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Abstract. We present a sequence of experiments with one–class clas-
sification, aimed at examining the ability of such a classifier to detect
spectral smoothness of units, as an alternative to heuristics–based mea-
sures used within unit selection speech synthesizers. A set of spectral
feature distances was computed between neighbouring frames in natural
speech recordings, i.e. those representing natural joins, from which the
per–vowel classifier was trained. In total, three types of classifiers were
examined for distances computed from several different signal parame-
trizations. For the evaluation, the trained classifiers were tested against
smooth or discontinuous joins as they were perceived by human listeners
in the ad–hoc listening test designed for this purpose.

Keywords: Speech synthesis · Unit selection · One–class classification ·
Concatenation cost · Speech parametrization · Spectral distance

1 Introduction

Although unit selection speech synthesis systems are still often preferred in the
commercial sphere, according to [5] and our own experience, it is clear that
heuristics–based approaches of unit selection features tuning basically fail. For
example, papers such as [1,6,7,15,17,19,20,23–25] examined various concatena-
tion cost features, but the results are rather inconsistent and sometimes even
in contradiction. Therefore, instead of manual features tuning, we have started
to examine machine–learning techniques for a data–driven automatic per–voice
unit selection tuning.

One of the interesting ideas was introduced in [4], where the one–class classi-
fication (OCC) technique was used as a replacement for a classic spectral–related
smoothness measure in concatenation cost computation. In [22], we tried to vali-
date the results of the original research on our own speech database. In this paper,
we present extended results, primarily focusing on parametrizations computed
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fromvarious speech signal framings and their impact on theability ofOCCtodetect
the joins of speech units where unnatural artefacts are perceived by humans.

2 One–Class Classification in Unit Selection

One–class classification [10,21], also known as anomaly or novelty detection, is
used to address the problem of finding such occurrences in data that do not con-
form to expected behaviour. This is very advantageous and not yet widely used
for unit selection speech synthesis, where usually large speech databases with nat-
ural recordings are available. However, it is common in this synthesis technique
that unnatural disturbing artefacts may occur when incompatible units are con-
catenated. The reason is that the target and concatenation costs are generally
designed to prefer units minimizing the trade-off of features evaluating similar-
ity to the requirements, instead of reflecting whether the units will sound natural
in the sequence they are used in. These artefacts, obviously not occurring in the
source speech corpus, can thus be viewed as “anomalies” or “outliers”. However,
the occurrence of the artefacts can be considered as a random process (if they
could be predicted, they can be avoided), which makes their collection and the
reliable analysis of their causes rather difficult. Therefore, the existence of nat-
ural sequences and the unavailability of unnatural anomalies lead to the idea of
exploring the abilities of OCC to detect, and thus to avoid, those anomalies.

2.1 Distances to Train the Classifiers on

For the initial experiment [22], we focus only on spectral continuity classification
(following [4]) but using our Czech male speech corpus [3] containing approxi-
mately 15 h of speech, designed as described in [11,14].

To capture natural spectral transitions, for every two consecutive speech
frames, with signal pre–emphasized by value 0.95 and Hamming–windowed,
we computed Euclidean and Mahalanobis distances between MFCC vectors,
Itakura–Saito distance between LPC coefficients and symmetrical Kullback–
Leibler distance between spectral envelopes obtained from the LPC and between
power FFT spectrum (referred to as “targets” or “references”); each distance vec-
tor thus consists of 5 values. Contrary to [4,22], however, we examined several
different framings of the signals:

async 20/20 is the original scheme from the initial experiment, where the
signal frames are 20 ms long without overlap (20 ms shift). Since we compute
feature distances on rather stable vowel parts (see Fig. 1), it is supposed that
the spectrum does not change very much within a particular phone. Thus,
the natural transition of neighbouring frames should lead to rather small
features distance, contrary to a spectral change perceived as an artefact.

async 04/25 is a scheme with frames 25 ms long, shifted by 4 ms. This scheme
was chosen as it provides the most accurate automatic phone segmentation for
this voice. The significant signal overlap, and thus accented spectral similarity
of the consecutive frames, was assumed to emphasize the effect of natural and
smooth signal transition pattern which the OCC is required to train.
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async 12/25 scheme, having 25 ms long frames with 12 ms shift, was chosen as
a compromise between large overlap (4 ms shift) and no overlap at all, while
there is still slight preference towards frame overlapping.

psync pm/25 is a pitch–synchronous framing, where 25 ms long frames are
centred around pitch–marks [8,9]. In this way, the MFCC, energy and F0

are computed for the “classic” concatenation cost computation in our TTS
system. Contrary to the previous schemes, the shift is always one pitch period
long and the overlap varies dynamically as pitch changes. In unvoiced regions,
the distances were not computed.

Fig. 1. The example of non-overlapped framing for two illustrative variants of phone
[a] with phone boundaries and centre marked by bold and dashed, respectively, vertical
lines. Feature vectors are outlined for each frame.

As already mentioned, we limit the experiment to vowels only, as unnatural
artefacts are perceived more strongly due to their larger amplitude. Nevertheless,
the extension to other voiced phones is planned as soon as reliable results are
obtained.

For all the various signal framings, the target (natural) distance vectors used
to train OCC were collected per–vowel from:

– all the consecutive frames covering the signal of the vowel, except frames span-
ning 8 ms at the vowel’s beginning and end, i.e. for (fi, fi+1), (fi+1, fi+2) and
(fj , fj+1), (fj+1, fj+2), (fj+2, fj+3) pairs from Fig. 1. By using of diphones in
our TTS system, with boundaries approximately in the middle of the under-
lying phone, this exclusion allows us to avoid distances near phone (vowel)
transitions in the training/testing set.

– the two consecutive frames nearest to the middle of each vowel, i.e. for
(fi+1, fi+2) and (fj+1, fj+2) pairs from Fig. 1 — we will mark it as mid.only
in Table 1. This might seem to be a natural choice reflecting the fact that
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only signal around phone centre is examined for smoothness during diphones
concatenation.

2.2 Evaluation of Real Concatenations

When using only (smooth) distances computed on the corpus data, we do not
know much about how well a trained classifier is able to detect real non–
continuous spectral transitions. Therefore, we created artificial join in the middle
vowel of several words by concatenating two halves of the words from different
parts of the corpus. Around the join, the distance was computed in the way that
when [a] from sentence m is to be concatenated with [a] from sentence n (see
Fig. 1), (fi+1, fj+2) vectors are used — fi+1 is nearest to the middle of the initial
vowel half and fj+2 is the one after the vector nearest to the middle of the final
vowel half. Each such distance was coupled with the listeners evaluation when-
ever a concatenation discontinuity is perceived in the word (further referred to
as outlier distances) or not. Since details can be found in [22], we just summarize
here that only examples where at least two of three listeners agreed were taken
for further processing.

2.3 Classifiers Examined

Having obtained positive experience with OCC [12,13], we examined 3 classifier
types, all implemented in Scikit-learn toolkit [16]. The first one is Multivariate
Gaussian distribution (MGD), with all the distances modelled together in one go,
tied through covariance matrix. The second one is One-class SVM (OCSVM),
mapping distances into a high dimensional feature space via a kernel function,
and iteratively finding the maximal margin hyperplane which best separates the
training data from the outliers [18]. And the last one is Grubbs’ test [2] modified
as described in [12] to detect multidimensional distance vector as outlier when
any of the individual features is detected outlying (GRT).

Prior the training, the whole per–vowel set of target distances was reduced to
4, 000 randomly selected vectors, mostly due to speeding up the training process,
but also to prevent potential OCC overfitting (see [22] for the total number of
distances in async 20/20, which is the lowest of all used here). This reduced
set was then further randomly split into 80 % for training distances targets and
20 % distances being held out for the final evaluation (see Sect. 3). From the
training targets, 20 % were randomly chosen for 10–fold cross–validation. All
the classifiers were trained to minimize F1 score, the details about parameters
setup can be found in [22].

To further increase the robustness of the training, we added 50 % of the out-
lier distances (with discontinuity perceived, see Sect. 2.2) to the cross–validation
process, if these were available for the corresponding vowel.

3 Results

Once the classifiers are trained, the 20 % of target corpus distance vectors and all
the distance vectors for smooth joins evaluated by listeners (i.e. those without an
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Table 1. The classification performance when the given number of target distances (for
all the words without artefacts perceived) and the remaining 50 % of outlier distances
(those not used for cross–validation), obtained by evaluations described in Sect. 2.2
and computed for the given framing, were passed to the classifier trained on the corre-
sponding data. All the values are in %.

phones a e i o a: a e i o a:

No. of examples to classify

targets 60 45 30 50 17

outliers 9 18 10 21 52

async 20/20 async 20/20, mid.only

OCSVM TPR 48.3 82.2 93.3 72.0 100.0 56.7 77.8 80.0 86.0 94.1

TNR 55.6 33.3 50.0 23.8 0.0 44.4 33.3 80.0 0.0 96.2

F1 62.4 78.7 88.9 70.6 73.9 68.7 76.1 85.7 75.4 91.4

MGD TPR 100.0 95.6 96.7 98.0 100.0 100.0 75.6 96.7 100.0 88.2

TNR 0.0 0.0 0.0 4.8 78.8 0.0 22.2 10.0 0.0 94.2

F1 93.0 81.1 84.1 82.4 75.6 93.0 73.1 85.3 82.6 85.7

GRT TPR 55.0 86.7 83.3 96.0 100.0 63.3 82.2 86.7 94.0 100.0

TNR 44.4 33.3 40.0 4.8 53.8 33.3 27.8 70.0 0.0 82.7

F1 67.3 81.2 82.0 81.4 58.6 73.1 77.9 88.1 79.7 79.1

async 04/25 async 04/25, mid.only

OCSVM TPR 8.3 0.0 0.0 8.0 5.9 6.7 0.0 0.0 2.0 5.9

TNR 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

F1 15.4 n/a n/a 14.8 11.1 12.5 n/a n/a 3.9 11.1

MGD TPR 41.7 44.4 26.7 36.0 58.8 38.3 42.2 30.0 34.0 29.4

TNR 100.0 88.9 90.0 95.2 100.0 100.0 88.9 90.0 95.2 100.0

F1 58.8 59.7 41.0 52.2 74.1 55.4 57.6 45.0 50.0 45.5

GRT TPR 53.3 24.4 63.3 44.0 29.4 46.7 17.8 23.3 38.0 17.6

TNR 88.9 100.0 100.0 100.0 100.0 88.9 100.0 100.0 100.0 100.0

F1 68.8 39.3 77.6 61.1 45.5 62.9 30.2 37.8 55.1 30.0

async 12/25 async 12/25, mid.only

OCSVM TPR 56.7 44.4 63.3 58.0 100.0 45.0 37.8 50.0 50.0 64.7

TNR 100.0 72.2 90.0 85.7 100.0 100.0 94.4 100.0 0.5 100.0

F1 72.3 57.1 76.0 70.7 100.0 62.1 54.0 66.7 64.9 78.6

MGD TPR 46.7 51.1 70.0 54.0 100.0 55.0 44.4 66.7 44.0 58.8

TNR 100.0 72.2 50.0 66.7 84.6 55.6 88.9 80.0 90.5 92.3

F1 63.6 63.0 75.0 64.3 81.0 68.0 59.7 76.9 59.5 64.5

GRT TPR 65.0 51.1 73.3 66.0 100.0 68.3 46.7 56.7 72.0 88.2

TNR 88.9 61.1 70.0 66.7 90.4 44.4 77.8 100.0 57.1 100.0

F1 78.0 61.3 80.0 73.3 87.2 77.4 60.0 72.3 75.8 93.8

psync pm/25 psync pm/25, mid.only

OCSVM TPR 38.3 37.8 43.3 46.0 58.8 30.0 22.2 40.0 30.0 11.8

TNR 100.0 88.9 100.0 90.5 100.0 100.0 88.9 90.0 100.0 100.0

F1 55.4 53.1 60.5 61.3 74.1 46.2 35.1 55.8 46.2 21.1

MGD TPR 65.0 26.7 26.7 50.0 76.5 45.0 33.3 46.7 48.0 47.1

TNR 55.6 88.9 80.0 95.2 92.3 100.0 88.9 60.0 90.5 96.2

F1 75.7 40.7 40.0 65.8 76.5 62.1 48.4 58.3 63.2 59.3

GRT TPR 53.3 48.9 70.0 52.0 100.0 63.3 35.6 63.3 56.0 100.0

TNR 100.0 83.3 90.0 81.0 100.0 100.0 88.9 90 85.7 100.0

F1 69.6 62.9 80.8 65.0 100.0 77.6 50.8 76.0 69.1 100.0
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artefact perceived)were used to evaluate the ability of classifiers to recognize target
distances never seen.Also, the remaining50 %of outlier distances notused in cross–
validation were used to enumerate the reliability of probable artefacts detection.

In Table 1 we present results for all the framings mentioned in Sect. 2.1 and all
the classifiers described in Sect. 2.3. In the table, the abbreviation TP describes
true positives (targets detected as targets) and TPR is then percentage of TP
from all the targets to be classified (also called recall). Similarly, TN stands for
true negatives (correct outliers classification) and TNR is its percentage (speci-
ficity). Due to space limitation, we exclude here vowels with a smaller number of
examples to evaluate (both due to less joined words evaluated and lower mutual
agreement of listeners on artefact absence/presence, see Sect. 2.2). Also, we do
not present here the classification of the 20 % target distances being held out.

It can clearly be seen that the results are rather shuffled, with no significant
preference for a framing and/or classifier type. In general, the mid.only variant
behaves worse than when distances taken through the whole vowels are taken
into account. Another surprising fact is that the larger overlap leads to worse
results – although the distances to train are computed from very similar signals,
the classifiers are not able to recognise outlier distances. It can be said that
distances between non–overlapping frames are better in recognising targets, while
distances between frames with large overlap recognise outliers instead. The best
compromise seems to be async 12/25, for which OCSVM can reliably classify
phone [a:] and rather successfully detect outliers for other phones as well.

Looking at raw F1 scores, most of the best results are for async 20/20 fram-
ing, spread through various classifiers. However, taking for example phone [a]
with F1 = 93% (MGD), none of the 9 outliers was detected successfully. Similar
situation is for [i ] (F1 = 88.9%, OCSVM ), where only 5 out of 10 outliers were
detected. From the point of view of unit selection, where the classifiers should
finally be used, we would prefer reliable detection of outliers at the expense of
higher FN (continuous joins classified as outliers). This would ensure that no
audible artefact (or minimum of them) will appear in the synthesized speech.
On the other hand, however, discarding wrongly classified smooth joins can eas-
ily lead to the inability of following the required target specifications (those with
better match were discarded), which is not a desirable situation either.

4 Conclusion

Hopefully, we have shown that this alternative approach to feature hand–tuning
may have its potential despite the fact that there is no ultimate answer to the
question of what features/classifiers to use to avoid unnatural artefacts some-
times occurring in unit selection generated speech (neither did in [4]).

To address further research directions, it is important to start with an error
analysis, i.e. to examine the causes of the classification failures. Our hypothesis
for them is that the cause of the artefacts perceived is either due to a mismatch
of non–spectral related features, or due to a spectral mismatch not covered well
by the features and distance scheme computations chosen. Therefore, we need
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to search for another set of features, not necessarily entirely spectral–related,
which has a better capability of capturing the causes of artefacts perception —
this may affect both concatenation and target cost features. And since the vowel
joins evaluated by listeners (described in Sect. 2.2 and in details in [22]) were
intentionally not limited with respect to spectral features anyway, they can be
gradually extended and reused when searching for and experimenting with some
other mismatch–describing features.

To make our results verifiable as well as to provide a solid springboard for
prospective followers, we put all the data required to repeat the experiment
on github under ARTIC-TTS-experiments/2016 SPECOM/ repository. Also, more
detailed results can be found there. Do not hesitate to contact us in case of any
questions.

Acknowledgments. This work was supported by the Grant Agency of the Czech
Republic, project No. GA16-04420S and by the grant of the University of West
Bohemia, project No. SGS-2016-039. Computational resources were provided by the
CESNET LM2015042 under the program “Projects of Large Research, Development,
and Innovations Infrastructures”.

References

1. Bellegarda, J.R.: A novel discontinuity metric for unit selection text-to-speech
synthesis. In: Proceedings of the 5th Speech Synthesis Workshop (SSW5), pp.
133–138. Pittsburgh, PA, USA (2004)

2. Grubbs, F.E.: Procedures for detecting outlying observations in samples. Techno-
metrics 11, 1–21 (1969)
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8. Legát, M., Matoušek, J., Tihelka, D.: On the detection of pitch marks using a
robust multi-phase algorithm. Speech Commun. 53(4), 552–566 (2011)
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