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Abstract. Efforts in programming DNA and other biological mole-
cules have recently focused on general schemes to physically implement
arbitrary Chemical Reaction Networks. Errors in some of the proposed
schemes have driven a desire for formal verification methods. We show
that by interpreting each implementation species as a set of formal
species, the concept of weak bisimulation can be adapted to CRNs in
a way that agrees with an intuitive notion of a correct implementation.
We give examples of how to use bisimulation to prove the correctness of
an implementation or detect subtle problems. We examine the complex-
ity of finding a valid interpretation between two CRNs if one exists, and
that of checking whether an interpretation is valid. We show that both
are PSPACE-complete in the general case, but are NP-complete and
polynomial-time respectively under an assumption that holds in many
practical cases. We give algorithms for both of those problems.

1 Introduction

In molecular programming, many real and abstract systems can be expressed
in the language of Chemical Reaction Networks (CRNs). A CRN specifies a set
of chemical species and the set of reactions those species can do, and the CRN
model allows us to deduce the global behavior of the system from that local
specification. CRNs are a useful way to separately analyze the computational
and the physical aspects of a system. We can use the CRN model to help analyze
real systems [3,4] or design engineered systems [5,17].

Despite this ideal, there remains a gap between abstract and real CRNs. To
illustrate this gap, consider the approximate majority CRN [1,5]:

X + Y
k−→ 2B

X + B
k−→ 2X

Y + B
k−→ 2Y

This abstract CRN quickly and with high probability converts all of the initial X
and Y molecules into the same amount of whichever one was initially greater [1].
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However, no three molecules with exactly this behavior are known to exist. (In a
strict sense, no three molecules with exactly this behavior can exist, because for all
three reactions to be driven forward would require X + Y to be both lower-energy
and higher-energy than 2B.) For contrast, consider the DNA strand displacement
system built by Chen et al. [5] meant to implement this abstract CRN. The DNA
system uses additional molecules which are consumed as “fuel” to drive these three
reactions, ending up with over 25 each of species and reactions. Without know-
ing that it is meant to be an implementation of the approximate majority CRN,
it might be difficult to tell what the DNA system was meant to do. Even know-
ing the correspondence, it is not obvious that there is no mistake in that complex
implementation.

The issue of verifying correctness is exacerbated by the recent profusion of
experimental and theoretical implementations in synthetic biology and molecular
programming. Of particular interest to us, Soloveichik et al. [16] designed a
systematic way to construct a DNA system to simulate an arbitrary CRN. Since
then there have been a number of methods to translate an arbitrary CRN into
a DNA strand displacement circuit [2,12,16]. While each one gave arguments
for why it was a correct implementation, they did not come with a general
theory of what it means to correctly implement a CRN. In some cases this
led to subtle problems, of which we will give examples later. To be certain that
such implementations are correct, CRN verification methods were invented. Such
methods include Shin’s pathway decomposition [15], Lakin et al.’s serializability
analysis [9], and Cardelli’s morphisms between CRNs [3].

We present a method for comparing an implementation CRN with an abstract
CRN based on the concept of bisimulation from concurrency theory [11]. Our
method associates each implementation species with a multiset of formal species,
then asserts correctness if the reactions reachable from any implementation state
are the same as the corresponding state in the abstract CRN. Like pathway
decomposition [15] and serializability [9] but unlike Cardelli’s morphisms [3],
our bisimulation method works with the stochastic model for low-copy-number
CRNs and doesn’t take into account rates or kinetics. The use of interpretations
instead of pathways means that some implementations considered correct by
pathway decomposition are considered incorrect by bisimulation and vice versa.
Interpretations also make bisimulation more local than pathway decomposition
or serializability, which we hope makes it more understandable and tractable. We
show how bisimulation can be used to prove a CRN implementation correct or
identify subtle problems. We present an algorithm to check whether a particular
interpretation between two CRNs is a bisimulation relation, and an algorithm to
find such an interpretation if one exists. We analyze the computational complex-
ity of both problems. We prove that both are PSPACE-complete in the general
case but become polynomial time and NP-complete, respectively, when formal
reactions are limited to a constant number of reactants. We hope this method
can be used in both verifying that engineered systems match their specification
and in comparing natural systems to a system simple enough to analyze.
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2 The Chemical Reaction Network Model

We work within the Chemical Reaction Network (CRN) model. A CRN is a tuple
(S,R), where S is a finite set of species and R a finite set of reactions. A reaction
is itself a tuple (R,P ), where the reactants R and products P are both multisets
of species. We require that in any reaction R �= P . We work with the stochastic
model of CRNs, where the state of the system is represented by nonnegative
integer counts of each species, and states transition discretely to other states
when reactions occur. In particular, a state S ∈ N

S can transition to a state T
if there is some reaction (R,P ) ∈ R such that R ≤ S and S −R +P = T . Often
a probabilistic semantics is attached to this model, but for our purposes we only
need to know whether something is possible.

We use the notation {|. . .|} for multisets interchangeably with the chemical
notation, e.g. 2A + B, {|A,A,B|}, and {|2A,B|} all refer to the same state.
Similarly, we sometimes use the chemical notation for reactions, e.g. A+B → 2C
is the same as ({|A,B|} , {|2C|}). The “reversible reaction” notation A+B � 2C
is a shorthand for the two reactions ({|A,B|} , {|2C|}) and ({|2C|} , {|A,B|}).
Multisets can be added and multiplied by scalars componentwise, and can be
compared componentwise: S ≤ T ⇐⇒ ∀XS(X) ≤ T (X), and S < T if S ≤ T
and S �= T . If S ≤ T then subtraction T − S is defined componentwise. Set
operations involving multisets implicitly treat each multiset as the set of all
objects which appear at least once; e.g. {|1, 1, 2|} ⊂ {1, 2, 3} but {|1, 1, 2|} �⊂ {1}.

In this model, each possible behavior of a CRN is specified by a trajectory:
an initial state S0 ∈ N

S together with a (finite or infinite) sequence of reactions
rk = (Rk, Pk) ∈ R. A trajectory implicitly specifies a sequence of states Sk =
S0+

∑
i≤k(Pk−Rk), but a sequence of states is not enough to specify a trajectory.

For example, if A → B and X+A → X+B are both reactions, then the sequence
of two states (S0, S1) = ({|X,A|} , {|X,B|}) does not specify which of those two
reactions happened, which is sometimes important. A trajectory is valid if each
reaction (Rk, Pk) can occur in the state resulting from the previous reactions;
that is, Rk ≤ Sk. In general when we speak of “the trajectories of a CRN” we
mean the valid trajectories.

A state T is reachable from a state S if T is the result of a valid finite
trajectory that starts in S. We say a state T is coverable from a state S if there
is some T ′ ≥ T such that T ′ is reachable from S. While the set of reachable
states (from any given initial state) is an important aspect of the behavior of
a CRN, it does not contain all the information about that CRN. For example,
the two CRNs ({A,B,C}, {A → B,B → C,C → A}) and ({A,B,C}, {A →
C,C → B,B → A}) have exactly the same set of reachable states T from any
given initial state S, but are clearly different in a meaningful way. If however
the set of (valid) trajectories of two CRNs are the same, then the two CRNs
must be identical: since in particular the length-zero trajectories (i.e. states) are
the same, so the sets of species are the same, and the length-one trajectories
(single reactions) are the same. We say that two CRNs are isomorphic if there
is a bijection between the sets of species such that the set of reactions of one,
after applying this bijection, equals the set of reactions of the other.
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3 The Meaning of Correctness

3.1 Interpretations

Schemes for translating an arbitrary abstract CRN into a DNA Strand Displace-
ment (DSD) implementation [2,12,16] provide designs for the necessary DNA
molecules, but how these molecules interact is best described by a model of the
relevant biophysics. Reaction enumerators such as Visual DSD [10] and Pepper-
corn [8] produce, given a set of DNA molecules, a description of their predicted
interactions as a CRN, allowing us to compare it to the original CRN using the
same language. We refer to the original abstract CRN as the formal CRN (S,R)
and the model’s enumerated CRN as the implementation CRN (S ′,R′), which
is usually larger than the formal CRN. As a convention, we assume that the
formal CRN and the implementation CRN make use of disjoint sets of species.
(When using verification to compare a detailed model of a natural system with
unknown function to a simpler abstract CRN with known function, the natural
system is the implementation and the abstract system is the formal CRN.) There
are two other important features typical of engineered implementation CRNs.
First, there is typically for each formal species A an implementation species xA

intended to correspond specifically to it, sometimes called a “signal species”.
Second, certain implementation species must always be present for the system
to work, and are designated “fuel species”. Fuel species are typically assumed
to be held at a constant concentration, for example by setting their initial con-
centration high enough that it does not vary significantly over the running time
of the CRN. In this situation, we can approximate the implementation CRN by
a simplified CRN with all fuel species removed; e.g. if g1 is a fuel, the reaction
xA + g1 → iA can be replaced by xA → iA with no loss of meaning.

Figure 1 gives an example of this process for the formal reaction A + B →
C +D, yielding an implementation CRN with four reactions. (Names such as xA

Fig. 1. Implementation of A + B → C + D using the scheme described in [16]. Left:
DNA complexes and reactions. Top right: Direct translation of reactions in the imple-
mentation CRN. Bottom right: Implementation CRN after removing fuels.
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m(xA) = {|A|}

m(xB) = {|B|}

m(xC ) = {|C|}

m(xD) = {|D|}

m(iA) = {|A|} m(tCD) = {|C,D|}

m(w1) = ∅

A � A A + B → C + D

Fig. 2. Interpretation of the implementation CRN in Fig. 1. m(tCD) = A + B would
also be a valid interpretation for this CRN.

and tCD are based on the intent of the designers of the CRN, but the subscripts
have no theoretical meaning.) The signal species xA can freely convert to and
from iA, and the strand tCD can produce the signals xC and xD (and waste w2).
Intuitively, iA is an A and tCD is a C and a D; in this sense the first and third
reactions are silent, and the second is A + B → C + D. We formalize this by
defining an interpretation of the implementation species (Fig. 2):

Definition 1. An interpretation is a function m : S ′ → N
S from implementa-

tion species to multisets of formal species. We extend this linearly from species to
states: m(

∑n
i=1 aiXi) =

∑n
i=1 aim(Xi). We also define m(R′ → P ′) = m(R′) →

m(P ′) unless m(R′) = m(P ′), in which case m(R′ → P ′) = τ and we say the
reaction is trivial. For example, if m(iAB) = A+B, m(xA) = A, and m(tBC) =
B+C then m(iAB+xA) = 2A+B, and m(iAB → xA+tBC) = A+B → A+B+C.

The interpretation of an implementation reaction is always a pair (R,P ) of
multisets of formal species, or τ , but (R,P ) may not be in R. Any such pair is
a reaction in the language of the formal CRN, but is a formal reaction only if
(R,P ) ∈ R. Similarly, (R′, P ′) is an implementation reaction only if it is in R′.

In the following notation, S′, T ′, S′′, and T ′′ refer to implementation states;
S and T to formal states; r′ to an implementation reaction; and r to a reaction
in the language of the formal CRN or τ . When a formal reaction r takes state

S to state T , we write S
r−→ T ; S′ r′

−→ T ′ is similar. Note that if S
r−→ T , then

r = (R,P ) ∈ R as well as S−R+P = T , and analogously for the implementation.

Further, we write S′ r−→ T ′ when S′ r′
−→ T ′ for some r′ with m(r′) = r, which

does not require r ∈ R (but does require r′ ∈ R′). Note that if S′ τ−→ T ′ then
m(S′) = m(T ′). To abstract away from trivial reactions, we write S′ τ=⇒ T ′

to mean S′ can reach T ′ via 0 or more trivial reactions, and S′ r′
=⇒ T ′ when

S′ τ=⇒ S′′ r′
−→ T ′′ τ=⇒ T ′. Note that S′ τ=⇒ S′ and S

τ=⇒ S are always true. S′ r=⇒ T ′

for r �= τ is again defined as S′ r′
=⇒ T ′ for some r′ with m(r′) = r. S

r=⇒ T for
r �= τ is defined but trivial: S

r=⇒ T ⇐⇒ S
r−→ T . When the final state is

irrelevant, we sometimes write S′ r′
=⇒, etc.
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3.2 Three Notions of Correctness

Our notion of correctness is motivated by the earlier observation that the set of
valid trajectories defines equivalence between formal CRNs, and allowing renam-
ing of species defines isomorphism. Applying this notion to an implementation
CRN with an interpretation introduces two difficulties. First, due to trivial reac-
tions, the implementation trajectory may involve more steps. This is easily solved
by defining the interpretation of an implementation trajectory to remove trivial
reactions. Second, and more seriously, the full set of interpreted implementa-
tion trajectories may cover the formal trajectories, yet particular implemen-
tation trajectories may experience restricted options for alternative paths. An
extreme example of this is an implementation CRN that is subject to deadlock,
({xA, xB , yB , xC}, {xA → xB , xA → yB, xB → xC , xC → xA}) with the interpre-
tation m = {(xA, A), (xB , B), (yB , B), (xC , C)}, which has the same interpreted
trajectories as the formal CRN ({A,B,C}, {A → B,B → C,C → A}), which
cannot deadlock. To resolve this issue, we need a finer-grained notion of tra-
jectory equivalence that requires equivalence given any initial state. As defined
formally below, this is a satisfactory definition of correctness.

However, since the sets of trajectories are generally infinite, we would like a
more local definition that facilitates efficient computational analysis. We define
three local conditions on the interpretation which we show are equivalent to
trajectory equivalence. As further evidence that our notion of correctness is
sound, we show that these three conditions are equivalent to a special case of
weak bisimulation from concurrency theory [11]. This gives us three notions of
correctness, given a formal CRN, an implementation CRN, and an interpretation:

I Equivalence of trajectories
(i) The set of formal trajectories and interpretations of implementation tra-

jectories are equal.
(ii) For every implementation state S′, the set of formal trajectories starting

from m(S′) and interpretations of implementation trajectories starting
from S′ are equal.

II Three conditions on the interpretation
(i) Atomic condition: For every formal species A, there exists an implemen-

tation species xA such that m(xA) = {|A|}.
(ii) Delimiting condition: The interpretation of any implementation reaction

is either trivial or a valid formal reaction.
(iii) Permissive condition: If S

r−→ and m(S′) = S, there exists an implemen-

tation reaction r′ such that m(r′) = r and S′ r′
=⇒.

III Weak bisimulation
(i) For all implementation states S′,

if S′ r−→ T ′, then S
r=⇒ T where S = m(S′) and T = m(T ′).

(ii) For all formal states S, there exists S′ with m(S′)=S, and for all such S′,
if S

r−→ T , then for some T ′, S′ r=⇒ T ′ and m(T ′) = T .
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A few comments are in order. It may seem that the second condition for
trajectory equivalence supercedes the first, but it does not: for example, the
second condition may be satisfied even if there is no implementation state S′

that is interpreted as formal state S, whereas the first condition will not be
satisfied in that case.

Our definition of bisimulation in CRNs is in fact a special case of Milner’s
definition [11] for transition systems. Milner allows an arbitrary relation between
states, while we rely on an interpretation m to establish a relation between formal
states and implementation states. Our definition of the interpretation enforces
several restrictions that, to us, are natural and consistent with the structure
of CRNs: they provide a unique interpretation for each implementation state
(i.e. the interpretation is a function), subsets of an implementation state can
be interpreted separately and additively combined (i.e. the function is linear),
and every formal state has at least one corresponding implementation state (i.e.
the interpretation is surjective). In fact, any relation between formal states and
implementation states that is a surjective linear function is induced by some
interpretation, as shown in Lemma 1. Thus, we can take advantage of the finite
specification of interpretations, while not losing any generality beyond the nat-
ural restrictions that we desire. These observations justify describing our notion
of bisimulation in CRNs as “surjective linear weak bisimulation”.

Lemma 1. Let ↔⊂ N
S × N

S′
be a relation between formal states and imple-

mentation states. If for every implementation state S′ there is exactly one formal
state S such that S ↔ S′ (function) and for every pair of pairs S1 ↔ S′

1 and
S2 ↔ S′

2 we have S1+S2 ↔ S′
1+S′

2 (linearity), then there is some interpretation
m : S ′ → N

S which, when extended to implementation states m : NS′ → N
S ,

induces that relation: S ↔ S′ ⇐⇒ S = m(S′). Furthermore, for every S there
is some S′ such that S ↔ S′ (surjectivity) iff m satisfies the atomic condition.

Proof. Given that the relation ↔ is a linear function from N
S′

to N
S , we define

the interpretation to be m(x) = Sx where Sx is the unique formal state such that
Sx ↔ {|x|}. Now, any implementation state S′ is some sum of implementation
species, S′ =

∑
x∈S′ αxx, and because we define the interpretation of a state

as the sum of interpretations of species, m(S′) =
∑

x∈S′ αxm(x). Then by the
linearity assumption on ↔, m(S′) ↔ S′. Thus, if S = m(S′), then S ↔ S′.
Conversely, if S ↔ S′, then S = m(S′) because ↔ is a function.

If we further assume that ↔ is surjective, then in particular for each formal
species A, there must be some S′ such that {|A|} ↔ S′, i.e. m(S′) = {|A|}.
Since m(S′) is the sum of interpretations of species in S′ and an implementation
species cannot interpret to fractional or negative formal species, there must
be some species xA ∈ S′ with m(xA) = {|A|} (and any other species in S′

interpret to ∅). Thus the atomic condition is satisfied. Conversely, if the atomic
condition is satisfied, then consider an arbitrary formal state S =

∑
A∈S αAA.

Using linearity, let S′ =
∑

A∈S αAxA, so m(S′) = S, and thus ↔ must be
surjective. �
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Theorem 1. The three definitions of correctness, namely trajectory equivalence,
the three conditions on the interpretation, and weak bisimulation, are equivalent.

Proof. We show that trajectory equivalence implies the three conditions for-
mulation; the three conditions imply weak bisimulation; and weak bisimulation
implies trajectory equivalence.

Given trajectory equivalence, we prove the three conditions on m. First, for
the atomic condition, consider applying condition I.(i) of trajectory equivalence
to formal trajectories of length 0, which are just formal states, and in particular
formal states SA = {|A|} for each formal species A. That the set of trajectories
are equal implies that there is an implementation trajectory whose interpreta-
tion is the (zero-length trajectory) state SA, i.e. an implementation state S′

A

with m(S′
A) = {|A|}. Then as in Lemma 1, there is some species xA ∈ S′

A with
m(xA) = {|A|}, satisfying the atomic condition. For the delimiting condition,
consider implementation trajectories of length 1, specifically for each implemen-

tation reaction r′ = (R′, P ′) the trajectory R′ r′
−→ P ′. If r′ is trivial, that is

m(r′) = τ , its interpreted trajectory is a zero-length trajectory; if not, its inter-

preted trajectory is m(R′)
m(r′)−−−→ m(P ′), which by trajectory equivalence must

be a formal trajectory. For that to be so, m(r′) must be a reaction in R, thus
satisfying the delimiting condition. For the permissive condition, for every formal
reaction r = (R,P ) and implementation state S′ with m(S′) ≥ R, the trajectory
m(S′) r−→ T , where T = m(S′)−R+P , is a formal trajectory. By condition I.(ii)
of trajectory equivalence, there is an implementation trajectory starting in S′

whose interpreted trajectory is m(S′) r−→ T . (Note that condition I.(i) implies
this for some S′ with m(S′) = S, but not necessarily for every S′.) To have that
interpretation, that implementation trajectory must have some reaction r′ with
m(r′) = r and all other reactions trivial; this is the definition of S′ r=⇒, satisfying
the permissive condition.

Given the three conditions, we prove weak bisimulation. Given any S′ with

m(S′) = S and S′ r′
−→ T ′ where r′ = (R′, P ′), by the delimiting condition either

m(r′) = τ is trivial or m(r′) = r = (R,P ) ∈ R. If trivial, then m(T ′) = m(S′) =

S and S
τ=⇒ S is true by convention. If nontrivial, then r ∈ R; since S′ r′

−→ we must
have S′ ≥ R′, thus m(S′) ≥ m(R′) = R, and S

r−→ T (therefore S
r=⇒ T ) where

T = S − R + P . Since T ′ = S′ − R′ + P ′, m(T ′) = m(S′) − m(R′) + m(P ′) = T ,
satisfying condition III.(i) of weak bisimulation. Given any S, by Lemma 1 the
atomic condition implies there exists an S′ with m(S′) = S. Given any such S′

with S
r−→ T where r = (R,P ), by the permissive condition there is some r′ with

m(r′) = r and S′ r′
=⇒, which is an abbreviation for ∃T ′S′ r′

=⇒ T ′, which is further

an abbreviation for ∃S′′S′ τ=⇒ S′′ r′
−→ T ′. (Strictly speaking S′ r′

=⇒ T ′ means there

is some S′ τ=⇒ S′′ r′
−→ T ′′ τ=⇒ T ′, but since we are choosing an arbitrary T ′ we can

take T ′ = T ′′.) Then m(S′) = m(S′′) = S since they are connected by trivial
reactions, and where r′ = (R′, P ′) with m(R′) = R and m(P ′) = P we have
T ′ = S′′ − R′ + P ′ so m(T ′) = S − R + P = T , satisfying condition III.(ii) of
weak bisimulation.
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Given weak bisimulation, we prove trajectory equivalence. We first prove con-
dition I.(ii). Given any S′

0 with S0 = m(S′
0) and any implementation trajectory

(S′
0, r

′
1, . . . , r

′
k, . . . ) with r′

k = (R′
k, P ′

k), let S′
k = S′

k−1−R′
k+P ′

k = S′
0−

∑
i≤k R′

i+∑
i≤k P ′

k. Letting Sk = m(S′
k) and rk = m(r′

k), it follows that either rk = τ or
else rk = (Rk, Pk) and Sk = Sk−1 − Rk + Pk = S0 − ∑

i≤k Rk +
∑

i≤k Pk

by linearity of m. From bisimulation, since each S′
k−1

r′
k−→ S′

k we have either
rk = τ and Sk−1 = Sk, or r �= τ and Sk−1

rk−→ Sk, since for r �= τ in the
formal CRN S

r=⇒ T ⇐⇒ S
r−→ T . The interpretation of that implemen-

tation trajectory is exactly S0 followed by those reactions Sk−1
rk−→ Sk for

which rk �= τ , and thus the interpretation is a formal trajectory. Conversely,
given S′

0 with S0 = m(S′
0) and any formal trajectory (S0, r1, . . . , rk, . . . ) with

rk = (Rk, Pk), letting Sk = Sk−1 − Rk + Pk = S0 − ∑
i≤k Rk +

∑
i≤k Pk, we

construct an implementation trajectory whose interpretation is that formal tra-
jectory. Given S′

0, define inductively S′
k and r′

k to be an implementation state

and reaction such that S′
k−1

r′
k=⇒ S′

k with m(r′
k) = rk and m(S′

k) = Sk, which

exists by condition III.(ii) of weak bisimulation. Expanding each
r′
k=⇒ implicitly

defines an implementation trajectory (S′
0, r

′′
1,1, . . . , r

′′
1,l1

, r′
1, r

′′
2,1, . . . ) where each

m(r′′
k,j) = τ and each m(r′

k) = rk; the interpretation of this trajectory is the
formal trajectory (S0, r1, . . . , rk, . . . ) as desired, proving condition I.(ii). Con-
dition I.(i) follows from condition I.(ii) of trajectory equivalence and condition
III.(ii) of weak bisimulation: every implementation trajectory starts from some
S′ and by condition I.(ii) its interpretation must be a formal trajectory starting
from m(S′). Conversely, every formal trajectory starts from some S, by con-
dition III.(ii) of weak bisimulation there is some S′ with m(S′) = S, and by
condition I.(ii) of trajectory equivalence there is an implementation trajectory
starting from S′ whose interpretation is that formal trajectory. �

3.3 Applying Bisimulation

We now consider how to use bisimulation to analyze our example implemen-
tation of A + B → C + D. We use the three conditions formulation. The
atomic condition is satisfied by the “signal species” xA, xB , xC , and xD. For
the delimiting condition, we check each implementation reaction individually:
iA + xB → tCD + w1 is interpreted as A + B → C + D, which is formal,
while xA � iA and tCD → xC + xD + w2 are trivial. The permissive condition
says that for every formal reaction and for every implementation state in which
that reaction should be able to happen, it can. There is one formal reaction,
A + B → C + D, and any state in which it should be able to happen must
contain an xB and either an xA or iA, since those are the only species whose
interpretations contain either B and/or A. If the state contains xB and iA, then
the reaction iA +xB → tCD +w1 can happen and satisfies the permissive condi-
tion. If the state contains xB and xA, then the trivial reaction xA → iA followed
by iA + xB → tCD + w1 satisfies the permissive condition.
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Now consider a different case. Figure 3 shows an implementation of A +
B → C + D as described by Qian et al. [12] as a means to implement stack
machines, along with a natural interpretation. The species iAB:CD is interpreted
as C+D, while iA:BCD is interpreted as A and xB as B. This makes the reaction
iAB:CD → iA:BCD+xB interpreted as C+D → A+B, which is not a valid formal
reaction. Thus the delimiting condition is unsatisfied, and the implementation
is not correct according to bisimulation; any other interpretation will have the
same problem. This is not a problem for deterministic stack machines, but it
does identify an error with this as a translation scheme for arbitrary CRNs: if
the reaction A+B → C +D were put together with a reaction C → C +E, then
it would be possible to go from {|A,B|} to {|A,B,E|} in the implementation
CRN when it is not possible in the formal CRN.

m(xB) = {|B|}

f
+
B

m(iA:BCD) = {|A|}

m(iAB:CD) = {|C,D|}

xA + fABCD � iA:BCD + f+
A

xB + iA:BCD � iAB:CD + f+
B

iAB:CD + f−
C � iABC:D + xC

iABC:D + f−
D � iABCD: + xD

iABCD: + fi → wABCD

Fig. 3. The translation scheme from [12], when used as a general CRN implementation,
violates the delimiting condition. Species named f are fuels.

3.4 Properties of CRN Bisimulation

We describe two properties of CRN bisimulation that are likely to be useful in
analyzing larger systems. While bisimulation in the classic sense is an equiva-
lence relation between systems [11], our definition of interpretation-dependent
CRN bisimulation is a partial order on the set of CRNs. In particular, CRN
bisimulation is transitive, which allows us to do complex proofs of correctness in
stages. We also show a modularity condition, where the combination of interpre-
tations can be verified using only properties of each individual interpretation.
This is particularly useful for general translation schemes where the translation
of a whole CRN is the combination of one “module” for each reaction. As an
example, we use modularity to prove that the translation scheme in [16] is correct
for any CRN.

We first show that CRN bisimulation is transitive. Consider three CRNs:
an abstract CRN (S,R), an implementation CRN (S ′′,R′′), and an interme-
diate CRN (S ′,R′). For example, (S,R) is an abstract CRN, (S ′′,R′′) is a
low-level reaction enumeration of a prospective DNA implementation of (S,R),
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and (S ′,R′) is a more high-level reaction enumeration of the same DNA imple-
mentation which abstracts away from certain details. Say we have proven
that (S ′,R′) is a valid implementation of (S,R) by finding an interpretation
m1 : S ′ → N

S which is a bisimulation, and similarly have found an interpre-
tation m2 : S ′′ → N

S′
which is a bisimulation from (S ′′,R′′) to (S ′,R′). We

want to prove that (S ′′,R′′), the system we actually have, is a valid implemen-
tation of (S,R), the system we want. The natural interpretation m : S ′′ → N

S

is m(x) = (m1 ◦ m2)(x) = m1(m2(x)), treating m2 as a function of species and
m1 as extended to a function of states. It turns out that this interpretation is in
fact a bisimulation.

Lemma 2 (Transitivity). If m2 is a bisimulation from (S ′′,R′′) to (S ′,R′) and
m1 is a bisimulation from (S ′,R′) to (S,R), then m = m1 ◦m2 is a bisimulation
from (S ′′,R′′) to (S,R).

Proof. We use the three conditions formulation of correctness. We refer to (S,R)
as the “formal” CRN, (S ′′,R′′) as the “implementation” CRN, and (S ′,R′) as
the “intermediate” CRN. We show that each condition for m follows from the
corresponding conditions for m1 and m2.

For any formal species A, by the atomic conditions for m1 and m2 there is
an intermediate species xA with m1(xA) = {|A|} and implementation species yA

with m2(yA) = xA. Then m(yA) = m1(m2(yA)) = m1({|xA|}) = {|A|}, thus m
satisfies the atomic condition.

For any implementation reaction r′′ = R′′ → P ′′, by the delimiting condi-
tion for m2 its interpretation m2(r′′) is either an intermediate reaction R′ →
P ′ ∈ R′ or is τ . If m2(r′′) = τ , that means m2(R′′) = m2(P ′′) and m(R′′) =
m1(m2(R′′)) = m1(m2(P ′′)) = m(P ′′), so m(R′′ → P ′′) = m(r′′) = τ . If
m2(r′′) = R′ → P ′ is a valid intermediate reaction, then m(r′′) = m1(R′ → P ′),
which by the delimiting condition for m1 is either a valid formal reaction or
trivial.

For any formal state S and reaction r with S
r−→ and any implementation

state S′′ with m(S′′) = S, that means S′ = m2(S′′) is an intermediate state with
m1(S′) = S. By the permissive condition on m1, there is some r′ with m1(r′) = r

and S′ r′
=⇒. Using the permissive condition on m2 and the argument used in Theo-

rem 1 to show that the permissive condition implies trajectory equivalence, there
is a sequence of implementation reactions starting from S′′ which implements

the intermediate trajectory by which S′ r′
=⇒. This means that one of those reac-

tions r′′ has m2(r′′) = r′, some of them interpret via m2 to various intermediate
reactions in that pathway which are trivial under m1, and the rest of which are
trivial under m2. An implementation reaction trivial under m2 is trivial under
m, as is a reaction which interprets under m2 to an intermediate reaction trivial
under m1, thus all reactions in this pathway except r′′ are trivial under m, so
when viewed under m, S′′ r=⇒. �

Bisimulation in the classic sense is an equivalence relation on states, which
can be extended to an equivalence relation on systems [11]. Our definition of
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weak bisimulation introduces an asymmetry – one implementation state can
only correspond to one formal state, but multiple implementation states can
correspond to the same formal state. Bisimulation assumes a set of states and
transitions between states where each transition is labelled from a common set of
labels, while CRNs do not come with an obvious concept of labels. Our definition
implicitly uses the set of all possible reactions using species in the formal CRN
(plus the silent τ) as labels, labeling each formal reaction with itself and each
implementation reaction with its interpretation. In that context, Lemma 1 and
Theorem 1 say that there is an interpretation m which is a CRN bisimulation
(satisfies the three conditions, has trajectory equivalence) if and only if there is
a relation between states of that system which is a surjective and linear function
from implementation states to formal states and is a bisimulation in the sense of
[11]. Since we require one CRN to be designated the “formal” CRN in order to
define a set of labels, it is difficult to make the concept of a symmetric relation
between CRNs meaningful. Instead, CRN bisimulation is an order relation (up to
isomorphism):

Lemma 3 (Partial order). The following relation is a partial order: (S ′,R′) �
(S,R) if there exists an m : S ′ → N

S which satisfies the atomic, delimiting, and
permissive conditions (equivalently, its extension m : NS′ → N

S is a surjective
linear weak bisimulation) with equality defined as (S ′,R′) ≡ (S,R) if there exists
a bijection n : S ′ → S such that (n(S ′), n(R′)) = (S,R) where n is extended
naturally to sets and reactions.

Proof. A partial order must be transitive, reflexive, anti-symmetric. Transitivity
(if a ≤ b and b ≤ c then a ≤ c) follows immediately from Lemma 2. Relexivity
(a ≤ a) is obvious by letting m be the identity function. It remains to show anti-
symmetry (if a ≤ b and b ≤ a, then a = b), i.e. that given (S1,R1) and (S2,R2)
with m1 : S1 → N

S2 and m2 : S2 → N
S1 that each satisfy the atomic, delimiting,

and permissive conditions, (S1,R1) and (S2,R2) are identical up to a change of
species names. The atomic condition implies that |S1| ≤ |S2| and |S2| ≤ |S1|,
thus the numbers of species are equal and in particular m1 is a bijection from
species in S1 to sets of exactly one species in S2 (and the same is true for m2).
To simplify notation, we let n(x) = y if m1(x) = {|y|}; n must be a bijection
from S1 to S2. (If the CRN has sufficient symmetry, it is not necessarily true
that m2(n(x)) = {|x|}, for example if both CRNs are {A → C,B → C} we could
have m2(n(A)) = {|B|}.) Since n is a bijection, any reaction that would be trivial
after interpretation (by either m1 or m2) must be trivial before interpretation,
and thus cannot exist. By the delimiting condition for m1, every reaction in R1

must have its image under n in R2; by the permissive condition for m1, every
reaction in R2 must have its preimage under n in R1; thus the two CRNs are
equal up to the isomorphism n. �

In Sect. 3.3 we showed that the translation scheme from [16] is a cor-
rect implementation of the single reaction A + B → C + D according to
CRN bisimulation. Intuitively, given a CRN of multiple reactions we should
be able to combine the implementations of each such reaction to form a correct
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implementation of the CRN. In particular, we would like to show that the com-
bined implementation CRN is correct using a condition which we can check on
each individual reaction’s implementation without having to check any property
of the combined CRN. Since, as we will see in Sect. 4, the time required to check
an interpretation scales much worse than linearly in the size of the implementa-
tion CRN, such a modularity condition would be a significant saving in the time
required. While it is not in general true that combining two correct implemen-
tation CRNs gives a correct implementation of the combined formal CRN, there
is a modularity condition which guarantees that the combined CRN is correct.

We consider an implementation CRN (S ′
1,R′

1) and formal CRN (S1,R1) with
interpretation m1 : S ′

1 → N
S1 , and another implementation CRN (S ′

2,R′
2) and

formal CRN (S2,R2) with interpretation m2 : S ′
2 → N

S2 , where both m1 and
m2 are bisimulations. We assume the interpretations are compatible: for each
x ∈ S ′

1 ∩ S ′
2, m1(x) = m2(x), which implies m1(x) ∈ N

S1∩S2 . We also assume
that the reactions in R′

1 and R′
2 are the only reactions that occur when you

combine the implementation species in S ′
1 and S ′

2; that is, we assume no crosstalk
reactions. Whether there is crosstalk can be checked by a reaction enumerator
[8,10]. Aside from crosstalk, the main reason for the combined implementation
to be incorrect according to bisimulation is some implementation species y in
e.g. S ′

1 but not in S ′
2 whose interpretation contains a formal species A ∈ S1 ∩S2,

where some formal reaction in R2 with A as a reactant cannot be implemented
from an implementation state where y is the representation of A. If any such
species y can, via trivial reactions, “release” any formal species in S1 ∩ S2 in its
interpretation to implementation species in S ′

1 ∩ S ′
2, then we would think this

problem cannot arise. This condition can be checked individually on each module
without checking the combined CRN, and we show that this condition guarantees
that the combined implementation is correct according to bisimulation.

Theorem 2 (Modularity). Let m1 be a bisimulation from (S ′
1,R′

1) to (S1,R1)
and m2 be a bisimulation from (S ′

2,R′
2) to (S2,R2) where m1 and m2 agree on

S ′
1 ∩ S ′

2. Let S ′ = S ′
1 ∪ S ′

2, R′ = R′
1 ∪ R′

2, S = S1 ∪ S2, and R = R1 ∪ R2, and
m : S ′ → N

S equal m1 on S ′
1 and m2 on S ′

2. If for any x ∈ S ′ there is a sequence
of trivial reactions x

τ=⇒ Y + Z for Y ∈ N
S′
1∩S′

2 and m(Z) ∩ (S1 ∩ S2) = ∅, then
m is a bisimulation from (S ′,R′) to (S,R).

Proof. We use the three conditions formulation. The atomic condition for m for
each formal species A is satisfied by the species xA that satisfy it for m1 or
m2, as appropriate, or possibly both; e.g. if A ∈ S1 then there is some species
xA ∈ S ′

1 such that m1(xA) = {|A|}, which implies that xA ∈ S ′ and m(xA) =
m1(xA) = {|A|}. Similarly the delimiting condition for m follows from that for
m1 and m2: for any implementation reaction R′ → P ′ in S ′, that reaction is
in either R′

1 or R′
2, and its interpretation in m agrees with its interpretation in

either m1 or m2 as appropriate, which is either a trivial reaction or a formal
reaction in R1 or R2, which is thus in R. (The delimiting condition assumes, as
we mentioned above, that no crosstalk reactions exist, which when applying this
theory to DNA implementations would be checked by a reaction enumerator.)
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For the permissive condition, consider a formal reaction r = R → P and
implementation state S′ where R ≤ m(S′). Either r ∈ R1 or r ∈ R2; without
loss of generality say r ∈ R1. Divide S′ into species in the first CRN and species
not: let S′ = S′

1 + S′
2, where S′

1 ⊂ S ′
1 and S′

2 ∩ S ′
1 = ∅. If m(S′

1) ≥ R, then
the permissive condition for m1 applied to reaction r and state S′

1 mean S′
1

r=⇒,
thus S′ r=⇒ by the same sequence of reactions ignoring species in S′

2. In the
general case, this means the proof is nontrivial only for formal species in R
whose implementations in S′ are in S′

2, and we need to show that those formal
species can be “extracted” into an implementation species in S ′

1. This is exactly
the modularity condition: for each species xi ∈ S′

2 there is a sequence of trivial
reactions by which xi

τ=⇒ Yi+Zi, where Yi ⊂ S ′
1 and m(Zi)∩S1 = ∅. In particular,

since R → P is a reaction in CRN 1, R ⊂ S1 and R ∩ m(Zi) = ∅. We then have
S′ τ=⇒ S′

1 + Y + Z, where Y =
∑

i Yi ⊂ S ′
1 and Z =

∑
i Zi. Since R ∩ Z = ∅,

R ≤ m(S′), and m(S′) = m(S′
1 + Y ) + m(Z), we have R ≤ m(S′

1 + Y ). Since
S′
1 + Y ⊂ S ′

1, the permissive condition for m1 implies S′
1 + Y

r=⇒, thus S′ r=⇒. �
DNA implementation schemes for arbitrary CRNs such as [2,12,16] typically

have a set of common species and for each formal reaction a “module” with addi-
tional species and implementation reactions that implement the formal reaction.
If the modules have no crosstalk and each one correctly implements its reaction
and satisfies the modularity condition, then repeated applications of Theorem 2
prove that the entire CRN is a correct implementation.

Corollary 1. Consider a formal CRN (S,R) with n reactions R = {ri}n
i=1,

and n implementation “module” CRNs (S ′
0 ∪S ′

i,R′
i) with species S ′

0 in common,
where any S ′

i is disjoint from any S ′
j for j �= i. If there are interpretations

mi : S ′
i → S for 0 ≤ i ≤ n such that the interpretation (m0∪mi) is a bisimulation

from (S ′
0 ∪ S ′

i,R′
i) to (S, {ri}), and any x ∈ S ′

i can be converted x
τ=⇒ Y + Z

by trival reactions in R′
i where Y ∈ N

S′
0 and m(Z) = ∅, where m =

⋃n
i=1 mi

is the combination of the interpretations, then m is a bisimulation from (S ′
0 ∪⋃n

i=1 S ′
i,

⋃n
i=1 R′

i) to (S,R).

In particular, the translation scheme from [16] discussed earlier satisfies the
condition in Corollary 1 for S ′

0 = {xA | A ∈ S}, i.e. the signal species. Thus
Corollary 1 proves that for any number of formal reactions, the scheme in [16]
produces a correct implementation CRN, as long as the DSD reaction enumerator
produces exactly the described reactions and no additional crosstalk reactions.

4 Checking Bisimulation

We now have a definition of “correct implementation”, and can sometimes prove
that a particular implementation is or is not correct. We would like to find a
general way to check whether any implementation is correct.

We divide “checking bisimulation” into three questions. First, given a formal
and implementation CRN and an interpretation, is the interpretation a bisim-
ulation? Second, if (as in most engineered CRN implementations) we have a
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formal CRN, implementation CRN, and for each formal species A a designated
signal species xA, is there an interpretation which is a bisimulation and has
m(xA) = {|A|}? Finally, given a formal CRN, implementation CRN, and no
additional information, is there an interpretation which is a bisimulation?

We give the complexity in terms of two parameters: the size n, the total
number of species and reactions in the two CRNs, and the arity k, the maximum
number of reactants in any formal reaction. We find the problem is easier when k
is bounded by a constant, such as k = 2 limiting the formal CRN to bimolecular
reactions.

4.1 Checking an Interpretation

First we consider the problem of, given an interpretation, checking whether it is a
bisimulation. We use the three conditions on an interpretation, having proved in
Theorem 1 that they are equivalent to bisimulation and trajectory equivalence.
Given two CRNs and an interpretation between them, the atomic and delimiting
conditions are trivial to check. This leaves only the permissive condition.

Checking the permissive condition means, for each formal reaction r = (R,P )
and implementation state S′ with m(S′) ≥ R, S′ can reach via trivial reactions
some state from which a reaction that is interpreted as r can happen. Although
there are infinitely many such S′, we only need to consider the minimal such
states. Consider two such states S′ and S′′ where S′′ > S′ and m(S′′) ≥ m(S′) ≥
R. If there is some sequence of reactions by which S′ r=⇒, then it can happen in
S′′ also and thus S′′ r=⇒. If not, then the permissive condition is false for S′,
and we do not need to check S′′. Thus we need only to check states S′ such
that m(S′) ≥ R and there is no S′

0 < S′ for which m(S′
0) ≥ R, which we call

minimal implementation states (with respect to the given formal reaction r). All
such minimal states can be enumerated by, for each reactant Xi in R, choosing
some implementation species xi such that Xi ∈ m(xi), removing m(xi) from
R (ignoring any species in m(xi) not present in R), then applying this process
recursively.

Now we have reduced the permissive condition to a finite problem: for each
minimal S′, check whether it can reach via trivial reactions some state T ′ from
which a reaction r′ with m(r′) = r can happen. By taking the reactants of each
such r′ in the implementation CRN, we have a list of multisets R′ such that if for
each minimal S′ there is some such R′ such that S′ can reach a state greater than
or equal to R′, then the permissive condition is satisfied. This sounds similar to
the covering (or superset reachability) problem: given states S′ and T ′, can S′

reach any state T ′′ ≥ T ′? Unfortunately, the covering problem was proven by
Rackoff to be EXPSPACE-complete [13]. In particular, the covering problem
is hard because to reach a given state T ′ from S′ may require production and
consumption of a large number of some species.

To solve the permissive condition in less than exponential space, we use the
fact that for the permissive condition to be satisfied, we need a path from every
minimal S′ to some r′ which implements r. Thus, if a minimal state S′

0
τ−→ S′′
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for S′′ > S′
1 which is minimal with m(S′

1) ≥ R, then either S′
1 � r=⇒ and the

permissive condition is false anyway, or S′
1

r=⇒ and we can treat S′
0

τ−→ S′′ as
S′
0

τ−→ S′
1 ignoring the extra species. Following this logic out, we visualize the

state space as a graph of minimal states with an arrow from S′
i to S′

j if there is a
trivial reaction S′

i
τ−→ S′

j+. . . . We find that we can check the permissive condition
using only paths through this graph with some loops of the form S′ τ=⇒ S′ + Z
for some minimal state S′ and multiset Z, which since trivial reactions do not
change the interpretation implies that m(Z) = ∅, thus m(y) = ∅ for each y ∈ Z.
If such a loop exists, then we know that arbitrarily many copies of each such
y can be produced in state S′, and we can ignore y whenever it appears as a
reactant later on the path.

Lemma 4. Let (S,R) and (S ′,R′) be a formal CRN and an implementation
CRN, with interpretation m. Let r = (R,P ) ∈ R be a formal reaction and
S′
0 an implementation state minimal for m(S′

0) ≥ R. Let z be the number of
null species. If the permissive condition is satisfied, then there exists a sequence
of l ≤ z multisets S′

i that are minimal for m(S′
i) ≥ R, l disjoint sets Zi of

null species, and nonnegative integers (αi)1≤i≤l+1, (βi)1≤i≤l such that, where
Yi =

⋃
j≤i Zj, for each 1 ≤ i ≤ l there is a sequence of trivial reactions by

which S′
i−1 + αiYi−1

τ=⇒ S′
i and S′

i + βiYi−1
τ=⇒ S′

i + Zi, and a sequence of trivial
reactions by which S′

l +αl+1Yl
r=⇒, where the same minimal implementation state

is never covered twice within the same sequence. Conversely, if such paths exist
for every formal reaction and minimal implementation state, then the permissive
condition is satisfied.

Proof (Sketch). If the permissive condition is satisfied, then for each minimal
S′, consider the first reaction on the shortest path by which S′ r=⇒. Starting
from any given S′

0, the pathway which at each S′ takes that first reaction is
a valid pathway, and either eventually implements r or eventually repeats the
same minimal state S′

1 twice. If it eventually implements r, then the pathway
matches the desired pathway with all sequences of trivial reactions except the
last one empty. If it eventually repeats, then for each reaction to be the first
reaction on the shortest path, the sequence of reactions which loops must be
S′
1

τ=⇒ S′
1 + Z1 for Z1 a nonempty multiset of null species. With the sequence by

which S′
0

τ=⇒ S′
1 and S′

1
τ=⇒ S′

1 + Z1 as the first two sequences of trivial reactions,
consider a modified implementation CRN with all species in Z1 removed; if the
original implementation CRN satisfies the permissive condition, then making
reactions easier cannot make the permissive condition false. Applying this by
induction on the number of null species gives the remaining segments.

If such paths exist for a given formal reaction r and minimal implementation
state S′

0, then S′
0

r=⇒: from S′
0 reach S′

1; produce “as many copies as needed” of
Z1 in the loop S′

1
τ=⇒ S′

1 + Z1, reach S′
2, produce “as many copies as needed”

of Z2, etc. If such paths exist for every formal reaction r and minimal state S′
0

for r, then every minimal state S′
0

r=⇒, thus as discussed above every state with
m(S′) r−→ has S′ r=⇒, thus satisfying the permissive condition. �
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We describe two algorithms to check the permissive condition. One runs in
space poly(nk) and time poly(nkn); the other runs in space and time poly(nk).

The space-efficient, loopsearch algorithm goes through each formal reaction
(R,P ) and each minimal implementation state S′ in which m(S′) ≥ R and
searches for the path described in Lemma 4. It iterates through each partition
of null species into sets Zi and choice of states S′

i for which S′
i

τ=⇒ S′
i + Zi. A

nonrepeating path from S′
i to S′

j or S′
i +Zi will have length at most N , where N

is the number of minimal implementation states. Where l = �log2 N�, Savitch’s
theorem [14] says that a path from S′

a to S′
b of length at most 2l can be found

by checking all possible states S′
c for a path from S′

a to S′
c and S′

c to S′
b each

of length at most 2l−1, which can be done recursively. This algorithm stores at
most l + z minimal states plus a partition of z species at any one time.

The more time-efficient, graph-updating algorithm, for each formal reaction
r = (R,P ) iteratively builds a table of minimal implementation states S′

i with
m(S′

i) ≥ R and, for each minimal S′
i, which other minimal S′

j can be reached
from S′

i via trivial reactions and which null species can be produced in a loop
from S′

i to itself. In each iteration, for each S′
i that is not yet known to be able

to implement r, for each trivial reaction of the form S′
i + Z1

τ−→ S′
j + Y + Z2,

where Z1 and Z2 contain only null species and all species in Z1 are known to be
producible in a loop from S′

i to itself, it updates the table as follows:

(i) If S′
j is known to be able to implement r, then S′

i can implement r. Other-
wise:

(ii) For each k �= i, if S′
j can reach S′

k, then S′
i can reach S′

k.
(iii) If S′

j can reach S′
i, then S′

i can produce in a loop any null species in Z2, as
well as any null species producible in a loop at S′

j .

The algorithm terminates when an iteration passes with no change to the table.
If all states are known to be able to implement r, then the permissive condition
is satisfied for r; otherwise the permissive condition is false. Using similar but
slightly different reasoning as Lemma 4, we can prove that if the permissive
condition is true, the algorithm will prove it in at most (2znk + 1)nk iterations.

Theorem 3. Whether an interpretation is a bisimulation can be checked in poly-
nomial space.

Proof. The loopsearch algorithm takes polynomial space. �
Theorem 4. When the number of reactants in a formal reaction k is constant,
whether an interpretation is a bisimulation can be checked in polynomial time.

Proof (Sketch). We show that if the permissive condition is true, the graph-
updating algorithm will prove it in at most (2znk + 1)nk iterations. Given a
formal reaction r = (R,P ) and all states S′ which are minimal for m(S′) ≥ R,
at any given iteration for some S′ and y with m(y) = ∅ it will be known that
S′ τ=⇒ S′ +y. If the permissive condition is true, then as in the proof of Lemma 4,
for each S′ consider the first reaction on the shortest path by which S′ r=⇒
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assuming that each S′
i has infinite copies of any species y for which it is known

that S′
i

τ=⇒ S′
i + y. As in that proof, these reactions either give every S′ a direct

path by which S′ r=⇒, or have at least one loop by which some S′
i

τ−→ S′
j + y and

S′
j

τ=⇒ S′
i which is not already known. (If not, then at least one of the reactions

involved does not lead to the shortest path.) Let l ≤ nk be the number of states
in that loop. If every minimal state can implement r using only known null
species, then the shortest paths each have length at most nk, and algorithm will
prove this and terminate in at most nk iterations. If there is such a loop, it will
take at most l iterations to prove that S′

i
τ=⇒ S′

i +y, and an additional l iterations
to prove for each other S′

j in that loop that S′
j

τ=⇒ S′
j + y. Thus in at most 2nk

iterations one more fact will be known. The number of such facts is at most
znk, all possible pairs of minimal state S′ and null species y. If the permissive
condition is true, it will be proven in at most (2znk + 1)nk iterations. �

Although polynomial space in the general case is inefficient, we cannot
do better. If we have (order of) nk minimal states, it is possible to embed
a PSPACE-complete computation in those nk states. In particular, a Linear
Bounded Automaton computation – a model of a Turing machine with space
bounded by the size of its input, for which acceptance is a PSPACE-complete
problem [7] – can be embedded in a polynomial-size implementation CRN, such
that a given formal reaction is reachable in the implementation if and only if the
LBA accepts.

Theorem 5. CRN bisimulation in the general case is PSPACE-complete.

Proof (Sketch). Consider a formal CRN with one reaction, Q + A1 + . . . +
An → H. An implementation CRN can simulate an arbitrary LBA with species
representing the states of the LBA interpreted as Q and species representing the
ith tape symbol interpreted as Ai. (For example, the reaction q0i +0i → q3i+1+1i

for each 1 ≤ i ≤ n represents the Turing machine instruction, “in state 0, read
a 0, write a 1, move right, go to state 3”.) If the interpretation CRN can reset
at any time to the starting state with the tape reading a given string x, and can
implement the formal reaction only from an accepting state, then the permissive
condition is true if and only if the LBA accepts the string x. �

4.2 Finding an Interpretation

We now consider the problem of, given a formal and implementation CRN, can
we find an interpretation that is a bisimulation or correctly assert that none
exists? An algorithm to enumerate interpretations that satisfy the delimiting
condition was given in [6]. This algorithm guarantees that, if an interpretation
that is a bisimulation exists, then it will enumerate at least one of them. The
algorithm iterates through each possible assignment of each implementation reac-
tion to be interpreted as a given formal reaction or trivial; for each assignment,
iterates through each partial specification of an interpretation that satisfies the
reactions assigned to be formal; then sets up the remaining trivial reactions as
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a system of equations and finds a minimal solution. By testing each enumerated
interpretation with either of the permissive condition tests described above, this
algorithm will find an interpretation or assert that none exists.

Theorem 6. Whether a bisimulation interpretation exists from a given imple-
mentation CRN to a given formal CRN is PSPACE-complete.

Proof (Sketch). The above algorithm runs in polynomial space, thus proving
membership. The reactions that simulate a Turing machine in Theorem 5 restrict
the interpretation enough that any interpretation other than the one given (up to
a permutation of the formal species) will be invalid. �
Theorem 7. When the number of reactants in a formal reaction k is bounded
by a constant, whether a bisimulation interpretation exists is NP-complete.

Proof (Sketch). If a valid interpretation exists, the above algorithm guarantees
that it will produce a valid polynomial-size interpretation which can be checked in
polynomial time by Theorem 4. A 3-SAT formula with clauses e.g. (x1 ∨¬x2 ∨x3)
can be encoded in implementation reactions e.g. sC → xt

1 + xf
2 + xt

3. Additional
reactions sT � xt

i+xf
i restrict interpretations that satisfy the delimiting condition

to correspond to satisfying assignments of the 3-SAT formula. �

5 Discussion

Comparing Chemical Reaction Networks on different levels of abstraction is an
important tool for systematic programming with CRNs. We showed how to adapt
the concept of bisimulation to check whether one CRN is a correct implemen-
tation of another. We showed that bisimulation can be used to prove the cor-
rectness of some existing CRN implementations, and to identify subtle but real
problems with others. We discussed transitivity and modularity, which can be
used to simplify a bisimulation proof. We presented different algorithms to check
bisimulation which are adapted to different cases. We showed that the condition
can be checked in polynomial time with favorable assumptions, is NP-complete
with less favorable assumptions, and is PSPACE-complete in the general case.

Algorithms such as the graph-updating algorithm and loopsearch algorithm
scale better with the number of meaningful species than the number of null
species, while engineered CRN implementations generally do not use loops that
produce null species. Thus those algorithms will be faster than their worst-
case limits in practical cases. For example, the graph-updating algorithm takes
at most (2znk + 1)nk = O(n2k+1) cycles in theory, where n is the number of
implementation species, k the largest number of reactants in a formal reaction,
and z the number of implementation species with empty interpretation. When
there are no null species (or when none can be produced in a loop, as in schemes
such as [16]), this becomes at most nk cycles.

In CRN bisimulation, we require that every implementation species has an
interpretation as a (possibly empty) multiset of formal species. In contrast, ver-
ification methods such as pathway decomposition [15] or serializability [9] both
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assume that each formal species is represented by one implementation species,
while other implementation species are classified into fuels, wastes, and inter-
mediates. Because of this, pathway decomposition and serializability compare
formal reactions to implementation pathways which begin and end with (repre-
sentations of) formal species, while in bisimulation an individual implementation
reaction can be interpreted and compared to the formal CRN. An additional
consequence, for pathway decomposition, is that correctness guarantees do not
apply to implementation states that cannot be reached from initial states repre-
senting formal species, whereas bisimulation is more robust in that correctness
is asserted in those cases as well. Furthermore, even in the permissive condition,
bisimulation requires that there exist an implementation pathway which imple-
ments a given formal reaction, while pathway decomposition and serializability
both require that all implementation pathways have properties which may be
nontrivial to check. This locality is what allows us to prove the complexity results
given, which we suspect are significantly lower complexity than methods that
depend on implementation pathways.

However, the use of interpretations instead of pathways means that in some
cases CRN bisimulation and pathway decomposition differ on which implemen-
tations they consider correct. Bisimulation can easily be adapted to situations
where there is no clear single “canonical representation” of a given formal species,
while pathway decomposition has difficulty. For example, the implementation in
[12] of the reversible formal reaction A+B � C+D by reversible implementation
reactions {xA � iA, iA + xB � iCD, iCD � xC + iD, iD � xD}. Bisimulation
considers this correct with the obvious interpretation, while pathway decom-
position considers the ability to release xC then reverse without releasing xD

to be an error. On the other hand, bisimulation has trouble handling imple-
mentation species with no well-defined interpretation. Shin describes a “delayed
choice” phenomenon where an implementation CRN commits to implementing
one of two formal reactions before deciding which one, producing an intermedi-
ate that cannot be correctly interpreted as either of the reaction’s products or
their reactants; such implementations are generally considered incorrect accord-
ing to bisimulation but pathway decomposition often considers them correct [15].
Shin proposes a hybrid notion of correctness where an implementation CRN is
considered correct if it is a correct implementation according to pathway decom-
position of some intermediate CRN, and the intermediate CRN is a correct
implementation of the formal CRN according to bisimulation [15]. This notion
considers correct any implementation that is correct according to either pathway
decomposition or bisimulation, plus some others.

One area this theory overlooks is the rates of reactions and the probabilities
of reaching certain states. For example, in [16] Soloveichik et al. argue that
the concentration of each intermediate is proportional to the product of that of
the formal species which we would call its interpretation, and thus the reaction
rates are approximately correct. Whether this can be generalized, and whether
bisimulation can help this generalization, is an important open question.
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