
Chemical Reaction Network Designs
for Asynchronous Logic Circuits

Luca Cardelli1,2, Marta Kwiatkowska1, and Max Whitby1(B)

1 Department of Computer Science, University of Oxford, Oxford, UK
2 Microsoft Research, Cambridge, UK

luca@microsoft.com, max.whitby@keble.ox.ac.uk

Abstract. Chemical reaction networks (CRNs) are a versatile language
for describing the dynamical behaviour of chemical kinetics, capable of
modelling a variety of digital and analogue processes. While CRN designs
for synchronous sequential logic circuits have been proposed and their
implementation in DNA demonstrated, a physical realisation of these
devices is difficult because of their reliance on a clock. Asynchronous
sequential logic, on the other hand, does not require a clock, and instead
relies on handshaking protocols to ensure the temporal ordering of differ-
ent phases of the computation. This paper provides novel CRN designs
for the construction of asynchronous logic, arithmetic and control flow
elements based on a bi-molecular reaction motif with uniform reaction
rates. We model and validate the designs using Microsoft’s GEC tool.

1 Introduction

Chemical Reaction Networks (CRNs) are traditionally used to capture the
behaviour of inorganic and organic chemical reactions in a well-mixed solution.
Recently, a paradigm shift in the scientific community has seen the use of CRNs
extend to that of a high-level programming language for molecular computing
devices [10], where the fundamental computational process differs from conven-
tional digital electronics in that it involves transformation of input chemicals
into output via reaction rules. Several digital and analogue circuits [17,25] have
been designed in CRNs and their computational power studied [7,26]. It has also
been demonstrated in principle that any CRN can be physically realised in DNA
[3,9,26]. CRNs are therefore particularly attractive as a programming language
for use in nanotechnology and biomedical applications, where it is difficult to
integrate traditional electronics.

While CRN designs for synchronous sequential logic circuits have been pro-
posed, a physical realisation of these devices is challenging because of their
reliance on a clock to synchronise events in order to ensure the correct temporal
order of the phases of the computation. Clocks are difficult to make, since they
arise from unique conditions of chemical concentrations and kinetic constants,

This research is supported by a Royal Society Research Professorship and ERC AdG
VERIWARE.

c© Springer International Publishing Switzerland 2016
Y. Rondelez and D. Woods (Eds.): DNA 2016, LNCS 9818, pp. 67–81, 2016.
DOI: 10.1007/978-3-319-43994-5 5



68 L. Cardelli et al.

and must control a large number of events. In electronics, an alternative circuit
design technology is asynchronous sequential logic [27], which instead of a clock
relies on handshaking protocols to synchronise events. Asynchronous circuits are
widely used for low-power microprocessor designs, e.g., by ARM, though require
a larger circuit area. The key component is the Muller C-element, which is used
to synchronise multiple independent processes. To ensure Turing completeness
of asynchronous circuits, we also require an isochronous fork in addition to the
Muller C-element. An isochronous fork is a component which produces a fan-out
of signals that reach the target at virtually the same time. This assumption is
difficult to achieve in conventional electronics, because of the need to make the
wires the same length, but is straightforward in chemical kinetics because of the
well-mixed assumption.

This paper provides novel CRN designs for the construction of an asynchro-
nous computing device based on a bi-molecular reaction motif inspired by the
Approximate Majority network [1,5]. All components are produced with simple
reactions and uniform reaction rates, and are independent of a universal clock.
Moreover, any design provided in this paper could in principle be realised as a
two-domain DNA strand displacement device [3].

We work with the dual-rail design methodology and employ a variant of the
diagrammatic language of [4] to represent the designs at the high level. Start-
ing from the Muller C-element, we design the main components of a complete
asynchronous computing device in terms of CRNs in a principled way, includ-
ing logic gates, control flow and basic arithmetic. We illustrate the designs on
selected components validated using Microsoft’s Visual GEC tool1, both for the
deterministic and stochastic semantics, with the latter approximated using a
prototype implementation of the Linear Noise Approximation of [6].

Our designs constitute the first feasible implementation of asynchronous com-
putational components as CRNs, and are relevant for a multitude of applications
in synthetic biology and biosensing.

2 Related Work

The computational power of CRNs, viewed as a programming language for engi-
neering biochemical systems, has been studied by a number of authors, to men-
tion [7,10]. Researchers have investigated their power to simulate Boolean cir-
cuits, molecular machines, or distributed algorithms [1,11,17,25,26]. Assuming
a small probability of error, CRNs have been shown to be Turing-universal [25].
Since the behaviour of CRNs is asynchronous, a fact evident through their equiv-
alence with Petri net models [10], the main difficulty with programming them
is the need to control the order of reactions. In [10] it is suggested that this
“uncontrollability” can be handled by changing rate constants, an idea followed
up in [19], where CRN designs for basic arithmetic are given based on two rate
constants, “fast” and “slow”. Our designs, on the other hand, exploit the asyn-
chrony of the underlying CRN model and work with uniform rates.
1 http://lepton.research.microsoft.com/webgec/.

http://lepton.research.microsoft.com/webgec/


Chemical Reaction Network Designs for Asynchronous Logic Circuits 69

In [10] we see the construction and composition of simple logic gates based
upon catalytic reactions, but they do not mention control flow or systematic
component design in a dual rail setting. In [23] the authors propose CRNs for
an inverter, an incrementer, a decrementer, and a copier; their designs are based
on two rate constants, “fast” and “slow”, and thus are not rate-independent.
A system of actual chemical reactions is found in [12], where a precise molecular
implementation is given for gates complete with a thermodynamic analysis of
how the system would evolve, though only for simple gate designs. An implemen-
tation of individual dual-rail logic gates that are rate-independent is given in [8].
In contrast, our designs are composable and capable of performing non-trivial
computation.

Designs for the Muller C-element, though not the remaining components of
an asynchronous device, have been constructed from genetic logic gates [20] and
a genetic toggle switch [21], but we are not aware of any other nanoscale designs
for asynchronous circuits.

3 Preliminaries

3.1 Chemical Reaction Networks

A CRN C is a finite set R of reactions acting on a finite set S of species. A
reaction, which can either be reversible or irreversible, is a triple written in
the form 〈r ∈ SN, k ∈ R>0, p ∈ SN〉, where r and p are the multisets of species
reactants and products, respectively, and k > 0 is the reaction rate [25]. We work
with bi-molecular reactions with uniform rates, including catalytic reactions, and
assume mass-action kinetics.

The stochastic semantics of a CRN [13] can be given as a continuous-time
Markov chain with the state space given as discrete vectors of population counts,
which can be solved through the Chemical Master Equation (CME) whose
numerical solution may be infeasible for large molecular counts. The determinis-
tic semantics approximates the species concentrations over time as a solution of
rate equations [28], assuming a continuous state space, but is valid only for high
molecular counts and cannot model stochastic fluctuations. A stochastic approx-
imation of the CME is possible using the Linear Noise Approximation (LNA)
[28], which provides Gaussian distributions for variance. This is a continuous
approximation, which is independent of initial populations and hence scalable,
and is valid in the limit of high populations. LNA was recently adapted to pro-
vide stochastic analysis of the evolution of populations of molecular species of
CRNs [6] and extended to probabilistic reachability in [2].

We emphasise that we work with CRNs as an abstract programming language
for artificial devices, as argued in [10], where we assume that molecules can be
designed to carry out the required reactions. In principle, any CRN can be
implemented using nucleic-acid strand displacement cascades [3,26], which has
been recently experimentally demonstrated in [9].



70 L. Cardelli et al.

3.2 Principles of Asynchronous Circuit Design

Asynchronous computation [27] is Turing complete [18] meaning that any
bounded-tape Turing machine can be implemented with an asynchronous cir-
cuit, providing that the implementation of that circuit has isochronous forks.
An isochronous fork is the propagation of a signal from a single source to mul-
tiple receivers with the important constraint that the signal must reach the
receivers at precisely the same time. In classical digital circuitry this could be
seen as the propagation of a signal down wires of exactly the same length from
one component to another.

Asynchronous computation relies on ‘local cooperation’ in the form of hand-
shaking protocols, rather than a governing clock. These protocols exchange com-
pletion signals (high or low, also denoted 1 or 0) in order to establish when a
computation has terminated. Asynchronous circuits rely heavily on latches and
rendez-vous elements. A rendez-vous element is a component which ‘waits’ on
two or more actions to complete before a system continues. One form of a rendez-
vous element is the Muller C-element [27, p. 5], which has two Boolean inputs
and one output, and is “stateful”. When both inputs are the same, the output
switches, if necessary, to be equal to the inputs, but when the inputs are different
the output remains what it was last time the inputs were equal. The C-element
suffices to build a gate that synchronises events, but an isochronous fork, which
produces a fan-out of signals that reach the target at virtually the same time, is
needed to ensure Turing completeness [18].

C-elements allow a circuit to be speed-independent by a series of local hand-
shakes. This means that we can wait for longer computational paths to complete
before advancing without additional computation occurring, negating the use
of a system clock. A fundamental construct built from C-elements is a Muller
pipeline, shown in Fig. 1, which is used to relay handshakes and can be com-
bined with data storage or computational components. The Muller pipeline is
constructed by the composition of Muller C-elements and NOT-gates. Initially
all C-elements are set to a value of 0. The ith C-element C[i] will propagate a
1 from its predecessor, C[i − 1], only if its successor, C[i + 1], is 0. Similarly, it
will propagate a 0 from its predecessor only if its successor is 1. Eventually the
first request initialized on the left hand side of our pipeline is propagated to the
final request on the right. The protocol enacted upon this pipeline uses request
and acknowledge rails that can be set to high or low. The Muller pipeline imple-
ments a basic four phase protocol, which is as follows. Firstly, the sender sends
data and sets request to high, viewed in Fig. 1 as the signal ReqHi. The receiver
then records this data and sets acknowledge to high (AckHi). Then the sender
responds by setting request to low (ReqLo), and finally the receiver acknowledges
this by setting acknowledgement to low (AckLo). If at any point a handshake
along the pipeline is slower than another, the pipeline will behave like a FIFO
queue with data preserved. Herein lies the important purpose of the pipeline: it
allows for the delay-insensitive transfer of information from one place to another.
In combination with a latch we can create the propagation of information across
latches using the pipeline as a control structure.



Chemical Reaction Network Designs for Asynchronous Logic Circuits 71

Fig. 1. Signals are propagated from left to right using a Muller pipeline. The pipeline
effectively queues data, only allowing a transition to occur when a further signal has
been acknowledged.

4 Circuit Construction and Design

Asynchronous computation is well suited to CRNs: they are inherently asyn-
chronous as each reaction happens stochastically and there is no inherent clock
that governs their operation.

We use a dual-rail implementation of asynchronous circuits due to the fact
that we cannot detect when there are no molecules of a molecular species; we can
only detect their presence. This means that there is a separate species or ‘signal’
representing the values high and low (or logical 1 and 0). These species are
named accordingly; for instance, a signal x will be represented by two species
xhi and xlo representing the high and low signals. Circuit design follows the
normal rules in which components are connected by rails that transport data
around the system. We assume standard knowledge of logic gates.

The designs are presented in a diagrammatic notation which allows us to
view CRNs as circuits instead of a list of reactions. All our designs are built
from a simple motif, seen here, which describes the two reactions:

or in standard CRN notation:

xhi + ylo
k→ xhi + yhi xlo + yhi

k→ xlo + ylo (1)

where xhi, xlo are catalytic to the reaction yhi � ylo and k is the rate which
is the same for both reactions, where we set k = 1. In general, a black circle
represents that the species connected to it is catalytic to the reaction adjacent to
the black circle. In our implementation, the presence of every signal is catalytic
to another signal, and thus the total number of molecules for each signal (pair
of species) is preserved. Implementations of catalytic gates typically rely on fuel
molecules to provide energy to catalyse one species into another [26].



72 L. Cardelli et al.

Our motif can be used both as a basic building block for a logical element as
well as a control element. For example xhi, xlo, above, can be used to control two
separate sub-circuits through yhi, ylo. This demonstrates that, through just two
reactions, we can create circuits that exhibit complex behaviour both in control
flow and logic.

We assume well-mixed solution, which ensures that the probability of collision
between molecules is independent of their position. This yields a circuit that
operates correctly but with unknown delays, called delay-insensitive [27].

4.1 Latches and the Muller C-Element

A latch is a device used in electronics to store a logical 0 or 1; it needs to have at
least two stable states which are cycled between. We present three latch designs
in Fig. 2(a), each intended to interface in a specific way when used within a larger
system. The first, shown in Fig. 2(a-i), is almost identical to our motif except
for two additional reactions which catalyse ylo to yhi, and vice versa. The latch
in Fig. 2(a-ii) has an input rhi used to reset the latch to a central state. The
advantage of this central state, ymid, is that the latch can be in a state where
neither yhi nor ylo are present, which is useful if these reactions are catalytic
to any other component. In its electronic counterpart, a system may have a rail
deciding whether the component is active or inactive; our intermediary ymid
fulfils this function, as the system is in a state where neither yhi nor ylo are
present. In Fig. 2(a-iii), we see the latter latch combined with control species
chi, clo. These species are used to synchronise the latch in the pipeline. Even
when the input signal xhi, xlo is present, we still need the species chi to be
present in order to catalyse the reaction s2 → shi or s4 → slo, which are the
output species. This is needed since these output species cannot be read until
the system has synchronised.

A C-element is conceptually similar to a latch except for having two inputs, x
and y. The design for this, presented in Fig. 2(b-i), was inspired by the Approx-
imate Majority (AM) circuit in [5]. The circuit in Fig. 2(b-ii) is similar to AM
of [5] except for separating the inputs. Note that the C-element includes two
separate AM circuits, shown schematically in Fig. 2(b-iii), where the arrows in
the AM box indicate the direction of switching between the two stable states.
Using this mechanism it is possible to trap the gate into the state zdn or zup
given both high inputs xhi, yhi or both low inputs xlo, ylo. However, when one of
these inputs is changed, we see that the gate is trapped in one of these states in
view of the feedback loops. The second AM mechanism corrects the weak output
signal zdn, zup from the first AM mechanism, meaning the outputs of this gate
are zlo and zhi.

4.2 Logic and Arithmetic

Although gate designs for Boolean operators have been proposed in CRNs [25],
we present dual-rail implementations of logic gates in line with other designs
proposed within this paper. In contrast to the gates in [25], our gates account



Chemical Reaction Network Designs for Asynchronous Logic Circuits 73

Fig. 2. a) Latches-(i) Two state latch (ii) Three state latch (iii) Latch with control
input b) Muller C-Element-(i) C-Element (ii) Approximate Majority circuit based on
[3] (iii) C-Element as composition of Approximate Majority circuits c) Control Flow
Design-(i) Fork (ii) Join (iii) Arbiter (iv) Arbiter as AM circuit d) Logic Gates-(i) NOT
(ii) AND (iii) OR (iv) NAND (v) XOR (vi) NOR



74 L. Cardelli et al.

for all inputs x and y, and also respond to change in input. The AND-gate,
shown in Fig. 2(d-ii), has inputs x, y expressed in our dual-rail implementation.
With the presence of species yhi we can catalyse z into the state zmid, and
with the species xhi we can catalyse zmid to zhi ; thus both species are needed
for the gate to output the signal z. The state zhi converts any species zlo back
to z1, therefore showing that only one output signal can be present at any time.
Conversely, with either xlo, ylo we can convert z1 to zlo, which in turn can
convert zhi back to zmid and zmid to z2. Using a similar trail of thought we
can see how the other gates are devised, albeit XOR is slightly different. XOR,
traditionally a gate that requires a composition of many other logic gates, has
to be constructed with all combinations of inputs considered.

Using these designs, we have also implemented a ripple carry adder, seen in
Fig. 7. An individual adder is composed of two XOR gates, two OR gates and an
AND gate. It takes two inputs x, y and outputs the sum of the inputs z with a
carry bit c. In our ripple carry implementation we compose three of these adders
in series.

4.3 Control Flow

Control flow is used to mediate or propagate the flow of information throughout
a system. The fork, shown Fig. 2(c-i), is used to split signals; it is constructed
by having one input species x catalyse the two reactions x1 → y1 and x2 → y2,
to produce two outputs y1, y2. The species r acts as a reset for the fork if
the process needs repeating, assuming x is no longer active. The join, see Fig. 2
(c-ii), is similar to the function of an AND-gate, and will only output a signal yhi
when both inputs x1, x2 are present. This is a useful control mechanism since the
system can stall the catalysis of further reactions via y until both input signals
x1 and x2 are present. The species r can be used to reset the join. We also present
our AM circuit as an arbiter seen in Fig. 2(c-iii). An arbiter is used to decide
an output signal based on which species arrived first. The AM circuit works
well as an arbiter due to the fact that the output yhi, ylo starts to be converted
from ymid as soon as either of xhi, xlo arrives, therefore automatically biasing
whichever species is present first. All three of these control flow elements are
used in our queue and adder implementations discussed within the next section.

5 Design Validation

We use Microsoft’s Visual GEC tool to establish that the designs2 exhibit cor-
rect behaviour, both for the deterministic and stochastic semantics of the CRNs.
Visual GEC provides a programming language, LBS, for designing and sim-
ulating any given CRN. Using numerical simulation, we systematically tested
each component in isolation by simulating its behaviour over all inputs, and
then checking that those inputs yield the desired output and also suppress any

2 Available from https://github.com/max1s/CRNcode.

https://github.com/max1s/CRNcode


Chemical Reaction Network Designs for Asynchronous Logic Circuits 75

unwanted outputs. Next, we examined how a component might behave in a larger
system, where it will be exposed to a change in input. To this end, we introduced
new reactions to emulate a signal change. For instance, if we wished to change
a carrier signal from high to low, we would introduce an additional reaction xhi
k→ xlo, which converts all of the signal xhi into a signal xlo while the component
is operating.

Since deterministic semantics is not accurate for low molecular populations,
we additionally explored its stochastic semantics. Visual GEC exports models
to the probabilistic model checker PRISM [15], which then enables verification
of the induced continuous-time Markov chain against temporal logic properties.
This allows one to check that the circuits ensure the correct temporal ordering
of the events, for example, for the Muller pipeline of Fig. 1, that the species in
the first stage of the pipeline is present before the species in the second, i.e.
with probability 1, and that the signal is eventually propagated to the end of
the pipeline. PRISM implements numerical solution of the CME, which is expo-
nential in the initial number of molecules and hence not scalable, and analy-
sis based on stochastic simulation, which is time consuming. We thus used an
experimental implementation of the LNA within Visual GEC, based on [6]. The
LNA approximates the CME with a set of differential equations, quadratic in
the number of species and independent of the initial number of molecules. The
ODEs describe the time evolution of expected value and variance. As well as
being capable of checking temporal logic properties [2,6], the LNA can plot the
species concentration over time together with standard deviation, and is fast and
reasonably accurate even for low molecule counts. Moreover, compared to the
deterministic semantics, LNA provides important information about stochastic-
ity that may affect the robustness of the circuits, and which can be explored
further with CME, stochastic simulation, or verifying that the circuit converges
with probability 1 to a single value.

We now illustrate the results of the validation on a selection of components.

Muller C-element. Firstly, we demonstrate the robustness of the Muller
C-element against changes in input signal in Fig. 3(a-c). In Fig. 3(d), we show
that the C-element may not be robust at low molecular counts, here 10. Increas-
ing this count to 500 greatly decreases the variance of the output species (not
shown), reducing the likelihood that the wrong species will reach the threshold.

Pipeline. The pipeline, seen in Fig. 1, is a mechanism that relays handshakes
between components, for example latches to store data. We construct the pipeline
by placing three of our C-element CRNs in sequence. At each intermediate stage
between the C-elements we add a fork. One path of the fork is negated and
fed back into the previous C-element, and the other path is fed into the new
C-element.

Because we have already validated the individual C-element design, we can
assume that they work correctly and so we only need to observe the behaviour
of the overall system. We therefore analyse the system behaviour over time,



76 L. Cardelli et al.

(a) An input change from xhi, yhi to
xlo, ylo

(b) LNA simulation of a change in input
from xhi, yhi to xlo, ylo

(c) An input change from xhi, yhi to
xlo, yhi

(d) LNA simulation of a change in input
from xhi, yhi to xlo, yhi

Fig. 3. Validation of the Muller C-element. In these experiments we start with an input
of x and y, the presence of which are represented by the species xhi and yhi. In (a)
we show a change of input where both x and y change to 0 or are not present, repre-
sented by species xlo and ylo. Note how zhi responds by reaching zero molecules and
zlo reaches the maximum molecular value, in this case 10. In (b) we show the LNA
approximation of the same scenario, with standard deviation shown as highlighted
regions, which demonstrates that the variance is low once the circuit reaches steady
state. In (c) we demonstrate the change in one input value xhi across a single Approx-
imate Majority circuit; in this case the output signal decreases, but still remains at
a value greater than zlo. However, for this reason we add an additional AM circuit
to further separate the output signals zhi, zlo. In (d), we show the LNA of the same
scenario, demonstrating that the circuit is not robust under low molecular count.

based upon a change in inputs, namely, signals reqhi, reqlo, acchi and acclo. We
conducted multiple experiments in which we change these inputs, demonstrating
the desired effect of them being propagated along the pipeline. This is seen as a
‘wave’ through the pipeline propagating a high signal and then a low signal. The
results of this are shown in Figure 4. Here the presence of the species ahi, bhi, chi
represents a high signal before responding and diminishing back to zero.



Chemical Reaction Network Designs for Asynchronous Logic Circuits 77

(a) The Muller C-pipeline responding
to the input species reqhi being present
and then transforming to the input
species reqlo.

(b) The same experiment calculated
with the LNA. The standard deviation
is shown with highlighted regions.

Fig. 4. Validation of the Muller C-pipeline. The input request signal, encoded by the
species reqhi, is propagated to the end of the pipeline (represented by the species
ahi, bhi, chi); we then set the request signal to low. The pipeline then responds by the
presence of ahi, bhi and chi diminishing to zero. In (b) we show that the variance is
low, even for low molecular counts.

Queue. We have also designed and validated a queue, shown in Fig. 5, built
by the addition of latches at each C-element block to the Muller pipeline. The
queue uses the pipeline as a control mechanism to propagate signals between
the latches. We use the complex latch in Fig. 2(a-iii) for this purpose. As a high
species is propagated along the pipeline, it sends a signal to the queue to read
and store the value in the next latch along. Each latch represents some computa-
tion that could be completed within each time interval. In Fig. 6 we analyse the
oscillatory behaviour of the queue using the LNA, demonstrating its robustness
at high molecular counts.

Adder. We have also designed a three bit ripple carry adder seen in Fig. 7,
which works in a similar fashion to the queue but instead of latches we compose
adders in series. At each time step we input two bits and a carry, which outputs
the sum and a carry. In this way we can add two three-bit numbers together.
We show in Fig. 8 that the adder exhibits correct behaviour, and each sum is
calculated only in the next stage in the pipeline.

5.1 Discussion

Direct chemical implementations of CRNs have been theorised and realised,
but involve complicated reaction mechanisms [24]. For instance, [14] implements
chemical systems as neural networks. Most implementations need some external
fuel molecules, as reactions such as A + B → C + B require some energy input
in order to catalyse one species to another [26]. CRNs have been implemented in



78 L. Cardelli et al.

Fig. 5. Deterministic simulation of the queue pipeline. We propagate a value of 1
through the queue. The species amshi, bmshi represent the outputs of the first and
second latches. Note that through oscillatory patterns generated by the pipeline we
can mimick properties of a synchronous system.

(a) The LNA for 10 molecules. (b) The LNA for 500 molecules.

Fig. 6. LNA simulation of the queue pipeline. In these plots we show standard devia-
tion, calculated through LNA, of an oscillatory pattern created by propagating a value
of 1 and then 0. The maximum molecular count for each species in (a) is 10 while in
(b) is 500. The variance decreases greatly with an increase in molecular count. We plot
the values of amshi, bmshi, cmshi, which represent a value of 1. The troughs indicate
when 0 is propagated.

Fig. 7. Full Ripple Carry Adder used in conjunction with our Muller C-pipeline to
stagger computation across the adders.



Chemical Reaction Network Designs for Asynchronous Logic Circuits 79

(a) Adder response to value of 101010. (b) Adder response to value of 100010.

Fig. 8. Deterministic simulation of the adder circuit responding to various inputs. We
overlay this with signals present in the pipeline used to coordinate the carry bit from
each adder, represented by aabridgeOneOut, bbbridgeOneOut and ccbridgeOneOut. In
(b), the final output signals cross due to pre-calculation by the adders before the carry
bit arrives.

systems involving Toehold Mediated Branch Migration and Strand Displacement
(DSD). DNA strand displacement has already been shown to be a universal
substrate for chemical kinetics, specifically for bi-molecular reactions [26]. In
addition to modelling the behaviours at the CRN level, we also implemented
our CRN designs in two-domain DNA strand displacement devices [3] using the
Visual DSD tool [16], thus providing further evidence of their experimental via-
bility, at least for the construction of DNA-based devices.

6 Conclusion

We have proposed a novel design for an asynchronous computing device based on
Chemical Reaction Networks. CRNs are inherently asynchronous, and thus par-
ticularly well suited to this computational paradigm. Our designs are based on
a simple, bi-molecular reaction motif inspired by Approximate Majority [1,5],
and assume well-mixed solution and constant, uniform rates. Moreover, they
do not rely on the universal clock which is difficult to realise. Since an arbi-
trary CRN can be physically realised using DNA strand displacement [26], as
recently demonstrated experimentally in [9], the proposed designs are in prin-
ciple implementable, and we have confirmed this in theory by modelling them
in the two-domain setting [3] using Visual DSD [16,22]. Our designs are the
first feasible implementation of an asynchronous computing device in chemical
kinetics and are relevant for a multitude of applications in nanotechnology and
synthetic biology.



80 L. Cardelli et al.

References

1. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distrib. Comput. 21(2), 87–102 (2008)

2. Bortolussi, L., Cardelli, L., Kwiatkowska, M., Laurenti, L.: Approximation of prob-
abilistic reachability for chemical reaction networks using the linear noise approx-
imation. In: Proceedings of 13th International Conference on Quantitative Evalu-
ation of SysTems (QEST 2016). LNCS. Springer (2016) (to appear)

3. Cardelli, L.: Two-domain DNA strand displacement. Dev. Comput. Models 26,
47–61 (2010)

4. Cardelli, L.: Morphisms of reaction networks that couple structure to function.
BMC Syst. Biol. 8(1), 84 (2014)

5. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate major-
ity. Sci. Rep. 2, 1–37 (2012)

6. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reac-
tion networks using linear noise approximation. In: Roux, O., Bourdon, J. (eds.)
CMSB 2015. LNCS, vol. 9308, pp. 64–76. Springer, Heidelberg (2015)

7. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with
chemical reaction networks. Nat. Comput. 13(4), 517–534 (2013)

8. Chen, H.-L., Doty, D., Soloveichik, D.: Rate-independent computation in continu-
ous chemical reaction networks. In: Proceedings of the 5th Conference on Innova-
tions in Theoretical Computer Science, pp. 313–326. ACM (2014)

9. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D.,
Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol.
8(10), 755–762 (2013)

10. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E.
(eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009)

11. Dannenberg, F., Kwiatkowska, M., Thachuk, C., Turberfield, A.J.: Dna walker
circuits: computational potential, design and verification. Nat. Comput. 14(2),
195–211 (2015)

12. de Silva, A.P., McClenaghan, N.D.: Molecular-scale logic gates. Chem.-A Eur. J.
10(3), 574–586 (2004)

13. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

14. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of finite-state
machines. Proc. Nat. Acad. Sci. 89(1), 383–387 (1992)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

16. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design
and analysis tool for dna strand displacement systems. Bioinformatics 27(22),
3211–3213 (2011)

17. Magnasco, M.O.: Chemical kinetics is Turing universal. Phys. Rev. Lett. 78, 1190–
1193 (1997)

18. Manohar, R., Martin, A.J.: Quasi-delay-insensitive circuits are Turing-complete.
Technical report, DTIC Document (1995)

19. Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction net-
works. In: Advances in Neural Information Processing Systems, pp. 2247–2255
(2013)



Chemical Reaction Network Designs for Asynchronous Logic Circuits 81

20. Nguyen, N.-P., Myers, C., Kuwahara, H., Winstead, C., Keener, J.: Design and
analysis of a robust genetic Muller C-element. J. Theoret. Biol. 264(2), 174–187
(2010)

21. Nguyen, N.-P.D., Kuwahara, H., Myers, C.J., Keener, J.P.: The design of a genetic
Muller C-element. In: 13th IEEE International Symposium on Asynchronous Cir-
cuits and Systems, ASYNC 2007, pp. 95–104. IEEE (2007)

22. Phillips, A., Cardelli, L.: A programming language for composable DNA circuits.
J. R. Soc. Interface 6(Suppl 4), S419–S436 (2009)

23. Senum, P., Riedel, M.: Rate-independent constructs for chemical computation.
PloS One 6(6), e21414 (2011)

24. Shin, S.W.: Compiling and verifying DNA-based chemical reaction network imple-
mentations. Ph.D. thesis, California Institute of Technolog (2011)

25. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)

26. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Nat. Acad. Sci. 107(12), 5393–5398 (2010)

27. Spars, J., Furber, S.: Principles Asynchronous Circuit Design. Springer, New York
(2002)

28. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier,
Amsterdam (1992)


	Chemical Reaction Network Designs for Asynchronous Logic Circuits
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Chemical Reaction Networks
	3.2 Principles of Asynchronous Circuit Design

	4 Circuit Construction and Design
	4.1 Latches and the Muller C-Element
	4.2 Logic and Arithmetic
	4.3 Control Flow

	5 Design Validation
	5.1 Discussion

	6 Conclusion
	References


