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Preface

This volume contains the papers presented at DNA 22: The 22nd International Con-
ference on DNA Computing and Molecular Programming. The conference was held at
Ludwig-Maximilians-Universität (LMU) in Munich, Germany, during September 4–8,
2016, and organized under the auspices of the International Society for Nanoscale
Science, Computation and Engineering (ISNSCE). A one-day Symposium on RNA-
Based Information Processing was held after the main conference on September 9,
2016. The DNA conference series aims to draw together mathematics, computer sci-
ence, physics, chemistry, biology, and nanotechnology to address the analysis, design,
and synthesis of information-based molecular systems.

Papers and presentations were sought in all areas that relate to biomolecular com-
puting, including, but not restricted to: algorithms and models for computation with
biomolecular systems; computational processes in vitro and in vivo; molecular
switches, gates, devices, and circuits; molecular folding and self-assembly of nanos-
tructures; analysis and theoretical models of laboratory techniques; molecular motors
and molecular robotics; studies of fault-tolerance and error correction; software tools
for analysis, simulation, and design; synthetic biology and in vitro evolution; appli-
cations in engineering, physics, chemistry, biology, and medicine.

Authors who wished to orally present their work were asked to select one of two
submission tracks: Track A (full paper) or Track B (one-page abstract with supple-
mentary document). Track B is primarily for authors submitting experimental results
who plan to submit to a journal rather than publish in the conference proceedings. We
received 55 submissions for oral presentations: 16 submissions in Track A and 39
submissions in Track B. Each submission was reviewed by at least four reviewers. The
Program Committee accepted 11 papers in Track A and 18 papers in Track B. This
volume contains the papers accepted for Track A. In addition, we received 95 poster
submissions for Track C.

We express our sincere appreciation to our invited speakers: Matthew Cook,
Monika Heiner, Yan Liu, Pekka Orponen, Rebecca Schulman, and Bernard Yurke and
invited tutorial speakers Thomas Ouldridge, Paul W.K. Rothemund, and Nadrian C.
Seeman. We especially thank all of the authors who contributed papers to these pro-
ceedings, and who presented papers and posters during the conference. Finally, the
editors thank the members of the Program Committee and the additional reviewers for
their hard work in reviewing the papers and providing constructive comments to the
authors, as well as for taking part in enthusiastic post-review discussions.

June 2016 Damien Woods
Yannick Rondelez



Organization

Program Committee for DNA 22

Yannick Rondelez CNRS/University of Tokyo, Japan (Co-chair)
Damien Woods California Institute of Technology, USA (Co-chair)
Ebbe Andersen Aarhus University, Denmark
Robert Brijder Hasselt University, Belgium
Luca Cardelli Microsoft Research, Cambridge, UK
Hendrik Dietz Technical University Munich, Germany
David Doty University of California Davis, USA
Andrew Ellington University of Texas at Austin, USA
Andre Estevez-Torres Université Pierre et Marie Curie Paris, France
Elisa Franco University of California at Riverside, USA
Anthony Genot CNRS/University of Tokyo, Japan
Ashwin Gopinath California Institute of Technology, USA
Natasha Jonoska University of South Florida, USA
Lila Kari University of Western Ontario, Canada
Yonggang Ke Georgia Tech, USA
Maria Kwiatkowska Oxford University, UK
Tim Liedl Ludwig-Maximilians-Universität München, Germany
Chenxiang Lin Yale University, USA
Yan Liu Arizona State University, USA
Chengde Mao Purdue University, USA
Satoshi Murata Tohoku University, Japan
Niall Murphy Microsoft Research, UK
Matthew Patitz University of Arkansas, USA
Andrew Phillips Microsoft Research, UK
Lulu Qian California Institute of Technology, USA
John Reif Duke University, USA
Rebecca Schulman Johns Hopkins University, USA
Robert Schweller University of Texas Rio Grande Valley, USA
Shinnosuke Seki University of Electro-Communications, Tokyo, Japan
William Shih Harvard University, USA
Friedrich C. Simmel Technische Universität München, Germany
David Soloveichik University of Texas at Austin, USA
Chris Thachuk California Institute of Technology, USA
Erik Winfree California Institute of Technology, USA
Andrew Winslow Université libre de Bruxelles, Belgium
Peng Yin Harvard University, USA



Additional Reviewers

David F. Anderson
Hieu Bui
Milan Ceska
Cameron Chalk
Mingjie Dai
Frits Dannenberg
Masayuki Endo
Sudhanshu Garg
Manoj Gopalkrishnan

Nikhil Gopalkrishnan
Rizal Hariadi
Hiroaki Hata
Jacob Hendricks
Aleck Johnsen
Jongmin Kim
Akihiko Konagaya
Luca Laurenti
Peter Minary

Andrew Page
Arivazhagan Rajendran
Trent Rogers
Thomas Schaus
Jie Song
Tianqi Song
Sungwook Woo
Feng Xuan

Organizing Committee for DNA 22

Tim Liedl LMU Munich Germany (Co-chair)
Friedrich Simmel Technical University of Munich Germany (Co-chair)
Andrea Cooke LMU Munich Germany (Executive Co-chair)
Hendrik Dietz Technical University of Munich, Germany
Ralf Jungmann Max Planck Institute for Biochemistry, Munich,

Germany

Steering Committee

Natasha Jonoska University of South Florida, USA (Chair)
Luca Cardelli Microsoft Research, Cambridge, UK
Anne Condon University of British Columbia, Canada
Masami Hagiya University of Tokyo, Japan
Lila Kari University of Western Ontario, Canada
Satoshi Kobayashi University of Electro-Communication, Chofu, Japan
Chengde Mao Purdue University, USA
Satoshi Murata Tohoku University, Japan
John Reif Duke University, USA
Grzegorz Rozenberg University of Leiden, The Netherlands
Nadrian Seeman New York University, USA
Friedrich Simmel Technical University of Munich, Germany
Andrew Turberfield Oxford University, UK
Hao Yan Arizona State, USA
Erik Winfree California Institute of Technology, USA

VIII Organization



Sponsors

Deutsche Forschungsgemeinschaft (DFG)
Center for NanoScience, LMU
National Science Foundation, USA
Nanosystems Initiative Munich, LMU
GRK2062 Molecular Principles of Synthetic Biology, LMU Research Training Group
Eurofins Genomics GmbH
Science Services GmbH
baseclick GmbH

Organization IX



Invited Speakers



Can Excitonic Quantum Computers be
Constructed by DNA Assembly
of Chromophore Networks?

Bernard Yurke

Boise State Univeristy, Boise, ID 83725, USA
bernardyurke@boisestate.edu

http://coen.boisestate.edu/faculty-staff2/bio/?id=2

Abstract. Fluorophores have been employed extensively in DNA nanotech-
nology, principally in donor-acceptor combinations, enabling Föster resonant
energy transfer (FRET) to be used for applications, such as monitoring
hybridization reactions and monitoring DNA nanomachine functions. FRET is
an energy non-conserving process in which a bundle of energy, referred to as a
Frenkel exciton, is transferred from the donor fluorophore to the acceptor. The
characteristic length scale at which FRET sets in is called the Föster radius and
is typically about 5 nm. If the donor and accepter are brought to within less than
2 nm of each other, the energy transfer can occur in an energy conserving
manner referred to as coherent FRET. A Frenkel exciton, undergoing coherent
FRET exchange among a cluster of chromophores, spreads out over the cluster
in a wave-like manner, referred to as a quantum walk. Frenkel excitons also
exhibit particle-like aspects and are best viewed as fully quantum mechanical
entities. One manifestation of particle-like behavior is that, when two excitons
encounter each other, they can experience a two-body interaction that gives rise
to quantum mechanical phase shifts. In order for this to happen the chro-
mophores must possess a permanent electric dipole moment and this requires the
chromophores to be asymmetric. These two properties of Frenkel excitons –

their wave-like behavior and their two-body interaction – are sufficient to enable
universal quantum computation. I will describe how these two features can be
exploited to implement a complete set of quantum gates for universal quantum
computation. Quantum computing, regardless of its embodiment, is a race
against decoherence, the process by which the wave-like behavior is destroyed.
Chromophores, residing in buffer and attached to DNA, are in an environment
highly susceptable to this process. It remains to be seen whether the decoherence
rate can be reduced enough to enable Frenkel excitons to perform universal
quantum computation by undergoing a many-body quantum walk over a net-
work of chromophores attached to a DNA scaffold.



From One, Many: Programmably
Reconfigurable, Multiscale Materials

Built with DNA

Rebecca Schulman

Chemical and Biomolecular Engineering and Computer Science,
Johns Hopkins University, Baltimore, USA

Materials within living systems have complex structure that constantly reorganizes in
order to continue to function reliably as the environment changes. Commonly, this
structure arises because a simple set of components is reorganized by sensors and
activating agents into many different forms. For example, tubulin can be organized into
cilia, fibrous networks or machines such as the spindle, and the extracellular matrix, an
extended matrix composed of a relatively small number of principle protein compo-
nents, is continually growing and being digested and remodeled in response to inter-
action with cells within a tissue. The ability to reuse simple components in different
materials allows for rapid reorganization and allows material to have structure across
many different length scales.

I will describe how we can use DNA to build dynamically reconfigurable materials
on the micron to millimeter scales where the responses to inputs can be precisely
programmed. The addition of one or combinations of DNA sequences can create large
scale changes in the material, and these changes can alter a material’s form at length
scales ranging from the nanoscale to the millimeter scale. Further, these materials can
be continually reorganized in response to series of multiple inputs, suggesting a route to
building materials that continue adapt in complex ways over time to their environment.



From Petri Nets to Partial Differential
Equations: A Petri Net Perspective on Systems

and Synthetic Biology

Monika Heiner

Brandenburg University of Technology Cottbus-Senftenberg,
Senftenberg, Germany

Monika.Heiner@b-tu.de
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Main/

MonikaHeiner

Petri nets offer a graphical & intuitive notation for biochemical reaction networks, such
as gene regulatory, signal transduction or metabolic networks. Moreover, they may
serve as an umbrella formalism combining different modelling paradigms, where each
perspective contributes to a better understanding of the biochemical system under
study. In this spirit of BioModel Engineering, we developed over the last two decades
our unifying Petri net framework comprising the traditional time-free Petri nets (PN) as
well as quantitative, i.e. time-dependent Petri nets such as stochastic Petri nets (SPN),
continuous Petri nets (CPN), and hybrid Petri nets (HPN), as well as their coloured
counterparts [1].

Coloured Petri nets permit, among others, the convenient and flexible encoding of
spatial attributes, and thus the modelling of processes evolving in time and space,
which are usually treated as stochastic or deterministic partial differential equations
(PDE). In our approach, the discretisation of space on the modelling level, while
traditionally the discretisation is left for the PDE integration methods [2].

Our framework is supported by a related Petri net toolkit comprising Snoopy,
Charlie and Marcie. It has been applied to a couple of case studies. Those involving
spatial aspects include the Brusselator model to explore Turing patterns [3], C. elegans
vulval development, stochastic membrane systems composed of active compartments,
Ca2+ channels arranged in two-dimensional space, phase variatiation in bacterial
colony growth, and Planar Cell Polarity (PCP) signalling in Drosophila wing. Some
of them will be sketched in this talk.

References

1. Blätke, M., Heiner, M., Marwan, W.: BioModel Engineering with Petri Nets, chap. 7,
pp. 141–193. Elsevier Inc., March 2015

2. Gilbert, D., Heiner, M., Liu, F., Saunders, N.: Colouring space - a coloured framework for
spatial modelling in systems biology. In: Colom, J.-M., Desel, J. (Eds.) PETRI NETS 2013,
LNCS 7927, pp. 230–249. Springer, Heidelberg (2013)

3. Liu, F., Blätke, M., Heiner, M., Yang, M.: Modelling and simulating reaction-diffusion
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Computing Without Random Access Memory:
Cyclic Tag Systems for Proofs

and Interpretation

Matthew Cook1,2

1Institute of Neuroinformatics, University of Zürich, Zürich, Switzerland
2Institute of Neuroinformatics, ETH Zürich, Zürich, Switzerland

Most simple models of computation that operate on one-dimensional information
require some kind of lookup table to be used at each step of their operation. For
example, Turing machines look up the next transition according to their state and the
symbol they see on the tape. But in some settings, it is not clear how to achieve this
random-access capability. Cyclic tag systems are suited to such settings, stepping
steadily through a cyclic list rather than requiring random access. Since cyclic tag
systems are universal (i.e. capable of simulating a Turing machine), their simplicity
makes them an attractive route for proving that other systems are universal as well, and
they have been used to prove universality of systems ranging from cellular automata to
RNA oritatami. Their extreme simplicity even makes it possible for them to arise
naturally in other systems; they have recently been discovered in a cellular automaton’s
naturally occurring behavior. This talk will give a brief survey of these results.



DNA Nanotechnology: From Structural Design
to Functionality

Yan Liu

School of Molecular Sciences and Biodesign Institute, MDB Arizona State
University, Tempe, AZ 85287, USA

Yan_liu@asu.edu
https://biodesign.asu.edu/yan-liu

I will present the most recent work from our research group, which may include
thermodynamics and kinetics of DNA tile based self-assembly processes, new designs
of wireframe 2D and 3D DNA origami nanostructures, single stranded DNA and RNA
origami based on paranemic crossovers and their applications in directed evolution of
bivalent aptamers.



Algorithms, Designs and Tools for 3D
Wireframe DNA Origami

Pekka Orponen

Department of Computer Science, Aalto University, 00076, Aalto, Finland

Three-dimensional DNA origami designs based on wireframe structures have recently
evolved into an interesting alternative to the more established helix-packing designs:
several alternative approaches exist [1–4], and functionalizations are beginning to
emerge [5]. Wireframe designs are appealing both because they make more efficient
use of DNA scaffold than helix-packing approaches, and because they seem to fold
with higher yield and remain more stable in low-salt, physiological buffers conditions
[2, 4].

Because of the inherent combinatorial complexity of wireframe designs, automa-
tion of the design process is a central task already for exploratory reserch, and even
more so when aiming to make the methodology robust and generally available. Thus,
computerised tools for aiding the process have been developed [2, 4], and lately also
numerical modelling and simulation packages such as CanDo and oxDNA have
introduced support for them.1

The theory underlying wireframe DNA origami design involves quite a number of
interesting algorithmic and graph-theoretic ideas and challenges, including several
open problems. In this talk, we discuss these underpinnings from the computer science
direction, and also survey the current status of the design and modelling tools.

References
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Tutorial Abstract: Controlling Structure
and Motion in Multiple Dimensions

with DNA Information

Nadrian C. Seeman

Department of Chemistry, New York University, New York, NY 10003, USA
ned.seeman@nyu.edu

The essence of Structural DNA Nanotechnology is the combination of branched DNA
molecules combined with interactions that can be prescribed by Watson-Crick base
pairing. The key goals of the area include the production of objects, lattices and
nanomechanical devices made from DNA, as well as controlling the positions of other
materials. This approach began by producing structures needing only toplogical con-
trol, to generate knots, polyhedral catenanes, Borromean rings and, using L-nucleo-
tides, a Solomon’s knot. By the middle 1990s, geometrical control was achieved,
leading well-defined objects, often objects acting as tiles for 2D lattices. In the first
decade of this century, the development of DNA origami by Paul Rothemund attracted
many investigators to DNA nanotechnology, because of the ease of construction and
the reliability of obtaining the product from an M13 single-stranded genome and 200–
250 ‘staple strands’. Somewhat later, Peng Yin’s use of ‘DNA bricks’ led to 2D and 3D
objects through a completely automated methodology.

Nanorobotics is a key area of application. We have made robust 2-state and 3-state
sequence-dependent devices and bipedal walkers. We have constructed a molecular
assembly line using a DNA origami layer and three 2-state devices, so that there are
eight different states represented by their arrangements. All eight products can be built
from this system.

One of the major aims of DNA-based materials research is to construct complex
material patterns that can be reproduced. We have built such a system from DNA
origami; it has reached 9 generations of exponential growth directly and 24 generations
(with no apparent limit) in punctuated steps.

Wenyan Liu’s empirical rule states that the best arrays in multidimensional DNA
systems result when helix axes span each dimension. We have self-assembled a 2D
crystalline origami array by applying this rule. We used the same rule to self-assemble
a 3D crystalline array. We initially reported its crystal structure to 4 Å resolution, but
rational design of intermolecular contacts has enabled us to improve the crystal reso-
lution to better than 3 Å. We can use crystals with two molecules in the crystallo-
graphic repeat to control the color of the crystals. We can change the color of crystals
by doing strand displacement of duplex DNA; we can also color the crystals using
triplex formation. When tailed in DNA, we can add semiconductors to the crystals, and
follow their transitions by crystal color. The use of the crystals to host guests promises
an approach to the organization of macromolecules in 3D. Diffraction of the crystals



offers a means to ascertain the successful construction of their targets and the char-
acterization of their guests.

This Research was supported by grants EFRI-1332411 and CCF-1526650 from the
NSF, MURI W911NF-11-1-0024 from ARO, N000141110729 from ONR, DE-
SC0007991 from DOE for DNA synthesis and partial salary support, and grant
GBMF3849 from the Gordon and Betty Moore Foundation.

XXII N.C. Seeman



On the Use of DNA Origami to Align
Molecular Devices

Ashwin Gopinath1, Chris Thachuk1, David Kirkpatrick2

and Paul W.K. Rothemund1

1California Institute of Technology, Pasadena CA 91125, USA
2University of British Columbia, Vancouver BC V6T 1Z4, Canada

ashwing@caltech.edu,thachuk@caltech.edu,

kirk@cs.ubc.ca,pwkr@dna.caltech.edu

Over the last decade DNA origami has matured as a modular technique for self-
assembling diverse components, from organic molecules to colloidal nanoparticles,
into complex nanodevices. A second technique, “DNA origami placement”, allows
such origami-templated devices to be precisely positioned within microfabricated
structures at a resolution of*10 nm in x and y. This allows the integration of point-like
or high-symmetry devices with on-chip electronics or optics to create hybrid structures
which use self-assembled devices for their novel functional properties, and use
microfabricated structures to interrogate the devices or wire them up into larger
architectures. However, many devices of interest are highly asymmetric, and both their
up-down orientation as well as their in-plane rotational orientation h must be con-
trolled. Alignment techniques based on mechanical flows, electric fields, and magnetic
fields exist, but they typically align all devices in a single coherent orientation and
cannot uniquely orient asymmetric devices such as diodes. Here we report extensions
of DNA origami placement which allow high fidelity control over both up-down and
rotational orientations: 98 % of appropriately-functionalized DNA origami bind to a
semiconductor substrate face-up, and over 98 % of appropriately-shaped origami bind
within ±7 degrees of a unique target orientation. To demonstrate orientation-dependent
devices, we show that we can control the polarized emission of fluorescent dyes
intercalated into DNA origami. Using the same system we show that we can maximize
the coupling of fluorophores to a polarized mode of a photonic crystal cavity, and we
construct an ultracompact polarimeter which incorporates over 3000 DNA origami
devices having both unique and arbitrary orientations.



The Importance of Thermodynamics
for Molecular Systems, and the Importance
of Molecular Systems for Thermodynamics

Thomas E. Ouldridge

Department of Mathematics, Imperial College London,
180 Queens Gate, London, SW7 2AZ,
t.ouldridge@imperial.ac.uk

http://www.imperial.ac.uk/people/t.ouldridge

Abstract. Improved understanding of molecular systems has only emphasised
the sophistication of networks within the cell. Simultaneously, the advance of
DNA nanotechnology, a platform within which reactions can be exquisitely
controlled, has made the development of artificial architectures a real possibility.
Vital to this progress has been a solid foundation in the thermodynamics of
molecular systems. In this tutorial, I will set out the fundamental ways in which
thermodynamic principles determine what can be achieved with molecular
networks, and at what cost. I will then discuss how, in turn, the need to
understand molecular systems is driving the development of a new theory
of thermodynamics at the microscopic scale.

Keywords: Thermodynamics � Molecular networks � Stochastic
thermodynamics



Contents

Full Papers

A Scheme for Molecular Computation of Maximum Likelihood Estimators
for Log-Linear Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Manoj Gopalkrishnan

Nondeterministic Seedless Oritatami Systems and Hardness of Testing
Their Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Yo-Sub Han, Hwee Kim, Makoto Ota, and Shinnosuke Seki

Programming Discrete Distributions with Chemical Reaction Networks . . . . . 35
Luca Cardelli, Marta Kwiatkowska, and Luca Laurenti

Robustness of Expressivity in Chemical Reaction Networks . . . . . . . . . . . . . 52
Robert Brijder, David Doty, and David Soloveichik

Chemical Reaction Network Designs for Asynchronous Logic Circuits . . . . . 67
Luca Cardelli, Marta Kwiatkowska, and Max Whitby

Hierarchical Self-Assembly of Fractals with Signal-Passing Tiles
(Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Jacob Hendricks, Meagan Olsen, Matthew J. Patitz, Trent A. Rogers,
and Hadley Thomas

Resiliency to Multiple Nucleation in Temperature-1 Self-Assembly . . . . . . . . 98
Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller,
Scott M. Summers, and Andrew Winslow

Verifying Chemical Reaction Network Implementations:
A Bisimulation Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Robert F. Johnson, Qing Dong, and Erik Winfree

A Coarse-Grained Model of DNA Nanotube Population Growth . . . . . . . . . . 135
Vahid Mardanlou, Leopold N. Green, Hari K.K. Subramanian,
Rizal F. Hariadi, Jongmin Kim, and Elisa Franco

On the Runtime of Universal Coating for Programmable Matter . . . . . . . . . . 148
Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter,
Andréa W. Richa, Christian Scheideler, and Thim Strothmann

Time Complexity of Computation and Construction in the Chemical
Reaction Network-Controlled Tile Assembly Model . . . . . . . . . . . . . . . . . . 165

Nicholas Schiefer and Erik Winfree

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

http://dx.doi.org/10.1007/978-3-319-43994-5_1
http://dx.doi.org/10.1007/978-3-319-43994-5_1
http://dx.doi.org/10.1007/978-3-319-43994-5_2
http://dx.doi.org/10.1007/978-3-319-43994-5_2
http://dx.doi.org/10.1007/978-3-319-43994-5_3
http://dx.doi.org/10.1007/978-3-319-43994-5_4
http://dx.doi.org/10.1007/978-3-319-43994-5_5
http://dx.doi.org/10.1007/978-3-319-43994-5_6
http://dx.doi.org/10.1007/978-3-319-43994-5_6
http://dx.doi.org/10.1007/978-3-319-43994-5_7
http://dx.doi.org/10.1007/978-3-319-43994-5_8
http://dx.doi.org/10.1007/978-3-319-43994-5_8
http://dx.doi.org/10.1007/978-3-319-43994-5_9
http://dx.doi.org/10.1007/978-3-319-43994-5_10
http://dx.doi.org/10.1007/978-3-319-43994-5_11
http://dx.doi.org/10.1007/978-3-319-43994-5_11


Full Papers



A Scheme for Molecular Computation
of Maximum Likelihood Estimators

for Log-Linear Models

Manoj Gopalkrishnan(B)

Tata Institute of Fundamental Research, Mumbai 400 005, India
manoj.gopalkrishnan@gmail.com

http://www.tcs.tifr.res.in/∼manoj

Abstract. We propose a novel molecular computing scheme for statisti-
cal inference. We focus on the much-studied statistical inference problem
of computing maximum likelihood estimators for log-linear models. Our
scheme takes log-linear models to reaction systems, and the observed
data to initial conditions, so that the corresponding equilibrium of each
reaction system encodes the corresponding maximum likelihood estima-
tor. The main idea is to exploit the coincidence between thermodynamic
entropy and statistical entropy. We map a Maximum Entropy character-
ization of the maximum likelihood estimator onto a Maximum Entropy
characterization of the equilibrium concentrations for the reaction sys-
tem. This allows for an efficient encoding of the problem, and reveals that
reaction networks are superbly suited to statistical inference tasks. Such
a scheme may also provide a template to understanding how in vivo bio-
chemical signaling pathways integrate extensive information about their
environment and history.

1 Introduction

The sophisticated behavior of cells emerges from the computations that are
being performed by the underlying biochemical reaction networks. These bio-
chemical pathways have been studied in a “top-down” manner, by looking for
recurring motifs, and signs of modularity [18]. There is also an opportunity to
study these pathways in a “bottom-up” manner by proposing primitive building
blocks which can be composed to create interesting and technologically valu-
able behavior. This “bottom-up” approach connects with work in the Molecular
Computation community whose goal is to generate sophisticated behavior using
DNA hybridization reactions [3,6,7,19,22–25,27,31] and other Artificial Chem-
istry approaches [5,10].

We propose a new building block for molecular computation. We show that
the mathematical structure of reaction networks is particularly well adapted to
compute Maximum Likelihood Estimators for log-linear models, allowing a pithy
encoding of such computations by reactions. According to [12]:

c© Springer International Publishing Switzerland 2016
Y. Rondelez and D. Woods (Eds.): DNA 2016, LNCS 9818, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-43994-5 1
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Log-linear models are arguably the most popular and important statis-
tical models for the analysis of categorical data; see, for example, Bishop,
Fienberg and Holland (1975) [4], Christensen (1997) [8]. These powerful
models, which include as special cases graphical models [see, e.g., Lau-
ritzen (1996) [16]] as well as many logit models [see, e.g., Agresti (2002) [1],
Bishop, Fienberg and Holland (1975) [4]], have applications in many sci-
entific areas, ranging from social and biological sciences, to privacy and
disclosure limitation problems, medicine, data mining, language processing
and genetics. Their popularity has greatly increased in the last decades...

In order to respond in a manner that maximizes fitness, a cell has to correctly
estimate the overall state of its environment. Receptors that sit on cell walls col-
lect a large amount of information about the cellular environment. Processing
and integration of this spatially and temporally extensive and diverse infor-
mation is carried out in the biochemical reaction pathways. We propose that
this processing and integration may be advantageously viewed from the lens of
machine learning.

Our proposal entails that schemes for statistical inference by reaction net-
works are of biological significance, and are deserving of as thorough and exten-
sive a study as schemes for statistical inference by neural networks. In particular,
machine learning is not just a tool for the analysis of biochemical data, but the-
oretical and technological insights from machine learning could provide a deep
and fundamental way, and perhaps “the” correct way, to think about biochem-
ical networks. We view the scheme we present here as a promising first step in
this program of applying machine learning insights to biochemical networks.

The problem: We illustrate the main ideas of our scheme with an example.
Following [21], consider the log-linear model (also known as toric model)
described by the design matrix A =

(
2 1 0
0 1 2

)
. This means that we are observ-

ing an event with three possible mutually exclusive outcomes, call them X1,X2,
and X3, which represent respectively the columns of A. The rows of A represent
“hidden variables” θ1 and θ2 respectively which parametrize the statistics of the
outcomes in the following way specified by the columns of A:

P [X1 | θ1, θ2] ∝ θ21

P [X2 | θ1, θ2] ∝ θ1θ2

P [X3 | θ1, θ2] ∝ θ22

where the constant of proportionality normalizes the probabilities so they
sum to 1.1

Suppose several independent trials are carried out, and the outcome X1 is
observed x1 ∈ (0, 1) fraction of the time, the outcome X2 is observed x2 ∈ (0, 1−
x1) fraction of the time, and the outcome X3 is observed x3 = 1−x1−x2 fraction

1 It is more common in statistics and statistical mechanics literature to write θ1 = e−E1

and θ2 = e−E2 in terms of “energies” E1, E2 so that P [X2 | E1, E2] ∝ e−E1−E2 for
example.



A Scheme for Molecular Computation of Maximum Likelihood Estimators 5

of the time. We wish to find the maximum likelihood estimator (θ̂1, θ̂2) ∈ R
2
>0

of the parameter (θ1, θ2), i.e., that value of θ which maximizes the likelihood of
the observed data.

Our contribution: We describe a scheme that takes the design matrix A to
a reaction network that solves the maximum likelihood estimation problem. In
Definition 8, we describe our scheme for every matrix A over the integers with
all column sums equal. All our results hold in this generality.

– In Definition 8. Theorem 5, we show how to obtain from the matrix A, a reac-
tion network that computes the maximum likelihood distribution. Specialized
to our example, note that the kernel of the matrix A is spanned by the vector
(1,−2, 1)T . We encode this by the reversible reaction

X1 + X3
1−⇀↽−
1

2X2

– In Theorem 5, we show that if this reversible reaction is started at initial con-
centrations X1(0) = x1,X2(0) = x2,X3(0) = x3, and the dynamics proceeds
according to the law of mass action with all specific rates set to 1:

Ẋ1(t) = Ẋ3(t) = −X1(t)X3(t) + X2
2 (t), Ẋ2(t) = −2X2

2 (t) + 2X1(t)X3(t)

then the reaction reaches equilibrium (x̂1, x̂2, x̂3) where x̂1 + x̂2 + x̂3 = 1 and
x̂1 ∝ θ̂21, x̂2 ∝ θ̂1θ̂2, and x̂3 ∝ θ̂22, so that (x̂1, x̂2, x̂3) represents the probability
distribution over the outcomes X1,X2,X3 at the maximum likelihood θ̂1, θ̂2.

– This part of our scheme involves only reversible reactions, and requires no
catalysis (see [13, Theorem 5.2] and Lemma 2). One difficulty with implement-
ing such schemes has been that empirical control over kinetics is rather poor.
Exquisitely setting the specific rates of individual reactions to desired values
is very tricky, and requires a detailed understanding of molecular dynamics.
Our scheme avoids this problem since any choice of specific rates that leads to
the same equilibrium will do. Hence we can freely set the specific rates so long
as the equilibrium constants (ratio of forward and backward specific rates)
have value 1. This is an equilibrium thermodynamic condition that is much
easier to ensure in vitro. This combination of reversible reactions, no cataly-
sis, and robustness to the values of the specific rates may make this scheme
particularly easy and efficient to implement.

– In Definition 8.2, we show how to obtain from the matrix A a reaction network
that computes the maximum likelihood estimator. Specialized to our example,
we obtain the reaction network with 5 species X1,X2,X3, θ1, θ2 and the 5
reactions:

X1 + X3 � 2X2, 2θ1 → 0, X1 → X1 + 2θ1,

θ1 + θ2 → 0, X2 → X2 + θ1 + θ2.

The number of species equals the number of rows plus the number of columns
of A. The reactions are not uniquely determined by the problem, but become so
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once we choose a basis for the kernel of A and a maximal linearly independent
set of columns. Here we have chosen columns 1 and 2. Each column of A
determines a pair of irreversible reactions.

– Theorem 6 implies that if this reaction system is launched at initial concen-
trations X1(0) = x1,X2(0) = x2,X3(0) = x3 and arbitrary concentrations
of θ1(0) and θ2(0), and the dynamics proceeds according to the law of mass
action with all specific rates set to 1:

Ẋ1(t) = Ẋ3(t) = −X1(t)X3(t) + X2
2 (t), Ẋ2(t) = −2X2

2 (t) + 2X1(t)X3(t),

θ̇1(t) = −2θ21(t) + 2X1(t) − θ1(t)θ2(t) + X2(t), θ̇2(t) = −θ1θ2(t) + X2(t),

then the reaction reaches equilibrium (x̂1, x̂2, x̂3, θ̂1, θ̂2) where (θ̂1, θ̂2) is the
maximum likelihood estimator for the data frequency vector (x1, x2, x3)
and (x̂1, x̂2, x̂3) represents the probability distribution over the outcomes
X1,X2,X3 at the maximum likelihood. We prove global convergence: our
dynamical system provably converges to the desired equilibrium. Global con-
vergence results are known to be notoriously hard to prove in reaction network
theory [14].

– A number of schemes have been proposed for translating reaction networks
into DNA strand displacement reactions [6,7,22,27]. Adapting these schemes
to our setting should allow molecular implementation of our MLE-solving
reaction networks with DNA molecules.

2 Maximum Likelihood Estimation in Toric Models

The definitions and results in this section mostly follow [21]. Because we require
a slightly stronger statement, and Theorem 1 allows a short, easy, and insightful
proof, we give the proof here for completeness.

In statistics, a parametric model consists of a family of probability distri-
butions, one for each value of the parameters. This can be described as a map
from a manifold of parameters into a manifold of probability distributions. If this
map can be described by monomials as below, then the parametric statistical
model is called a toric or log-linear model, as we now describe.

Definition 1 (Toric Model). Let m,n be positive integers. The probability
simplex and its relative interior are:

Δn := {(x1, x2, . . . , xn) ∈ R
n
≥0 | x1 + x2 + · · · + xn = 1}

ri(Δn) := {(x1, x2, . . . , xn) ∈ R
n
>0 | x1 + x2 + · · · + xn = 1}.

An m × n matrix A = (aij)m×n of integer entries is a design matrix iff all its
column sums

∑
i aij are equal. Let aj := (a1j , a2j , . . . , amj)T be the j’th column

of A. Define θaj := θ
a1j
1 θ

a2j
2 . . . θ

amj
m . Define the parameter space Θ := {θ ∈

R
m
>0 | θa1 + θa2 + · · · + θan = 1}. The toric model of A is the map

pA = (p1, p2, . . . , pn) : Θ → Δn given by pj(θ) = θaj for j = 1 to n.
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We could also have defined the parameter space Θ to be all of Rm
>0, in which

case we would need to normalize the probabilities by the partition function θa1 +
θa2 + · · · + θan to make sure they add up to 1. For our present purposes, the
current approach will prove technically more direct.

Note that here pj(θ) specifies Pr[j | θ], the conditional probability of obtain-
ing outcome j given that the true state of the world is described by θ.

A central problem of statistical inference is the problem of parameter esti-
mation. After performing several independent identical trials, suppose the data
vector u ∈ Z

n
≥0 is obtained as a record of how many times each outcome

occurred. Let the norm |u|1 := u1 + u2 + · · · + un denote the total number
of trials performed. The Maximum Likelihood solution to the problem of
parameter estimation finds that value of the parameter θ which maximizes the
likelihood function fu(θ) := Pr[u | θ], i.e.:

θ̂(u) := arg sup
θ∈Θ

fu(θ) (1)

is a maximum likelihood estimator or MLE for the data vector u. We will
call the point p̂(u) := pA(θ̂(u)) a maximum likelihood distribution.

Definition 2. Let A be an m × n design matrix, and u a data vector. Then the
sufficient polytope is PA(u) := {p ∈ ri(Δn) | Ap = A u

|u|1 }.

The following theorem is a version of Birch’s theorem from Algebraic Statis-
tics. It provides a variational characterization of the maximum likelihood distri-
bution as the unique maximum entropy distribution in the sufficient polytope. In
particular the maximum likelihood distribution always belongs to the sufficient
polytope, which justifies the name.

Theorem 1. Fix a design matrix A of size m × n.

1. If u, v ∈ Z
n
≥0 are nonzero data vectors such that Au/|u|1 = Av/|v|1 then they

have the same maximum likelihood estimator: θ̂(u) = θ̂(v).
2. Further if PA(u) is nonempty then

(a) There is a unique distribution p̃ ∈ PA(u) which maximizes Shannon
entropy H(p) = −∑n

i=1 pi log pi viewed as a real-valued function from
the closure PA(u) of PA(u) with 0 log 0 defined as 0.

(b) {p̃} = PA(u) ∩ pA(Θ).
(c) p̃ = p̂(u), the Maximum Likelihood Distribution for the data vector u.

Proof. 1. Fix a data vector u. Note that

fu(θ) =
|u|1!

u1!u2! . . . un!
p1(θ)u1p2(θ)u2 . . . pn(θ)un =

|u|1!
u1!u2! . . . un!

θAu.

Therefore the maximum likelihood estimator

θ̂(u) = arg sup
θ∈Θ

θAu = arg sup
θ∈Θ

(θAu)1/|u|1 = arg sup
θ∈Θ

θAu/|u|1
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where the second equality is true because the function x �→ xc is monotonically
increasing whenever c > 0. It follows that if v ∈ Z

n
≥0 is a data vector such that

Au/|u|1 = Av/|v|1 then θ̂(u) = θ̂(v).
2. (a) Suppose PA(u) is nonempty. A local maximum of the restriction

H|
PA(u)

of H to the polytope PA(u) can not be on the boundary ∂PA(u) because

for p ∈ ∂PA(u), moving in the direction of arbitrary q ∈ PA(u) increases H, as
can be shown by a simple calculation:

lim
λ→0

d

dλ
H((1 − λ)p + λq) → +∞.

Since H is a continuous function and the closure PA(u) is a compact set, H must
attain its maximum value in PA(u). Further H is a strictly concave function
since its Hessian is diagonal with entries −1/pi and hence negative definite. It
follows that H

∣
∣
PA(u)

is also strictly concave, and has a unique local maximum
at p̃ ∈ PA(u), which is also the global maximum.

(b) By concavity of H, the maximum p̃ is the unique point in PA(u) such
that ∇H(p̃) is perpendicular to PA(u). We claim that q ∈ PA(u) ∩ pA(Θ) iff
∇H(q) = (−1 − log q1,−1 − log q2, . . . ,−1 − log qn) is perpendicular to PA(u).
Since all column sums are equal, this is equivalent to requiring that log q be in the
span of the rows of A, which is true iff q ∈ pA(Θ). Hence PA(u) ∩ pA(Θ) = {p̃}.

(c) To compute the Maximum Likelihood Distribution p̂(u), we proceed as
follows:

p̂(u) = pA(θ̂(u)) = pA(arg sup
θ∈Θ

θAu) = pA(arg sup
θ∈Θ

θAu/|u|1)

= pA(arg sup
θ∈Θ

θAp̃) = arg sup
p∈pA(Θ)

pp̃ = arg sup
p∈pA(Θ)

n∑

i=1

p̃i log pi = p̃

where the fourth equality uses Ap̃ = Au/|u|1 and the last equality follows because∑n
i=1 p̃i log pi viewed as a function of p attains its maximum in all of Δn, and

hence in pA(Θ), at p = p̃.

This theorem already exposes the core of our idea. We will design reaction
systems that maximize entropy subject to the “correct” constraints capturing the
polytope PA(u). Then because the reactions also proceed to maximize entropy,
the equilibrium point of our dynamics will correspond to the maximum likeli-
hood distribution. Most of the technical work will go in proving convergence of
trajectories to these equilibrium points.

3 Reaction Networks

According to [20], “In building a design theory for chemistry, chemical reaction
networks are usually the most natural intermediate representation - the middle
of the hourglass [11]. Many different high level languages and formalisms have
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been and can likely be compiled to chemical reactions, and chemical reactions
themselves (as an abstract specification) can be implemented with a variety of
low level molecular mechanisms.”

In Subsect. 3.1, we recall the definitions and results for reaction networks
which we will need for our main results. For a comprehensive presentation of
these ideas, see [13]. In Subsect. 3.2, we prove a new result in reaction network
theory. We extend a previously known global convergence result to the case of
perturbations.

3.1 Brief Review of Reaction Network Theory

For vectors a = (ai)i∈S and b = (bi)i∈S , the notation ab will be shorthand for
the formal monomial

∏
i∈S abi

i . We introduce some standard definitions.

Definition 3 (Reaction Network). Fix a finite set S of species.

1. A reaction over S is a pair (y, y′) such that y, y′ ∈ Z
S
≥0. It is usually written

y → y′, with reactant y and product y′.
2. A reaction network consists of a finite set S of species, and a finite set R

of reactions.
3. A reaction network is reversible iff for every reaction y → y′ ∈ R, the

reaction y′ → y ∈ R.
4. A reaction network is weakly reversible iff for every reaction y → y′ ∈

R there exists a positive integer n ∈ Z>0 and n reactions y1 → y2, y2 →
y3, . . . , yn−1 → yn ∈ R with y1 = y′ and yn = y.

5. The stoichiometric subspace H ⊆ R
S is the subspace spanned by {y′ − y |

y → y′ ∈ R}, and H⊥ is the orthogonal complement of H.
6. A siphon is a set T ⊆ S of species such that for all y → y′ ∈ R, if there

exists i ∈ T such that y′
i > 0 then there exists j ∈ T such that yj > 0.

7. A siphon T ⊆ S is critical iff v ∈ H⊥ ∩R
S
≥0 with vi = 0 for all i /∈ T implies

v = 0.

Definition 4. Fix a weakly reversible reaction network (S,R). The associated
ideal I(S,R) ⊆ C[x] where x = (xi)i∈S is the ideal generated by the binomials
{xy − xy′ | y → y′ ∈ R}. A reaction network is prime iff its associated ideal is
a prime ideal.

The following theorem follows from [13, Theorems 4.1 and 5.2].

Theorem 2. A weakly reversible prime reaction network (S,R) has no critical
siphons.

We now recall the mass-action equations which are widely employed for modeling
cellular processes [26,28–30] in Biology.

Definition 5 (Mass Action System). A reaction system consists of a reac-
tion network (S,R) and a rate function k : R → R>0. The mass-action
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equations for a reaction system are the system of ordinary differential equa-
tions in concentration variables {xi(t) | i ∈ S}:

ẋ(t) =
∑

y→y′∈R

ky→y′ x(t)y (y′ − y) (2)

where x(t) represents the vector (xi(t))i∈S of concentrations at time t.

Note that ẋ(t) ∈ H, so affine translations of H are invariant under the
dynamics of Eq. 2.

We recall the well known notions of detailed balanced and complex balanced
reaction system.

Definition 6. A reaction system (S,R, k) is

1. Detailed balanced iff it is reversible and there exists a point α ∈ R
S
>0 such

that for every y → y′ ∈ R:

ky→y′ αy (y′ − y) = ky′→y αy′
(y − y′)

A point α ∈ R
S
>0 that satisfies the above condition is called a point of

detailed balance.
2. Complex balanced iff there exists a point α ∈ R

S
>0 such that for every

y ∈ Z
S
≥0:

∑

y→y′∈R
ky→y′ αy (y′ − y) =

∑

y′′→y∈R
ky′′→y αy′′

(y − y′′)

A point α ∈ R
S
>0 that satisfies the above condition is called a point of com-

plex balance.

The following observations are well known and easy to verify.

– A complex balanced reaction system is always weakly reversible.
– If all rates ky→y′ = 1 and the network is weakly reversible then the reaction

system is complex balanced with point of complex balance (1, 1, . . . , 1) ∈ R
S ;

if the network is reversible then the reaction system is also detailed balanced
with point of detailed balance (1, 1, . . . , 1) ∈ R

S .
– Every detailed balance point is also a complex balance point, but there are

complex balanced reversible networks that are not detailed balanced.

It is straightforward to check that every point of complex balance (respec-
tively, detailed balance) is a fixed point for Eq. 2. The next theorem, which fol-
lows from [2, Theorem 2] and [15], states that a converse also exists: if a reaction
system is complex balanced (respectively, detailed balanced) then every fixed
point is a point of complex balance (detailed balance). Further there is a unique
fixed point in each affine translation of H, and if there are no critical siphons
then the basin of attraction for this fixed point is as large as possible, namely
the intersection of the affine translation of H with the nonnegative orthant.
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Theorem 3 (Global Attractor Theorem for Complex Balanced Reac-
tion Systems with no Critical Siphons). Let (S,R, k) be a weakly reversible
complex balanced reaction system with no critical siphons and point of complex
balance α. Fix a point u ∈ R

S
>0. Then there exists a point of complex balance

β in (u + H) ∩ R
S
>0 such that for every trajectory x(t) with initial conditions

x(0) ∈ (u + H) ∩ R
S
≥0, the limit limt→∞ x(t) exists and equals β. Further the

function g(x) :=
∑n

i=1 xi log xi − xi − xi log αi is strictly decreasing along non-
stationary trajectories and attains its unique minimum value in (u + H) ∩ R

S
≥0

at β.

It is not completely trivial to show, but nevertheless true, that this theorem holds
with weakly reversible replaced by “reversible” and “complex balance” replaced
by “detailed balance.” What is to be shown is that the point of complex balance
obtained in (u + H) ∩ R

S
≥0 by minimizing g(x) is actually a point of detailed

balance, and this follows from an examination of the form of the derivative
d
dtg(x(t)) along trajectories x(t) to Eq. 2.

3.2 A Perturbatively-Stable Global Attractor Theorem

Global attractor results usually assume that the reaction network is weakly
reversible. We are going to describe our scheme in the next section. Our scheme
will employ reaction networks that are not weakly reversible, yet we will prove
global attractor results for them. The key idea we use is that our reaction network
can be broke into a reversible part, and an irreversible part. The reversible part
acts on, but evolves independent of, the irreversible part. So we get to use the
global attractor results “as is” on the reversible part. Further, as the reversible
part approaches equilibrium, our irreversible part behaves as a perturbation of a
reversible detailed-balanced network. The closer the reversible part gets to equi-
librium, the smaller the perturbation of the irreversible part from the dynamics
of a certain reversible detailed-balanced network.

To make this proof idea work out, we will need a perturbative version of
Theorem 3. The next lemma shows that if the rates are perturbed slightly then,
outside a small neighborhood of the detailed balance point, the strict Lyapunov
function g(x) from Theorem 3 continues to decrease along non-stationary trajec-
tories.

Lemma 1. Let (S,R, k) be a weakly reversible complex balanced reaction system
with no critical siphons and point of complex balance α. For every sufficiently
small ε > 0 there exists δ > 0 such that for all x′ outside the ε-neighborhood of
α in (α + H) ∩ R

S
≥0, the derivative d

dtg(x(t))|t=0 < −δ, where x(t) is a solution
to the Mass-Action Equations 2 with x(0) = x′.

Proof. Let Bε be the open ε ball around α in (α + H) ∩R
S
≥0, with ε small enough

so that Bε does not meet the boundary ∂RS
≥0. Consider the closed set S := (α +

H)∩R
S
≥0\Bε. Define the orbital derivative of g at x′ as Okg(x′) := d

dtg(x(t))|t=0,
where x(t) is a solution to the mass-action equations 2 with x(0) = x′.
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Define δ := infx′∈S(−Okg(x′)). If δ ≤ 0 then since S is a closed set, and Okg
is a continuous function, there exists a point x′ such that Okg(x′) ≥ 0, which
contradicts Theorem 3.

We formalize the notion of perturbation using differential inclusions.
Recall that differential inclusions model uncertainty in dynamics in a nonde-
terministic way by generalizing the notion of vector field. A differential inclusion
maps every point to a subset of the tangent space at that point.

Definition 7. Let (S,R, k) be a reaction system and let δ > 0. Then the δ-
perturbation of (S,R, k) is the differential inclusion V : RS

≥0 → 2R
S

that at
point x ∈ R

S
≥0 takes the value V (x) :=

⎧
⎨

⎩

∑

y→y′∈R
k′

y→y′xy(y′ − y)

∣
∣
∣
∣
∣
∣
k′

y→y′ ∈ (ky→y′ − δ, ky→y′ + δ) for all y → y′ ∈ R
⎫
⎬

⎭
.

A trajectory of V is a tuple (I, x) where I ⊆ R is an interval and x : I → R
S
≥0

is a differentiable function with ẋ(t) ∈ V (x(t)).

Theorem 4 (Perturbatively-Stable Global Attractor Theorem for
Complex Balanced Reaction Systems with no Critical Siphons). Let
(S,R, k) be a weakly reversible complex balanced reaction system with no critical
siphons. Fix a point u ∈ R

S
>0. Then there exists a point of complex balance β in

(u + H) ∩ R
S
>0 such that:

1. For every sufficiently small ε > 0, there exists δ > 0 such that every trajectory
of the form (R≥0, x) to the δ-perturbation of (S,R, k) with initial conditions
x(0) ∈ (u + H) ∩ R

S
≥0 eventually enters an ε-neighborhood of β and never

leaves.
2. Consider a sequence δ1 > δ2 > · · · > 0 and a sequence 0 < t1 < t2 < . . .

such that limi→∞ δi = 0 and limi→∞ ti = +∞, and a trajectory (R≥0, x) with
x(0) ∈ (u+H)∩R

S
≥0 such that ((ti,∞), x) is a trajectory of the δi-perturbation

of (S,R, k). Then the limit lim
t→∞ x(t) = β.

Proof (Proof Sketch). 1. Fix ε > 0 such that the ε-ball Bε around β does not
meet the boundary ∂RS

≥0. By Lemma 1, outside Bε, there exists δε > 0 such that
the function Okg < −δε. Since Okg is a continuous function of the specific rates
k, a sufficiently small perturbation δ > 0 in the rates will not change the sign of
Okg. Hence, outside Bε, the function g is strictly decreasing along trajectories
x(t) to Eq. 2. It follows that eventually every trajectory must enter Bε.

2. Fix a sequence ε1 > ε2 > · · · > 0 with ε1 small enough so that the ε1-ball
around β does not meet the boundary ∂RS

≥0 and limi→∞ εi → 0. For each εi,
there exists j such that δj is small enough as per part (1) of the theorem. So
every trajectory will eventually enter the εi neighborhood of β, and never leave.
Since this is true for every i and limi→∞ εi → 0, the result follows.
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4 Main Result

The next definition makes precise our scheme, which takes a design matrix A
to a reaction system SMLE depending on A. The choice of this reaction system
is not unique, but depends on two choices of basis. We proceed in two stages.
In the first stage, we construct the reaction system SMLD which solves the
problem of finding the maximum likelihood distribution. In the second stage, we
add reactions to solve for θ from the algebraic relations between the θ and X
variables, obtaining SMLE .

Definition 8. Fix a design matrix A = (aij)m×n, a basis B for the free group
Z

n ∩ ker A, and a maximal linearly-independent subset B′ of the columns of A.

1. The reaction network RMLD(A,B) consists of n species X1,X2, . . . , Xn and
for each b ∈ B, the reversible reaction:

∑

j:bj>0

bjXj �
∑

j:bj<0

−bjXj

2. The reaction system SMLD(A,B) consists of the reaction network
RMLD(A,B) with an assignment of rate 1 to each reaction.

3. The reaction network RMLE(A,B,B′) consists of m+n species θ1, θ2, . . . , θm,
X1,X2, . . . , Xn, and in addition to the reactions in RMLD, the following reac-
tions:
– For each column j ∈ B′ of A, a reaction

∑m
i=1 aijθi → 0.

– For each column j ∈ B′ of A, a reaction Xj → Xj +
∑m

i=1 aijθi.
4. The reaction system SMLE(A,B,B′) consists of the reaction network

RMLE(A,B,B′) with an assignment of rate 1 to each reaction.

Note that by the rank-nullity theorem of linear algebra, the dimension of
the kernel plus the rank of the matrix equals the number of columns of the
matrix. Hence counting the reversible reactions as two irreversible reactions, our
scheme yields a reaction system whose number of reactions is twice the number
of columns of A.

It is clear from the definition of SMLE that the reactions that come from
RMLD are reversible and evolve without being affected by the other reactions.
Hence we first prove global convergence of the reaction system SMLD to the
maximum likelihood distribution. This part is fairly straightforward. The key
point is to verify that the reaction network RMLD has no critical siphons. In
fact, we show in the next lemma that RMLD is prime, which will imply “no
critical siphons” by Theorem 2.

Lemma 2. Fix a design matrix A = (aij)m×n and a basis B for the free group
Z

n ∩ ker A. Then the reaction network RMLD(A,B) is prime and SMLD(A,B)
is detailed balanced. Consequently, the reaction system SMLD(A,B) is globally
asymptotically stable.



14 M. Gopalkrishnan

Proof. RMLD(A,B) is prime by [17, Corollary 2.15]. The idea is to look at the
toric model pA as a ring homomorphism C[x1, x2, . . . , xn] → C[NA] with xj �→
θaj . (Here NA is the affine semigroup generated by the columns of A.) The
kernel of this ring homomorphism is the associated ideal of RMLD(A,B) by [17,
Proposition 2.14], and the codomain is an integral domain, so the kernel must
be prime.

Now SMLD(A,B) is detailed balanced because the point (1, 1, . . . , 1) ∈ R
n is

a point of detailed balance since all rates are 1. Global asymptotic stability now
follows from Theorems 2 and 3.

We can now obtain global convergence for SMLD.

Theorem 5 (The Reaction System SMLD(A,B) Computes the Maxi-
mum Likelihood Distribution). Fix a design matrix A = (aij)m×n, a basis
B for the free group Z

n ∩ ker A, and a nonzero data vector u ∈ Z
n
≥0. Let x(t) =

(x1(t), x2(t), . . . , xn(t)) be a solution to the mass-action differential equations for
the reaction system SMLD(A,B) with initial conditions x(0) = u/|u|1. Then
x(∞) := lim

t→∞ x(t) exists and equals the maximum likelihood distribution p̂(u).

Proof. For the system SMLD(A,B), note that (x(0) + H) ∩ R
n
>0 = PA(u/|u|1).

By Theorem 3, x(∞) exists, and the function
∑n

i=1 xi log xi−xi−xi log 1 attains
its unique minimum in PA(u/|u|1) at x(∞). Since the system is mass-conserving,∑n

i=1 xi is constant on PA(u/|u|1), so this is equivalent to the fact that Shannon
entropy H(x) = −∑n

i=1 xi log xi is increasing, and attains its unique maximum
value in PA(u/|u|1) at x(∞). By Theorem 1, the point x(∞) must be the maxi-
mum likelihood distribution p̂(u).

As the reversible reactions in SMLE approach closer and closer to equilib-
rium, we wish to absorb the values of the X variables into reaction rates and
pretend that the irreversible reactions are reactions only in the θ variables. This
has the advantage that we can treat this pretend reaction system in the θ vari-
ables as a perturbation of a reversible, detailed balanced system. We can then
hope to employ Theorem 4 and conclude global convergence for these irreversible
reactions, and hence for SMLE .

One small technical point deserves mention. The pretend reaction system in
the θ variables is not a reaction system since the rates are not real numbers but
functions of time. This will not trouble us. We have already provisioned for this
in Definition 7 by allowing perturbations of reaction systems to be differential
inclusions.

Theorem 6 (The Reaction System SMLE(A,B,B′) Computes the Max-
imum Likelihood Estimator). Fix a design matrix A = (aij)m×n, a basis
B for the free group Z

n ∩ ker A, and a nonzero data vector u ∈ Z
n
≥0. Let

x(t) = (x1(t), x2(t), . . . , xn(t), θ1(t), θ2(t), . . . , θm(t)) be a solution to the mass-
action differential equations for the reaction system SMLE(A,B,B′) with initial
conditions x(0) = u/|u|1 and θ(0) = 0. Then x(∞) := limt→∞ x(t) exists and
equals the maximum likelihood distribution p̂(u), and θ(∞) := limt→∞ θ(t) exists
and equals the maximum likelihood estimator θ̂(u).
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Proof (Proof Sketch). Fix u and let p̂ = p̂(u) and θ̂ = θ̂(u). Note that for the
species X1,X2, . . . , Xn, the differential equations for the systems SMLE(A,B)
and SMLD(A,B,B′) are identical, since these species appear purely catalytically
in the reactions that belong to RMLE(A,B,B′)\RMLD(A,B). Hence x(∞) =
p̂(u) follows from Theorem 5.

To see that θ(∞) = θ̂, let us first allow the X species to reach equilibrium,
then treat the θ system with replacing the X species by rate constants repre-
senting their values at equilibrium. The system ΘMLE(A,B,B′, x(∞)) obtained
in this way in only the θ species is a reaction system with the reactions

– For each column j ∈ B′ of A, a reaction
∑m

i=1 aijθi → 0 of rate 1
– For each column j ∈ B′ of A, a reaction 0 → ∑m

i=1 aijθi of rate xj(∞).

This is a reversible reaction system, and the maximum likelihood estimators θ̂
are precisely the points of detailed balance for this system, where we are using
the fact that B′ was a maximal linearly-independent set of the columns of A.
In addition, this system has no siphons since if species θi is absent, and aij > 0
then θi will immediately be produced by the reaction 0 → ∑m

i′=1 ai′jθi′ . (We are
assuming A has no 0 row. If A has a 0 row, we can ignore it anyway.) It follows
from Theorem 3 that this system is globally asymptotically stable, and every
trajectory approaches a maximum likelihood estimator θ̂.

We claim that trajectories of our actual system are also trajectories of
a perturbation of the system ΘMLE(A,B,B′, x(∞)). Consider any trajectory
(x(t), θ(t)) to SMLE(A,B,B′) starting at (u/|u|1, 0). We are going to consider
the projected trajectory (R≥, θ). We now show that it is possible to choose
appropriate ti and δi so that ((ti,∞), θ(t)) is a trajectory of a δi-perturbation
of ΘMLE(A,B,B′, x(∞)), for i = 1, 2, . . . .

Wait for a sufficiently large time t1 till x(t) is in a sufficiently small δ1 neigh-
borhood of x(∞) which it will never leave. After this time, we obtain a differential
inclusion in the θ species with the mass-action equations 2 for the reactions

– For each column j of A, a reaction
∑m

i=1 aijθi → 0 of rate 1
– For each column j of A, a reaction 0 → ∑m

i=1 aijθi with time-varying rate
lying in the interval (xj(∞) − δ1, xj(∞) + δ1).

Continuing in this way, we choose a decreasing sequence δ1 > δ2 > · · · > 0 with
limi→∞ δi → 0, and corresponding times t1 < t2 < t3 . . . with limi→∞ ti → ∞
such that after time ti, x(t) is in a δi neighborhood of x(∞) which it will never
leave. Then ((ti,∞), θ(t)) is a trajectory of the δi-perturbation of the system
ΘMLE(A,B,B′, x(∞)). Hence θ(t) satisfies the conditions of Theorem 4. Hence
limt→∞ θ(t) = θ̂.

5 Related Work and Conclusions

The mathematical similarities of both log-linear statistics and reaction networks
to toric geometry have been pointed out before [9,17]. Craciun et al. [9] refer



16 M. Gopalkrishnan

to the steady states of complex-balanced reaction networks as Birch points “to
highlight the parallels” with algebraic statistics. This paper develops on these
observations, and serves to flesh out this mathematical parallel into a scheme
for molecular computation.

Various building blocks for molecular computation that assume mass-action
kinetics have been proposed before. We briefly review some of these proposals.

In [19], Napp and Adams model molecular computation with mass-action
kinetics, as we do here. They propose a molecular scheme to implement message
passing schemes in probabilistic graphical models. The goal of their scheme is to
convert a factor graph into a reaction network that encodes the single-variable
marginals of the joint distribution as steady state concentrations. In comparison,
the goal of our scheme is to do statistical inference and compute maximum like-
lihood estimators for log-linear models. Napp and Adams focus on the “forward
model” task of how a given data-generating process (a factor graph) can lead
to observed data, whereas our focus is on the “backward model” task of infer-
ence, going from the observed data to the data-generating process. Further our
scheme couples the deep role that MaxEnt algorithms play in Machine Learning
with MaxEnt’s roots in the Second Law of Thermodynamics whereas Napp and
Adams are drawing their inspiration from variable elimination implemented via
message passing which has its roots in Boolean constraint satisfaction problems.

Qian and Winfree [23,24] have proposed a DNA gate motif that can be
composed to build large circuits, and have experimentally demonstrated molec-
ular computation of a Boolean circuit with around 30 gates. In comparison, our
scheme natively employs a continuous-time dynamical system to do the compu-
tation, without a Boolean abstraction.

Taking a control theory point of view, Oishi and Klavins [20] have proposed
a scheme for implementing linear input/output systems with reaction networks.
Note that for a given matrix A, the set of maximum likelihood distributions is
usually not linear, but log-linear.

Daniel et al. [10] have demonstrated an in vivo implementation of feedback
loops, exploiting analogies with electronic circuits. It is possible that the success
of their schemes is also related to the toric nature of mass-action kinetics.

Buisman et al. [5] have proposed a reaction network scheme for computation
of algebraic functions. The part of our scheme which reads out the maximum
likelihood estimator from the maximum likelihood distribution bears some sim-
ilarity to their work.

One limitation of our present work is that the number of columns of the
matrix A can become very large, for example 2|V | for a graphical model with V
nodes. Since the number of species and number of reactions both depend on the
number of columns of A, this can require an exponentially large reaction network
which may become impractical. One direction for future work is to extend our
scheme by specifying a reaction network that computes maximum likelihood for
graphical models.

We have some freedom in our scheme in the choice of basis sets B and B′.
In any chemical implementation of this work, there might be opportunity for
optimization in choice of basis.



A Scheme for Molecular Computation of Maximum Likelihood Estimators 17

Acknowledgements. I thank Nick S. Jones, Anne Shiu, Abhishek Behera, Ezra Miller,
Thomas Ouldridge, Gheorghe Craciun, and Bence Melykuti for useful discussions.

References

1. Agresti, A.: Categorical Data Analysis. Wiley, New York (2013)
2. Angeli, D., De Leenheer, P., Sontag, E.D.: A Petri net approach to the study of

persistence in chemical reaction networks. Math. Biosci. 210(2), 598–618 (2007)
3. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous mole-

cular computer for logical control of gene expression. Nature 429(6990), 423–429
(2004)

4. Bishop, Y.M.M., Feinberg, S., Holland, P.: Discrete Multivariant Analysis. The
MIT Press, Cambridge (1975)

5. Buisman, H.J., ten Eikelder, H.M.M., Hilbers, P.A.J., Liekens, A.M.L.: Computing
algebraic functions with biochemical reaction networks. Artif. Life 15(1), 5–19
(2009)

6. Cardelli, L.: Strand algebras for DNA computing. Nat. Comput. 10, 407–428 (2011)
7. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci.

23(02), 247–271 (2013)
8. Christensen, R.: Log-Linear Models and Logistic Regression, vol. 168. Springer,

New York (1997)
9. Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J.

Symb. Comput. 44(11), 1551–1565 (2009). In Memoriam Karin Gatermann
10. Daniel, R., Rubens, J.R., Sarpeshkar, R., Lu, T.K.: Synthetic analog computation

in living cells. Nature 497(7451), 619–623 (2013)
11. Doyle, J., Csete, M.: Rules of engagement. Nature 446(7138), 860–860 (2007)
12. Fienberg, S.E., Rinaldo, A., et al.: Maximum likelihood estimation in log-linear

models. Ann. Stat. 40(2), 996–1023 (2012)
13. Gopalkrishnan, M.: Catalysis in reaction networks. Bull. Math. Biol. 73, 2962–2982

(2011). doi:10.1007/s11538-011-9655-3
14. Gopalkrishnan, M., Miller, E., Shiu, A.: A geometric approach to the global attrac-

tor conjecture. In preparation
15. Horn, F.J.M.: The dynamics of open reaction systems. In: Mathematical Aspects

of Chemical and Biochemical Problems and Quantum Chemistry. Proceedings of
the SIAM-AMS Symposium Applied Mathematics, vol. 8, New York (1974)

16. Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)
17. Miller, E.: Theory and applications of lattice point methods for binomial ideals. In:

Fløystad, G., Johnsen, T., Knutsen, A.L. (eds.) Combinatorial Aspects of Com-
mutative Algebra and Algebraic Geometry. Abel Symposia, vol. 6, pp. 99–154.
Springer, Heidelberg (2011)

18. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298(5594), 824–827
(2002)

19. Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction net-
works. In: Advances in Neural Information Processing Systems, pp. 2247–2255
(2013)

20. Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. IET
Syst. Biol. 5(4), 252–260 (2011)

http://dx.doi.org/10.1007/s11538-011-9655-3


18 M. Gopalkrishnan

21. Pachter, L., Sturmfels, B.: Algebraic Statistics for Computational Biology. Alge-
braic Statistics for Computational Biology, vol. 13. Cambridge University Press,
New York (2005)

22. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with
DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518,
pp. 123–140. Springer, Heidelberg (2011)

23. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits.
J. R. Soc. Interface (2011)

24. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332(6034), 1196–1201 (2011)

25. Shapiro, E., Benenson, Y.: Bringing DNA computers to life. Sci. Am. 294(5), 44–51
(2006)

26. Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction
networks. Science 327(5971), 1389–1391 (2010)

27. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)

28. Sontag, E.D.: Structure and stability of certain chemical networks and applications
to the kinetic proofreading model of T-cell receptor signal transduction. IEEE
Trans. Autom. Control 46, 1028–1047 (2001)

29. Thomson, M., Gunawardena, J.: Unlimited multistability in multisite phosphory-
lation systems. Nature 460(7252), 274–277 (2009)

30. Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynam-
ics of regulatory and signaling pathways in the cell. Current Opin. Cell Biol. 15(2),
221–231 (2003)

31. Yordanov, B., Kim, J., Petersen, R.L., Shudy, A., Kulkarni, V.V., Phillips, A.:
Computational design of nucleic acid feedback control circuits. ACS Synth. Biol.
3(8), 600–616 (2014)



Nondeterministic Seedless Oritatami Systems
and Hardness of Testing Their Equivalence

Yo-Sub Han1, Hwee Kim1(B), Makoto Ota2, and Shinnosuke Seki2

1 Department of Computer Science, Yonsei University, 50 Yonsei-Ro,
Seodaemum-Gu, Seoul 120-749, Republic of Korea

{emmous,kimhwee}@yonsei.ac.kr
2 University of Electro-Communications, 1-5-1,

Chofugaoka, Chofu, Tokyo 182-8585, Japan
o1111032@edu.cc.uec.ac.jp, s.seki@uec.ac.jp

Abstract. The oritatami system (OS) is a model of computation by
cotranscriptional folding, being inspired by the recent experimental
succeess of RNA origami to self-assemble an RNA tile cotranscription-
ally. The OSs implemented so far, including binary counter and Tur-
ing machine simulator, are deterministic, that is, uniquely fold into one
conformation, while nondeterminism is intrinsic in biomolecular folding.
We introduce nondeterminism to OS (NOS) and propose an NOS that
chooses an assignment of Boolean values nondeterministically and eval-
uates a logical formula on the assignment. This NOS is seedless in the
sense that it does not require any initial conformation to begin with like
the RNA origami. The NOS allows to prove the co-NP hardness of decid-
ing, given two NOSs, if there exists no conformation that one of them
folds into but the other does not.

1 Introduction

In nature, an one-dimensional RNA sequence—a primary structure—folds itself
autonomously and forms a more complex secondary structure. It has been a con-
stant question to predict the secondary structure from a given primary struc-
ture, and based on experimental observations, researchers established various
RNA secondary structure prediction models including RNAfold [12], Pknots [9],
mFold [11] and KineFold [10]. Traditional models tend to rely on the energy
optimization of the whole structure.

Recently, biochemists showed that the kinetics—the step-by-step dynamics
of the reaction—plays an essential role in the geometric shape of the RNA fold-
ings [2], since the folding caused by intermolecular reactions is faster than the
RNA transcription rate [7]. By controlling cotranscriptional foldings, researchers
succeeded in cotranscriptionally assembling a rectangular tile out of RNA, which
is called RNA Origami [5] as depicted in Fig. 1. From this kinetic point of view,
Geary et al. [4] proposed a new folding model called the oritatami system (OS).
In general, OS defines a sequence of beads (which is the primary structure) and
a set of rules for possible intermolecular reactions between beads. For each bead
c© Springer International Publishing Switzerland 2016
Y. Rondelez and D. Woods (Eds.): DNA 2016, LNCS 9818, pp. 19–34, 2016.
DOI: 10.1007/978-3-319-43994-5 2
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Fig. 1. RNA Origami [5]. The artwork is by Cody Geary.

in the sequence, the system takes a lookahead of a few upcoming beads and
determines the best location of the bead that maximizes the number of possible
interactions from the lookahead. Note that the lookahead represents the reaction
rate of the cotranscriptional folding and the number of interactions represents
the energy level. In OS, we call the secondary structure the conformation, and
the resulting secondary structure the terminal conformation.

Geary et al. implemented an OS to count in binary [3] and an OS to simulate
a cyclic tag system [4]. These OSs uniquely folds into one conformation, and
in this sense, they are deterministic. In contrast, nondeterminism is intrinsic in
biomolecular folding. Therefore, we define the nondeterministic OS (NOS) in
this paper, and examine its power. It turns out that nondeterminism can be
made use of for OSs to execute randomized algorithms. We propose an NOS
that evaluates a Boolean formula in disjunctive normal form (DNF formula) on
a random assignment. This NOS is in fact seedless like the RNA origami. More
importantly, the NOS proves the co-NP hardness of the OSEQ problem, which
asks, given two NOSs, if there exists no conformation that one folds into but
the other does not (Theorem 2). The equivalence test is indispensable in the
optimization of the design of a given OS. As we will see, the equivalence of two
deterministic OSs is testable in linear time (Theorem 1).

2 Preliminaries

Let Σ be a set of bead types, and Σ∗ be the set of finite strings of beads, i.e.,
strings over Σ, including the empty string λ. Let w = a1a2 · · · an be a string of
length n for some integer n and bead types a1, . . . , an ∈ Σ. The length of w is
denoted by |w|. For two indices i, j with 1 ≤ i ≤ j ≤ n, we let w[i, j] refer to the
substring aiai+1 · · · aj−1aj ; if i = j, then we denote it by w[i] instead. We use
wn to denote the string ww · · · w︸ ︷︷ ︸

n

.

Oritatami systems operate on the hexagonal lattice. The grid graph of the
lattice is the graph whose vertices correspond to the lattice points and connected
if the corresponding lattice points are at unit distance hexagonally. For a point p
and a bead type a ∈ Σ, we call the pair (p, a) an annotated point, or simply a
point if being annotated is clear from context. Two annotated points (p, a), (q, b)
are adjacent if pq is an edge of the grid graph.

A path is a sequence P = p1p2 · · · pn of pairwise-distinct points p1, p2, . . . , pn

such that pipi+1 is at unit distance for all 1 ≤ i < n. Given a string w ∈ Σ∗ of
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bead types of length n, a path annotated by w, or simply w-path, is a sequence Pw

of annotated points (p1, w[1]), . . . , (pn, w[n]), where p1 · · · pn is a path. Annotated
points of the w-path are regarded as a bead, and hence, we call them beads and,
in particular, we call the i-th point (pi, w[i]) the i-th bead of the w-path.

Let H ⊆ Σ × Σ be a symmetric relation, specifying between which types
of beads can form a hydrogen-bond-based interaction (h-interaction for short).
This relation H is called the ruleset. It is convenient to assume a special inert
bead type • ∈ Σ that never forms any h-interaction according to H.

Fig. 2. (Left) An example of an RNA tile generated by RNA Origami. (Right) A
conformation representing the RNA tile in OS. The directed solid line represents a
path, dots represent beads, and dotted lines represent h-interactions. The idea and
artwork were provided by Cody Geary.

A conformation C is a pair of a w-path Pw = (p1, w[1])(p2, w[2]) · · · and a
set H of h-interactions, where H ⊆ {{i, j} | 1 ≤ i, i + 2 ≤ j} and {i, j} ∈ H
implies that the i-th and j-th beads of the w-path form an h-interaction between
them. An example conformation is found in Fig. 2 (Right). The condition i+2 ≤ j
represents the topological restriction that two beads (pi, w[i]), (pi+1, w[i+1]),
adjacent to each other on the w-path, cannot form an h-interaction between
them. We say C is finite if its path is finite. From now on, when a conformation
is illustrated, any unlabeled bead is assumed to be labeled with •, that is, be
inert. For an integer α ≥ 1, C is of arity α if none of its beads interact with
more than α beads. On the hexagonal lattice where every point is adjacent to
six points, α > 6 is merely meaningless, but on another lattice larger α’s may.
Let Cα be the set of all conformations of arity-α.

A rule (a, b) in the ruleset H is used in the conformation C if there exists
{i, j} ∈ H such that w[i] = a and w[j] = b or w[i] = b and w[j] = a. A
conformation C is valid (with respect to H) if for all {i, j} ∈ H, (w[i], w[j]) ∈ H.
In a context with one fixed ruleset, only valid conformations with respect to the
ruleset are considered, and we may not specify with respect to what ruleset they
are valid.

Given a ruleset H and a valid finite conformation C1 = (Pw,H) with respect
to H, we say that another conformation C2 is an elongation of C1 by a bead a ∈ Σ
if C2 = (Pw · (p, a),H ∪ H ′) for some lattice point p and (possibly empty) set of
h-interactions H ′ ⊆ {{i, |w|+1} | 1 ≤ i ≤ |w|, (w[i], a) ∈ H}. Note that C2 is also
valid. For a conformation C and a finite string w ∈ Σ∗, by E(C,w), we denote
the set of all elongations of C by w, that is, E(C,w) = {C ′ ∈ C | C →∗

w C ′}.
For an arity α, let Eα(C,w) = E(C,w) ∩ Cα.
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2.1 Oritatami System

An oritatami system (OS) is a 5-tuple Ξ = (H, α, d, σ, w), where H is a ruleset,
α is an arity, d ≥ 1 is a positive integer called the delay, σ is an initial valid
conformation of arity α called the seed, and w is a possibly-infinite string of
beads called a primary structure.

The delay d, arity-α oritatami system Ξ cotranscriptionally folds its primary
structure in the following way. For a string x ∈ Σ∗, a conformation C1, and an
elongation C2 of C1 by x[1], we say that Ξ (cotranscriptionally) folds x upon C1

into C2 if

C2 ∈ argmin
C∈Eα(C1,x[1])

min
{
ΔG(C ′)

∣
∣ C ′ ∈ Eα(C, x[2, k])), 2 ≤ k ≤ d

}
, (1)

where ΔG(C ′) is an energy function that assigns C ′ with the negation of
the number of h-interactions within C ′ as energy. Informally speaking, C2

is a conformation obtained by elongating C1 by the bead x[1] so as for the
beads x[1], x[2], . . . , x[d] to create as many h-interactions as possible. Then we

write C1
Ξ
↪→x C2, and the superscript Ξ is omitted whenever Ξ is clear from

context. Through the folding, the first bead of x is stabilized. In figures, we
conventionally color x—the fragment to be stabilized—in cyan.

Example 1 (Glider). Let us explain how the OS cotranscriptionally folds a motif
called the glider. Gliders offer a directional linear conformation and have been
heavily exploited in the existing studies on OS [3]. Consider a delay-3 OS whose
seed is the black conformation in Fig. 3 (a), primary structure is w = b•ac• bd•
c · · · , and the ruleset is H = {(a, a), (b, b), (c, c), (d, d)}.

By the fragment w[1, 3] = b • a, the seed can be elongated in many ways;
three of them are shown in Fig. 3 (a). The only bead on the fragment that may
form a new h-interaction is a (b is also capable according to H but no other b is
around). In order for the a to get next to the other a, on the seed, the b on the
fragment must be located to the east of the last bead of the seed; thus, the b
is stabilized there, as shown in Fig. 3 (b). The stabilization transcribes the next
bead w[4] = c. The sole other c around is on the seed but is too far for the c just
transcribed to get adjacent to. Thus, the only way for the fragment w[2, 4] = •ac
to form an h-interaction is to put the two a’s next to each other as before, and
for that, the • must be located to the southeast of the preceding b as shown
in Fig. 3 (c). The next bead to be transcribed, w[5], is inert, and hence, cannot
override the previous decision to put the two a’s next to each other. The first six
beads have been thus stabilized as shown in Fig. 3 (d), and the glider has thus
moved forward by distance 2.

It is easily induced inductively that gliders of arbitrary “flight distance” d
can be folded by a delay-3 OS; such long-distance gliders have been used in [3].
Moreover, as suggested in Fig. 3, a constant number of bead types are enough
for that (in this example, a, b, c, d, •).

Gliders also provide a medium to propagate 1-bit information at arbitrary
distance. The height (up or down) of the first bead determines whether the
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Fig. 3. A glider folded by a delay-3 OS. (a) Three ways to elongate the current confor-
mation by the fragment b • a among many. (b) Three most stable elongations by the
fragment •ac. (c) Three ways to elongate the current conformation by the fragment ac•
among many. (d) The stabilization of b • ac • b.

last bead is stabilized up or down after the glider traverses the distance d. For
instance, the glider in Fig. 3 launches up and thus its last bead (the second b)
also comes up after traveling the distance d = 2; being launched down implies
being terminated down. This capability has been exploited for an OS to simulate
a cyclic tag system for Turing universality [3] and the NOS that we shall propose
in Sect. 3 also uses it. 	


Note that cotranscriptional folding, as formulated in (1), considers not only
elongations of C by x[2, d] but also those by prefixes of x[2, d], that is, x[2], x[2, 3],
. . . , x[2, d−1]. This is necessary to fully fold the primary structure till the end
or when there is not enough space around the last bead of C to elongate C by
the whole x[2, d] (See Fig. 4.). Otherwise, under the current energy function, the
optimization just ignores those “halfway” elongations because more beads never
rise energy. Under other “more realistic” energy functions, halfway elongations
would play a more active role in the folding.

The set F(Ξ) of all conformations foldable by Ξ is now defined recursively as

follows: σ ∈ F(Ξ), and if Ci ∈ Eα(σ,w[1, i]) is in F(Ξ) and Ci
Ξ
↪→w[i+1,i+d] Ci+1,

then Ci+1 ∈ F(Ξ). A finite conformation Ci ∈ Eα(σ,w[1, i]) foldable by Ξ is
terminal if one of the following conditions holds:

1. the primary structure w is finite and i = |w|;
2. either w is infinite or i < |w|, and there exists no conformation Ci+1 such

that Ci
Ξ
↪→w[i+1,i+δ] Ci+1.

Note that not only the conformation in Fig. 4 (d) but also the conformation in
Fig. 4 (f) is terminal by the second condition of the terminal conformation. By
F�(Ξ), we denote the set of all terminal conformations foldable by Ξ.

The OS Ξ is deterministic if any foldable conformation Ci ∈ Eα(σ,w[1, i]) is

either terminal or admits a unique conformation Ci+1 such that Ci
Ξ
↪→w[i+1,i+δ]

Ci+1, that is, every bead is stabilized uniquely. For example, the system in
Fig. 4 is nondeterministic. Note that nondeterministic systems fold into multiple
terminal conformations as suggested in Fig. 4. On the other hand, deterministic
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Fig. 4. The two cases in which cotranscriptional folding considers “halfway” elonga-
tions. (b) and (e) show two most stable elongations of the current conformation (a);
the one in (e) is a halfway elongation. (b) to (d) show the case when folding is almost
over, and (e) and (f) show the case when there is not enough space. The conformations
in (d) and (f) are both terminal, though the one in (f) is “shorter.”

systems fold into exactly one terminal conformation by definition. Thus, an
oritatami system is deterministic if and only if the system folds into one terminal
conformation. The property of being deterministic is decidable in linear time.
Indeed, it suffices to run an OS and checks whether it encounters nondeterminism
or not.

Example 2 (Assignor). Let us exhibit here how nondeterminism is used in
the OS that we shall propose in Sect. 3, or more particularly, in its mod-
ule called the assignor. The OS is of delay 3, with a ruleset including
(10eb, 3a), (10eb, 9a), (12eb, 3eb), (12eb, 9a), (12eb, 4a). The OS folds the assignor
uniquely as shown in Fig. 5 (a), up to its fourth last bead. The last three beads
of the assignor are 10eb, 11eb and 12eb.

The fragment 10eb-11eb-12eb can be fold in two ways equally stably with
three h-interactions as shown in Fig. 5 (b-1) and (b-2), and no more no matter
how the fragment is folded. Hence, the bead 10eb is stabilized in two ways as
shown in Fig. 5 (c-1) and (c-2). The remaining beads 11eb and 12eb are stabilized
uniquely one after another as shown in Fig. 5 (d-1) and (d-2). The assignor
nondeterministically stabilizes the last bead 12eb up or down. In our NOS, this
random assignment of 1-bit information is propagated by gliders in the way
mentioned in Example 1. 	




Nondeterministic Seedless Oritatami Systems 25

Fig. 5. An assignor folded by a delay 3 OS. While stabilizing the bead 10eb, two elon-
gations equally give three interactions and the bead nondeterministically stabilizes at
two different points. (a) The conformation up to the fourth last bead. (b) Two ways to
elongate the current conformation by the fragment 10eb-11eb-12eb. (c) Ways to elongate
the current conformation by the fragment 11eb-12eb. (d) Two final conformations.

We say that an OS is seedless if its seed is (λ, ∅). A seedless OS can start
folding at any point of the lattice. If a conformation C is foldable, then any of
its congruence, that is, a conformation obtained by applying a combination of
translation, rotation, and reflection to C is also foldable. Therefore, fixing the
first bead to the origin of the lattice and the second bead to one specific neighbor
of the origin does not cause any loss of generality. In this sense, we can regard
an OS with a seed of at most 2 beads seedless. Furthermore, a seed of 3 beads
can make an OS seedless. Imagine an OS whose seed consists of 2 beads. if an
elongation of the seed by the first bead is foldable, then its reflection across the
seed, which is just a line segment, is also foldable. Hence, if the first bead is
stabilized uniquely, then it can be rather considered as a part of the seed. That
is the case for the OS we shall propose in Sect. 3. In this sense, the OS we propose
is seedless.

We formally define the equivalence of two oritatami systems.

Definition 1. Two oritatami systems Ξ1 and Ξ2 are equivalent if F�(Ξ1) =
F�(Ξ2), namely, if there is no terminal conformation that one folds into but the
other does not.

Then, we define oritatami system equivalence test.

Definition 2. Given two oritatami systems Ξ1 and Ξ2, oritatami system equiv-
alence test (OSEQ) is to determine whether or not they are equivalent.

Since it takes linear time to simulate a deterministic OS, we establish the
following theorem.
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Theorem 1. For two deterministic oritatami systems, the OSEQ problem can
be solved in linear time.

On the other hand, the problem for NOSs turns out to be hard, and we shall
prove the following theorem in Sect. 3.

Theorem 2. The OSEQ problem is co-NP complete, even if the two input NOSs
differ only in ruleset, and their rulesets H1,H2 satisfy H1 = H2 ∪ {(a, b)} for
some rule (a, b).

3 Seedless NOS as a DNF Verifier

We propose a seedless NOS that evaluates a given DNF formula, i.e., a Boolean
formula in the disjunctive normal form, and then make use of it to prove the
coNP-hardness of deciding if two given NOSs are equivalent even under a severe
constraint.

A DNF formula φ is written as
∨

1≤i≤n Ci for some clauses C1, . . . , Cn that
is a logical AND (∧) of some of the Boolean variables v1, . . . , vm and their
negations. The DNF tautology problem asks if a given DNF formula is evaluated
to TRUE on all possible assignments. The problem is coNP-hard, since it can be
polynomially reduced from the dual problem of the satisfiability problem, which
is NP-complete [6].

Algorithm 1. Evaluate a DNF formula with m variables and n clauses
formula on a randomly chosen assignment
1 for k = 1 to n do c[k] ← ∗;
2 for i = 1 to m do
3 Randomly assign TRUE or FALSE into vi.;
4 for k = 1 to n do
5 if The k-th clause involves vi and vi = FALSE then c[k] ← U;
6 else if The k-th clause involves ¬vi and vi = TRUE then c[k] ← U;

7 for k = 1 to n do
8 if c[k] = ∗ then return Satisfied;

9 return Unsatisfied

Algorithm 1 evaluates the DNF formula φ on a random assignment. For the
ease of explanation, we assume m is even (otherwise we just assume one more
imaginary variable that occurs nowhere). The seedless NOS Ξτ evaluates φ using
this algorithm. Both its delay and arity are set to 3 (in fact, the arity can be set
to any value larger). We conventionally use the term context to denote beads and
interactions around the current bead that we consider during the stabilization.

Its primary structure is of the form wsw1w2 · · · wmwv. We call the fac-
tors ws, w1, . . . , wm, wv modules. The NOS is to fold the primary structure in
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Fig. 6. An overview of the NOS that evaluates a given DNF formula φ = (¬v1 ∧
¬v2) ∨ (v1 ∧ ¬v2) ∨ (v2), with two variables v1, v2 and three clauses C1, C2, C3, on the
assignment (v1, v2) = (T, F) that it chooses nondeterministically. The folding starts from
the purple arrow in the starter. In the last module called the verifier, the conformation
folds to psat since the formula is satisfied. Pink dashed lines represent an alternate
conformation that stops at punsat when the formula is not satisfied. (Color figure online)

a zigzag manner as outlined in Fig. 6. The first module ws named the starter
folds into the glider as shown in Fig. 7 and offers a linear scaffold of width O(n),
which serves as a “seed” for the succeeding modules. This module admits no
other conformation, and it is almost straightforward to design a module that
folds uniquely by hardcording the target conformation into the primary struc-
ture and ruleset. In fact, all the rules used in the glider in Fig. 7 are sufficient
(and necessary) for the primary structure of ws to fold into the glider. Note that
we use superscripts to indicate sets of bead types used for different modules, i.e.,
f2 is used for formatters and s is used for starters. Being thus folded, the starter
exposes below n copies of the sequence of bead types 10f2-9f2-8f2-7f2 at a fixed
interval (every 8 points), which shall be translated by succeeding modules as the
corresponding clause being satisfiable (denoted by ∗). This corresponds to the
initialization of the array c in line 1 of Algorithm 1.

The next module w1 consists of submodules. The first submodule is the
assignor explained in Example 2. It nondeterministically stabilizes its last bead
up or down, and the OS interprets up as TRUE being assigned to v1 and down as
false being assigned to v1 (See Fig. 6, where TRUE is assigned to v1, for instance.).
The assignor is succeeded by submodules called evaluators and buffers, which
occur alternately. The buffer is just a glider. There are n evaluators in w1; one for
each of the n clauses. The k-th evaluator, for Ck, takes the value (T/F) assigned
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Fig. 7. The linear scaffold conformation into which the starter ws deterministically
folds. Three blue beads indicate the seed. (Color figure online)

Fig. 8. The possible four conformations of evaluators and formatters. We denote each
bead in the conformation by its order, from 1 to 12. In order to propagate the Boolean
value, all of the conformations start and end at the same height. Arrows at top and
bottom denote respectively the previous and updated evaluations of the corresponding
clause, though they are in different formats. The purple arrows from top indicate which
conformations the p-evaluator takes, depending on whether F or T is input from the
left; hence, the p-evaluator never takes the conformation (b).

to v1 from the left and the evaluation from the top as inputs, and outputs the
value of v1 to the right faithfully and the updated evaluation of whether the
clause Ck is still satisfiable or not according to the value of v1 to the bottom.
Therefore, four distinct conformations are sufficient for evaluators, and we chose
those in Fig. 8. There are three possible ways to update, depending on if Ck

includes v1, or its negation, or none of them. Hence, the OS employs three types
of evaluators: p, n, and e. For example, as shown in Fig. 8, the p-evaluator folds
into the conformation (a) no matter how the clause has been evaluated so far if
v1 = F, while it folds into (c) or (d) depending on the evaluation if v1 = T. Hence,
the p-evaluator never folds into (b). The clauses C1, C2 and C3 of the formula
evaluated in Fig. 6 include ¬v1, v1, and none of them, respectively, and hence the
first three evaluators are of type n, p, and e, respectively. Note that evaluators
output each evaluation in two distinct formats (U1, U2 for unsatisfied, ∗1, ∗2 for
satisfiable). They will be reformatted by a submodule called the formatter in
the succeeding zag, as 10-9-8-7 for ∗ and 10-9-4-3 for U. Analogously, for any
2 ≤ i ≤ m, the module wi first assigns T or F randomly to vi and update the
evaluation of clauses provided by the previous zag (of wi−1). As such, the folding
of wi corresponds to the i-th iteration of the for-loop at line 2–6 of Algorithm 1.
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Fig. 9. (a) The glider-like conformation that a formatter takes on the input U1/U2.
(b) The alternative conformation of a formatter on the input ∗1/∗2. Blue and red
interactions are for the corresponding colored bead only. (Color figure online)

Fig. 10. The first part of the verifier uniquely folds thus and provides a scaffold on
which the rest of the verifier serves its role to verify the clauses.

The final module wv verifies if there is a clause still evaluated to be satisfiable,
or equivalently, if the last zag (of wm) exposes below the sequence 10f2-9f2-8f2-
7f2, corresponding to the termination process at line 7–9 (Note that we use super-
scripts to denote different sets of beads for different types of submodules.). The
module is named the verifier after this role. The verifier first folds into the confor-
mation shown in Fig. 10. Like the starter, this conformation is also hardcoded; all
the rules used are sufficient for the conformation to be folded as shown in Fig. 10.
The rest of the verifier is to thread its way from right to left through the recess
between the last zag and the floor just made by the first part of the verifier, as
shown in Fig. 6. More precisely, it is stretched straight along the floor and once
it “detects” a satisfiable clause, or the encoding of ∗, i.e., 10f2-9f2-8f2-7f2, it is
pulled up and starts being stretched straight along the zag above. The detection
is done by the segment 15v-16v-17v, which we name the probe. The probe forms two
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Fig. 11. Detection of satisfiable clauses by the probe segment 15v-16v-17v. (Left) The
sequence 8f2-7f2, a part of the encoding of ∗, pulls the probe strongly by 3 h-interactions,
one more than the number of h-interactions between the probe and the floor. (Middle)
The sequence 4f2-3f2, a part of the encoding of U, cannot pull the probe as strongly
as the floor does. (Right) The rule (3f2, 16v2) added to Ξτ1 allows the probe for C1

to be pulled upward as well as leftward equally strongly when C1 is evaluated to be
unsatisfied.

h-interactions with the floor, but more h-interactions with the encoding of ∗ due
to the rules (17v, 8f2), (17v, 7f2), and (16v, 7f2) (see Fig. 11 (Left)). In contrast, the
probe can form only 1 h-interaction with the encoding of U, as shown in Fig. 11
(Middle) due to lack of rules. As a result, the last bead of the probe is stabilized
close to the zag above (at the point psat in Fig. 6) if and only if φ is satisfied by the
chosen assignment. The last probe is of distinct bead types as 15v2-16v2-17v2 for
the sake of proving hardness of OSEQ later.

It now suffices to explain the module wi for the i-th zigzag (1 ≤ i ≤ m)
into detail. Its primary structure is made up as waui,1 
 ui,2 
 · · · 
 ui,n 
 wt �
fi,n � · · · � fi,2 � fi,1, where wa is the assignor, wt is a submodule called the
turner, and ui,k and fi,k are the evaluator and formatter for the k-th clause,
respectively, and triangles (
 and �) indicate sequences of 12 beads called e-
buffers and f-buffers respectively. Buffers keep a sufficient distance between the
consecutive submodules horizontally so as for them not to interact with each
other. As shown in Fig. 6, buffers in a consecutive zig and zag may get adjacent
to each other vertically. Should they involve a common bead type, an inter-buffer
interaction could prevent them from folding into a glider. Therefore, e-buffers and
f-buffers use pairwise-distinct sets of bead types. The turner wt is a hardcoded
submodule. Its two possible conformations, shown in Fig. 12, let multiple possible
paths arisen from the nondeterministic value assignment to vi converge into one
path (at this point, the system is allowed to “forget” the value).

Evaluator and formatter. The k-th evaluator ui,k and the k-th formatter fi,k

in the i-th zig and zag cooperatively update the evaluation of whether the k-th
clause is still satisfiable or already unsatisfied. The role of formatters is auxiliary:
as we already explained, the output of evaluators (∗/U) is encoded (as a sequence
of beads exposed below) redundantly, and formatters reformat them and ensure
that evaluators in the next zig suffice to be capable of reading one sequence of
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Fig. 12. The two possible conformations of turners, which converge multiple possible
paths due to nondeterministic value assignment into one path. Purple box shows the
context for the next f-buffer. (Color figure online)

Fig. 13. The basic module is a modification of the glider and folds its primary struc-
ture 1μ2μ · · · 12μ into these two conformations deterministically depending on whether
the first bead 1μ is up or down.

beads for ∗ and one for U. The glider-based foundation, which we will explain
shortly, is modified in such a way that the evaluator and formatter inherit the
information transfer capability, which enables the n evaluators for the i-th zig,
that is, ui,1, ui,2, . . . , ui,n, to transfer the value randomly assigned to vi one after
another.

The basic module is to fold its primary structure 1μ2μ · · · 11μ12μ (we use Greek
letters to represent a set of different bead types) into one of the two gliders shown in
Fig. 13 deterministically depending on the two possible contexts (in another con-
text, it could admit another conformation, but in the proposed NOS, the such
context is never encountered). It is implemented using the following ruleset R:
R = {(2μ, 11γ), (3μ, 1α), (3μ, 3α), (3μ, 10γ), (5μ, 2μ), (6μ, 11γ), (6μ, 1μ), (6μ, 10β),
(6μ, 12β), (7μ, 10γ), (8μ, 5μ), (9μ, 2μ), (9μ, 4μ), (9μ,7β), (9μ,9β), (9μ,11β), (10μ,1μ),
(11μ, 8μ), (12μ, 4β), (12μ, 6β), (12μ, 8β), (12μ, 10β), (12μ, 3μ), (12μ, 4μ), (12μ, 7μ)}
where {(α, β, γ, μ)}={(fb,f2,eb, {p1,n1,e1}), (eb, {p1,n1,e1}, fb, f1), (fb, f1, eb,
{p2, n2, e2}), (eb, {p2, n2, e2}, fb, f2)}.
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The evaluator and formatter are derived by “equipping” the basic module
with the capability of “reading” the output of the module above; formally speak-
ing, we add some rules to the basic ruleset R that attract some factor of the
primary structure (called input reader) towards the output so that the resulting
module favors another conformation over the glider. Here, one design criterion
should be noted: we designed the NOS in such a manner that a module (eval-
uator/formatter) taking a glider represents the evaluation U. In Fig. 8, the two
non-glider conformations are illustrated. Note that these conformations properly
propagate the value (F/T) randomly assigned to vi by the assignor.

Let us focus attention to the evaluator ui,k, which evaluates the k-th
clause Ck according to the value randomly assigned to vi and the evaluation
made so far by the previous evaluators u1,k, u2,k, . . . , ui−1,k. There are three
possibilities to be taken into account depending on whether Ck contains the
positive literal vi, its negation ¬vi, or none of them. That is, three types of eval-
uators (p, n, and e) are needed. The p-type evaluator is supposed to fold into
the glider (U) no matter what the previous evaluation is if vi = F, but be capable
of taking both the glider and a non-glider conformation so as to propagate the
previous evaluation as it is when vi = T, corresponding to line 5. The n-type
evaluator is supposed to behave analogously but the roles of F and T are flipped,
corresponding to line 6. The e-type evaluator should propagate the previous
evaluation as it is no matter which value is assigned to vi.

The evaluator ui,k is sandwiched from above and below by two formatters.
Since the evaluator interacts with both of them, a bead type common in these
formatters would cause misfolding. Therefore, the NOS implements evaluators in
consecutive zigs using two pairwise-distinct sets of bead types, even if they are of
the identical type. This results in, for instance, two sets of bead types {p1, p2} for
the type-p evaluators. Similarly, the NOS uses two distinct sets of bead types for
each type of evaluators and the formatter, which we distinguish with numbers.

We propose the following two sets RT, RF of extra rules, which enable the
module to read the output when vi = T and when vi = F, respectively:
RT = {(2μ, 9β), (3μ, 8β), (4μ, 7β), (5μ, 10fb)} where {(β, μ)} = {(f2, p1), (f2, e1),
(f1, p2), (f1, e2)}, and RF = {(5μ, 8β), (6μ, 7β), (7μ, 10fb)} where {(β, μ)} =
{(f2, n1), (f2, e1), (f1, n2), (f1, e2)}.

Rules in RT convert the module with sets of bead types {p1, p2} into the
type-p evaluator, while rules in RF convert the module with {n1, n2} into the
type-n evaluator. Note that these extra rulesets do not interfere with each other,
and adding both of them converts the module with {e1, e2} into the type-e
evaluator. Figure 14 shows foldings with newly added rules.

The outputs of an evaluator are redundant: ∗ is encoded as 1μ10μ11μ12μ or
7μ8μ9μ10μ whereas U is encoded as 1μ6μ7μ12μ or 3μ4μ9μ10μ. The redundant
output is reformatted by formatters in the i-th zag so as for an input to the
evaluators in the next (i+1-th) zig to be encoded in a unique format. Unlike the
evaluator, formatters do not have to propagate 1-bit information horizontally.
The conformation of the turner fixes the first bead of the first formatter fi,n

in the i-th zag up. The following ruleset Rformat converts the module with sets
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Fig. 14. (a) Folding of n-evaluators and e-evaluators when vi = F and the input is ∗.
Newly added rules are colored in pink. (b) Folding of p-evaluators and e-evaluators
when vi = T and the input is ∗. (Color figure online)

of bead types {f1, f2} into the formatter, which takes the conformation (c) in
Fig. 8 if the output of the evaluator above is U or the conformation (d) if the
output is ∗: Rformat = {(2μ, 9β), (2μ, 11β), (3μ, 8β), (3μ, 11β), (4μ, 8β), (4μ, 1β)}
where {(β, μ)} = {(p1, f1), (n1, f1), (e1, f1), (p2, f2), (n2, f2), (e2, f2)}. Figure 9
shows foldings with newly added rules.

We establish the following theorem for Ξτ .

Theorem 3. Let Ξτ be the seedless NOS generated from a DNF formula φ.
Then, φ is tautology if and only if there is no conformation of Ξτ that reaches
the point punsat.

Once we establish a robust design of Ξτ , we now prove the hardness of OS
equivalence test by variations of Ξτ . Note that the size of the ruleset in Ξτ is
constant, and it takes O(nm) time to construct the primary structure of Ξτ from
a DNF formula with n clauses and m variables. Thus, we can construct Ξτ that
represents the given formula in O(nm) time. The OSEQ problem admits as a
polynomial no-certificate a conformation that one of the two given OSs can fold
but the other cannot. It hence belongs to coNP. The coNP-hardness of OSEQ is
proved by reduction from DNF tautology. We derive Ξτ1 from Ξτ by adding one
additional rule (16v2, 3f1), which makes the verification of Ξτ1 nondeterministic
when φ is not tautology as illustrated in Fig. 11. Thus, φ is tautology if and only
if Ξτ and Ξτ1 are equivalent. This proves that OSEQ is coNP-complete even
if two OSs are seedless and identical except for their rulesets H1,H2 such that
H1 ⊆ H2 and |H2| − |H1| = 1.

4 Conclusions

We have designed a seedless NOS that solves the DNF tautology problem, and
demonstrated the hardness of testing the equivalence of two OSs using the
designed NOS. Since this is the first attempt to exploit nondeterminism and
seedlessness in the design of OS, our future work includes applying nondeter-
minism and seedlessness to solve other problems. It is an open problem whether
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we can design an equivalent seedless OS from a given OS or not. Also note that
we map an instance of DNF formulas to an NOS that is unique to that input.
This notion is called semi-uniformity [8] compared to circuit uniformity [1], where
we provide a computing device solely according to the length of the input. Intro-
ducing circuit uniformity to the design of OS is another open problem.
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Abstract. We explore the range of probabilistic behaviours that can be
engineered with Chemical Reaction Networks (CRNs). We show that at
steady state CRNs are able to “program” any distribution with finite
support in N

m, with m ≥ 1. Moreover, any distribution with countable
infinite support can be approximated with arbitrarily small error under
the L1 norm. We also give optimized schemes for special distributions,
including the uniform distribution. Finally, we formulate a calculus to
compute on distributions that is complete for finite support distributions,
and can be compiled to a restricted class of CRNs that at steady state
realize those distributions.

1 Introduction

Individual cells and viruses operate in a noisy environment and molecular inter-
actions are inherently stochastic. How cells can tolerate and take advantage of
noise (stochastic fluctuations) is a question of primary importance. It has been
shown that noise has a functional role in cells [11]; indeed, some critical func-
tions depend on the stochastic fluctuations of molecular populations and would
be impossible in a deterministic setting. For instance, noise is fundamental for
probabilistic differentiation of strategies in organisms, and is a key factor for
evolution and adaptation [5]. In Escherichia coli, randomly and independently
of external inputs, a small sub-population of cells enters a non-growing state in
which they can elude the action of antibiotics that can only kill actively growing
bacterial cells. Thus, when a population of E. coli cells is treated with antibiotics,
the persisted cells survive by virtue of their quiescence before resuming growth
[14]. This is an example in which molecular systems compute by producing a
distribution. In other cases cells need to shape noise and compute on distrib-
utions instead of simply mean values. For example, in [16] the authors show,
both mathematically and experimentally, that microRNA confers precision on
the protein expression: it shapes the noise of genes in a way that decreases the
intrinsic noise in protein expression, maintaining its expected value almost con-
stant. Thus, although fundamentally important, the mechanisms used by cells
to compute in a stochastic environment are not well understood.

This research is supported by a Royal Society Research Professorship and ERC AdG
VERIWARE.

c© Springer International Publishing Switzerland 2016
Y. Rondelez and D. Woods (Eds.): DNA 2016, LNCS 9818, pp. 35–51, 2016.
DOI: 10.1007/978-3-319-43994-5 3



36 L. Cardelli et al.

Chemical Reaction Networks (CRNs) with mass action kinetics are a well
studied formalism for modelling biochemical systems, more recently also used as
a formal programming language [10]. It has been shown that any CRN can be
physically implemented by a corresponding DNA strand displacement circuit in
a well-mixed solution [18]. DNA-based circuits thus have the potential to operate
inside cells and control their activity. Winfree and Qian have also shown that
CRNs can be implemented on the surface of a DNA nanostructure [15], enabling
localized computation and engineering biochemical systems where the molecular
interactions occur between few components. When the number of interacting
entities is small, the stochastic fluctuations intrinsic in molecular interactions
play a predominant role in the time evolution of the system. As a consequence,
“programming” a CRN to provide a particular probabilistic response for a subset
of species, for example in response to environmental conditions, is important for
engineering complex biochemical nano-devices and randomized algorithms. In
this paper, we explore the capacity of CRNs to “program” discrete probability
distributions. We aim to characterize the probabilistic behaviour that can be
obtained, exploring both the capabilities of CRNs for producing distributions
and for computing on distributions by composing them.

Contributions. We show that at steady state CRNs are able to compute any
distribution with support in N

m, with m ≥ 1. We propose an algorithm to sys-
tematically “program” a CRN so that its stochastic semantics at steady state
approximates a given distribution with arbitrarily small error under the L1 norm.
The approximation is exact if the support of the distribution is finite. The result-
ing network has a number of reactions linear in the dimension of the support
of the distribution and the output is produced monotonically allowing composi-
tion. Since distributions with large support can result in unwieldy networks, we
also give optimised networks for special distributions, including a novel scheme
for the uniform distribution. We formulate a calculus that is complete for finite
support distributions, which can be compiled to a restricted class of CRNs that
at steady state compute those distributions. The calculus allows for modelling
of external influences on the species. Our results are of interest for a variety
of scenarios in systems and synthetic biology. For example, they can be used
to program a biased stochastic coin or a uniform distribution, thus enabling
implementation of randomized algorithms and protocols in CRNs.

Related Work. It has been shown that CRNs with stochastic semantics are
Turing complete, up to an arbitrarily small error [17]. If we assume error-free
computation, their computational power decreases: they can decide the class
of the semi-linear predicates [4] and compute semi-linear functions [9]. A first
attempt to model distributions with CRNs can be found in [12], where the prob-
lem of producing a single distribution is studied. However, their circuits are
approximated and cannot be composed to compute operations on distributions.
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2 Chemical Reaction Networks

A chemical reaction network (CRN) (Λ,R) is a pair of finite sets, where Λ is
the set of chemical species, |Λ| denotes its size, and R is a set of reactions. A
reaction τ ∈ R is a triple τ = (rτ , pτ , kτ ), where rτ ∈ N

|Λ| is the source complex,
pτ ∈ N

|Λ| is the product complex and kτ ∈ R>0 is the coefficient associated to
the rate of the reaction, where we assume kτ = 1 if not specified; rτ and pτ

represent the stoichiometry of reactants and products. Given a reaction τ1 =
([1, 0, 1], [0, 2, 0], k1) we often refer to it as τ1 : λ1 +λ3 →k1 2λ2. The net change
associated to τ is defined by υτ = pτ − rτ .

We assume that the system is well stirred, that is, the probability of the
next reaction occurring between two molecules is independent of the location of
those molecules, at fixed volume V and temperature. Under these assumptions a
configuration or state of the system x ∈ N

|Λ| is given by the number of molecules
of each species. A chemical reaction system (CRS) C = (Λ,R, x0) is a tuple where
(Λ,R) is a CRN and x0 ∈ N

|Λ| represents its initial condition.

Stochastic Semantics. In this paper we consider CRNs with stochastic seman-
tics. The propensity rate ατ of a reaction τ is a function of the current configu-
ration of the system x such that ατ (x)dt is the probability that a reaction event
occurs in the next infinitesimal interval dt. We assume mass action kinetics [2].
That is, if τ : λ1+...+λk →k ·, then ατ (x) = k·∏|Λ|

i=1
x(λi)!

(x(λi)−rτ,i)!
, where rτ,i is the

i−th component of vector r.1 The time evolution of a CRS C = (Λ,R, x0) can
be modelled as a time-homogeneous Continuous Time Markov Chain (CTMC)
(XC(t), t ∈ R≥0), with state space S [2]. When clear from the context we
write X(t) instead of XC(t). Q : S × S → R is the generator matrix of
X, given by Q(xi, xj) =

∑
{τ∈R|xj=xi+vτ } ατ (xi) for i �= j and Q(xi, xi) =

−∑|S|
j=1∧ j �=i Q(xi, xj). We denote PC(t)(x) = Prob(XC(t) = x|XC(0) = x0),

where x0 is the initial configuration. PC(t)(x) represents the transient evolution
of X, and can be calculated exactly by solving the Chemical Master Equation
(CME) or by approximation of the CME [7].

Definition 1. The steady state distribution (or limit distribution) of XC is
defined as πC = limt→∞ PC(t).

Again, when clear from the context, instead of πC we simply write π. π calculates
the percentage of time, in the long-run, that X spends in each state x ∈ S. If
S is finite, then the above limit distribution always exists and is unique [13]. In
this paper we focus on discrete distributions, and will sometimes conflate the
term distribution with probability mass function, defined next.

Definition 2. Suppose that M : S → R
m with m > 0 is a discrete random vari-

able defined on a countable sample space S. Then the probability mass function
(pmf) f : Rm → [0, 1] for M is defined as f(x) = Prob(s ∈ S | M(s) = x).
1 The reaction rate k depends on the volume V . However, as the volume is fixed, in
our notation V is embedded inside k.
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For a pmf π : Nm → [0, 1] we call J = {y ∈ N
m|π(y) �= 0} the support of π. A pmf

is always associated to a discrete random variable whose distribution is described
by the pmf. However, sometimes, when we refer to a pmf, we imply the associated
random variable. Given two pmfs f1 and f2 with values in N

m, m > 0, we define
the L1 norm (or distance) between them as d1(f1, f2) =

∑
n∈Nm(|f1(n)−f2(n)|).

Note that, as f1, f2 are pmfs, then d1(f1, f2) ≤ 2. It is worth stressing that, given
the CTMC X, for each t ∈ R≥0, X(t) is a random variable defined on a countable
state space. As a consequence, its distribution is given by a pmf. Likewise, the
limit distribution of a CTMC, if it exists, is a pmf.

Definition 3. GivenC = (Λ,R)andλ ∈ Λ, wedefineπλ(k)=
∑

{x∈S|x(λ)=k} π(x)
as the probability that for t → ∞, in XC , there are k molecules of λ.

πλ is a pmf representing the steady state distribution of species λ.

3 On Approximating Discrete Distributions with CRNs

We now show that, ffor a pmf with support in N, we can always build a CRS such
that, at steady state (i.e. for t → ∞) the random variable representing the mole-
cular population of a given species in the CRN approximates that distribution
with arbitrarily small error under the L1 norm. The result is then generalised
to distributions with domain in N

m, with m ≥ 1. The approximation is exact in
case of finite support.

3.1 Programming pmfs

Definition 4. Given f : N → [0, 1] with finite support J = (z1, ..., z|J|) such that
∑|J|

i=1 f(zi) = 1, we define the CRS Cf = (Λ,R, x0) as follows. Cf is composed of
2|J | reactions and 2|J |+2 species. For any zi ∈ J we have two species λi, λi,i ∈ Λ
such that x0(λi) = zi and x0(λi,i) = 0. Then, we consider a species λz ∈ λ such
that x0(λz) = 1, and the species λout ∈ Λ, which represents the output of the
network and such that x0(λout) = 0. For every zi ∈ J , R has the following two
reactions: τi,1 : λz →f(zi) λi,i and τi,2 : λi + λi,i → λout + λi,i.

Example 1. Consider the probability mass function f : N → [0, 1] defined as
f(y) = { 1

6 if y = 2; 1
3 if y = 5; 1

2 if y = 10; 0 otherwise}. Let Λ = {λ1, λ2, λ3,
λz, λ1,1, λ2,2, λ3,3, λout}, then we build the CRS C = (Λ,R, x0) following Defin-
ition 4, where R is given by the following set of reactions:

λz → 1
6 λ1,1; λz → 1

3 λ2,2; λz → 1
2 λ3,3;

λ1 + λ1,1 →1 λ1,1 + λout; λ2 + λ2,2 →1 λ2,2 + λout; λ3 + λ3,3 →1 λ3,3 + λout.

The initial condition x0 is x0(λout) = x0(λ1,1) = x0(λ2,2) = x0(λ3,3) = 0;
x0(λ1) = 2; x0(λ2) = 5; x0(λ3) = 10; x0(λz) = 1. Theorem 1 ensures πλout

= f .
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Theorem 1. Given a pmf f : N → [0, 1] with finite support J , the CRS Cf as
defined in Definition 4 is such that π

Cf

λout
= f .

Proof. Let J = (z1, .., z|J|) be the support of f , and |J | its size. Suppose |J | is
finite, then the set of reachable states from x0 is finite by construction and the
limit distribution of XCf , the induced CTMC, exists. By construction, in the
initial state x0 only reactions of type τi,1 can fire, and the probability that a
specific τi,1 fires first is exactly:

ατi,1(x0)
∑|J|

j=1 ατj,1(x0)
=

f(zi) · 1
∑|J|

j=1 f(zj) · 1
=

f(zi)
∑|J|

j=1 f(zj)
=

f(zi)
1

= f(zi)

Observe that the firing of the first reaction uniquely defines the limit distribution
of XCf , because λz is consumed immediately and only reaction τi,2 can fire,
with no race condition, until λi are consumed. This implies that at steady state
λout will be equal to x0(λi), and this happens with probability f(x0(λi)). Since
x0(λi) = zi for i ∈ [1, |J |], we have π

Cf

λout
= f . �	

Then, we can state the following corollary of Theorem1.

Corollary 1. Given a pmf f : N → [0, 1] with countable support J , we can
always find a finite CRS Cf such that π

Cf

λout
= f with arbitrarily small error

under the L1 norm.

Proof. Let J = {z1, ..., z|J|}. Suppose J is (countably) infinite, that is, |J | → ∞.
Then, we can always consider an arbitrarily large but finite number of points in
the support, such that the probability mass lost is arbitrarily small, and applying
Definition 4 on this finite subset of the support we have the result.

In order to prove the result consider the function f ′ with support J ′ =
{z1, ..., zk}, k ∈ N, such that f(zi) = f ′(zi), for all i ∈ N≤k. Consider the series∑∞

i=1 f(n). This is an absolute convergent series by definition of pmf. Then, we
have that limi→∞ f(i) = 0 and, for any ε > 0, we can choose some κε ∈ N, such
that:

∀k > κε |
k∑

i=1

f ′(i) −
∞∑

i=1

f(i)| <
ε

2
.

This implies that for k > κε given f ′
k =

∑k
i=1 f ′(i) we have, d1(f ′

k, f) < ε. �	
The following remark shows that the need for precisely tuning the value of reac-
tion rates in Theorem 1 can be dropped by introducing some auxiliary species.

Remark 1. In practice, tuning the rates of a reaction can be difficult or impos-
sible. However, it is possible to modify the CRS derived using Definition 4 in
such a way the probability value is not encoded in the rates, and we just require
that all reactions have the same rates. We can do that by using some auxiliary
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species Λc = {λc1 , λc2 , ..., λc|Λc|}. Then, the reactions τi,1 for i ∈ [1, J ] become
τi,1 : λz +λci

→k λi,i, for k ≥ 0, instead of τi,1 : λz →f(yi) λi,i, as in the original
definition. The initial condition of λci

is x0(λci
) = f(yi) · L, where L ∈ N is

such that for j ∈ [1, |J |] and J = {z1, ..., z|J|} we have that f(zj) · L is a natural
number, assuming all the f(zj) are rationals.

Remark 2. In biological circuits the probability distribution of a species may
depend on some external conditions. For example, the lambda Bacteriofage
decides to lyse or not to lyse with a probabilistic distribution based also on envi-
ronmental conditions [5]. Programming similar behaviour is possible by extension
of Theorem 1. For instance, suppose, we want to program a switch that with rate
50 + Com goes in a state O1, and with rate 5000 goes in a different state O2,
where Com is an external input. To program this logic we can use the following
reactions: τ1,1 : λz + λc1 →k1 λO1 and τ1,2 : λz + λc2 →k1 λO2 , where λO1 and
λO2 model the two logic states, initialized at 0. The initial condition x0 is such
that x0(λz) = 1, x0(λc1) = 50 and x0(λc2) = 5000. Then, we add the following
reaction Com →k2 λc1 . It is easy to show that if k2 >>> k1 then we have the
desired probabilistic behaviour for any initial value of Com ∈ N. This may be of
interest also for practical scenarios in synthetic biology, where for instance the
behaviour of synthetic bacteria needs to be externally controlled [3]; and, if each
bacteria is endowed with a similar logic, then, by tuning Com, at the population
level, it is possible to control the fraction of bacteria that perform this task.

In the next theorem we generalize to the multi-dimensional case.

Theorem 2. Given f : N
m → [0, 1] with m ≥ 1 such that

∑
i∈N

f(i) = 1,
then there exists a CRS C = (Λ,R, x0) such that the joint limit distribution of
(λout1 , λout2 , ..., λoutm

) ∈ Λ approximates f with arbitrarily small error under
the L1 distance. The approximation is exact if the support of f is finite.

To prove this theorem we can derive a CRS similar to that in the uni-dimensional
case. The firing of the first reaction can be used to probabilistically determine
the value at steady state of the m output species, using some auxiliary species.

3.2 Special Distributions

For a given pmf the number of reactions of the CRS derived from Definition 4 is
linear in the dimension of its support. As a consequence, if the support is large
then the CRSs derived using Theorems 1 and 2 can be unwieldy. In the following
we show three optimised CRSs to calculate the Poisson, binomial and uniform
distributions. These CRNs are compact and applicable in many practical sce-
narios. However, using Definition 4 the output is always produced monotonically.
In the circuits below this does not happen, but, on the other hand, the gain in
compactness is substantial. The first two circuits have been derived from the
literature, while the CRN for the uniform distribution is new.

Poisson Distribution. The main result of [1] guarantees that all the CRNs that
respect some conditions (weakly reversible, deficiency zero and irreducible state
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space, see [1]) have a distribution given by the product of Poisson distributions.
As a particular case, we consider the following CRS composed of only one species
λ and the following two reactions τ1 : ∅ →k1 λ; τ2 : λ →k2 ∅. Then, at steady
state, λ has a Poisson distribution with expected value k1

k2
.

Binomial Distribution. We consider the network introduced in [1]. The CRS is
composed of two species, λ1 and λ2, with initial condition x0 such that x0(λ1)+
x0(λ2) = K and the following set of reactions: τ1 : λ1 →k1 λ2; τ2 : λ2 →k2 λ1. As
shown in [1], λ1 and λ2 at steady state have a binomial distribution such that:
πλ1(y) = (K

y )c1y(1 − c1)K−y and πλ2(y) = (K
y )c2y(1 − c2)K−y.

Uniform Distribution. The following CRS computes the uniform distribution
over the sum of the initial number of molecules in the system, independently of
the initial value of each species. It has species λ1 and λ2 and reactions:

τ1 : λ1 →k λ2; τ2 : λ2 →k λ1; τ3 : λ1+λ2 →k λ1+λ1; τ4 : λ1+λ2 →k λ2+λ2

For k > 0, τ1 and τ2 implement the binomial distribution. These are combined
with τ3 and τ4, which implement a Direct Competition system [6], which has a
bimodal limit distribution in 0 and in K, where x0(λ1) + x0(λ2) = K, with x0

initial condition. This network, surprisingly, according to the next theorem, at
steady state produces a distribution which varies uniformly between 0 and K.

Theorem 3. Let x0(λ1)+x0(λ2) = K ∈ N. Then, the CRS described above has
the following steady state distribution for λ1 and λ2:

πλ1(y) = πλ2(y) =
{

1
K+1 , if y ∈ [0,K]
0, otherwise

Proof. We consider a general initial condition x0 such that x0(λ1) = K − M
and x0(λ2) = M for 0 ≤ M ≤ K and K,M ∈ N. Because any reaction has
exactly 2 reagents and 2 products, we have the invariant that for any config-
uration x reachable from x0 it holds that x(λ1) + x(λ2) = K. Figure 1 plots
the CTMC semantics of the system. For any fixed K the set of reachable states
from any initial condition in the induced CTMC is finite (exactly K states are
reachable from any initial condition) and irreducible. Therefore, the steady state
solution exists, is unique and independent of the initial conditions. To find this
limit distribution we can calculate Q, the infinitesimal generator of the CTMC,
and then solve the linear equations system πQ = 0, with the constraint that∑

i∈[0,K] πi = 1, where πi is the ith component of the vector π, as shown in [13].
Because the CTMC we are considering is irreducible, this is equivalent to solve
the balance equations with the same constraint. The resulting π is the steady
state distribution of the system.

We consider 3 cases, where (K − j, j) for j ∈ [0,K] represents the state of
the system in terms of molecules of λ1 and λ2.
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Fig. 1. The figure shows the CTMC induced by the CRS implementing the uniform
distribution for initial condition x0 such that x0(λ1) + x0(λ2) = K.

– Case j = 0. For the state (K, 0), whose limit distribution is defined as π(K, 0),
we have the following balance equation:

−π(K, 0)Kk+π(K − 1, 1)[(K − 1)k + k] = 0 =⇒
π(K, 0) = π(K − 1, 1).

– Case j ∈ [1,K−1]. Observing Fig. 1 we see that the states and the rates follow
a precise pattern: every state is directly connected with only two states and
for any transition the rates depend on two reactions, therefore we can consider
the balance equations for a general state (K − j, j) for j ∈ [1,K − 1] (for the
sake of a lighter notation instead of π(K − j, j) we write πj):

πj−1[K + 1 − j + (K + 1 − j)(j − 1)]

− πj [2(K − j)j + j + K − j] + πj+1[j + 1 + (K − j − 1)(j + 1)] = 0
=⇒

πj−1[Kj − j2 + j] − πj [2Kj − 2j2 + K] + πj+1[Kj + K − j2 − j] = 0

It is easy to verify that if πj−1 = πj = πj+1 then the equation is verified.
– Case j = K. The case for the state (0,K) is similar to the case (K, 0).

We have shown that each reachable state has equal probability at steady state
for any possible initial condition. Therefore, because

∑K
i=0 πi = 1 and πλi

(y) =∑
xj∈S|xj(λi)=y πj for y ≥ 0, we have that for both λ1 and λ2

πλ1(y) = πλ2(y) =
{

1
K+1 , if y ∈ [0,K]
0, otherwise

�	

4 Calculus of Limit Distributions of CRNs

In the previous section we have shown that CRNs are able to program any pmf
on N. We now define a calculus to compose and compute on pmfs. We show it is
complete with respect to finite support pmfs on N. Then, we define a translation
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of this calculus into a restricted class of CRNs. We prove the soundness of such a
translation, which thus yields an abstract calculus of limit distributions of CRNs.
For simplicity, in what follows we consider only pmfs with support in N, but the
results can be generalised to the multi-dimensional case in a straightforward way.

Definition 5 (Syntax). The syntax of formulae of our calculus is given by

P := (P + P ) |min(P, P ) | k · P | (P )D : P | one | zero

D := p | p · ci + D

where k ∈ Q≥0, p ∈ Q[0,1] are rational and V = {c1, ..., cn} is a set of variables
with values in N.

A formula P denotes a pmf that can be obtained as a sum, minimum, multiplica-
tion by a rational, or convex combination of pmfs one and zero. Given a formula
P , variables V = {c1, ..., cn}, called environmental inputs, model the influence
of external factors on the probability distributions of the system. V (P ) repre-
sents the variables in P . An environment E : V → Q[0,1] is a partial function
which maps each input ci to its valuation normalized to [0, 1]. Given a formula
P and an environment E, where V (P ) ⊆ dom(E), with dom(E) domain of E,
we define its semantics, [[P ]]E , as a pmf (the empty environment is denoted as
∅). D expresses a summation of valuations of inputs ci weighted by rational
probabilities p, which evaluates to a rational [[D]]E for a given environment. We
require that, for any D, the sum of p coefficients in D is in [0, 1]. This ensures
that 0 ≤ [[D]]E ≤ 1. The semantics is defined inductively as follows, where the
operations on pmfs are defined in Sect. 4.1.

Definition 6 (Semantics). Given formulae P, P1, P2 and an environment E,
such that V (P ) ∪ V (P1) ∪ V (P2) ⊆ dom(E), we define

[[one]]E = πone [[zero]]E = πzero [[P1 + P2]]E = [[P1]]E + [[P2]]E

[[min(P1, P2)]]E = min([[P1]]E , [[P2]]E)

[[k · P ]]E =
k1 · ([[P ]]E)

k2
for k =

k1
k2

and k1, k2 ∈ N

[[(P1)D : (P2)]]E = ([[P1]]E)[[D]]E : ([[P2]]E)

[[p]]E = p [[p · ci + D]]E = p · E(ci) + ([[D]]E)

where πone(y) =
{

1, if y = 1
0, otherwise and πzero(y) =

{
1, if y = 0
0, otherwise .

To illustrate the calculus, consider the Bernoulli distribution with parameter
p ∈ Q[0,1]. We have bernp = (one)p : zero, where [[bernp]]∅(y) = {p if y = 1; 1 −
p if y = 0; 0 otherwise}. The binomial distribution can be obtained as a sum of
n independent Bernoulli distributions of the same parameter. Given a random
variable with a binomial distribution with parameters (n, p), if n is sufficiently
large and p sufficiently small then this approximates a Poisson distribution with
parameter n · p.
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4.1 Operations on Distributions

In this section, we define a set of operations on pmfs needed to define the seman-
tics of the calculus. We conclude the section by showing that these operations
are sufficient to represent pmfs with finite support in N.

Definition 7. Let π1 : N → [0, 1], π2 : N → [0, 1] be two pmfs. Assume p ∈ Q[0,1],
y ∈ N, k1 ∈ N and k2 ∈ N>0, then we define the following operations on pmfs:

– The sum or convolution of π1 and π2 is defined as (π1 + π2)(y) =∑
(yi,yj)∈N×N s.t. yi+yj=y π1(yi)π2(yj).

– The minimum of π1 and π2 is defined as min(π1, π2)(y) =∑
(yi,yj)∈N×N s.t. min(yi,yj)=y π1(yi)π2(yj).

– The multiplication of π1 by the constant k1 is defined as (k1π1)(y) ={
π1( y

k1
), if y

k1
∈ N

0, otherwise
– The division of π1 by the constant k2 is defined as π

k2
(y) =∑

yi∈N s.t. y=�yi/k2 π(yi).
– The convex combination of π1 and π2, for y ∈ N, is defined ((π1)p : (π2))(y) =

pπ1(y) + (1 − p)π2(y).

The convex combination operator is the only one that is not closed with respect
to pmfs whose support is a single point. Lemma 1 shows that this operator is
not associative with respect to minimum and sum of pmfs.

Lemma 1. Given probability mass functions π1, π2 : N → [0, 1], p1, p2, p3, p4 ∈
[0, 1] and k ∈ Q≥0, then the following equations hold:

– k((π1)p : π2) = (kπ1)p : (kπ2)
– ((π1)p1 : π2)p2 : π3 = (π1)p3 : ((π2)p4 : π3) iff p3 = p1p2 and p4 = (1−p1)p2

1−p1p2

– (π1)p : π2 = (π2)1−p : π1

– (π1)p : π1 = π1.

Example 2. Consider the following formula

P1 = (one)0.001·c+0.2(4 · one) + (2 · one)0.4(3 · one),

with set of environmental variables V = {c} and an enviroment E such that
V (P1) ⊆ dom(E). Then, according to Definition 7 we have that

[[P1]]E(y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0.001 · [[c]]E + 0.2) · 0.4, if y = 3
(0.001 · [[c]]E + 0.2) · 0.6, if y = 4
(1 − (0.001 · [[c]]E + 0.2)) · 0.4, if y = 6
(1 − (0.001 · [[c]]E + 0.2)) · 0.6, if y = 7
0, otherwise

Having formally defined all the operations on pmfs, we can finally state the
following proposition guaranteeing that the semantics of any formula of the
calculus is a pmf.
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Proposition 1. Given P , a formula of the calculus defined in Definition 5, and
an environment E such that V (P ) ⊆ dom(E), then [[P ]]E is a pmf.

The following theorem shows that our calculus is complete with respect to finite
support distributions.

Theorem 4. For any pmf f : N → [0, 1] with finite support there exists a for-
mula P such that [[P ]]∅ = f .

Proof. Given a pmf f : N → [0, 1] with finite support J = (z1, ..., z|J|) we can
define P = (z1 · one)f(z1) : ((z2 · one) f(z2)

1−f(z1)
: (... : ((zi · one) f(zi)

∏i−1
j=1(1−f(zj))

: ... :

((zn · one))))). Then, [[P ]]∅ = f . �	
Proof of Theorem4 relies only on a subset of the operators, but the other oper-
ators are useful for composing previously defined pmfs.

5 CRN Implementation

We now show how the operators of the calculus can be realized by operators on
CRSs. The resulting CRSs produce the required distributions at steady state,
that is, in terms of the steady state distribution of the induced CTMC. Thus, we
need to consider a restricted class of CRNs that always stabilize and that can be
incrementally composed. The key idea is that each such CRN has output species
that cannot act as a reactant in any reaction, and hence the counts of those
species increase monotonically.2 This implies that the optimized CRSs shown in
Sect. 3.2 cannot be used compositionally.

5.1 Non-Reacting Output CRSs (NRO-CRSs)

Since in the calculus presented in Definition 5 we consider only finite support
pmfs, in this section we are limited to finite state CTMCs. This is important
because some results valid for finite state CTMCs are not valid in infinite state
spaces. Moreover, any pmf with infinite support on natural numbers can always
be approximated under the L1 norm (see Corollary 1).

Given a CRS C = (Λ,R, x0), we call the non-reacting species of C the subset
of species Λr ⊆ Λ such that given λr ∈ Λr there does not exist τ ∈ R such
that rλr

τ > 0, where rλr
τ is the component of the source complex of the reaction

τ relative to λr, that is, λr is not a reactant in any reaction. Given C we also
define a subset of species, Λo ⊆ Λ, as the output species of C. Output species
are those whose limit distribution is of interest. In general, they may or may
not be non-reacting species; they depend on the observer and on what he/she is
interested in observing.
2 Note that this is a stricter requirement than those in [9], where output species are
produced monotonically, but they are allowed to act as catalysts in some reactions.
We cannot allow that because catalyst species influence the value of the propensity
rate of a reaction and so the probability that it fires.
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Definition 8. A non-reacting output CRS (NRO-CRS) is a tuple C =
(Λ,Λo, R, x0), where Λo ⊆ Λ are the output species of C such that Λo ⊆ Λr,
where Λr are the non-reacting species of C.

NRO-CRNs are CRSs in which the output species are produced monotonically
and cannot act as a reactant in any reaction. A consequence of Theorem1 is the
following lemma, which shows that this class of CRNs can approximate any pmf
with support on natural numbers, up to an arbitrarily small error.

Lemma 2. For any probability mass function f : N
m → [0, 1] there exists a

NRO-CRS such that the joint limit distribution of its output species approximates
f with arbitrarily small error under the L1 norm. The approximation is exact if
the support of f is finite.

In Table 1, we define a set of operators on NRO-CRSs. Let C1 = (Λ1, Λo1 ,
R1, x01) and C2 = (Λ2, Λo2 , R2, x02) be NRO-CRSs such that Λ1 ∩ Λ2 = ∅.
Let λo1 ∈ Λo1 and λo2 ∈ Λo2 , then we define the set of reactions which imple-
ments the operators of Sum, Minimum, Multiplication by a constant k1 ∈ N and
Division by a constant k2 ∈ N≥0 over the steady state distribution of λo1 and
λo2 . The output species of each composed NRO-CRS is λout, and we assume
{λout} ∩ (Λ1 ∪ Λ2) = ∅ and x0(λout) = 0.

Table 1. CRS operators

Operator Resulting NRO-CRS

Sum (Λ1 ∪ Λ2 ∪ {λout}, {λout}, R1 ∪ R2 ∪ {λo1 → λout, λo2 → λout}, x0)

Min (Λ1 ∪ Λ2 ∪ {λout}, {λout}, R1 ∪R2 ∪ {λo1 + λo2 → λout}, x0)

Mul by k1 (Λ1 ∪ {λout}, {λout}, R1 ∪ {λo1 → λout + ... + λout
︸ ︷︷ ︸

k1 times

}, x0)

Div by k2 (Λ1 ∪ {λout}, {λout}, R1 ∪ {λo1 + ... + λo1
︸ ︷︷ ︸

k2 times

→ λout}, x0)

We emphasize that proving that CRS operators of Table 1 implement the opera-
tions in Definition 7 is not trivial. In fact, we need to compose stochastic processes
and show that the resulting process has the required properties. Fundamental to
that end is a convenient representation of X in terms of a summation of time-
inhomogeneous Poisson processes, one for each reaction [2]. In what follows we
present in slightly extended form the operators for convex combination, with or
without external inputs (respectively Con(·) and ConE(·)). Formal definitions
and proofs of correctness of all the circuits are presented in [8].

Considering C1 and C2, as previously, then we need to derive a CRS oper-
ator Con(C1, λo1 , C2, λo2 , p, λout) such that πλout

= (πC1
λo1

)p : (πC2
λo2

). That is,

at steady stade, λout equals πC1
λo1

with probability p and πC2
λo2

with probabil-
ity 1 − p. This can be done by using Theorem2 to generate a bi-dimensional
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synthetic coin with output species λr1 , λr2 such that their joint limit distrib-
ution is πλr1 ,λr2

(y1, y2) = {p if y1 = 1and y2 = 0; 1 − p if y1 = 0and y2 =
1; 0 otherwise}. That is, λr1 and λr2 are mutually exclusive at steady state.
Using these species as catalysts in τ3 : λo1 +λr1 → λr1 +λout and τ4 : λo2 +λr2 →
λr2 + λout we have exactly the desired result at steady state.

Example 3. Consider the following NRO-CRSs C1 = ({λo1}, {λo1}, {}, x01) and
C2 = ({λo2}, {λo2}, {}, x02), with initial condition x01(λo1) = 10 and x02(λo2) =
20. Then, the operator ConE(C1, λo1 , C2, λo2 , 0.3, λout) implements the opera-
tion πλout

= (πC1
λo1

)0.3(πC2
λo2

) and it is given by the following reactions:

λz →0.3 λr1 ; λz →0.7 λr2 ; λr1 + λo1 → λr1 + λout; λr2 + λo2 → λr2 + λout

with initial condition x0 such that x0(λz) = 1, x0(λr1) = x0(λr2) = x0(λout) = 0.

Let C1, C2 be as above and f = p0 + p1 · c1 + ... + pn · cn with p1, ..., pn ∈ Q[0,1],
V = {c1, ..., cn} a set of environmental variables, and E, an environment such
that V ⊆ dom(E). Then, computing a CRS operator ConE(C1, λo1 , C2,
λo2 , f(E(V )), λout) such that πλout

= (πC1
λo1

)f(E(V )) : (πC2
λo2

) is a matter of extend-
ing the previous circuit. First of all, we can derive the CRS to compute f(E(V ))
and 1 − f(E(V )) and memorize them in some species. This can be done as
f(E(V )) is semi-linear [9]. Then, as f(E(V )) ≤ 1 by assumption, we can use
these species as catalysts to determine the output value of λout, as in the previ-
ous case. As shown in [8], this circuit, in the case of external inputs, introduces
an arbitrarily small, but non-zero, error, due to the fact that there is no way to
know when the computation of f(E(V )) terminates.

Example 4. Consider the following NRO-CRSs C1 = ({λo1}, {λo1}, {}, x01) and
C2 = ({λo2}, {λo2}, {}, x02), with initial condition x01(λo1) = 10 and x02(λo2) =
20. Then, consider the following functions f(E(c)) = E(c), where E is a partial
function assigning values to c, and it is assumed 0.001 ≤ E(c) ≤ 1 and that
E(c) · 1000 ∈ N. Then, the operator ConE(C1, λo1 , C2, λo2 , f, λout), implements
the operation πλout

= (πC1
λo1

)E(c)(π
C2
λo2

) and it is given by the following reactions:

τ1 : λc →k1 λCat1 + λCat2 ; τ2 : λTot + λCat2 →k1 ∅
τ3 : λz + λCat1 →k2 λ1; τ4 : λz + λTot →k2 λ2

τ5 : λo1 + λ1 →k2 λ1 + λout; τ6 : λo2 + λ2 →k2 λ2 + λout

where λc, λCat1 , λCat2 , λz, λ1, λ2 are auxiliary species with initial condition x0

such that x0(λCat1) = x0(λCat2) = x0(λ1) = x0(λ2) = 0, x0(λTot) = 1000,
x0(λz) = 1, x0(λc) = E(c) · 1000 and k1 � k2. Reactions τ1, τ2 implement
f(E(c)) and 1 − f(E(c)) and store these values in λCat1 and λTot. These are
used in reactions τ3 and τ4 to determine the probability that the steady state
value of λout is going to be determined by reaction τ5 or τ6.
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5.2 Compiling into the Class of NRO-CRSs

Given a formula P as defined in Definition 5, then [[P ]]E associates to P and an
environment E a pmf. We now define a translation of P , T (P ), into the class of
NRO-CRSs that guarantees that the unique output species of T (P ), at steady
state, approximates [[P ]]E with arbitrarily small error for any environment E
such that V (P ) ⊆ dom(E). In order to define such a translation we need the
following renaming operator.

Definition 9. Given a CRS C = (Λ,R, x0), for λt ∈ Λ and λ1 �∈ Λ we define the
renaming operator C{λ1 ← λt} = Cc such that Cc = ((Λ−{λt})∪{λ1}, R{λ1 ←
λt}, x′

0), where R{λ1 ← λt} substitutes any occurrence of λt with an occurrence
of λ1 for any τ ∈ R and x′

0(λ) = {x0(λ) if λ �= λt; x0(λt) if λ = λ1}.
This operator produces a new CRS where any occurrence of a species is substi-
tuted with an occurrence of another species previously not present.

Definition 10 (Translation into NRO-CRSs). Define the mapping T by induc-
tion on syntax of formulae P :

T (one) = ({λout}, {λout}, ∅, x0) with x0(λout) = 1;
T (zero) = ({λout}, {λout}, ∅, x0) with x0(λout) = 0;
T (P1 + P2) = Sum(T (P1){λo1 ← λout}, λo1 , T (P2){λo2 ← λout}, λo2 , λout);
T (k · P ) = Div(Mul(T (P ){λo ← λout}, λo, k1, λout){λo′ ← λout}), λo′ , k2, λout);
T (min(P1, P2) = Min(T (P1){λo1 ← λout}, λo1 , T (P2){λo2 ← λout}, λo2 , λout);
T ((P1)D : P2) =
⎧
⎨

⎩

Con(T (P1){λo1 ← λout}, λo1 , T (P2){λo2 ← λout}, λo2 ,D, λout), if D = p
ConE(T (P1){λo1 ← λout}, λo1 , T (P2){λo2 ← λout}, λo2 ,D, λout),

if D = p +
∑m

i=1 pi · ci

for m > 1, k ∈ Q>0, k1, k2 ∈ N such that k = k1
k2

and formulae P1, P2, which
are assumed to not contain species λo1 , λo2 .

Example 5. Consider the formula P1 = (one)0.001·c+0.2(4·one)+(2·one)0.4(3·one)
of Example 2, and an environment E such that 0.000125 ≤ E(c) ≤ 1 and suppose
E(c) · 800 ∈ N. We show how the translation defined in Definition 10 produces
a NRO-CRS C with output species λout such that πλout

= [[P1]]E . Consider
the following NRO-CRSs C1, C2, C3, C4 defined as C1 = ({λc1}, {λc1}, {}, x′

0)
with x0(λc1) = 1, C2 = ({λc2}, {λc2}, {}, x0) with x0(λc2) = 1, , C3 = ({λc3},
{λc3}, {}, x0) with x0(λc3) = 1, and C4 = ({λc4}, {λc4}, {}, x0) with x0(λc2) = 1.
Then, we have that:

Cc
1 = ConE(C1, λc1 ,Mul(C2, λc2 , 4, λout){λo2 ← λout}, λo2 , 0.001 · c+0.2, λout1)

Cc
2 = Con(Mul(C3, λc3 , 2, λout){λo3 ← λout}, λo3 ,

Mul(C4, λc4 , 3, λout){λo4 ← λout}, λo4 , 0.4, λout2)
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are such that πλout1
=

⎧
⎨

⎩

(0.001 · [[c]]E + 0.2), if y = 1
1 − (0.001 · [[c]]E + 0.2), if y = 4
0, otherwise

,

and πλout2
=

⎧
⎨

⎩

0.4, if y = 2
0.6, if y = 3
0, otherwise

. Then, consider the CRS C = Sum(Cc
1

{λt1←λout1
}, λt1 , C

c
2{λt2←λout2

}, λt2 , λout) and we have πλout
= [[P1]]E with arbi-

trarily small error. The reactions of C are shown below

Mul on inputs {τ1 : λC2 → 4λo1 ; τ2 : λC3 → 2λo2 ; τ3 : λC4 → 3λo3

Cc
1

⎧
⎨

⎩

τ4 : λenv →k λcat1 + λcat2 ; τ5 : λcat1 + λz → λ1

τ6 : λcat2 + λtot →k ∅; τ7 : λtot + λz → λ2

τ8 : λ1 + λo1 → λo1 + λout1 ; τ9 : λ2 + λo2 → λo2 + λout1

Cc
2

{
τ9 : λz1 →0.6 λr1 ; τ10 : λz1 →0.4 λr2

τ11 : λr1 + λo3 ;→ λr1 + λout2 ; τ7 : λr2 + λo4 → λr2 + λout2

Sum {τ12 : λout1 → λout; τ13 : λout2 → λout

for k � 1 and initial condition such that x0(λenv) = E(c) · 800, x0(λtot) = 800,
x0(λz) = x0(λz1) = x0(λz2) = 1 = x0(λc1) = x0(λc2) = x0(λc3) = x0(λc4) = 1,
and all other species initialized with 0 molecules.

Proposition 2. For any formula P we have that T (P ) is a NRO-CRS.

The proof follows by structural induction as shown in [8]. Given a formula
P and an environment E such that V (P ) ⊆ dom(E), the following theo-
rem guarantees the soundness of T (P ) with respect to [[P ]]E . In order to
prove the soundness of our translation we consider the measure of the mul-
tiplicative error between two pmfs f1 and f2 with values in N

m, m > 0 as
em(f1, f2) = maxn∈Nm min( f1(n)

f2(n)
, f2(n)

f1(n)
).

Theorem 5 (Soundness). Given a formula P and λout, unique output species
of T (P ), then, for an environment E such that V (P ) ⊆ dom(E), it holds that
π

T (P )
λout

= [[P ]]E with arbitrarily small error under multiplicative error measure.

The proof follows by structural induction.

Remark 3. A formula P is finite by definition, so Theorem 5 is valid because the
only production rule which can introduce an error is (P1)D : (P2) in the case
D �= p0, and we can always find reaction rates to make the total probability
of error arbitrarily small. Note that, by using the results of [17], it would also
be possible to show that the total error can be kept arbitrarily small, even if
a formula is composed from an unbounded number of production rules. This
requires small modifications to the ConE operator following ideas in [17].

Note that compositional translation, as defined in Definition 10, generally pro-
duces more compact CRNs respect to the direct translation in Theorem 1, and
in both cases the output is non-reacting, so the resulting CRN can be used for
composition. For a distribution with support J direct translation yields a CRN
with 2|J | reactions, whereas, for instance, the support of the sum pmf has the
cardinality of the Cartesian product of the supports of the input pmfs.
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6 Discussion

Our goal was to explore the capacity of CRNs to compute with distributions.
This is an important goal because, when molecular interactions are in low num-
ber, as is common in various experimental scenarios [15], deterministic methods
are not accurate, and stochasticity is essential for cellular circuits. Moreover,
there is a large body of literature in biology where stochasticity has been shown
to be essential and not only a nuisance [11]. Our work is a step forward towards
better understanding of molecular computation. In this paper we focused on
error-free computation for distributions. It would be interesting to understand
and characterize what would happen when relaxing this constraint. That is, if
we admit a probabilistically (arbitrarily) small error, does the ability of CRNs
to compute on distributions increase? Can we relax the constraint that output
species need to be produced monotonically? Can we produce more compact net-
works? Another topic we would like to address is if it is possible to implement the
CRNs without leaders (species being present with initial number of molecules
equal to 1). This is a crucial aspect in our theorems and having the same results
without these constraints would make the implementation easier. However, it is
worth noting that, in a practical scenario, such species could be thought of as a
single gene or as localized structures [15].
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Abstract. We show that some natural output conventions for error-free
computation in chemical reaction networks (CRN) lead to a common
level of computational expressivity. Our main results are that the stan-
dard definition of error-free CRNs have equivalent computational power
to (1) asymmetric and (2) democratic CRNs. The former have only “yes”
voters, with the interpretation that the CRN’s output is yes if any voters
are present and no otherwise. The latter define output by majority vote
among “yes” and “no” voters.

Both results are proven via a generalized framework that simulta-
neously captures several definitions, directly inspired by a recent Petri
net result of Esparza, Ganty, Leroux, and Majumder [CONCUR 2015].
These results support the thesis that the computational expressivity of
error-free CRNs is intrinsic, not sensitive to arbitrary definitional choices.

1 Introduction

Turing machines solve exactly the same class of yes/no decision problems
whether they report output via accept/reject states, or if instead they write
a 1 or 0 on a worktape before halting. Similarly, finite-state transducers com-
pute the same class of functions whether they emit output on a state (Moore
machine [19]) or a transition (Mealy machine [18]). In general, if the power of a
model of computation is insensitive to minor changes in the definition, this lends
evidence to the claim that the model is robust enough to apply to many real
situations, and that theorems proven in the model reflect fundamental truths
about reality, rather than being artifacts of arbitrary definitional choices.

The theory of chemical reaction networks (CRNs) studies the general behav-
ior of chemical reactions in well-mixed solutions, abstracting away spatial prop-
erties of the molecules. Formally, a CRN is defined as a finite set of reactions
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such as 2A + C → 2B, where A, B, and C are abstract chemical species. In a
discrete CRN the state of the system is given by molecule counts of each species
and the system updates by application of individual reactions.

CRNs have only recently been considered as a model of computation [21],
motivated partially by the ability to implement them using a basic experimen-
tal technique called DNA strand displacement [22]. Discrete CRNs are Turing
complete if allowed an arbitrary small, but nonzero, probability of error [21],
improved to probability 0 in [9]. Using a result from the theory of population
protocols [3,4], it is known that error-free CRNs decide exactly the semilinear
sets [6].1

We study the computational robustness of error-free CRNs under different
output conventions. The original output convention [3] for deciding predicates
(0/1-valued functions) is that each species is classified as voting either 0 (“no”)
or 1 (“yes”), and a configuration (vector of nonnegative integer counts of each
species) o has output i ∈ {0, 1} if all species present in positive count are i-
voters, i.e., there is a consensus on vote i. As an example, the CRN with reactions
X1 + N → Y and X2 + Y → N , with initial configuration {x1X1, x2X2, 1N},
where N,X2 vote 0 and Y,X1 vote 1, decides if x1 > x2; Y and N alternate being
present as each reacts with an input, so the first input to run out determines
whether we stop at Y or N . More formally, we say o is output-stable if every
configuration o ′ reachable from o has the same output as o (i.e., the system need
not halt, but it stops changing its output). Finally, it is required that a correct
output-stable configuration is reachable not only from the initial configuration i ,
but also from any configuration reachable from i ; under mild assumptions (e.g.,
conservation of mass), this implies that a correct stable configuration is actually
reached with probability 1 under the standard stochastic kinetic model [14]. It
has been shown in [3] that the computational power is not reduced, that is, it
still decides precisely all semilinear sets, when we restrict to those CRNs where
(1) each reaction has two reactants and two products (e.g., disallowing reactions
such as 2A+C → 2B and A → B+C, a model known as a population protocol [3])
and (2) the system eventually halts for every possible input (see also [7]).

One can imagine alternative output conventions, i.e., ways to interpret what
is the output of a configuration, while retaining the requirement that a cor-
rect output-stable configuration is reachable from any reachable configuration.
Rather than requiring every species to vote 0 or 1, for example, allow the CRN
to designate some species as nonvoters. It is not difficult to show that such CRNs
have equivalent computational power: They are at least as powerful since one
can always choose all species to be voters. The reverse direction follows by con-
verting a CRN with a subset of voting species into one in which every species

1 We use the term “error-free” in this section to refer to a specific requirement of
“stability” defined formally in Sect. 2.2. When the set of configurations reachable
from an initial configuration is always finite (for instance, with population protocols,
or more generally mass-conserving CRNs), then stability coincides with probability
0 of error. See [9] for an in-depth discussion of how these notions can diverge when
the set of configurations reachable from an initial configuration is infinite.
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votes, by replacing every nonvoting species S with two variants S0 and S1, whose
voting bit is swayed by reactions with the original voting species, and which are
otherwise both functionally equivalent to S.

We investigate two output conventions that are not so easily seen to be
convertible to the original convention. The first convention is the asymmetric
model, in which there are only 1-voters, whose presence or absence indicates a
configuration-wide output of 1 or 0, respectively. It is not obvious how to con-
vert an asymmetric CRN into a symmetric CRN, since this appears to require
producing 0-voters if and only if 1-voters are absent. The second convention is
the democratic model, in which there are 0- and 1-voters, but the output of
a configuration is given by the majority vote rather than being defined only
with consensus. Intuitively, the difficulty in converting a democratic CRN into
a symmetric consensus CRN is that, although the democratic CRN may stabi-
lize on a majority of, for example, 1-voters over 0-voters, the exact numerical
gap between them may never stabilize. A straightforward attempt to convert
a democratic CRN into a consensus CRN results in a CRN that changes the
output every time a new 0- or 1-voter appears. For instance, suppose we use
the previously described CRN for computing whether x1 > x0, where x1 and
x0 respectively represent the count of 1- and 0-voters. If the original democratic
CRN repeatedly increments x0 and then x1, the resulting CRN flips between Y
and N indefinitely — thus never stabilizing in the consensus model — even if
x1 > x0 remains true indefinitely.

We show that these conventions have equivalent power as the original defi-
nition. Our techniques further establish that the class of predicates computable
by CRNs is robust to two additional relaxations of the classical notion of sta-
ble computation [3]: (1) a correct output configuration need not be reachable
from every reachable configuration, only the initial configuration, and (2) the
set of output configurations need not be “stable” (i.e., closed under application
of reactions), so long as each initial configuration can reach only a correct output.

After defining existing notions of computation by CRNs in Sect. 2, we intro-
duce in Sect. 3 a very general computational model for CRNs, called a general-
ized chemical reaction decider (gen-CRD). Its definition is directly inspired by a
recent powerful result from Petri net theory [13], restated here as Theorem 3.2.
Using this result we show that under mild conditions, gen-CRDs decide only
semilinear sets. We then show that the original symmetric consensus model, the
asymmetric consensus model, and the symmetric majority model all fit into this
framework, establishing their common expressivity.

2 Chemical Reaction Networks and Deciders

2.1 Chemical Reaction Networks

Let Z and N denote the integers and nonnegative integers, respectively. Let Λ
be a finite set. The set of vectors over N indexed by Λ (i.e., the set of functions
c : Λ → N) is denoted by N

Λ. The zero vector is denoted 0. For c, c′ ∈ N
Λ

we write c ≤ c′ if and only if c(S) ≤ c′(S) for all S ∈ Λ. For c ∈ N
Λ and
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Σ ⊆ Λ, the projection of c to Σ, denoted by c �Σ , is an element in N
Σ such

that c �Σ (S) = c(S) for all S ∈ Σ. Let ‖c‖ = ‖c‖1 =
∑

S∈Λ c(S) denote
the L1 norm of c. We sometimes use multiset notation, e.g., c = {1A, 2C} to
denote c(A) = 1, c(C) = 2, c(S) = 0 for S �∈ {A,C}, or when defining reactions,
additive notation, i.e., A + 2C.

A reaction α over Λ is a pair (r ,p) with r ,p ∈ N
Λ and r �= p, where r and

p are the reactants and products of α, respectively. We write r → p to denote
a reaction (r ,p), e.g., A + B → 2A + C denotes the reaction ({A,B}, {2A,C}).

Definition 2.1. A chemical reaction network (CRN) is an ordered pair N =
(Λ,R) with Λ a finite set and R a finite set of reactions over Λ.

The elements of Λ are called the species of N . The elements of N
Λ are called

the configurations of N . Viewing c as a multiset, each element of c is called a
molecule. For c, c′ ∈ N

Λ, we write c ⇒N c′ if there is a reaction α = (r ,p) ∈ R
such that r ≤ c and c′ = c − r + p. The transitive and reflexive closure of
⇒N is denoted by ⇒∗

N . If N is clear from the context, then we simply write ⇒
and ⇒∗ for ⇒N and ⇒∗

N , respectively. If c ⇒∗ c′, then we say c′ is reachable
from c.

For c ∈ N
Λ, we define preN (c) = {c′ ∈ N

Λ | c′ ⇒∗
N c} and postN (c) = {c′ ∈

N
Λ | c ⇒∗

N c′}. Again we omit the subscript N if the CRN N is clear from the
context. Note that for c, c′ ∈ N

Λ, we have c ∈ pre(c′) if and only if c′ ∈ post(c)
if and only if c ⇒∗ c′. We extend pre(c) and post(c) to sets X ⊆ N

Λ in the
natural way: pre(X) =

⋃
c∈X pre(c) and post(X) =

⋃
c∈X post(c).

Petri net theory is a very well established theory of concurrent computation
[20]. We recall here that CRNs are essentially equivalent to Petri nets. In Petri
net terminology, molecules are called “tokens”, species are called “places”, reac-
tions are called “transitions”, and configurations are called “markings”. Due to
this correspondence, we can apply results from Petri net theory to CRNs (which
we will do in this paper, cf. Theorem3.2). Conversely, the results shown in this
paper can be reformulated straightforwardly in terms of Petri nets. Vector addi-
tion systems [17] form a model nearly equivalent to CRNs and Petri nets, where
reactions roughly correspond to vectors with integer entries.2 In the special case
of population protocols [3], each reaction α = (r ,p) obeys ‖r‖ = ‖p‖ = 2.
As a result, for each configuration c of a population protocol, both pre(c) and
post(c) are finite (because there are only a finite number of configurations c′

with ‖c′‖ = ‖c‖). In that model, molecules are called “agents”, species are
called “states”, and reactions are called “transitions”.

2.2 Symmetric Output-Stable Deciders

We now recall how one can compute using CRNs. Say we want to decide whether
or not the number n of molecules of species X is even. One way to do this is by
2 The only difference is catalysts: reactants that are also products, e.g., C+X → C+Y ,

are allowed in CRNs and Petri nets but not in vector addition systems. Most results
for these models are insensitive to this difference.



56 R. Brijder et al.

introducing the reaction X +X → ∅.3 If n is even, then eventually all molecules
are consumed, and if n is odd, then eventually there is exactly one molecule of
species X present. Once the CRN has stabilized, the presence of a molecule of
species X signals that n is odd (i.e., there were an odd number of molecules
of species X present initially). Note that in this example there is no molecule
of any species that signals that n is even. One may think of a more elaborate
example where the presence of say, a molecule of species Veven, signals (once the
CRN has stabilized) that n is even. In this way, once the CRN has stabilized, X
“votes” that n is odd, while Veven “votes” that n is even.

A chemical reaction decider D (introduced in [8]) is a reformulation in terms
of CRNs of the notion of population protocol [3] from the field of distributed
computing. We define a set of input configurations I and two sets of “trap
configurations”, called output-stable configurations, O0 and O1. We then say
that D is output-stable and decides the set I1 ⊆ I (with I0 = I \ I1) if for
each i ∈ {0, 1} (1) starting from a configuration in Ii, the CRN remains always
within reach of a configuration in Oi (i.e., post(Ii) ⊆ pre(Oi)), and (2) once a
configuration is in Oi, it is stuck in Oi (i.e., post(Oi) = Oi).

The sets I, O0, and O1 are all of a specific form. There is a subset of input
species Σ ⊆ Λ; I consists of nonzero configurations where the all molecules
present are in Σ. The output is based on consensus: all the molecules present
in an output configuration must agree on the output. More precisely, there is a
partition {Γ0, Γ1} of Λ (called 0-voters and 1-voters, respectively),4 such that
configuration c has output i ∈ {0, 1} if all molecules present in c are from Γi

(i.e., c �Γ1−i
= 0) and c �= 0). A configuration o is defined to be in Oi — it is

output-stable — if all configurations of post(o) also have output i.
Our definition, though equivalent, is phrased differently from the usual

one [3], being defined in terms of I, O0, and O1 instead of Σ, Γ0, and Γ1.
This simplifies our generalization of this notion in Sect. 3.

Definition 2.2. A symmetric output stable chemical reaction decider (sym-
CRD) is a 4-tuple D = (N , I,O0,O1), where N = (Λ,R) is a CRN and there
are Σ ⊆ Λ and a partition {Γ0, Γ1} of Λ such that

1. I = {c ∈ N
Λ | c�Λ\Σ= 0} \ {0},

2. Oi = {c ∈ N
Λ | post(c) ⊆ Li \ L1−i}, with Li = {c ∈ N

Λ | c �Γi
�= 0} for

i ∈ {0, 1}.
3. There is a partition {I0, I1} of I such that post(Ii) ⊆ pre(Oi) for i ∈ {0, 1}.

Condition 1 states that only species in Σ may be present initially, and at
least one must be present. Condition 2 defines Li to be configurations with an
i-voter, so those in Li \ L1−i unanimously vote i, and those in Oi are stable
(“stuck” in the set Li \ L1−i). Condition 3 states that from every configuration

3 Notation ∅ indicates that this reaction has no products.
4 The definition of [8] allows only a subset of Λ to be voters, i.e., Γ0 ∪ Γ1 ⊆ Λ. This

convention is more easily shown to define equivalent computational power than our
main results about asymmetric and democratic voting.
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reachable from an initial configuration, a “correct” output stable configuration is
reachable from there; this is the usual way of expressing stable computation [6,8].
The relationships between these sets are depicted in Fig. 1.

Remark 2.3. A different definition is found in [8] and a number of other papers.
That definition relaxes ours in two ways: (1) having both voting and non-voting
species, (2) allowing non-input species in the input configuration (e.g., {1N} in
the Introduction). It turns out that (1) does not affect the computational power
of the model. It is also known [3] that (2) does not alter the computational power
(though it may affect the time complexity [5,12]).

Remark 2.4. We can equivalently define Oi = N
Λ \ pre(L1−i ∪ {0}), a form that

will be useful later. To see that this definition is equivalent, observe that N
Λ\Oi is

the set of configurations from which it is possible either to reach L1−i, or to reach
outside of Li, and the only point outside both is 0, so N

Λ \Oi = pre(L1−i ∪{0}).
Thus Oi = N

Λ \ pre(L1−i ∪ {0}).

Remark 2.5. The Oi are disjoint and closed under application of reactions: O0 ∩
O1 = ∅ and post(Oi) = Oi.

Remark 2.6. Definition 2.2 implies the (weaker) condition that Ii = I ∩pre(Oi).
This can be shown as follows. First, Ii ⊆ I and Ii ⊆ post(Ii) ⊆ pre(Oi), so Ii ⊆
I ∩ pre(Oi). To see the reverse containment, assume c ∈ I ∩ pre(Oi), but c /∈ Ii,
i.e., c ∈ I1−i ∩pre(Oi). Let o ∈ post(c) be such that o ∈ Oi; such o exists since
c ∈ pre(Oi). Since o ∈ post(I1−i) ⊆ pre(O1−i), we have o ∈ Oi ∩ pre(O1−i). Let
o ′ ∈ post(o) such that o ′ ∈ O1−i. Then o ′ ∈ post(Oi)∩O1−i — a contradiction
because post(Oi) = Oi is disjoint from O1−i.

Fig. 1. Venn diagram of configurations
that define sym-CRD. Subset relationships
depicted in their most general form: Ii ⊆
post(Ii) ⊆ pre(Oi), and Oi ⊆ Li \ L1−i.
pre(O0) and pre(O1) partition the set I =
I0 ∪ I1.

Since I0 = I ∩ pre(O0) and I1 =
I ∩ pre(O1) are disjoint, we say that
a sym-CRD D decides the set I1. If a
sym-CRD D decides the set X ⊆ N

Λ,
then the entries indexed by Λ \ Σ are
zero for each c ∈ X. Therefore, by
abuse of notation, we also say that D
decides the set X�Σ⊆ N

Σ . We will use
this convention for all chemical reac-
tion deciders with I of the given form.

Example 2.7. We construct a sym-
CRD D that decides the set x �≡ y
mod m where x and y are non-negative
integer variables, not both zero, and
m ≥ 2 is an integer constant. The vari-
ables x and y represent initial counts
of species X and Y , respectively. Let Σ = {X,Y }, Γ0 = {V0}, Γ1 = {X,Y }, and
Λ = Γ0 ∪ Γ1 be as in Definition 2.2, with the following reactions:

mX → V0, mY → V0, X + Y → V0, (2.1)
Y + V0 → Y, X + V0 → X. (2.2)
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We argue that D decides the set {c ∈ N
Σ \ {0} | c(X) �≡ c(Y ) mod m}.

Indeed, if x ≡ y mod m, then eventually all X and Y molecules are consumed
by the reactions of (2.1). The last time one of these reactions occurs introduces
a V0 molecule (there is a last reaction since x and y are not both zero). So
eventually we obtain a configuration c ∈ L0 \ L1 for which no reaction can be
applied anymore. Thus c ∈ O0. If x �≡ y mod m, then eventually we reach
a configuration with one of X or Y , but not both, remaining. The remaining
X or Y molecules consume all V0 molecules by the reactions of (2.2), without
the possibility of producing any more. So eventually we obtain a configuration
c′ ∈ L1 \ L0 for which no reaction can be applied anymore. Thus c′ ∈ O1.

2.3 Semilinear Sets

We say that X ⊆ N
Λ is linear if there is a finite set {v1, . . . , vk} ⊆ N

Λ and
b ∈ N

Λ such that X = {b +
∑k

i=1 niv i | n1, . . . , nk ∈ N}. We say that X ⊆ N
Λ

is semilinear if X is the union of a finite number of linear sets. Semilinear sets are
precisely the sets definable in Presburger arithmetic, which is the first-order the-
ory of natural numbers with addition. As a consequence, the class of semilinear
sets is closed under union, intersection, complementation, and projection [15].
An useful characterization of semilinear sets is that they are exactly the sets
expressible as finite unions, intersections, and complements of sets of one of the
following two forms: threshold sets of the form {x | ∑k

i=1 ai · x (i) < b} for some
constants a1, . . . , ak, b ∈ Z or mod sets of the form {x | ∑k

i=1 ai · x (i) ≡ b
mod c} for some constants a1, . . . , ak ∈ Z and b, c ∈ N.

The following result was shown in [3,4]. In fact, the result was shown for
output-stable population protocols, which form a subclass of the sym-CRDs.
However, the proof is sufficiently general to hold for sym-CRDs as well.5

Theorem 2.8 [3,4]. Let X ⊆ N
Σ \ {0}. Then X is semilinear if and only if

there is a sym-CRD that decides X.

For a configuration c ∈ N
Σ , pre(c) and post(c) are in general not semi-

linear [16]. Hence the semilinearity of Theorem 2.8 is due to additional “com-
putational structure” of a sym-CRD. We repeatedly use the following notion of
upwards closure to prove that certain sets are semilinear. The results below were
shown or implicit in earlier papers [4,10]. We say X ⊆ N

Λ is closed upwards if,
for all c ∈ X, c′ ≥ c implies c′ ∈ X.

Lemma 2.9. Every closed upwards set X ⊆ N
Λ is semilinear.

5 Indeed, the negative result of [4] that sym-CRDs decide only semilinear sets is more
general than stated in Theorem 2.8, applying to any reachability relation ⇒∗ on N

Λ

that is reflexive, transitive, and “additive” (x ⇒∗ y implies x + c ⇒∗ y + c). Also,
the negative result of [4] implicitly assumes that the zero vector 0 is not reachable
(i.e., pre(0) = {0}). This assumption is manifest for population protocols (if the
population size is non-zero). For CRNs, this assumption can be readily removed; see
Lemma 2.11.
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Lemma 2.10. If X ⊆ N
Λ is closed upwards, then so are pre(X) and post(X).

Our results require pre(0) to be semilinear. Observe that pre(0) = {0} if and
only if for each reaction α = (r ,p), p �= 0. The next lemma shows that we can
assume this holds for sym-CRDs without loss of generality.

Lemma 2.11. For every sym-CRD D, there is a sym-CRD D′ deciding the same
set such that, for each reaction α = (r,p) of D′, p �= 0.

3 Generalized Chemical Reaction Deciders

In this section, we formulate a more generalized definition of CRDs that captures
the original “symmetric” definition (sym-CRD) in Sect. 2.2 and the new “asym-
metric” definition (asym-CRD) in Sect. 4, as well as the “democratic” definition
(dem-CRD) in Sect. 5. In this section we show how to use a result of [13] to
re-prove the result of Angluin, Aspnes, and Eisenstat [4] that sym-CRDs decide
only semilinear sets. This is a warmup to our main results, shown in Sects. 4
and 5, that asym-CRDs and dem-CRDs decide exactly the semilinear sets.

Fig. 2. Venndiagramof configurations that
define generalized chemical reaction decider
(gen-CRD). Like sym-CRD, pre(O0) and
pre(O1) partition the input set I = I0 ∪
I1. Differences with sym-CRD: 1) Possibly
Oi � post(Oi) (output is not necessarily
“stable”). 2) Although Ii ⊆ pre(Oi) (cor-
rect output reachable initially), yet possibly
post(Ii) �⊆ pre(Oi) (correct output could
become unreachable).

In the generalized notion defined
below we have dropped the specific
structure of I, O0, and O1 (they are
now arbitrary subsets of N

Λ) and we
have replaced the requirement that
post(Ii) ⊆ pre(Oi) by the weaker con-
dition that Ii = I ∩ pre(Oi) (recall
Remark 2.6). Also, we do not use the
term “stable” in reference to this
generalized notion, since there is no
requirement that the output configu-
rations Oi be closed under applica-
tion of reactions (i.e., we allow Oi �

post(Oi)).
The relationships among the sets

relevant to the definition below are
depicted in Fig. 2.

Definition 3.1. A generalized chem-
ical reaction decider (gen-CRD) is a
4-tuple D = (N , I,O0,O1), where N = (Λ,R) is a CRN, I,O0,O1 ⊆ N

Λ, and
there is a partition {I0, I1} of I such that Ii = I ∩ pre(Oi) for i ∈ {0, 1}.

Observe that every sym-CRD is a gen-CRD. However, the requirements to
be a gen-CRD are weaker than for sym-CRDs: (1) the condition post(Oi) = Oi

need not hold for gen-CRDs, so it may be possible to “escape” from Oi, and
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(2) since post(Ii) ⊆ pre(Oi) need not hold for gen-CRDs, it is possible to take a
“wrong” route starting from Ii such that Oi becomes unreachable.6

Despite these relaxations, observe that the following property of sym-CRDs
is retained in gen-CRDs: I is the disjoint union of I0 = I ∩ pre(O0) and I1 =
I ∩ pre(O1), i.e., from each input configuration, exactly one of the two output
sets O0 or O1 is reachable. We say that a gen-CRD D decides the set I1.

Definition 3.1 is inspired by the following key Petri net result from
[13, Theorem 10] (formulated here in terms of CRNs).

Theorem 3.2 [13]. Let N be a CRN and O0,O1, I ⊆ N
Λ be semilinear. If

{I0, I1} is a partition of I with Ii = I ∩ pre(Oi) for i ∈ {0, 1}, then I0 and I1

are semilinear.

We say that a gen-CRD D = (N , I,O0,O1) is semilinear if I, O0, and O1

are all semilinear. We immediately have the following corollary to Theorem 3.2.

Corollary 3.3. If a semilinear gen-CRD decides X ⊆ N
Λ, then X is semilinear.

As a by-product of the results shown in [13], the reverse direction of
Theorem 2.8 (which is the most difficult implication) was reproven in [13] for
the case of population protocols. That proof however essentially uses the fact
that, for population protocols, post(c) is finite for all configurations c, which is
not true for CRNs in general. Fortunately, one may still obtain the full reverse
direction of Theorem 2.8 by showing that every sym-CRD is semilinear (cf. the
proof of Theorem 3.4 below) and then invoking Corollary 3.3.

We now use this machinery to re-prove the result, due originally to Angluin,
Aspnes, and Eisenstat [4], that sym-CRDs decide only semilinear sets.

Theorem 3.4. Every sym-CRD decides a semilinear set.

Proof. Let D = (N , I,O0,O1) be a sym-CRD. Let I ′ = {c ∈ N
Λ | c�Λ\Σ= 0}.

The complement of I ′ is closed upwards, thus I ′ is semilinear, as is I = I ′ \{0}.
We now show that each Oi is semilinear. Let Li = {c ∈ N

Λ | c�Γi
�= 0} as in

Definition 2.2. By Remark 2.4, Oi = N
Λ \ pre(L1−i ∪ {0}) = N

Λ \ (pre(L1−i) ∪
pre(0)). By Lemma 2.11 we may assume that each reaction α = (r ,p) of D has
p �= 0, so pre(0) = {0}, which is semilinear. Since L1−i is closed upwards, by
Lemma 2.10, pre(L1−i) is also closed upwards, so semilinear by Lemma 2.9. Since
semilinear sets are closed under union and complement, Oi is also semilinear, so
D is a semilinear gen-CRD. The theorem follows by Corollary 3.3. �
Remark 3.5. From the hypothesis post(Ii) ⊆ pre(Oi) in Definition 2.2, we used
only the weaker conclusion Ii = I ∩ pre(Oi). In other words, we need merely
that Oi is initially reachable from Ii itself (and that O1−i is unreachable from
Ii, since pre(O0) and pre(O1) partition I). We do not require that Oi remains

6 While Definition 3.1 appears almost too general to be useful, Corollary 3.3 says that
if I, O0, O1 are semilinear, then so are I0, I1, which implies that any CRD definition
that can be framed as such a gen-CRD must decide only semilinear sets.
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reachable from every configuration reachable from Ii (i.e., post(Ii)). Hence one
could weaken part 3 of Definition 2.2 to use the condition Ii = I ∩ pre(Oi), and
Theorem 3.4 still holds.7

Despite Remark 3.5, if a gen-CRD does obey the stronger condition
post(Ii) ⊆ pre(Oi), then a convenient property holds: each Oi may be enlarged
without altering the set I1 decided by the gen-CRD, so long as O1−i remains
unreachable from Oi. The following lemma formalizes this.

Lemma 3.6. Let D = (N , I,O0,O1) be a gen-CRD that decides I1 and let
I0 = I \ I1. For i ∈ {0, 1}, assume that post(Ii) ⊆ pre(Oi), and let O′

i ⊇ Oi

with post(O′
i) ∩ O1−i = ∅. Then D′ = (N , I,O′

0,O′
1) is a gen-CRD deciding I1.

Proof. We have Ii = pre(Oi) ∩ I ⊆ pre(O′
i) ∩ I for i ∈ {0, 1}. To show that this

inclusion is an equality, it suffices to show that pre(O′
0) ∩ I and pre(O′

1) ∩ I are
disjoint.

Let i ∈ Ii. Then i ∈ pre(Oi) ⊆ pre(O′
i). Assume to the contrary i ∈

pre(O′
1−i). Let o ∈ O′

1−i ∩ post(i), so o ∈ post(i) ⊆ post(Ii) ⊆ pre(Oi). Thus
O′

1−i ∩ pre(Oi) �= ∅. In other words, post(O′
1−i) ∩ Oi �= ∅ — a contradiction.

Hence pre(O′
0) ∩ I and pre(O′

1) ∩ I are disjoint. �

4 Asymmetric Output-Stability

We now give a natural alternative output convention for CRDs, which we call an
asymmetric output-stable CRD (asym-CRD). Whereas the output i of a sym-
CRD is based on both the presence of species of one type Γi and the absence of
a species of a different type Γ1−i, the output of an asym-CRD is based solely on
the presence or absence of a single species type Γ1.

For each i ∈ I the CRD can either (1) reach a configuration o so that for
each configuration o ′ reachable from o (including o itself) we have o ′�Γ1 �= 0 or
(2) reach a configuration o so that for each configuration o ′ reachable from o we
have o ′�Γ1= 0. Similarly to gen-CRDs, and unlike sym-CRDs,8 it is not required
that such a configuration o is reachable from any configuration c reachable from
the initial i , merely that such a o is reachable from i itself. Even this more liberal
assumption does not allow the CRD to decide a non-semilinear set.

Definition 4.1. An asymmetric output-stable chemical reaction decider (asym-
CRD) is a gen-CRD D = (N , I,O0,O1), where there are Σ ⊆ Λ and voting
species Γ1 ⊆ Λ such that

7 In contrast, the proof of [4] crucially requires the hypothesis post(Ii) ⊆ pre(Oi).
8 As noted, sym-CRDs could be defined by replacing the requirement post(Ii) ⊆
pre(Oi) with Ii = I ∩ pre(Oi) and retain the same power, but for clarity we retain
the original definition.
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1. I = {c ∈ N
Λ | c�Λ\Σ= 0} \ {0}, and

2. Oi = {c ∈ N
Λ | post(c) ⊆ Vi} for i ∈ {0, 1}, with V1 = {c ∈ N

Λ | c�Γ1 �= 0}
and V0 = N

Λ \ V1.9

Condition 1 states that only species in Σ may be present initially, and at
least one must be present. Condition 2 defines V1 and V0 to be configurations
with and without Γ1 voters, and Oi to be the stable subsets of Vi.

Example 4.2. Consider the following asym-CRD D′, where Σ = {X,Y } and
Γ1 = {X,Y }, which decides the same set as in Example 2.7 (i.e., x �≡ y mod m).

mX → ∅, mY → ∅, X + Y → ∅. (4.1)

If x ≡ y mod m, then eventually all X and Y molecules are consumed and we
obtain configuration c = 0 ∈ O0. Otherwise, all X and Y cannot be consumed,
and we are in O1. This example illustrates that the asym-CRD computing con-
vention may permit a simpler implementation in some cases. Indeed, compared
with Example 2.7, (4.1) has 2 fewer reactions and 1 fewer species (and is also
“faster” since fewer reactions need to occur).

We first observe that asym-CRDs have at least the computational power of
sym-CRDs.

Observation 4.3. Let D = (N , I,O0,O1) be a sym-CRD deciding X, with
voter partition {Γ0, Γ1}. Then D′ = (N , I,O′

0,O′
1), where, for i ∈ {0, 1}, O′

i =
{c ∈ N

Λ | post(c) ⊆ Vi}, with Vi as in Definition 4.1 (with respect to Γ1), is an
asym-CRD deciding X.

Proof. This follows from Lemma 3.6 since (1) Oi ⊆ O′
i and (2) post(O′

i) = O′
i is

disjoint from O1−i for i ∈ {0, 1}. �
We now show that asym-CRDs have no greater computational power than

sym-CRDs. This is not as immediate as the other direction. First, observe that
an asym-CRD may not be a sym-CRD; if we interpret species V0 ∈ Λ \ Γ1 as
voting “0”, then a sym-CRD is required to eliminate them to output “1”, but not
an asym-CRD. Moreover, a direct transformation of an asym-CRD into a sym-
CRD appears difficult. Intuitively, the problem is that the absence of molecules
in Γ1 is not detectable by a CRN, so there is no obvious way to ensure that
a species V0 ∈ Λ \ Γ1 is produced only if all V1 ∈ Γ1 are absent. The next
obvious proof strategy would be to show, as in the proof of Theorem3.4, that
every asym-CRD is a semilinear gen-CRD. However, it is not clear whether O1 is
semilinear. Nonetheless, due to the generality of Definition 3.1 and Theorem 3.2,
we can define a semilinear gen-CRD that decides the same set, by taking a subset
of O1 that is provably semilinear and still satisfies the necessary reachability

9 Just as for sym-CRDs, post(Oi) = Oi. Note that V1 above is the same as L1 in
Definition 2.2, but L0 �= V0, since L1 and L0 can have nonempty intersection if there
are conflicting voters present in some configuration.
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constraints, even though the gen-CRD we define is not in fact an asym-CRD (in
particular, its “output” set O1 is not closed under application of reactions).

Recall that a homomorphism f : N
Λ → Z obeys f(c+c′) = f(c)+f(c′) for all

c, c′ ∈ N
Λ. Some examples include f(c) = c(S) for some S ∈ Λ, f(c) = ‖c�Δ‖

for some Δ ⊆ Λ, or f(c) = c(S1) − c(S2) for some S1, S2 ∈ Λ.
For a CRN N and a function f : N

Λ → Z, we define nondecf = {c ∈ N
Λ |

∀c′ ∈ post(c), f(c′) ≥ f(c)} as the set of configurations c in which f is minimal
among all the configurations reachable from c.

We now prove a key lemma, which will be used for characterizing both asym-
CRDs in this section and dem-CRDs in Sect. 5.

Lemma 4.4. Let N be a CRN and f : N
Λ → Z a homomorphism. Let O = {c ∈

N
Λ | post(c) ⊆ V} with V = {c ∈ N

Λ | f(c) > 0}. Then O ∩ W is semilinear
and pre(O ∩ W ) = pre(O), where W = nondecf .

Proof. We first prove pre(O∩W ) = pre(O). Obviously, pre(O∩W ) ⊆ pre(O). To
prove the reverse containment, let c ∈ pre(O). Hence c ∈ pre(o) for some o ∈ O.
Since every o ′ ∈ post(o) satisfies f(o ′) > 0, there is o ′ ∈ post(o) such that f(o ′)
is minimal among all configurations in post(o). Thus o ′ ∈ W . Since post(O) = O,
we have o ′ ∈ O. Hence, o ′ ∈ O ∩ W . Now, o ∈ pre(o ′) and c ∈ pre(o), and so
c ∈ pre(o ′). Therefore, c ∈ pre(O ∩ W ), so pre(O) ⊆ pre(O ∩ W ).

We now show that O ∩W is semilinear. Observe that the set N
Λ \W = {c ∈

N
Λ | ∃c′ ∈ post(c), f(c′) < f(c)} is closed upwards. Indeed, if c ∈ N

Λ \ W and
c′ ∈ post(c) with f(c′) < f(c), then for all d ∈ N

Λ, c′ + d ∈ post(c + d) and
f(c′ + d) = f(c′) + f(d) < f(c) + f(d) = f(c + d). Thus N

Λ \ W is semilinear
by Lemma 2.9, and hence also W . Since O ⊆ V, we have O ∩ W ⊆ V ∩ W .
Conversely, if c ∈ V ∩ W , then f(c) > 0 since c ∈ V, and for all c′ ∈ post(c),
f(c′) ≥ f(c) > 0 since c ∈ W . Thus c ∈ O ∩ W , showing O ∩ W = V ∩ W ,
which is semilinear since V and W are. �

Using Lemma 4.4 we show that every asym-CRD can be changed into a semi-
linear gen-CRD by choosing O1 ∩ W , rather than O1, as its “output 1” set of
configurations. Note that unlike in the definition of sym-CRD and asym-CRD,
O1 ∩ W is not in general closed under application of reactions.

Lemma 4.5. Let D = (N , I,O0,O1) be an asym-CRD deciding X and Γ1 be
as in Definition 4.1. Let W = nondecf (Γ1) with f : N

Λ → Z defined as f(c) =
‖c�Γ1‖ for all c ∈ N

Λ. Then D′ = (N , I,O0,O1 ∩ W ) is a semilinear gen-CRD
deciding X.

Proof. Observe that f is a homomorphism. Now, Lemma 4.4 tells us that
pre(O1 ∩ W ) = pre(O1); thus D′ decides X.

To complete the proof, it suffices to show that D′ is semilinear. I is obtained
from the closed-upwards set N

Σ \{0} by padding zeros for the species of Λ\Σ, so I
is semilinear. O1 ∩ W is semilinear by Lemma 4.4. To see that O0 is semilinear, let
V0 and V1 be as in Definition 4.1. Clearly V1 is closed upwards, so semilinear. So, (1)
pre(V1) is also closed upwards and therefore semilinear (by Lemmas 2.9 and 2.10)
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and (2) V0 = N
Λ \ V1 is semilinear. Thus, O0 = V0 \ pre(V1) is semilinear since the

class of semilinear sets is closed under set difference. �
The following is the first of two main results of this paper. It says that the

computational power of sym-CRDs equals that of asym-CRDs; they both decide
exactly the semilinear sets.

Theorem 4.6. Let X ⊆ N
Σ \ {0}. Then X is semilinear if and only if there is

an asym-CRD that decides X.

Proof. The forward direction follows from Observation 4.3 and Theorem 2.8. For
the reverse direction, let D be an asym-CRD deciding X. By Lemma 4.5, there
is a semilinear gen-CRD D′ deciding X, which is semilinear by Corollary 3.3. �

5 Democratic Output-Stability

Another reasonable alternative output convention is the one most naturally asso-
ciated with the term “voting”: a democratic output convention in which, rather
than requiring a consensus, we define output by majority vote. In this case, for
sets of voting species Γ0 and Γ1, the only undefined outputs occur in “tie” con-
figurations c where ‖c�Γ0‖ = ‖c�Γ1‖. In this section we show that such CRDs
have equivalent computing power to sym-CRDs.

Definition 5.1. A democratic output-stable chemical reaction decider (dem-
CRD) is a gen-CRD D = (N , I,O0,O1), where there are Σ ⊆ Λ and

a partition {Γ0, Γ1} of Λ such that

1. I = {c ∈ N
Λ | c�Λ\Σ= 0} \ {0},

2. Oi = {c ∈ N
Λ | post(c) ⊆ Mi}, with Mi = {c ∈ N

Λ | ‖c�Γi
‖ > ‖c�Γ1−i

‖} for
i ∈ {0, 1}.
Note that M0 ∩ M1 = ∅, and that Oi is stable, i.e., Oi = post(Oi). A sym-

CRD reaches a consensus, the strongest kind of majority, leading to the following
observation implying that dem-CRDs are at least as powerful as sym-CRDs.

Observation 5.2. Let D = (N , I,O0,O1) be a sym-CRD deciding X, with
voter partition {Γ0, Γ1}. Then D′ = (N , I,O′

0,O′
1), where O′

i = {c ∈ N
Λ |

post(c) ⊆ Mi} for i ∈ {0, 1}, with Mi as in Definition 5.1, is a dem-CRD
deciding X.

Proof. This follows from Lemma 3.6 since (1) Oi ⊆ O′
i and (2) post(O′

i) = O′
i is

disjoint from O1−i for i ∈ {0, 1}. �
The converse result, that dem-CRDs are no more powerful than sym-CRDs,

implies the second main result of this paper. The proof of the following theorem
is found in the full version of this paper, and relies on the gen-CRD framework of
Sect. 3 and Lemma 4.4 (choosing f that is the difference between 0 and 1 voters).

Theorem 5.3. Let X ⊆ N
Σ \ {0}. Then X is semilinear if and only if there is

a dem-CRD that decides X.
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6 Discussion

Using a recent result about Petri nets [13] (cf. Theorem 3.2) we have presented a
framework able to capture different output conventions for computational CRNs.
The original symmetric consensus-based definition [3] can be fitted in this frame-
work, giving a new proof that such CRNs are limited to computing only semilin-
ear sets. Two additional definitions, an asymmetric existence-based convention,
and a symmetric majority-vote convention, can be fitted in this framework, and
thus have the same expressive power as the original.

We show that asym-CRDs and dem-CRDs are no more powerful than sym-
CRDs by showing that they are limited to deciding semilinear sets, which is
known also to apply to sym-CRDs. It would be informative, however, to find
a proof that uses a direct simulation argument, showing how to transform an
arbitrary asym-CRD or dem-CRD into a sym-CRD deciding the same set. Along
a similar line of thinking, we have defined the computational ability of CRDs
without regard to time complexity, which is potentially sensitive to definitional
choices, even if the class of decidable sets remains the same [1,2,5,11,12]. It
would be interesting to find cases in which asym-CRDs or dem-CRDs are be
able to compute faster than any equivalent sym-CRD.

An open problem is to consider other output conventions, where we possibly
step out of semilinearity. For example, consider a designated species V1 such that
for each input configuration d ∈ I, (1) d ∈ I1 if we always eventually reach a
configuration c such that all configurations reachable from c has a V1 molecule,
and (2) d ∈ I0 if we can never reach such a configuration c. Hence the output of
a configuration is then based on a behavioral property of the system (whether it
is stable) instead of a syntactic property of the configuration (whether it contains
a particular molecule). It is not clear how to apply Theorem 3.2, which requires
that I0 = I ∩ pre(S) for some semilinear set S.

Acknowledgements. R.B. thanks Grzegorz Rozenberg for interesting and useful dis-
cussions regarding chemical reaction networks. D.D. thanks Ryan James for suggesting
the democratic CRD model. The authors are grateful to the anonymous reviewers for
comments that have helped improve the presentation.
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Abstract. Chemical reaction networks (CRNs) are a versatile language
for describing the dynamical behaviour of chemical kinetics, capable of
modelling a variety of digital and analogue processes. While CRN designs
for synchronous sequential logic circuits have been proposed and their
implementation in DNA demonstrated, a physical realisation of these
devices is difficult because of their reliance on a clock. Asynchronous
sequential logic, on the other hand, does not require a clock, and instead
relies on handshaking protocols to ensure the temporal ordering of differ-
ent phases of the computation. This paper provides novel CRN designs
for the construction of asynchronous logic, arithmetic and control flow
elements based on a bi-molecular reaction motif with uniform reaction
rates. We model and validate the designs using Microsoft’s GEC tool.

1 Introduction

Chemical Reaction Networks (CRNs) are traditionally used to capture the
behaviour of inorganic and organic chemical reactions in a well-mixed solution.
Recently, a paradigm shift in the scientific community has seen the use of CRNs
extend to that of a high-level programming language for molecular computing
devices [10], where the fundamental computational process differs from conven-
tional digital electronics in that it involves transformation of input chemicals
into output via reaction rules. Several digital and analogue circuits [17,25] have
been designed in CRNs and their computational power studied [7,26]. It has also
been demonstrated in principle that any CRN can be physically realised in DNA
[3,9,26]. CRNs are therefore particularly attractive as a programming language
for use in nanotechnology and biomedical applications, where it is difficult to
integrate traditional electronics.

While CRN designs for synchronous sequential logic circuits have been pro-
posed, a physical realisation of these devices is challenging because of their
reliance on a clock to synchronise events in order to ensure the correct temporal
order of the phases of the computation. Clocks are difficult to make, since they
arise from unique conditions of chemical concentrations and kinetic constants,
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and must control a large number of events. In electronics, an alternative circuit
design technology is asynchronous sequential logic [27], which instead of a clock
relies on handshaking protocols to synchronise events. Asynchronous circuits are
widely used for low-power microprocessor designs, e.g., by ARM, though require
a larger circuit area. The key component is the Muller C-element, which is used
to synchronise multiple independent processes. To ensure Turing completeness
of asynchronous circuits, we also require an isochronous fork in addition to the
Muller C-element. An isochronous fork is a component which produces a fan-out
of signals that reach the target at virtually the same time. This assumption is
difficult to achieve in conventional electronics, because of the need to make the
wires the same length, but is straightforward in chemical kinetics because of the
well-mixed assumption.

This paper provides novel CRN designs for the construction of an asynchro-
nous computing device based on a bi-molecular reaction motif inspired by the
Approximate Majority network [1,5]. All components are produced with simple
reactions and uniform reaction rates, and are independent of a universal clock.
Moreover, any design provided in this paper could in principle be realised as a
two-domain DNA strand displacement device [3].

We work with the dual-rail design methodology and employ a variant of the
diagrammatic language of [4] to represent the designs at the high level. Start-
ing from the Muller C-element, we design the main components of a complete
asynchronous computing device in terms of CRNs in a principled way, includ-
ing logic gates, control flow and basic arithmetic. We illustrate the designs on
selected components validated using Microsoft’s Visual GEC tool1, both for the
deterministic and stochastic semantics, with the latter approximated using a
prototype implementation of the Linear Noise Approximation of [6].

Our designs constitute the first feasible implementation of asynchronous com-
putational components as CRNs, and are relevant for a multitude of applications
in synthetic biology and biosensing.

2 Related Work

The computational power of CRNs, viewed as a programming language for engi-
neering biochemical systems, has been studied by a number of authors, to men-
tion [7,10]. Researchers have investigated their power to simulate Boolean cir-
cuits, molecular machines, or distributed algorithms [1,11,17,25,26]. Assuming
a small probability of error, CRNs have been shown to be Turing-universal [25].
Since the behaviour of CRNs is asynchronous, a fact evident through their equiv-
alence with Petri net models [10], the main difficulty with programming them
is the need to control the order of reactions. In [10] it is suggested that this
“uncontrollability” can be handled by changing rate constants, an idea followed
up in [19], where CRN designs for basic arithmetic are given based on two rate
constants, “fast” and “slow”. Our designs, on the other hand, exploit the asyn-
chrony of the underlying CRN model and work with uniform rates.
1 http://lepton.research.microsoft.com/webgec/.

http://lepton.research.microsoft.com/webgec/
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In [10] we see the construction and composition of simple logic gates based
upon catalytic reactions, but they do not mention control flow or systematic
component design in a dual rail setting. In [23] the authors propose CRNs for
an inverter, an incrementer, a decrementer, and a copier; their designs are based
on two rate constants, “fast” and “slow”, and thus are not rate-independent.
A system of actual chemical reactions is found in [12], where a precise molecular
implementation is given for gates complete with a thermodynamic analysis of
how the system would evolve, though only for simple gate designs. An implemen-
tation of individual dual-rail logic gates that are rate-independent is given in [8].
In contrast, our designs are composable and capable of performing non-trivial
computation.

Designs for the Muller C-element, though not the remaining components of
an asynchronous device, have been constructed from genetic logic gates [20] and
a genetic toggle switch [21], but we are not aware of any other nanoscale designs
for asynchronous circuits.

3 Preliminaries

3.1 Chemical Reaction Networks

A CRN C is a finite set R of reactions acting on a finite set S of species. A
reaction, which can either be reversible or irreversible, is a triple written in
the form 〈r ∈ SN, k ∈ R>0, p ∈ SN〉, where r and p are the multisets of species
reactants and products, respectively, and k > 0 is the reaction rate [25]. We work
with bi-molecular reactions with uniform rates, including catalytic reactions, and
assume mass-action kinetics.

The stochastic semantics of a CRN [13] can be given as a continuous-time
Markov chain with the state space given as discrete vectors of population counts,
which can be solved through the Chemical Master Equation (CME) whose
numerical solution may be infeasible for large molecular counts. The determinis-
tic semantics approximates the species concentrations over time as a solution of
rate equations [28], assuming a continuous state space, but is valid only for high
molecular counts and cannot model stochastic fluctuations. A stochastic approx-
imation of the CME is possible using the Linear Noise Approximation (LNA)
[28], which provides Gaussian distributions for variance. This is a continuous
approximation, which is independent of initial populations and hence scalable,
and is valid in the limit of high populations. LNA was recently adapted to pro-
vide stochastic analysis of the evolution of populations of molecular species of
CRNs [6] and extended to probabilistic reachability in [2].

We emphasise that we work with CRNs as an abstract programming language
for artificial devices, as argued in [10], where we assume that molecules can be
designed to carry out the required reactions. In principle, any CRN can be
implemented using nucleic-acid strand displacement cascades [3,26], which has
been recently experimentally demonstrated in [9].
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3.2 Principles of Asynchronous Circuit Design

Asynchronous computation [27] is Turing complete [18] meaning that any
bounded-tape Turing machine can be implemented with an asynchronous cir-
cuit, providing that the implementation of that circuit has isochronous forks.
An isochronous fork is the propagation of a signal from a single source to mul-
tiple receivers with the important constraint that the signal must reach the
receivers at precisely the same time. In classical digital circuitry this could be
seen as the propagation of a signal down wires of exactly the same length from
one component to another.

Asynchronous computation relies on ‘local cooperation’ in the form of hand-
shaking protocols, rather than a governing clock. These protocols exchange com-
pletion signals (high or low, also denoted 1 or 0) in order to establish when a
computation has terminated. Asynchronous circuits rely heavily on latches and
rendez-vous elements. A rendez-vous element is a component which ‘waits’ on
two or more actions to complete before a system continues. One form of a rendez-
vous element is the Muller C-element [27, p. 5], which has two Boolean inputs
and one output, and is “stateful”. When both inputs are the same, the output
switches, if necessary, to be equal to the inputs, but when the inputs are different
the output remains what it was last time the inputs were equal. The C-element
suffices to build a gate that synchronises events, but an isochronous fork, which
produces a fan-out of signals that reach the target at virtually the same time, is
needed to ensure Turing completeness [18].

C-elements allow a circuit to be speed-independent by a series of local hand-
shakes. This means that we can wait for longer computational paths to complete
before advancing without additional computation occurring, negating the use
of a system clock. A fundamental construct built from C-elements is a Muller
pipeline, shown in Fig. 1, which is used to relay handshakes and can be com-
bined with data storage or computational components. The Muller pipeline is
constructed by the composition of Muller C-elements and NOT-gates. Initially
all C-elements are set to a value of 0. The ith C-element C[i] will propagate a
1 from its predecessor, C[i − 1], only if its successor, C[i + 1], is 0. Similarly, it
will propagate a 0 from its predecessor only if its successor is 1. Eventually the
first request initialized on the left hand side of our pipeline is propagated to the
final request on the right. The protocol enacted upon this pipeline uses request
and acknowledge rails that can be set to high or low. The Muller pipeline imple-
ments a basic four phase protocol, which is as follows. Firstly, the sender sends
data and sets request to high, viewed in Fig. 1 as the signal ReqHi. The receiver
then records this data and sets acknowledge to high (AckHi). Then the sender
responds by setting request to low (ReqLo), and finally the receiver acknowledges
this by setting acknowledgement to low (AckLo). If at any point a handshake
along the pipeline is slower than another, the pipeline will behave like a FIFO
queue with data preserved. Herein lies the important purpose of the pipeline: it
allows for the delay-insensitive transfer of information from one place to another.
In combination with a latch we can create the propagation of information across
latches using the pipeline as a control structure.



Chemical Reaction Network Designs for Asynchronous Logic Circuits 71

Fig. 1. Signals are propagated from left to right using a Muller pipeline. The pipeline
effectively queues data, only allowing a transition to occur when a further signal has
been acknowledged.

4 Circuit Construction and Design

Asynchronous computation is well suited to CRNs: they are inherently asyn-
chronous as each reaction happens stochastically and there is no inherent clock
that governs their operation.

We use a dual-rail implementation of asynchronous circuits due to the fact
that we cannot detect when there are no molecules of a molecular species; we can
only detect their presence. This means that there is a separate species or ‘signal’
representing the values high and low (or logical 1 and 0). These species are
named accordingly; for instance, a signal x will be represented by two species
xhi and xlo representing the high and low signals. Circuit design follows the
normal rules in which components are connected by rails that transport data
around the system. We assume standard knowledge of logic gates.

The designs are presented in a diagrammatic notation which allows us to
view CRNs as circuits instead of a list of reactions. All our designs are built
from a simple motif, seen here, which describes the two reactions:

or in standard CRN notation:

xhi + ylo
k→ xhi + yhi xlo + yhi

k→ xlo + ylo (1)

where xhi, xlo are catalytic to the reaction yhi � ylo and k is the rate which
is the same for both reactions, where we set k = 1. In general, a black circle
represents that the species connected to it is catalytic to the reaction adjacent to
the black circle. In our implementation, the presence of every signal is catalytic
to another signal, and thus the total number of molecules for each signal (pair
of species) is preserved. Implementations of catalytic gates typically rely on fuel
molecules to provide energy to catalyse one species into another [26].
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Our motif can be used both as a basic building block for a logical element as
well as a control element. For example xhi, xlo, above, can be used to control two
separate sub-circuits through yhi, ylo. This demonstrates that, through just two
reactions, we can create circuits that exhibit complex behaviour both in control
flow and logic.

We assume well-mixed solution, which ensures that the probability of collision
between molecules is independent of their position. This yields a circuit that
operates correctly but with unknown delays, called delay-insensitive [27].

4.1 Latches and the Muller C-Element

A latch is a device used in electronics to store a logical 0 or 1; it needs to have at
least two stable states which are cycled between. We present three latch designs
in Fig. 2(a), each intended to interface in a specific way when used within a larger
system. The first, shown in Fig. 2(a-i), is almost identical to our motif except
for two additional reactions which catalyse ylo to yhi, and vice versa. The latch
in Fig. 2(a-ii) has an input rhi used to reset the latch to a central state. The
advantage of this central state, ymid, is that the latch can be in a state where
neither yhi nor ylo are present, which is useful if these reactions are catalytic
to any other component. In its electronic counterpart, a system may have a rail
deciding whether the component is active or inactive; our intermediary ymid
fulfils this function, as the system is in a state where neither yhi nor ylo are
present. In Fig. 2(a-iii), we see the latter latch combined with control species
chi, clo. These species are used to synchronise the latch in the pipeline. Even
when the input signal xhi, xlo is present, we still need the species chi to be
present in order to catalyse the reaction s2 → shi or s4 → slo, which are the
output species. This is needed since these output species cannot be read until
the system has synchronised.

A C-element is conceptually similar to a latch except for having two inputs, x
and y. The design for this, presented in Fig. 2(b-i), was inspired by the Approx-
imate Majority (AM) circuit in [5]. The circuit in Fig. 2(b-ii) is similar to AM
of [5] except for separating the inputs. Note that the C-element includes two
separate AM circuits, shown schematically in Fig. 2(b-iii), where the arrows in
the AM box indicate the direction of switching between the two stable states.
Using this mechanism it is possible to trap the gate into the state zdn or zup
given both high inputs xhi, yhi or both low inputs xlo, ylo. However, when one of
these inputs is changed, we see that the gate is trapped in one of these states in
view of the feedback loops. The second AM mechanism corrects the weak output
signal zdn, zup from the first AM mechanism, meaning the outputs of this gate
are zlo and zhi.

4.2 Logic and Arithmetic

Although gate designs for Boolean operators have been proposed in CRNs [25],
we present dual-rail implementations of logic gates in line with other designs
proposed within this paper. In contrast to the gates in [25], our gates account
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Fig. 2. a) Latches-(i) Two state latch (ii) Three state latch (iii) Latch with control
input b) Muller C-Element-(i) C-Element (ii) Approximate Majority circuit based on
[3] (iii) C-Element as composition of Approximate Majority circuits c) Control Flow
Design-(i) Fork (ii) Join (iii) Arbiter (iv) Arbiter as AM circuit d) Logic Gates-(i) NOT
(ii) AND (iii) OR (iv) NAND (v) XOR (vi) NOR
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for all inputs x and y, and also respond to change in input. The AND-gate,
shown in Fig. 2(d-ii), has inputs x, y expressed in our dual-rail implementation.
With the presence of species yhi we can catalyse z into the state zmid, and
with the species xhi we can catalyse zmid to zhi ; thus both species are needed
for the gate to output the signal z. The state zhi converts any species zlo back
to z1, therefore showing that only one output signal can be present at any time.
Conversely, with either xlo, ylo we can convert z1 to zlo, which in turn can
convert zhi back to zmid and zmid to z2. Using a similar trail of thought we
can see how the other gates are devised, albeit XOR is slightly different. XOR,
traditionally a gate that requires a composition of many other logic gates, has
to be constructed with all combinations of inputs considered.

Using these designs, we have also implemented a ripple carry adder, seen in
Fig. 7. An individual adder is composed of two XOR gates, two OR gates and an
AND gate. It takes two inputs x, y and outputs the sum of the inputs z with a
carry bit c. In our ripple carry implementation we compose three of these adders
in series.

4.3 Control Flow

Control flow is used to mediate or propagate the flow of information throughout
a system. The fork, shown Fig. 2(c-i), is used to split signals; it is constructed
by having one input species x catalyse the two reactions x1 → y1 and x2 → y2,
to produce two outputs y1, y2. The species r acts as a reset for the fork if
the process needs repeating, assuming x is no longer active. The join, see Fig. 2
(c-ii), is similar to the function of an AND-gate, and will only output a signal yhi
when both inputs x1, x2 are present. This is a useful control mechanism since the
system can stall the catalysis of further reactions via y until both input signals
x1 and x2 are present. The species r can be used to reset the join. We also present
our AM circuit as an arbiter seen in Fig. 2(c-iii). An arbiter is used to decide
an output signal based on which species arrived first. The AM circuit works
well as an arbiter due to the fact that the output yhi, ylo starts to be converted
from ymid as soon as either of xhi, xlo arrives, therefore automatically biasing
whichever species is present first. All three of these control flow elements are
used in our queue and adder implementations discussed within the next section.

5 Design Validation

We use Microsoft’s Visual GEC tool to establish that the designs2 exhibit cor-
rect behaviour, both for the deterministic and stochastic semantics of the CRNs.
Visual GEC provides a programming language, LBS, for designing and sim-
ulating any given CRN. Using numerical simulation, we systematically tested
each component in isolation by simulating its behaviour over all inputs, and
then checking that those inputs yield the desired output and also suppress any

2 Available from https://github.com/max1s/CRNcode.

https://github.com/max1s/CRNcode
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unwanted outputs. Next, we examined how a component might behave in a larger
system, where it will be exposed to a change in input. To this end, we introduced
new reactions to emulate a signal change. For instance, if we wished to change
a carrier signal from high to low, we would introduce an additional reaction xhi
k→ xlo, which converts all of the signal xhi into a signal xlo while the component
is operating.

Since deterministic semantics is not accurate for low molecular populations,
we additionally explored its stochastic semantics. Visual GEC exports models
to the probabilistic model checker PRISM [15], which then enables verification
of the induced continuous-time Markov chain against temporal logic properties.
This allows one to check that the circuits ensure the correct temporal ordering
of the events, for example, for the Muller pipeline of Fig. 1, that the species in
the first stage of the pipeline is present before the species in the second, i.e.
with probability 1, and that the signal is eventually propagated to the end of
the pipeline. PRISM implements numerical solution of the CME, which is expo-
nential in the initial number of molecules and hence not scalable, and analy-
sis based on stochastic simulation, which is time consuming. We thus used an
experimental implementation of the LNA within Visual GEC, based on [6]. The
LNA approximates the CME with a set of differential equations, quadratic in
the number of species and independent of the initial number of molecules. The
ODEs describe the time evolution of expected value and variance. As well as
being capable of checking temporal logic properties [2,6], the LNA can plot the
species concentration over time together with standard deviation, and is fast and
reasonably accurate even for low molecule counts. Moreover, compared to the
deterministic semantics, LNA provides important information about stochastic-
ity that may affect the robustness of the circuits, and which can be explored
further with CME, stochastic simulation, or verifying that the circuit converges
with probability 1 to a single value.

We now illustrate the results of the validation on a selection of components.

Muller C-element. Firstly, we demonstrate the robustness of the Muller
C-element against changes in input signal in Fig. 3(a-c). In Fig. 3(d), we show
that the C-element may not be robust at low molecular counts, here 10. Increas-
ing this count to 500 greatly decreases the variance of the output species (not
shown), reducing the likelihood that the wrong species will reach the threshold.

Pipeline. The pipeline, seen in Fig. 1, is a mechanism that relays handshakes
between components, for example latches to store data. We construct the pipeline
by placing three of our C-element CRNs in sequence. At each intermediate stage
between the C-elements we add a fork. One path of the fork is negated and
fed back into the previous C-element, and the other path is fed into the new
C-element.

Because we have already validated the individual C-element design, we can
assume that they work correctly and so we only need to observe the behaviour
of the overall system. We therefore analyse the system behaviour over time,
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(a) An input change from xhi, yhi to
xlo, ylo

(b) LNA simulation of a change in input
from xhi, yhi to xlo, ylo

(c) An input change from xhi, yhi to
xlo, yhi

(d) LNA simulation of a change in input
from xhi, yhi to xlo, yhi

Fig. 3. Validation of the Muller C-element. In these experiments we start with an input
of x and y, the presence of which are represented by the species xhi and yhi. In (a)
we show a change of input where both x and y change to 0 or are not present, repre-
sented by species xlo and ylo. Note how zhi responds by reaching zero molecules and
zlo reaches the maximum molecular value, in this case 10. In (b) we show the LNA
approximation of the same scenario, with standard deviation shown as highlighted
regions, which demonstrates that the variance is low once the circuit reaches steady
state. In (c) we demonstrate the change in one input value xhi across a single Approx-
imate Majority circuit; in this case the output signal decreases, but still remains at
a value greater than zlo. However, for this reason we add an additional AM circuit
to further separate the output signals zhi, zlo. In (d), we show the LNA of the same
scenario, demonstrating that the circuit is not robust under low molecular count.

based upon a change in inputs, namely, signals reqhi, reqlo, acchi and acclo. We
conducted multiple experiments in which we change these inputs, demonstrating
the desired effect of them being propagated along the pipeline. This is seen as a
‘wave’ through the pipeline propagating a high signal and then a low signal. The
results of this are shown in Figure 4. Here the presence of the species ahi, bhi, chi
represents a high signal before responding and diminishing back to zero.
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(a) The Muller C-pipeline responding
to the input species reqhi being present
and then transforming to the input
species reqlo.

(b) The same experiment calculated
with the LNA. The standard deviation
is shown with highlighted regions.

Fig. 4. Validation of the Muller C-pipeline. The input request signal, encoded by the
species reqhi, is propagated to the end of the pipeline (represented by the species
ahi, bhi, chi); we then set the request signal to low. The pipeline then responds by the
presence of ahi, bhi and chi diminishing to zero. In (b) we show that the variance is
low, even for low molecular counts.

Queue. We have also designed and validated a queue, shown in Fig. 5, built
by the addition of latches at each C-element block to the Muller pipeline. The
queue uses the pipeline as a control mechanism to propagate signals between
the latches. We use the complex latch in Fig. 2(a-iii) for this purpose. As a high
species is propagated along the pipeline, it sends a signal to the queue to read
and store the value in the next latch along. Each latch represents some computa-
tion that could be completed within each time interval. In Fig. 6 we analyse the
oscillatory behaviour of the queue using the LNA, demonstrating its robustness
at high molecular counts.

Adder. We have also designed a three bit ripple carry adder seen in Fig. 7,
which works in a similar fashion to the queue but instead of latches we compose
adders in series. At each time step we input two bits and a carry, which outputs
the sum and a carry. In this way we can add two three-bit numbers together.
We show in Fig. 8 that the adder exhibits correct behaviour, and each sum is
calculated only in the next stage in the pipeline.

5.1 Discussion

Direct chemical implementations of CRNs have been theorised and realised,
but involve complicated reaction mechanisms [24]. For instance, [14] implements
chemical systems as neural networks. Most implementations need some external
fuel molecules, as reactions such as A + B → C + B require some energy input
in order to catalyse one species to another [26]. CRNs have been implemented in
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Fig. 5. Deterministic simulation of the queue pipeline. We propagate a value of 1
through the queue. The species amshi, bmshi represent the outputs of the first and
second latches. Note that through oscillatory patterns generated by the pipeline we
can mimick properties of a synchronous system.

(a) The LNA for 10 molecules. (b) The LNA for 500 molecules.

Fig. 6. LNA simulation of the queue pipeline. In these plots we show standard devia-
tion, calculated through LNA, of an oscillatory pattern created by propagating a value
of 1 and then 0. The maximum molecular count for each species in (a) is 10 while in
(b) is 500. The variance decreases greatly with an increase in molecular count. We plot
the values of amshi, bmshi, cmshi, which represent a value of 1. The troughs indicate
when 0 is propagated.

Fig. 7. Full Ripple Carry Adder used in conjunction with our Muller C-pipeline to
stagger computation across the adders.
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(a) Adder response to value of 101010. (b) Adder response to value of 100010.

Fig. 8. Deterministic simulation of the adder circuit responding to various inputs. We
overlay this with signals present in the pipeline used to coordinate the carry bit from
each adder, represented by aabridgeOneOut, bbbridgeOneOut and ccbridgeOneOut. In
(b), the final output signals cross due to pre-calculation by the adders before the carry
bit arrives.

systems involving Toehold Mediated Branch Migration and Strand Displacement
(DSD). DNA strand displacement has already been shown to be a universal
substrate for chemical kinetics, specifically for bi-molecular reactions [26]. In
addition to modelling the behaviours at the CRN level, we also implemented
our CRN designs in two-domain DNA strand displacement devices [3] using the
Visual DSD tool [16], thus providing further evidence of their experimental via-
bility, at least for the construction of DNA-based devices.

6 Conclusion

We have proposed a novel design for an asynchronous computing device based on
Chemical Reaction Networks. CRNs are inherently asynchronous, and thus par-
ticularly well suited to this computational paradigm. Our designs are based on
a simple, bi-molecular reaction motif inspired by Approximate Majority [1,5],
and assume well-mixed solution and constant, uniform rates. Moreover, they
do not rely on the universal clock which is difficult to realise. Since an arbi-
trary CRN can be physically realised using DNA strand displacement [26], as
recently demonstrated experimentally in [9], the proposed designs are in prin-
ciple implementable, and we have confirmed this in theory by modelling them
in the two-domain setting [3] using Visual DSD [16,22]. Our designs are the
first feasible implementation of an asynchronous computing device in chemical
kinetics and are relevant for a multitude of applications in nanotechnology and
synthetic biology.
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Abstract. In this extended abstract, we present high-level overviews of
tile-based self-assembling systems capable of producing complex, infinite,
aperiodic structures known as discrete self-similar fractals. Fractals have
a variety of interesting mathematical and structural properties, and by
utilizing the bottom-up growth paradigm of self-assembly to create them
we not only learn important techniques for building such complex struc-
tures, we also gain insight into how similar structural complexity arises
in natural self-assembling systems. Our results fundamentally leverage
hierarchical assembly processes, and use as our building blocks square
“tile” components which are capable of activating and deactivating their
binding “glues” a constant number of times each, based only on local
interactions. We provide the first constructions capable of building arbi-
trary discrete self-similar fractals at scale factor 1, and many at temper-
ature 1 (i.e. “non-cooperatively”), including the Sierpinski triangle.

1 Introduction

Fractal patterns have mathematically interesting characteristics, such as recur-
sive self-similarity, and structural properties which lend naturally occurring
fractal structures, such as branch patterns and circulatory systems, impressive
abilities to efficiently maximize coverage, dissipate heat, etc. Such fractal pat-
terns in nature tend to arise via local processes following relatively simple sets
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of rules, as forms of self-assembly. Because of this, and the complex aperiodic
nature of fractals, they are a natural target of study during the development of
artificial self-assembling systems. As one of the first mathematical abstractions
of self-assembling systems, Winfree’s abstract Tile Assembly Model (aTAM)
[14] has been the platform for several results showing the impossibility of self-
assembling discrete self-similar fractals such as the Sierpinski triangle1[9] and
similar fractals [1], and also for designing systems which can approximate them
[9,10,13]. In a more generalized model called the 2-Handed Assembly Model [2,4]
(2HAM, a.k.a. Hierarchical Assembly Model) which allows pairs of large assem-
blies to bind together, rather than being restricted to only single tile additions
per step like the aTAM, the impossibility of self-assembling the Sierpinski trian-
gle [2] has also been shown. In further generalizations allowing larger numbers
of assemblies to combine in single steps [3] shapes were shown to self-assemble
as well one unscaled fractal, the Sierpinski carpet.

A more recently developed model of tile-based self-assembly, called the
Signal-passing Tile Assembly Model (STAM) was developed in [11] to model
the behavior of DNA-based tiles capable of strand displacement reactions initi-
ated during the binding of their glues which can then either activate or deactivate
other glues on the same tile. Such signal-passing tiles have been experimentally
demonstrated [12], and various theoretical results have demonstrated the power
of systems using such tiles to efficiently simulate Turing machines [11], replicate
patterns [8] and shapes [7], and also to self-assemble the Sierpinski triangle at
scale factor 2.

In this extended abstract, we provide a high-level overview of constructions
in the STAM which include: (1) the first capable of self-assembling the Sierpin-
ski triangle at scale factor 1, which in fact even works at temperature 1 (i.e., a
form of non-cooperative assembly), and (2) an algorithmic method which uses
the definition of a fractal as input in order to develop an STAM system which
self-assembles that fractal at scale factor 1. The second result develops systems
at temperature 1 for an infinite class of fractals, and for the full class of discrete
self-similar fractals at temperature 2. Our results fundamentally leverage tech-
niques of hierarchical self-assembly and utilize specifically designed instances of
geometric hindrance to allow fractals to grow in a carefully controlled, stage-
by-stage manner. In the following sections, we first give an overview of the
models and terminology used in the paper, then provide high-level, intuitive
overviews of both main constructions. Full details of the constructions can be
found in [6].

1 In this paper we refer only to “strict” self-assembly, wherein a shape is made by
placing tiles only within the domain of the shape, as opposed to “weak” self-assembly
where a pattern representing the shape can be formed embedded within a framework
of additional tiles.
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2 Preliminaries

Here we provide informal descriptions of the models and terms used in this paper.

2.1 Informal Description of the STAM

The STAM, as formulated, is intended to provide a model based on experi-
mentally plausible mechanisms for glue activation and deactivation. A detailed,
technical definition of the STAM model is provided in [5].

(Note that the STAM is an extension of the 2HAM, and an informal descrip-
tion of the 2HAM can be found in [6] ) In the STAM, tiles are allowed to have
sets of glues on each edge (as opposed to only one glue per side as in the aTAM
and 2HAM). Tiles have an initial state in which each glue is either “on” or
“latent” (i.e. can be switched on later). Tiles also each implement a transition
function which is executed upon the binding of any glue on any edge of that tile.
The transition function specifies, for each glue g on a tile, a set of glues (along
with the sides on which those glues are located) and an action, or signal which
is fired by g’s binding, for each glue in the set. The actions specified may be
to: 1. turn the glue on (only valid if it is currently latent), or 2. turn the glue
off (valid if it is currently on or latent). This means that glues can only be on
once (although may remain so for an arbitrary amount of time or permanently),
either by starting in that state or being switched on from latent (which we call
activation), and if they are ever switched to off (called deactivation) then no
further transitions are allowed for that glue. This essentially provides a single
“use” of a glue (and the signal sent by its binding). Note that turning a glue off
breaks any bond that glue may have formed with a neighboring tile. Also, since
tile edges can have multiple active glues, when tile edges with multiple glues are
adjacent, it is assumed that all matching glues in the on state bind (for a total
binding strength equal to the sum of the strengths of the individually bound
glues). The transition function defined for a tile type is allowed a unique set of
output actions for the binding event of each glue along its edges, meaning that
the binding of any particular glue on a tile’s edge can initiate a set of actions to
turn an arbitrary set of the glues on the sides of the same tile on or off.

As the STAM is an extension of the 2HAM, binding and breaking can occur
between tiles contained in pairs of arbitrarily sized supertiles. It was designed to
model physical mechanisms which implement the transition functions of tiles but
are arbitrarily slower or faster than the average rates of (super)tile attachments
and detachments. Therefore, rather than immediately enacting the outputs of
transition functions, each output action is put into a set of “pending actions”
which includes all actions which have not yet been enacted for that glue (since
it is technically possible for more than one action to have been initiated, but
not yet enacted, for a particular glue). Any event can be randomly selected
from the set, regardless of the order of arrival in the set, and the ordering of
either selecting some action from the set or the combination of two supertiles is
also completely arbitrary. This provides fully asynchronous timing between the
initiation, or firing, of signals (i.e. the execution of the transition function which
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puts them in the pending set) and their execution (i.e. the changing of the state
of the target glue), as an arbitrary number of supertile binding events may occur
before any signal is executed from the pending set, and vice versa.

An STAM system consists of a set of tiles and a temperature value. To define
what is producible from such a system, we use a recursive definition of pro-
ducible assemblies which starts with the initial tiles and then contains any super-
tiles which can be formed by doing the following to any producible assembly:
1. executing any entry from the pending actions of any one glue within a tile
within that supertile (and then that action is removed from the pending set), 2.
binding with another supertile if they are able to form a τ -stable supertile, or 3.
breaking into 2 separate supertiles along a cut whose total strength is < τ .

2.2 Discrete Self-Similar Fractals

We define Ng as the subset {0, 1, ..., g − 1} of N, and if A,B ⊆ N
2, then A +

(x, y)B = {(xa, ya)+(x ·xb, y ·yb)|(xa, ya) ∈ A and (xb, yb) ∈ B}. We then define
discrete self-similar fractals as follows:

We say that X ⊂ N
2 is a discrete self-similar fractal (or dssf for short) if

there exists a set {(0, 0)} ⊂ G ⊂ N
2 where G is connected, wG = max({x|(x, y) ∈

G}) + 1, hG = max({y|(x, y) ∈ G}) + 1, wG and hG > 1, and G � NwG
× NhG

,
such that X =

⋃∞
i=1 Xi, where Xi, the ith stage of X, is defined by X1 = G

and Xi+1 = Xi + (wi
G, hi

G)G. We say that G is the generator of X. Essentially,
the generator is a connected set of points in N

2 containing (0, 0), points at both
x > 0 and y > 0, and is not a completely filled rectangle. Every stage after the
constructor is composed of copies of the previous stage arranged in the same
pattern as the generator.

A connected discrete self-similar fractal is one in which every component is
connected in every stage, i.e. there is only one connected component in the grid
graph formed by the points of the shape.

Figure 1 shows, as an example, the first 4 stages of the discrete self-
similar fractal known as the Sierpinski triangle. In this example, G =
{(0, 0), (1, 0), (0, 1)}.

We also define a subset of connected discrete self-similar fractals which we call
singly-concave as containing any connected discrete self-similar fractal F such
that, if stage 2 of F , F2, is contained within a bounding box, on the straight line
path p from any point on the bounding box into the first location adjacent to F2,

G=X1 X2 X3 X4

Fig. 1. Example discrete self-similar fractal: the first 4 stages of the Sierpinski triangle
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Fig. 2. Three example generators, and their associated second stages contained within
bounding boxes (darker grey). The left two are singly-concave because any paths (exam-
ples in yellow) from the bounding boxes to the edge of their second stage tiles meet
only contiguous sets of edges of the fractal. The rightmost isn’t because the red and
yellow tiles of one path meet two non-contiguous sets. (Color figure online)

the set of all edges along which p is adjacent to F2 are contiguous. Intuitively,
singly-concave fractals do not have concavities which occur within the “sides”
of other concavities. Examples can be seen in Fig. 2.

3 Strict Self-Assembly of the Discrete Sierpinski Triangle

Theorem 1. There exists an STAM system TΔ = (T, 1) such that TΔ has
exactly one infinite terminal supertile αΔ, and dom (αΔ) = SΔ, i.e. is
exactly the discrete Sierpinski triangle, and for all α ∈ A�[T ] such that
α �= αΔ, |dom (α)| ≤ 4.

Proof. We prove Theorem 1 by construction, and thus present an STAM tile
assembly system TΔ and show that it strictly self assembles SΔ, while any
assemblies which detach from the assembly (or otherwise form) during its growth
(which we call “junk” assemblies) all become terminal at sizes ≤ 4. At a high
level, TΔ uses 2HAM principles (i.e. combinations of large supertiles) to combine
a northern, southern, and western version of each stage n for 1 < n < ∞ through
geometric matching, to produce stage n + 1. Here, we provide a brief overview.
Details of the construction can be found in [6]

From a “hard-coded” start at stage two (i.e. base tiles initially combine to
form this stage before allowing formation of subassemblies), each stage n must
completely grow before the subassemblies that make that stage are able to com-
bine and form the next stage, n + 1. Only when an assembly representing stage
n is completely built can an initiator tile attach to it and turn on a specific glue
that allows for nondeterministic binding of one of three tiles, which then tells that
copy of stage n to become one of three substages for stage n+1. By definition of
the Sierpinski triangle, there are three substages of each stage that correspond
to the three points in the generator, i.e. (0, 0), (1, 0), and (0, 1). The nonde-
terministic binding of one of the initiator types initiates an assembly sequence
which grows either a tooth or gap on the assembly to which it is attached.
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Fig. 3. High-level formation process of the stage of SΔ immediately following the initial
stage two formation. From top to bottom are shown SΔs, SΔu, and SΔw. (Color figure
online)

A tooth is a one-tile protrusion from a flat surface, and a gap is a one-tile cavity
in a flat surface (see Fig. 3 for examples). One produces a southern tooth and
becomes the northwest portion of SΔ stage n + 1, a second produces a western
tooth and becomes the southeast portion of SΔ stage n + 1, and the third goes
through two main phases, first filling in along the diagonal to make roughly a
square with a gap in the north face, then after connecting to the northern piece
opens a gap in the east to allow its connection to the eastern piece. We will
call the substage assemblies SΔs, SΔw, and SΔu, respectively, and the tile sets
(which are subsets of T ) that form them TΔs, TΔw, and TΔu. Note that the glues
that allow connections of the substages are only activated after the necessary
geometry is in place to verify the sizes of the complementary pieces, and after
the substage connections, all tiles not within the domain of stage n fall off of the
assembly.

As depicted in Fig. 3, SΔs and SΔu are the first subassemblies to combine with
attachment points on the southwest and northwest corners of their respective
assemblies. The southern tooth of SΔs, depicted in green, aligns with the slot
created in the SΔu assembly, shown in purple. The two assemblies can only
align when they are of the proper size due to the orange blocker tile located
to the immediate right of the SΔu slot. SΔu cannot decay appropriately (i.e.
cause “unwanted” tiles to fall off) until this blocker tile is in place; only after
the blocker tile binds does a series of glues activate that result in the removal
of the gap tile. After a sequence of detachments removes the uppermost row
and eastmost column of the resulting assembly, a second blocker tile attaches to
the southeastern corner of the SΔs assembly, finishing the decay and enabling
the alignment of the SΔw assembly of the same stage. A final series of decay
removes all other tiles that do not fit with the formation of stage n of the
Sierpinski triangle.

Assembly of substages and complete stages after the first combination
depicted in Fig. 4 follow the same general pattern of creation and decay, with few
notable differences. The formation of the SΔ subassemblies does require slightly
more intricate systems of signals, largely to create the stair-step mechanism seen
in SΔs and SΔw.
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Fig. 4. High-level formation process of the fourth stage of S following formation of
stage three. From top to bottom are shown SΔs, SΔu, and SΔw.

Fig. 5. Base tiles that carry either vertical or horizontal signals are depicted in gray;
the location of the signals demonstrate that no tiles used to carry either vertical or
horizontal signals are used in the same manner again, i.e. to pass signals during the
formation of more than one stage.

Due to STAM properties that maintain that no tile can send its signals more
than once, care has been taken to ensure that no signals sent through the tiles
of the TΔ tile set are used more than once. As shown in Fig. 5, the two regions
that send signals through the base tiles are never in a location to be used for
the same horizontal or vertical signal paths more than once.

Throughout the assembly process, junk tiles and subassemblies are contin-
uously removed with the help of blocker tiles. Figure 6 displays this process for
SΔw. Each junk assembly removes itself only when the appropriate signals have
been passed through it and, for many assemblies, a corresponding blocker tile
has attached. This prevents active bonds that cannot be guaranteed deactivation

Fig. 6. Blocker tiles depicted in orange function alongside the blue tiles that make up
the TΔw set to ensure that all potential junk tiles do not negatively affect the assembly.
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Fig. 7. Comparison of two helper tiles, h and m, alongside TΔu tile xn4, after it has
attached to a subassembly and then subsequently detached, displays similar glues that
are on. All glues that are on for the xn4 tile have either had their signals used, as is the
case for the m, il, h, and u glues, or are not capable of interacting with subassemblies
due to their counterparts turning on in isolation.

within the asynchronous STAM model from potentially interfering with active
constructions. By binding a blocker tile, junk assemblies are created with no
volatile perimeter glues. Blocker tiles also function to change the geometry of
the junk assemblies to prevent any interference.

It is worth noting that some junk assemblies, particularly within the TΔu set,
are capable of interacting with TΔ subassemblies at various stages. The glues that
are capable of interaction on these assemblies, however, have already had their
signals used and function like existing blocker and helper tiles. This means that
their interaction does not result in a negative impact on the assembly as a whole,
instead assisting in the proper formation of SΔ stages.

Figure 7 depicts an example of the previously described scenario. In this case,
the xn4 tile functions like either the m or h tile, depending on which of its glues
bind. The only glues that remain exposed in junk assemblies are either capable
of performing a similar function, or do not interact with subassembly formation
due to their counterpart glues turning on in isolation (i.e. a western counterpart
for an eastern glue turns on only when a tile has attached to the eastern face of
the tile in question).

In this process in which three separate versions of any assembly at stage
n form and combine through the creation and alignment of teeth and gaps to
ensure proper size integration to produce stage n + 1, and as throughout the
process of assembly the junk assemblies are detaching in constant sized pieces
that will not interact with the assembly in a negative manner, the correct strict
self assembly of the Sierpinski triangle at scale 1 is produced.



90 J. Hendricks et al.

4 Self-Assembly of Arbitrary Discrete Self-Similar
Fractals: An Overview

We now state and provide a proof sketch of the two main generalized results of
this paper. The proofs of the two results are similar enough that we provide a
single proof sketch for both theorems.

Theorem 2. For any connected discrete self-similar fractal F , there exists an
STAM system TF = (T, 2) such that TF has exactly one infinite terminal supertile
α, and dom (α) = F , i.e. is exactly the discrete self-similar fractal F , and for
all γ ∈ A�[T ] such that γ �= α, |dom (γ)| ≤ 2.

Theorem 3. For any connected discrete self-similar fractal F which is singly-
concave, there exists an STAM system TF = (T, 1) such that TF has exactly
one infinite terminal supertile α, and dom (α) = F , i.e. is exactly the discrete
self-similar fractal F , and for all γ ∈ A�[T ] such that γ �= α, |dom (γ)| ≤ 2.

Proof (Proof Sketch). The proofs of Theorems 2 and 3 are very nearly identical,
with slight modifications in only a few places, so we now give an overview of the
self-assembly of arbitrary discrete self-similar fractals. A detailed version of the
construction can be found in [6]. We describe the self-assembly of an arbitrary
fractal F generated by a generator G. The general idea of the construction is
that we grow F in a stage-by-stage manner, making sure that the assembly of
each stage is complete before it is able to join in the formation of the next stage.
However, the growth of an infinite number of all stages is happening in parallel,
so we must be careful to ensure that no copies of differing stages can bind or
interfere with each other.

Fig. 8. An example of a generator and stage 2 with the locations of end (blue),
preconnect (yellow), init (aqua), and preinit (purple) glues shown. Note that those
positions are first marked in stage 2 and not in the generator, but they are shown here
with markings to demonstrate their locations relative to the generator. (Color figure
online)
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Our construction begins by “hard-coding” tiles for stage 2 of F . We mark
the perimeter with special marker glues in locations which: (1) are the extreme
points of each side, a total of 8 of these; (2) are the locations in each of N,E,S,
and W which are used to form connections between copies of the same stage i
which are combining to form stage i + 1, there are 4 of these; and (3) a location
where a special initiator tile type can attach to an assembly of a completed
stage to allow it to begin the process of growth into a substage of the next stage.
We call the first type of glues end glues, the second type of glues preconnect
glues which are replaced by connect glues, and the third type of glues preinit
glues which are later replaced by init glues. An example of the locations of
these glues is shown in Fig. 8. The recursive structure of fractals allows us to
treat each stage i as a combination of copies of stage i − 1, where each copy
logically represents one of the points of the generator. Our construction ensures
that each completed copy of a stage has an identical set of special marker glues
on its perimeter (interspersed by increasing numbers of generic edge marking
glues), and is thus able to perform the same algorithmic steps on each to grow
subsequent stages.

(a) (b)

Fig. 9. Example of how sides of a substage are filled in by a perimeter path. The
blue rectangles represent the location of end glues, the yellow rectangles represent the
location of connect glues, and the aqua rectangles represent the init glue. (Color
figure online)

An assembly which has completed formation of stage i undergoes a process
of differentiation when one of the initiator tiles attaches (of which there are |G|
types, one for each point in the generator), during which its marker glues are
transformed to match those necessary for it to become the substage location in
stage i+1 corresponding to its initiator type. This also allows it to combine, one
at a time, to the other necessary substage assemblies, in a well-defined ordering.
The combinations of stages are controlled by not only the special connection
glues and tooth-and-gap geometries similar to those used in the Sierpinski tri-
angle construction, but also enabled by the formation of perimeter paths and
filler growth (as shown in Fig. 9) which are important in creating the necessary
geometry (i.e. smooth surfaces). The perimeter path and filler tiles grow around
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the substage assembly and activate any connect glues needed for connecting to
other substage assemblies. They do this in such a way that the connect glue is
not activated until the filler tiles are present (in order to make the side “smooth”)
and the tooth tile is present (which prevents incorrect substage assemblies

Fig. 10. An example of the growth process of a tooth and gap on the western side of
a supertile preparing to bind to another supertile along that side.

(a) (b)

(c) (d)

(f)(e)

Fig. 11. A schematic which shows an overview of the process by which the perimeter
path and filler tiles dissociate for the case where the side of the stage on which the
perimeter path tiles are growing does not need to form a connection between another
stage. The blue glues represent the end glues. The red glues represent the deactivator
glues. The lines and arrows show how signals propagate. (Color figure online)
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from binding). An example of this is shown in Fig. 10. In the case that F is
singly-concave, the system we are designing has τ = 1 and the filler tiles probe
for the presence of the side of the substage assembly with τ strength glues. Note
that by the assumption that F is singly-concave, we are guaranteed that there
is a preceding row of tiles which prevents the erroneous binding of a “smaller”
substage to the exposed glue since such a smaller substage assembly would have
to be offset into that proceeding row by at least one position to allow the nec-
essary glues to align (since the glues on the corners are different than those not

(a) (b)

(c) (d)

(f)(e)

(g) (h)

Fig. 12. A schematic which shows an overview of the process by which the perimeter
path and filler tiles dissociate for the case where the side of the substage assembly on
which the perimeter path tiles are growing does need to form a connection between
another substage assembly. The blue glues represent the end glues. The red glues
represent the deactivator glues. The lines and arrows show how signals propagate.
(Color figure online)
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on the corners). In the case that F is not singly-concave, then the system is
at temperature 2 and the filler tiles probe for the presence of the side of the
substage assembly with a strength 1 glue which means that “smaller” substage
assemblies cannot bind due to insufficient binding strength.

Figure 9 shows how the perimeter path and filler tiles start at the init glue
and travel around the assembly in a counterclockwise direction. After the perime-
ter path and filler tiles assemble, the tiles need to dissociate. During the growth
of these tiles, deactivator glues activate in such a way that they are “hidden”
by the tiles to which they bind. Whenever the perimeter path and filler tiles
receive a signal to dissociate, a signal is propagated through the perimeter path
tiles which causes a deactivator glue to be exposed on the tile which started the
growth of the perimeter path tiles on the side. This causes a chain reaction in
which all of the perimeter tiles decay one at a time. If the side of the substage
assembly is not a connection side, the filler tiles decay along with the perimeter
path tiles. Otherwise, the perimeter path tiles decay, another substage assembly
binds to the side, and then the filler tiles decay via a signal that begins propa-
gating at the connect glue. Figure 11 shows an example of the perimeter path
and filler tiles decaying in the case that the side is not a connection side (while
Fig. 12 shows the case when it is a connection side). These tiles are designed so
that all of their exposed glues deactivate (with the exception of the deactivator
glue). Furthermore, the majority of these tiles bind to “static” glues (glues which
do not trigger events) on the substage assembly. This means that if a tile that is
in the process of deactivating binds to the substage assembly, it will not trigger
any unwanted binding events.

4.1 Errors at τ = 1 with General Fractal Shapes

Figure 13 shows why there must be a difference between the temperature-2 con-
struction which works with general discrete self-similar fractal shapes, and the
τ = 1 construction which only works for a constrained subset of fractal shapes.
Specifically, if a row of filler tiles can grow to a position where there is nothing
below it, but its tiles also have active glues which are able to detect their even-
tual collision with the far wall, then at τ = 1 a supertile representing a smaller
substage assembly could possibly bind to that row, thus incorrectly connecting
supertiles of different stages. This problem is avoided in the τ = 2 construction
by making these glues strength-1, thus preventing them from having enough
strength to bind the supertiles, along with the fact that only one such row can
be growing at a time and thus exposing such glues, and the pattern of the even-
tual decay of those filler rows is also carefully designed to prevent the ability for
erroneous binding.
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Fig. 13. A schematic depiction of the error that could occur in a τ = 1 system in which
the fractal shape contains certain types of concavities.

5 Conclusion

In this paper, we have shown how signal-passing tiles can be designed to self-
assemble discrete self-similar fractals in a very hierarchical manner. That is,
separately and in parallel, the copies of each stage of a given fractal self-assemble,
and then those copies combine to form the next stage. During this process, the
sides of each copy which must combine with each other are prepared for that
combination in such a way that only copies of the same stage can combine,
and only once all pieces of the previous stage have attached. This is done by
using geometric hindrance created by small bumps and dents at carefully spaced
locations, along with well-controlled timing of glue activations. Once copies of
a stage have bound together, any “filler” tiles which attached to create the
necessary geometry along the combining edge, but which are not part of the final
fractal shape, then detach. These detached tiles, called “junk”, are designed so
that they always eventually become subassemblies which are no greater than size
4, and they cannot interfere with any additional assembly.

While these results allow for the self-assembly of fractals without any increase
in scale factor and, for an infinite set of fractals, at temperature 1, there remain
a number of improvements which may be possible and open questions which
remain. First, is the cooperativity of temperature 2 strictly necessary for fractals
which are not singly concave? I.e., is there a temperature 1 construction which
can correctly self-assemble such fractals? It appears that such a construction
would require non-trivial adaptations to or departures from our current con-
struction. Conversely, proving it impossible also appears to be difficult. Second,
can the maximum size of the terminal junk assemblies be reduced even further,
to 1, 2, or 3? This also appears difficult due to the fact that within the STAM
glue deactivations (like activations) happen asynchronously, and therefore it is
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not possible to guarantee that both sides of a bound glue (i.e. the glues on the
two adjacent edges of bound tiles) have been deactivated before a tile or sub-
assembly detaches. To counter problems that may arise from this, we frequently
ensure that special “blocker” tiles first attach to the soon-to-be-junk tiles to hide
glues which may not be off and which may allow the junk assembly to inter-
fere with other supertiles. Third, is it possible to further reduce the number of
junk assemblies which are produced, especially during the self-assembly of frac-
tals such as the Sierpinski triangle, which in the current construction requires
a number of tiles and junk assemblies on the order of approximately 1/4 of the
number of tiles which remain to form each given stage? Fourth, our construc-
tion for self-assembling the Sierpinski triangle in the proof of Theorem1 uses 48
tile types (compared with 19 for the scale factor 2 version of [11]). Can this be
reduced to a similar or smaller number?
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Abstract. We consider problems in variations of the two-handed
abstract Tile Assembly Model (2HAM), a generalization of Erik Win-
free’s abstract Tile Assembly Model (aTAM). In the latter, tiles attach
one-at-a-time to a seed-containing assembly. In the former, tiles aggre-
gate into supertiles that then further combine to form larger supertiles;
hence, constructions must be robust to the choice of seed (nucleation)
tiles. We obtain three distinct results in two 2HAM variants whose aTAM
siblings are well-studied.

In the first variant, called the restricted glue 2HAM (rg2HAM), glue
strengths are restricted to −1, 0, or 1. We prove this model is Tur-
ing universal, overcoming undesired growth by breaking apart undesired
computation assembly via repulsive forces.

In the second 2HAM variant, the 3D 2HAM (3D2HAM), tiles are
(three-dimensional) cubes. We prove that assembling a (roughly two-
layer) n × n square in this model is possible with O(log2 n) tile types.
The construction uses “cyclic, colliding” binary counters, and assem-
bles the shape non-deterministically. Finally, we prove that there exist
3D2HAM systems that only assemble infinite aperiodic shapes.
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1 Introduction

Self-assembly is the process through which a group of discrete components com-
bine according to simple and local interaction rules to form a complex final
structure. Taking inspiration from the many examples of self-assembly exhibited
in nature, researchers are now investigating the use of nanoscale self-assembly
for systematic nano-fabrication of atomically-precise computational, biomedical,
and mechanical devices.

In the early 1980s, Ned Seeman [21] developed an experimental technique
for such fabrication known as DNA tile self-assembly. In DNA tile self-assembly,
a small number of single strands of DNA are used to form a DNA tile with
four “sticky ends” consisting of short sequences of unpaired nucleotides, one for
each of the cardinal directions: north, east, south, and west. A sticky end of
one tile binds with a sticky end of a second tile if their nucleotides are Watson-
Crick complements; more generally, multi-tile supertiles bind together similarly.
Careful design of sticky ends enables an experimenter to program sets of DNA
tiles to self-assemble into target structures.

Erik Winfree’s abstract Tile Assembly Model (aTAM) is a discrete mathe-
matical model of DNA tile self-assembly [24]. The aTAM abstracts DNA tiles
are as translatable, but not rotatable, square tiles whose sides have alpha-
numerically labeled glues with integer strengths. Two tiles or assemblies placed
adjacently bind if the sums of the strengths of matching glues on coincident sides
is at least a specified minimum threshold, called the temperature of the system.
Self-assembly in the aTAM starts from a unique seed tile type and proceeds
nondeterministically and asynchronously by single-tile addition to the growing
seed assembly.

Two-Handed Tile Assembly. A well-studied seedless generalization of the aTAM
is the two-handed abstract Tile Assembly Model (2HAM). In the 2HAM, growth
does not begin at a unique seed tile type. Instead, all possible pairs of tiles bind,
followed by all possible pairs of supertiles, until no pair of resulting supertiles
can bind further.

The role of temperature in both aTAM and 2HAM systems is critical, as it
determines the criteria by which supertiles bind: a higher temperature defines a
stronger binding criterion. At temperature 2, cooperative binding can be used to
synchronize assembly and is known to confer complex algorithmic behavior in
both the aTAM [1,17,23,24] and 2HAM [4]. On the other hand, the computa-
tional and geometric power of the temperature-1 aTAM (and 2HAM) famously
remains open [10,14].

The difficulty of implementing cooperative binding in experimental DNA tile
self-assembly has motivated the study of variants of the temperature-1 aTAM
augmented with more practical features that confer similar capabilities. This
work has established the temperature-1 aTAM is capable of universal compu-
tation and efficient shape assembly if the model is augmented with negative-
strength glues [16], a third spatial dimension [7], “triggered” glues [15], or non-
square tile shapes [11].



100 M.J. Patitz et al.

Unfortunately, these variations suffer from a common practical concern:
avoiding “spurious nucleation”, i.e. binding away from the seed tile. Indeed,
even preventing spurious nucleation with cooperative binding has substantial
challenges [2,6,18–20]. The difficulty of implementing aTAM-like seeded growth
in experimental systems implies that, at least currently, the behavior of experi-
mental DNA tile self-assembly systems without cooperative binding is captured
better by the (temperature-1) 2HAM than the aTAM. Due in part to the newness
of the 2HAM, prior study of augmented variants of the temperature-1 2HAM is
limited to the staged model [8], a powerful “multi-pot” model.

Our Results. Here we obtain three positive results on the computational and
geometric behaviors possible in two variants of the temperature-1 2HAM. Since
the 2HAM permits growth to begin with any pair of tiles, positive results are
necessarily robust for “multiple nucleation” errors.

In the first variant we consider, called the restricted glue 2HAM or rg2HAM,
glue strengths are restricted to −1, 0, or 1. This is the two-handed equivalent
of the restricted glue aTAM (rgTAM) [16]. We prove the rg2HAM is Turing
universal (Sect. 3), demonstrating that the “anticooperative” behavior of the
rg2HAM, like the cooperative behavior of the aTAM and 2HAM, is capable
of simulating any Turing machine computation. The construction critically uses
negative-strength glues to “break apart” nucleations encoding incorrect machine
computations.

Note that the technique for proving the Turing universality of the
temperature-1 3D aTAM [7] cannot be used in the 2HAM, since it uses a long
path of tiles that branches and has “incorrect” branches blocked by a previous
portion of the path. In the (seedless) 2HAM, an incorrect branch may assemble
and become a “junk” assembly. In fact, every temperature-1 3D aTAM construc-
tion in [7] has similar problems.

In the second 2HAM variant, the 3D 2HAM or 3D2HAM, tiles are (three-
dimensional) cubes. This is the two-handed equivalent of the 3D aTAM [7].
We prove that at temperature 1, the 3D2HAM is capable of efficient assembly
of n × n squares (Sect. 4) and assembly of infinite aperiodic shapes (Sect. 5),
matching known results in the (temperature-1 3D) aTAM [7].

The efficient square construction uses two layers in the third dimension and
O(log2 n) tile types. The key idea is a special “cyclic” binary counter that pre-
vents incorrect growth from sabotaging completion of the counter’s growth.

The aperiodic construction yields only infinite terminal supertiles whose
shapes are not translations of themselves, i.e. have no repeating or periodic
structure. Prior negative results on assembling aperiodic structures in the
temperature-1 aTAM was given as evidence against the Turing universality of
that model [10]. Moreover, the two-dimensional temperature-1 2HAM’s ability
to nucleate growth at any tile in an assembly has recently been shown to imply
strong “pumping” results [5,9] that imply aperiodic systems do not exist.

Here, we contrast these results with the construction of a 3D2HAM system
that assembles only infinite aperiodic assemblies. The construction simulates a
scaled-up version of a standard aTAM binary counter and special “vacuum”
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glues to attach infinite periodic rows of this counter to completed (aperiodic)
counters, yielding only aperiodic terminal supertiles.

The definition of “aperiodic” used and landscape of results related to ape-
riodic tile self-assembly systems closely match those of plane tilings: non-
overlapping coverings of the plane using collections of shapes called prototiles
(see [13]). A plane tiling is aperiodic provided it has no translational symmetry
and a tile set is aperiodic provided every plane tiling it admits is aperiodic. Deter-
mining whether a prototile set admits a tiling is undecidable; as a corollary, some
prototile sets admit only aperiodic tilings [3] (matching [24]). A long-standing
conjecture states there are no aperiodic prototile sets from a restricted class of
prototile sets, namely singleton tile sets, [12] (matching [17]). This conjecture was
recently proved to not be true if a third dimension is allowed [22] (matching [7]).

Turing universality in both tile self-assembly and plane tiling implies the
existence of aperiodic instances, but no implications in the other direction are
known. Regardless, aperiodic behavior is generally considered evidence for Tur-
ing universality. Moreover, such behavior constrains possible proofs of Turing
non-universality to those that do not forbid infinite non-repeating behavior.

2 Definitions

The set of unit vectors is U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)}, also referred to as
N , E, S, W , respectively. A grid graph is an undirected graph G = (V,E) in
which V ⊆ Z

2 and every edge {a , b} ∈ E has the property that a − b ∈ U2.
Intuitively, a tile type t is a unit square that can be translated, but not

rotated, and has a well-defined “side u” for each u ∈ U2. Each side u of t
has a glue with label labelt(u) from some fixed alphabet and a non-negative
integer strength strt(u) determined by its type t. Two tiles t and t′ that are
placed at the points a and a + u respectively, bind with strength strt (u) if
(labelt (u) , strt (u)) = (labelt′ (−u) , strt′ (−u)) and with strength 0 otherwise.

2.1 Two-Handed Tile Assembly Model

The 2HAM is a generalization of the aTAM where any pair of multi-tile assem-
blies with sufficient binding strength can attach to each other. Included here
is an informal description of the 2D 2HAM; see [4] for a more complete set of
definitions.

A supertile is the equivalence class of all translations of an assembly, i.e. a
“position-less” assembly.1 The binding graph of a supertile is a weighted grid
graph whose vertices are tiles and edges between adjacent tiles have weights
corresponding to the strength of the binding between them. A supertile is
τ -stable provided every cut of its binding graph has strength at least τ .

A 2HAM tile assembly system (TAS) is a pair T = (T, τ), where T is a finite
tile set and τ is the temperature; typically τ ∈ {1, 2}. Given a TAS T = (T, τ),
1 Such a distinction is only needed in two-handed models, where the seed cannot be

used as a “reference point”.
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a supertile α is producible, denoted α ∈ A[T ], provided that either α is a single
tile in T , or α is the union of two smaller non-overlapping producible supertiles
α1 and α2 (called subassemblies) such that the cut of α into α1 and α2 has
strength at least τ . For brevity, this relationship between α1, α2, and α is (non-
uniquely) denoted α = α1 + α2. A producible supertile α is terminal, denoted
α ∈ A�[T ], provided α cannot attach τ -stably to any other producible supertile.

A TAS is directed provided it has a unique terminal supertile. Given a con-
nected shape X ⊆ Z

2, we say a TAS T self-assembles X if the shape of every
terminal supertile of T is a translation of X.

2.2 Additional 2HAM Definitions

Let α0 be a producible supertile that grows into β via the supertile assembly
sequence α0, α1, . . . and let δ be a producible supertile that can combine with α0.
Then β is unfair provided that, for every i ≥ 0, δ can combine with αi but does
not. Otherwise, we say that β is fair. Note that if δ did combine with α, then
the resulting supertile does not necessarily grow into β. Intuitively, if a supertile
is able to bind to another growing supertile at any given step, it eventually does
so if the latter is fair.

A shape is aperiodic provided there exists no non-trivial translation of the
shape that yields itself. That is, the shape has no translational symmetries.
A TAS is aperiodic provided every terminal supertile has an infinite aperiodic
shape.

2.3 2HAM Variants

In the two-handed restricted-glue Tile Assembly Model or rg2HAM, glue
strengths come from the set {−1, 0, 1} and there is a unique glue of strength
−1. Negative-strength glues permit producible supertiles α and β such that
γ = α + β is not τ -stable. Producible supertiles that are not τ -stable can break
into supertiles along cuts of strength less than τ . A supertile is terminal provided
it cannot combine with any other producible supertile and cannot break.

In the 3D two-handed Tile Assembly Model or 3D2HAM, tiles are unit cubes.
As in 2D, the tiles do not rotate, and each face of a tile has a glue.

3 Universal Computation in the rg2HAM

In this section, we prove that Turing-universal computation is possible in the
temperature-1 2HAM when a single negative-strength glue is also permitted.
Without such a glue, spurious nucleation would seemingly cause the vast major-
ity of produced supertiles to nucleate as encodings of random configurations of
the Turing machine and run nonsense computations both forward and backward.
This uncountably large sea of undesired supertiles would then dilute supertiles
encoding the desired computation.
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Our construction, described in the proof of Theorem1, utilizes small “jack-
hammer” supertiles that break up the sea of undesired supertiles into constant-
sized terminal supertiles (from a constant-sized set). This “jackhammering” is
carried out on a “zig-zag” simulation of a modified version of the input Turing
machine. Stated formally:

Theorem 1. Let M be a Turing machine M with tape alphabet Γ . There exists
an equivalent machine M ′′ and tile set T such that for any terminal supertile α
of T = (T, 1) encoding a valid computation of M ′′(x) and fair β ∈ A[T ], either
β is a subassembly of α or β can be broken apart so that every subassembly of β
can grow into a O(log |Γ |)-sized terminal supertile.

To prove Theorem 1, we first define an intermediate machine, M ′. Let M ′ be
a Turing machine which is equivalent to M but with the following modifications:

1. A new end symbol in the tape alphabet.
2. A new set of head symbols in the tape alphabet, one for each element of

{∗} × Γ .
3. A new set of tape alphabet symbols that have additional markings to denote

that the cells containing them occur to the right of the tape head (with cells
to the left unmarked by these symbols). The new symbols are the elements
of {R} × Γ .

4. The assumption that the initial tape contains the input string x padded by
one copy of end on each side, and with exactly one head symbol denoting the
location of M ’s read/write head along with the value of the tape cell.

The tape alphabet of M ′ has size 3|Γ |+1. M ′ operates in a “zig-zag” manner,
traversing the complete tape from left-to-right, then right-to-left, etc. Each zig
(left-to-right) or zag (right-to-left) traversal carries out at most one step of M ,
doing so only if the traversal direction matches the direction moved by the head.
The left- and rightmost ends of the tape are denoted by the end symbol; each
time the end symbol is reached, the tape is extended by one cell via moving the
end symbol.

During each zig, M ′ begins on the leftmost input character and moves right
until encountering the end symbol. Initially, the leftmost tape cell value contains
the head symbol and all other tape cells contain the R symbol denoting that
they are to the right of the head. The transitions of M ′ are updated versions
of those of M that output values that indicate which side of the head the cell
lies on once the head moves. During traversal, the symbols of all cells that do
not contain the head symbol or are immediately right of such a cell are left
unchanged.

For the cell containing a head symbol (encoding also the tape symbol in M),
if M performs a right-moving transition when in the start state and given the
cell value there, then the value of that cell is updated to the output of that
transition, the cell to the immediate right is updated to contain a head symbol,
and the state of M ′ is updated to encode the new state of M reached after that
transition. Cells not containing the head symbol are left unchanged. Identical
but symmetric behavior is performed during each zag.
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We now define another new Turing machine M ′′ equivalent to M ′ but with
the following modifications. Let b = �bin(|Γ ′|+1)�, where Γ ′ is the tape alphabet
of M ′. That is, b is the length of the binary representation of the size of |Γ ′|+1.
Since |Γ ′| = 3|Γ | + 1, b = O(log(|Γ |)). The tape alphabet for M ′′ is {0, 1} and
M ′′ simulates M ′ by representing each of the characters, or cell values, of M ′ as
a binary string of length b, i.e. each element of Γ ′ will be assigned a unique b-bit
binary string between 1 and |Γ ′|, a new pad symbol is represented as 11 . . . 1,
and the end symbol is represented as 00 . . . 0.

Also, M ′′ expects an input tape that encodes (using the previously described
encoding) an input tape of M ′ in binary, but with the pad symbol inserted
between every pair of cell values and starting with a pad symbol on the left
side. M ′′ operates identically to M ′, but reads, writes, and moves using b steps
each, due to encoding each cell of M ′ as b consecutive cells. As M ′′ reads a
“cell” (b consecutive cells) it writes the pad string; M ′′ then writes the cell’s new
symbol in the adjoining pad string, avoiding simultaneous reading and writing of
a cell. Thus after completing each zig or zag, the adjacent cell and pad locations
alternate, seen in Fig. 1. In conclusion, M ′′ simulates M using a binary tape
alphabet and a head that moves in a zig-zag manner.

Fig. 1. A high-level overview of the growth and tape cell pattern created by T as it
simulates M(x), by simulating the machine M ′′. The cv elements are tape cells and
pad elements are not.

Next, we create a tile set T such that the rg2HAM system T = (T, 1) has a
unique terminal supertile with size larger than O(b) = O(log |Γ |). This terminal
supertile contains an accurate computational history of M ′′ on the input x′ (and
thus M on input x) and so simulates M(x). The tile set is the union of small
groups of tiles that form functional supertiles called gadgets.

For the analysis of this system, we consider a specific “seeded” growth
sequence where tiles attach one at a time, starting with a “seed” that grows
into a “seed row” encoding the initial state of the machine, including an input
tape. We prove that all other assembly sequences either result in the same termi-
nal supertile (correctly representing the computation and containing the seed),
or as “junk” supertiles of size O(| log Γ |).

Figure 2 shows the general structure of gadgets used to form the seed and zig
rows. The first set of tiles to be created for T are those that form the seed row. A
hard-coded set of gadgets is constructed that only bind to each other and in the
correct pattern to encode the seed row: the appropriate binary encoding of x,
interspersed by representations of pad and with encodings of end on the sides).
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(a) (b)

Fig. 2. (a) Seed row gadgets. (b) Zig row gadgets. Grey gadgets read bits on the
bottom left, and write bits on the top left. Red tabs indicate −1-strength glues; black
and yellow tabs indicate 1-strength glues. The gold gadget is the final gadget of a row
and does not read but writes a 0 to the new row. Note that for compactness all gold
gadgets as depicted write only one 0, but actually write a sequence of b 0’s on the
right (end), then b 1’s to the left of those (pad), extending the previous row by 2b bits.
Arrows only show the direction of growth if growth began from the seed. (Color figure
online)

(a) (b)

Fig. 3. (a) Zag row gadgets. Blue and green gadgets read bits on the bottom right,
and write bits on the top right. The gold gadget is the final gadget of a row and does
not read but writes a 0 in the new row. Note that arrows only show the direction of
growth if growth began from the seed. (b) Jackhammer gadgets. The bottommost is a
special type that attaches to a partial seed row that does not contain the seed. (Color
figure online)
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Next, we construct a similarly hard-coded zag row (Fig. 3a) that can only attach
to the seed row and is also hard-coded. The next set of gadgets are copies of each
of the types of gadgets for zig (Fig. 2b) and zag (Fig. 3a) rows that are specific
to each state of M ′′, so that the current state of M ′′ is transmitted through the
glues and the correct transitions are carried out when at head positions.

Incorrect growth is “jackhammered” apart by using yellow glues (see Figs. 4
and 5) to attach jackhammer and stopper gadgets to attach to the bottoms of
rows. These gadgets break apart supertiles with bottom rows that are not the
seed row: invalid computations and valid computations spuriously nucleated.

Fig. 4. An example supertile which has correctly grown five rows upward from the
hard-coded seed (marked with “S”). The arrows show the direction of growth if growth
began from the seed (possible but not necessary). (Color figure online)

Fig. 5. A supertile which can be assembled but does not contain the hard-coded seed
row. (Color figure online)
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Fig. 6. A few of the locations where (red) jackhammer gadgets can attach. Note that
the single-tile partial jackhammer (middle) is currently blocked from further growth.
Further breakage by other jackhammers will eventually allow this jackhammer to com-
plete. (Color figure online)

Fig. 7. (Bottom) The minimal supertile which can be separated by the rightmost
jackhammer gadget. (Top) The tiles highlighted in yellow show all additional tiles that
could have detached with it. Note that now the middle jackhammer is free to grow,
and also that the leftmost jackhammer (and any which attach to gadgets at the end of
rows) is not able to break off any supertile. (Color figure online)

Figures 6, 7 and 8 shows an example portion of such a supertile being broken
apart into terminal junk supertiles. The resulting broken off pieces have size
O(log |Γ |).

Figures 4 and 5 depict example supertiles that do and do not represent valid
computations. Figure 6 shows an example of jackhammer gadgets attaching to a
supertile that does not represent (part of) a valid computation.
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Fig. 8. (Top) The separated supertile from Fig. 7 with the attachment of another jack-
hammer gadget (as well as a portion of a stopper gadget in pink) causing it to break
into two pieces. On each of those pieces the stopper gadgets grow. (Left) Orange high-
lighted portion shows partial regrowth of the row gadget, but the stopper gadget (pink)
completes its growth, preventing any more of its growth. (Right) Orange highlighted
portions show regrowth of row gadgets, stopper gadget growth is toward potential con-
tention locations (yellow highlighted). If the stopper gadget grows into both of those
locations first, the supertile becomes terminal, otherwise further row gadget growth
creates a new location where another jackhammer can attach and split the supertile,
eventually allowing the stopper gadget to block further growth. (Color figure online)

4 Efficient Square Assembly in the Temperature-1
3D2HAM

Here we augment the 2HAM with a third dimension, rather than negative-
strength glues, and prove that the additional geometric freedom permits efficient
assembly of squares that are one or two layers in the third dimension. More pre-
cisely, the construction uses O(log2 n) tile types to assemble terminal supertiles
that all have a n × n × 2 bounding box and have a unique n × n projection into
two dimensions. Let Nn−1 = {0, . . . , n − 1}. Formally stated:

Theorem 2. There exists a tile set T with |T | = O(log2 n) such that the
3D2HAM system T = (T, 1) self-assembles a shape Sn with N

2
n−1 × {0} ⊆ Sn ⊆

N
2
n−1 × {0, 1}.

Proof. The construction begins with the temperature 1 3D aTAM counter of
Cook, Fu, and Schweller [7]. This counter simulates the classic temperature-2
zig-zag style counter [17] (see also Sect. 3 by replacing cooperative binding with
geometric blocking.
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This counter fails in the 3D2HAM in two ways. First, all digits of the counter
use a common constant-sized set of tiles. In the 3D2HAM, this enables counter
rows of unbounded length to grow. Replacing the common tile set with distinct
tile sets for each bit of the counter limits rows to exactly the desired quantity of
Θ(log n) bits.

The second failure is more fundamental: correct growth is only guaranteed
when growth starts from the seed and proceeds forward. In the temperature-1
2HAM, assembly can spuriously nucleate at any tile type, allowing the counter
to grow backwards from any row. This can lead to erroneous supertiles that
increment incorrectly.

As a remedy, we use a cyclic counter consisting of two instances of the counter
design of Fig. 10 that grow in opposite directions and initiate the growth of each
other upon completion. See Fig. 9 for a schematic of the cyclic counter.
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Counter 1

Counter 2

Fig. 9. The cyclic counter combines two forward growth counters that seed each other
upon completion. Erroneous backward growth (red) halts, while forward growth pro-
ceeds until the crashing into the error to yield a full-length terminal supertile. (Color
figure online)

Fig. 10. Forward (left-to-right) growth occurs as in the counter of [7]. The counter
value in each column is incremented by reading the geometry of the column to its left.
White and grey blocks denote 0 and 1 bits, respectively. Smaller and larger squares
denote tiles in the z = 1 and z = 0 layers, respectively.
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Each counter is also modified to halt backwards growth when such growth
makes an error. These ideas together resolve the problem of backwards growth, as
failed backwards growth is eventually met by (correct) forward growth around
the two-counter cycle that necessarily includes a complete correct counter. A
fully formed counter is seen in Fig. 10. Due to space constraints, the details of
how backward growth is halted are omitted.

Assembling n×n Squares. The cyclic counter counts correctly using O(log n) tile
types, but only to values of n that are powers of 2. A counter for a non-power-of-
2 value n involves concatenating up to O(log n) distinct cyclic counters, one for
each 1-bit of the binary representation of n. Each counter uses O(log n) distinct
tile types, and the counters are padded to a common width. Thus n × O(log n)
rectangular supertiles for arbitrary n can be assembled using O(log2 n) tile types.

Such rectangles are assembled into squares by using one rectangle as a back-
bone and attaching additional rectangles to the backbone at regular O(log n)
intervals. Such spacing can be achieved by modification of the counter to place
a special glue based on the values of the least significant log log n bits of the
counter. �	

5 An Aperiodic 3D τ = 1 2HAM System

Here we describe an aperiodic system in the three-dimensional 2HAM at temper-
ature 1, complementing the efficient square construction of the previous section.

Theorem 3. There exists an aperiodic 3D2HAM system T = (T, 1).

Proof. Let the aTAM TAS Tcount = (Tcount, σ
′, 2) be the well-known system that

assembles a “zig-zag” binary counter [17] and let αterm ∈ A�[Tcount]. Our system
T assembles an infinite set of infinite terminal supertiles, each consisting of two
reflected scaled versions of αterm and some extra “junk”.

For every α ∈ A[Tcount] there is a supertile in A[T ] corresponding to α and
composed of macrotiles: scaled versions of tiles in α where some tile glues are
replaced by geometric “dents” and “bumps” encoding the glue’s type in binary.
Figure 11 shows how glues are replaced by “bit-reading” geometry.

Macrotiles bind to form arbitrarily long strips corresponding to binary
counter rows in Tcount, including end macrotiles that match the tiles at the ends
of each row. Two strips encoding adjacent binary values can attach vertically
via glues on their end macrotiles and matching geometry (see Fig. 12).

As in the binary counter of Sect. 4, the forward growth of the counter is always
correct. Thus any assembly in A[T ] containing the macrotile corresponding to
the seed of Tcount corresponds to a subassembly of αterm.

Recall that the aim of T is to assemble only aperiodic terminal assemblies.
Currently, T has (aperiodic) binary counter and (periodic) counter rows terminal
supertiles. Dealing with the infinite periodic rows produced by the (necessarily)
unlimited growth is the primary difficulty of the construction. As a solution, two
mirrored copies of the counter tile set with identical behavior and disjoint glues
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0 1

0 1

a)

b)

c)

Fig. 11. (a) The bit-readers. Only one of them can assemble after “reading” a bit-
writer. The olive-colored tiles attempt to grow both the aqua and yellow tiles but the
geometry presented by the bit-writers prevent one of the paths from growing. (b) The
two bit-writers. (c) An example of bit-readers “reading” two bit-writers. Smaller and
larger squares denote tiles in the z = 1 and z = 0 layers, respectively. (Color figure
online)
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Fig. 12. A producible assembly of Tcount and corresponding macrotile schematic dia-
gram. The geometry of the macrotiles in adjacent strips ensure that adjacent rows
encode incremented binary values.

Fig. 13. The moderately shaded regions represent the scaled up macrotile version of
the counter supertile and its reflection. The darkly shaded tiles are strips of tiles which
expose a maroon glue and the lightly shaded tiles are strips of tiles which expose a red

glue. (Color figure online)
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are combined and modified to ensure infinite periodic supertiles of one attaching
to the aperiodic supertiles of the other. Due to space constraints, we only sketch
the implementation of this idea.

Let T1 be the tile types described in T thus far and β1 be the terminal
supertile corresponding to αterm assembled from these tile types. Then T =
(T1 ∪ T2, 1), where T2 are tile types with glues disjoint from those in T1 that
form a vertically reflected version of β1 called β2. Let S1 be the macrotile in β1

corresponding to the seed in T ′
count and let S2 be the counterpart of S1 in β2. A

maroon glue is added to the south face of the southernmost tile of each macrotile
in β1, unless the macrotile corresponds to the seed of T ′

count, where a red glue is
added. Similarly, a red glue is added to the north face of the northernmost tile
of each macrotile in β2, unless the macrotile corresponds to the seed of Tcount,
where a maroon is added.

Any infinitely long strip is not terminal unless an infinite number of seeds (of
the reflected system) bind to their red or maroon glues (see Fig. 13). Moreover,
at least one of these seeds must be contained in an infinite counter. Thus every
terminal supertile has β1 or β2 as a subassembly and so all terminal supertiles
of T are aperiodic. �	
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Abstract. Efforts in programming DNA and other biological mole-
cules have recently focused on general schemes to physically implement
arbitrary Chemical Reaction Networks. Errors in some of the proposed
schemes have driven a desire for formal verification methods. We show
that by interpreting each implementation species as a set of formal
species, the concept of weak bisimulation can be adapted to CRNs in
a way that agrees with an intuitive notion of a correct implementation.
We give examples of how to use bisimulation to prove the correctness of
an implementation or detect subtle problems. We examine the complex-
ity of finding a valid interpretation between two CRNs if one exists, and
that of checking whether an interpretation is valid. We show that both
are PSPACE-complete in the general case, but are NP-complete and
polynomial-time respectively under an assumption that holds in many
practical cases. We give algorithms for both of those problems.

1 Introduction

In molecular programming, many real and abstract systems can be expressed
in the language of Chemical Reaction Networks (CRNs). A CRN specifies a set
of chemical species and the set of reactions those species can do, and the CRN
model allows us to deduce the global behavior of the system from that local
specification. CRNs are a useful way to separately analyze the computational
and the physical aspects of a system. We can use the CRN model to help analyze
real systems [3,4] or design engineered systems [5,17].

Despite this ideal, there remains a gap between abstract and real CRNs. To
illustrate this gap, consider the approximate majority CRN [1,5]:

X + Y
k−→ 2B

X + B
k−→ 2X

Y + B
k−→ 2Y

This abstract CRN quickly and with high probability converts all of the initial X
and Y molecules into the same amount of whichever one was initially greater [1].
c© Springer International Publishing Switzerland 2016
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However, no three molecules with exactly this behavior are known to exist. (In a
strict sense, no three molecules with exactly this behavior can exist, because for all
three reactions to be driven forward would require X + Y to be both lower-energy
and higher-energy than 2B.) For contrast, consider the DNA strand displacement
system built by Chen et al. [5] meant to implement this abstract CRN. The DNA
system uses additional molecules which are consumed as “fuel” to drive these three
reactions, ending up with over 25 each of species and reactions. Without know-
ing that it is meant to be an implementation of the approximate majority CRN,
it might be difficult to tell what the DNA system was meant to do. Even know-
ing the correspondence, it is not obvious that there is no mistake in that complex
implementation.

The issue of verifying correctness is exacerbated by the recent profusion of
experimental and theoretical implementations in synthetic biology and molecular
programming. Of particular interest to us, Soloveichik et al. [16] designed a
systematic way to construct a DNA system to simulate an arbitrary CRN. Since
then there have been a number of methods to translate an arbitrary CRN into
a DNA strand displacement circuit [2,12,16]. While each one gave arguments
for why it was a correct implementation, they did not come with a general
theory of what it means to correctly implement a CRN. In some cases this
led to subtle problems, of which we will give examples later. To be certain that
such implementations are correct, CRN verification methods were invented. Such
methods include Shin’s pathway decomposition [15], Lakin et al.’s serializability
analysis [9], and Cardelli’s morphisms between CRNs [3].

We present a method for comparing an implementation CRN with an abstract
CRN based on the concept of bisimulation from concurrency theory [11]. Our
method associates each implementation species with a multiset of formal species,
then asserts correctness if the reactions reachable from any implementation state
are the same as the corresponding state in the abstract CRN. Like pathway
decomposition [15] and serializability [9] but unlike Cardelli’s morphisms [3],
our bisimulation method works with the stochastic model for low-copy-number
CRNs and doesn’t take into account rates or kinetics. The use of interpretations
instead of pathways means that some implementations considered correct by
pathway decomposition are considered incorrect by bisimulation and vice versa.
Interpretations also make bisimulation more local than pathway decomposition
or serializability, which we hope makes it more understandable and tractable. We
show how bisimulation can be used to prove a CRN implementation correct or
identify subtle problems. We present an algorithm to check whether a particular
interpretation between two CRNs is a bisimulation relation, and an algorithm to
find such an interpretation if one exists. We analyze the computational complex-
ity of both problems. We prove that both are PSPACE-complete in the general
case but become polynomial time and NP-complete, respectively, when formal
reactions are limited to a constant number of reactants. We hope this method
can be used in both verifying that engineered systems match their specification
and in comparing natural systems to a system simple enough to analyze.
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2 The Chemical Reaction Network Model

We work within the Chemical Reaction Network (CRN) model. A CRN is a tuple
(S,R), where S is a finite set of species and R a finite set of reactions. A reaction
is itself a tuple (R,P ), where the reactants R and products P are both multisets
of species. We require that in any reaction R �= P . We work with the stochastic
model of CRNs, where the state of the system is represented by nonnegative
integer counts of each species, and states transition discretely to other states
when reactions occur. In particular, a state S ∈ N

S can transition to a state T
if there is some reaction (R,P ) ∈ R such that R ≤ S and S −R +P = T . Often
a probabilistic semantics is attached to this model, but for our purposes we only
need to know whether something is possible.

We use the notation {|. . .|} for multisets interchangeably with the chemical
notation, e.g. 2A + B, {|A,A,B|}, and {|2A,B|} all refer to the same state.
Similarly, we sometimes use the chemical notation for reactions, e.g. A+B → 2C
is the same as ({|A,B|} , {|2C|}). The “reversible reaction” notation A+B � 2C
is a shorthand for the two reactions ({|A,B|} , {|2C|}) and ({|2C|} , {|A,B|}).
Multisets can be added and multiplied by scalars componentwise, and can be
compared componentwise: S ≤ T ⇐⇒ ∀XS(X) ≤ T (X), and S < T if S ≤ T
and S �= T . If S ≤ T then subtraction T − S is defined componentwise. Set
operations involving multisets implicitly treat each multiset as the set of all
objects which appear at least once; e.g. {|1, 1, 2|} ⊂ {1, 2, 3} but {|1, 1, 2|} �⊂ {1}.

In this model, each possible behavior of a CRN is specified by a trajectory:
an initial state S0 ∈ N

S together with a (finite or infinite) sequence of reactions
rk = (Rk, Pk) ∈ R. A trajectory implicitly specifies a sequence of states Sk =
S0+

∑
i≤k(Pk−Rk), but a sequence of states is not enough to specify a trajectory.

For example, if A → B and X+A → X+B are both reactions, then the sequence
of two states (S0, S1) = ({|X,A|} , {|X,B|}) does not specify which of those two
reactions happened, which is sometimes important. A trajectory is valid if each
reaction (Rk, Pk) can occur in the state resulting from the previous reactions;
that is, Rk ≤ Sk. In general when we speak of “the trajectories of a CRN” we
mean the valid trajectories.

A state T is reachable from a state S if T is the result of a valid finite
trajectory that starts in S. We say a state T is coverable from a state S if there
is some T ′ ≥ T such that T ′ is reachable from S. While the set of reachable
states (from any given initial state) is an important aspect of the behavior of
a CRN, it does not contain all the information about that CRN. For example,
the two CRNs ({A,B,C}, {A → B,B → C,C → A}) and ({A,B,C}, {A →
C,C → B,B → A}) have exactly the same set of reachable states T from any
given initial state S, but are clearly different in a meaningful way. If however
the set of (valid) trajectories of two CRNs are the same, then the two CRNs
must be identical: since in particular the length-zero trajectories (i.e. states) are
the same, so the sets of species are the same, and the length-one trajectories
(single reactions) are the same. We say that two CRNs are isomorphic if there
is a bijection between the sets of species such that the set of reactions of one,
after applying this bijection, equals the set of reactions of the other.
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3 The Meaning of Correctness

3.1 Interpretations

Schemes for translating an arbitrary abstract CRN into a DNA Strand Displace-
ment (DSD) implementation [2,12,16] provide designs for the necessary DNA
molecules, but how these molecules interact is best described by a model of the
relevant biophysics. Reaction enumerators such as Visual DSD [10] and Pepper-
corn [8] produce, given a set of DNA molecules, a description of their predicted
interactions as a CRN, allowing us to compare it to the original CRN using the
same language. We refer to the original abstract CRN as the formal CRN (S,R)
and the model’s enumerated CRN as the implementation CRN (S ′,R′), which
is usually larger than the formal CRN. As a convention, we assume that the
formal CRN and the implementation CRN make use of disjoint sets of species.
(When using verification to compare a detailed model of a natural system with
unknown function to a simpler abstract CRN with known function, the natural
system is the implementation and the abstract system is the formal CRN.) There
are two other important features typical of engineered implementation CRNs.
First, there is typically for each formal species A an implementation species xA

intended to correspond specifically to it, sometimes called a “signal species”.
Second, certain implementation species must always be present for the system
to work, and are designated “fuel species”. Fuel species are typically assumed
to be held at a constant concentration, for example by setting their initial con-
centration high enough that it does not vary significantly over the running time
of the CRN. In this situation, we can approximate the implementation CRN by
a simplified CRN with all fuel species removed; e.g. if g1 is a fuel, the reaction
xA + g1 → iA can be replaced by xA → iA with no loss of meaning.

Figure 1 gives an example of this process for the formal reaction A + B →
C +D, yielding an implementation CRN with four reactions. (Names such as xA

Fig. 1. Implementation of A + B → C + D using the scheme described in [16]. Left:
DNA complexes and reactions. Top right: Direct translation of reactions in the imple-
mentation CRN. Bottom right: Implementation CRN after removing fuels.
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m(xA) = {|A|}

m(xB) = {|B|}

m(xC ) = {|C|}

m(xD) = {|D|}

m(iA) = {|A|} m(tCD) = {|C,D|}

m(w1) = ∅

A � A A + B → C + D

Fig. 2. Interpretation of the implementation CRN in Fig. 1. m(tCD) = A + B would
also be a valid interpretation for this CRN.

and tCD are based on the intent of the designers of the CRN, but the subscripts
have no theoretical meaning.) The signal species xA can freely convert to and
from iA, and the strand tCD can produce the signals xC and xD (and waste w2).
Intuitively, iA is an A and tCD is a C and a D; in this sense the first and third
reactions are silent, and the second is A + B → C + D. We formalize this by
defining an interpretation of the implementation species (Fig. 2):

Definition 1. An interpretation is a function m : S ′ → N
S from implementa-

tion species to multisets of formal species. We extend this linearly from species to
states: m(

∑n
i=1 aiXi) =

∑n
i=1 aim(Xi). We also define m(R′ → P ′) = m(R′) →

m(P ′) unless m(R′) = m(P ′), in which case m(R′ → P ′) = τ and we say the
reaction is trivial. For example, if m(iAB) = A+B, m(xA) = A, and m(tBC) =
B+C then m(iAB+xA) = 2A+B, and m(iAB → xA+tBC) = A+B → A+B+C.

The interpretation of an implementation reaction is always a pair (R,P ) of
multisets of formal species, or τ , but (R,P ) may not be in R. Any such pair is
a reaction in the language of the formal CRN, but is a formal reaction only if
(R,P ) ∈ R. Similarly, (R′, P ′) is an implementation reaction only if it is in R′.

In the following notation, S′, T ′, S′′, and T ′′ refer to implementation states;
S and T to formal states; r′ to an implementation reaction; and r to a reaction
in the language of the formal CRN or τ . When a formal reaction r takes state

S to state T , we write S
r−→ T ; S′ r′

−→ T ′ is similar. Note that if S
r−→ T , then

r = (R,P ) ∈ R as well as S−R+P = T , and analogously for the implementation.

Further, we write S′ r−→ T ′ when S′ r′
−→ T ′ for some r′ with m(r′) = r, which

does not require r ∈ R (but does require r′ ∈ R′). Note that if S′ τ−→ T ′ then
m(S′) = m(T ′). To abstract away from trivial reactions, we write S′ τ=⇒ T ′

to mean S′ can reach T ′ via 0 or more trivial reactions, and S′ r′
=⇒ T ′ when

S′ τ=⇒ S′′ r′
−→ T ′′ τ=⇒ T ′. Note that S′ τ=⇒ S′ and S

τ=⇒ S are always true. S′ r=⇒ T ′

for r �= τ is again defined as S′ r′
=⇒ T ′ for some r′ with m(r′) = r. S

r=⇒ T for
r �= τ is defined but trivial: S

r=⇒ T ⇐⇒ S
r−→ T . When the final state is

irrelevant, we sometimes write S′ r′
=⇒, etc.
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3.2 Three Notions of Correctness

Our notion of correctness is motivated by the earlier observation that the set of
valid trajectories defines equivalence between formal CRNs, and allowing renam-
ing of species defines isomorphism. Applying this notion to an implementation
CRN with an interpretation introduces two difficulties. First, due to trivial reac-
tions, the implementation trajectory may involve more steps. This is easily solved
by defining the interpretation of an implementation trajectory to remove trivial
reactions. Second, and more seriously, the full set of interpreted implementa-
tion trajectories may cover the formal trajectories, yet particular implemen-
tation trajectories may experience restricted options for alternative paths. An
extreme example of this is an implementation CRN that is subject to deadlock,
({xA, xB , yB , xC}, {xA → xB , xA → yB, xB → xC , xC → xA}) with the interpre-
tation m = {(xA, A), (xB , B), (yB , B), (xC , C)}, which has the same interpreted
trajectories as the formal CRN ({A,B,C}, {A → B,B → C,C → A}), which
cannot deadlock. To resolve this issue, we need a finer-grained notion of tra-
jectory equivalence that requires equivalence given any initial state. As defined
formally below, this is a satisfactory definition of correctness.

However, since the sets of trajectories are generally infinite, we would like a
more local definition that facilitates efficient computational analysis. We define
three local conditions on the interpretation which we show are equivalent to
trajectory equivalence. As further evidence that our notion of correctness is
sound, we show that these three conditions are equivalent to a special case of
weak bisimulation from concurrency theory [11]. This gives us three notions of
correctness, given a formal CRN, an implementation CRN, and an interpretation:

I Equivalence of trajectories
(i) The set of formal trajectories and interpretations of implementation tra-

jectories are equal.
(ii) For every implementation state S′, the set of formal trajectories starting

from m(S′) and interpretations of implementation trajectories starting
from S′ are equal.

II Three conditions on the interpretation
(i) Atomic condition: For every formal species A, there exists an implemen-

tation species xA such that m(xA) = {|A|}.
(ii) Delimiting condition: The interpretation of any implementation reaction

is either trivial or a valid formal reaction.
(iii) Permissive condition: If S

r−→ and m(S′) = S, there exists an implemen-

tation reaction r′ such that m(r′) = r and S′ r′
=⇒.

III Weak bisimulation
(i) For all implementation states S′,

if S′ r−→ T ′, then S
r=⇒ T where S = m(S′) and T = m(T ′).

(ii) For all formal states S, there exists S′ with m(S′)=S, and for all such S′,
if S

r−→ T , then for some T ′, S′ r=⇒ T ′ and m(T ′) = T .
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A few comments are in order. It may seem that the second condition for
trajectory equivalence supercedes the first, but it does not: for example, the
second condition may be satisfied even if there is no implementation state S′

that is interpreted as formal state S, whereas the first condition will not be
satisfied in that case.

Our definition of bisimulation in CRNs is in fact a special case of Milner’s
definition [11] for transition systems. Milner allows an arbitrary relation between
states, while we rely on an interpretation m to establish a relation between formal
states and implementation states. Our definition of the interpretation enforces
several restrictions that, to us, are natural and consistent with the structure
of CRNs: they provide a unique interpretation for each implementation state
(i.e. the interpretation is a function), subsets of an implementation state can
be interpreted separately and additively combined (i.e. the function is linear),
and every formal state has at least one corresponding implementation state (i.e.
the interpretation is surjective). In fact, any relation between formal states and
implementation states that is a surjective linear function is induced by some
interpretation, as shown in Lemma 1. Thus, we can take advantage of the finite
specification of interpretations, while not losing any generality beyond the nat-
ural restrictions that we desire. These observations justify describing our notion
of bisimulation in CRNs as “surjective linear weak bisimulation”.

Lemma 1. Let ↔⊂ N
S × N

S′
be a relation between formal states and imple-

mentation states. If for every implementation state S′ there is exactly one formal
state S such that S ↔ S′ (function) and for every pair of pairs S1 ↔ S′

1 and
S2 ↔ S′

2 we have S1+S2 ↔ S′
1+S′

2 (linearity), then there is some interpretation
m : S ′ → N

S which, when extended to implementation states m : NS′ → N
S ,

induces that relation: S ↔ S′ ⇐⇒ S = m(S′). Furthermore, for every S there
is some S′ such that S ↔ S′ (surjectivity) iff m satisfies the atomic condition.

Proof. Given that the relation ↔ is a linear function from N
S′

to N
S , we define

the interpretation to be m(x) = Sx where Sx is the unique formal state such that
Sx ↔ {|x|}. Now, any implementation state S′ is some sum of implementation
species, S′ =

∑
x∈S′ αxx, and because we define the interpretation of a state

as the sum of interpretations of species, m(S′) =
∑

x∈S′ αxm(x). Then by the
linearity assumption on ↔, m(S′) ↔ S′. Thus, if S = m(S′), then S ↔ S′.
Conversely, if S ↔ S′, then S = m(S′) because ↔ is a function.

If we further assume that ↔ is surjective, then in particular for each formal
species A, there must be some S′ such that {|A|} ↔ S′, i.e. m(S′) = {|A|}.
Since m(S′) is the sum of interpretations of species in S′ and an implementation
species cannot interpret to fractional or negative formal species, there must
be some species xA ∈ S′ with m(xA) = {|A|} (and any other species in S′

interpret to ∅). Thus the atomic condition is satisfied. Conversely, if the atomic
condition is satisfied, then consider an arbitrary formal state S =

∑
A∈S αAA.

Using linearity, let S′ =
∑

A∈S αAxA, so m(S′) = S, and thus ↔ must be
surjective. �
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Theorem 1. The three definitions of correctness, namely trajectory equivalence,
the three conditions on the interpretation, and weak bisimulation, are equivalent.

Proof. We show that trajectory equivalence implies the three conditions for-
mulation; the three conditions imply weak bisimulation; and weak bisimulation
implies trajectory equivalence.

Given trajectory equivalence, we prove the three conditions on m. First, for
the atomic condition, consider applying condition I.(i) of trajectory equivalence
to formal trajectories of length 0, which are just formal states, and in particular
formal states SA = {|A|} for each formal species A. That the set of trajectories
are equal implies that there is an implementation trajectory whose interpreta-
tion is the (zero-length trajectory) state SA, i.e. an implementation state S′

A

with m(S′
A) = {|A|}. Then as in Lemma 1, there is some species xA ∈ S′

A with
m(xA) = {|A|}, satisfying the atomic condition. For the delimiting condition,
consider implementation trajectories of length 1, specifically for each implemen-

tation reaction r′ = (R′, P ′) the trajectory R′ r′
−→ P ′. If r′ is trivial, that is

m(r′) = τ , its interpreted trajectory is a zero-length trajectory; if not, its inter-

preted trajectory is m(R′)
m(r′)−−−→ m(P ′), which by trajectory equivalence must

be a formal trajectory. For that to be so, m(r′) must be a reaction in R, thus
satisfying the delimiting condition. For the permissive condition, for every formal
reaction r = (R,P ) and implementation state S′ with m(S′) ≥ R, the trajectory
m(S′) r−→ T , where T = m(S′)−R+P , is a formal trajectory. By condition I.(ii)
of trajectory equivalence, there is an implementation trajectory starting in S′

whose interpreted trajectory is m(S′) r−→ T . (Note that condition I.(i) implies
this for some S′ with m(S′) = S, but not necessarily for every S′.) To have that
interpretation, that implementation trajectory must have some reaction r′ with
m(r′) = r and all other reactions trivial; this is the definition of S′ r=⇒, satisfying
the permissive condition.

Given the three conditions, we prove weak bisimulation. Given any S′ with

m(S′) = S and S′ r′
−→ T ′ where r′ = (R′, P ′), by the delimiting condition either

m(r′) = τ is trivial or m(r′) = r = (R,P ) ∈ R. If trivial, then m(T ′) = m(S′) =

S and S
τ=⇒ S is true by convention. If nontrivial, then r ∈ R; since S′ r′

−→ we must
have S′ ≥ R′, thus m(S′) ≥ m(R′) = R, and S

r−→ T (therefore S
r=⇒ T ) where

T = S − R + P . Since T ′ = S′ − R′ + P ′, m(T ′) = m(S′) − m(R′) + m(P ′) = T ,
satisfying condition III.(i) of weak bisimulation. Given any S, by Lemma 1 the
atomic condition implies there exists an S′ with m(S′) = S. Given any such S′

with S
r−→ T where r = (R,P ), by the permissive condition there is some r′ with

m(r′) = r and S′ r′
=⇒, which is an abbreviation for ∃T ′S′ r′

=⇒ T ′, which is further

an abbreviation for ∃S′′S′ τ=⇒ S′′ r′
−→ T ′. (Strictly speaking S′ r′

=⇒ T ′ means there

is some S′ τ=⇒ S′′ r′
−→ T ′′ τ=⇒ T ′, but since we are choosing an arbitrary T ′ we can

take T ′ = T ′′.) Then m(S′) = m(S′′) = S since they are connected by trivial
reactions, and where r′ = (R′, P ′) with m(R′) = R and m(P ′) = P we have
T ′ = S′′ − R′ + P ′ so m(T ′) = S − R + P = T , satisfying condition III.(ii) of
weak bisimulation.
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Given weak bisimulation, we prove trajectory equivalence. We first prove con-
dition I.(ii). Given any S′

0 with S0 = m(S′
0) and any implementation trajectory

(S′
0, r

′
1, . . . , r

′
k, . . . ) with r′

k = (R′
k, P ′

k), let S′
k = S′

k−1−R′
k+P ′

k = S′
0−

∑
i≤k R′

i+∑
i≤k P ′

k. Letting Sk = m(S′
k) and rk = m(r′

k), it follows that either rk = τ or
else rk = (Rk, Pk) and Sk = Sk−1 − Rk + Pk = S0 − ∑

i≤k Rk +
∑

i≤k Pk

by linearity of m. From bisimulation, since each S′
k−1

r′
k−→ S′

k we have either
rk = τ and Sk−1 = Sk, or r �= τ and Sk−1

rk−→ Sk, since for r �= τ in the
formal CRN S

r=⇒ T ⇐⇒ S
r−→ T . The interpretation of that implemen-

tation trajectory is exactly S0 followed by those reactions Sk−1
rk−→ Sk for

which rk �= τ , and thus the interpretation is a formal trajectory. Conversely,
given S′

0 with S0 = m(S′
0) and any formal trajectory (S0, r1, . . . , rk, . . . ) with

rk = (Rk, Pk), letting Sk = Sk−1 − Rk + Pk = S0 − ∑
i≤k Rk +

∑
i≤k Pk, we

construct an implementation trajectory whose interpretation is that formal tra-
jectory. Given S′

0, define inductively S′
k and r′

k to be an implementation state

and reaction such that S′
k−1

r′
k=⇒ S′

k with m(r′
k) = rk and m(S′

k) = Sk, which

exists by condition III.(ii) of weak bisimulation. Expanding each
r′
k=⇒ implicitly

defines an implementation trajectory (S′
0, r

′′
1,1, . . . , r

′′
1,l1

, r′
1, r

′′
2,1, . . . ) where each

m(r′′
k,j) = τ and each m(r′

k) = rk; the interpretation of this trajectory is the
formal trajectory (S0, r1, . . . , rk, . . . ) as desired, proving condition I.(ii). Con-
dition I.(i) follows from condition I.(ii) of trajectory equivalence and condition
III.(ii) of weak bisimulation: every implementation trajectory starts from some
S′ and by condition I.(ii) its interpretation must be a formal trajectory starting
from m(S′). Conversely, every formal trajectory starts from some S, by con-
dition III.(ii) of weak bisimulation there is some S′ with m(S′) = S, and by
condition I.(ii) of trajectory equivalence there is an implementation trajectory
starting from S′ whose interpretation is that formal trajectory. �

3.3 Applying Bisimulation

We now consider how to use bisimulation to analyze our example implemen-
tation of A + B → C + D. We use the three conditions formulation. The
atomic condition is satisfied by the “signal species” xA, xB , xC , and xD. For
the delimiting condition, we check each implementation reaction individually:
iA + xB → tCD + w1 is interpreted as A + B → C + D, which is formal,
while xA � iA and tCD → xC + xD + w2 are trivial. The permissive condition
says that for every formal reaction and for every implementation state in which
that reaction should be able to happen, it can. There is one formal reaction,
A + B → C + D, and any state in which it should be able to happen must
contain an xB and either an xA or iA, since those are the only species whose
interpretations contain either B and/or A. If the state contains xB and iA, then
the reaction iA +xB → tCD +w1 can happen and satisfies the permissive condi-
tion. If the state contains xB and xA, then the trivial reaction xA → iA followed
by iA + xB → tCD + w1 satisfies the permissive condition.
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Now consider a different case. Figure 3 shows an implementation of A +
B → C + D as described by Qian et al. [12] as a means to implement stack
machines, along with a natural interpretation. The species iAB:CD is interpreted
as C+D, while iA:BCD is interpreted as A and xB as B. This makes the reaction
iAB:CD → iA:BCD+xB interpreted as C+D → A+B, which is not a valid formal
reaction. Thus the delimiting condition is unsatisfied, and the implementation
is not correct according to bisimulation; any other interpretation will have the
same problem. This is not a problem for deterministic stack machines, but it
does identify an error with this as a translation scheme for arbitrary CRNs: if
the reaction A+B → C +D were put together with a reaction C → C +E, then
it would be possible to go from {|A,B|} to {|A,B,E|} in the implementation
CRN when it is not possible in the formal CRN.

m(xB) = {|B|}

f
+
B

m(iA:BCD) = {|A|}

m(iAB:CD) = {|C,D|}

xA + fABCD � iA:BCD + f+
A

xB + iA:BCD � iAB:CD + f+
B

iAB:CD + f−
C � iABC:D + xC

iABC:D + f−
D � iABCD: + xD

iABCD: + fi → wABCD

Fig. 3. The translation scheme from [12], when used as a general CRN implementation,
violates the delimiting condition. Species named f are fuels.

3.4 Properties of CRN Bisimulation

We describe two properties of CRN bisimulation that are likely to be useful in
analyzing larger systems. While bisimulation in the classic sense is an equiva-
lence relation between systems [11], our definition of interpretation-dependent
CRN bisimulation is a partial order on the set of CRNs. In particular, CRN
bisimulation is transitive, which allows us to do complex proofs of correctness in
stages. We also show a modularity condition, where the combination of interpre-
tations can be verified using only properties of each individual interpretation.
This is particularly useful for general translation schemes where the translation
of a whole CRN is the combination of one “module” for each reaction. As an
example, we use modularity to prove that the translation scheme in [16] is correct
for any CRN.

We first show that CRN bisimulation is transitive. Consider three CRNs:
an abstract CRN (S,R), an implementation CRN (S ′′,R′′), and an interme-
diate CRN (S ′,R′). For example, (S,R) is an abstract CRN, (S ′′,R′′) is a
low-level reaction enumeration of a prospective DNA implementation of (S,R),
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and (S ′,R′) is a more high-level reaction enumeration of the same DNA imple-
mentation which abstracts away from certain details. Say we have proven
that (S ′,R′) is a valid implementation of (S,R) by finding an interpretation
m1 : S ′ → N

S which is a bisimulation, and similarly have found an interpre-
tation m2 : S ′′ → N

S′
which is a bisimulation from (S ′′,R′′) to (S ′,R′). We

want to prove that (S ′′,R′′), the system we actually have, is a valid implemen-
tation of (S,R), the system we want. The natural interpretation m : S ′′ → N

S

is m(x) = (m1 ◦ m2)(x) = m1(m2(x)), treating m2 as a function of species and
m1 as extended to a function of states. It turns out that this interpretation is in
fact a bisimulation.

Lemma 2 (Transitivity). If m2 is a bisimulation from (S ′′,R′′) to (S ′,R′) and
m1 is a bisimulation from (S ′,R′) to (S,R), then m = m1 ◦m2 is a bisimulation
from (S ′′,R′′) to (S,R).

Proof. We use the three conditions formulation of correctness. We refer to (S,R)
as the “formal” CRN, (S ′′,R′′) as the “implementation” CRN, and (S ′,R′) as
the “intermediate” CRN. We show that each condition for m follows from the
corresponding conditions for m1 and m2.

For any formal species A, by the atomic conditions for m1 and m2 there is
an intermediate species xA with m1(xA) = {|A|} and implementation species yA

with m2(yA) = xA. Then m(yA) = m1(m2(yA)) = m1({|xA|}) = {|A|}, thus m
satisfies the atomic condition.

For any implementation reaction r′′ = R′′ → P ′′, by the delimiting condi-
tion for m2 its interpretation m2(r′′) is either an intermediate reaction R′ →
P ′ ∈ R′ or is τ . If m2(r′′) = τ , that means m2(R′′) = m2(P ′′) and m(R′′) =
m1(m2(R′′)) = m1(m2(P ′′)) = m(P ′′), so m(R′′ → P ′′) = m(r′′) = τ . If
m2(r′′) = R′ → P ′ is a valid intermediate reaction, then m(r′′) = m1(R′ → P ′),
which by the delimiting condition for m1 is either a valid formal reaction or
trivial.

For any formal state S and reaction r with S
r−→ and any implementation

state S′′ with m(S′′) = S, that means S′ = m2(S′′) is an intermediate state with
m1(S′) = S. By the permissive condition on m1, there is some r′ with m1(r′) = r

and S′ r′
=⇒. Using the permissive condition on m2 and the argument used in Theo-

rem 1 to show that the permissive condition implies trajectory equivalence, there
is a sequence of implementation reactions starting from S′′ which implements

the intermediate trajectory by which S′ r′
=⇒. This means that one of those reac-

tions r′′ has m2(r′′) = r′, some of them interpret via m2 to various intermediate
reactions in that pathway which are trivial under m1, and the rest of which are
trivial under m2. An implementation reaction trivial under m2 is trivial under
m, as is a reaction which interprets under m2 to an intermediate reaction trivial
under m1, thus all reactions in this pathway except r′′ are trivial under m, so
when viewed under m, S′′ r=⇒. �

Bisimulation in the classic sense is an equivalence relation on states, which
can be extended to an equivalence relation on systems [11]. Our definition of
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weak bisimulation introduces an asymmetry – one implementation state can
only correspond to one formal state, but multiple implementation states can
correspond to the same formal state. Bisimulation assumes a set of states and
transitions between states where each transition is labelled from a common set of
labels, while CRNs do not come with an obvious concept of labels. Our definition
implicitly uses the set of all possible reactions using species in the formal CRN
(plus the silent τ) as labels, labeling each formal reaction with itself and each
implementation reaction with its interpretation. In that context, Lemma 1 and
Theorem 1 say that there is an interpretation m which is a CRN bisimulation
(satisfies the three conditions, has trajectory equivalence) if and only if there is
a relation between states of that system which is a surjective and linear function
from implementation states to formal states and is a bisimulation in the sense of
[11]. Since we require one CRN to be designated the “formal” CRN in order to
define a set of labels, it is difficult to make the concept of a symmetric relation
between CRNs meaningful. Instead, CRN bisimulation is an order relation (up to
isomorphism):

Lemma 3 (Partial order). The following relation is a partial order: (S ′,R′) �
(S,R) if there exists an m : S ′ → N

S which satisfies the atomic, delimiting, and
permissive conditions (equivalently, its extension m : NS′ → N

S is a surjective
linear weak bisimulation) with equality defined as (S ′,R′) ≡ (S,R) if there exists
a bijection n : S ′ → S such that (n(S ′), n(R′)) = (S,R) where n is extended
naturally to sets and reactions.

Proof. A partial order must be transitive, reflexive, anti-symmetric. Transitivity
(if a ≤ b and b ≤ c then a ≤ c) follows immediately from Lemma 2. Relexivity
(a ≤ a) is obvious by letting m be the identity function. It remains to show anti-
symmetry (if a ≤ b and b ≤ a, then a = b), i.e. that given (S1,R1) and (S2,R2)
with m1 : S1 → N

S2 and m2 : S2 → N
S1 that each satisfy the atomic, delimiting,

and permissive conditions, (S1,R1) and (S2,R2) are identical up to a change of
species names. The atomic condition implies that |S1| ≤ |S2| and |S2| ≤ |S1|,
thus the numbers of species are equal and in particular m1 is a bijection from
species in S1 to sets of exactly one species in S2 (and the same is true for m2).
To simplify notation, we let n(x) = y if m1(x) = {|y|}; n must be a bijection
from S1 to S2. (If the CRN has sufficient symmetry, it is not necessarily true
that m2(n(x)) = {|x|}, for example if both CRNs are {A → C,B → C} we could
have m2(n(A)) = {|B|}.) Since n is a bijection, any reaction that would be trivial
after interpretation (by either m1 or m2) must be trivial before interpretation,
and thus cannot exist. By the delimiting condition for m1, every reaction in R1

must have its image under n in R2; by the permissive condition for m1, every
reaction in R2 must have its preimage under n in R1; thus the two CRNs are
equal up to the isomorphism n. �

In Sect. 3.3 we showed that the translation scheme from [16] is a cor-
rect implementation of the single reaction A + B → C + D according to
CRN bisimulation. Intuitively, given a CRN of multiple reactions we should
be able to combine the implementations of each such reaction to form a correct
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implementation of the CRN. In particular, we would like to show that the com-
bined implementation CRN is correct using a condition which we can check on
each individual reaction’s implementation without having to check any property
of the combined CRN. Since, as we will see in Sect. 4, the time required to check
an interpretation scales much worse than linearly in the size of the implementa-
tion CRN, such a modularity condition would be a significant saving in the time
required. While it is not in general true that combining two correct implemen-
tation CRNs gives a correct implementation of the combined formal CRN, there
is a modularity condition which guarantees that the combined CRN is correct.

We consider an implementation CRN (S ′
1,R′

1) and formal CRN (S1,R1) with
interpretation m1 : S ′

1 → N
S1 , and another implementation CRN (S ′

2,R′
2) and

formal CRN (S2,R2) with interpretation m2 : S ′
2 → N

S2 , where both m1 and
m2 are bisimulations. We assume the interpretations are compatible: for each
x ∈ S ′

1 ∩ S ′
2, m1(x) = m2(x), which implies m1(x) ∈ N

S1∩S2 . We also assume
that the reactions in R′

1 and R′
2 are the only reactions that occur when you

combine the implementation species in S ′
1 and S ′

2; that is, we assume no crosstalk
reactions. Whether there is crosstalk can be checked by a reaction enumerator
[8,10]. Aside from crosstalk, the main reason for the combined implementation
to be incorrect according to bisimulation is some implementation species y in
e.g. S ′

1 but not in S ′
2 whose interpretation contains a formal species A ∈ S1 ∩S2,

where some formal reaction in R2 with A as a reactant cannot be implemented
from an implementation state where y is the representation of A. If any such
species y can, via trivial reactions, “release” any formal species in S1 ∩ S2 in its
interpretation to implementation species in S ′

1 ∩ S ′
2, then we would think this

problem cannot arise. This condition can be checked individually on each module
without checking the combined CRN, and we show that this condition guarantees
that the combined implementation is correct according to bisimulation.

Theorem 2 (Modularity). Let m1 be a bisimulation from (S ′
1,R′

1) to (S1,R1)
and m2 be a bisimulation from (S ′

2,R′
2) to (S2,R2) where m1 and m2 agree on

S ′
1 ∩ S ′

2. Let S ′ = S ′
1 ∪ S ′

2, R′ = R′
1 ∪ R′

2, S = S1 ∪ S2, and R = R1 ∪ R2, and
m : S ′ → N

S equal m1 on S ′
1 and m2 on S ′

2. If for any x ∈ S ′ there is a sequence
of trivial reactions x

τ=⇒ Y + Z for Y ∈ N
S′
1∩S′

2 and m(Z) ∩ (S1 ∩ S2) = ∅, then
m is a bisimulation from (S ′,R′) to (S,R).

Proof. We use the three conditions formulation. The atomic condition for m for
each formal species A is satisfied by the species xA that satisfy it for m1 or
m2, as appropriate, or possibly both; e.g. if A ∈ S1 then there is some species
xA ∈ S ′

1 such that m1(xA) = {|A|}, which implies that xA ∈ S ′ and m(xA) =
m1(xA) = {|A|}. Similarly the delimiting condition for m follows from that for
m1 and m2: for any implementation reaction R′ → P ′ in S ′, that reaction is
in either R′

1 or R′
2, and its interpretation in m agrees with its interpretation in

either m1 or m2 as appropriate, which is either a trivial reaction or a formal
reaction in R1 or R2, which is thus in R. (The delimiting condition assumes, as
we mentioned above, that no crosstalk reactions exist, which when applying this
theory to DNA implementations would be checked by a reaction enumerator.)
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For the permissive condition, consider a formal reaction r = R → P and
implementation state S′ where R ≤ m(S′). Either r ∈ R1 or r ∈ R2; without
loss of generality say r ∈ R1. Divide S′ into species in the first CRN and species
not: let S′ = S′

1 + S′
2, where S′

1 ⊂ S ′
1 and S′

2 ∩ S ′
1 = ∅. If m(S′

1) ≥ R, then
the permissive condition for m1 applied to reaction r and state S′

1 mean S′
1

r=⇒,
thus S′ r=⇒ by the same sequence of reactions ignoring species in S′

2. In the
general case, this means the proof is nontrivial only for formal species in R
whose implementations in S′ are in S′

2, and we need to show that those formal
species can be “extracted” into an implementation species in S ′

1. This is exactly
the modularity condition: for each species xi ∈ S′

2 there is a sequence of trivial
reactions by which xi

τ=⇒ Yi+Zi, where Yi ⊂ S ′
1 and m(Zi)∩S1 = ∅. In particular,

since R → P is a reaction in CRN 1, R ⊂ S1 and R ∩ m(Zi) = ∅. We then have
S′ τ=⇒ S′

1 + Y + Z, where Y =
∑

i Yi ⊂ S ′
1 and Z =

∑
i Zi. Since R ∩ Z = ∅,

R ≤ m(S′), and m(S′) = m(S′
1 + Y ) + m(Z), we have R ≤ m(S′

1 + Y ). Since
S′
1 + Y ⊂ S ′

1, the permissive condition for m1 implies S′
1 + Y

r=⇒, thus S′ r=⇒. �
DNA implementation schemes for arbitrary CRNs such as [2,12,16] typically

have a set of common species and for each formal reaction a “module” with addi-
tional species and implementation reactions that implement the formal reaction.
If the modules have no crosstalk and each one correctly implements its reaction
and satisfies the modularity condition, then repeated applications of Theorem 2
prove that the entire CRN is a correct implementation.

Corollary 1. Consider a formal CRN (S,R) with n reactions R = {ri}n
i=1,

and n implementation “module” CRNs (S ′
0 ∪S ′

i,R′
i) with species S ′

0 in common,
where any S ′

i is disjoint from any S ′
j for j �= i. If there are interpretations

mi : S ′
i → S for 0 ≤ i ≤ n such that the interpretation (m0∪mi) is a bisimulation

from (S ′
0 ∪ S ′

i,R′
i) to (S, {ri}), and any x ∈ S ′

i can be converted x
τ=⇒ Y + Z

by trival reactions in R′
i where Y ∈ N

S′
0 and m(Z) = ∅, where m =

⋃n
i=1 mi

is the combination of the interpretations, then m is a bisimulation from (S ′
0 ∪⋃n

i=1 S ′
i,

⋃n
i=1 R′

i) to (S,R).

In particular, the translation scheme from [16] discussed earlier satisfies the
condition in Corollary 1 for S ′

0 = {xA | A ∈ S}, i.e. the signal species. Thus
Corollary 1 proves that for any number of formal reactions, the scheme in [16]
produces a correct implementation CRN, as long as the DSD reaction enumerator
produces exactly the described reactions and no additional crosstalk reactions.

4 Checking Bisimulation

We now have a definition of “correct implementation”, and can sometimes prove
that a particular implementation is or is not correct. We would like to find a
general way to check whether any implementation is correct.

We divide “checking bisimulation” into three questions. First, given a formal
and implementation CRN and an interpretation, is the interpretation a bisim-
ulation? Second, if (as in most engineered CRN implementations) we have a
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formal CRN, implementation CRN, and for each formal species A a designated
signal species xA, is there an interpretation which is a bisimulation and has
m(xA) = {|A|}? Finally, given a formal CRN, implementation CRN, and no
additional information, is there an interpretation which is a bisimulation?

We give the complexity in terms of two parameters: the size n, the total
number of species and reactions in the two CRNs, and the arity k, the maximum
number of reactants in any formal reaction. We find the problem is easier when k
is bounded by a constant, such as k = 2 limiting the formal CRN to bimolecular
reactions.

4.1 Checking an Interpretation

First we consider the problem of, given an interpretation, checking whether it is a
bisimulation. We use the three conditions on an interpretation, having proved in
Theorem 1 that they are equivalent to bisimulation and trajectory equivalence.
Given two CRNs and an interpretation between them, the atomic and delimiting
conditions are trivial to check. This leaves only the permissive condition.

Checking the permissive condition means, for each formal reaction r = (R,P )
and implementation state S′ with m(S′) ≥ R, S′ can reach via trivial reactions
some state from which a reaction that is interpreted as r can happen. Although
there are infinitely many such S′, we only need to consider the minimal such
states. Consider two such states S′ and S′′ where S′′ > S′ and m(S′′) ≥ m(S′) ≥
R. If there is some sequence of reactions by which S′ r=⇒, then it can happen in
S′′ also and thus S′′ r=⇒. If not, then the permissive condition is false for S′,
and we do not need to check S′′. Thus we need only to check states S′ such
that m(S′) ≥ R and there is no S′

0 < S′ for which m(S′
0) ≥ R, which we call

minimal implementation states (with respect to the given formal reaction r). All
such minimal states can be enumerated by, for each reactant Xi in R, choosing
some implementation species xi such that Xi ∈ m(xi), removing m(xi) from
R (ignoring any species in m(xi) not present in R), then applying this process
recursively.

Now we have reduced the permissive condition to a finite problem: for each
minimal S′, check whether it can reach via trivial reactions some state T ′ from
which a reaction r′ with m(r′) = r can happen. By taking the reactants of each
such r′ in the implementation CRN, we have a list of multisets R′ such that if for
each minimal S′ there is some such R′ such that S′ can reach a state greater than
or equal to R′, then the permissive condition is satisfied. This sounds similar to
the covering (or superset reachability) problem: given states S′ and T ′, can S′

reach any state T ′′ ≥ T ′? Unfortunately, the covering problem was proven by
Rackoff to be EXPSPACE-complete [13]. In particular, the covering problem
is hard because to reach a given state T ′ from S′ may require production and
consumption of a large number of some species.

To solve the permissive condition in less than exponential space, we use the
fact that for the permissive condition to be satisfied, we need a path from every
minimal S′ to some r′ which implements r. Thus, if a minimal state S′

0
τ−→ S′′
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for S′′ > S′
1 which is minimal with m(S′

1) ≥ R, then either S′
1 � r=⇒ and the

permissive condition is false anyway, or S′
1

r=⇒ and we can treat S′
0

τ−→ S′′ as
S′
0

τ−→ S′
1 ignoring the extra species. Following this logic out, we visualize the

state space as a graph of minimal states with an arrow from S′
i to S′

j if there is a
trivial reaction S′

i
τ−→ S′

j+. . . . We find that we can check the permissive condition
using only paths through this graph with some loops of the form S′ τ=⇒ S′ + Z
for some minimal state S′ and multiset Z, which since trivial reactions do not
change the interpretation implies that m(Z) = ∅, thus m(y) = ∅ for each y ∈ Z.
If such a loop exists, then we know that arbitrarily many copies of each such
y can be produced in state S′, and we can ignore y whenever it appears as a
reactant later on the path.

Lemma 4. Let (S,R) and (S ′,R′) be a formal CRN and an implementation
CRN, with interpretation m. Let r = (R,P ) ∈ R be a formal reaction and
S′
0 an implementation state minimal for m(S′

0) ≥ R. Let z be the number of
null species. If the permissive condition is satisfied, then there exists a sequence
of l ≤ z multisets S′

i that are minimal for m(S′
i) ≥ R, l disjoint sets Zi of

null species, and nonnegative integers (αi)1≤i≤l+1, (βi)1≤i≤l such that, where
Yi =

⋃
j≤i Zj, for each 1 ≤ i ≤ l there is a sequence of trivial reactions by

which S′
i−1 + αiYi−1

τ=⇒ S′
i and S′

i + βiYi−1
τ=⇒ S′

i + Zi, and a sequence of trivial
reactions by which S′

l +αl+1Yl
r=⇒, where the same minimal implementation state

is never covered twice within the same sequence. Conversely, if such paths exist
for every formal reaction and minimal implementation state, then the permissive
condition is satisfied.

Proof (Sketch). If the permissive condition is satisfied, then for each minimal
S′, consider the first reaction on the shortest path by which S′ r=⇒. Starting
from any given S′

0, the pathway which at each S′ takes that first reaction is
a valid pathway, and either eventually implements r or eventually repeats the
same minimal state S′

1 twice. If it eventually implements r, then the pathway
matches the desired pathway with all sequences of trivial reactions except the
last one empty. If it eventually repeats, then for each reaction to be the first
reaction on the shortest path, the sequence of reactions which loops must be
S′
1

τ=⇒ S′
1 + Z1 for Z1 a nonempty multiset of null species. With the sequence by

which S′
0

τ=⇒ S′
1 and S′

1
τ=⇒ S′

1 + Z1 as the first two sequences of trivial reactions,
consider a modified implementation CRN with all species in Z1 removed; if the
original implementation CRN satisfies the permissive condition, then making
reactions easier cannot make the permissive condition false. Applying this by
induction on the number of null species gives the remaining segments.

If such paths exist for a given formal reaction r and minimal implementation
state S′

0, then S′
0

r=⇒: from S′
0 reach S′

1; produce “as many copies as needed” of
Z1 in the loop S′

1
τ=⇒ S′

1 + Z1, reach S′
2, produce “as many copies as needed”

of Z2, etc. If such paths exist for every formal reaction r and minimal state S′
0

for r, then every minimal state S′
0

r=⇒, thus as discussed above every state with
m(S′) r−→ has S′ r=⇒, thus satisfying the permissive condition. �
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We describe two algorithms to check the permissive condition. One runs in
space poly(nk) and time poly(nkn); the other runs in space and time poly(nk).

The space-efficient, loopsearch algorithm goes through each formal reaction
(R,P ) and each minimal implementation state S′ in which m(S′) ≥ R and
searches for the path described in Lemma 4. It iterates through each partition
of null species into sets Zi and choice of states S′

i for which S′
i

τ=⇒ S′
i + Zi. A

nonrepeating path from S′
i to S′

j or S′
i +Zi will have length at most N , where N

is the number of minimal implementation states. Where l = �log2 N�, Savitch’s
theorem [14] says that a path from S′

a to S′
b of length at most 2l can be found

by checking all possible states S′
c for a path from S′

a to S′
c and S′

c to S′
b each

of length at most 2l−1, which can be done recursively. This algorithm stores at
most l + z minimal states plus a partition of z species at any one time.

The more time-efficient, graph-updating algorithm, for each formal reaction
r = (R,P ) iteratively builds a table of minimal implementation states S′

i with
m(S′

i) ≥ R and, for each minimal S′
i, which other minimal S′

j can be reached
from S′

i via trivial reactions and which null species can be produced in a loop
from S′

i to itself. In each iteration, for each S′
i that is not yet known to be able

to implement r, for each trivial reaction of the form S′
i + Z1

τ−→ S′
j + Y + Z2,

where Z1 and Z2 contain only null species and all species in Z1 are known to be
producible in a loop from S′

i to itself, it updates the table as follows:

(i) If S′
j is known to be able to implement r, then S′

i can implement r. Other-
wise:

(ii) For each k �= i, if S′
j can reach S′

k, then S′
i can reach S′

k.
(iii) If S′

j can reach S′
i, then S′

i can produce in a loop any null species in Z2, as
well as any null species producible in a loop at S′

j .

The algorithm terminates when an iteration passes with no change to the table.
If all states are known to be able to implement r, then the permissive condition
is satisfied for r; otherwise the permissive condition is false. Using similar but
slightly different reasoning as Lemma 4, we can prove that if the permissive
condition is true, the algorithm will prove it in at most (2znk + 1)nk iterations.

Theorem 3. Whether an interpretation is a bisimulation can be checked in poly-
nomial space.

Proof. The loopsearch algorithm takes polynomial space. �
Theorem 4. When the number of reactants in a formal reaction k is constant,
whether an interpretation is a bisimulation can be checked in polynomial time.

Proof (Sketch). We show that if the permissive condition is true, the graph-
updating algorithm will prove it in at most (2znk + 1)nk iterations. Given a
formal reaction r = (R,P ) and all states S′ which are minimal for m(S′) ≥ R,
at any given iteration for some S′ and y with m(y) = ∅ it will be known that
S′ τ=⇒ S′ +y. If the permissive condition is true, then as in the proof of Lemma 4,
for each S′ consider the first reaction on the shortest path by which S′ r=⇒
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assuming that each S′
i has infinite copies of any species y for which it is known

that S′
i

τ=⇒ S′
i + y. As in that proof, these reactions either give every S′ a direct

path by which S′ r=⇒, or have at least one loop by which some S′
i

τ−→ S′
j + y and

S′
j

τ=⇒ S′
i which is not already known. (If not, then at least one of the reactions

involved does not lead to the shortest path.) Let l ≤ nk be the number of states
in that loop. If every minimal state can implement r using only known null
species, then the shortest paths each have length at most nk, and algorithm will
prove this and terminate in at most nk iterations. If there is such a loop, it will
take at most l iterations to prove that S′

i
τ=⇒ S′

i +y, and an additional l iterations
to prove for each other S′

j in that loop that S′
j

τ=⇒ S′
j + y. Thus in at most 2nk

iterations one more fact will be known. The number of such facts is at most
znk, all possible pairs of minimal state S′ and null species y. If the permissive
condition is true, it will be proven in at most (2znk + 1)nk iterations. �

Although polynomial space in the general case is inefficient, we cannot
do better. If we have (order of) nk minimal states, it is possible to embed
a PSPACE-complete computation in those nk states. In particular, a Linear
Bounded Automaton computation – a model of a Turing machine with space
bounded by the size of its input, for which acceptance is a PSPACE-complete
problem [7] – can be embedded in a polynomial-size implementation CRN, such
that a given formal reaction is reachable in the implementation if and only if the
LBA accepts.

Theorem 5. CRN bisimulation in the general case is PSPACE-complete.

Proof (Sketch). Consider a formal CRN with one reaction, Q + A1 + . . . +
An → H. An implementation CRN can simulate an arbitrary LBA with species
representing the states of the LBA interpreted as Q and species representing the
ith tape symbol interpreted as Ai. (For example, the reaction q0i +0i → q3i+1+1i

for each 1 ≤ i ≤ n represents the Turing machine instruction, “in state 0, read
a 0, write a 1, move right, go to state 3”.) If the interpretation CRN can reset
at any time to the starting state with the tape reading a given string x, and can
implement the formal reaction only from an accepting state, then the permissive
condition is true if and only if the LBA accepts the string x. �

4.2 Finding an Interpretation

We now consider the problem of, given a formal and implementation CRN, can
we find an interpretation that is a bisimulation or correctly assert that none
exists? An algorithm to enumerate interpretations that satisfy the delimiting
condition was given in [6]. This algorithm guarantees that, if an interpretation
that is a bisimulation exists, then it will enumerate at least one of them. The
algorithm iterates through each possible assignment of each implementation reac-
tion to be interpreted as a given formal reaction or trivial; for each assignment,
iterates through each partial specification of an interpretation that satisfies the
reactions assigned to be formal; then sets up the remaining trivial reactions as
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a system of equations and finds a minimal solution. By testing each enumerated
interpretation with either of the permissive condition tests described above, this
algorithm will find an interpretation or assert that none exists.

Theorem 6. Whether a bisimulation interpretation exists from a given imple-
mentation CRN to a given formal CRN is PSPACE-complete.

Proof (Sketch). The above algorithm runs in polynomial space, thus proving
membership. The reactions that simulate a Turing machine in Theorem 5 restrict
the interpretation enough that any interpretation other than the one given (up to
a permutation of the formal species) will be invalid. �
Theorem 7. When the number of reactants in a formal reaction k is bounded
by a constant, whether a bisimulation interpretation exists is NP-complete.

Proof (Sketch). If a valid interpretation exists, the above algorithm guarantees
that it will produce a valid polynomial-size interpretation which can be checked in
polynomial time by Theorem 4. A 3-SAT formula with clauses e.g. (x1 ∨¬x2 ∨x3)
can be encoded in implementation reactions e.g. sC → xt

1 + xf
2 + xt

3. Additional
reactions sT � xt

i+xf
i restrict interpretations that satisfy the delimiting condition

to correspond to satisfying assignments of the 3-SAT formula. �

5 Discussion

Comparing Chemical Reaction Networks on different levels of abstraction is an
important tool for systematic programming with CRNs. We showed how to adapt
the concept of bisimulation to check whether one CRN is a correct implemen-
tation of another. We showed that bisimulation can be used to prove the cor-
rectness of some existing CRN implementations, and to identify subtle but real
problems with others. We discussed transitivity and modularity, which can be
used to simplify a bisimulation proof. We presented different algorithms to check
bisimulation which are adapted to different cases. We showed that the condition
can be checked in polynomial time with favorable assumptions, is NP-complete
with less favorable assumptions, and is PSPACE-complete in the general case.

Algorithms such as the graph-updating algorithm and loopsearch algorithm
scale better with the number of meaningful species than the number of null
species, while engineered CRN implementations generally do not use loops that
produce null species. Thus those algorithms will be faster than their worst-
case limits in practical cases. For example, the graph-updating algorithm takes
at most (2znk + 1)nk = O(n2k+1) cycles in theory, where n is the number of
implementation species, k the largest number of reactants in a formal reaction,
and z the number of implementation species with empty interpretation. When
there are no null species (or when none can be produced in a loop, as in schemes
such as [16]), this becomes at most nk cycles.

In CRN bisimulation, we require that every implementation species has an
interpretation as a (possibly empty) multiset of formal species. In contrast, ver-
ification methods such as pathway decomposition [15] or serializability [9] both
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assume that each formal species is represented by one implementation species,
while other implementation species are classified into fuels, wastes, and inter-
mediates. Because of this, pathway decomposition and serializability compare
formal reactions to implementation pathways which begin and end with (repre-
sentations of) formal species, while in bisimulation an individual implementation
reaction can be interpreted and compared to the formal CRN. An additional
consequence, for pathway decomposition, is that correctness guarantees do not
apply to implementation states that cannot be reached from initial states repre-
senting formal species, whereas bisimulation is more robust in that correctness
is asserted in those cases as well. Furthermore, even in the permissive condition,
bisimulation requires that there exist an implementation pathway which imple-
ments a given formal reaction, while pathway decomposition and serializability
both require that all implementation pathways have properties which may be
nontrivial to check. This locality is what allows us to prove the complexity results
given, which we suspect are significantly lower complexity than methods that
depend on implementation pathways.

However, the use of interpretations instead of pathways means that in some
cases CRN bisimulation and pathway decomposition differ on which implemen-
tations they consider correct. Bisimulation can easily be adapted to situations
where there is no clear single “canonical representation” of a given formal species,
while pathway decomposition has difficulty. For example, the implementation in
[12] of the reversible formal reaction A+B � C+D by reversible implementation
reactions {xA � iA, iA + xB � iCD, iCD � xC + iD, iD � xD}. Bisimulation
considers this correct with the obvious interpretation, while pathway decom-
position considers the ability to release xC then reverse without releasing xD

to be an error. On the other hand, bisimulation has trouble handling imple-
mentation species with no well-defined interpretation. Shin describes a “delayed
choice” phenomenon where an implementation CRN commits to implementing
one of two formal reactions before deciding which one, producing an intermedi-
ate that cannot be correctly interpreted as either of the reaction’s products or
their reactants; such implementations are generally considered incorrect accord-
ing to bisimulation but pathway decomposition often considers them correct [15].
Shin proposes a hybrid notion of correctness where an implementation CRN is
considered correct if it is a correct implementation according to pathway decom-
position of some intermediate CRN, and the intermediate CRN is a correct
implementation of the formal CRN according to bisimulation [15]. This notion
considers correct any implementation that is correct according to either pathway
decomposition or bisimulation, plus some others.

One area this theory overlooks is the rates of reactions and the probabilities
of reaching certain states. For example, in [16] Soloveichik et al. argue that
the concentration of each intermediate is proportional to the product of that of
the formal species which we would call its interpretation, and thus the reaction
rates are approximately correct. Whether this can be generalized, and whether
bisimulation can help this generalization, is an important open question.
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Abstract. We derive a coarse-grained model that captures the tempo-
ral evolution of DNA nanotube length distribution during growth experi-
ments. The model takes into account nucleation, polymerization, joining,
and fragmentation processes in the nanotube population. The continuous
length distribution is segmented, and the behavior of nanotubes in each
length bin is modeled using ordinary differential equations. The binning
choice determines the level of coarse graining. This model can handle
time varying concentration of tiles, and we foresee that it will be useful
to model dynamic behaviors in other types of biomolecular polymers.

Keywords: DNA nanotubes · Ordinary differential equations ·
Growth · Dynamic DNA nanotechnology

1 Introduction

Many biological scaffolds, such as the cytoskeleton, are built with filamentous
polymers that are constantly assembling and disassembling in response to envi-
ronmental inputs and cellular instructions. DNA nanotechnology has produced
a variety of artificial, rationally designed tubular structures whose dimensions
and mechanical properties are comparable to those of natural filaments such as
actin and microtubules [1–5]. DNA nanotubes self-assemble from tiles that can
be single-stranded or multi-stranded; inter-tile binding patterns are determined
by programmable single stranded interaction domains. Here, we focus on DNA
nanotubes assembling from multi-stranded tiles. We present a continuous time,
coarse-grained approach to model how the nanotube length distribution varies
over time in a population of nanotubes. This research is motivated by the rapid
c© Springer International Publishing Switzerland 2016
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expansion of dynamic DNA nanotechnology, which offers exciting opportunities
to use DNA strand displacement circuits to control tile self-assembly [6]. Exist-
ing methods to model tile or nanotube assembly are not suited to track length
distributions, and cannot handle dynamically varying free tile concentration.

DNA tile assembly has been primarily modeled with algorithmic approaches,
which explore the capacity of various tile interaction rules to produce desired
patterns, and investigate their computational power [7–9]. The famous Winfree
kTAM model models the kinetics of individual tiles binding and unbinding to a
growing structure [7]; single molecule [10] and single-filament [11] measurements
have been used to validate this model. Nanotube length distributions can be
computed using kTAM stochastic simulations [12,13]; nucleation and end-joining
events can be taken into account, however this approach is only viable at low
(nanomolar) tile concentrations. The most notable limitation of this model is
the fact that it cannot handle time-varying concentration of free tiles.

We formulate and validate a phenomenological model for self-assembling nan-
otubes that describes how the length varies over time in a population of nan-
otubes. This model is coarse-grained in the sense that the nanotube population
is segmented by length in a number of bins, and we use ordinary differential
equations to describe how the population of each bin varies over time. We model
several processes that are known to affect nanotube length: nucleation, polymer-
ization and depolymerization, end-joining, and fragmentation.

The model is fitted to growth data of DAE-E tile nanotubes described by
Rothemund et al. where the total tile concentration is constant. However, our
model can easily handle scenarios where the total tile concentration varies over
time (for example, by activation or deactivation [6]), because it is naturally
compatible with ODE chemical reaction networks. These scenarios will be con-
sidered in future work. We expect that this model will be useful to describe other
self-assembling polymer systems operating at different time and length scales.

2 Results

2.1 Model Derivation

We consider a solution including assembled nanotubes and unpolymerized tiles.
The real distribution of nanotubes is continuous, because our sample includes
tubes having any length l ∈ [0, lmax], where lmax is the maximum observed length
(or a physically meaningful upper bound for length). To build a model that
is computationally tractable, we segment the population of molecular species
present in the system. We assume the sample includes tiles, whose concentration
is indicated as T ; nucleated assemblies of tiles, or nuclei, whose concentration
is L0; nanotubes, which are binned by length, so that variable Ln indicates the
concentration of nanotubes in bin n. The bin width, which we indicate as lb, can
be chosen depending on the acceptable level of coarseness (and complexity) of the
model, because it determines the number of species. For example, if lb is 300 nm,
variable L1 is the concentration of tubes of length 300 nm. If lmax = 30µm,
the number of variables in the model is nmax = [lmax/lb] = 100. Segmentation
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introduces implicitly the assumption that a tube can switch from bin n to bin
n± 1 only if it acquires or loses a number nb of tiles, which are the tiles forming
a tube segment of length lb. As an example, let us take again lb = 300 nm; let
us assume that the nanotube circumference is on average 7 tiles, each ≈14 nm
wide; then we find nb = 147 (these figures are based on previous measurements
on DAE-E tile nanotubes [1], and were confirmed in our experiments).

We finally assume that tiles, nuclei, and tubes form and interact via several
processes, which cause changes in the segmented distribution of nanotube length.
An overview of these processes is provided below, together with phenomenologi-
cal expressions for the rates at which these processes occur. For each description,
we identify an equivalent, phenomenological reaction that describes how tiles,
nuclei, and nanotubes interact in our model.

Nucleation. Tile assembly is a cooperative process: there is a minimum number
of tiles that need to bind simultaneously to form a nucleus, from which poly-
merization of a nanotube can be initiated. We assume that nucleation depends
on the concentration of tiles, and proceeds with rate knuclT

nnucl , where nnucl is
the critical nucleation size. The equivalent phenomenological reaction describing
nucleation is:

nnuclT
knucl−−−−⇀ L0. (1)

Polymerization and Depolymerization. Nuclei and nanotubes grow as tiles bind
to accessible sites. The polymerization rate depends on the concentration of tiles
as well as the availability of binding sites: for tubes of length n, polymerization
occurs at rate kpTLn. For nuclei, which are smaller patches of tiles, we hypothe-
size a different polymerization rate kp0TL0. Tiles can also dissociate from tubes
(and nuclei) at a rate that depends exclusively on the concentration of tubes:
for tubes of length n, the depolymerization rate is kdLn; for nuclei, we consider
a different depolymerization rate kd0L0. Equivalent phenomenological reactions
describing polymerization and depolymerization are:

nbT + Ln
kp−−−−⇀ Ln+1, n ≥ 1 (2)

(nb − nnucl)T + L0

kp0−−−−⇀ L1 (3)

L1
kd−−−−⇀ L0 + (nb − nnucl)T (4)

Ln+1
kd−−−−⇀ Ln + nbT , for n ≥ 1 (5)

L0

kd0−−−−⇀ nnuclT (6)

Here, the stoichiometric coefficients indicate how many tiles need to be added
or removed from a nanotube in a certain bin length so that it moves to an adja-
cent bin. These coefficients are however not related to the order of the reaction
rate; for example, in reaction (2) it is not required that nb tiles bind simultane-
ously to the tube, therefore this is a second order reaction.

End-Joining. Nucleated nanotubes diffusing in solution grow not only by poly-
merization, but also by end-joining, as demonstrated experimentally in [14].
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We assume that the joining rate depends on the length of the nanotubes, on
their diameter d, and on the concentration of nanotubes in the corresponding
length bins. For example, if we consider length bins n and m, we postulate that
the joining rate of nanotubes in these bins is kjoin(n,m)LnLm. An estimate for
kjoin(n,m) is given in expression (7), which is derived in detail in Ref. [15].
This expression assumes that DNA nanotubes are rigid rods, and that their
end-joining is a diffusion controlled reaction:

kjoin(m,n) =
α

lb

[
1
m

ln
(

mlb
d

)
+

1
n

ln
(

nlb
d

)]
(7)

where α = (12κkBT d)/η. Here η is the dynamic viscosity of the liquid, kB
is the Boltzmann constant, T is the absolute temperature, d is the nanotube
diameter, and κ is a factor accounting for the fraction of productive nanotube
collisions. Note that each joining reaction can occur by joining of either end of
each nanotube, so every reaction should be accounted for twice.

The concentration of nanotubes in a given bin n increases when shorter tube
end-join; an example equivalent reaction is:

Ln−m + Lm
kjoin(n − m,m)−−−−−−−−−−⇀ Ln for 1 ≤ m ≤ min{nmax − n, n − 1}.

We observe that order of the reactants in the above reaction does not matter.
For example, consider the bin of nanotubes having length 5lb. The end-joining
reactions that contribute to an increase in the concentration L5 are:

L1 + L4
kjoin(1, 4)−−−−−−−−⇀ L5

L2 + L3
kjoin(2, 3)−−−−−−−−⇀ L5

Reactions L4 +L1
kjoin(1, 4)−−−−−−−−⇀ L5 and L3 +L2

kjoin(2, 3)−−−−−−−−⇀ L5 are redundant and
should not be included in the mass balance. The concentration of tubes in bin
of length nlb is therefore incremented by only �n

2 � end-joining reactions, where
“� �” is the largest integer less than or equal to n

2 .
The concentration of nanotubes in bin n also decreases due to end-joining

events, as exemplified in this reaction:

Ln + Lm
kjoin(m,n)−−−−−−−−−−⇀ Ln+m for 1 ≤ m ≤ nmax − n

Fragmentation. Formed nanotubes can spontaneously break into shorter frag-
ments. We assume that breakage rate of nanotubes of length n lb depends on the
concentration of nanotubes in bin length n via a constant rate kbreak. For simplic-
ity, we also assume fragments can only form to fall into the given length bins, and
that a nanotube can break into at most two fragments per unit time. For example,
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a nanotube of length n lb can break into two fragments of length mlb and (n−m)lb.
The equivalent phenomenological reaction for fragmentation is:

Ln
kbreak−−−−⇀ Lm + Ln−m.

The rate at which the concentration of nanotubes in bin n decreases due to
fragmentation is (n−1)kbreakLn, because there are n−1 sites at which breakage
may occur. For example, consider the concentration of tubes having length 5lb.
In this bin, fragmentation occurs according to the following equivalent reactions:

L5
kbreak−−−−⇀ L1 + L4, L5

kbreak−−−−⇀ L2 + L3,

L5
kbreak−−−−⇀ L3 + L2, L5

kbreak−−−−⇀ L4 + L1.

We note that the concentration of nanotubes in bin n also increases due to
breakage of longer nanotubes (bins m ≥ n + 1).

Tile Activation and Deactivation. Tiles may be injected or removed from the sys-
tem, for example by activation or deactivation reactions that could be performed
via strand displacement. Expression to model these phenomena depend on the
mechanism chosen for activation and deactivation; at this stage we assume they
are some continuous functions a(t) (activation) and d(t) (deactivation).

We now combine the phenomena described above and their rates to write a
set of differential equation describing the evolution of our segmented nanotube
length distribution. Equations (8)–(11) describe the time derivative of the con-
centration of tiles (T ), nuclei (L0) and tubes in bin n (Ln):

dT

dt
= a(t) − d(t) − nnuclknuclT

nnucl

nucleation

−nbkpT

nmax−1∑

i=1

Li − (nb − nnucl)kp0TL0

polymerization

+ nbkd

nmax∑

i=2

Li+(nb − nnucl)kdL1+nnuclkd0L0

depolymerization

, (8)

dL0

dt
= knuclT

nnucl

nucleation

− kp0TL0

polymerization

+ kdL1 − kd0L0

depolymerization

, (9)

dL1

dt
= kp0TL0 − kpTL1

polymerization

+ kdL2 − kdL1

depolymerization

− 2

nmax−1∑

m=1

kjoin(1,m)L1Lm − 2kjoin(1, 1)L
2
1

end-joining

+ 2

nmax∑

m=2

kbreak(Lm → L1 + Lm−1)Lm

fragmentation

, (10)
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dLn

dt
= kpT (Ln−1 − Ln|n<nmax

)

polymerization

+ kd(Ln+1|n<nmax
− Ln)

depolymerization

− 2

nmax−n∑

m=1

kjoin(n,m)LnLm − 2kjoin(n, n)L
2
n|

n≤ nmax
2

+ 2

� n
2 �∑

m=1

kjoin(n − m,m)Ln−mLm

end-joining

+ 2

nmax∑

m≥n+1

kbreak(Lm → Ln + Lm−n)Lm − (n − 1)kbreak(Ln → Lm + Ln−m)Ln

fragmentation

,

n = 2, ..., nmax. (11)

We clarify the presence of end-joining term −2kjoin(n, n)L2
n in Eq. (11). This

term is needed for two reasons: first, end-joining can occur at either end of a
nanotube; second, when two nanotubes of length n end-join, two of them are
lost from bin n. Thus, overall Eq. (11) should include a term −4kjoin(n, n)L2

n:
we chose to split it between sum −2

∑nmax−n
m=1 kjoin(n,m)LnLm and the isolated

term −2kjoin(n, n)L2
n.

In this model, the mass transfer (species concentration conversion) is carefully
balanced. If a(t) = d(t) = 0, i.e. there is no net injection or removal of tiles, the
total concentration of tiles T tot remains constant. Equation (12) describes tile
mass conservation:

T tot = T + nnuclL0 + nb

nmax∑

n=1

nLn, when a(t) = d(t) = 0. (12)

Our model naturally guarantees tile mass conservation, because differential
equations (8)–(11) satisfy the following equality:

dT

dt
+ nnucl

dL0

dt
+ nb

nmax∑

n=1

n
dLn

dt
= 0, where a(t) = d(t) = 0.

2.2 Modeling Nanotube Growth

We test the capacity of model (8)–(11) to fit nanotube length distributions in a
sample of growing nanotubes where there is no injection or removal of tiles, i.e.
a(t) = d(t) = 0.

Experiments. We consider the DAE-E tile nanotubes described in [1,14]
(Fig. 1A); these tiles assemble from five distinct DNA strands, and are about
14.3 nm wide. Tiles form nanotubes that generally have a 7-tile circumference,
and a diameter d = 13 × 10−3 (µm). Strand 3 of each tile is labeled with Cy3,
so that nanotube length can be measured in fluorescence microscopy experi-
ments [1,14]. Sequences and protocols are reported in the Methods section.



A Coarse-Grained Model of DNA Nanotube Population Growth 141
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13 nm
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s4

s5

10 m
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B C

Fig. 1. A: Schematic of the DAE-E tile used in our experiments (left) and abstraction
(right); tiles interact via their complementary sticky end domains a, a’, b and b’.
Strand 3 (s3) is labeled with a Cy3 fluorophore. B: Tiles interact to form tubes via
their complementary sticky ends [1]; C: Example fluorescence microscopy image of
nanotubes.

Tile annealing was stopped at the expected melting temperature of sticky
ends, 47 ◦C, so that the nuclei and short tube population is initially negligible [14]
(see Methods section for details). We immediately started imaging the sample;
no nanotubes or short assemblies are initially visible in fluorescence microscopy
images right after quenching. Samples were incubated at room temperature,
and imaged using a fluorescence microscope during the following 30 h to assess
changes in the nanotube length distribution over time. This experiment was
run in triplicate samples; Fig. 2D shows mean length and standard deviation of
the mean measured across experiments. We observe rapid growth in the first
five hours, where the mean nanotube length reaches 5µm; the mean length
slowly reaches 10µm in the following 25 h. The measured growth curve in our
experiments is qualitatively similar to previous experiments by Ekani-Nkodo
et al. [14]; however our samples achieve on average a 40 % higher mean length,
presumably because of higher tile concentration.

Data Fitting. We fitted Model (8)–(11) to the nanotube distributions that
were experimentally measured over time. First, we established parameters of
our model that depend on the type of nanotubes we consider, and on the desired
level of coarse graining. We choose the length bin: lb = 300 nm; the maximum
nanotube length is set as lmax = 33µm. These choices imply that we have a
number of bins nmax = 110; thus the model includes 112 differential equations
(including the ODEs for tiles and nuclei). The number of tiles in a tube chunk of
length lb is nb = 147. (This follows from our assumption that the tubes have a 7-
tile circumference, with ≈14 nm tile width). ODEs were integrated with in-house
MATLAB scripts. We chose an integration step of 10 s.
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Fig. 2. Performance of our coarse-grained model. A: Comparison between a represen-
tative experimental (blue) cumulative length distributions gathered during nanotube
growth and the cumulative distribution generated by our model (red). B1 Time course
of free tile concentration. B2: Nuclei concentration. B3: Total tile concentration remains
constant. C: Histograms of representative growth experiment (blue) and histograms
generated by our model (red). N indicates the number of nanotubes measured in each
sample (given equal measurement surface). D: Mean and standard deviation of the
mean in our nanotube growth experiments, compared with the mean length predicted
by our fitted model. (Color figure online)

Predicted nanotube distributions at time t are generated deterministically
by integrating ODEs (8)–(11) (up to time t). Rather than comparing length his-
tograms generated by the model to experimental histograms, we compare their
cumulative distributions. This choice is motivated by the following observations:
(1) Cumulative distributions are by definition scaled by the sample size (in our
case, nanotube sample number). This implies that cumulative distributions of
different samples can be immediately compared without requiring ad hoc nor-
malization (which would be necessary to compare histograms). (2) Cumulative
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distributions do not require binning of data like a histogram, thus the fitting
procedure is not biased by a choice of bin width.

To compare experimental and simulated cumulative distributions at the same
points (nanotube length), we interpolated experimental cumulative length dis-
tributions. After interpolation, the model and experimental distributions at any
given time are described by comparable vectors:

Vsim(t) =
1

Lsim
·

⎡

⎢

⎢

⎢

⎣

L1,sim(t)
L1,sim(t) + L2,sim(t)

...
∑nmax

1 Li,sim(t)

⎤

⎥

⎥

⎥

⎦

, Vexp(t) =
1

Lexp
·

⎡

⎢

⎢

⎢

⎣

L1,exp(t)
L1,exp(t) + L2,exp(t)

...
∑nmax

1 Li,exp(t)

⎤

⎥

⎥

⎥

⎦

,

where Lsim =
∑nmax

i=1 Li,sim(t), and Lexp =
∑nmax

i=1 Li,exp(t). These distribu-
tions are to be compared at times t = 10, 30, 60, 180, 600, 1800 min.

Fitting is done to identify several parameters in our model. Specifically, we
fit the nucleation rate (knucl) and critical nucleation size (nnucl), the polymer-
ization and depolymerization rates for tubes and nuclei (kp, kp0 , kd, and kd0),
the breakage rate (kbreak), and parameter α in the joining rate expression (7).
These parameters can be stacked in a vector p, and we set up our fitting problem
as the minimization of the objective function, which simultaneously compares
the simulated distribution to the distributions of three separate experiments:

min
p

J =
3∑

j=1

∑

t

(Vsim(t) − V j
exp(t))

�(Vsim(t) − V j
exp(t)). (13)

Minimization was done using the fmincon routine in MATLAB. Initial condi-
tions for the parameters were sampled uniformly in physically plausible intervals
delimited by lower and upper bounds listed in Table 1; parameters were also con-
strained to fall within these bounds. We also imposed a lower bound of 10 nM
on the admissible free tile concentration. Initial conditions for the model vari-
ables were chosen as T (0) = 1µM, Li(0) = 0µM for i = 0, ..., nmax, i.e. we
assumed that initially only free tiles are present; this assumption is consistent
with the experimental conditions that were fitted, because nanotube annealing
was quenched quickly from 47 ◦C to room temperature so the concentration of
nuclei and tubes is negligible. This approximation is sensible, however it will be
refined in the future by measuring the initial concentration of tiles, nuclei and
short tubes using native gel electrophoresis or fluorescence spectroscopy.

Several fitting campaigns were launched and evaluated. Minimizing the objec-
tive function (13) is a non-convex problem, thus the fitting routine is likely to
converge to local minima that depend on the randomly chosen initial conditions
for the parameter vector. We report one of the best fitting results in Table 1.

Figure 2A shows the performance of the model in fitting cumulative distrib-
utions in one of our experiments. The concentration of free tiles and nuclei as a
function of time are shown in Fig. 2B1 and B2; during the time course, the total
concentration of tiles remains constant as shown in Fig. 2B3 (this is a sanity
check that mass conservation equation (12) holds).
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Table 1. Fitting parameters and results. This table lists the parameters of
Model (8)–(11) that were fitted, including lower bound (L.B.) and upper bounds (U.B.)
used in the fitting procedure.

Parameter Units L.B. U.B. Fitted value Definition

kp M−1s−1 101 107 4.699 × 103 Tube polymerization rate

kd s−1 10−8 104 1.192 × 10−4 Tube depolymerization rate

α µm M−1s−1 10−4 1011 1.030 × 105 End-joining parameter

kbreak s−1 10−10 102 1.255 × 10−6 Fragmentation rate

knucl M1−nnucls−1 10−10 104 5.746 × 103 Nucleation rate

kp0 M−1s−1 101 107 5.261 × 101 Nuclei polymerization rate

kd0 s−1 10−8 101 1.096 × 10−5 Nuclei depolymerization rate

nnucl N/A 2 5 4.999 Critical nucleation size

We also tested the capacity of our model to generate histograms that reflect
the measurements; experimental data were binned consistently to our model bin
width lb = 300 nm; results are shown in Fig. 2C. We also computed the mean
nanotube length from simulated distributions, and we compared it with the
measured mean length in Fig. 2D (standard deviation is computed over triplicate
experiments).

3 Discussion and Conclusion

We derived a deterministic coarse-grained model to describe the growth kinet-
ics of DNA nanotubes. The model takes into account nucleation, polymeriza-
tion and depolymerization, joining and fragmentation processes. We obtained
macroscopic rates for each of these processes by fitting our model to exper-
imental cumulative distributions of nanotube length at different time points.
Future work will focus on (a) assessing the capacity of the model to fit different
experimental conditions (for example temperature, tile concentration, and ionic
conditions), and (b) validating the model against non-fitted scenarios. Although
the model presented here is not yet validated, we briefly discuss our fitting results
in relation to the literature. Rate constants are listed in Table 1; our fitted poly-
merization rate of tiles to growing tubes is about two orders of magnitude slower
than rates estimated for individual tiles binding to a growing tube [10,11]; how-
ever, if we factor into our fitted rate the number of tiles in a bin, we obtain
a rate directly comparable to the literature [10,11]. The fitted tube depoly-
merization rate is about two orders of magnitude slower than the estimates
in [11] for DAO-O nanotubes measured at 33 ◦C. Our combined nucleation rate
nnucl knucl ≈ 2.87×104 M1−nnucl/s is within one order of magnitude of previous
estimates in [6]; our critical nucleation size is twice that estimated in [6]. Poly-
merization and depolymerization rates on growing nuclei are significantly slower
than the corresponding rates of growing tubes; while this expectation is sensible
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for polymerization (due to a reduced number of binding sites), depolymeriza-
tion rates should be consistent with those of formed nanotubes. Our joining rate
expression (7) depends on the fitted parameter α, and on the length of joining
tubes: kjoin peaks when n = m = 1, reaching 2.15 × 106/M/s, and is a decreas-
ing function of nanotube length. We evaluated the expression for kjoin over its
domain n,m, and computed an average kjoin = 2.63 × 105/M/s. This rate is
one order of magnitude higher than the joining rate estimate for DNA ribbons
in [12], which is 3.5 × 104/M/s. Finally, our fragmentation rate is in the order
of 10−6/M/s, suggesting that breakage events are extremely rare. It should be
noted that fitted rates depend on the chosen level of granularity; further work
and validation are required to identify tradeoffs between model granularity and
its predictive capacity.

The complexity of DNA nanotube formation and growth justifies the for-
mulation of a model based on length distribution segmentation. Unlike most
polymers or copolymers that form linear chains where each link of the chain is
a single chemical compound [16], DNA nanotubes are hollow cylinders where
several monomers participate in each growth layer. This feature makes DNA
nanotubes similar to microtubules [17], and makes kinetic modeling of assembly
significantly more complex.

Our modeling approach relies on ordinary differential equations that are typi-
cally used in polymerization process control models [16], however to track length
distributions while maintaining our model numerically tractable we define chem-
ical species that represent tube populations in a certain length bin.

Analytical solutions can be found for simple filament models that capture
nucleation, growth and breakage by using linearization and moment meth-
ods [18], but this approach may not be applicable to our model. Conformational
dynamics of DNA filaments are outside the scope of this research [19]. Future
work will focus on modeling nanotube length distributions where tiles are acti-
vated or deactivated over time [6].

4 Methods

DNA Sequences. All DNA was purchased from Integrated DNA Technologies
(Coralville, IA). Sequences were taken from Rothemund et al. [1]. Following the
notation introduced in Fig. 1, sequences are reported below.
s1: 5’-CTCAGTGGACAGCCGTTCTGGAGCGTTGGACGAAACT,
s2: 5’-GTCTGGTAGGCACCACTGAGAGGTA,
s3: 5’-T-Cy3-CCAGAACGGCTGTGGCTAAACAGTAACCGAAGCACCAACGCT,
s4: 5’-CAGACAGTTTCGTGGTCATCGTACCT,
s5: 5’-CGATGACCTGCTTCGGTTACTGTTTAGCCTGCTCTAC.

Sample Preparation. Lyophilized DNA oligonucleotides were resuspended in
water, quantitated by UV absorbance at 260 nm using Thermo Scientific Nan-
odrop 2000c Spectrophotometer, and stored at −20 ◦C. DAE-E Tile tube solution
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was prepared to target 1µM tile concentration by adding 1µM (final concen-
tration) of s1, s2, s3, s4, and s5 strands of DNA, 1x Tris-Acetate-EDTA (TAE)
diluted buffer and 12.4 mM MgCl2. After vortexing for 60 s, tube solution was
placed in Eppendorf Mastercycler PCR machine and annealed by heating solu-
tion to 90 ◦C, and cooled to 47 ◦C over a 6 h period. Annealing was stopped at
47 ◦C, and samples were rapidly quenched to room temperature.

Image Acquisition and Processing. Samples were imaged on an inverted
microscope (Nikon Eclipse TI-E) with 60X/1.40 NA oil immersion objec-
tives. Aliquots of nanotube solution (diluted to 50 nM tile concentration) were
deposited on Fisherbrand microscope cover glass 12-545E No. 1 (thickness = 0.13
to 0.17 mm; Size: 50×22 mm). VWR Micro Slides (Plain, Selected, Pre-cleaned,
25 × 75 mm, 1.0 mm thick) were placed gently on the cover glass. Nanotubes
were imaged using Cy3 filter cube (Semrock Brightline - Cy3-404C-NTE-ZERO).
Upon image capturing, exposure time was set to 90 ms. ImageJ plugin Anal-
izeSkeleton was used to obtain nanotube contours, from which we estimated
tube length using a MATLAB script. All branched nanotubes are automatically
eliminated from our sample. Due to camera limitations, tubes below 0.3µm in
length were discarded from tube length distributions.
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Abstract. Imagine coating buildings and bridges with smart particles
(also coined smart paint) that monitor structural integrity and sense
and report on traffic and wind loads, leading to technology that could
do such inspection jobs faster and cheaper and increase safety at the
same time. In this paper, we study the problem of uniformly coating
objects of arbitrary shape in the context of self-organizing programmable
matter, i.e., the programmable matter consists of simple computational
elements called particles that can establish and release bonds and can
actively move in a self-organized way. Particles are anonymous, have
constant-size memory and utilize only local interactions in order to coat
an object. We continue the study of our Universal Coating algorithm by
focusing on its runtime analysis, showing that our algorithm terminates
within a linear number of rounds with high probability. We also present
a matching linear lower bound that holds with high probability. We use
this lower bound to show a linear lower bound on the competitive gap
between fully local coating algorithms and coating algorithms that rely
on global information, which implies that our algorithm is also optimal in
a competitive sense. Simulation results show that the competitive ratio
of our algorithm may be better than linear in practice.

1 Introduction

Inspection of bridges, tunnels, wind turbines, and other large civil engineering
structures for defects is a time-consuming, costly, and potentially dangerous task.
In the future, smart coating technology, or smart paint, could do the job more
efficiently and without putting people in danger. The idea behind smart coating
is to form a thin layer of a specific substance on an object which then makes it
possible to measure a condition of the surface (such as temperature or cracks) at
any location, without direct access to the location. The concept of smart coating
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already occurs in nature, such as proteins closing wounds, antibodies surround-
ing bacteria, or ants surrounding food to transport it to their nest. These diverse
examples suggest a broad range of applications of smart coating technology in
the future, including repairing cracks or monitoring tension on bridges, repair-
ing space craft, fixing leaks in a nuclear reactor, or stopping internal bleeding.
We continue the study of coating problems in the context of self-organizing pro-
grammable matter consisting of simple computational elements, called particles,
that can establish and release bonds and can actively move in a self-organized
way using the geometric version of the amoebot model presented in [1,2]. In
doing so, we proceed to investigate the runtime analysis of our Universal Coat-
ing algorithm, introduced in [3]. We first show that coating problems do not
only have a (trivial) linear lower bound on the runtime, but that there is also
a linear lower bound on the competitive gap between the runtime of fully local
coating algorithms and coating algorithms that rely on global information. We
then investigate the worst-case time complexity of our Universal Coating algo-
rithm and show that it terminates within a linear number of rounds with high
probability (w.h.p.)1, which implies that our algorithm is optimal in terms of
worst-case runtime and also in a competitive sense. Moreover, our simulation
results show that in practice the competitive ratio of our algorithm is often
better than linear.

1.1 Amoebot Model

In the geometric amoebot model, we consider the graph Geqt, where Geqt =
(Veqt, Eeqt) is the infinite regular triangular grid graph. Each vertex in Veqt is a
position that can be occupied by at most one particle (see Part (a) of Fig. 1). Each
particle occupies either a single node or a pair of adjacent nodes in Geqt. Any
structure a particle system can form can be represented as a subgraph of Geqt.
Two particles occupying adjacent nodes are connected by a bond, and we refer
to such particles as neighbors. The bonds do not only ensure that the particles
form a connected structure but they are also used for exchanging information as
explained below.

Particles move by executing a series of expansions and contractions. If a
particle occupies one node it is contracted and can expand to an unoccupied
adjacent node to occupy two nodes. If it occupies two nodes it is expanded and
can contract to occupy a single node. In part(b) of Fig. 1, we illustrate a set
of particles on the underlying graph Geqt. For an expanded particle, we denote
the node the particle last expanded into as the head of the particle and the
other occupied node is called its tail. For a contracted particle, the single node
occupied by the particle is both its head and its tail.

To stay connected as they move, neighboring particles coordinate their
motion in a handover, which can occur in two ways. A contracted particle p can

1 By with high probability, we mean with probability at least 1 − 1/nc, where n is the
number of particles in the system and c > 0 is a constant.
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Fig. 1. (a) shows a section of Geqt, where nodes of Geqt are shown as black circles.
(b) shows five particles on Geqt; the underlying graph Geqt is depicted as a gray mesh;
a contracted particle is depicted as a single black circle and an expanded particle is
depicted as two black circles connected by an edge. (c) depicts the resulting configura-
tion after a handover was performed by particles p and q in (b).

initiate a handover by expanding into a node occupied by an expanded neigh-
bor q. Thus, p “pushes” q and forces it to contract. Alternatively, an expanded
particle q can initiate a handover by contracting. While contracting, q “pulls” a
neighboring contracted particle p to the node it is vacating, thereby forcing p to
expand. Parts (b) and (c) of Fig. 1 illustrate two particles labeled as p and q per-
forming a handover. Particles are anonymous but each particle has a collection
of uniquely labeled ports corresponding to the edges incident to the nodes the
particle occupies. Bonds between adjacent particles are formed through ports
that face each other. The particles are assumed to have a common chirality,
meaning they all have the same notion of clockwise (CW) direction. This allows
each particle p to label its ports counting in clockwise direction; without loss of
generality, we assume each particle labels its head and tail ports from 0 to 5.
However particles can have different offsets of the labelings, so they do not share
a common sense of orientation. Each particle hosts a local memory of constant
size for which any neighboring particle has read and write access. With this
mechanism particles can communicate by writing into each others memory. The
configuration C of the system at the beginning of time t consists of the nodes in
Geqt occupied by the object and the set of particles, and for each particle p, C
contains the current state of p, including whether it is expanded or contracted,
its port labeling, and the contents of its local memory.

Following the standard asynchronous model of computation [4], we assume
that the system progresses through atomic activations of individual particles. At
each (atomic) activation a particle can perform at most one movement and an
arbitrary bounded amount of computation, involving its local memory and the
shared memories of its neighbors. A classical result under this model is that for
any asynchronous execution of atomic particle activations, we can organize these
activations sequentially still producing the same end configuration [4]. We count
(asynchronous) time in terms of the number of activations. A round is over once
each particle has been activated at least once. We assume the activation sequence
to be fair, i.e., for each particle p and any point in time t, p will eventually be
activated at some time t′ ≥ t.
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1.2 Universal Coating Problem

In the universal coating problem we consider an instance (P,O) where P rep-
resents the particle system and O represents the fixed object to be coated. Let
V (P ) be the set of nodes occupied by P and V (O) be the set of nodes occupied
by O (when clear from the context, we may omit the V (·) notation). Then let the
set of nodes in Geqt neighboring O be called the surface (coating) layer. Let n be
the number of particles and B1 be the number of nodes in the surface layer. For
any two nodes v, w ∈ Veqt, the distance d(v, w) between v and w is the length of
the shortest path in Geqt from v to w. The distance d(v, U) between a v ∈ Veqt

and U ⊆ Veqt is defined as minw∈U d(v, w). An instance is valid if the following
properties hold:

1. The particles are all contracted and are initially in an idle state.
2. The subgraphs of Geqt induced by V (O) and V (P ) ∪ V (O), respectively, are

connected, i.e., there is a single object and the particle system is connected
to the object.

3. The subgraph of Geqt induced by Veqt \ V (O) is connected, i.e., the object O
has no holes.2

4. Veqt \V (O) is 2(� n
B1

�+1)-connected, i.e. O cannot form tunnels of width less
than 2(� n

B1
� + 1).

Note that a width of at least 2� n
B1

� is needed to guarantee that the object
can be evenly coated. The coating of narrow tunnels requires specific technical
mechanisms that complicate the protocol without contributing to the basic idea
of coating, so we ignore such cases in favor of simplicity.

A configuration C is legal if and only if all particles are contracted and

min
v∈Veqt\(V (P )∪V (O))

d(v, V (O)) ≥ max
v∈V (P )

d(v, V (O))

meaning that all particles are as close to the object as possible or coat O as evenly
as possible. If the object has to be coated by more than one layer of particles
then the i-th layer around the object are the nodes that have a distance of i to
the object.

An algorithm solves the universal coating problem if, starting from any valid
configuration, it reaches a stable legal configuration C in a finite number of
rounds. A configuration C is said to be stable if no particle in C ever performs
a state change or movement.

1.3 Related Work

Many approaches have been proposed with potential applications in smart coat-
ing; these can be categorized as active and passive systems. In passive systems
particles move only based on their structural properties and interaction with
2 If O does contain holes, we consider the subset of particles in each connected region

of Veqt \ V (O) separately.
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the environment, or have only limited computational ability and lack control of
their motion. Examples include DNA self-assembly systems (see, e.g., the sur-
veys in [5–7]), population protocols [8], and slime molds [9,10]. Our focus is
on active systems, in which computational particles control their actions and
motions to complete specific tasks. Coating has been extensively studied in the
area of swarm robotics. However, coating of objects is commonly not studied
as a stand-alone problem, but is part of collective transport (e.g., [11]) or col-
lective perception (e.g., see respective section of [12]). Some research focuses on
coating objects as an independent task under the name of target surrounding or
boundary coverage. The techniques used in this context include stochastic robot
behaviors [13,14], rule-based control mechanisms [15] and potential field-based
approaches [16]. While the analytic techniques developed in swarm robotics are
somewhat relevant to this work, those systems have more computational power
and movement capabilities as those studied in this work. Michail and Spirakis
recently proposed a model [17] for network construction inspired by population
protocols [8]. The population protocol model is related to self-organizing particle
systems but is different in that agents (corresponding to our particles) can move
freely in space and establish connections at any time. It would, however, be pos-
sible to adapt their approach to study coating problems under the population
protocol model. In [3] we presented our Universal Coating algorithm and proved
its correctness. We also showed it to be worst-case work-optimal, where work is
measured in terms of number of particle movements.

1.4 Our Contributions

In this paper we continue the analysis of the Universal Coating algorithm intro-
duced in [3]. As our main contribution in this paper, we investigate the runtime
of our algorithm and prove that our algorithm terminates within a linear number
of rounds with high probability. We also present a matching linear lower bound
for local-control coating algorithms that holds with high probability. We use this
lower bound to show a linear lower bound on the competitive gap between fully
local coating algorithms and coating algorithms that rely on global information,
which implies that our algorithm is also optimal in a competitive sense. We then
present some simulation results demonstrating that in practice the competitive
ratio of our algorithm is often much better than linear.

Overview. In Sect. 2, we present a brief overview of the algorithm presented
in [3]. We present a comprehensive formal runtime analysis of our algorithm,
by first presenting some lower bounds on the competitive ratio of any local-
control algorithm in Sect. 3, and then proving that our algorithm has a runtime
of O(n) rounds w.h.p. in Sect. 4, which matches our lower bounds. Due to space
limitations, full proofs were omitted and can be found in [18].
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2 Universal Coating Algorithm

In this section we summarize the Universal Coating algorithm introduced in [3].
This algorithm is constructed by combining a number of asynchronous primi-
tives, which are integrated seamlessly without any underlying synchronization.
The spanning forest primitive organizes the particles into a spanning forest,
which determines the movement of particles while preserving system connectiv-
ity; the complaint-based coating primitive controls the coating of the first layer,
by expanding the coating of the first layer while there is still room and there are
still particles not yet touching the object; the general layering primitive allows
each layer i to form only after layer i − 1 has been completed, for i ≥ 2; and
a node-based leader election primitive elects a position (in B1) whose occupant
becomes a leader particle, which is used to trigger the layering process after
the first layer. Due to space constraints we will only briefly describe the basic
ideas of the Universal Coating algorithm (see [3] for a detailed description). For
completeness the pseudocode for all algorithmic primitives can be found in [18].

2.1 Preliminaries

We define the set of states that a particle can be in as idle, follower, root,
and retired. In addition to its state, a particle maintains a constant number of
other flags, which in our context are constant size pieces of information visible to
neighboring particles. A flag x owned by some particle p is denoted by p.x. Recall
that a layer is the set of nodes v in Geqt that are equidistant to the object O. A
particle keeps track of its current layer number in p.layer. In order to respect the
constant-size memory constraint of particles, we take all layer numbers modulo
4. We say that layer i, i ≥ 1, is complete if each node in that layer is occupied
with a retired particle (except for the last layer which can be partially filled with
retired particles). Each root particle p has a flag storing a port label p.down,
which points to an occupied node of the object if p.layer (the layer p occupies)
equals 1, and to an occupied node adjacent to its head in layer p.layer − 1 if
p.layer > 1. Next we describe the coating primitives in more detail.

2.2 Coating Primitives

The spanning forest primitive organizes the particles in a spanning forest F ,
which creates a straightforward mechanism for particles to move while preserv-
ing connectivity (see [1,19] for details). Initially, all particles are idle. A particle
p touching the object changes its state to root. For any other idle particle p we
use the rule that once p sees a root or a follower in its neighborhood, it stores
the direction to one of them in p.parent, changes its state to follower, and gen-
erates a complaint flag. Follower particles use handovers to follow their parents
and update p.parent as they move so that it always points to the same parent
(resp. the follower that took over the role of p’s parent q because of a handover
with q). In this way, the trees formed by the parent relations stay connected,
only use positions they have covered before, and do not mix with other trees.
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Roots p use the flag p.dir to determine their movement direction. As a root p
moves, it updates p.dir so that it always points to the next position of a clockwise
movement around the object. For any particle p, we call the particle occupying
the position that p.parent resp. p.dir points to the predecessor of p. If a root
particle does not have a predecessor, we call it a super-root.

The complaint-based coating primitive is used for the coating of the first
layer. Each time a particle p holding at least one complaint flag is activated, it
forwards one to its predecessor as long as that predecessor does not hold more
than two complaint flags. Allowing each particle to hold up to two complaint flags
has two reasons: it ensures that a constant size memory is sufficient for storing
the complaint flags and that the flags quickly move forward to the super-roots.
A contracted super-root p only expands to p.dir if it holds at least one complaint
flag, and when it expands, it consumes one of these complaint flags. All other
roots p move towards p.dir whenever possible (i.e., no complaint flags are needed
for that) by performing a handover with a predecessor (which must be another
root) or a successor (which is a root or a follower of its tree), with preference
given to a follower so that one more particle reaches layer 1. As we will see, these
rules ensure that whenever there are particles in the system that are not yet at
layer 1, eventually one of these particles will move to layer 1, unless layer 1 is
already completely filled with contracted particles.

The leader election primitive runs during the complaint-based coating
primitive to elect a position along layer 1 as the leader position. This algorithm
is similar to the algorithm presented in [1] with the difference that leader can-
didates are associated with positions instead of particles (which is important
because in our case particles may still move during the leader election primitive)
as we presented in [3]. The primitive only terminates once all positions in layer
1 are occupied. Once the leader position is determined, and there are no more
followers or all positions in layer 1 are filled by contracted particles, then what-
ever particle currently covers that position becomes the leader. If the primitive
does not terminate (which only happens if n < B1 and layer 1 is never com-
pletely covered), then the complaint flags ensure that the super-roots eventually
stop, which eventually results in a stable legal coating. Given that a particle
becomes the leader, that leader becomes a marker particle that marks a neigh-
boring position at the next higher layer as a marked position and changes to the
retired state. The marked position determines the point at which root particles
should align in the next higher layer. Once a contracted root p has a retired par-
ticle in the direction p.dir, it retires as well, which causes the particles in layer
1 to change to the retired state in a counter-clockwise order. Also, the general
layering primitive becomes active, which builds subsequent layers until there are
no longer followers in the system.

In the general layering primitive, whenever a follower is connected to a
retired particle, it changes to the root state. Root particles continue to move
along positions of their layer in a clockwise (if the layer number is odd) or
counter-clockwise (if the layer number is even) direction till they reach the
marked position in that layer, or a retired particle in that layer, or a previ-
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ously empty position of a lower layer (which causes them to change direction).
Complaint flags are no longer needed to move to empty spots. Followers follow
their parents as before. A contracted root particle may retire due to the follow-
ing reasons: (i) it is located at the marked position and the marker particle in
the lower layer tells it that all particles in that layer are already retired (which
it can determine locally), or (ii) it has a retired particle in the direction of its
layer. Once a particle at a marked position retires, it becomes a marker particle
and marks a neighboring position at the next higher layer as a marked position.

3 Lower Bounds

Recall that a round is over once every particle in P has been activated at least
once. The runtime TA(P,O) of a coating algorithm A is defined as the worst-
case number of rounds (over all sequences of particle activations) it takes for A
to solve the coating problem (P,O). Certainly, there are instances (P,O) where
every coating algorithm has a runtime of Ω(|P |) (see Lemma 1), though there
are also many other instances where the coating problem can be solved much
faster. Since a worst-case runtime of Ω(|P |) is fairly large and therefore not very
helpful to distinguish between different coating algorithms, we intend to study
the runtime of coating algorithms relative to the best possible runtime.

A coating algorithm A is called c-competitive if for any valid instance (P,O),

E[TA(P,O)] ≤ c · OPT(P,O) + C

where OPT(P,O) is the minimum runtime needed to solve the coating prob-
lem (P,O) and C is a value independent of (P,O). Unfortunately, also for the
competitiveness a high lower bound holds for all local-control algorithms.

Lemma 1. The worst-case runtime required by any local-control algorithm to
solve the universal coating problem is Ω(|P |) with high probability.

Theorem 1. Any local-control algorithm that solves the universal coating prob-
lem has a competitive ratio of Ω(|P |).

Therefore, even the competitive ratio can be very high in the worst case. We
will revisit the notion of competitiveness in Sect. 5.

4 Worst-Case Number of Rounds

In this section we show that our algorithm solves the coating problem within a
linear number of rounds w.h.p. We start with some basic notation in Sect. 4.1.
Section 4.2 presents a useful tool that allows us to consider initial configurations
that consists of a forest of paths, and Sect. 4.3 presents a simpler synchronous
parallel model for particle activations that we can use to analyze the worst-
case number of rounds. Section 4.4 presents the analysis of the number of rounds
required to build the first coating layer. Finally, we analyze the number of rounds
required to complete all other coating layers, once layer 1 has been completed
(Sect. 4.5).
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4.1 Preliminaries

We start with some notation. Let Bi denote the number of nodes of Geqt at
distance i from object O (i.e., Bi denotes the number of nodes on layer i), and
let M be the highest index of a final coating layer for n particles, i.e., M is
such that

∑M−1
j=1 Bj < n ≤ ∑M

j=1 Bj . Layer i is complete if it is completely
filled with contracted retired particles, for i < M , or, if i = M , all particles
have reached their final position, are contracted and never move again. A legal
coating of i layers for object O consists of a configuration where the first i layers
are complete. Let ni denote the number of particles of the system that will not
belong to layers 1 through i − 1, i.e. ni = n − ∑i−1

j=1 Bj .
Given a configuration C, we define a directed graph A(C) over all nodes in

Geqt occupied by active (i.e., either follower or root) particles in C. For every
expanded active particle in C, A(C) contains a directed edge from the tail to the
head node of p. For every follower p, A(C) has a directed edge from the head of
p to p.parent, and for every root particle p, p has a directed edge from its head
to the node in the direction of p.dir, if p.dir is occupied by an active particle.
Certainly, since every node has at most one outgoing edge in A(C), the nodes of
A(C) can only form a collection of disjoint trees or a ring of trees. Note that a
ring of trees may emerge in any layer, but the leader election primitive ensures
that this is only temporarily the case in layer 1, because once a leader or marker
is elected, it retires, causing the ring in A(C) to break. In the runtime analysis
for layer i, i ≥ 2, we always assume that layers 1 to i − 1 are already complete,
which means that any particle reaching the marker position on layer i stops and
retires (hence, we never have to consider a ring of trees for higher layers). The
super-roots defined in Sect. 2 correspond to the roots of the trees in A(C). For
any subset T of A(C), let |T | denote the number of particles located at T . We
may abuse notation at times, when clear from the context, and refer to the set
of particles located at T simply as T .

4.2 Debranching

In this section, we present a useful tool that allows us to show that for any tree
of particles T in the spanning forest F right at the start of the construction of
layer i, the worst-case configuration of T with respect to the number of asyn-
chronous rounds required to construct layer i is when T consists of a single line
path. Let C(A)(i) denote the first configuration when layer i becomes complete
according to the execution of our asynchronous algorithm, 1 ≤ i ≤ M . Con-
sider an asynchronous particle activation sequence α starting from configuration
C(A)(i − 1) until we reach C(A)(i). Let Layer(i) denote the worst-case number
of asynchronous rounds for any such α, 2 ≤ i ≤ M .

Lemma 2 (Debranching). Let T be an arbitrary tree in a spanning forest
F at C(A)(i − 1). One can always construct a tree T ′ consisting of a single
path containing the same set of particles as T , such that for any (asynchronous)
activation sequence α starting from F , we build an (asynchronous) activation
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sequence α′ starting from F\{T}∪{T ′} such that both α and α′ only reach a legal
coating for i layers at the end of the sequence, and the number of asynchronous
rounds in α is no more than that of α′.

Repeated applications of Lemma 2 for each of trees in F at C(A)(i − 1) allows
us to bound the worst case for Layer(i) starting from a set of disjoint line paths
L1, . . . , Lx that each contain a single root particle in layer i. Note that some of
these paths may be connected through other root particles in layer i (i.e., when
we look at A(C(A)(i−1)) we may see a collection of trees composed by the union
of some of the Lj paths and root nodes on layer i).

4.3 From Asynchronous to Parallel Schedules

In this section, we show that instead of analyzing our algorithm for asynchronous
activations of particles, it suffices to consider a much simpler model of parallel
activations of particles. A movement schedule is a sequence of particle system
configurations C0, C1, . . . , Ct.

A movement schedule is called a (valid) parallel schedule if every Cj represents
a valid configuration of a connected particle system (i.e., each particle is either
expanded or contracted, and every node of Geqt is occupied by at most one
particle) and for every j ≥ 0, Cj+1 is reached from Cj in a way that for every
particle p one of the following properties holds:

1. p occupies the same positions in Cj and Cj+1, or
2. p expands into an adjacent node that was empty in Cj , or
3. p contracts, leaving the node occupied by its tail empty in Cj+1, or
4. p is part of a handover with a neighboring particle p′.

This means that several particles are allowed to move from Cj to Cj+1, but at
most one contraction or expansion per particle is possible.

A tree schedule S = (L, (C0, . . . , Ct)) is a valid movement schedule C0, . . . , Ct

with the property that A(C0) is a tree T0, L is a simple path in Geqt along some
nodes v1, . . . , v� with v1 being occupied by the head of the super-root in A(T0),
and for the other nodes v ∈ L, v 	∈ T0. Note that the root of a tree T in A(C),
for some configuration C, is occupied by the unique super-root particle located
in T . We also require that in C0, . . . , Ct all particles have to follow the unique
path in A(T0)∪L from their initial position in C0 to v� in a way that A(Cj) is a
single tree for every j ≥ 1 (which implies that A(Cj) covers a subset of T0 ∪ L).
A tree schedule is greedy if all particles move in a greedy manner, i.e., they
perform a contraction, expansion, or handover in the direction of their unique
path whenever possible as long as this does not violate the constraints of a tree
schedule. For any configuration C of the tree schedule and any involved particle
p we define its head distance (resp. tail distance) dh(p,C) (resp. dt(p,C)) to be
the number of edges along the unique path of p from the head (resp. tail) of p
to v�. Certainly, dh(p,C) ∈ {dt(p,C), dt(p,C) − 1}, depending on whether p is
contracted or expanded. For any two configurations C1 and C2 and any particle
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p we say that C1 dominates C2 w.r.t. p (or short, C1(p) ≥ C2(p)) if and only
if dh(p,C1) ≤ dh(p,C2) and dt(p,C1) ≤ dt(p,C2). Altogether, we say that C1

dominates C2 if and only if C1 dominates C2 with respect to every particle p.
Consider now an arbitrary fair asynchronous activation sequence of particles

in the given particle tree, and let C
(A)
j , 0 ≤ j ≤ t, be the configuration of the

particles at the end of asynchronous round j if the particles move as prescribed
by our coating algorithm. Then it holds:

Lemma 3. For any particle tree extended by a root path L, and any fair asyn-
chronous activation sequence, there is a greedy tree schedule (L, (C1, C2, . . .)) so
that C

(A)
j ≥ Cj for all j ≥ 1.

This lemma also holds for forest schedules, i.e., we have multiple trees with
roots at different places of some root path which are following that path in the
same direction. Hence, once we have an upper bound for the time it takes for a
forest schedule to reach a final configuration, we also have an upper bound for
the number of rounds it takes for any fair asynchronous activation sequence to
reach the final configuration.

We can extend the dominance argument to also hold for complaint flags, if
we follow the rules of the complaint-based coating primitive for the forwarding
and consumption of these flags: Basically, besides enforcing that the dominance
should hold for the dh and dt functions, we also show that dominance holds with
respect to the distance function dc(f, C), which gives the number of edges along
the unique path from the node containing the particle that currently holds flag
f to v�. We also make the parallel schedules more restrictive, by allowing each
particle to hold at most one (rather than two, as described in the asynchronous
algorithm) complaint flag. In the context of parallel schedules, a particle p hold-
ing a complaint flag f in Cj can forward f to an adjacent particle q, if q did not
hold any complaint flag in Cj (and is not receiving a complaint flag from any
other neighbor at round Cj), or q holds a complaint flag f ′ in Cj which will be
forwarded in parallel to one of q’s neighbors in this round. Hence, we obtain the
following lemma:

Lemma 4. For any particle forest grounded at a root path L, and any fair asyn-
chronous activation sequence, there is a forest schedule (L, (C1, C2, . . .)) so that
with or without the use of complaint flags, C

(A)
j ≥ Cj for all j ≥ 1.

Line Schedules. We will look at a particular case of parallel tree schedules,
called (parallel) line schedules, where A(C0) is equal to a simple path (basically
L ∪ A(C0) induces a line of particles in Geqt). Line schedules are a “simpler”
variant of tree schedules and will be very useful in computing an upper bound
on the worst-case number of asynchronous rounds for building a layer i, i ≥ 2, in
Sect. 4.5. Here, we prove some general helper lemmas about greedy line schedules.
We start with the following lemma.
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Lemma 5. Consider any greedy line schedule S = (L, (C0, C1, . . . , Ct)). Let L′

be the path given by L ∪ A(C0). If we start from a configuration C0 with no two
adjacent expanded particles along L′, then for all j, 0 ≤ j ≤ t, Cj never has two
adjacent expanded particles in L′.

This implies that the super-root is able to move forward every two steps (as
whenever it is expanded, the particle behind it must be contracted), implying
the following lemma.

Lemma 6. Consider any greedy line schedule S = (L, (C0, C1, . . . , Ct)) with
m particles and L = (v1, . . . , v�) and let L′ = L ∪ A(C0). If we start from a
configuration C0 with no two adjacent expanded particles along L′, then it takes
at most 2(� + k) configurations for any k ≤ m until v�−k+1, . . . , v� are occupied
by contracted particles.

Lemmas 4 and 6 tremendously simplify the analysis of the runtime to com-
plete layer 1 or a higher layer respectively, as we will see.

4.4 First Layer: Complaint-Based Coating and Leader Election

At the beginning of our algorithm, the spanning forest needs to be formed. It is
easy to bound the runtime for that:

Lemma 7. Following the spanning forest primitive, the particles form a span-
ning forest within O(n) rounds.

By Lemma 2, we can upper bound on the worst-case number of asynchronous
rounds by assuming that F consists of a forest of lines initially. Every particle
that joins the spanning forest as a follower generates a complaint flag, which
needs to be forwarded along the parent connections to the root of its A(C)-tree
(which we called a super-root) so that it moves forward. In the following assume
that the super-roots just move along a common path L (and not a ring, which
they really do).

For ease of presentation, we assume that B1 ≤ n (the proofs can be easily
extended to also cover the case B1 > n [18]); we also assume that the root of
a tree also generates a complaint flag upon its activation (this assumption does
not hurt our argument since it only increases the number of the flags generated
in the system). Let S = (L, (C0, C1, . . . , Ct)) be a greedy forest schedule where
C0 is the first configuration after the spanning forest has been formed, Ct is the
first configuration in S when layer 1 becomes complete and L is the set of nodes
on layer 1.

The following lemma shows that the complaint flags will be consumed in S
as soon as they reach a super-root, or if that is not possible, that the algorithm
still makes steady progress by either bringing more complaint flags onto layer 1
or by moving all the remaining complaint flags in the system one position closer
to a super-root within two consecutive parallel rounds. Note that it becomes
easier to prove Lemma 8 since we know that F in the context of A(Cj) consists
of a forest of lines.
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Lemma 8. Consider a round Cj of S, where 0 ≤ j ≤ t−2. Then within the next
two parallel rounds of S (i.e., in configurations Cj+1 or Cj+2), we must have
that (i) at least one complaint flag is consumed, (ii) at least one more complaint
flag reaches a particle in layer 1, (iii) all the remaining complaint flags move
one position closer to a super-root along L, or (iv) layer 1 is completely filled
(possibly with some expanded particles).

We use Lemma 8 to show first that layer 1 will be filled with particles (some
possibly still expanded) in O(n) rounds. From that point on, in another O(n)
rounds, one can guarantee that expanded particles in layer 1 will each contract
in a handover with a follower particle, and hence all particles in layer 1 will be
contracted, resulting in the following lemma:

Lemma 9. After O(n) rounds, layer 1 must be filled with contracted particles.

Once layer 1 is filled, the leader election primitive can proceed. Our leader
election result [1] implies the following runtime bound.

Lemma 10. Within O(n) further rounds, a position of layer 1 has been elected
as the leader position, w.h.p.

Once a leader position has been elected and there is either no more followers
(if n ≤ B1) or all positions are completely filled by contracted particles (which
can be checked in an additional O(B1) rounds), the particle currently occupying
the leader position is elected as the leader. Once a leader has been found, the
particles on layer 1 retire, which takes O(B1) further rounds. Putting it all
together, we get:

Corollary 1. The worst-case number of rounds for the Universal Coating algo-
rithm to complete layer 1 is O(n), w.h.p.

4.5 Higher Layers

We will now use the results we have proven for line schedules in Sect. 4.3 in
order to prove an upper bound on the worst-case number of rounds — denoted
by Layer(i) — for building layer i once layer i−1 is complete, for 2 ≤ i ≤ M . As
we have seen in Sect. 4.2, we can assume that the spanning forest F at C(A)(i−1)
consists of a forest of lines, when bounding Layer(i).

There are two type of movements of root particles that occur when coating
a layer i: (a) root particles that move through the nodes in layer i in the set
direction dir (CW or CCW) for layer i, and (b) root particles that move through
the nodes in layer i + 1 in the opposite direction, over the already retired par-
ticles in layer i. We bound the worst-case scenario for each of the two types
of movement independently, in order to get a an upper bound on Layer(i). If
we want to maximize the number of movements (also inducing the worst-case
number of rounds) in case (a) for a forest of lines in F at C(A)(i− 1), one would
have just a single line La of ni particles whose root is as far from the marker
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particle as possible according to direction dir for layer i (since this would max-
imize the distances that the particles would need to traverse until they retired).
Similarly for case (b) we would have a single line Lb of particles as further from
the marker particle as possible according to the opposite direction of dir. Let
L = v1, . . . , vBi

be the nodes on layer i listed in the order that they appear in
layer i from the marker position v1 following direction dir. From Lemma 3, we
can upper bound the number of rounds required to complete all movements of
type case (a) using the line schedule S = (L, (C0, . . . , Ct)), where A(C0) = La.
It then follows from Lemma 6 that it would take O(Bi) asynchronous rounds for
the process in case (a) to terminate. A similar argument can be used to show
that all the movements in case (b) terminate in O(Bi+1) = O(Bi) rounds (note
that, trivially, Bi+1 ≤ 6Bi). This implies the following lemma:

Lemma 11. Starting from configuration C(A)(i − 1), the worst-case additional
number of asynchronous rounds for layer i to also become complete is O(Bi).

Putting it altogether, for layers 2 through M :

Corollary 2. The worst-case number of rounds for the Universal Coating algo-
rithm to coat layers 2 through M is O(

∑M
i=2 Bi) = O(n).

Combining Corollaries 1 and 2 we get, for any given valid object O to be
coated, and any initial valid configuration of the set of particles P :

Theorem 2. The total number of asynchronous rounds required for our algo-
rithm to reach a legal coating configuration, starting from an arbitrary valid
initial configuration (P,O) is O(n) w.h.p., where n is the number of particles in
the system.

5 Simulation Results

In this section we present a brief simulation based analysis of our algorithm
which shows that in practice our algorithm exhibits a better than linear average
competitive ratio. Since OPT(P,O) (as defined in Sect. 3) is in general difficult
to compute, we investigate the competitiveness with the help of an appropriate
lower bound for OPT(P,O). Recall the definitions of the distances d(p, q) and
d(p, U) for p, q ∈ Veqt and U ⊆ Veqt. Consider any valid instance (P,O). Let
L be the set of all legal particle positions of (P,O), that is, L contains all sets
U ⊆ Veqt such that the positions in U constitute a coating of the object O by
the particles in the system.

We compute a lower bound on OPT(P,O) as follows. Let L be defined as
above and let U ∈ L. Consider the complete bipartite graph G(P,U) with P and
U being the partitions of the graph. For each edge e = (p, q) ∈ P ×U set the cost
of the edge to w(e) = d(p, q). Every perfect matching in G(P,U) corresponds
to an assignment of the particles to positions in the coating given by U . The
maximum edge weight in a matching corresponds to the maximum distance a
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Fig. 2. (a) Number of rounds varying number of particles (b) Ratio of number of
rounds to lower bound (log scale) (c) Number of rounds varying static hexagon radius

particle has to travel in order to coat the object accordingly. Let M(P,U) be
the set of all perfect matchings in G(P,U). We define the matching dilation of
(P,O) as

MD(P,O) = min
U∈L

min
M∈M(P,U)

max
e∈M

w(e).

Since each particle has to move to some position in U for some U ∈ L to solve the
coating problem, we have OPT ≥ MD(P,O). The search for the matching that
minimizes the maximum edge cost for a given U ∈ L can be realized efficiently
by reducing it to a flow problem using edges up to a maximum cost of c and
performing binary search on c to find the minimal c such that a perfect matching
exists. We note that our lower bound is not tight. This is due to the fact that it
only respects the distances that particles have to move but ignores the congestion
that may arise, i.e., in certain instances the distances to the object might be
very small, but all particles may have to traverse one “chokepoint” and thus
they block each other.

We implemented the Universal Coating algorithm in the amoebot simulator
(see [20] for videos). The actual shape of a valid object O is irrelevant to our
algorithm because particles only need to know where their immediate neigh-
bors in the border around the object are relative to themselves, and this can be
determined independently of the shape of the border. Thus for simplicity each
simulation is initialized with a hexagon of object particles. We then initialize
the particle system as idle particles attached randomly around the hexagon’s
perimeter. Parameters of the implementation are the radius of the hexagon that
has to be coated and the number of (initially idle) particles that will run the
algorithm. Each experimental trial randomly generates a new initial configura-
tion of the system. Figure 2(a) shows the number of rounds needed to complete
the coating. The radius of the static hexagon corresponds to the series label and
the number of active particles is varied on the x-axis. The number of rounds
are averaged over 20 trials of a constant size system. The confidence intervals
plotted represent 95 %. These results show that in practice the number of rounds
increases linearly with the number of particles in the system. This make sense
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because leader election takes a constant number of rounds for a given radius, so
the increase comes only from the layering step. Figure 2(b) shows the ratios of the
results from Fig. 2(a) compared to the lower bound defined above. The results
shown in Fig. 2(b) show that the average competitive ratio of our algorithm
approximated using the average ratio of the actual runtimes of the algorithm
over the respective lower bounds (as defined above) may exhibit closer to loga-
rithmic behaviors. Figure 2(c) shows the round duration of the algorithm as the
radius of the static hexagon is varied. The runtime of the algorithm appears to
increase linearly with both number of active particles and the size of the object
being coated. There is also increased variability for systems with larger radii.
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Abstract. In isolation, chemical reaction networks and tile-based self-
assembly are well-studied models of chemical computation. Previously,
we introduced the chemical reaction network-controlled tile assembly
model (CRN-TAM), in which a stochastic chemical reaction network
can act as a non-local control and signalling system for tile-based assem-
bly, and showed that the CRN-TAM can perform several tasks related
to the simulation of Turing machines and construction of algorithmic
shapes with lower space or program complexity than in either of its
parent models. Here, we introduce a kinetic variant of the CRN-TAM
and investigate the time complexity of computation and construction.
We analyze the time complexity of decision problems in the CRN-TAM,
and show that decidable languages can be decided as efficiently by CRN-
TAM programs as by Turing machines. We also give a lower bound for the
space-time complexity of CRN-TAM computation that rules out efficient
parallel stack machines. We provide efficient parallel implementations of
non-deterministic computations, showing among other things that CRN-
TAM programs can decide languages in NTIME(f(n)) ∩ coNTIME(f(n))
in O(f(n) + n + log c) time with 1 − exp(−c) probability, using vol-
ume exponential in n. Lastly, we provide basic mechanisms for parallel
computations that share information and illustrate the limits of parallel
computation in the CRN-TAM.

1 Introduction

Biological organisms create remarkably sophisticated structures through the
interplay of genetically-encoded chemical reactions and molecular self-assembly.
DNA nanotechnology is beginning to explore the analogous potential of
information-based chemistry by developing programmable circuitry using DNA
strand displacement cascades [7,20,21,25,35], programmable self-assembly using
DNA tile systems [3,12,22,29,31], as well as systems that combine both dynamic
circuitry and self-assembly processes [33,34]. Whereas there are well-developed
theoretical models for dynamic chemical circuits [5,18,26,27] and tile self-
assembly [9,23,28] within which questions about the algorithmic power and
efficiency of such systems can be posed and answered, the interplay of chem-
ical reaction and self-assembly processes has received relatively little theoretical
attention.
c© Springer International Publishing Switzerland 2016
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It has been understood for decades that enzymes acting on information-
bearing polymers can in principle perform efficient Turing-universal computation
[4,6,13] and recently plausible molecular implementations using DNA nanotech-
nology have been proposed [14,19], but these studies do not exploit the full
power of two- or three-dimensional self-assembly, nor do they explicitly concern
themselves with how chemical reaction network computation can direct the con-
struction of complex structures. We recently introduced a theoretical model [24],
called the Chemical Reaction Network-Controlled Tile Assembly Model (CRN-
TAM) that integrates the formal chemical reaction network (CRN) model [26]
and the abstract tile assembly model (aTAM) [23]. We proved that in this model,
the interplay between chemical reactions and self-assembly enables more efficient
computation (in terms of space used) and more efficient construction (in terms
of program size and shape scale) than either of the previous models alone. How-
ever, some of our constructions—devised to facilitate the proofs—were obviously
inefficient in terms of time; they failed to exploit the inherent parallelism of
molecular systems. Here, our goal is to determine whether integrating chemical
reaction dynamics and tile self-assembly also provides as dramatic an advantage
in terms of speed, for both computation and construction.

Using our previous definition of the structure and semantics of the CRN-
TAM, we formulate a kinetic model based on the Gillespie dynamics of stochastic
chemical reaction networks. Through a natural notion of CRN-TAM composi-
tion, we introduce the notion of an efficient encoding of an input and a fixed
CRN-TAM decider that decides strings in a language, leading to the notion of
copy-tolerant CRN-TAM deciders that can be readily composed and operated in
parallel without interference. With reference to our previous stack machine con-
struction, we show that there are space-efficient CRN-TAM deciders that use as
much volume as a Turing machine would use space. We also give a lower bound
showing that there are no space-efficient and copy-tolerant CRN-TAM deciders.

Our main result and most significant technical contribution is Theorem5,
which shows that there are copy-tolerant tile-based CRN-TAM deciders, which
we demonstrate using a sentinel process like the one used by Adleman et al.
[1] for analyzing the time complexity of assembling squares in a variant of the
aTAM. To show how these copy-tolerant CRN-TAM deciders can be used for
efficient parallel computation, we give a randomized CRN-TAM program that
generates all 2k strings of length k efficiently and with exponentially small error.
We then combine these results to show that CRN-TAM programs can efficiently
simulate non-deterministic computations in parallel, allowing them to (proba-
bilistically) decide problems in NTIME(f(n))∩coNTIME(f(n)) in nearly O(f(n))
time. Lastly, we show how the copy-tolerant CRN-TAM decider can be extended
to allow limited state sharing between computations executing in parallel and
discuss some likely limitations of parallelism in the CRN-TAM.

2 Semantics and Kinetics of the CRN-TAM

We begin by briefly reviewing the fundamental definition of the CRN-TAM,
which was defined in detail by Schiefer and Winfree [24].
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Definition 1. A tile is an oriented square with a bond on each of the north,
east, south, and west sides. Each of these bonds is a distinct tuple (�, s), with a
label � drawn from some alphabet and non-negative integer strength s. Formally,
a tile is a four-tuple ( t ) = (N,E, S,W ) of bonds for the north, east, south, and
west sides, respectively. In this paper, tiles are denoted by symbols surrounded by
boxes.

As in the abstract tile assembly model, tiles can aggregate to form larger
structures. These structures are held together by the bonds on the edges of the
tiles; to join onto an assembly, every tile must be bound with at least a minimum
binding strength, or temperature:

Definition 2. An assembly is an aggregation of adjacent tiles; formally, an
assembly composed of tiles from a set T is a function A : Z

2 → (T ∪ {ε}) that
assigns to each side of the 2D lattice a tile from T . If A(x, y) = ε, the site is
empty or unoccupied. A function A is a valid assembly if and only if:

– The occupied sites of the assembly form a connected set.
– The origin (0, 0) is occupied by a tile A(0, 0) ∈ T ; this tile is called the seed

of the assembly.
– The total binding strength of the tile at each non-empty site is at least the

temperature τ .

Assemblies are denoted by symbols surrounded by double boxes. For example, t

is a tile, but A is an assembly. The (infinite) set of all valid assemblies using

tiles from T is denoted MT . When clear from context, X is an assembly con-

taining only the tile x as its seed.

In the CRN-TAM, the notion of a tile and assembly are essentially equivalent
to those in models derived from the abstract tile assembly model [2,17,23,28].
In models that include only tiles, a tile set T completely specifies the structural
form of a tile-based program.

Definition 3. A CRN-TAM program is a tuple (S, T,R, τ, I) consisting of:

– A finite set S of identified signal species. We also use a notational “empty”
species ε and let Sε = S ∪ {ε}.

– A finite set T of tuples
(

t , t∗
)

pairing tiles t and their removal signals t∗,
where t∗ ∈ Sε. The same tile may appear at most once in T , i.e. it cannot
have two different removal signals.

– A finite set R of reactions, each of which is one of the following types:
• CRN reactions A + B

k−→ C + D, for signals A,B,C,D ∈ Sε.
• Tile deletion reactions A + t

k−→ C + D, for signals A,C,D ∈ Sε.
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• Tile creation reactions A + B
k−→ t + C or A + B

k−→ t + t′ , for signals

A,B,C ∈ Sε and tiles t and t′ .

• Tile relabelling reactions A+ t
k−→ B+ t′ for signals A,B ∈ Sε and tiles t

and t′ .

• Tile activation reactions A+ x
k−→ X +x∗ where A ∈ Sε and

(
x , x∗

)
∈ T .

• Tile deactivation reactions X +x∗ k−→ A+ x where A ∈ Sε and
(

x , x∗
)

∈ T .
In all of these reactions, a reactant or product ε indicates that the reactant or
product does not exists; for example, a reaction A+ε

k−→ ε+D is just A
k−→ D.

The reaction rate constant k must be specified as a rational number.
– The temperature τ ∈ N, which is the minimum binding strength.
– The initial state I, a multiset of tiles and signals that are initially present.

Often, we will use I as a function I : (S ∪ T ) → N indicating the number
of a particular element in the multiset. An initial state does not contain any
assemblies.

Structurally, the signal species in S are analogous to the species of a stochastic
chemical reaction network (sCRN) and the tiles in T are analogous to the tile
set that defines a program in the abstract tile assembly model (aTAM). Signal
species and unbound tiles float in a well-mixed vessel, interacting analogously to
the species in a stochastic chemical reaction network.

Occasionally, it will be useful to combine several CRN-TAM programs.

Definition 4. The combination of two CRN-TAM programs P = (S, T,R, τ, I)
and P ′ = (S′, T ′, R′, τ, I ′) is P ⊕ P ′ = (S ∪ S′, T ∪ T ′, R ∪ R′, τ, I ∪ I ′), so long
as tiles are consistent, i.e.,

(
t , x

)
∈ T and

(
t , y

)
∈ T ′ implies x = y. Note

that since I and I ′ are multisets, duplicates are repeated in the union.

As in the aTAM, tiles bind together to form assemblies provided that they
attach with a total binding strength that is at least the temperature τ . Along
with the reaction specified in R, there are implicit addition and removal reactions
in the CRN-TAM that are similar to the corresponding reactions in other tile
assembly models, but with a slight change in character; extended rationale is
given in our previous paper introducing the CRN-TAM [24].

Definition 5. Let ( t , t∗) ∈ T , and let A and B be assemblies that differ

by exactly t in some location other than (0, 0). A tile addition reaction is a
reaction

A + t
1−→ B + t∗
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Notice that since B is valid, t is attached with total strength at least τ . The

corresponding removal reaction

B + t∗ 1−→ A + t

may occur only when t is bound by exactly strength τ , and the removal signal
is not ε. Note that the seed tile is privileged and cannot be removed from the
assembly; it may be deactivated only after all other tiles have been removed.

The signals, free tiles, and assemblies in the reaction vessel completely specify
the state of a CRN-TAM program at any time:

Definition 6. A state L of a CRN-TAM program P is a multiset of signals,
tiles, and assemblies. As with the initial state I, we use the notation L(x) :
(S ∪ T ∪ MT ) → Z

+ to refer to the current count of x in L.

Frequently, we will refer to the program state or current state, which is simply
the state that reflects the current contents of the reaction vessel.

Definition 7. A reaction is possible for a state L if its rate constant is nonzero
and for every one of its reactants α, L(α) > 0. The possible reactions Pos(L)
of a state L include all of the possible reactions in R and all of the possible tile
addition and removal reactions. Note that Pos(L) is always finite.

The possible reactions induce a graph that describes the possible transitions
between different states.

Definition 8. The reaction graph G(P ) of a CRN-TAM program
P = (S, T,R, τ, I) is a directed graph with a vertex for each of the (infinitely
numerous) states of P and a directed edge from L to all states in Pos(L) for all
states L. The reachable reaction graph is a subgraph of G(P ) with only vertices
that are descendants of the initial state I. Where it is unambiguous or unimpor-
tant, we may refer to the reachable reaction graph as simply the reaction graph.

Note that reachable reaction graphs are by definition connected, but may not
be strongly connected. As reactions occur, the program state will change from
one state to the other in a manner that is governed by the reactions’ propensities:
in this paper, we are especially interested in CRN-TAM programs that eventually
reach a state with no possible reactions, where they will remain forever.

Definition 9. A state of a CRN-TAM program is a termination state if it has
no possible reactions. Equivalently, the termination vertex has no out edges in
the reaction graph. A CRN-TAM program P stops if it reaches a termination
state with probability one and the set of reachable states is finite.

As we will see in Definition 11, we cannot consider the temporal dynamics
of a CRN-TAM program without knowing the volume in which the program
operates. In this paper, we will always use a default volume, dependent on the
program, that ensures that any execution path will at all times have a finite
density, in the following sense:
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Definition 10. An atomic chemical species is a signal or a tile, whether free
or bound to an assembly. The mass of a state is the total number of atomic
chemical species present in all signals, tiles, and assemblies. The volume required
by a CRN-TAM program P is the maximum mass present for any state in the
reachable state graph of P .

By this definition, if the reachable reaction graph is infinite, then it must
have a state whose mass exceeds any given bound, and thus violates the finite
density constraint for some possible execution path. Our choice of volume cannot
handle such systems, and in this paper we restrict our attention only to CRN-
TAM programs with finite reachable reaction graphs. In the CRN-TAM, as in
stochastic chemical reaction networks [26], the volume is fixed at the beginning
and does not change over time.

Thus far, we have specified only the possible reactions associated with a
state and not the dynamics of the system. The program state evolves according
to stochastic Gillespie dynamics, where reactions occur at a rate proportional to
their current propensity [10,11].

Definition 11. Let P = (S, T,R, τ, I) be a CRN-TAM program in state L that
uses volume V . The propensity of a reaction R with rate constant k is given by:

– ρ(R) = kL(R1) if R is a unimolecular reaction with reactant R1.
– ρ(R) = kL(R1)L(R2)/V if R is a bimolecular reaction with two distinct reac-

tants R1 and R2.
– ρ(R) = kL(R1)(L(R1) − 1)/V if R is a bimolecular reaction with identical

reactants.

Note that a reaction is possible if and only if its propensity is nonzero. With
reference to Definition 11, we can finally define the kinetics of a CRN-TAM
program.

Definition 12. Let L(t) be a random variable-value for the current state of a
CRN-TAM program P at a time t ∈ [0,∞). The state L(t) evolves over time
as a continuous time Markov chain on the space of possible CRN-TAM states
with (deterministic) initial state L(0). For two distinct program states A and B,
the transition rate between them is given by the propensity of the reaction in P
that converts state A into state B, 0 if there is no such reaction, or the sum of
propensities if there is more than one (e.g. X

1−→ Y and C + X
1−→ C + Y ).

For each of stochastic CRNs and the abstract tile assembly model, there is a
natural notion of the “size” of a molecular program; in sCRNs, this is the number
of reactions, while in the aTAM it is the number of tiles. We can similarly define
a measure of program complexity for the CRN-TAM.

Definition 13. The complexity of an initial state I : (S ∪ T ) → N is

|I| =
∑

z∈(S∪T )

log2(I(z) + 1)
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This definition is natural since it is the number of bits needed to specify a
general initial state I, up to small constant multiplicative and additive factors.
We similarly define the size of a set of reactions such that if all reactions have
unit rate constants, it is just the count of reactions, but otherwise it scales as
the information needed to specify the rates:

Definition 14. The complexity of a set of reactions R, where r ∈ R is written
as Ar + Br

kr−→ Cr + Dr and kr = nr

dr
as an irreducible fraction, is

|R| =
∑

r∈R

log2(nr × dr + 1)

The complexity of a CRN-TAM program is the sum of the complexities of
its components.

Definition 15. Let P = (S, T,R, τ, I) be a CRN-TAM program. The complex-
ity of P with respect to temperature τ is

Kτ
CT(P ) = |S| + |T | + |R| + |I|

= |S| + |T | +
∑

r∈R

log2(nr × dr + 1) +
∑

z∈(S∪T )

log2(I(z) + 1)

Each term is related to the number of bits required to specify the corre-
sponding part of the program, up to logarithmic factors. Like sCRNs but unlike
the aTAM, we allow nontrivial initial state as a convenience; our previous work
showed that for any CRN-TAM program P , there is a CRN-TAM program P ′

with no initial state and program complexity Kτ
CT(P ′) = Θ(Kτ

CT(P )) that sim-
ulates it [24, Theorem 4].

3 Efficient Computation

We are principally concerned with using CRN-TAM programs to perform effi-
cient computation. As in much of theoretical computer science, we deal primarily
with decision problems, and therefore formulate a model of computation that
solves them. As defined so far, CRN-TAM programs cannot “compute” in the
sense that a Turing machine or even a circuit can; a program is fixed and has no
notion of input. Furthermore, most of the efficient and natural encodings of fixed
strings in the CRN-TAM involve assemblies, while a CRN-TAM program does
not have any assemblies in its initial state. To resolve this, we begin by describing
a natural way of encoding fixed input strings as CRN-TAM programs, and then
demonstrate how those input strings can be combined with CRN-TAM deciders
to provide a model of computation.

Definition 16. Consider a CRN-TAM program P and a string x over an alpha-
bet Σ. Let TΣ : T → Σ be a partial function from the tiles of P to the alphabet,
assigning some of the tiles in T to represent symbols in the alphabet. We say
that P encodes x if it constructs a 1 × (|x| + 1) rectangular assembly A with the
following properties:
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– A begins with a designated “start tile” tstart .

– Let the kth tile after the start tile be tk . Then TΣ

(
tk

)
= xk, the kth symbol

in the string.

Of course, a string of length n can always be encoded by a CRN-TAM pro-
gram with Θ(n) complexity, by using a distinct tile type for each symbol in the
string. Previously, Adleman et al. [1] and Soloveichik and Winfree [28] showed
that strings of length n can be encoded1 in aTAM tile sets with O(n/ log n) dis-
tinct tile types at temperature τ = 2. We can show that CRN-TAM programs
with sublinear complexity can encode n-symbol strings. In [24] it was shown
that:

Theorem 1. For any string x over a constant-size alphabet Σ and tempera-
ture τ ≥ 1, there is a CRN-TAM program P = (S, T,R, τ, I) that encodes x and
has complexity Kτ

CT(P ) = O(n/ log n).

Moreover, this bound is tight. We therefore have a natural definition of input
for computation with the CRN-TAM:

Definition 17. An input encoding of a string x (over an constant alphabet) is
a CRN-TAM that encodes x and has complexity Kτ

CT(P ) = O(|x|/ log |x|) at any
temperature τ ≥ 1.

Our CRN-TAM computers should be independent of the input and should
solve an appropriate decision problem when combined with an input encoding.
For the rest of the paper, we will use a default encoding EΣ(x) for alphabet Σ
and input string x, which we will simply refer to as E(x) where the alphabet is
clear from context.

Definition 18. Consider a language L that is decidable by a Turing machine M .
Consider a fixed CRN-TAM program D with two identified signals Qaccept and
Qreject. We say that D is a CRN-TAM decider for L with respect to the default
input encoding E if, for every input x the combined program D ⊕ E(x):

– Produces Qaccept and then stops immediately if and only if M accepts x.
– Produces Qreject and then stops immediately if and only if M rejects x.

For convenience, we will say that D accepts x if the first case holds and rejects
x if the second case holds.

For any execution of a CRN-TAM decider acting on an input, there is a
time t∗ for which L(t) = L(t∗) for all t ≥ t∗. Using the dynamics described in
Definition 12, we can use this to define the amount of time that a computation
in the CRN-TAM takes.

1 By necessity, a different notion of “encoding” must be used in the aTAM, since
building even a 1×n rectangle requires Θ(n) tile types [2]. However, the notion used
in the aTAM is analogous to our notion of encoding.
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Definition 19. Consider a CRN-TAM decider D for language L, and a
string x. The time that D+E(x) takes to decide x is the random variable T ∗ for
the minimum time t∗ so that L(t) = L(t∗) for all t ≥ t∗. We call this the stopping
time of the CRN-TAM program. As we are usually interested in asymptotically
characterizing the worst-case time that a decider takes to decide all inputs of a
given length, we define the random variable T (n) = maxx∈Σn T ∗(x).

The aTAM is an inherently scalable model of molecular computation, in the
sense that we may consider an arbitrary number of assemblies growing in par-
allel and executing independent computations. Because there is no mechanism
for inter-assembly interaction and the supply of tiles is fixed (and implicitly infi-
nite), each assembly is a universe unto itself; from the perspective of an aTAM
programmer, it does not matter if a reaction vessel has a single assembly or a
million. Like stochastic CRNs, however, the CRN-TAM has a shared global state.
As a result, a CRN-TAM program does not necessarily scale for parallel execu-
tion: combining just two functioning CRN-TAM programs may not produce a
functioning CRN-TAM program. Nonetheless, scalability is a desirable property
from a theoretical standpoint, since it might allow parallel computations, and
from a practical standpoint, where any molecular program is unlikely to have an
isolated reaction vessel. As a seemingly minimal base case, a CRN-TAM program
that can scale for parallel execution ought to still work correctly when multiple
copies of the same program act on the same input. We are therefore especially
interested in CRN-TAM deciders that are copy-tolerant, in the following formal
sense that is closely related to the similarly-named notions for CRNs [8,15]:

Definition 20. A CRN-TAM decider D for language L is copy-tolerant if for
any k ≥ 2, D′

k =
⊕k

i=1 D is also a CRN-TAM decider for L.

Intuitively, a copy-tolerant CRN-TAM decider is one that supports running
multiple instances of the decider in the same reaction vessel simultaneously and
still reports the answer accurately. As we will see, many convenient CRN-TAM
deciders are not copy-tolerant, and there appear to be substantive lower bounds
on the volume required by copy-tolerant CRN-TAM deciders.

4 Space-Efficient Deciders

Definition 21. A site (i, j) containing tile x is immediately dependent on

site (i′, j′) containing tile x′ if it shares a bond with x′ and was added to the

assembly after x′ . The site (i, j) is dependent on (i′, j′) if it shares a bond with

a tile that is dependent or immediately dependent on x′ .

The recursive definition of dependency induces a directed, acyclic graph of
dependencies, where edges go from tiles to the tiles they are immediately depen-
dent on. In such a graph, a tile’s descendants are all the tiles it is dependent on,
and a tile’s ancestors are all those tiles that depend on it.
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Definition 22. Consider an assembly A. The dependency graph of A is a
directed graph with the occupied sites of A as vertices and a directed edge from
each site to the sites on which it is immediately dependent.

As an immediate corollary of Definition 22, the dependency graph is acyclic
and rooted at the seed of the assembly, as proved in [24]. Dependency is a critical
concept for attempting to disassemble an assembly; to disassemble, we are forced
to remove only leaves of the dependency DAG, performing the entire disassembly
in “dependency-reversed” order.

Theorem 2. A tile cannot be removed until all of its ancestors in the depen-
dency graph have been removed. That is, a tile cannot be removed until all tiles
at sites dependent on it have been removed.

Theorem 2 has both reassuring and limiting consequences. On one hand, it
ensures that tiles cannot be ripped out from the middle of the assembly when
their removal signals are present. On the other, it implies that we can never
create “temporary scaffolding” for our CRN-TAM constructions: a CRN-TAM
program may never build parts of an assembly that are dependent on scaffolded
parts that are meant to be removed later.

If a language L can be decided on a Turing machine using space s(n), we
might hope that there is a CRN-TAM decider for L that uses only Θ(s(n))
volume. Indeed, the existence of such deciders is an immediate corollary of the
stack machine construction from [24], itself a modification of the stack polymer
construction by Qian et al. [19].

Theorem 3. Given a language L decided by a Turing machine in space s(n),
there is a CRN-TAM decider for L that uses Θ(s(n)) volume.

The stack machine construction relied critically on storing the state of the
stack machine in the global CRN and is therefore not copy-tolerant. We might
hope to construct a CRN-TAM decider that is similarly space efficient, using
asymptotically as much volume as a Turing machine uses space on its tape, but
that also remains copy-tolerant. Unfortunately, this turns out to be impossible.

Theorem 4. Consider a language L decidable by a Turing machine that requires
s(n) space and t(n) time. Every copy-tolerant CRN-TAM decider for L uses
volume Ω(t(n)).

Proof. Omitted due to lack of space. 	

In general, there are many functions where t(n) ∈ ω(s(n)), i.e. that require

much more time to compute than space, and so there are languages for which
space efficient, copy-tolerant CRN-TAM deciders do not exist.



Time Complexity of Computation and Construction in the CRN-TAM 175

5 Time Complexity of Tile Computations

Having established that stack machine-based CRN-TAM deciders experience a
slowdown proportional to the volume and that copy-tolerant deciders require
Ω(t(n)) volume, we safely abandon attempts to build copy-tolerant stack
machine-type deciders. If we have temperature at least 2, where cooperative
binding is possible, we can also perform Turing-universal computation using
tiles alone [23,30,32]. This approach proves to be very fruitful, giving us a key
theorem:

Theorem 5. For every language L decidable in time t(n) and using space s(n)
on a Turing machine, there is a copy-tolerant CRN-TAM decider D for L with
expected time complexity Θ(t(n)) and volume complexity Θ(t(n)s(n)).

Proving Theorem5 is somewhat technical and involves some careful stochas-
tic analysis. The key problem is that CRN-TAM programs have only a finite
supply of each tile type present at any given moment. In the aTAM and many
of its derivatives, this is not a problem, since an infinite supply of tiles with
fixed ratios is generally assumed. The issue is further complicated by the finite
density constraint and the desire for fast computation; having all the necessary
tiles present from the beginning would raise the volume prohibitively and make
computation needlessly slow. To resolve this in the CRN-TAM, we use a simple
mechanism for regenerating consumed tiles; although the mechanism is intu-
itive, the asynchronicity of efficient computation as well as fluctuations in the
tile concentrations make it harder to analyze. Our proof that this mechanism
leads to efficient computation—as our intuitions tell us—involves analyzing a
sentinel process like the one introduced by Adleman et al. [1] in a variant of
the aTAM, where we artificially constrain the dynamics to create a stochastic
process that is easy to analyze but still stochastically dominates the actual CRN-
TAM dynamics. We analyze the dynamics of the sentinel process as a phase-type
distribution on CRN-TAM states. Lastly, we apply some careful combinatorics
and the Chernoff bound for exponentially distributed random variables to show
Theorem 5.

At a conceptual level, our efficient and copy-tolerant CRN-TAM decider will
use a constant-sized Turing-universal aTAM tile set to perform the computation
proper, by the well-known method of computation histories (Fig. 1). To ensure
that the (bimolecular) tile addition reactions proceed quickly, the decider will
use a tree-structured counter to efficiently generate an Θ(V ) concentration of
each of those (constant in number) tiles. Lastly, the tile removal signal will be
consumed after its release and used to produce a new tile, which will replace the
consumed tile in the “pool” of available tiles. Each of these conceptual points
will be shown as a separate lemma, along with a number of technical lemmas
used for the analysis of the sentinel process.

To begin, we adapt a classic result from the aTAM [30], to show that there
are effective tile-only CRN-TAM deciders which make only minimal use of the
CRN.
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Fig. 1. An illustration of the assembly built by the tile-based CRN-TAM
decider TuringTiles, in this case implementing a Turing machine with two states (A
and B) operating on the binary alphabet Σ = {0, 1} and the rule that the read head
goes left whenever it sees a 0 and goes right whenever it sees a 1, flipping each bit as
it goes. The input string (01101100) is shown at the bottom.

Lemma 1. For any decidable language, there is a CRN-TAM program

TuringTiles = ({Qaccept, Qreject}, T, 2, ∅)

where Qaccept is the removal signal for a tile taccept that indicates acceptance and
Qreject is the removal signal for a tile treject that indicates rejection, consisting of
only tiles and the necessary signals, that is a CRN-TAM decider when combined
with an initial state containing a large enough supply of tiles.

Proof. Omitted due to lack of space. 	

In the CRN-TAM, it is critically important to have a high concentration

of tiles for addition since tile addition reactions are bimolecular. By definition,
assemblies have unit concentration, so we must aim to have Θ(V ) tiles of a given
type in the reaction vessel of volume V in order to have constant expected time
for tile addition. For the case considered by Theorem5, however, at the beginning
neither the input encoding nor the CRN-TAM decider contains enough tiles;
thankfully, they can be generated efficiently.

Lemma 2. Given a species (signal or tile) A, there is a CRN-TAM program
TreeCountern(A) that stops with 2n copies of A in O(n) expected time, with
program complexity K1

CT(TreeCountern(A)) ∈ O(n).

Proof (sketch). For every 0 ≤ i ≤ n, introduce the signal Si and the reac-
tion Si → Si+1 + Si+1 unless i = n, with S0 as the sole species present in the
initial state. Notice that the total number of Si produced is precisely twice the
number of Si−1 that were produced, so by induction a total of 2n instances
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of Sn are produced by this program. By adding the reaction Sn → A, we are
guaranteed to eventually stop with precisely 2n copies of A.

Through methods similar to those that will be used in the proof of Theorem5,
we can show that TreeCountern(A) stops in O(n) expected time. The key insight
is that every reaction in the tree counter is unimolecular and so can always
proceed at rate Ω(1). 	


Lastly, there is a simple mechanism for regenerating tiles, which we name for
convenience.

Definition 23. For a tile ( t , t∗) in a CRN-TAM program, we define the pro-

gram ReplaceTileτ ( t , t∗) = (S, T,R, τ, I) =
(
{t∗}, {

(
t , t∗

)
}, {t∗ → t }, τ, ∅

)
.

Combining Lemmas 1 and 2, we can efficiently generate a Θ(V ) concentration
for all of the tiles in the (constant-sized) tile set for computation in only Θ(log V )
time; so long as the concentration remains that high, tile addition reactions will
happen in constant expected time and each tile addition will release a removal
signal t∗ that will be converted back into an active tile in constant expected
time. We now have the preliminaries necessary to state our construction of the
CRN-TAM decider in Theorem 5:

Proof (construction for Theorem 5). Consider a CRN-TAM program D =
(S, T,R, 2, I) consisting of the combination of TuringTiles and, for all tiles
( t , t∗) ∈ T , both TreeCounter�log V �( t ) and ReplaceTile2( t , t∗). Since the tree
counter will produce Θ(V ) tiles of each tile type right from the beginning, the
combined program is a CRN-TAM decider by Lemma 1. Lastly, notice that D is
copy-tolerant, since the entirety of the computation happens on a single assem-
bly. 	


The analysis of the expected time for D to decide L, including several tech-
nical lemmas, will appear in the full paper.

6 Combinatorial Assembly Production and
Nondeterministic Parallelism

The copy-tolerant CRN-TAM decider in Theorem 5 allows us to perform several
threads of computation in parallel, given sufficient volume. In general, it is simple
to make a copy of the input for each thread efficiently, using a tree-style copier
like the one used in Lemma 2. However, identical inputs are not useful; any
deterministic tile set such as the tile-based CRN-TAM decider would produce
precisely the same computation in all of the parallel threads. To remedy this, we
might hope to generate identifiers for each of the k threads as they are produced
during the input copying process. To this end, we could perform a combinatorial
assembly task, like generating all 2k binary strings of length k in a serial fashion
as was done in [24], but this would take time exponential in k. If we are willing to
allow some small chance of error, a very simple CRN-TAM program can assemble
these strings in Θ(k) time.
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Theorem 6. For any positive integer c, there is a CRN-TAM program
CombinGenerate(n) with complexity K1

CT(CombinGenerate(n)) ∈ Θ(cn) that
stops having constructed all 2n assemblies, each of size 1 × (n + 1), encoding
all binary strings of length n, in time Θ(log(cn2n)) with probability 1 − e−c.

Proof. Omitted due to lack of space. 	

We would of course prefer to be able to do combinatorial string assembly

deterministically and efficiently. Intuitively, this seems extremely difficult, for
the following reason. Suppose that we have assembled all but one of the strings;
if we are operating with some kind of parallelism, how can we know which
string has not yet assembled without some kind of exponential communication
problem? While we have not been able to prove anything beyond a few special
cases, we suspect efficient, deterministic combinatorial assembly is not possible.

Conjecture 1. There is no CRN-TAM program that constructs all 2n binary
strings of length n and runs in O(poly(n)) time.

As mentioned earlier, this combinatorial assembly can be used for generating
various seeds for parallel computations, so that different parallel threads can
operate differently. A simple application of this concept is implementing par-
allel non-determinism, where each seed acts as a string of binary guesses for a
nondeterministic Turing machine.

Theorem 7. For any language L ∈ NTIME(f(n))∩coNTIME(f(n)) and positive
integer c, there is a CRN-TAM decider for L that decides it in Θ(f(n)+n+log c)
expected time, with probability at least 1 − e−c.

Proof (sketch). First, observe that an input encoding can be converted into one
that generates 2f copies of the input by replacing each production of every tile t

with an instance of TreeCounterf ( t ) instead. Per our analysis of the tree counter,
this takes only O(f) time, so we can generate cn2n copies of the input in only
O(n + log c) time. Observe that a nondeterministic Turing machine running in
f(n) time can use at most f(n) bits of nondeterminism, so we need only gener-
ate all 2f(n) such strings. Consider a modification of CombinGenerate(f(n)) from
above where the f(n)th bit has a glue that matches the seed of an input assem-
bly, so that the input assemblies will grow at the end of each combinatorially
assembled seed. By modifying the tree counters that raise the initial tile concen-
tration, that we can modify the CRN-TAM decider from Theorem 5 to generate
cf(n)2f(n) times as many tiles, so that the concentration of each tile is still Θ(V ).
Lastly, we modify the reject signal so that it is simply ε. So long as every string
of nondeterministic choices is generated by CombinGenerate(f(n)), the system
will produce the accept signal if and only if the input x is in L. We can perform
a similar operation on the Turing machine that decides the complement of L,
except that we change its accept signal to the reject signal. Combining these two
programs, we obtain a CRN-TAM decider for L that runs in Θ(f(n)+n+log c)
expected time, and succeeds whenever CombinGenerate(f(n)) produces all 2f(n)

strings of length f(n). 	
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More concretely, we find that there are languages that are decidable in poly-
nomial time by CRN-TAM programs that are not decidable in polynomial time
by Turing machines under standard complexity theoretic assumptions. Notice
however that exponential volume might still be required; while we might evalu-
ate all nondeterministic branches in parallel, each still needs space to operate.

Corollary 1. Any language in NP ∩ coNP has a CRN-TAM decider that runs
in Θ(cpoly(n)) and succeeds with probability at least 1 − e−c.

On its own, Theorem 7 demonstrates the computational power of the CRN-
TAM. A careful reader will note that from the perspective of an actual laboratory
experiment, the construction does not offer much beyond the capabilities of
tile-only systems based on the aTAM. Although the theoretical formulation of
the aTAM does not permit multiple assemblies, all experimental realizations
thus far have many, many assemblies forming in the same reaction vessel [3,22].
Furthermore, the same tile set used for the combinatorial seed production step
works just as well in the aTAM. From this point of view, the advantages offered
by the CRN-TAM are nice, but not fundamentally different. Unlike the aTAM
tile set, the CRN-TAM program can detect when an answer has been computed
and exponentially amplify a signal indicating that. As we will see, the biggest
advantage of the CRN-TAM is that is allows interaction between the assemblies
while it is computing, allowing more powerful forms of parallel computation.

7 Towards Parallel Computation with Shared State and
Open Questions

Even within the framework we have already described, a form of elementary
shared state can be implemented with only a slight modification. Consider
adding a special state tile with a distinguished removal signal φ and a reac-
tion φ → φ that converts it into a tile that can bind to another state tile. If
one assembly moves into the appropriate state, it can release φ and, by hav-
ing φ attach onto another assembly, share some constant number of bits of
information with another assembly. Furthermore, this signal can be amplified
very quickly using a tree counter, allowing it to “turn the test tube red” and
inform, with arbitrarily high probability, every other assembly that some assem-
bly reached state φ. Rudimentary branch-and-bound, an algorithmic technique
that has proved immensely useful for gaining dramatic speedups in optimization
problems with only exponential time algorithms, can be implemented with this
kind of rudimentary mechanism. In effect, we can use the CRN-TAM to simulate
the types of parallel steps introduced by Lipton [16] for classical DNA computing
that consisted of a series of laboratory operations on test tubes of DNA data,
thus replacing a non-autonomous molecular computation by an autonomous one.

The parallel computational power of the CRN-TAM is far from limitless,
however. Although we have been unable to show any concrete lower bounds, it
seems very difficult to implement many general forms of parallel computation—
such as languages decided by uniform circuits in time proportional to their depth,
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for example—because the well-mixed CRN is a difficult medium for passing
information. In particular, sending more than constant-sized messages between
different assemblies seems very difficult, since we must rely on chance to have
the message arrive at its destination, and every other recipient must somehow
recognize that the message is intended for another assembly.

Our work here has established a convenient kinetic model for the CRN-TAM
and analyzed the time complexity of basic computational primitives, but many
important questions remain open. Although we have shown the lower bound in
Theorem 4, there is a gap between our lower bound (that copy-tolerant CRN-
TAM deciders require Ω(t(n)) volume) and our best construction, which requires
O(t(n)s(n)) space. The question of whether there exist copy-tolerant CRN-TAM
deciders that require o(t(n)s(n)) volume remains open. Most questions related
to efficient parallel computation in the CRN-TAM also remain open, and we
have only considered the most basic ways of implementing it.
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