The Importance of Proper Diversity
Management in Evolutionary Algorithms
for Combinatorial Optimization

Carlos Segura, Arturo Hernandez Aguirre, Sergio Ivvan Valdez Peiia
and Salvador Botello Rionda

Abstract Premature convergence is one of the most important recurrent drawbacks
of Evolutionary Algorithms and other metaheuristics. As a result, several methods
to alleviate this problem have been devised. One alternative is to explicitly control
the diversity of the population. In this chapter, a recently proposed survivor selec-
tion strategy is incorporated into a memetic algorithm and analyzed using three
different combinatorial optimization problems. This strategy is based on adopting
multi-objective concepts for solving single-objective problems by considering the
contribution to diversity as an explicit objective. Additionally, it incorporates the
principle of adapting the balance between exploration and exploitation to the dif-
ferent stages of the optimization by taking into account the stopping criterion and
elapsed time. These new methods provide important benefits when compared to more
mature methods that rely on different principles to delay convergence of the popu-
lation. Additionally, new best-known solutions are generated for several instances
of the problems, thus providing proofs of the considerable benefits and robustness
yielded by the schemes that incorporate this novel replacement strategy.
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1 Introduction

Evolutionary Algorithms (EAs) are probably the most widely used population-based
metaheuristics, having been successfully applied to many different problems [12]
and in many different fields of optimization, such as in multi-objective optimiza-
tion [8], combinatorial optimization [9] and continuous optimization [53]. In spite of
the large number of different areas where they have been applied, designing a proper
EA usually involves many difficult design decisions [5]. Many efforts have been made
and advances achieved to automate the creation of components and selection of para-
meters of EAs with the aim of facilitating their design [26]. However, applying these
approaches to automatically design state of the art schemes with ad-hoc operators
suitable to the problems at hand is not yet a reality. Among the difficulties that the
designers of EAs might encounter, the appearance of premature convergence is prob-
ably one of the most frequent drawbacks [10]. Premature convergence arises when
all the population members are located in a small region of the search space that
differs from the region containing the optimal solution, and the genetic operators
and components included in the EA do not allow escaping from this region. Thus,
it is closely related to the management of diversity in the population. In fact, many
studies have shown that maintaining a diverse population offers a way to alleviate
the problems related to premature convergence [10]. However, a population that is
too diverse might prevent exploitation, resulting in poor-quality solutions. For this
reason, Mahfoud coined the concept of useful diversity [31] to refer to those amounts
of diversity that result in proper solutions.

In the literature, several different ways of alleviating the problem of premature
convergence have been devised [40]. In the 90s, most proposals for alleviating pre-
mature convergence were focused on modifying the parent selection scheme. The
reason is that at the time, most of the schemes were generational methods, so the main
source of selection pressure was the parent selection. However, it was soon discov-
ered that trying to alleviate this drawback by only taking into account parent selection
was not enough [4]. In subsequent years, most EAs incorporated the use of a replace-
ment phase that abandoned, at least partially, the initial generational replacement
methods. Many authors discovered the possibility of incorporating methods to alle-
viate the premature convergence problem into this phase [10]. Note that, even when
the generational replacement methods were more popular, some authors had already
taken this choice into account [30]. However, with the popularization of elitism and
other kinds of replacement strategies, the number of schemes that adopted these
principles grew enormously [27, 35, 54].

One important aspect of premature convergence is that it completely depends on
the amount of time and/or generations that is granted to the executions of the EA,
i.e. its stopping criterion. For instance, a specific EA might be executed to solve a
given problem for one hour and it might yield promising results. However, when
executed for 24 h, it might converge prematurely after 4 h, for instance, and then the
results would not be as good as expected for such a long execution. While the above
discussion is quite logical and not too surprising, it is perhaps more surprising that
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most of the methods that have been proposed to alleviate the premature convergence
drawback do not take into account the stopping criterion set by the user to alter their
internal operation. This means that, depending on the stopping criterion, different
parametrizations might be required. As a result, for each different stopping criterion,
the user must study the effect of the different parameters and tune them accord-
ingly. An example of this is the Restricted Tournament Selection [14] (RTS) method,
which is one of the most popular methods to delay the convergence of EAs. It incor-
porates a parameter that can be used to alter the balance between exploration and
intensification. However, the loss of diversity, and consequently the balance between
exploration and exploitation, does not depend solely on this parameter, meaning that
each problem requires an analysis of the implications of using different parametriza-
tions, and that different parameter values should be used for each problem and for
each stopping criterion.

The basic principle of the the diversity-preservation techniques that affect the
replacement phase is that by diversifying the survivors, more exploration can be
induced. The reason for this is two-fold. First, if the diversity of a given population
is large, it means that several regions of the search space are maintained. Second,
most crossover operators tend to be more explorative when distant individuals are
involved [13]. However, the most popular proposals that try to maintain proper diver-
sity by altering the replacement phase do not take into account the stopping criterion
set by the user, which is an important drawback. In fact, to our knowledge, our recent
proposal [52] (MULTI_DYN) is the first replacement strategy designed to alleviate the
premature convergence drawback by taking into account the stopping criterion and
elapsed time or generations to select the survivors of the population. Note that the
principle of relating survivor selection to the stopping criterion can be done in several
ways. Thus, one of the aims behind the development of MULTI_DYN is to show that
using this principle is helpful and can yield quite important benefits. Specifically,
MULTI_DYN combines the idea of transforming a single-objective problem into a
multi-objective one by considering diversity as an explicit objective, with the idea
of adapting the balance induced between exploration and exploitation to the various
optimization stages.

In this chapter, this novel method and some other more mature schemes are incor-
porated into a memetic algorithm following acommon framework, and they are tested
on three complex combinatorial optimization problems. The main aim of this paper
is to show the generality and robustness of MULTI_DYN. This is done by incorporating
this method into this common framework and testing it with three different problems.
The first one is the Sudoku, which is an NP-Complete problem [56] that has been
recently used extensively as a way of measuring the abilities of different optimiza-
tion frameworks [7, 25]. Second, the results for a two-dimensional packing problem
(2DPP) that was proposed in a contest at the Genetic and Evolutionary Computa-
tion Conference are also shown.! Note that this was the only problem used in [52].

IThe original website (http://www.sigevo.org/gecco-2008/competitions.html) is not being
maintained. We have created a new website from which the evaluator and instances can be
downloaded (http://2dpp.cimat.mx).
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In this chapter, the experimentation is extended with the aim of further improving
the results obtained and to better validate our scheme against other variants. Finally,
a variant of the Frequency Assignment Problem [22] (FAP), which is known to be an
NP-hard optimization problem, is also considered. While the main contribution is to
show the robustness and generality of MULTI_DYN, the state of the art in the appli-
cation of metaheuristics to the problems addressed in this chapter is also improved
upon. In fact, new best-known solutions are attained for some well-known instances
of these problems. Particularly, since a large number of different methods have been
proposed in the case of the FAP, further improving the results obtained for publicly
available instances is quite a remarkable achievement.

This chapter is organized as follows. Section2 presents a summary of the meth-
ods designed to alleviate the premature convergence drawback in EAs. Our novel
replacement strategy is discussed in Sect. 3. A memetic algorithm that is used to test
several ways of delaying the convergence of the population, is presented in Sect. 4. In
this last section, the mathematical definition of the three problems tested, as well as
the way of integrating them with the memetic algorithm, is also provided. Section 5
is devoted to our experimental validation. Finally, our conclusions and future work
are presented in Sect. 6.

2 Control of Premature Convergence in Evolutionary
Algorithms

Premature convergence is one of the most typical issues that appears in the applica-
tion of EAs to complex problems. This has resulted in a large number of techniques
being devised to deal with this drawback [40]. In this section, a brief introduction
to the most popular schemes is given. In order to classify the different proposals,
a taxonomy was proposed in [10]. The methods are classified in base of the com-
ponent of the EA that they modify. Some of the most popular schemes fall into the
following categories: selection-based, population-based, crossover/mutation-based,
fitness-based, and replacement-based. These schemes modify the parent selection,
the population model, the variation phase, the way of establishing the individual’s
fitness, and the replacement strategy respectively. Additionally, schemes are referred
to as uniprocess-driven approaches when a single component is modified, whereas
the term multiprocess-driven is used to refer to those schemes that act over more
than one component. In this section, some of the most popular general techniques
designed for addressing premature convergence are reviewed and the components
that are modified are specified. Many of these schemes are used to show the bene-
fits of the novel proposals presented in this chapter. In such cases, some additional
details such as the parameters required by them are specified. The reader is referred to
[10, 40] and to the original papers of each scheme for further details.

Most of the initial approaches were selection-based schemes based on explicitly
controlling the selection pressure of the parent selection phase [12]. However, it was
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found both theoretically and experimentally that these kinds of schemes were not able
to preserve diversity in the long term, meaning additional measures were required
for the most complex problems [4]. Thus, currently when these schemes are used,
they are usually combined with other strategies that rely on additional mechanisms
to delay convergence.

The population-based schemes alter the panmictic population model of typical
EAs. EAs with structured populations, such as the island-based model or the cellular
schemes, have gained popularity in recent years [2]. In these schemes, individuals
can only by recombined with a subset of the population. Most of these schemes
were proposed as a mean of parallelizing metaheuristics [2]. However, practitioners
soon discovered that structured populations have important implications on the way
of managing the diversity. Specifically, since the amount of interactions between
individuals are diminished, the convergence is usually delayed. Methods based on
the infusion technique are also quite popular approaches categorized as population-
based. In these schemes some new individuals are inserted in the population when
some conditions appear. For instance, a partial restart of the population might me done
after a fixed period or when some event related to the loss of diversity occur [11]. The
saw-tooth genetic algorithm (saw-tooth GA) [20] is a popular scheme that applies this
principle. Specifically, this scheme uses a variable population size and periodic partial
reinitialization of the population in the shape of a saw-tooth function. In order to adapt
the scheme to the particular needs of the problem, two different parameters are used:
the period (P) and the amplitude (D) of a saw-tooth function. This function is used
to manage the dynamic population size and to trigger the partial reinitializations.

In the group of the crossover/mutation-based schemes, the approaches that impose
some mating restrictions are one of the most popular [25]. These schemes follow some
principles that are quite similar to those applied in the island-based schemes. Specif-
ically, some restrictions on the interactions between individuals are also imposed.
However, in these cases, the features of the individuals that are taken into account
to establish the restrictions differ from those used in the structured populations. For
instance, in the cross generational elitist selection, Heterogeneous recombination,
Cataclysmic mutation scheme (CHC), the recombination of too close individuals is
avoided. Note that CHC includes additional modifications, such as the use of a highly
disruptive crossover operator and the a reinitialization process through the applica-
tion of special mutation. Finally, in other cases the variation stage is modified with
the aim of better controlling the balance between exploration and exploitation in a
problem-specific way. For instance, in [42] several complementary genetic operators
are considered simultaneously in an effort to adapt the variation phase to the needs
of the different optimization stages. However, since this kind of control depends on
the problem, on the features of the genetic operators and on the stopping criterion
set by the user, adapting this scheme to different problems is a complex task.

In the fitness-based schemes, the way of calculating the fitness of each individual
is altered. Probably, the fitness sharing scheme is the most popular proposal of this
group. Fitness sharing reduces the fitness of individuals placed in densely populated
regions. Specifically, the fitness of each individual is normalized depending on the
number of individuals in its region, which is defined via the parameter o . Thus, the
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fitness of any individual is affected by any other individual whose distance is not
larger than 0. The clearing strategy (CLR) [41] is as an extension of fitness sharing and
it alters both the fitness assignment procedure and the replacement selection phase.
In the clearing procedure the individuals are grouped into niches—defined via the
parameter o —and the resources of a niche are attributed to the best W elements in
each niche. Moreover, the winners of each niche are copied to the next population, so
the best members of the selected regions are preserved. Note that if too many niches
are detected, this might lead to large immobilization of the population. As a result,
Petrowsky proposed discarding the winners with a fitness lower than the mean [41],
which is the alternative used in this chapter. Note that the clearing procedure is
categorized as a fitness-based scheme in [10]. However, since it also affects the
replacement phase it might be categorized as a multiprocess-driven hybrid method.
Finally, methods based on multiobjectivization [19, 51] use simultaneously several
fitness functions. In some cases, one of the fitness function is the original one that
must be optimized. However, decomposing the original function in several functions,
and using each of them as a fitness function to optimize is also a plausible choice.

Finally, since the appearance of elitism and with the popularization of the inclu-
sion of a replacement phase different from the generational replacement, several
replacement-based methods have also been devised. The basic principle of these
schemes is to induce larger levels of exploration in successive generations by diver-
sifying the survivor of the population [52]. For instance, in crowding the basic princi-
ple is that offspring should replace similar individuals from the previous generation.
Some of the most popular crowding methods are the following:

e In Mahfoud’s deterministic crowding [30] (DETCR), each pair of parents and their
corresponding offspring are paired by minimizing the sum of the distances between
them. Then, each offspring survives if it is at least as good as the parent.

e Probabilistic crowding [34] (POBCR) operates similarly to DETCR but it uses a non-
deterministic rule to establish the winner, with each individual’s survival probabil-
ity being proportional to its fitness value. Scaled variants of probabilistic crowding
(SPOBCR) have also been devised [3].

e In adaptive generalized crowding [35] (AGCR) the selection pressure is adapted to
the needs of the different stages. Two different mechanisms to adapt the selection
pressure were devised: a self-adaptive and an adaptive scheme. In the adaptive
scheme the entropy of the population is used to alter the selection pressure. In this
chapter, this latter version is the one that we have adopted.

e Restricted Tournament Selection [14] (RTS) is a popular steady-state scheme in
which after each new individual (C) is created, C F individuals from the current
population are selected at random. Then, the best individual between C and its
most similar individual in the selected set survives. In case of a tie, the offspring
is preserved.

Several replacement strategies that do not rely on the principles of crowding
have also been devised. In some methods, diversity maximization is considered as
an objective that is combined with the original objective to calculate the fitness of
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each individual. However, since both objectives measure different things, such a
combination is complex and problem-dependent. As a result, other ways of combin-
ing them have been proposed. For instance, in COMB [54] the individuals are sorted
by their contribution to diversity and by their original cost. Then, the rankings of
the individuals, instead of the original objective values, are used to calculate a score
using two parameters (N¢jose and Ngjize). In each step of the replacement phase,
the individual with the lowest score is erased and the ranks are recalculated. This
process is repeated until the desired population size is reached. The contribution-
diversity replace-worst method [27] (CD/RW) also uses diversity but in a different
way. CD/RW is a steady-state EA in which a new individual enters the population
by replacing another one that is worse both in diversity contribution and quality. If
such an individual does not exist, the replace-worst strategy (RW) is applied, i.e.,
the best individuals are preserved. Finally, using concepts that arise in the field of
multi-objective optimization to consider both the original objective and the diver-
sity contribution of each individual is also a plausible choice [6, 39]. In these kinds
of schemes, which are usually termed diversity-based multi-objective EAs [48], the
diversity contribution is referred to as the auxiliary objective. Several variants of
these kinds of schemes have been devised. For instance, several different ways of
calculating the auxiliary objective have been proposed [51]. Among them, one of
the most popular is probably the distance to the closest neighbor (DCN) metric [6],
which is used in the extensions applied in this chapter. In DCN, the auxiliary objective
of a given individual is calculated as its distance to the closest member in a reference
set. Note that this principle can be used to modify several components of the EAs. A
uniprocess-driven replacement-based approach (MULTI) based in these principles is
proposed in [49].

3 A Novel Diversity-Based Replacement Strategy

The MULTI_DYN replacement strategy analyzed in this chapter is an extension of the
strategy presented in [49] (MULTI). The MULTI replacement strategy (Algorithm 1)
operates as follows. First, the population of the previous generation and the off-
spring are joined. Then, the best individual—taking into account the original objec-
tive value—is selected to survive. Then, until the new population is filled with N
individuals, the following steps are executed. First, each individual’s contribution
to diversity is calculated. The reference set used in this calculation is the set of
already selected individuals, i.e., for each pending individual, the distance to the
nearest survivor already selected is taken into account. Then, considering the indi-
viduals that have not been selected, the non-dominated front is calculated. Finally,
a non-dominated individual is selected at random to survive. The two most expen-
sive steps in each iteration of the survivor selection scheme are the identification
of the non-dominated individuals and the calculation of DCN. The non-dominated
individuals can be identified in O(N log N), whereas the calculation of DCN depends
on the problem. In each step the reference set consists of an additional individual,
meaning that in each step O(N) distances are calculated. The complexity associated



128 C. Segura et al.

Algorithm 1 MULTI survivor selection scheme

: CurrentMembers = Population U Offspring

: Best = Individual with best f(x) in CurrentMembers

: NewPop = { Best }

: CurrentMembers = CurrentMembers \ { Best }

: while ([NewPop| < N) do

Calculate DCN of CurrentMembers, taking NewPop as reference
ND = Non-dominated individuals of CurrentMembers (without repetitions)
Selected = Randomly select an individual from ND

NewPop = NewPop U Selected

10: CurrentMembers = CurrentMembers \ {Selected}

11: end while

12: Population = NewPop

°

Algorithm 2 MULTI_DYN survivor selection scheme

1: CurrentMembers = Population U Offspring
2: Best = Individual with best f(x) in CurrentMembers
3: NewPop = { Best }
4: CurrentMembers = CurrentMembers \ { Best }
5: while (|[NewPop| < N) do
6:  Calculate DCN of CurrentMembers, taking NewPop as reference
7: D=D;—Dyx L}fg””d
8: Penalize(CurrentMer{ll%ers, D)
9: ND = Non-dominated individuals of CurrentMembers (without repetitions)
10:  Selected = Randomly select an individual from ND
11:  NewPop = NewPop U Selected
12: CurrentMembers = CurrentMembers \ {Selected}
13: end while

N

: Population = NewPop

with calculating the distance metric depends on how the metric is defined, but
in our cases they are O(V), where V is the number of variables. Since N steps
are done in each generation, the complexity of the survivor selection scheme is
O(VN? + N?logN). Finally, we would like to remark that in every problem con-
sidered in this chapter, the time associated with the replacement phase is negligible.
In every case, the much more expensive local search integrated in our schemes con-
sumes the majority of the time.

The proposal used in this chapter (MULTI_DYN) [52]—see Algorithm 2—extends
the MULTI strategy by adapting the balance between exploration and exploitation
to the different optimization stages. In order to effect this adaptation, the stopping
criterion, as well as the elapsed time, are used as inputs to the replacement strategy.
Specifically, for shorter stopping criteria the method induces a faster reduction in
diversity than for longer stopping criteria. The adaption is done by defining a dynamic
penalty approach that is independent of the scale of the original objective. In this
way, the effort required to adapt MULTI_DYN to different problems is highly reduced.

One of the keys behind the development of MULTI_DYN is that individuals that con-
tribute too little to diversity should not survive regardless of their original objective
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value. In our approach, this principle is realized by setting the original objective
of individuals that contribute too little to diversity to a very low quality value. For
instance, in a minimization function the maximum number that can be represented
in the data type associated with the objective function might be used, whereas in
a maximization function, the minimum representable number might be considered.
This is illustrated in Fig. 1. In this figure, the value D represents the minimum DCN
required to avoid the penalty. Any individual whose DCN value is lower than D is
penalized. As a result, the non-domination rank (shown at the left of each individual)
of the penalized individuals might increase. Obviously, the penalized individuals
will not belong to the non-dominated front so they will not survive, unless every
pending individual has been penalized. Note that the computational complexity of
the survivor selection strategy does not change due to the inclusion of the penalty
method.

While the above approach is quite sensible, one of the key choices is how to set the
value D. Taking into account the benefits that can be attained by adapting the balance
between exploration and exploitation to the needs of the different stages of the opti-
mization, it is clear that the value of D should vary during the optimization process.
Specifically, this value should decrease as the stopping criterion is approached with
the aim of inducing a higher degree of intensification. In our scheme, an initial D,
value must be selected by the user. Then, a linear reduction of D is carried out in such
a way that by the end of the execution, the resulting value is 0. In this chapter, the
stopping criterion is set by time. Thus, if T, is the stopping criterion and Tgapseq
the elapsed time, D can be calculated with (1). Note that some more complex ways
of setting D have also been tested [52]; however, these methods are more complex
to use and they do not provide important benefits, so the linear reduction is used in
this chapter.
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Algorithm 3 Lamarckian Memetic Algorithm

1: Inmitialization: Generate an initial population Py with N individuals. Assign t = 0.

2: Local Search: Perform a local search for every individual in the population.

3: while (not stopping criterion) do

4:  Evaluation: Evaluate all individuals in the population.

5:  Mating selection: Perform binary tournament selection on P; in order to fill the mating
pool.

6 Variation: Apply genetic operators to the mating pool to create a child population C P.

7 Local Search: Perform a local search for every individual in the offspring.

8:  Survivor selection: Apply the replacement scheme to create Py .

9

0

t=t+1

10: end while

TElapsed

D:D[-D[* (1)

End

4 Proposals

We used a common framework to address the three different optimization problems
covered in this chapter. In every problem considered, it is clear that incorporat-
ing some intensification mechanisms is quite useful. For instance, in the case of
the competition of the 2DPP problem, the best three schemes used memetic algo-
rithms, whereas the surveys provided in [29, 47] show that most of the promising
schemes for the FAP combine population-based and trajectory-based optimization.
Additionally, in the case of Sudoku, some of the most promising schemes are also
hybrid approaches [32, 43] that combine a global search with some specific mech-
anisms to induce additional intensification. As a result, in this chapter a memetic
algorithm is used. Algorithm 3 shows the approach applied. Note that it is a fairly
standard memetic algorithm, where the local search is incorporated after each indi-
vidual is created, i.e. in the creation of the initial population and after the variation
stage. Specifically, the local search is applied to all the offspring. Note that some
schemes to balance the resources granted to the genetic and local searches have been
devised [16]. In these cases, a local search is usually applied to a subset of individuals
or only in some generations. For instance, one typical approach is to apply a local
search to the best individuals with higher probabilities. This goes against some of the
principles of our scheme since, due to the way in which the replacement is carried
out, any individual kept in the population is promising, so it is important to inten-
sify in every region that is maintained; otherwise, some regions might be abandoned
prematurely. In any case, we conducted some experiments by trying to incorporate
some of these ideas, but they were unsuccessful.

Note that in the problems at hand, our local search is always a stochastic hill, i.e.
the neighbors of a given candidate solution are considered in a random order and
only improvement movements are accepted. The local search continues until a local
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optimum is reached. Note that some more complex trajectory-based metaheuristics,
such as tabu search or simulated annealing, can be incorporated in this step. While
these schemes are promising, they are more expensive because they do not finish
when a local optimum is found. Thus, more complex mechanisms for specifying the
resources granted to global and local searches should be included. As a result, the
application of these schemes is left for future work.

In order to test different ways of alleviating the problems associated with prema-
ture convergence, several schemes are included in Algorithm 3. In all of the problems
tested, a variant that applies the MULTI_DYN scheme is considered, i.e. MULTI_DYN
is selected as the survivor selection scheme. Depending on each problem, other
schemes are also incorporated. The set of schemes applied and their corresponding
parametrizations are given in Sect. 5 for each problem.

In order to properly adapt the previous framework to a given problem, the fol-
lowing components are required. First, the representation of the individuals and
an associated distance metric must be given. Second, the objective function used
to evaluate each individual must be established. Third, the variation stage, i.e. the
crossover and mutation operators, must be selected. Finally, the neighborhood must
be defined. In the following sections, we describe the components selected for each
of the problems addressed in this chapter.

4.1 Sudoku

4.1.1 Problem Definition

The Sudoku puzzle is a popular logic puzzle consisting of an N2 x N? grid that is
subdivided into N2 blocks of size N x N. An initial board with numbers in some
cells is given and the objective is to fill the remaining cells with digits from 1 to N2
such that each block, row and column can contain only one instance of each digit.
The most popular variant of Sudoku involves a9 x 9 grid. The reason to use so small
grids is probably that since this problem is NP-Complete [56], large grids might be
too complicated to be solved by hand.

In recent years, Sudoku has been widely used to test the abilities and performance
of different optimization frameworks. For instance, the most popular metaheuristics
have been applied to Sudoku solving [7, 17, 37]. In the particular case of EAs, their
basic variants can only solve simple Sudoku puzzles [33], as they face significant
issues when tackling more difficult puzzles. In fact, even with the incorporation of
more complex components some of these issues also appear [25, 38, 55]. In order
to alleviate these drawbacks, hybrid variants and ad-hoc genetic operators have been
proposed [32]. Thus, most efforts have focused on incorporating problem-specific
knowledge into the design of EAs. However, as the experimental validation in this
chapter shows, successful simpler EAs that do not incorporate ad-hoc knowledge can
be designed by properly managing diversity.
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4.1.2 Selected Components

In the case of the Sudoku problem, we have selected very straightforward
components. One of the most popular representations is used [33]; specifically, an
individual consists of a set of sub-chromosomes, each of which is a permutation of
the numbers absent in a block. Thus, the constraints associated with the numbers
given in the initial board and with the blocks are fulfilled by any individual. The
fitness function is calculated as the sum of two terms: the first one is the number
of repetitions that appear in the rows and columns; the second one is the number of
conflicts with the numbers given in the initial board multiplied by 100. In the case of
the distance metric, the Hamming distance is applied, i.e. the distance between two
individuals is the number of cells that differ.

The variation scheme applies simple mutation and crossover operators. The
crossover operator uniformly exchanges complete blocks between solutions [11].
The mutation operator iterates over each gene and performs a swap with another
element selected at random from its corresponding sub-chromosome with probabil-
ity p.,, [33]. Note that these operators have only been successful with easy Sudoku
puzzles, so they are suitable choices to show that general and simple operators can
be successfully applied by properly managing diversity. Finally, a neighbor of a
candidate solution is generated by swapping two elements of a block.

4.2 Two-Dimensional Packing Problem

4.2.1 Problem Definition

The two-dimensional packing problem (2DPP) variant used in this chapter was defined
in the GECCO 2008 competition session. Problem instances are described by the
following data:

e The sizes of a rectangular grid: X, Y.

e The maximum number that can be assigned to each grid position: M. The value
assigned to each grid location is an integer in the range [0, M].

e The score associated with the appearance of each pair (a, b) where a, b € [0, M]:
v(a, b).

A candidate solution is generated by assigning a number to each position on
the grid. Thus, the search space consists of (M + XY candidate solutions. The
objective of the problem is to pack a grid so that the sum of the point scores for
every pair of adjacent numbers is maximized. Two positions are considered to be
adjacent if they are neighbors in the same diagonal, row, or column of the grid. A
pair cannot be collected more than once. Mathematically, the objective is to find the
grid G which maximizes the objective function f:
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Pairs Table (v)

a b |viab Grid (G)
2 1 100 1 2
1 2 150 3 1
1 3 200
Objective Value = v(1,2) + v(2,1) + v(2,3) +
3 2 175 v(3,2) + v(3,1) + v(1,3) +
v(1,1)
1 1 25

Fig. 2 Assignment of the original objective function for the 2DPP

M M
f=>.> wla.b )

a=0 b=0

where
0 if (a,b)arenot adjacent in G

v(a,b) if (a,b)areadjacentin G )

v (a, b) = I

Figure 2 illustrates the assignment of the objective function of a candidate solution
for a 2 x 2 grid. Note that although the pairs (1, 2) and (2, 1) are repeated in the
grid, they are only considered once.

One of the reasons for selecting the 2DPP is that this problem was tackled by
several research groups during the competition. In the competition, the best results
were reported by using memetic algorithms [18, 23], results that could be further
improved by taking into account the diversity of the population [44, 46]. The current
best result for this problem is offered by the MULTI_DYN scheme [52]. The initial
results obtained in [52] are extended in this chapter and new best-known solutions
are found for the largest instances.

4.2.2 Selected Components

In our proposal, candidate solutions are encoded using a two-dimensional chromo-
some. Specifically, there are as many genes as there are cells in the grid, and each
gene can take a value in the range [0, M]. A brief description of the variation opera-
tors and the definition of the neighborhood are attached. For a more comprehensive
description, readers are referred to [23]. The variation stage is based on the appli-
cation of crossover and mutation. Crossover is applied with probability p. and two
different parameters (min_p,, and max_p,,) are used to control the mutation. The
crossover operator is the 2D Sub-String Crossover (SSX) [15], which is an extension of
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one-point crossover for two-dimensional chromosomes. The mutation operator
applied is the Uniform Mutation with Domain Information (UMD). First, a ran-
dom number (ap,,) between min_p,, and max_p,, is generated. Then, each gene is
mutated with a probability ap,,. In order to make new assignments, a random value
is selected from among those that increase the objective value. If such a value does
not exist, a random value between 0 and M is used.

In our proposal, Hamming distances are used to calculate the DCN value. As a
result, the most distant individuals are at a distance equal to X x Y. Taking this into
account, relating the value of D; to the number of genes (G) seems appropriate.
Particularly, in this chapter the value of D is set to a percentage (R; x 100) of G.

The definition of neighborhood applied considers a new neighbor for each pair of
adjacent grid positions (i, j) and (k, [). Each neighbor is generated by assigning the
best possible values to the positions (i, j) and (k, /) while keeping intact the values
in all other grid locations. A pruning procedure is applied so as to efficiently assign
the best values to both locations. Finally, the fitness function is the score associated
to each candidate solution, which is evaluated with Eq. (2)

4.3 Frequency Assignment Problem

4.3.1 Problem Definition

The Frequency Assignment Problem (FAP) is a very popular NP-hard combinatorial
optimization problem with practical applications that emerges in the deployment of
networks in different environments. The FAP involves different objectives, features,
and constraints. This has resulted in quite a large number of different mathematical
formulations being defined [1]. In recent years, the basic FAP formulation has been
widely expanded in order to address real-world issues [21]. For this chapter, we
selected a commonly applied definition and used some popular instances inspired
on realistic global system for mobile communications (GSM) networks [36]. In this
definition, an instance is given by a set of transmitters, a set of constraints and the
number of admissible channels. The constraints define the minimum distance allowed
between the channels assigned to pairs of transmitters. When a given constraint is
violated, a given penalty term associated with each constraint is added to the cost
function. The objective of the problem is to find a complete assignment that minimizes
this cost function.

Several different meta-heuristics have been applied to the FAP [28]. Initially, in
the case of the instances tackled in this chapter, some methods based on a tabu search
yielded promising results [36]. Currently, the best reported results have been obtained
using path relinking [22]. This successful variant of path relinking incorporates a
special mechanism to preserve the population diversity.
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4.3.2 Selected Components

In this problem we use a straightforward representation of candidate solutions.
Specifically, the number of genes in the chromosomes is equal to the number of
transmitters, and each one represents the channel assigned to a transmitter. As in
previous cases, the Hamming distance was used to calculate the distance between
individuals. Finally, the fitness function is just the cost associated with each candi-
date solution, i.e. the sum of the penalties associated with the constraints that are
violated.

The genetic operators are more complex because they are ad-hoc operators for
the FAP. Specifically, they are extensions of the ones that were proposed in [45] for a
different variant of the FAP. The crossover is the Multi-Interference-based Crossover,
which operates as follows. First, a transmitter ¢ is selected at random. Then, every
gene associated with a transmitter that interferes with ¢, including the gene that
represents ¢, is marked. This process is repeated a number of times that is selected
randomly between one and a number set by the user (R), which in this chapter
is eight. However, in the subsequent iterations, instead of selecting ¢ at random
from the complete set of transmitters, it is selected, without repetition, from those
that were previously marked. Finally, the parents swap the channels assigned to the
transmitters that were marked to generate the offspring. The mutation operator is the
Neighborhood-based Mutation. First, a transmitter ¢ is selected randomly and it is
mutated. Then, the transmitters that interfere with ¢ are mutated with a probability p,,.
The above step is repeated R times, but in the subsequent iterations the transceiver
is randomly selected from among those that interfere with transmitters mutated in
previous iterations. Thus, similarly to the crossover operator, the mutation scheme
focuses on altering subsets of transmitters affected by common constraints.

Finally, a simple definition of neighborhood is used. A neighbor of a candidate
solution is generated by reassigning the channel of two transmitters that might poten-
tially have interference between them, while leaving intact the assignments of the
remaining ones.

S Experimental Validation

In this section we describe the experiments conducted with our memetic algorithm
for the three different optimization problems considered, and discuss the results
obtained by using a diverse set of methods to control convergence. In every problem,
the memetic algorithm with the MULTI_DYN scheme is applied. Additionally, some
of the more mature schemes described above are also tested. A subsection is included
for each of the problems and in each case, the parametrizations and methods used in
the comparisons are detailed.

The optimization schemes were implemented in METCO (Metaheuristic-based
Extensible Tool for Cooperative Optimization) [24]. The experiments were run on
dual processor machines with 32Gb RAM. Since the algorithms considered in this
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study are stochastic, each execution was repeated 30 times. In order to compare
the results (fitness and speed), a series of statistical tests that relied on a guideline
similar to that applied in [52] was conducted. Specifically, the following tests were
applied, assuming a significance level of 5 %. First, a Shapiro—Wilk test was applied
to check whether or not the results followed a Gaussian distribution. If they did, the
Levene test was used to check for the homogeneity of the variances. If the samples
had equal variance, an ANOVA fest was done; if not, a Welch test was performed. For
non-Gaussian distributions, the non-parametric Kruskal-Wallis test was used to test
whether samples were drawn from the same distribution.

5.1 Sudoku

In the case of the Sudoku problem, the analyses were performed with 26 different
puzzles.> Twenty puzzles were generated using two of the most popular web pages
devoted to Sudoku [57, 58]. In the case of the Sudoku puzzles generated in [58]
(tagged as SS), the hard level was used, whereas for the ones generated in [57]
(tagged as SW), the evil level was selected. The three puzzles tagged as SD in [43]
were also included in our set. Note that one of them is the popular AI-Escargot
puzzle. Finally, the last three are now regarded as the most difficult puzzles [59].
Two of them were designed by David Filmer, whereas the last one was proposed
by Arto Inkala. Note that in the Sudoku puzzle it makes no sense to compare the
fitness values when the problem is not solved, i.e. it is no more valuable to obtain
a candidate solution with two conflicts than one with four conflicts. Therefore, our
comparisons are done based on the success rate achieved. Since the time factor is
also important, the time required to solve the puzzles is also taken into account.

In every variant of our memetic algorithm, typical values for the population size
(N), mutation probability (p,,) and crossover probability (p.) were selected. Specif-
ically, they were set to 100, 0.01 and 0.8, respectively. Additionally, the stopping
criterion was set to 5 min. The following variants were tested for this problem. First,
the memetic scheme was tested with two replacement strategies, the generational
scheme with elitism (GEN_ELIT) and the replace-worst strategy (RW), which did not
include any special mechanism to delay convergence. In GEN_ELIT, the best individ-
ual of the population is copied to the next generation while the rest of the population
is created with the variation scheme. In RW the offspring and the previous popu-
lation are joined in a set and the best N individuals survive. Additionally, seven
schemes from among those previously discussed, and that incorporate mechanisms
to delay convergence, were tested. They are the following: MULTI_DYN, CLR, RTS,
DETCR, SAW- TOOTH GA, COMB and CD/RW The parametrization of these methods is
shown in Table 1. In order to select the parametrization of each scheme, some initial

2The Sudoku puzzles are available at http://www.cimat.mx/~carlos.segura/Sudoku/SudokuPuzzles.
tar.gz.
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Table1 P aramet.rlzgtlon of Method Parametrization

the methods applied in the

Sudoku Problem MULTL_DYN Dy =20
GEN_ELIT No parametrization required
RW No parametrization required
CLR o=10,W =1
RTS CF =15
DETCR No parametrization required
SAW- TOOTH GA D =99, P =50
COMB Nciose = 3, Ngiir = 8
CD/RW No parametrization required

experiments were done with the last six puzzles selected. The parameter values that
maximized the success rate were selected for the final experimentation.

Table2 shows the results obtained with each scheme in every puzzle analyzed.
Specifically, it shows the success rate (SR) and the time in seconds (T) required to
obtain a success rate of atleast 50 %. A dash is shown in those cases where the success
rate was lower than 50 %. The methods are sorted by the number of successful runs.

It is important to note that the worst schemes were the two methods that did
not incorporate any mechanisms to delay convergence, which quite clearly shows
the important benefits provided by any of the mechanisms that delay convergence.
However, there are important differences in their behaviors. The scheme that provided
the highest success rate was the MULTI_DYN method. The results provided by RTS,
COMB, SAW- TOOTH GA and CLR were also quite good. In fact, they only encountered
difficulties with SS4 and with the puzzles generated by Arto Inkala and David Filmer.
Furthermore, they converged faster than MULTI_DYN in most cases, so they might be
more useful than MULTI_DYN for the easiest Sudoku puzzles. Some analyses were
carried out to compare the times required by MULTI_DYN and these other schemes.
Among them, the best one was CLR. The statistical tests confirmed that CLR was
faster than MULTI_DYN in 20 Sudoku puzzles, whereas the opposite never happened.

In light of these results and those in Table 2, it is clear that in the less challenging
instances, the CLR strategy provides important benefits; whereas in the most difficult
puzzles, the MULTI_DYN method is preferred. Note that this behavior also appeared
when MULTI_DYN was applied to the Traveling Salesman Problem [50], where the
advantages were clearer when dealing with large-scale and difficult instances. Addi-
tionally, we would like to note that all the schemes were also executed by setting
the stopping criterion to 30 min with the Filmer1 and Filmer2 puzzles, which are the
cases where the EAs encountered more difficulties. The only method that was able
to obtain a 100 % success rate was MULTI_DYN, whereas the second best method
(RTS) obtained a success rate of 90 % with Filmer1 and 70 % with Filmer2. This last
experiment also confirms the robustness of the MULTI_DYN scheme.
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Table 3 Parametrization of Method

Parametrization

the methods applied in the —

2DPP Problem MULTI_DYN Several parametrizations
MULTI No parametrization required
GEN_ELIT No parametrization required
CD/RW No parametrization required
CLR c=020x X xY,W={L,2,5}
DETCR No parametrization required
SPOBCR No parametrization required
AGCR ¢ = {0.25,0.75}
RTS CF ={2,5,10, 25, 50}
COMB Nciose = 3, Ngiir = 8
RW No parametrization required
CHC pm = 0.35
SAW- TOOTH GA D =99, P =50

5.2 Two-Dimensional Packing Problem

In the case of the 2DPP, the experimentation presented in this chapter is an extension
of the one developed in [52]. The most important achievement is that new best-known
solutions could be obtained for the most complex instances of this problem. Some new
tests that better show the benefits of MULTI_DYN are also included. Since one of the
objectives of this chapter is to demonstrate the robustness of the MULTI_DYN method
and its ability to perform properly in different problems with minor effort, some of
the most illustrative results obtained previously for this problem are also shown. The
ten instances that were created in [52] are used in our performance evaluation. They
were created with a random generator that allows selecting different parameters to
alter the difficulty and size of the instances created.

As in the previous problem, in order to prove the proper performance of our
memetic algorithm with MULTI_DYN, an extensive comparison with other more
mature methods was carried out. In particular, the following schemes were used:
CD/RW, CLR, DETCR, SPOBCR, AGCR, RTS, COMB, RW, CHC and Saw-Tooth GA. In
addition, a generational scheme with elitism (GEN_ELIT) was used. As in previous
studies [44], the parameters p., min_p, and max_p,,, which are associated with
the genetic operators, were set to 1, 0.1 and 0.15, respectively, while the popula-
tion size was set to 50. The parametrization of the different methods is included in
Table 3. In the methods where several values are used for a specific parameter, these
are expressed as comma-separated values, and in order to denote the method with
its specific parametrization, the name of the method is followed by the value of the
parameter. For instance, CLR_5 means that the parameter W is set to 5.
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In our first experiment, the memetic algorithm was executed with the above
schemes, as well as with the MULTI_DYN replacement strategy, by setting the stop-
ping criterion to 24 h. The parameter R; in MULTI_DYN was set to 0.5. Additionally,
the MULTI scheme was also executed, which is similar to MULTI_DYN with R; set to
0. In order to obtain a ranking of the different approaches, pairwise statistical com-
parisons between the 20 configurations were carried out, meaning that 190 statistical
tests were done for each scheme. Table4 shows, grouped by category, the results
of these statistical tests. The groups “small”, “medium” and “large” contain three
instances, while the last column (“GECCO”) refers to the instance that was used
during the competition to perform the final comparisons. For each category, columns
with the symbol 1 refer to the number of cases where the model listed in each row
is statistically better. The number of cases where it is worse is shown in the column
with the symbol | . Finally, the column with the symbol <> denotes the number of
cases where the differences are not statistically significant. In addition, a score is
assigned to each model that is equal to the number of cases where the model was
superior minus the number of cases where the model was inferior. The superiority
of the MULTI_DYN model is quite clear. In fact, it was superior to all the remaining
models in every instance.

In order to better understand the reasons for the superiority of MULTI_DYN, it is
important to analyze the diversity induced by the different schemes throughout the
optimization process. Figure 3 shows the evolution of the mean entropy for all of the
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Fig. 3 Evolution of the mean entropy for all of the schemes considered (GECCO instance)
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Fig. 4 Fitness (mean) achieved with fixed D values and with MULTI_DYN

schemes considered in the GECCO instance. In the case of CHC and Saw-Tooth GA,
only one execution was used to acquire the data because the exact times where the
restarts are triggered differ for each run, meaning that the mean of several executions
is less representative of the behavior of these schemes. MULTI_DYN is the only model
that induces a slow but continuous decrease in the entropy, meaning that it is the only
scheme where the balance between exploration and exploitation is altered gradually,
as expected.

In order to better show the advantages provided by the linear decrease in D,
additional experiments were conducted that consider fixed values of D. Specifically,
for eachinstance, 11 fixed values equidistributed among 0 and the number of variables
of the corresponding instance were considered. Figure4 shows, for four different
instances, the mean of the fitness obtained with MULTL DYN and with the schemes
that consider a fixed D. In MULTI_DYN, R; was set to 0.6 in every instance, which
proved to be quite a robust value in [52]. The advantages of using a dynamic D
are quite clear. In fact, in every instance the mean value attained by MULTI_DYN is
higher than the means obtained with any fixed value of D. Similar analyses were
done with the remaining instances and in every case the statistical tests show that the
results obtained by MULTI_DYN are superior. We also note that in the small instances,
the differences are not so large. In fact, the p-values obtained when comparing the
results of MULTI_DYN to those output by the best fixed D values are only slightly
below 0.05, meaning that the benefits provided by MULTI_DYN are more important
in the most complex instances.
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Table 5 Results obtained by MULTI_DYN in the long-term (3 Days)

Instance Best Mean Median Previous best
GECCO 1,041,931,347 |1,037,842,560 |1,037,529,370 |1, 039,822,096
20_20_400_0.05_1 | 814,869,977 809, 457, 130 809, 218, 641 811, 360, 334
20_20_400_0.10_2 | 1,057,813,297 |1,052,0064,375 |1,052,412,440 |1,053,754,765
20_20_400_0.15_3 | 1,233,613,667 |1,227,245,581 |1,227,541,149 |1, 229,316,361

In order to see the specific mean and best values obtained by 24 h executions of the
MULTI_DYN scheme, the readers are referred to [52]. Note that while the MULTI_DYN
method provided the currently best-known solution for the ten instances above, it is
important to analyze whether larger executions can provide additional benefits. In
order to carry out this experiment, the four most complex instances were selected, i.e.
the GECCO instance and the ones in the large group. In this case, only the MULTI_DYN
scheme was used and the stopping criterion was set to 3 days. Table 5 shows, for each
instance, the mean, median and best of the solutions attained. In addition, it also shows
the previously attained best-known solution as reported in [52]. In every instance,
the best-known results could be improved substantially. For instance, in the GECCO
instance, the best result could be improved from 1, 039, 822, 096 to 1, 041, 931, 347,
which represents a significant advance. This probably means that due to the huge
search space of these instances, there is already room for improvement. Considering
how the execution times of the runs carried out in this chapter are already quite
long, it seems particularly important to develop parallel models capable of managing
diversity in a similar way to the sequential case but in parallel environments.

5.3 Frequency Assignment Problem

In the case of the FAP, the main objective was to improve all of the results obtained in
literature through the application of MULTI_DYN. Additionally, in order to show that
the benefits come from the explicit control of diversity, the GEN_ELIT replacement
phase was also used, which is probably the most popular replacement phase. In
both schemes the same parametrization was considered. First, the population size,
crossover probability and mutation probability were set to 50, 1 and 0.05 respectively.
The R parameter, which is used in the mutation operator, was set to eight. Finally, the
stopping criterion was set to 48 h. Additionally, in the case of MULTI_DYN, D; was set
to 0.75 multiplied by the number of transmitters of the considered instance. In this
chapter, a subset of the problem instances provided in [36] was used. Specifically,
these are the ones whose tags start with GSM2, which are a set of instances that were
created with realistic data from GSM networks. The best results obtained so far for
these instances were recently compiled in [22].

Table 6 shows the results obtained with our memetic algorithm using MULTI_DYN
and GEN_ELIT in the nine GSM2 instances. Specifically, the mean, median and best
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Table 6 Results obtained by our memetic algorithm with MULTI_DYN and GEN_ELIT in the GSM2
instances (48 h)

Instance MULTI_DYN GEN_ELIT Best
Best Mean Median | Best Mean Median known
GSM2- 184- 39 5250 5252.1  |5250 5250 5282.2 |5258 5250
GSM2- 184- 49 874 874 874 874 874 874 874
GSM2- 184-52 162 162 162 162 162 162 162
GSM2- 227-29 55367 56427 56472.5 | 56608 58876.4 |59023 56955
GSM2- 227- 39 8391 8639.9 | 8642.5 8680 9116.9 |9100 8656
GSM2- 227- 49 1998 1998 1998 1998 2011.2 | 1998 1998
GSM2- 272- 34 51046 52095 52130.5 |53275 54877.5 |54453.5 53080
GSM2- 272- 39 25535 26318.2 |26295.5 |27258 28675.3 | 28484 26237
GSM2- 272- 49 6957 7122.6 |7122.5 7185 7361.7 | 7334.5 6997

costs obtained are shown. The table also shows the previously attained best-known
solution as reported in [22]. We can see that our memetic algorithm provides quite a
significant improvement by applying the MULTI_DYN replacement strategy. In fact,
new best-known frequency plans were obtained in five instances, whereas in the
remaining ones, frequency plans with the same cost as the currently best-known
solutions were obtained. The cases where the best known solution could be improved
upon are shown in boldface. Moreover, the benefits of the MULTI_DYN scheme are
also apparent when compared to the memetic algorithm with the GEN_ELIT replace-
ment strategy. In fact, the statistical tests confirm that the scheme that applies the
MULTI_DYN replacement scheme obtained a superior performance in 7 out of the
9 instances. In the two remaining instances, both schemes attained the best known
solution in every run. Thus, as with the results of the previous problems, in the case
of the FAP, the state of the art in the application of optimizers could be improved sub-
stantially, demonstrating once again the robustness and remarkable performance of
the methods that incorporate MULTI_DYN as a way to control premature convergence.

6 Conclusions and Future Work

Premature convergence is one of the most studied drawbacks of EAs and other
population-based metaheuristics. The appearance of premature convergence and its
consequences obviously depend on the specified stopping criterion. Thus, it is quite
surprising that most of the methods designed to alleviate this drawback do not take
into account the stopping criterion set by the users to bias the decisions made by
them. MULTI_DYN is the first survivor selection strategy proposed that takes into
account the stopping criterion and elapsed time to bias its decision with the aim of
properly adapting the balance between exploration and exploitation to the needs of
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the different optimization stages. Specifically, it uses the contribution to diversity as
an additional optimization objective and it adopts ideas from multi-objective opti-
mization. Additionally, it uses an adaptive penalty approach to induce a higher degree
of exploration in the initial phases and a higher degree of intensification in the final
ones.

A fairly standard memetic algorithm is used to test the abilities of MULTI_DYN by
applying it to three different complex optimization problems; namely, the Sudoku
puzzles, the 2DPP and a variant of the FAP. Note that in order to apply the MULTI_DYN
replacement, the only additional task that the user must carry outis to define a distance
metric to calculate the dissimilarity between pairs of individuals. Thus the additional
effort required with respect to standard EAs is minimal.

The experimental validation carried out with these three problems shows that
schemes that apply the MULTI_DYN survivor selection strategy provide important
benefits when compared to more mature methods that have been designed with the
aim of delaying the convergence of the population. Furthermore, benefits with respect
to some other traditional schemes, such as the GEN_ELIT or RW methods, are even
more noticeable. An important additional contribution of this chapter is that the state
of the art in the application of metaheuristics to the three problems considered could
be substantially improved upon. In the case of the Sudoku, three puzzles regarded as
the most difficult ever designed were successfully solved for the first time with an
EA. As for the 2DPP and FAP, new best-known solutions were obtained for popular
instances of these problems.

Several lines of future work might be explored. First, we would like to apply
MULTI_DYN to a larger set of combinatorial problems and adopt similar principles to
different fields of optimization, such as continuous optimization and multi-objective
optimization. Second, we would like to make some changes to accelerate conver-
gence in easy problems; specifically, adopting some of the ideas from SAW- TOOTH
GA to design new replacement phases seems promising. Third, replacing the simple
stochastic hill-climbing with more complex trajectory-based metaheuristics seems
promising. Finally, in light of the long times required to solve these problems, devel-
oping parallel schemes seems quite important. We would like to include the prin-
ciples of MULTI_DYN in some coarse-grained models by developing distributed and
centralized ways to explicitly manage diversity.
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