map and reduce task, i.e., mapreduce.map.memory.mb =
mapreduce.reduce.memory.mb = 1024, and mapreduce.map.cpu.vcores = mapr-
educe.reduce.cpu.vcores = 1.

3 The Problem of Skewed Data Distribution

We further applied the default scheduling policy of Hadoop (i.e., exploiting data
locality) to our running example. An execution timeline is showed in Fig. 2:left,
where the x-axis tracks the start and end times of tasks and the y-axis shows
the resources the tasks occupy at each moment. For clarity, we further denote a
task tji both with the task id i, and the job id j. Notice in Fig. 1 that the job ids
refer to groups of input data blocks that their map tasks are processing, which
determines the placement of the map tasks in the cluster for exploiting data
locality. First, from the timeline in Fig. 2:left, we can notice that although the
distribution of input data is not drastically skewed, it affects the execution of
job 3, since for executing map task m3

4, we need to wait for available computing
resources on node1.

(Baseline) (With data redistribution)

Fig. 2. Timeline of executing example MapReduce jobs

Furthermore, we can also observe some idle cycles on the computing resources
(i.e., node3), that obviously could alternatively accommodate m3

4, and finish the
map phase of job 3 sooner. However, node3 does not contain the needed input
data at the given moment, thus running m3

4 on node3 would require transferring
its input data (i.e., tt31), which would also defer its execution (see alternative
execution of m3

4 in Fig. 2:left).

310 P. Jovanovic et al.

Having such information beforehand, we could redistribute data in a way
that would improve utilization of cluster resources, and improve the makespan.
Such data redistribution could be done offline before starting the execution of
MapReduce jobs. However, note that there are also idle cycles on the network
resource (e.g., between s1 and s2, and between s2 and s3). This is exactly where
having more information about the imposed workload makes the difference. In
particular, knowing that the higher workload of node1 can potentially affect
the makespan of the jobs’ execution, we could take advantage of idle network
resources and plan for timely on the fly transferring of m3

4’s input data to another
node, in overlap with other tasks’ execution, and hence improve the execution
makespan. Such alternative execution scenario is depicted in Fig. 2:right.

We showcased here in a simple running example that in advance data redis-
tribution can moderately improve the makespan. However, typical scenarios in
Hadoop are much more complex, with larger and more complex cluster configu-
rations, greater number of jobs, more complex jobs, and larger input data sizes.
Thus, it is obvious that estimating the imposed workload over cluster resources
and deciding on data and workload redistribution is intractable for humans and
requires efficient automatic means. At the same time, in such real world scenar-
ios. improving resource utilization and minimizing the execution makespan is
essential for optimizing the system performance.

We further studied how to automatically, based on the estimated workload, find
new execution scenarios that would improve data distribution in the cluster, and
hence reduce the makespan. Specifically, we focused on the following challenges:

– Resource requirements. For obtaining the workload that a job imposes
over the cluster, we need to model cluster resources, input MapReduce jobs,
and the resource requirements of their tasks.

– Alternative execution scenarios. We need to model alternative execution
scenarios of MapReduce jobs, based on the distribution of input data in a
cluster and alternative destination resources for their tasks. Consequently,
alternative execution scenarios may pose different resource requirements.

– Workload estimation. Next, we need an efficient model for estimating the
workload over the cluster resources, for a set of jobs, running in certain exe-
cution scenarios.

– Data redistribution. Lastly, we need an efficient algorithm, that, using the
estimated workload, selects the most favorable execution scenario, leading to
a better distribution of data in a cluster, and to reducing the makespan.

4 Workload-Driven Redistribution of Data

In this section, we tackle the previously discussed challenges, and present our
algorithm for workload-driven redistribution of data, namely, H-WorD.

4.1 Resource Requirement Framework

In this paper, we assume a set of previously profiled MapReduce jobs as input
(see the example set of jobs in Table 1). Notice that this is a realistic scenario for

H-WorD: Workload-Driven Data Redistribution in Hadoop 311

batched analytical processes that are run periodically, hence they can be planned
together for better resource utilization and lower makespan. For instance, in a
grid manager system, a set of jobs are queued, waiting for execution, during
which time we can decide on a proper distribution of their input data.

A set of MapReduce jobs is submitted for execution in a cluster, and each
job jx consists of sets of map and reduce tasks.

J := {j1, ..., jn}, jx := MTx ∪ RTx (1)

The set of all tasks of J is defined as TJ =
⋃n

x=1 jx =
⋃n

x=1(MTx ∪ RTx).
These tasks can be scheduled for execution in the cluster that comprises

two main resource types, namely: computing resources (i.e., nodes; Rcmp), and
communication resources (i.e., network; Rcom).

R := Rcmp ∪ Rcom = {r1, ..., rn} ∪ {rnet} (2)

Each resource r (computing or communication) has a certain capacity vector
C(r), defining capacities of the physical resources that are used for accommo-
dating MapReduce tasks (i.e., containers of certain CPU and memory capacities,
or a network of certain bandwidth).

∀r ∈ Rcmp,C(r) := 〈ccpu(r), cmem(r)〉;∀r ∈ Rcom,C(r) := 〈cnet(r)〉 (3)

Each task tji requires resources of certain resource types (i.e., computing and
communication) during their execution. We define a resource type requirement
RTRk of task tji , as a pair [S, d], such that tji requires for its execution one
resource from the set of resources S of type k (S ⊆ Rk), for a duration d.

RTRk(tji) := [S, d], st. : S ⊆ Rk (4)

Furthermore, we define a system requirement of task tji , as a set of resource
type requirements over all resource types in the cluster, needed for the complete
execution of tji .

SR(tji) := {RTR1(t
j
i), ..., RTRl(t

j
i)} (5)

Lastly, depending on specific resources used for its execution, task tji can be exe-
cuted in several different ways. To elegantly model different execution scenarios,
we further define the concept of execution modes. Each execution mode is defined
in terms of a system requirement that a task poses for its execution in a given
scenario (denoted SR(tji)).

M(tji) := {SR1(t
j
i), ..., SRm(tji)} (6)

Example. The three example MapReduce jobs (job 1, job 2, and job 3; see
Table 1), are submitted for execution in the Hadoop cluster shown in Fig. 1.
Cluster comprises three computing resources (i.e., node1, node2, and node3),
each with a capacity of 〈2CPU, 2GB〉, connected through a network of band-
width capacity 〈100Mbps〉. Map task m1

1 of job 1 for its data local execution
mode requires a container of computing resources, on a node where the replica
of its input data is placed (i.e., node1), for the duration of 40 s. This requirement
is captured as RTRcmp(m1

1) = [{node1}, 40 s]. �	

312 P. Jovanovic et al.

4.2 Execution Modes of Map Tasks

In the context of distributed data processing applications, especially MapReduce
jobs, an important characteristic that defines the way the tasks are executed, is
the distribution of data inside the cluster. This especially stands for executing
map tasks which require a complete data block as input (e.g., by default 64 MB
or 128 MB depending on the Hadoop version).

Data Distribution. We first formalize the distribution of data in a cluster (i.e.,
data blocks stored in HDFS; see Fig. 1), regardless of the tasks using these data.
We thus define function floc that maps logical data blocks DBXfid ∈ DB of
input files to a set of resources where these blocks are (physically) replicated.

floc : DB → P(Rcmp) (7)

Furthermore, each map task mj
i processes a block of an input file, denoted

db(mj
i) = DBXfid. Therefore, given map task mj

i , we define a subset of resources
where the physical replicas of its input data block are placed, i.e., local resource
set LRj

i .
∀mj

i ∈ MTJ , LRj
i := floc(db(mj

i)) (8)

Conversely, for map task mj
i we can also define remote resource sets, where some

resources may not have a physical replica of a required data block, thus executing
mj

i may require transferring input data from another node. Note that for keeping
the replication factor fulfilled, a remote resource set must be of the same size as
the local resource set.

∀mj
i ∈ MTJ ,RRj

i := {RRj
i |RRj

i ∈ (P(Rcmp) \ LRj
i) ∧ |RRj

i | = |LRj
i |} (9)

Following from the above formalization, map task mj
i can be scheduled to run

in several execution modes. The system requirement of each execution mode of
mj

i depends on the distribution of its input data. Formally:

∀mj
i ∈ MTJ ,M(mj

i) = {SRloc(m
j
i)} ∪

⋃|RRj
i |

k=1
{SRrem,k(mj

i)}, s.t. : (10)

SRloc(m
j
i) = {[LRj

i , d
j,cmp
i]}; SRrem,k(mj

i) = {[RRj
i,k, dj,cmp

i,k], [{rnet}, dj,com
i,k]}

Intuitively, a map task can be executed in the local execution mode (i.e.,
SRloc(m

j
i)), if it executes on a node where its input data block is already placed,

i.e., without moving data over the network. In that case, a map task requires a
computing resource from LRj

i for the duration of executing map function over the
complete input block (i.e., dj,cmp

i = durmapTask). Otherwise, a map task can also
execute in a remote execution mode (i.e., SRrem(mj

i)), in which case, a map task
can alternatively execute on a node without its input data block. Thus, the map
task, besides a node from a remote resource set, may also require transferring
input data block over the network. Considering that a remote resource set may
also contain nodes where input data block is placed, hence not requiring data
transfers, we probabilistically model the duration of the network usage.

H-WorD: Workload-Driven Data Redistribution in Hadoop 313

dj,com
i,k =

⎧
⎨

⎩

|RRj
i,k\LRj

i |2
|RRj

i,k| · durmapInTransfer, if on the fly redistribution

0, if offline redistribution
(11)

In addition, note that in the case that data redistribution is done offline, given
data transfers will not be part of the jobs’ execution makespan (i.e., dj,com

i,k = 0).

Example. Notice that there are three execution modes in which map task
m3

4 can be executed. Namely, it can be executed in the local execution mode
SRloc(m3

4) = {[{node1}, 40 s]}, in which case, it requires a node from its local
resource set (i.e., LR3

4 = {node1}). Alternatively, it can also be executed in one
of the two remote execution modes. For instance, if executed in the remote exe-
cution mode SRrem,2(m3

4) = {[{node3}, 40 s], [{net}, 6.34 s]}, it would require a
node from its remote resource set RR3

4,1 = {node3}, and the network resource
for transferring its input block to node3 (see dashed boxes in Fig. 2:left). �	

Consequently, selecting an execution mode in which a map task will execute,
directly determines its system requirements, and the set of resources that it will
potentially occupy. This further gives us information of cluster nodes that may
require a replica of input data blocks for a given map task.

To this end, we base our H-WorD algorithm on selecting an execution mode
for each map task, while at the same time collecting information about its
resource and data needs. This enables us to plan data redistribution beforehand
and benefit from idle cycles on the network (see Fig. 2:right).

4.3 Workload Estimation

For correctly redistributing data and workload in the cluster, the selection of exe-
cution modes of map tasks in the H-WorD algorithm is based on the estimation
of the current workload over the cluster resources.

Algorithm 1. getWorkload
inputs: SR(tji); output: W : R → Q

1: for all r ∈ R do
2: W (r) ← 0;
3: end for
4: for all [S, d] ∈ SR(tji) do

5: for all r ∈ S do
6: W (r) ← W (r) + d

|S| ;
7: end for
8: end for

In our context, we define a workload as a function W : R → Q, that maps the
cluster resources to the time for which they need to be occupied. When selecting
an execution mode, we estimate the current workload in the cluster in terms
of tasks, and their current execution modes (i.e., system requirements). To this
end, we define the procedure getWorkload (see Algorithm 1), that for map task
tji , returns the imposed workload of the task over the cluster resources R, when
executing in execution mode SR(tji).

314 P. Jovanovic et al.

Example. Map task m3
4 (see Fig. 2:left), if executed in local execution mode

SRloc(m3
4), imposes the following workload over the cluster: W (node1) = 40,

W (node2) = 0, W (node3) = 0, W (net) = 0. But, if executed in remote execution
mode SRrem,2(m3

4), the workload is redistributed to node3, i.e., W (node1) =
0,W (node2) = 0,W (node3) = 40, and to the network for transferring input
data block to node3, i.e., W (net) = 6.34. �	

Following from the formalization in Sect. 4.1, a resource type requirement of
a task defines a set of resources S, out of which the task occupies one for its
execution. Assuming that there is an equal probability that the task will be
scheduled on any of the resources in S, when estimating its workload imposed
over the cluster we equally distribute its complete workload over all the resources
in S (steps 4–8). In this way, our approach does not favor any specific cluster
resource when redistributing data and workload, and is hence agnostic to the
further choices of the chosen MapReduce schedulers.

4.4 The H-WorD algorithm

Given the workload estimation means, we present here H-WorD, the core algo-
rithm of our workload-driven data redistribution approach (see Algorithm2).

Algorithm 2. H-WorD
inputs: MTJ

1: todo ← MTJ ;
2: for all r ∈ R do W (r) ← 0; end for
3: for all t ∈ MTJ do
4: SRcur(t) ← SRloc(t);
5: Wt ← getWorkload(SRcur(t));
6: for all r ∈ R do
7: W (r) ← W (r) + Wt(r);
8: end for
9: end for
10: while todo �= ∅ do
11: t ← nextFrom(todo); todo ← todo \ {t};
12: SRnew(t) ← SRx(t)|q(W + Δx,cur) = min

SRj(t)∈M(t)\{SRcur(t)}

{
q(W + Δj,cur)

}

13: if q(W) > q(W + Δnew,cur) then
14: SRcur(t) ← SRnew(t);
15: W ← W + Δnew;
16: end if
17: end while

H-WorD initializes the total workload over the cluster resources following the
policies of the Hadoop schedulers which mainly try to satisfy the data locality
first. Thus, as the baseline, all map tasks are initially assumed to execute in a
local execution mode (steps 2–9).

H-WorD further goes through all map tasks of input MapReduce jobs, and
for each task selects an execution mode that potentially brings the most benefit
to the jobs’ execution. In particular, we are interested here in reducing the
execution makespan, and hence we introduce a heuristic function q(W), which
combines the workloads over all resources, and estimates the maximal workload

H-WorD: Workload-Driven Data Redistribution in Hadoop 315

in the cluster, i.e., q(W) = maxr∈R(W (r)). Intuitively, this way we obtain a
rough estimate of the makespan of executing map tasks. Using such heuristic
function balances the resource consumption in the cluster, and hence prevents
increasing jobs’ makespan by long transfers of large amounts of data.

Accordingly, for each map task, H-WorD selects an execution mode that
imposes the minimal makespan to the execution of input MapReduce jobs
(Step 12). The delta workload that a change in execution modes (SRcur →
SRnew) imposes is obtained as: Δnew,cur = getWorkload(SRnew(t)) −
getWorkload(SRcur(t)).

Finally, for the selected (new) execution mode SRnew(t), H-WorD analyzes
if such a change actually brings benefits to the execution of input jobs, and if the
global makespan estimate is improved (Step 13), we assign the new execution
mode to the task (Step 14). In addition, we update the current workload due to
changed execution mode of the map task (Step 15).

Example. An example of the H-WorD execution is shown in Table 2. After
H-WorD analyzes the execution modes of task m3

4, it finds that the remote
execution mode SRrem,2(m3

4) improves the makespan (i.e., 440 → 400). Thus, it
decides to select this remote execution mode for m3

4. �	
Table 2. H-WorD algorithm: example of the improved makespan for task m3

4

Workload Initial ... After task m3
4 ...

W(node1) 440 ... 400 ...

W(node2) 400 ... 400 ...

W(node3) 360 ... 400 ...

W(net) 0 ... 15 ...

Makespan: q(W) 440 ... 400 ...

It should be noted that the order in which we iterate over the map tasks may
affect the resulting workload distribution in the cluster. To this end, we apply
here a recommended longest task time priority rule in job scheduling [5], and in
each iteration (Step 11) we select the task with the largest duration, combined
over all resources. H-WorD is extensible to other priority rules.

Computational Complexity. When looking for the new execution mode to select,
the H-WorD algorithm at first glance indicates combinatorial complexity in
terms of the cluster size (i.e., number of nodes), and the number of replicas,
i.e., |RRt| = |Rcmp|!

(|Rcmp|−|LRt|)!·|LRt|! . The search space for medium-sized clusters
(e.g., 50–100 nodes), where our approach indeed brings the most benefits, is still
tractable (19.6 K–161.7 K), while the constraints of the replication policies in
Hadoop, which add to fault tolerance, additionally prune the search space.

In addition, notice also that for each change of execution modes, the corre-
sponding data redistribution action may need to be taken to bring input data
to the remote nodes. As explained in Sect. 3, this information can either be used
to redistribute data offline before scheduling MapReduce jobs, or incorporated
with scheduling mechanisms to schedule input data transfers on the fly during
the idle network cycles (see Fig. 2:right).

316 P. Jovanovic et al.

5 Evaluation

In this section we report on our experimental findings.

Experimental Setup. For performing the experiments we have implemented a
prototype of the H-WorD algorithm. Since the HDFS currently lacks the support
to instruct the data redistribution, for this evaluation we rely on simulating the
execution of MapReduce jobs. In order to facilitate the simulation of MapReduce
jobs’ executions we have implemented a basic scheduling algorithm, following the
principles of the resource-constrained project scheduling [10].

Inputs. Besides WordCount, we also experimented with a reduce-heavy MapRe-
duce benchmark job, namely TeraSort3. We started from a set of three profiled
MapReduce jobs, two WordCount jobs resembling jobs 1 and 2 of our running
example, and one TeraSort job, with 50 map and 10 reduce tasks. We used the
Starfish tool for profiling MapReduce jobs [8]. When testing our algorithm for
larger number of jobs, we replicate these three jobs.

Experimental Methodology. We scrutinized the effectiveness of our algorithm
in terms of the following parameters: number of MapReduce jobs, initial skewness
of data distribution inside the cluster, and different cluster sizes. Notice that we
define skewness of data distribution inside a cluster in terms of the percentage
of input data located on a set of X nodes, where X stands for the number
of configured replicas. See for example 37 % skewness of data in our running
example (bottom of Fig. 1). This is important in order to guarantee a realistic
scenario where multiple replicas of an HDFS block are not placed on the same
node. Moreover, we considered the default Hadoop configuration with 3 replicas
of each block. In addition, we analyzed two use cases of our algorithm, namely
offline and on the fly redistribution (see Sect. 4.4). Lastly, we analyzed the over-
head that H-WorD potentially imposes, as well as the performance improvements
(in terms of jobs’ makespan) that H-WorD brings.

Scrutinizing H-WorD. Next, we report on our experimental findings.
Note that in each presented chart we analyzed the behavior of our algorithm

for a single input parameter, while others are fixed and explicitly denoted.

Algorithm Overhead. Following the complexity discussion in Sect. 4.4, for small
and medium-sized clusters (i.e., from 20 to 50 nodes), even though the overhead is
growing exponentially (0.644 s → 135.68 s; see Fig. 3), it still does not drastically
delay the jobs’ execution (see Fig. 4).

Performance Improvements. We further report on the performance improve-
ments that H-WorD brings to the execution of MapReduce jobs.

– Cluster size. We start by analyzing the effectiveness of our approach in terms
of the number of computing resources. We can observe in Fig. 4 that skewed
data distribution (50 %) can easily prevent significant scale-out improvements

3 TeraSort: https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/
examples/terasort/package-summary.html.

https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html

H-WorD: Workload-Driven Data Redistribution in Hadoop 317

Fig. 3. H-WorD overhead (skew: 0.5,
#jobs: 9)

Fig. 4. Performance gains - #nodes
(skew: 0.5, #jobs: 9)

with increasing cluster size. This shows another advantage of H-WorD in
improving execution makespan, by benefiting from balancing the workload
over the cluster resources. Notice however that the makespan improvements
are bounded here by the fixed parallelism of reduce tasks (i.e., no improvement
is shown for clusters over 40 nodes).

– “Correcting” data skewness. We further analyzed how H-WorD improves the
execution of MapReduce jobs by “correcting” the skewness of data distribu-
tion in the cluster (see Fig. 5). Notice that we used this test also to compare
offline and on the fly use cases of our approach. With a small skewness (i.e.,
25 %), we observed only very slight improvement, which is expected as data
are already balanced inside the cluster. In addition, notice that the makespan
of offline and on the fly use cases for the 25 % skewness are the same. This
comes from the fact that “correcting” small skewness requires only few data
transfers over the network, which do not additionally defer the execution
of the tasks. However, observe that larger skewness (i.e., 50 % –100 %) may
impose higher workload over the network, which in the case of on the fly
data redistribution may defer the execution of some tasks. Therefore, the
performance gains in this case are generally lower (see Fig. 5). In addition,
we analyzed the effectiveness of our algorithm in “correcting” the data dis-
tribution by capturing the distribution of data in the cluster in terms of a
Shannon entropy value, where the percentages of data at the cluster nodes
represent the probability distribution. Figure 6 illustrates how H-WorD effec-
tively corrects the data distribution and brings it very close (Δ ≈ 0.02) to
the maximal entropy value (i.e., uniform data distribution). Notice that the
initial entropy for 100 % skew is in this case higher than 0, since replicas are
equally distributed over 3 cluster nodes.

– Input workload. We also analyzed the behavior of our algorithm in terms of
the input workload (#jobs). We observed (see Fig. 7) that the performance
gains for various workloads are stable (∼48.4 %), having a standard devia-
tion of 0.025. Moreover, notice that data redistribution abates the growth
of makespan caused by increasing input load. This shows how our approach
smooths the jobs’ execution by boosting data locality of map tasks.

318 P. Jovanovic et al.

Fig. 5. Performance gains - data skew-
ness (#nodes: 20, #jobs: 9)

Fig. 6. “Correcting” skewness -
entropy (#nodes: 20, #jobs: 9)

Lastly, in Fig. 4, we can still observe the improvements brought by data redis-
tribution, including the H-WorD overhead. However, if we keep increasing the
cluster size, we can notice that the overhead, although tractable, soon becomes
severely high to affect the performance of MapReduce jobs’ execution (e.g., 2008s
for the cluster of 100 nodes). While these results show the applicability of our
approach for small and medium-sized clusters, they also motivate our further
research towards defining heuristics for pruning the search space.

Fig. 7. Performance gains - workload (skew: 0.5, #nodes: 20)

6 Related Work

Data Distribution. Currently, distributed file systems, like HDFS [12], do not
consider the real cluster workload when deciding about the distribution of data
over the cluster resources, but distributes data randomly, without a guarantee
that they will be balanced. Additional tools, like balancer, still balances data
blindly, without considering the real usage of such data.

Data Locality. Hadoop’s default scheduling techniques (i.e., Capacity [3] and
Fair [4] schedulers), typically rely on exploiting data locality in the cluster, i.e.,
favoring query shipping. Moreover, other, more advanced scheduling proposals,
e.g., [9,15], to mention a few, also favor query shipping and exploiting data
locality in Hadoop, claiming that it is crutial for performance of MapReduce
jobs. In addition, [15] proposes techniques that address the conflict between
data locality and fairness in scheduling MapReduce jobs. For achieving higher
data locality, they delay jobs that cannot be accommodated locally to their data.

H-WorD: Workload-Driven Data Redistribution in Hadoop 319

These approaches however overlook the fragileness of such techniques to skewed
distribution of data in a cluster.

Combining Data and Query Shipping. To address such problem, other
approaches (e.g., [7,14]) propose combining data and query shipping in a Hadoop
cluster. In [7], the authors claim that having a global overview of the executing
tasks, rather than one task at a time, gives better opportunities for optimally
scheduling tasks and selecting local or remote execution. [14], on the other side,
uses a stochastic approach, and builds a model for predicting a cluster workload,
when deciding on data locality for map tasks. However, these techniques do not
leverage on the estimated workload to perform in advance data transfers for
boosting data locality for map tasks.

Finally, the first approach that tackles the problem of adapting data place-
ment to the workload is presented in [11]. This work is especially interesting for
our research as the authors argue for the benefits of having a data placement
aware of a cluster workload. However, the proposed approach considers data
placements for single jobs, in isolation. In addition, they use different placement
techniques depending on the job types. We, on the other side, propose more
generic approach relying only on an information gathered from job profiles, and
consider a set of different input jobs at a time.

7 Conclusions and Future Work

In this paper, we have presented H-WorD, our approach for workload-driven
redistribution of data in Hadoop. H-WorD starts from a set of MapReduce jobs
and estimates the workload that such jobs impose over the cluster resources.
H-WorD further iteratively looks for alternative execution scenarios and iden-
tifies more favorable distribution of data in the cluster beforehand. This way
H-WorD improves resource utilization in a Hadoop cluster and reduces the
makespan of MapReduce jobs. Our approach can be used for automatically
instructing redistribution of data and as such is complementary to current
scheduling solutions in Hadoop (i.e., those favoring data locality).

Our initial experiments showed the effectiveness of the approach and the
benefits it brings to the performances of MapReduce jobs in a simulated Hadoop
cluster execution. Our future plans focus on providing new scheduling techniques
in Hadoop that take full advantage of a priori knowing more favorable data
distribution, and hence use idle network cycles to transfer data in advance.

Acknowledgements. This work has been partially supported by the Secreteria
d’Universitats i Recerca de la Generalitat de Catalunya under 2014 SGR 1534, and
by the Spanish Ministry of Education grant FPU12/04915.

320 P. Jovanovic et al.

References

1. Apache HBase. https://hbase.apache.org/. Accessed 02 March 2016
2. Cluster rebalancing in HDFS. http://hadoop.apache.org/docs/r1.2.1/hdfs design.

html#Cluster+Rebalancing. Accessed 02 Mar 2016
3. Hadoop: capacity scheduler. http://hadoop.apache.org/docs/current/hadoop-yarn/

hadoop-yarn-site/CapacityScheduler.html. Accessed 04 Mar 2016
4. Hadoop: fair scheduler. https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/

hadoop-yarn-site/FairScheduler.html. Accessed 04 Mar 2016
5. B�lażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on

Scheduling: From Theory to Applications. Springer Science & Business Media,
Berlin (2007)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

7. Guo, Z., Fox, G., Zhou, M.: Investigation of data locality in MapReduce. In:
CCGrid, pp. 419–426 (2012)

8. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F.B., Babu, S.:
Starfish: a self-tuning system for big data analytics. In: CIDR, pp. 261–272 (2011)

9. Jin, J., Luo, J., Song, A., Dong, F., Xiong, R.: BAR: an efficient data locality
driven task scheduling algorithm for cloud computing. In: CCGrid, pp. 295–304
(2011)

10. Kolisch, R., Hartmann, S.: Heuristic Algorithms for the Resource-Constrained
Project Scheduling Problem: Classification and Computational Analysis. Springer,
New York (1999)

11. Palanisamy, B., Singh, A., Liu, L., Jain, B.: Purlieus: locality-aware resource allo-
cation for MapReduce in a cloud. In: SC, pp. 58:1–58:11 (2011)

12. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: MSST, pp. 1–10 (2010)

13. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
Graves, T., Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia,
S., Reed, B., Baldeschwieler, E.: Apache hadoop YARN: yet another resource nego-
tiator. In: ACM Symposium on Cloud Computing, SOCC 2013, Santa Clara, CA,
USA, 1–3 October 2013, pp. 5:1–5:16 (2013)

14. Wang, W., Zhu, K., Ying, L., Tan, J., Zhang, L.: Map task scheduling in MapRe-
duce with data locality: throughput and heavy-traffic optimality. In: INFOCOM,
pp. 1609–1617 (2013)

15. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: EuroSys, pp. 265–278 (2010)

https://hbase.apache.org/
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Cluster+Rebalancing
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Cluster+Rebalancing
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html

Internet of Things and Sensor Networks

Dynamic Ontology-Based Sensor Binding

Pascal Hirmer1(B), Matthias Wieland1, Uwe Breitenbücher2,
and Bernhard Mitschang1

1 Institute of Parallel and Distributed Systems, University of Stuttgart,
Universitätsstr. 38, Stuttgart, Germany
{pascal.hirmer,matthias.wieland,

bernhard.mitschang}@informatik.uni-stuttgart.de
2 Institute of Architecture of Application Systems, University of Stuttgart,

Universitätsstr. 38, Stuttgart, Germany
uwe.breitenbucher@informatik.uni-stuttgart.de

Abstract. In recent years, the Internet of Things gains more and
more attention through cheap hardware devices and, consequently, an
increased interconnection of them. These devices equipped with sensors
and actuators form the foundation for so called smart environments that
enable monitoring as well as self-organization. However, an efficient sen-
sor registration, binding, and sensor data provisioning is still a major
issue for the Internet of Things. Usually, these steps can take up to
days or even weeks due to a manual configuration and binding by sensor
experts that furthermore have to communicate with domain-experts that
define the requirements, e.g. the types of sensors, for the smart environ-
ments. In previous work, we introduced a first vision of a method for
automated sensor registration, binding, and sensor data provisioning. In
this paper, we further detai l and extend this vision, e.g., by introducing
optimization steps to enhance efficiency as well as effectiveness. Further-
more, the approach is evaluated through a prototypical implementation.

Keywords: Internet of Things · Sensors ·Ontologies ·Data provisioning

1 Introduction and Motivation

Today, the paradigm called Internet of Things (IoT) gains more and more impor-
tance in many different domains [16]. The IoT is generally based on the inte-
gration of sensors and actuators to allow monitoring and self-organization of
what is called smart environments. For example, by an aggregation of raw sen-
sor data, high level information – so called situations – can be derived, which
enables automated adaptation of smart environments to occurring events. This
enables new approaches such as advanced manufacturing – oftentimes referred
to as Industry 4.0 [8] – smart homes or smart cities [16]. For example, automated
exception recognition in a production environment as described in [9] can lead
to severely reduced costs due to a faster repair and, as a consequence, a faster
resumption of the production process.
c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 323–337, 2016.
DOI: 10.1007/978-3-319-44039-2 22

324 P. Hirmer et al.

However, though there are many IoT applications, the registration and bind-
ing of sensors and actuators is still a great challenge. A manual binding is a
complex and tedious task that requires technical knowledge about the sensors,
actuators, and the environment. To realize a manual sensor binding, adapters
have to be manually created and deployed for each sensor to extract its data and
to provision it to sensor-driven applications. Furthermore, these steps are error-
prone and can take hours or even days to be processed manually: a sensor expert
has to configure the sensors, install a sensor gateway, bind the sensors, implement
the sensor data provisioning, and establish interfaces to applications that intend
to consume the sensor data. By doing so, he constantly has to communicate
with domain-experts that define the requirements for the smart environment.
Furthermore, nowadays environments are very dynamic, i.e., the contained sen-
sors and actuators may change constantly, e.g., when a smart phone is carried
into a smart home environment. To cope with these issues, we need a means for
efficient, on-demand binding of sensors and actuators. In real-world scenarios,
efficiency and accuracy are of vital importance. The drawbacks that come with
a manual registration can lead to high costs due to occurring errors, a tedious,
time-consuming registration process and, furthermore, omits building dynamic
smart environments. In previous work [5], we worked on a first approach by
introducing a vision of a method for on-demand automated sensor registration,
binding, and sensor data provisioning. The goal of the method is to reduce the
manual steps to the modeling of sensors and things using ontologies. All other
steps (sensor binding, sensor data provisioning) can be processed automatically
in milliseconds instead of hours or even days when conducting them manually.
By doing so, we can reduce occurring errors that are more likely with manual
processing and, as a consequence, save costs.

In this paper, we further enhance this method by introducing new optimiza-
tion steps that can further improve the efficiency. Furthermore, we elaborate
the details of this method, which was only described as a vision in our previous
work, and we introduce a system architecture to realize the method. Finally, we
provide a prototypical implementation that is the basis of a first detailed evalua-
tion of our approach. This implementation is currently in productive use within
the open source IoT project SitOPT1. In the context of this paper, things are
physical devices containing an arbitrary amount of sensors. As a consequence,
sensors cannot be things themselves.

Motivating Scenario: We present the motivating scenario as depicted in Fig. 1
to explain our approach: In a typical production environment, the machines on
the shop floor are monitored in an ad-hoc manner by a sensor-driven application
that consumes raw sensor data and derives high-level situations. These situations
describe changing states of the machines. The following situations can occur: (i)
Running indicates that the machine is running without any errors, (ii) Critical
indicates an emerging error that could lead to the machine’s failure, e.g., if a
sensor measures an increasing temperature, and (iii) Failed indicates that the

1 https://github.com/mormulms/SitOPT.

https://github.com/mormulms/SitOPT

Dynamic Ontology-Based Sensor Binding 325

Fig. 1. Motivating scenario: monitoring machines on the shop floor

machine has failed due to an occurred error detected by one or more sensors.
To enable such a situation recognition, all available sensors of a machine have
to be monitored. To realize this, the sensors somehow have to be connected
to the situation recognition system. This requires: (i) creating and deploying
adapters to connect the recognition system to each individual physical sensor,
and (ii) provisioning of the sensor data to the situation recognition system.
Important aspects such as efficiency and sensor availability are of vital impor-
tance to enable a reliable recognition of occurring situations. However, even if
all required adapters are available, e.g. by using integration technologies such
as FIWARE2 or OneM2M3, connecting each physical sensor manually to the
respective applications, in this case the situation recognition system, is – as
described in Sect. 1 –, a tedious, time-consuming and error-prone task: different
types of sensors have to be managed, adapters need to be selected, and physical
endpoints of sensors must be configured in the respective application. Thus, to
increase the efficiency of building sensor-driven applications, we need an auto-
mated means to dynamically bind applications to the required sensors by using
software-defined specifications. The approach presented in this paper copes with
these issues by enabling an automated sensor registration and a dynamic, auto-
mated sensor binding and provisioning based on an ontology model to enable
scenarios such as situation recognition in smart environments.

The remainder of this paper is structured as follows: In Sects. 2 and 3, the
main contribution of this paper is presented. In Sect. 4, we describe related work.
After that, in Sect. 5, we evaluate the approach through a prototypical imple-
mentation. Finally, in Sect. 6, we give a summary of the paper and an outlook
on future work.

2 Dynamic Ontology-Based Sensor Binding

This section and the following Sect. 3 present the main contribution of this paper
by introducing a system architecture and a method for dynamic sensor binding

2 https://www.fiware.org/.
3 http://www.onem2m.org/.

https://www.fiware.org/
http://www.onem2m.org/

326 P. Hirmer et al.

Fig. 2. Architecture for on-demand sensor binding and sensor data provisioning

and sensor data provisioning. In the context of this paper, sensor data provi-
sioning means to enable sensor-driven applications retrieving the required sensor
data, e.g., via REST interfaces or MQTT. Figure 2 depicts the overall architec-
ture of our approach. The components and interaction steps marked in bold are
newly added to the architecture introduced in previous work [6]. The architecture
consists of the following main components: (i) the sensor registry, which stores
meta-information about the physical things and sensors, (ii) the sensor ontology,
containing sensor binding information, (iii) the sensor adapters – stored in the
sensor adapter repository – that extract the data from the sensors and can be
deployed directly on a thing or on an adapter platform, and (iv) the Resource
Management Platform that provisions the sensor data as remotely accessible
resources (pull) or via a publish-subscribe approach (push) using a message
broker. The support of a pull and a push-based provisioning of sensor data is
necessary due to different needs of sensor-driven applications. Some applications,
e.g. streaming systems, require the data as soon as they occur because they are
working directly on the sensor data stream. Other applications, e.g., flow-based
applications, require the data on-demand, i.e. independent of the sensor’s reac-
tion, e.g., when a certain step in the flow is reached. This requires a means to
store sensor data in the sensor data storage and provide them when needed. The
components of our architecture are further described in the following. Security
and privacy features are out of scope of this paper, however, they are part of our
approach and system architecture.

2.1 Sensor Registry

The sensor registry component provides a means to register sensors to the
Resource Management Platform (RMP), which enables binding the sensors,
receiving their data and providing them through a pull approach (e.g., by REST

Dynamic Ontology-Based Sensor Binding 327

Fig. 3. Partial ontology of our approach based on SensorML

resources) or a push approach (e.g., by MQTT). To register a thing manually
or automatically to the RMP, only a unique ID of a thing containing one or
more sensors, e.g., in the motivating scenario a production machine, has to be
provided. In this case, all sensors of the thing will be registered. In case only
specific sensors of a thing should be registered, unique sensor IDs have to be
provided as well. Providing such an easy-to-use registration entry point enables
usage by domain users without any extensive knowledge of sensor technology.
Although this is a simple registration step, if performed manually for hundreds
of individual sensors, this becomes a time-consuming, error-prone task and is,
therefore, not appropriate. Because of that, an automated registration is recom-
mended and supported by our approach. The detailed sensor and thing binding
information is stored in an ontology, which is described in the next section.

2.2 Sensor Ontology

The sensor ontology used in our approach to model things and sensors
(cf. Fig. 3) – modeled by a sensor expert – is based on the Sensor Model Lan-
guage4 (SensorML), an XML-based model that enables defining things, sensors,
their properties as well as their relations. In our adapted ontology, the follow-
ing elements are contained: (i) the super type Object that is either inherited
to the type (ii) Sensor or (iii) Thing, and (iv) Adapters that are attached to
the sensors. Objects are defined as all things that are involved in sensor-driven
applications and the sensors observing them. For example, a real world object
like a machine with built-in sensors. However, there are also objects in the world
that are not observable by sensors. These are not covered in this paper. Sensors
and things have several specific attributes such as their quality, category, etc.
4 http://www.opengeospatial.org/standards/sensorml.

http://www.opengeospatial.org/standards/sensorml

328 P. Hirmer et al.

Some attributes, e.g., their ID or geolocation, are defined in the Object they are
derived from. Adapters provide a reference to a sensor-specific adapter implemen-
tation in the sensor adapter repository. This information is of vital importance to
enable sensor binding and sensor data provisioning. In our approach, we decided
to use ontologies to model and manage this information instead of SensorML,
because SensorML is a complex and detailed language containing a large amount
of elements and properties that are not needed in our lightweight approach. For
our approach, we therefore only pick the core concepts of SensorML. However,
we exploit the structure of SensorML to define our ontology using the Resource
Description Framework (RDF) and the Web Ontology Language (OWL). This
approach is similar to the one presented in [13]. Our ontology is depicted in an
abstracted manner in Fig. 3. As default, we are using our lightweight ontology
in this approach, because SensorML-based XML documents are cumbersome to
process.

2.3 Resource Management Platform

The Resource Management Platform (RMP) combines two paradigms for pro-
visioning sensor data: (i) a pull approach by providing sensor data as uniform
REST resources, and (ii) a (e.g., queue-based) publish-subscribe (push) app-
roach for enabling direct notification whenever a sensor value occurs. Which
of the approaches is used depends on the sensor-driven application. The pull
approach guarantees that a sensor value is present when needed, whereas the
push approach provisions sensor data as soon as they occur but cannot deliver
the latest sensor values on-demand. This enables usage by all kinds of sensor-
driven applications, e.g., the one presented in the motivating scenario. Most
importantly, it works without any additional software besides approved Internet
technologies that are nowadays available in nearly all devices.

In the pull approach, REST-based resources can be accessed by sensor-driven
applications using a (e.g., HTTP) GET request. To be able to provide sensor data
on demand, which is necessary to support this pull-based approach, a persistent
sensor data storage has to be provided, which is able to store the data to be
available when it is needed. Additionally to the sensor data, a timestamp has to
be provided describing when the data was produced because the quality of sensor
data typically decreases with time passing. The sensor data is provided using
REST resources accessible through the following URL schema: < protocol >:
// < RMP URL > / < thing id > / < sensor id > for a specific sensor
value and < protocol >: // < RMP URL > / < thing id > / for a list of all
sensor values of a thing. The quality of a sensor value is at least dependent on
its accuracy, staleness, as well as on the maturity of the value. In addition to
this pull-based approach, we further enable a push-based approach to provision
the sensor data. By using approved publish-subscribe queuing technologies such
as MQTT, we are able to allow queue registration on certain sensors so the
sensor-driven applications can be automatically notified once sensor data occur
and are able to process them immediately. The information that is sent to the
sensor-driven application is the same as in the pull approach.

Dynamic Ontology-Based Sensor Binding 329

2.4 Sensor Adapter Platform

Sensor adapters provide access to the sensors. That is, they connect to the
sensors’ physical interfaces (e.g., serial interfaces) and extract the values that
are produced. For example, these sensor adapters could be lightweight scripts
deployed directly on the things or on external platforms to retrieve the sen-
sor values from a serial interface, or more sophisticated platforms (FIWARE,
OneM2M, OpenMTC, etc.) using approved Machine-to-Machine standards such
as ETSI5. With respect to our approach, the sensor values are passed to the
Resource Management Platform including a timestamp, the sensor ID, the type
of the sensor, the corresponding thing, and the quality [12] of the sensor value.
There are two types of quality regarding sensors: (i) the sensor quality, which is
specific to a certain sensor type and influences the quality of all values produced
(e.g., the average deviation), and (ii) the quality of a sensor value (e.g., its spe-
cific staleness). The sensor quality information is stored in the ontology and does
not have to be provided by the adapters. However, the adapter has to compute
a single quality measure for each value that is passed. This requires knowledge
about the definition of quality in the context of the sensor, but enables a better
quality-aware usage and further processing of sensor values.

In general, there are two types of adapters as depicted in Fig. 2:

(i) Local Adapters (Type 1, Fig. 2): Local adapters are running on the same
thing that contains the sensors. Usually, some kind of runtime environment or
operating system is provided to deploy the sensor adapters onto the thing. This
makes it easy to receive and pass sensor values to the RMP, preconditioned that
the thing is connected to a network. The passing of the values can be conducted
using approved protocols such as HTTP or MQTT.

(ii) Remote Adapters (Type 2, Fig. 2): Remote adapters are the regular case.
If the corresponding thing does not offer any means to deploy an adapter or if
a single sensor does not offer a means for direct access and is deployed without
a corresponding thing, e.g., a temperature sensor attached to a wall, remote
sensor adapter platforms are used for binding. Remote sensor adapters can, e.g.,
be deployed on micro controllers and are able to connect to the sensors, receive
their values and pass them to the RMP. We recommend using approved M2M
platforms such as FIWARE, OneM2M or OpenMTC supporting a wide range of
sensor types and M2M communication standards to deploy remote adapters.

3 Method for Dynamic Ontology-Based Sensor Binding

The architecture described in the previous section is applied through the method
depicted in Fig. 4. It covers the whole sensor lifecycle, from the registration to
its deactivation. Based on our previous work that presented the vision for this
method, we add several optimizations to the method steps and provide more

5 http://www.etsi.org/technologies-clusters/technologies/m2m.

http://www.etsi.org/technologies-clusters/technologies/m2m

330 P. Hirmer et al.

Fig. 4. Optimized method for dynamic sensor binding

details. The purpose of these optimizations is providing concepts for improving
the method throughout the whole sensor lifecycle. The optimizations are not yet
fully detailed, this, and further optimizations, will be part of our future work.
We show that a full automation of this method is possible, which is necessary
to achieve our goal to minimize human interaction during this process.

Step 1: Registration of Sensors
In the first step of the method, sensors are registered to the Resource Manage-
ment Platform. By doing so, an unique identifier of the thing to be registered
and, if specific associated sensors should be registered, also unique identifiers of
the sensors have to be specified. Detailed information of sensors and things are
contained in the sensor ontology (cf. Step 2). In case a thing or a sensor is not
known, i.e., is not represented in the ontology, an ontology snippet describing
their properties has to be added to the registration, which will be processed in
the next Step 2. In the following, we assume that the ontology is modeled cor-
rectly and contains all sensors and things of the specific domain our approach is
applied to, in the motivating scenario e.g. the shop floor.

Optimization: Registration of Things
The registration can contain either a “whole” thing (e.g., a production machine)
or specific sensors of a thing. Registering a whole thing makes sense if all sensors
of this thing should be registered and, as a consequence, are relevant for further
processing. If only some of the sensors are relevant for sensor data provisioning,
it makes sense to register them individually. This can save costs due to a more
energy efficient solution.

Step 2: Ontology Traversal
Based on the information provided by the registration of Step 1, additional,
specific information about things and sensors are retrieved from the ontology in
Step 2. The ontology describes technical sensor information that are necessary for

Dynamic Ontology-Based Sensor Binding 331

an automated registration, binding, and sensor data provisioning. Furthermore,
it can also be used as meta-data source by sensor-driven applications. These
information include sensor specifications (accuracy, frequency, ...), information
about sensor access, i.e., about sensor binding in terms of the corresponding
adapter in the sensor adapter repository, and about the contained sensors of a
thing. The sensor ontology is partly depicted in Fig. 3. On sensor registration,
we traverse the ontology and search for the corresponding entry of the sensor or
thing. Once the relevant sensor information is found, it can be used for auto-
mated sensor binding, which is described next.

Optimization: Use Native SensorML or Ontology
Due to the fact that these concepts are of vital importance in our approach,
we decided to use ontologies as default option. However, in case of small, clear
scenarios, e.g., describing a closed, non-extendable environment, an XML-based
representation, such as native SensorML, is also supported by our approach.

Step 3: Automated Sensor Binding / Sensor Adapter Deployment
The next step is the automated sensor binding and, furthermore, the provisioning
of the sensor data, which is based on the sensor information that was extracted
from the ontology in Step 2. To enable sensor binding, we need a means to
extract the sensor data from the corresponding sensors. This requires adapters,
as described in Sect. 2.4, which are connecting to the sensors’ serial interfaces,
extract the data, and send it to the Resource Management Platform (e.g., using
HTTP or MQTT). The great advantage of our approach is that the adapters do
not have to care about sensor data provisioning to sensor-driven applications,
because they send the data directly to the centralized RMP that manages the
provisioning for them. Note that the data being produced by the sensors is non-
stopping, i.e., the adapter has to be up and running. Techniques for guaranteeing
such a high availability shows high complexity and is out of scope in this paper.

As described before, the sensor adapters are deployed automatically. First,
the adapters are retrieved from the sensor adapter repository, then they are
parameterized (e.g., with the RMP’s URL). The information which adapter is
needed to bind the sensor(s) defined by the registration was extracted from the
ontology in Step 2. There are several possibilities how an adapter deployment
can be realized: if the sensor is connected to a thing that is containing a powerful
runtime environment such as, e.g., a Raspberry Pi, the adapter can be deployed
directly using, e.g., SSH connections or more sophisticated approaches such as
TOSCA [2]. However, in most cases this is not possible. Because of that, the
adapters have to be deployed on external platforms, either self-implemented or
using approved middleware, such as FIWARE, OneM2M or OpenMTC, that
are capable to connect to the sensors, even if, e.g., they are embedded into
a production machine, using Machine-to-Machine standards. The information
how to bind a sensor is stored entirely in the ontology and has been extracted
in Step 2.

332 P. Hirmer et al.

Optimization: Choose Optimal Sensor
In many cases, things contain more than one sensor of a certain type and it
makes sense to choose the most suitable one. The dynamic sensor binding of
our approach enables such an optimization by enabling binding of sensors that
are most suitable for a specific scenario, e.g., in regard to energy efficiency or
accuracy. Note that this step is highly dependent on the use case scenario and,
furthermore, on its non-functional requirements.

Step 4: Sensor Data Provisioning
After the sensor adapters are deployed and activated, they start sending data to
the RMP. However, the data can only be accessed by the sensor-driven applica-
tions after the fourth step is processed, the sensor data provisioning. In this step,
the interfaces to the sensor-driven applications are established. The sensor data
provisioning step represents the integration of all components, from the sensor
adapters to the sensor data provisioning through the RMP. After the automated
adapter provisioning (Step 3), the RMP is informed that the registered sensors
have started sending their data. By doing so, entries in the sensor data storage
as well as corresponding REST resources are created for each sensor to provision
its data to enable the pull approach. Furthermore, we create topics in a queue
for each sensor and publish these topics to the sensor-driven applications that
can subscribe to them to enable the push approach. After this step, the sensor
data are available to sensor-driven applications.

Optimization: Choose Sensor Mode “On Request” or “Always On”
Sensors can be operated in two different modes. In the on request mode, the
sensor is inactive only requiring minimal energy consumption. Sensor values
are requested on-demand by the sensor adapters, which leads to the sensors to
change to an active state, send the value and then return to an inactive state
again. The main advantage is a reduced energy consumption, which makes sense
when using battery-powered sensors, however, receiving sensor values will be less
efficient. The second mode always on is the regular case, e.g., if sensors are built
into things such as production machines as described in the motivating scenario.
In this case the sensor is always in an active state. Of course, this behavior costs
more energy, however, receiving sensor data can be realized more efficiently.

Step 5: Deactivation
The last step is the deactivation of sensors and/or things once they are not
needed anymore. To do so, the thing and the type of the sensor have to be
provided to the sensor registry. Based on this information, the sensor registry
finds running sensors of a thing with the corresponding type, connects to the
adapters to terminate it, clears the values from the sensor data storage, and
removes the REST resources and the topics in the queue. Deactivation of sensors
saves energy and costs.

Optimization: Delete Thing or Sensor Information (Partially)
The deactivation of sensors and things can be conducted in two manners: (i)
completely deleting the stored information, or (ii) partially deleting it. When
choosing the complete deletion, the entry in the registry is removed, the sensor

Dynamic Ontology-Based Sensor Binding 333

adapter is undeployed, and the corresponding part in the ontology is deleted.
By doing so, the space and costs needed for executing the sensor adapter and
storing these information can be reduced. When selecting the partial deletion,
the user can select which parts should be deleted. For example, if the sensor will
be re-registered in the near future, it makes sense to keep the adapter deployed.

4 Related Work

The related work can be separated into the following areas: (i) automated sensor
binding, (ii) middleware to access sensor data, and (iii) ontologies for sensor
modeling.

Automated Sensor Binding: Hauswirth et al. [4] present a similar approach
by the introduction of the Global Sensor Network (GSN) to bind stream-based
data sources such as sensors without any programming effort. By doing so, sen-
sors are abstracted by a virtual representation to allow processing of the data
using SQL-like queries. In contrast, our approach separates these steps strictly.
After the ontology-based dynamic sensor binding is finished, the data is provi-
sioned to sensor-driven applications. The standard IEEE1451.2 defines so called
Transducer Electronic Data Sheets (TEDS) [10] to enable self-description of sen-
sors. In addition, dynamic plug and play binding of sensors to networks is enabled
through a standardized interface. In contrast to this standard, we do not focus
on the physical binding of sensors. Our goal is an easy provisioning of sensor data
to sensor-driven applications. However, in our approach, standards such as the
IEEE1451.2 could be used for physical sensor binding. Li et al. and Vögler et al.
[11,17] introduce an approach for IoT application deployment using TOSCA.
However, they do not cope with the direct binding of sensors and actuators, i.e.,
they assume that the binding is done through specific sensor gateways. In con-
trast, we propose a generic approach that does not depend on sensor gateways.
Furthermore, although the authors claim that no pre-configuration is necessary,
the papers show that a configuration of the sensor gateways is needed in order
for the approach to work. In our approach, no pre-configuration of devices is
necessary at all.

Middleware to Access Sensor Data: Similar to our approach, Ishaq
et al. [7] introduce an approach for sensor access through a REST interface.
To realize this, Ishaq et al. assume a sensor network bound to a gateway, which
allows accessing the sensors. In our approach, we do not necessarily assume
such a gateway because we manage the sensor binding ourselves. However, the
REST-based provisioning of sensor data is similar to our approach. Machine-
to-Machine (M2M) gateways such as FIWARE, OneM2M, OpenMTC6, Ope-
nIoT [15], or GSN [1] have gained a lot of attention recently. These gateways
serve as layer between physical sensors and “virtual” sensor data. Our approach
in this paper does not try to compete with these approved platforms but rather
uses them, i.e., we provide a more abstracted layer on top. This layer enables
6 www.open-mtc.org/.

http://www.open-mtc.org/

334 P. Hirmer et al.

binding things and not specific sensors. Furthermore, it enables sensor data pro-
visioning to sensor-driven applications exclusively using Internet technologies.
Note that these approved gateways can be used to realize the sensor binding in
our approach (cf. Sect. 2.4). The service-oriented middleware SStreaMWare [3]
enables managing heterogeneous sensor data. SStreaMWare can both handle
data streams and distributed sensor networks. To access stream-based data,
SStreaMWare provides a schema for sensor data representation, which enables
execution of queries based on the data streams. The management of sensors is
based on the things observed, which is similar in our approach.

Ontologies for Sensor Modeling: The knowledge repository OntoSensor [13]
enables modeling and management of sensors. It combines SensorML, IEEE
SUMO, ISO 19115, OWL and GML. By combining these approved description
languages, a wide range of sensors can be modeled. However, OntoSensor descrip-
tions can become heavy-weight and complex. In contrast, our goal is designing
a lightweight ontology for sensor modeling and management. To realize this, we
use a subset of SensorML in contrast to the heavy-weight OntoSensor model. The
ontology DCON [14] enables modeling of activity context. To enable this, differ-
ent OSCAF ontologies7 are combined to create a so called Personal Information
Model: DDO (for Devices), DPO (for Presence), and DCON [14] for represen-
tation of user activity context. In contrast to the specialized DCON ontology,
the goal of our approach is to be more generic, i.e., to support many differ-
ent domains. Furthermore, we do not focus on the user, i.e., the things are the
main focus. In general, persons should not be monitored for privacy reasons. In
summary, this related work focuses on specific aspects like the access of sensors
using gateways, or the execution of queries on sensor data streams or in a sen-
sor network. The goal of our approach is to provide an easy-to-use ontology for
the Internet of Things that combines sensor registration, binding of the sensors,
and sensor data provisioning. Whereat the binding of a concrete sensor is done
indirectly based on the things that are monitored by the sensors. Furthermore,
our approach allows a separation of concerns, since the sensor data processing is
specified separately, e.g., in the situation recognition as described in [6], based
on situation templates that can be mapped onto different execution systems.
Additionally, our approach allows the integration of heterogeneous sensor types
in a standard way as REST resources or through a publish-subscribe model so
that they can be accessed by multiple clients and in parallel.

5 Prototypical Evaluation

The presented system architecture has been implemented as a prototype and
is currently applied to the project SitOPT (cf. acknowledgments). In SitOPT,
the prototype has been integrated to provide a situation recognition system with
sensor data. Based on this data, situations are derived that lead to adaptations of
workflows. The following technologies have been used in this prototype (Fig. 5):

7 http://www.semanticdesktop.org/ontologies/.

http://www.semanticdesktop.org/ontologies/

Dynamic Ontology-Based Sensor Binding 335

Fig. 5. Technologies used for the prototypical implementation

The sensor registry was implemented using NodeJS, offering an user interface
as well as a programmatic interface, accessible through HTTP requests. The
sensor ontology is accessed using SPARQL requests, furthermore, we use SSH
to deploy sensor adapters. As the adapter repository, we use the native file sys-
tem. The ontology is in the Web Ontology Language (OWL) 1.18 format, which
is accessed through SPARQL requests. To support this, we used the Apache
Jena9 framework. Furthermore, to enable an easier access that does not require
SPARQL, we also implemented a REST-based interface that abstracts from it.
Similar to the Sensor Registry, the Resource Management Platform is imple-
mented in NodeJS10, which offers high efficiency. The limitations of such a light-
weight solution regarding robustness are of minor importance in our approach,
because in most IoT use case scenarios, e.g., lost sensor values are not critical to
the sensor-driven applications and efficiency is much more important. As sensor
data storage, we use the schemaless NoSQL database mongodb11, which allows
high efficiency, scalability, and data replication. The direct push approach was
realized using MQTT12 and the Mosquitto13 MQTT broker. As also mentioned
in [5], we conducted runtime measurements of our prototype for evaluation pur-
poses using a machine with a Core i5-3750K @3.4 GHz and 8 GB RAM. We
measured the average runtime of the method’s steps based on 10 measurements:
(i) the sensor registration took 1,91 ms, (ii) the ontology traversal 6,73 ms, and
(iii) the adapter deployment 139,63 ms. The measurements show that we could
achieve the efficiency goals of this paper (cf. Sect. 1). In the future, we will con-
duct several load tests to evaluate how the implementation can cope with a large
amount of sensors.

6 Summary and Future Work

This paper presents an approach for optimized ontology-based sensor registration
and sensor data provisioning. In this paper, we provide details and optimizations
for the introduced system architecture and method. By doing so, we created an
easy-to use solution for sensor-driven applications to bind sensors and access

8 www.w3.org/2004/OWL/.
9 https://jena.apache.org/.

10 http://nodejs.org/.
11 http://www.mongodb.org/.
12 http://mqtt.org/.
13 http://mosquitto.org/.

www.w3.org/2004/OWL/
https://jena.apache.org/
http://nodejs.org/
http://www.mongodb.org/
http://mqtt.org/
http://mosquitto.org/

336 P. Hirmer et al.

their data within milliseconds in contrast to a manual processing of these steps
that can take up to hours or even days. This goal was achieved as described in
our evaluation. Furthermore, we offer a flexible means to provision sensor data
to sensor-driven applications. By providing two means for provisioning, a pull
and a push based approach, we enable usage by a wide range of applications,
both stream-based or static.

In the future, we will extend our prototypical implementation with data
level security, privacy and robustness features and, furthermore, we will work on
performance and scalability issues. In addition, we will concentrate on interfacing
sensor-driven applications.

Acknowledgment. This work is partially funded by the DFG project SitOPT
(610872) and by the BMWi project SmartOrchestra (01MD16001F).

References

1. Aberer, K., Hauswirth, M., Salehi, A.: Zero-programming sensor network deploy-
ment. In: Proceedings of the Service Platforms for Future Mobile Systems (SAINT
2007) (2007)

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q.Z., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014)

3. Gurgen, L., Roncancio, C., Labbé, C., Bottaro, A., Olive, V.: SStreaMWare: a
service oriented middleware for heterogeneous sensor data management. In: Inter-
national Conference on Pervasive Services (2008)

4. Hauswirth, M., Aberer, K.: Middleware support for the “Internet of Things”. In:
5th GI/ITG KuVS Fachgespräch “Drahtlose Sensornetze” (2006)

5. Hirmer, P., Wieland, M., Breitenbücher, U., Mitschang, B.: Automated sensor reg-
istration, binding and sensor data provisioning. In: Proceedings of the CAiSE 2016
Forum at the 28th International Conference on Advanced Information Systems
Engineering (2016). Accepted for publication

6. Hirmer, P., Wieland, M., Schwarz, H., Mitschang, B., Breitenbücher, U., Leymann,
F.: SitRS - a situation recognition service based on modeling and executing situa-
tion templates. IBM Research Report (2015)

7. Ishaq, I., Hoebeke, J., Rossey, J., De Poorter, E., Moerman, I., Demeester, P.:
Facilitating sensor deployment, discovery and resource access using embedded web
services. In: 2012 Sixth International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), pp. 717–724, July 2012

8. Jazdi, N.: Cyber physical systems in the context of Industry 4.0. In: 2014 IEEE
International Conference on Automation, Quality and Testing, Robotics (2014)

9. Kassner, L.B., Mitschang, B.: MaXCept-Decision Support in exception handling
through unstructured data integration in the production context. an integral part
of the smart factory. In: Proceedings of the 48th Hawaii International Conference
on System Sciences (2015)

10. Lee, K.: IEEE 1451: a standard in support of smart transducer networking. In:
Proceedings of the 17th IEEE Instrumentation and Measurement Technology Con-
ference, IMTC 2000 (2000)

Dynamic Ontology-Based Sensor Binding 337

11. Li, F., Vögler, M., ClaeSSens, M., Dustdar, S.: Towards automated IoT application
deployment by a cloud-based approach. In: 2013 IEEE 6th International Conference
on Service-Oriented Computing and Applications, pp. 61–68, December 2013

12. Reiter, M., et al.: Quality of data driven simulation workflows. In: 2012 8th IEEE
International Conference on e-Science (2012)

13. Russomanno, D.J., Kothari, C.R., Thomas, O.A.: Building a sensor ontology: a
practical approach leveraging ISO and OGC models. In: IC-AI (2005)

14. Scerri, S., Attard, J., Rivera, I., Valla, M.: DCON: interoperable context represen-
tation for pervasive environments. In: AAAI Workshops (2012)

15. Saldatos, J., et al.: OpenIoT: open source Internet-of-Things in the cloud. In:
Podnar Žarko, I., Pripužić, K., Serrano, M. (eds.) FP7 OpenIoT Project Workshop
2014. LNCS, vol. 9001, pp. 13–25. Springer, Heidelberg (2015)

16. Vermesan, O., Friess, P.: Internet of Things: Converging Technologies for Smart
Environments and Integrated Ecosystems. River Publishers, Aalborg (2013)

17. Vögler, M., Schleicher, J., Inzinger, C., Dustdar, S.: A scalable framework for
provisioning large-scale IoT deployments. ACM Trans. Internet Technol. 16(2),
11:1–11:20 (2016). http://doi.acm.org/10.1145/2850416

http://doi.acm.org/10.1145/2850416

Tracking Uncertain Shapes with Probabilistic
Bounds in Sensor Networks

Besim Avci, Goce Trajcevski(B), and Peter Scheuermann

Department of Electrical Engineering and Computer Science,
Northwestern University, Evanston, USA

{besim,goce,peters}@eecs.northwestern.edu

Abstract. We address the problem of balancing trade-off between the
(im)precision of the answer to evolving spatial queries and efficiency of
their processing in Wireless Sensor Networks (WSN). Specifically, we are
interested in the boundaries of a shape in which all the sensors’ readings
satisfy a certain criteria. Given the evolution of the underlying sensed
phenomenon, the boundaries of the shape(s) will also evolve over time. To
avoid constantly updating the individual sensor-readings to a dedicated
sink, we propose a distributed methodology where the accuracy of the
answer is guaranteed within probabilistic bounds. We present linguistic
constructs for the user to express the desired probabilistic guarantees in
the query’s syntax, along with the corresponding implementations. Our
experiments demonstrate that the proposed methodology provides over
25% savings in energy spent on communication in the WSN.

1 Introduction

A Wireless Sensor Network (WSN) consists of hundreds, even thousands of tiny
devices, called nodes, capable of sensing a particular environmental value (tem-
perature, humidity, etc.), performing basic computations and communicating
with other nodes via wireless medium [1]. WSNs have become an enabling tech-
nology for applications in various domains of societal relevance, e.g., environ-
mental monitoring, health care, structural safety assurances, tracking – to name
but a few. Given that the nodes (also called motes) may be deployed in harsh or
inaccessible environments, the efficient use of their battery power is one of the
major objectives in every application/protocol design, in order to prolong the
operational lifetime of the WSN.

The problem of efficient processing of continuous queries has been addressed
in the database literature [5,16,18,24], and the distinct context of WSNs had
its impact on what energy-efficient processing of such queries is about [17,25].
However, previous research attempts trying to tackle spatial queries pertaining
to two-dimensional evolving shapes are underwhelming. A few research attempts
propose temporal boundary detection schemes [3,10,26] and, although there is a

G. Trajcevski—Research supported by NSF – CNS 0910952 and III 1213038, and
ONR – N00014-14-1-0215.

c© Springer International Publishing Switzerland 2016
J. Pokorný et al. (Eds.): ADBIS 2016, LNCS 9809, pp. 338–351, 2016.
DOI: 10.1007/978-3-319-44039-2 23

Tracking Uncertain Shapes with Probabilistic Bounds in Sensor Networks 339

consensus that one needs to be aware of the uncertainty – there are no systematic
approaches that will capture the notion of uncertainty and couple it with the
(energy) efficient processing of detecting/tracking evolving spatial shapes.

In traditional TinySQL-like systems, users indicate with the query-syntax
what kind of data they would like to fetch, what sort of functions to apply on
the data and, most importantly, how frequently they would like to retrieve the
relevant information [17]. If query is responded too frequently, network resources
are drained quicker – but if query responses are returned infrequently, then the
user’s view of the (evolution of the) phenomenon may be obsolete. In addi-
tion, quite often the users are interested to know the “map” of the spatial
distribution of the underlying phenomenon, instead of a collection of individ-
ual sensor readings at selected locations [22]. Numerous works have tried to
tackle the problem of efficient incorporation and management of uncertainty in
WSN queries [7,9], along with the continuity aspect of the changes in the mon-
itored phenomena [17,18]. Complementary to these, there are works related to
2D boundary detection, both from the perspective of iso-contour of values read,
as well as communication holes [6,8,13]. The main motivation for this work is
based on the observation that, to the best of our knowledge, there has been no
work that would seamlessly fuse the probabilistic aspects of the sensed data and
the boundary of the evolving shapes representing contiguous regions in which
sensors reading exceed a desired threshold with a certain probability. Towards
that, our main contribution can be summarized as follows:

• We develop a shape detection scheme for spatial data summaries with prob-
abilistic bounds by discretizing the space and applying Bayesian filtering.

• We provide both linguistic constructs and efficient in-network algorithmic
implementation for processing the novel predicates. We enable users to choose
adaptive update frequencies and data granularity in our query model.

• We present a query management scheme that achieves a balance between
responding to queries more frequently if underlying phenomena are changing
rapidly or by responding with a predefined interval, where query answer is
valid for a longer period of time.

The rest of the paper is structured as follows. Section 2 lays out the preliminaries,
notation and introduces the syntactic elements of our proposed query language.
Section 3 explains the details of the system design and provides the methodology
for detecting the boundaries that is amenable to efficient probabilistic updates.
Section 4 presents the experimental evaluation of our work. Finally, Sect. 5 gives
the conclusion and outlines the possible directions for future work.

2 Basic Queries and Data Model

We assume that a WSN consists of a collection SN = {sn1, sn2, . . . , snk} of k
nodes, each of which is aware of its location in a suitably selected coordinate
system [1].

340 B. Avci et al.

Query Model: Several aspects of spatial queries pertaining to 2D shapes detec-
tion have been tackled in the WSN literature: boundary detection [8], isocontour
construction [6], hole detection [13], etc. Our focus is on detecting the boundary
of “important events” spanning a 2D region, with user-specified parameters of
the events of interest. Given the energy limitations of the sensor motes, no WSN
query is truly continuous in the absolute sense, but is rather a sequence of discrete
snapshots over time. When users pose a query to a WSN, they specify a certain
sampling period for the desired frequency. The basic SQL-like querying in WSNs
is provided by the TinySQL [17] and it caters to two basic scenarios: (1) periodic
sampling – as indicated in line #5 in Listing 1.1; and (2) event-based queries,
provided by the TinyDB approach for more efficient query processing, when the
code that generates the events is compiled into the sensor nodes beforehand –
shown in Listing 1.2.

Listing 1.1. Continuous Query

SELECT count (∗)
FROM sensor s , r l i g h t

WHERE sen so r s . nid=r l i g h t . nid
AND sen so r s . l i gh t<r l i g h t . l i g h t

PERIOD 2 s

Listing 1.2. Event-based Query

ON EVENT rad ia t i on−l e ak (l o c)
SELECT Sensor . value , Sensor . l o c

FROM Sensors
WHERE Sensors . value >1200

PERIOD 100 s

The sampling period imposes a natural trade-off: more frequent samplings
(and reporting) deplete the energy faster, while less frequent ones may render
the data obsolete and miss some significant changes. However, the information
gain from reporting that the temperature readings are 20 ± 0.5◦C every 10 s
for 10 min – if the acceptable level of uncertainty is ±3◦C – is same as sending
only two readings – at the beginning and the end of the 10 min interval, thereby
saving 598 transmissions. Thus, by incorporating an extra, explicitly specified
parameter of a (relative) “significant change”, our approach dynamically adapts
the consumption of resources to the fluctuations in the sensed values.

In our earlier work, we proposed predicates pertaining to shapes and objects
trajectories along with their in-network detection [3,21]. In a similar fashion,
our focal point in this work is spatial events that are covering two dimensional
regions, with a consideration of uncertainty. A query language that is closest to
our desiderata is the Event Query Language (EQL) [2], defined by separating
the events into several statements:

• Event Statement: conditions to recognize (parameterized) events
• Detection Statement: rules specifying how and where to detect an event
• Tracking Statement: rules specifying how to track an event
• Query Statement: syntax for expressing queries on events.

An example of EQL syntax is shown in Listing 1.3, corresponding to a sce-
nario for tracking a gas cloud, initiated by detecting a composite event corre-
sponding to three phenomena (light gas, temperature and oxygen). In this work
we provide a few modifications and propose the language Evolving Shapes Event
Query Language (ES-EQL). The main modifications are two-fold: Firstly, ES-
EQL does not use an explicit Tracking Statement since, by default, we make

Tracking Uncertain Shapes with Probabilistic Bounds in Sensor Networks 341

the WSN track the events of interest. Moreover, our detection methodology dif-
fers from what is proposed in [2] significantly enough so that we cannot adopt
the tracking statement component as such. Secondly, we augment the Detection
Statement with a clause called EVOLUTION, which defines the update interval
in conjunction with EVERY clause, and a WITH GRANULARITY clause for
users to specify the data granularity. An exemplary ES-EQL query that can be
compared EQL syntax is shown in Listing 1.4.

Listing 1.3. Sample EQL Statement

DEFINE EVENT GasCloud
SIZE : 3hops
AS: Avg(Light) as lightGasAvg ,

WHERE: lightGasAvg < 50

AND tempAvg >40
AND oxygenAvg < 60

DEFINE DETECTION f o r GasCloud
ON REGION: Explos ion
EVERY: 1000

DEFINE TRACKING fo r GasCloud

EVOLUTION: 1hop
EVERY: 1000
TIMEOUT: 5m

SELECT Pos i t ion , Speed ,

oxygenAvg
FROM GasCloud
WHERE oxygenAvg >50

Listing 1.4. Modified ES-SQL Version

DEFINE EVENT Fire

SIZE 500

AS Min(Probab i l i t y) as
MinCe l lProbab i l i ty

WHERE Temperature > 200
AND Probab i l i t y > 0 .7

DEFINE DETECTION f o r F i r e

ON REGION Al l

WITH GRANULARITY 256

EVERY 60
EVOLUTION 0.2

SELECT EventImage

FROM Fire

WHERE MinCel lProbabi l i ty <0.75

The first statement in Listing 1.4 defines a fire event with the parameters
being: size of the event is 500 ft2, temperature readings for each unit cell above
200◦F, and the probability of each cell readings being above 200◦F is 0.7. If
multiple sensors are located within a particular cell (for a given granularity of
the division of space of interest) then the probability of the temperature value
being ≥200◦F in an infinitesimally small region within that cell is >0.75. Then
the detection scheme for the Fire event will be carried out on the whole field
with data granularity of 256 cells. Afterwards, reporting interval is specified as
60 s and the evolution parameter of 20 % – instructing the system to update
the answer either regularly within 60-s intervals or in case of occurrence of 20 %
change in the event. Finally a query statement is issued, with fetching an “image”
of the event (in fact a 2D data grid-structure that can be converted to an image),
from the fire regions where the minimum probability in a unit cell is ≥75 %.

Now the challenge becomes how to identify what constitutes a significant
change (evolution) in an event. WSNs sample the environment and commu-
nicate in discrete time intervals called epochs [17] so, the evolution of the
shapes between epochs is also discrete. Significant change, or evolution, can be
attributed to several aspects of changes in an existing shape: – its probability; –
its size (area); – or a combination of both. The evolution in the probability of

342 B. Avci et al.

a shape is the positive or negative change in its certainty. If a shape becomes
more certain than its last-reported version by queried amount, then it means
that it has evolved. Another source of a significant change is the area evolution.
When the area of the shape (regardless of its probability-value) changes by a
certain percentage – stated in the respective query – then that shape is consid-
ered to have significantly changed. Lastly, over time both the boundaries of the
shape as well as the confidence in their existence may change, so the evolution
would be progressing on two aspects simultaneously. Implementation details of
all 3 schemes are discussed in Sect. 3. In terms of ES-EQL query syntax, the
change in the area can be specified with AREA EVOLUTION, the change in
the certainty of the shapes with PROBABILITY EVOLUTION, and the com-
bined/overall change with only EVOLUTION clause.

When comparing two shapes for evolution, the problem of shape identification
arises, due to discrete data collection/processing. predefined Two subsequent
calculations of a 2D shape bring another level of uncertainty: do these two shapes
really refer to the same event? One may resort to defining possible worlds and
exploring all the possibilities for identification of shapes is a way to handle this
aspect of a problem. However, this ready-made approach makes the evolution
calculations computationally expensive, and its investigation is beyond the scope
of this work. Instead, we explore spatio-temporal relationships such as split and
merge, the details of which (i.e. comparing last-reported shape and the new
shape) are discussed in Sect. 3.

Data and Network Model: We discretize the space into cells and split the
monitored field to hierarchical raster-like structure, decomposed into n by n grid,
recursively continuing the decomposition One of the most popular way to do this
is by using a quadtree [19], illustrated in Fig. 1(a). At the top level we have a
single cell which represents the whole sensing field, then we build the quadtree
by splitting the sensing field into 4 sub-fields of equal size. We note that the
depth of the quadtree in our current implementation (although it can handle
any arbitrary depth), is 4 – thereby providing 256 leaf-level cells.

At any given level, each cell has a designated/elected leader for data collection
and processing. Depending on the queries, these leaders collect data from the
sensor nodes in their cell and relay the processed data to their parent, which
is the leader of the parent cell in the quadtree. However, electing a dedicated
leader for data collection creates unbalanced energy drainage in the network,
reducing the network lifetime. Therefore, we apply rotating leader scheme [20]
to distribute the load among every node in the network. Therefore, all nodes
in the network form a tree as in Fig. 1(b). With different levels, data can be
defined in different granularity. When continuous spatial queries are posted to
the system, the sensor nodes start sensing the environment and send their sensed
value to their cell leaders. Then, at each level of the hierarchy, sensed data is
aggregated to lower granularities if need be. Finally, the sink (root of the tree)
streams the query update from the network to the querying users. In order for
the system to respond to the queries that are based on certain thresholds, each
cell at each level aggregates its data with respect to the given threshold(s) and

Tracking Uncertain Shapes with Probabilistic Bounds in Sensor Networks 343

(a) Quad-tree Decomposition (b) Granularity Level and Separa-
tion of Leaders

Fig. 1. Separation of the sensing field and quad-tree hierarchy

forwards it for shape detection in the higher levels. When data is aggregated
enough, in other words, data granularity has been lowered to user needs, shape
detection schemes start on elected leaders.

3 Aggregation and Shape Detection

When queries are posed to the system, the task for each sensor node may be
different. Since WSNs have very limited energy budget, it is important to mini-
mize the communication overhead and ensure the execution of the query in the
meantime. Thus, the most straightforward approach of each sensor sensing the
phenomena and sending their data to the respective cell leader who, in turn,
would aggregate the data in an uncertainty frame and forward it to the leader
of the higher-level cell in quadtree – may not be efficient in terms of energy
expenditure. Our proposed event-based propagation of data taking advantage of
evolution, granularity, probability and threshold parameters, is explained in the
sequel.

In addition to sensing (and transmitting), a sensor node may have the tasks
of detection of an event of interest and aggregation. We have following parameters
for an event: – γ: sensing threshold; – p: probability threshold per cell; – and A:
min-area for a connected shape. As part of the query, the elements that decide
the detection are: – T : time period for update frequency; – c: relative change
in value, defining a significant change (evolution); – g: number of unit cells in
desired granularity level; – and R: query area.

The position and the size of a unit cells – i.e., cells which there is a single
cell-leader (i.e., cluster-head) and all the other nodes are leaves in the quadtree –
is uniquely identified when user specifies the desired granularity g. For example,

344 B. Avci et al.

if g = 256, then the unit cells are at level L = 4(= log4 256) and the addressing
scheme for a cell ci,j denotes simply the location in the 2D array representing the
row number (i) and the column number (j) corresponding to the distance from
the bottom-left (i.e., south-east) corner of the region of interest. However, there
is also a semantic role of the unit cell: it is the smallest piece of the resolution of
the grid that collectively makes up the interior and/or boundary of a 2D shape
(with its neighboring cells).

The sensed data is aggregated until the phenomenon can be represented with
a collection of unit cells. Following the data aggregation, shape detection scheme
is executed in the higher levels of the quadtree, without merging cells any further.
The cell leaders in the quadtree can be horizontally split into two sets of nodes
in terms of their participation-role for handling a given query: aggregation nodes,
and shape detection nodes – as illustrated in Fig. 1(b).

We note that the parameter R above (i.e., the area of interest for a given
query) need not be identical with the entire area covered by the WSN. Thus,
when a query q with a set of instantiated parameters is posed and the level
in the quadtree satisfying g cells is identified – if a particular cell intersects
with the query region, then it is included in the detection/reporting. All the
parameters are pushed down the quadtree structure until the query reaches the
desired granularity level Lg,q. Since the leaders at Lq calculate the query-related
properties of a unit cell, the nodes below this level do not receive any of the
query parameters. The nodes at higher levels L < Lg,q are only tasked with
uncertain data aggregation, not the shape detection (cf. Fig. 1(b)).

Uncertainty in the data values in WSN are a fact of life, due to factors such
as: – imprecise or malfunctioning sensors; – mis-calibration; – physical limits of
precision based on the distance between the sensor and the phenomenon-source;
etc. When tracking 2D shapes, a particular challenge is due to discrete nature
of the data sampling [22] and its “conversion” to continuous regions. Aggre-
gating the cell-wide uncertain data makes the problem becomes similar to the
problem of sensor fusion, for which there are variety of theoretical approaches
in the literature (e.g., based on Central Limit Theorem (CLT), Kalman filter,
Dempster-Shafer methods, etc.). CLT states that the arithmetic mean of a large
number of samplings follows a Gaussian distribution regardless of the distribu-
tion of random variables – sensor readings in our case. However, each cell in the
network may not consist of large number of sensors, where a safe number for large
is ≥30 – thus, the number of nodes in a grid cell may hinder the applicability
of CLT. Evidential belief reasoning methods, such as Dempster-Shafer theory,
rely on a set of probability masses and weighted prior beliefs, which can be quite
expensive to store within the network. Hence, throughout this work we applied
Bayesian filters [11] (i.e., a simpler version of univariate Kalman filters without
the control system), making inferences about the true state of the environment
x (i.e., phenomenon value) and the observation z (i.e., sampling by sensor).

Tracking Uncertain Shapes with Probabilistic Bounds in Sensor Networks 345

Fig. 2. Probability and a threshold

The “true state” is a continuous ran-
dom variable, and its probability den-
sity function (pdf) is encoded in the
posterior: Pr(x|z). Our prior beliefs
about the phenomenon is encoded in
the prior: Pr(x). Observations are
made to obtain the true state x, mod-
eled via Pr(z|x) – called the likeli-
hood and denoted Λ(x). Finally, mar-
ginal probability Pr(z) serves as nor-
malization factor for the posterior. With
multiple sources of sensing data, Zn =
z1, z2, ..., zn, the posterior probability

becomes1 Pr(x|Zn) = αΛn(x) Pr(x|Zn−1), where α is the normalization fac-
tor to make

∫
Pr(x|Zn)dx = 1 [15]. Note that the likelihood function, Λ(x) can

also be interpreted as sensor model – alternatively: “given the actual value of
the phenomenon, what is the probability that this node will sense the value z?”

When the final posterior pdf is calculated after merging all of the readings
in a given sensing epoch, the calculation of Pr(x > threshold) is straightforward
(cf. Fig. 2).

Data aggregation is done recursively along the quadtree, each parent fusing
the children data – a distributed Bayes updating based on sending the likelihood
functions from the children and having the parent apply recursive Bayes filter.
Basically, each node sends their likelihood function to be fused to the aggregation
point, which is the cell leader or the parent in the quadtree hierarchy.

To detect a shape, we rely on results in [3], and we define a spatial event
via predicate Q(A, p, γ, t), which holds if there exists a connected 2D shape such
that: (a) Readings for each part of the shape are > γ with probability ≥ p; (b)
Area of the shape is > A; and (c) Time of occurrence of shape is > t.

Cell leaders gather the data from the nodes in their vicinity to aggregate
and to forward it to their parent in the tree hierarchy. However, propagating
probabilistic data poses new challenges: “when the data transmission should be
avoided?” and “which nodes should detect the shape?”

In centralized settings, when cells calculate the probability density function of
the phenomenon value and it is above the threshold, each unit cell can be repre-
sented as a single value in [0, 1] interval pertaining to the given query (predicate)
parameters. When all cells are represented with a single probability value, the
whole map can be plotted as Fig. 3(a), where the bars represent the probabil-
ity values. Taking a horizontal “slice” of this map with the queried probability
parameter, p, would yield the binary image shown in Fig. 3(b), dark cells rep-
resenting a region satisfying the query parameters. Using a simple breadth-first
search algorithm, we can successfully calculate the shapes S1 and S2.

In distributed WSN, shape detection follows the data aggregation step,
and we assume that the data has been aggregated at desired granularity.

1 Due to a lack of space, we present the full derivations at [4].

346 B. Avci et al.

(a) Probability values in the cell (b) Binary image of the cell af-
ter the cut

Fig. 3. Taking a horizontal slice of the probabilities

Thus, ancestor-leaders do not aggregate any further, but rather try to detect
a shape in its region of governance and maintain the data granularity. As data
propagates towards the root, cell leaders govern larger sensing areas (e.g., a
“grandparent” would be responsible for detecting a shape 16 times larger than
“grandsons”). At each level, the areas of group(s) of connected cells are computed
and A parameter is checked for each shape – reporting when the total area ≥ A.
Otherwise, the data transmission is halted from this cell, since there is noth-
ing to report with respect to the query. If any leader in the hierarchy detects
a shape that is touching the boundary of its governance region, it forwards all
of its data to its parent, since the shape may be split into neighboring cells.
We note that, while tempting – halting data transmission from the cells whose
probability of being above the threshold is below the p may cause potential prob-
lems when aggregating for a bigger cell in the higher level. If 3 sub-cells report
being above the threshold with at least 0.7 probability, and one cell sending no
data – implying sensing below the specified γ and p thresholds. The aggregation
of these 4 sub-cells into a single value is invalid since applying Bayes’ filter on 4
random variables to a generate single pdf in the absence of one does not actually
represent the true value.

3.1 Temporal Evolution and Updates

The area of events may shrink, expand and/or move over time. Given the query-
syntax, since data aggregation is performed until desired granularity level (cf.
Fig. 1), all sensing data could be regularly transmitted in the quadtree hierarchy.
Blocking transmission of a newly sensed data because of temporal, spatial, and
spatio-temporal correlations is analyzed in detail in [23] and, in our solution, we
capitalize from temporal correlation when sensing values remain steady – i.e.,
nodes do not need to send their new data which has not significantly changed
from the previous transmission; similarly if the aggregated value of any cell
exhibits the same probability distribution (i.e., mean and variance).

Tracking Uncertain Shapes with Probabilistic Bounds in Sensor Networks 347

Evolution of a detected shape may refer to change in its probability of occur-
rence, its area of effect, or a combination of both evolution for each defined met-
ric. Events change their location in both spatial and probabilistic dimensions
and tracking the evolution of a single event can be achieved via calculating the
boundary and probabilities of each unit cell for the shape in each epoch, then
comparing the new shape against the last-reported shape based on a desired
metric:

• Area Evolution: Since it satisfies the triangle inequality, we rely on the
Jaccard similarity coefficient for the previously-reported shape and the current
one. using Jaccard index and if the new shape is less than 1 − c, where c is
the evolution parameter, similar to the old shape, then it means it evolved.
Formally,

(
J(Sold, Snew) = |Snew∩Sold|

|Snew∪Sold|
)

< 1 − c must be true to detect area
evolution.

• Probability Evolution: Each unit cell that makes up the shape has a prob-
ability value associated with it, and the probability of a shape is calculated
via taking the average of all unit cell probability values. As the event becomes
more certain, average probability values increase, consecutively decreasing the
uncertainty, 1 − p. The evolution in probability refers to change in the aver-
age uncertainty. Given new and last-reported shapes, if the uncertainty of
new shape is c or 1 − c times the last-reported shape, then the new shape is
considered evolved.

• Area-&-Probability Evolution: We first define a property called Presence
which combines the area and probability of a shape S in a single value PAP ,
calculated as:

PAP (S) =
∑

i∈S

pi × Ai

where i is a cell that is part of S, pi is the probability in that cell, and Ai is
the area of the cell. Therefore, when the new shape is calculated at the most
recent epoch, all parts of the shape may indicate a probability change from
its last-reported version. First, we calculate the net change per cell in the new
shape. For each cell in the intersection, net probability change is calculated via
|pnew − pold|. For the parts of the new shape that was not part of the old shape
(or vice versa) (Snew \ Sold), net probability change is defined as pnew (or pold)
treating the pold (or pnew) as 0. After calculating the net probability change for
each part of Snew ∪Sold, total presence value is calculated – denoted as presence
change (P c

AP). If PAP (Snew)/PAP (Sold) ≥ c, then shape has evolved.
To calculate the evolution for multiple shapes, the challenge is to identify

which prior shape a given current shape has evolved from. To this end, we apply
a shape matching scheme to elect a candidate shape in the last-sent map. Our
matching method relies on a very straightforward heuristics:

Smatch = argmax
Sx

(|PAP (Sx ∩ Snew)|)
The shape in the previous epoch that shows the biggest intersection presence

is regarded as the matching shape. Given a set of old shapes and a set of new

348 B. Avci et al.

Fig. 4. Shape matching

shapes, we can form a bipartite graph where nodes represent the shapes and
edges represent the matchings between new and old shapes. Matching each shape
in the new map to another shape in the last-reported map enables us to track
shapes between epochs (cf. Fig. 4).

Some shapes on the old set may connect to more than one shape in the new
set (the reverse of is not true). Also, a number of shapes in the old set may not
be connected to any of the shapes in the new set; and a number of shapes in the
new set may not be connected to any shape in the old set. All of these properties
of the bipartite graph imply evolving spatio-temporal relationship between two
regions [12]:

Split: In the case of split, there will be more than 1 new shapes corresponding
an old shape. Note that if both of the new shapes have substantial overlap with
the old shape, individually they may not satisfy the evolution parameter.

Merge: If multiple shapes merge in a subsequent epoch, only one of them will
be matched to the new shape. Even though the new shape had absorbed another
shape, there is a possibility that it may fail to satisfy c parameter.

Disappearance: If a shape disappears from the map, then it is not detected in
the current epoch.

Appearance: The case where a new event happens and a new shape occurs in
the next epoch is not handled with the above method either.

For this, we detect whether the bipartite graph contains any: – disconnected
node on the new set (Appearance); – disconnected node on the old set (Disap-
pearance, or Merge); – a node on the old set connecting to two nodes in the new
set (Split).

4 Experimental Analysis

Our experimental setup on SID-net Swans [14] simulator is a WSN consisting of
800 homogeneous nodes, capable to sense the phenomenon at its location with
a discrepancy-controlled random placement, reporting every 10 s. Sensing field
is set to be 1000 × 1000 m2, and each node had a communication range as 50 m.
We used synthetic phenomenon for the experiments, built by generating 8 by 8

Tracking Uncertain Shapes with Probabilistic Bounds in Sensor Networks 349

(a) Snapshot of the
Network and the Phe-
nomenon

(b) Ground Truth for the
Event Contours

(c) Output Image from
Our Method

Fig. 5. Shape approximation

(a) Centralized vs. In-network (b) Constant (No Evolution) vs.
 Evolution-basedReporting

Fig. 6. Communication expenditures (Color figure online)

grids and each cell assigned a random temperature between 0◦C and 100◦C, for
every 20 min, linearly morphing the old grid to the new grid. Sensing value for
any point in the field are calculated via bilinear interpolation. Sensor readings
are perturbed with white Gaussian noise with mean = 0 and standard deviation
a random number between 0 and 20. We processed the query with following
parameters: R (query area) = 300; Temperature >80 F and p = 0.7 (70 %);
Granularity = 256 unit-cells; Sampling frequency = 60 s; Change = 10 % – and
the results we present were averaged over 3 independent runs.

Firstly, we evaluated the effectiveness of the Bayes filter and our shape detec-
tion scheme. Figure 5(a) shows the snapshot of the heatmap generated by our
simulator with the location of the nodes (white disks) interpolated on top. For
our query, event contours are extracted as ground truth in Fig. 5(b). Lastly, the
output of our scheme can be seen in Fig. 5(c).

The second set of experiments highlight the difference in communication
expenditure between in-network and centralized approach. Figure 6(a) illustrates
the communication overhead of the centralized (vs. in-network) shape detection

350 B. Avci et al.

in terms of total message hops exchanged in the network. Our second set of
experiments illustrate the impact of the evolution. When AREA EVOLUTION
= 30%, the communication expenditure difference between the constant and
evolution-based reporting is shown in Fig. 6(b). The red line indicates the total
messages over time for evolution-based reporting and the gold line shows the
scheme with constant reporting. Note that at the start of the execution both
techniques need to report the detected shapes.

5 Conclusion and Future Work

We proposed a 2D shape detection and tracking scheme with probabilistic
bounds in WSNs, and enhanced users’ control over the network by allowing
a selection of update frequency and data granularity as part of query’s syntax.
As our experiments indicate, our approach is effective for the detection such
events and is more energy-efficient in comparison to centralized processing. In
the future, we plan to incorporate mobile nodes where nodes move freely, join
and leave the network at will. Besides, we would like to extend our framework to
capture belief-based data fusion methods with a semi-supervised belief updating
protocol, and adapt them to approximate representations [22] in sparse WSN.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Comput. Netw. 38(4), 393–422 (2002)

2. Amato, G., Chessa, S., Gennaro, C., Vairo, C.: Querying moving events in wireless
sensor networks. Pervasive Mob. Comput. 16(PA), 51–75 (2015)

3. Avci, B., Trajcevski, G., Scheuermann, P.: Managing evolving shapes in sensor
networks. In: SSDBM (2014)

4. Avci, B., Trajcevski, G., Scheuermann, P.: Efficient tracking of uncertain evolving
shapes with probabilistic spatio-temporal bounds in sensor networks. Technical
report 2016–06, EECS Dept., Northwestern University (2016)

5. Babu, S., Widom, J.: Continuous queries over data streams. SIGMOD Rec. 30(3),
109–120 (2001)

6. Buragohain, C., Gandhi, S., Hershberger, J., Suri, S.: Contour approximation in
sensor networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.)
DCOSS 2006. LNCS, vol. 4026, pp. 356–371. Springer, Heidelberg (2006)

7. Chu, D., Deshpande, A., Hellerstein, J.M., Hong, W.: Approximate data collection
in sensor networks using probabilistic models. In: ICDE (2006)

8. Ding, M., Chen, D., Xing, K., Cheng, X.: Localized fault-tolerant event boundary
detection in sensor networks. In: INFOCOM (2005)

9. Doherty, L., Pister, K.S.J., El Ghaoui, L.: Convex optimization methods for sensor
node position estimation. In: INFOCOM (2001)

10. Duckham, M., Jeong, M.H., Li, S., Renz, J.: Decentralized querying of topological
relations between regions without using localization. In: ACM-GIS (2010)

11. Durrant-Whyte, H.: Multi sensor data fusion. Technical report, Australian Centre
for Field Robotics The University of Sydney (2001)

Tracking Uncertain Shapes with Probabilistic Bounds in Sensor Networks 351

12. Erwig, M., Schneider, M.: Spatio-temporal predicates. IEEE Trans. Knowl. Data
Eng. 14(4), 881–901 (2002)

13. Fang, Q., Gao, J., Guibas, L.J.: Locating and bypassing holes in sensor networks.
Mob. Netw. Appl. 11(2), 187–200 (2006)

14. Ghica, O., Trajcevski, G., Scheuermann, P., Bischoff, Z., Valtchanov, N.: Sidnet-
swans: a simulator and integrated development platform forsensor networks appli-
cations. In: SenSys, pp. 385–386 (2008)

15. Kar, S., Moura, J.M.F.: Distributed consensus algorithms in sensor networks with
imperfectcommunication: link failures and channel noise. Trans. Sig. Proc. 57(1),
355–369 (2009)

16. Madden, S., Shah, M., Hellerstein, J.M., Raman, V.: Continuously adaptive con-
tinuous queries over streams. In: ACM SIGMOD (2002)

17. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional
query processing system for sensor networks. ACM Trans. Database Syst. 30(1),
122–173 (2005)

18. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over dis-
tributed data streams. In: ACM SIGMOD (2003)

19. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kauffmann, San Francisco (2006)

20. Thein, M.C.M., Thein, T.: An energy efficient cluster-head selection for wireless
sensor networks. In: ISMS (2010)

21. Trajcevski, G., Avci, B., Zhou, F., Tamassia, R., Scheuermann, P., Miller, L.,
Barber, A.: Motion trends detection in wireless sensor networks. In: MDM (2012)

22. Umer, M., Kulik, L., Tanin, E.: Spatial interpolation in wireless sensor networks:
localized algorithms for variogram modeling and kriging. GeoInformatica 14(1),
101–134 (2010)

23. Vuran, M.C., Akan, Ö.B., Akyildiz, I.F.: Spatio-temporal correlation: theory and
applications for wireless sensor networks. Comput. Netw. 45(3), 245–259 (2004)

24. Wu, M., Xu, J., Tang, X., Lee, W.-C.: Top-k monitoring in wireless sensor networks.
IEEE Trans. Knowl. Data Eng. 19(7), 962–976 (2007)

25. Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor
networks. SIGMOD Rec. 31(3), 9–18 (2002)

26. Zhu, X., Sarkar, R., Gao, J., Mitchell, J.S.B.: Light-weight contour tracking in
wireless sensor networks. In: INFOCOM, pp. 1175–1183 (2008)

Author Index

Abelló, Alberto 306
Abi Assaf, Maroun 119
Amghar, Youssef 119
Andruszkiewicz, Piotr 74
Antol, Matej 60
Avci, Besim 338

Badr, Youakim 119
Barbar, Kablan 119
Bellatreche, Ladjel 166
Bembenik, Robert 74
Brahimi, Lahcène 166
Breitenbücher, Uwe 323

Calders, Toon 306
Cenci, Karina 104
Corral, Antonio 212

Dessloch, Stefan 243
Dikenelli, Oguz 275
Dohnal, Vlastislav 60

Ergenc, Belgin 275

Fillottrani, Pablo R. 104
Folha, Rodrigo 183

García-García, Francisco 212
Golfarelli, Matteo 137
Graefe, Goetz 152
Graziani, Simone 137

Habich, Dirk 291
Hameurlain, Abdelkader 275
Härder, Theo 152
Hegner, Stephen J. 226
Heinis, Thomas 31
Hirmer, Pascal 323
Hofmann, Klaus 243

Hrstka, Miroslav 261
Htoo, Htoo 198
Hu, Yong 243

Iribarne, Luis 212

Jäkel, Tobias 89
Jovanovic, Petar 306

Karnagel, Tomas 291
Keet, C. Maria 104
Khan, Zubeida C. 104
Kroha, Petr 261
Kühn, Thomas 89

Lehner, Wolfgang 89, 291
Lersch, Lucas 152
Li, Tianrun 31
Lopes, Claudivan Cruz 183
Luk, Wayne 31

Manolopoulos, Yannis 212
Mitschang, Bernhard 323

Oguz, Damla 275
Ohsawa, Yutaka 198
Ouhammou, Yassine 166

Rahm, Erhard 11
Rizzi, Stefano 137
Rodríguez, M. Andrea 226
Romero, Oscar 306

Sauer, Caetano 152
Scheuermann, Peter 338
Šenk, Adam 261
Stahl, Florian 46

Times, Valeria Cesario 183
Trajcevski, Goce 338

Valenta, Michal 261
Vassilakopoulos, Michael 212
Voigt, Hannes 89
Vossen, Gottfried 46

Wieland, Matthias 323
Win, Tin Nilar 198

Yin, Shaoyi 275

Zezula, Pavel 3

354 Author Index

	Preface
	Organization
	Big Data Integration (Abstract)
	Contents
	ADBIS 2016 - Keynote Papers
	Similarity Searching for Database Applications
	1 Introduction
	2 Similarity Search in Applications
	2.1 Similarity Searching in Images of Human Faces
	2.2 Image Annotation
	2.3 Stream Processing
	2.4 Similarity Searching in Motion Capture Data

	References

	The Case for Holistic Data Integration
	1 Introduction
	2 Use Cases
	3 Holistic Integration of Schemas and Ontologies
	4 Holistic Integration of Entities
	5 Conclusions and Outlook
	References

	Data Quality, Mining, Analysis and Clustering
	Hashing-Based Approximate DBSCAN
	1 Introduction
	2 DBSCAN and Its Challenges
	2.1 Revisting DBSCAN
	2.2 Grid-Based Optimization
	2.3 DBSCAN Challenges

	3 ADvaNCE Overview
	4 ADvaNCE: Approximate Neighborhood
	4.1 Using Locality Sensitive Hashing to Approximate
	4.2 ADvaNCE-LSH - LSH-Based DBSCAN

	5 ADvaNCE: Representative Points Approximation
	6 ADvaNCE: Analytical Analysis
	6.1 ADvaNCE Result Accuracy
	6.2 Time Complexity

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Software Setup and Datasets
	7.3 Accuracy Metric
	7.4 Synthetic Data
	7.5 Real World Datasets

	8 In-Depth Analysis
	9 Related Work
	10 Conclusions
	References

	Fair Knapsack Pricing for Data Marketplaces
	1 Introduction
	2 Quality-Based Pricing
	3 Fair Knapsack Pricing
	4 Conclusions and Future Work
	References

	Optimizing Query Performance with Inverted Cache in Metric Spaces
	1 Introduction
	2 Related Work
	3 Background
	3.1 Metric Space and Similarity Queries
	3.2 Indexing and Query Evaluation

	4 Index Structure Effectiveness
	4.1 Query Statistics
	4.2 Indexing Structure Performance

	5 Inverted Cache Index
	5.1 Naïve ICI
	5.2 Extended ICI

	6 Experiments
	6.1 Different Query Ordering Strategies
	6.2 Influence of Indexing Structure Bushiness
	6.3 Varying Parameters of Extended ICI

	7 Conclusion and Future Work
	References

	Towards Automatic Argument Extraction and Visualization in a Deliberative Model of Online Consultati ...
	Abstract
	1 Introduction
	2 Related Work
	2.1 Argument Visualization
	2.2 Approaches to Automatic Extraction of Argumentation Components

	3 Automatic Argument Extraction and Visualization Framework
	3.1 Overview of the Framework
	3.2 Proposals and Arguments Extraction
	3.3 Proposals and Arguments Transformation
	3.4 Proposals and Arguments Storage
	3.5 The System

	4 Conclusions
	References

	Model-Driven Engineering, Conceptual Modeling
	Towards a Role-Based Contextual Database
	1 Introduction
	2 Running Example
	3 Formal Foundation
	4 RSQL Query Language
	4.1 RSQL Syntax
	4.2 Data Model Concepts in RSQL

	5 RSQL Result Net
	6 Related Work
	7 Conclusions
	References

	Experimentally Motivated Transformations for Intermodel Links Between Conceptual Models
	1 Introduction
	2 Experimental Assessment of Intermodel Assertions
	2.1 Materials and Methods
	2.2 Results and Discussion

	3 Entity Transformations
	4 Related Work
	5 Discussion
	6 Conclusions
	References

	AQL: A Declarative Artifact Query Language
	Abstract
	1 Introduction
	2 Syntax
	2.1 Example Scenario
	2.2 Artifact Definition Language
	2.3 Artifact Manipulation Language
	2.3.1 Instantiate Statement
	2.3.2 Modification Statements
	2.3.3 Retrieve Statement

	3 AQL Semantics
	3.1 Artifact Definition Language
	3.2 Artifact Manipulation Language

	4 Implementation
	5 Related Works
	6 Conclusion
	Acknowledgments
	References

	Data Warehouse and Multidimensional Modeling, Recommender Systems
	Starry Vault: Automating Multidimensional Modeling from Data Vaults
	1 Introduction
	2 Related Work
	3 Data Vault Basics
	4 Formal Background
	5 The Starry Vault Approach
	5.1 Hub-To-Hub FD Detection
	5.2 Md-Schema Discovery and Ranking
	5.3 Md-Schema Enrichment

	6 Conclusions
	References

	Update Propagation Strategies for High-Performance OLTP
	1 Introduction
	2 Related Work
	2.1 Background
	2.2 Instant Recovery Techniques
	2.3 In-Memory Database Systems

	3 Page-Based Propagation Strategies
	3.1 Page Cleaner Algorithm
	3.2 Page Cleaning Policies
	3.3 Problems of Page-Based Propagation

	4 Log-Based Propagation---a Novel Technique
	4.1 Partially Sorted Log
	4.2 Log-Based Page Cleaner

	5 Experiments
	5.1 Write Bandwidth
	5.2 Backlog Reduction

	6 Outlook and Conclusion
	References

	A Recommender System for DBMS Selection Based on a Test Data Repository
	1 Introduction
	2 Background
	2.1 Database Benchmark Metrics
	2.2 Test Data Repository

	3 A Recommender System for Choosing DBMS
	3.1 Components of Our Recommender System
	3.2 Machine Learning Algorithms

	4 Proof of Concept
	5 Related Work
	6 Conclusion
	References

	Spatial and Temporal Data Processing
	Asymmetric Scalar Product Encryption for Circular and Rectangular Range Searches
	1 Introduction
	2 Basic Concepts
	2.1 Types of Range Search over Spatial Data
	2.2 Data Splitting and Addition of Artificial Dimensions
	2.3 Levels of Attacker's Knowledge

	3 Related Work
	4 Problem Definition
	5 CR-ASPE
	5.1 Basic CR-ASPE
	5.2 Enhanced CR-ASPE Scheme

	6 Performance Evaluation
	6.1 Experimental Results

	7 Conclusion
	References

	Continuous Trip Route Planning Queries
	1 Introduction
	2 Related Work
	3 Continuous Trip Route Planning Queries
	3.1 Safe-Region for CTRPQ
	3.2 Basic Method for TRPQ

	4 Safe-Region Generation Method for CTRPQ
	4.1 Basis for Safe-Region Generation
	4.2 Preceeding Rival Addition Algorithm

	5 Tardy Rival Addition Algorithm
	6 Experimental Results
	7 Conclusion
	References

	Enhancing SpatialHadoop with Closest Pair Queries
	1 Introduction
	2 Related Work and Motivation
	3 Preliminaries and Background
	3.1 K Closest Pairs Query
	3.2 SpatialHadoop

	4 KCPQ Algorithms in SpatialHadoop
	4.1 Improving the Algorithm

	5 Experimentation
	6 Conclusions and Future Work
	References

	Integration Integrity for Multigranular Data
	1 Introduction
	2 Relational Concepts in the Multigranular Setting
	3 Constraints for Data Integration
	4 Conclusions and Further Directions
	References

	Temporal View Maintenance in Wide-Column Stores with Attribute-Timestamping Model
	1 Introduction
	2 Related Work
	3 CTO Operator Model and Temporal Change-Data Capture
	3.1 CTO Operator Model
	3.2 Temporal Change-Data Capture

	4 Temporal View Maintenance Based on ATM and CTO
	4.1 Snapshot-Reducible Queries
	4.2 Extended Snapshot-Reducible Queries
	4.3 Example

	5 Conclusions and Future Work
	References

	Distributed and Parallel Data Processing
	Minimization of Data Transfers During MapReduce Computations in Distributed Wide-Column Stores
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Concepts and Data Model
	3.2 HBase
	3.3 MapReduce

	4 Our Approach
	4.1 The Problem Definition
	4.2 In Mapper Combining
	4.3 Data Locality Optimization

	5 Implementation
	5.1 In Mapper Combiner Deployment
	5.2 Monitoring Module
	5.3 Minimal Cut Algorithm
	5.4 Optimal Data Locality in HBase

	6 Experiments
	6.1 Data Sets
	6.2 Measurement

	7 Conclusion
	References

	Adaptive Join Operator for Federated Queries over Linked Data Endpoints
	1 Introduction
	2 Proposed Adaptive Join Operator
	2.1 Adaptive Join Operator for Single Join Queries
	2.2 Adaptive Join Operator for Multi-join Queries

	3 Performance Evaluation
	3.1 Performance Evaluation for Single Join Queries
	3.2 Performance Evaluation for Multi-Join Queries

	4 Related Work
	5 Conclusion
	References

	Limitations of Intra-operator Parallelism Using Heterogeneous Computing Resources
	1 Introduction
	2 Intra-operator Parallelism
	2.1 General Idea
	2.2 Determining the Partition Size
	2.3 Possible Limitations

	3 Operator Implementation and Hardware Setup
	4 Analysis of the Selection Operator
	4.1 General Observations
	4.2 Selection Operator on the Tightly-Coupled System
	4.3 Selection Operator on the Loosely-Coupled System

	5 Analysis of the Sort Operator
	5.1 Sort Operator on the Tightly-Coupled Systems
	5.2 Sort Operator on the Loosely-Coupled System

	6 Lessons Learned
	7 Conclusion
	References

	H-WorD: Supporting Job Scheduling in Hadoop with Workload-Driven Data Redistribution
	1 Introduction
	2 Running Example
	3 The Problem of Skewed Data Distribution
	4 Workload-Driven Redistribution of Data
	4.1 Resource Requirement Framework
	4.2 Execution Modes of Map Tasks
	4.3 Workload Estimation
	4.4 The H-WorD algorithm

	5 Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	Internet of Things and Sensor Networks
	Dynamic Ontology-Based Sensor Binding
	1 Introduction and Motivation
	2 Dynamic Ontology-Based Sensor Binding
	2.1 Sensor Registry
	2.2 Sensor Ontology
	2.3 Resource Management Platform
	2.4 Sensor Adapter Platform

	3 Method for Dynamic Ontology-Based Sensor Binding
	4 Related Work
	5 Prototypical Evaluation
	6 Summary and Future Work
	References

	Tracking Uncertain Shapes with Probabilistic Bounds in Sensor Networks
	1 Introduction
	2 Basic Queries and Data Model
	3 Aggregation and Shape Detection
	3.1 Temporal Evolution and Updates

	4 Experimental Analysis
	5 Conclusion and Future Work
	References

	Author Index

