
A Phonetic Segmentation Procedure Based
on Hidden Markov Models
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Abstract. In this paper, a novel variant of an automatic phonetic seg-
mentation procedure is presented, especially useful if data is scarce. The
procedure uses the Kaldi speech recognition toolkit as its basis, and
combines and modifies several existing methods and Kaldi recipes. Both
the specifics of model training and test data alignment are explained
in detail. Effectiveness of artificial extension of the starting amount of
manually labeled material during training is examined as well. Exper-
imental results show the admirable overall correctness of the proposed
procedure in the given test environment. Several variants of the proce-
dure are compared, and the usage of speaker-adapted context-dependent
triphone models trained without the expanded manually checked data is
proven to produce the best results. A few ways to improve the procedure
even more, as well as future work, are also discussed.
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1 Introduction

In recent years, there is an evident increase in the amount of available multimedia
data including speech. This data is interesting for research in social sciences, as
well as for speech technologies. These studies usually require audio content and
the corresponding phonetic transcription synchronized with it. Manual alignment
of audio and text data is very laborious and expensive (30 s of audio data requires
about an hour of manual work [1]), thus many automatic and semi-automatic
procedures have been developed.

All these procedures can be classified into two broad groups depending on
whether or not additional acoustic information about phone identities are used.
The first group is comprised of methods which for phonetic segmentation use
the information contained in the given audio signal, and order of phones in
the corresponding phoneme sequence. These methods are referred to as text-
independent or linguistically unconstrained segmentation methods. They exploit
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the fact that sudden changes in speech signal characteristics usually coincide
with phone boundaries. Exceptions of this rule are plosives/affricates consisted
of occlusion and explosion/friction parts as well as transitions between successive
vowels or vowels and semi-vowels [2]. These changes are usually detected in the
spectral or cepstral domain [3–5]. Additionally, the level of feature similarity can
be exploited in segmentation as in [6]. An advantage of these methods is their
independence from language, but the accuracies of obtained phone boundaries
are significantly poorer compared to accuracies of text-dependent methods.

Text-dependent or linguistically constrained segmentation methods align
audio signal with corresponding phone sequence using phone models similar
to those used in the automatic speech recognition (ASR) task. The dominant
approach to phone modeling is hidden Markov models (HMMs), and interest-
ing results are obtained in [7–13], among others. Besides HMMs, dynamic time
warping [14] and artificial neural networks - ANNs [15,16] are used as well.

The width of analysis frames varies from 10 ms up to 30 ms, and frame shift
varies from 1/5 of the frame width up to whole frame width. There are some vari-
ations of the extracted features in existing methods, but most of them include
12–14 mel-frequency cepstral coefficients (MFCCs), normalized energy and their
first and second order time derivatives. In some studies, the set of features addi-
tionally includes a spectral variation function [17], perceptual loudness, measure
of periodicity [9] and fundamental frequency (f0) contour [15]. The basic mod-
eling units can be monophones, triphones or tied-state triphones. The choice
between those depends primarily on the size of the training corpus. Sometimes
the improvement in alignment accuracy, which is usually obtained with context-
dependent modeling units, is not sufficient to justify the increase of duration
of the training procedure. Since the objective function for estimation of HMM
parameters does not involve accurate position of phone boundaries after align-
ment, additional boundary refinement is possible. It is usually based on principles
exploited in linguistically unconstrained methods [10,17] or using trained GMM
or ANN models for boundaries [15,16]. The proposed procedure belongs to the
group of linguistically constrained methods based on HMMs in case of scarce
data. The procedure is tested on several databases in English whose description
is given in Sect. 2. Detailed description of the procedure is presented in Sect. 3,
and results of evaluation with discussion in Sect. 4. Section 5 concludes the paper.

2 Speech Corpora

Appen “USE ASR001” database [18] of natural English (US) speech in studio
quality, resampled to 16 kHz, 16 bits per sample, mono PCM, was used in our
research. The database contains more than 80000 utterances (almost 7 GB of
data, 100 male and 101 female speakers), or approximately 41 h of speech and
20 h of silence segments, and it is transcribed in SAMPA format. Only a small
part of the database (in further text referred to as the bootstrapped part),
containing around 35 min of speech and 15 min of silence segments, was man-
ually labeled. This part of the database consists of short cropped audio files
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(around 1900) containing only about 2 to 3 words, which are selected in a way
to cover all phone pairs (one after the other) which exist in the source database
among all the given speakers. The extraction of audio segments is done auto-
matically using information from initial forced alignment using flat-start models.
These phone boundaries are manually checked and corrected by trained anno-
tators. It has been shown that by applying manual alignments on a part of the
database throughout the procedure, significant improvement can be obtained in
comparison to flat-start training (e.g. [9]). Additionally, in our procedure the
bootstrapped part of the database was artificially expanded several times, by
modifying pitch and duration (i.e., by applying spectral warping and tempo
modifications). It was feared that such a procedure could not provide sufficient
data variability, so it was only applied in a limited amount. The original tempo
was increased or decreased by 10 % and 20 % and the original pitch was increased
(for males) or decreased (for females) by 1, 2 or 3 semitones. Male speakers whose
pitch was increased by 1 and 2 semitones, along with the original unmodified
male speakers, and female speakers whose pitch was decreased by 3 semitones,
were used for the training of specialized male models. The bootstrapped part
of the database (along with all the mentioned extensions) was then addition-
ally doubled by marking all the words and phonemes as damaged in the copied
instance. This was done in order to provide minimal number of samples needed
to train the damaged phoneme models - they were needed primarily since the
starting and ending phones in cropped segments had to be marked as dam-
aged, as these are not full sentences by themselves, but segments not necessarily
surrounded by silence. Therefore, the bootstrapped part of the database was
increased 40 times for male speakers ([male + male pitch {+1,+2} + female pitch
{−3}] × tempo {−20,−10, 0,+10,+20} × 2 for damaged phonemes). A special
characteristic of our training was that the phone boundaries on the whole boot-
strapped set (expanded) were kept fixed during the entire procedure, so they
could have a greater influence on the accuracy of alignment in the remainder of
the database.

Our test database, on which the results presented in this paper were cal-
culated, included an array of phonetically rich utterances, spoken by 3 male
speakers - Sean, Doug and Ben - from completely independent single-speaker
databases, provided by Speech Morphing Inc. All the utterances for testing
were manually labeled, so that automatically aligned phone boundaries could
be compared to them. Sean’s test database contains 50 utterances (around 1800
phonemes), which added up to 2 min 13 s of speech and 33 s of silence. Ben’s
test database contains 43 slightly longer utterances, 4 min 17 s of speech and
1 min 5 s of silence in total (around 2700 phonemes). Finally, Doug’s test data-
base contains 50 utterances - 2 min 28 s of speech and 23 s of silence (around 1800
phonemes). At the time of tests, no similar female databases were at our disposal.
Nevertheless, the obtained results confirm our previous assertions and they were
highly comparable among all test databases, as shown by the experiments (see
Sect. 4).
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3 Segmentation Procedure

The complete training procedure has been done using the Kaldi speech recogni-
tion toolkit [19] and modified Kaldi recipes. Inputs were Kaldi data files created
using an input lexicon (in SAMPA format), which included all needed words and
their pronunciations with multiple alternative pronunciations in some cases, as
well as utterance transcriptions with marked speaker identifiers. Model topolo-
gies were initialized to 3 states for non-silence phones, and 5 states for silence
phones, with a possibility to skip one state at a time (for a minimum of 3 states).
For decoding purposes, as in all Kaldi training procedures, a lexicon FST (i.e.,
finite state transducer) is created based on the input lexicon. In our procedure,
this FST is modified by adding alternative arcs for all arcs that have a vowel as
their input label, and it concerns vowel stress - if the vowel is stressed, alternative
arc with the unstressed version of the same vowel as input label is created, and
vice versa. Also, for the arc containing the optional silence between and after
each spoken word, an arc with optional glottal stop is created as an alternative.
This was done because a lot of places in the database were identified where the
gap between words includes rather a glottal stop then something than can be
considered as a silence (which would lead to a “dirty” silence model).

The feature vectors include energy and 14 MFCCs, calculated by using a filter
bank of 26 overlapping triangular windows, along with their first and second
order time derivatives. They were extracted on 30 ms frames, with 7 ms frame
shift. Multiplication coefficient of 0.33 was additionally applied to static MFCCs
(excluding energy) to bring their value variability closer to that of energy. On
the other hand, delta and delta-delta energy values were multiplied by coefficient
20, to effectively change their dynamic range. The mentioned coefficient values
were concluded to be appropriate through several previous tests and extracted
feature values analysis. No cepstral mean or variance normalization is performed,
as the training type (explained below) makes it unnecessary.

The first stage of model training, which is the training of monophones on
bootstrapped data set only, comes next. This step included manual alignments
as the starting point and a 10 iterations of model and alignment reestimation.
After each internal alignment, phone boundaries were reset to manually-given
positions, but the within-phone frames per state distributions were saved. Out-
put was the final monophone model set with 1000 Gaussians in total. Afterwards,
these models were used to create the initial context-dependency tree for the
speaker-adapted training (SAT) step, and to produce initial alignments for the
rest of the database. The first pass of SAT started from the aforementioned align-
ments, i.e., there is no equidistant initial alignment at all. The bootstrapped data
set is still used, alongside the whole regular database. The context-dependency
tree which is created here has a goal of 1500 leaves (i.e., states). Next, ini-
tial fMLLR transforms are calculated using initial alignments, producing a
diagonal transform matrix for each of the speakers in the database. Then 10
iterations of model reestimation follow, with periodic internal alignments and
fMLLR transform matrices updates, ending with a goal of 4500 Gaussians for
final models. Manually set boundaries are also forced throughout the stage
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(in the bootstrapped part of the database). In the end, the so-called “align-
ment model” is created - it is computed with speaker-independent (SI) features,
but matches Gaussian-for-Gaussian with the speaker-adapted model.

The training procedure ends with the final SAT training pass. The alignment
model is first used to align the whole database. Also, a new tree is created,
slightly more complex with 2500 leaves, using these new, better alignments. The
rest of the stage is very similar to the previous stage, with 12 iterations and
a goal of 7000 Gaussians. It outputs the final SAT model set, as well as the
final alignment model set. In all internal alignments a large decoding beam is
used, to prevent potentially important tokens from being discarded in the early
stages of utterance decoding. All the selected numbers - of iterations, states and
Gaussians - have shown the best performance on a validation set (a part of the
bootstrapped set) during exhaustive testing where these numbers were varied.
Now that the models are ready, they can be used to align the given test data. The
start is the same as for the training – there are given transcriptions matched to
an audio file name each with marked speaker identifiers, and a lexicon containing
all the words in transcriptions with possible pronunciations. These are converted
to appropriate Kaldi data files. The procedure setup has to be the same as for
model training - number of states for certain phones, list of used phones, MFCC
and energy extraction specifications. Firstly, lexicon FST is created and modified
the same way as in training, which is followed by static feature extraction. Delta
and delta-delta features are added later on the fly. Decoding graphs are created
from lexicon FST, provided models and corresponding tree. This is followed by
first-pass alignment using SI features and the alignment model, the output of
which is used to estimate fMLLR transforms, producing a diagonal matrix for
each speaker in the test database, used to transform features (on the fly). In the
end, the final alignment is performed, using transformed features and provided
SAT models. The results are phone alignments within a label file.

4 Results and Discussion

Our test data sets include exclusively male speakers, so the results were obtained
using male models. Several experiments were conducted. First, the possibility of
using simple monophone models to align test data directly using just SI features
is examined [9]. This of course shortens the training procedure a lot, but mono-
phone models may not be precise enough. Then, the described procedure with
triphones and SAT is evaluated. Both of these experiments are performed both
by using the basic bootstrapped set (without tempo and pitch modifications),
and the fully extended bootstrapped set. All the given results were obtained by
calculating the difference between the phone start times in the manually labeled
set and in the automatically obtained labels, then putting each of those num-
bers in the appropriate category based on the difference, e.g. up to 10 ms, up to
20 ms, and so on. In the special cases of inserted and deleted optional silences and
glottal stops, they are instead compared to the previous phone in the manually
marked database (if inserted) or automatic labels (if deleted).
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Results for monophones with the extended bootstrapped set are given in
Fig. 1 (left). Percentages for phones within 10 ms on all test sets are around
60 %, with more than 80 % within 20 ms, around 90 % within 30 ms and 95 %
within 50 ms, and around 5 % of outliers. Outliers mostly include silences or
phones after silences, especially if the neighboring phone is a plosive, affricate
or a silent fricative. If silences and their adjacent phones are excluded from the
results, around 85 % of phone boundaries fall within 20 ms of manual ones. The
remaining outliers are mostly boundaries between two plosives, two similar vow-
els and finally borders between some vowels and lateral ‘L’ or approximant ‘R’,
which is not that surprising as these borders are hard to put in the correct place
even by hand (at most times there is actually no clear border). These kinds of
outliers appear in other experiments as well. As for context-dependent triphones
trained with the SAT procedure, the results are given in Fig. 1 (right). For the
percentage of phones within 20 ms of manual boundaries, a 4–7% improvement
was obtained at average, which is a lot when talking about segmentation qual-
ity. After excluding silence borders, these improve to over 90 %. The usage of
triphones and SAT is justified, even considering the longer training.

The results with the non-extended bootstrapped set are shown in Fig. 2.
The results are better then with artificial extension. It can be assumed that the
artificial extension of the bootstrapped set results in significant feature dispersion
which could not be covered with the monophone models using the same target

Fig. 1. Results for extended bootstrapped set.

Fig. 2. Results for non-extended bootstrapped set.
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number of Gaussians. On the other hand, in case of tied-state triphones it is
largely compensated by fMLLR. It will be a subject of further research.

5 Conclusion and Further Directions

In this paper, a novel approach to automatic phone segmentation of an arbi-
trary speech database in case of scarce data is presented. It is concluded that
context-dependent SAT models produce best and most stable overall results,
but monophones are not too far behind, if procedure speed is of more concern.
Artificial extension of the manually labeled part of the database is examined
as well, and it was not proven to improve the results, at least if used in the
way described. In the near future, more experiments will be done with versions
of the expansion procedure which will conclude what exactly went wrong here.
For now, it is assumed that either bad modification parameters are chosen, or
the expansion went too far (the part with manual boundaries became too signifi-
cant compared to the rest of the database). Future work will also include training
parameter variations, other speech databases (including other languages as well),
and finally improving the alignment analysis tool to get even more data which
can help with pointing in the right direction. The greatest value of the described
procedure is that the obtained correctly aligned speech databases can be used
relatively quickly and successfully for any given application.
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