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Abstract. The language models (LMs) used in speech recognition to
predict the next word (given the context) often rely on too short con-
text, which leads to recognition errors. In theory, using recurrent neural
networks (RNN) should solve this problem, but in practice the RNNs do
not fully utilize the potential of the long context. The RNN-based lan-
guage models with long short-term memory (LSTM) units take better
advantage of the long context and demonstrate good results in terms of
perplexity for many datasets. We used LSTM-LMs trained with regular-
ization to rescore the recognition word lattices and obtained much lower
WER as compared to the n-gram and conventional RNN-based LMs for
the Russian and English languages.
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1 Introduction

Many speech recognition errors are due to the fact that the language model
used relies on too short word context to predict the next word. For example,
the modern n-gram models [1] usually operate with a context of 2–5 words. The
feedforward neural network language models [2,3] always rely on a context of a
fixed length, but this is not always sufficient for good prediction. In theory, this
could be resolved with the help of the RNN-based language model (RNNLM)
[4–6] which takes into account all preceding words. They significantly outperform
the n-gram models in various ASR tasks [4,5]. But RNNs are very difficult to
train because of the vanishing gradient problem; in practice, RNNs do not fully
utilize the potential of the long context [7]. To overcome these difficulties, it has
been proposed to apply RNNs with LSTM units [8–13]. But, like the RNNLM,
they are prone to overfitting. The regularization techniques commonly used for
the feedforward neural networks perform rather poorly on RNN and LSTM
networks [14,15]. The RNN regularization technique proposed in [16] successfully
solves this problem.

In this research, we apply LSTM language models trained with dropout reg-
ularization to rescore the recognition hypotheses. We obtained a significant word
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error rate (WER) reduction as compared to the n-gram and conventional RNN
language models for Russian and English languages.

The rest of the paper is organized as follows. In Sect. 2, we describe the
LSTM and RNN regularization. In Sect. 3, we give the results of experiments
on recognition of Russian and English spontaneous speech, and discuss them in
Sect. 4.

2 Description of LSTM Units

In order to overcome the vanishing gradient problem for RNNs, Sepp Hochreiter
and Jürgen Schmidhuber proposed RNN architecture elements called long short-
term memory units [8]. A rather complex structure of LSTM (see Fig. 1) makes
it possible to store long-term information effectively.

Fig. 1. Structure of LSTM

The long-term memory is implemented with the use of the memory cell vec-
tor. LSTM allows to store, change, or delete the information placed in the mem-
ory cell. This is controlled by three gates which are presented in every LSTM
block. They consist of the sigmoid layer followed by the element-wise multipli-
cation operation. The sigmoid layer outputs take values from zero to one, which
indicate what fraction of a component should pass through the gate. For exam-
ple, zero value means a full forbiddance to pass, while the unit value means
the opposite. So, the input gate determines which information from the input
is allowed to enter inside the LSTM block, the forget gate determines which
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information should be removed from the memory cell. Finally, the output is
determined by the cell state and the output gate values.

The LSTM is described by the equations

LSTM : ht−1, ct−1, xt �→ ht, ct,⎛
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ct = ft � ct−1 + it � gt,

ht = ot � tanh(ct).

Here xt, ht, ct, it, ft, ot, gt ∈ R
n denote the input vector, output vector, memory

cell state and the activations of input gate, forget gate, output gate and input
modulation gate at time t; T2n,4n : R2n → R

4n is a linear transform with a bias;
� symbol denotes element-wise multiplication; logistic (sigm) and hyperbolic
tangent (tanh) activation functions are applied element-wise.

A more detailed description and an algorithm to train the LSTM can be
found in [9].

2.1 Regularization with Dropout

The standard regularization techniques that exist for feedforward neural net-
works [14,15] perform rather poorly on RNN and LSTM networks, which com-
monly leads to model overfitting. The use of dropout regularization for RNN
and LSTM networks is proposed in [16]. The key idea of this technique consists
of applying the dropout to non-recurrent connections only. The formulas below
describe this method in more detail:

LSTM : ht−1, ct−1, xt �→ ht, ct,⎛
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ct = ft � ct−1 + it � gt,

ht = ot � tanh(ct),

where D stands for the dropout operator which sets a random subset of its
argument to zero. Its detailed description can be found in [16].

3 Experiments

3.1 Experiments on English Spontaneous Speech

For our experiments, we chose a training set consisted of transcriptions from the
Switchboard-1 Release 2 and Fisher English corpora. The 3-gram LM for the first
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recognition pass was trained with modified Kneser-Ney (MKN) smoothing [1] on
the transcriptions of the Switchboard corpus with 30 K words vocabulary. The
baseline 4-gram model was built following the swbd(s5c) recipe. The vocabulary
was around 30 k words and the model was produced by interpolation of two
4-gram models built with MKN smoothing (Switchboard and Fisher).

In order to train neural language models, we mixed all sentences and par-
titioned them into two parts: cross-validation(cv) (20 K sentences) and train
(the remaining ones, about 2.5 M sentences). All words which were not found
in the vocabulary of the 4-gram model were replaced by the 〈UNK〉 token. As
the test set we chose the transcriptions of the HUB5 2000 evaluation set. We
trained RNNLM [4] and LSTM-LM on the train part, and then evaluated the
perplexity on the cv and test parts.

For the training of RNNLM we used Tomas Mikolov’s utility rnnlm-0.4b
from the http://www.rnnlm.org site. The RNNLM topology was the following:
256 neurons in the hidden layer, 200 direct connections, 4 direct order. In order
to speed up the training process, we factorized the output layer into 200 classes.

To train LSTM-LM we used the TensorFlow toolkit [17]. We trained two
neural networks in the “medium” and “large” configurations given in [16].
LSTMs had two layers and were unrolled for 35 steps. We initialized the hidden
states with zeros. Then we used the final hidden states of the current minibatch
as the initial hidden state of the subsequent minibatch (successive minibatches
sequentially traverse the training set). The size of each minibatch was 100. The
“medium” LSTM-LM had 650 units per layer. We applied 50 % dropout to the
non-recurrent connections. The “large” LSTM-LM had 1500 units per layer.
We applied 65 % dropout to the non-recurrent connections. In addition, for the
“large” model forget gate biases were initialized with value of 1.0.

Table 1. Experiment results on English spontaneous speech

Language model PPL WER, %

Train CV Test SW Full

4-gram 66.366 62.946 87.039 11.7 17.1

RNNLM 57.982 78.578 76.123 10.8 16.1

LSTM-LM (medium) 51.104 58.964 56.822 10.4 15.4

LSTM-LM (large) 46.033 54.821 52.892 10.1 15.2

The speech recognition experiments performed on the HUB5 2000 evaluation
set were carried out with the use of the Kaldi speech recognition toolkit [18]. As
the baseline we chose the DNN-HMM acoustic model trained with the state-level
Minimum Bayes Risk (sMBR) sequence-discriminative criterion using the nnet1
setup in the Kaldi swbd (s5c) recipe [19]. The recognition was performed with
the trigram LM, and then the word lattices were rescored with the use of the
4-gram model. Next, we carried out the rescoring of the 100-best list with the
use of neural network language models; in doing so, we calculated the language
score by the formula

http://www.rnnlm.org
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lmrescore = λlmrnn + (1 − λ)lm4gr, (3)

where lmrnn were calculated with the use of RNNLM, LSTM-LM (medium),
LSTM-LM (large). Experiment results in terms of perplexity and WER are
shown in Table 1. Note that valid PPL of the baseline 4-gram model is low
due to the presence of valid texts in the training data for this LM.

3.2 Experiments on Russian Spontaneous Speech

The experiments on Russian spontaneous speech were performed in a simi-
lar way. We chose the DNN-HMM acoustic-model trained on 390 h of Russian
spontaneous speech (telephone conversations). The model was trained on 120-
dimensional speaker-dependent bottleneck features [20,21] extracted from the
DNN trained in a speaker adaptive manner using i-vectors. We used 50-
dimensional i-vectors constructed with our toolset [22]. The acoustic model
training was carried out with the use of the sMBR sequence-discriminative crite-
rion. The experiments were conducted on the same test dataset as in [20] which
contained about one hour of Russian telephone conversations.

We chose two datasets to train language models. The first one consisted
of the transcriptions of the AM training dataset. The second one contained a
large amount (about 200 M words) of texts from Internet forum discussions,
books and subtitles from the http://www.opensubtitles.org site. The baseline
3-gram language model with a vocabulary of 214 K words was built in the SRILM
toolkit [23]. It was obtained by interpolation of 3-gram LMs trained on the
first and second datasets using Modified Kneser-Ney smoothing. The size of
this model was reduced to 4.16 M bigrams and 2.49 M trigrams with the use of
pruning.

RNNLM and LSTM-LM were trained only on mixed sentences from the train-
ing dataset 1 divided into cv (15 K sentences), test (4 K sentences) and train
(the remaining ones, 243 K sentences) parts. In order to speed up the training
we utilized the vocabulary of 45 K most frequent words; all other words were
replaced by the 〈UNK〉 token. During RNNLM training we used 256 neurons in
the hidden layer and 200 classes in the output layer. LSTM-LMs were trained
in the “medium” and “large” configurations described in the paper [16].

The experiments were carried out with the use of the Kaldi toolkit. The word
lattices generated during the recognition phase with the 3-gram LM were used to
extract the 100-best hypotheses list. The list was then rescored with the neural
network language model. Since the 3-gram and the neural network language
models contained different vocabularies we had to use unigram weights from the
3-gram LM for words that were absent in the 45 K vocabulary of RNN-based
model. The results in terms of perplexity and WER are presented in Table 2.
It should be noted that the 3-gram LM was trained using both dataset 1 and
dataset 2 with a full vocabulary of 214 K words, while RNN-based models were
trained using dataset 1 only with a reduced vocabulary of 45 K words. So, the
3-gram LM perplexity results can not be directly compared with the results of
RNN-based models and reported only for reference.

http://www.opensubtitles.org
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Table 2. Experiment results on Russian spontaneous speech

Language model PPL WER, %

Train CV Test

3-gram 134.26 134.921 228.015 19.5

RNNLM 134.136 164.147 186.757 18.8

LSTM-LM (medium) 110.689 127.358 148.627 17.9

LSTM-LM (large) 105.918 124.618 146.812 17.8

4 Discussion and Conclusion

In this study we used LSTM-LM with regularization to rescore the n-best lists
produced by English and Russian spontaneous speech recognition systems. This
technique takes into account a longer context to predict the next word as com-
pared with the n-gram and even with the RNN-based models. The LSTM-LMs
do not suffer from the vanishing gradient problem while training.

Our experiments demonstrate that LSTM-LM gives much better results
than the n-gram model and RNNLM. As compared with the n-gram model,
we obtained relative WER reduction by 11.1–13.7 % for the English language
and by 8.4 % for the Russian language. As compared with RNNLM, relative
WER reduction is 5.6–6.5 % for the English language and 5.3 % for the Russian
language.

We plan to apply LSTM-LM to other ASR tasks and study other promising
language model architectures, such as character-aware neural language models
[13] and end-to-end memory networks [24] in the future.
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