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Abstract. In the paper, we describe a research of DNN-based acoustic modeling
for Russian speech recognition. Training and testing of the system was performed
using the open-source Kaldi toolkit. We created tanh and p-norm DNNs with a
different number of hidden layers and a different number of hidden units of tanh
DNNs. Testing of the models was carried out on very large vocabulary continuous
Russian speech recognition task. We obtained a relative WER reduction of 20 %
comparing to the baseline GMM-HMM system.
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1 Introduction

Investigations of combining artificial neural networks (ANNs) and hidden Markov
models (HMMs) for acoustic modeling were started between the end of the 1980s and
the beginning of the 1990s [1]. At present the usage of ANNs in automatic speech
recognition (ASR) becomes very popular because of increasing performance of
computers.

For acoustic modeling, ANNs are often combined with HMMs using hybrid and
tandem methods [1]. In the hybrid method, ANNs are used for estimating the posterior
probabilities of an HMM state. In the tandem method, outputs of ANNs are used as an
additional stream of input features for HMM-GMM (Gaussian Mixture Models) system.

In this paper, we present a study on deep neural network (DNN) based acoustic
models (AMs) for Russian speech recognition. For training and testing the speech
recognition system we have used the open-source Kaldi toolkit [2]. The Kaldi software
is written in C++ and based on the OpenFST library, and uses BLAS and LAPACK
libraries for linear algebra. There are two implementations of DNNs in Kaldi. The first
one is Kerel’s implementation [3]. It supports Restricted Boltzmann Machines (RBM)
pre-training, stochastic gradient training using graphics processing units (GPU), and
discriminative training. The second implementation is Dan’s implementation [4]. It does
not support Restricted Boltzmann Machine pre-training; instead a method similar to the
greedy layer-wise supervised training [5] or the “layer-wise backpropagation” [6] is
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used. For the given research, we have chosen the latter DNN implementation because
it supports parallel training on multiple CPUs.

The paper is organized as follows. In Sect. 2 we give a survey of various DNNs
acoustic modeling, in Sect. 3 we give a description of DNN-based AMs in our Russian
speech recognition system, in Sect. 4 we present our own training and test speech
corpora, finally experiments on speech recognition using DNN-based AMs are presented
in Sect. 5.

2 Related Works

In many recent papers, it was shown that DNN-HMM models outperform traditional
GMM-HMM models. In [7], context-depended model based on a deep belief network
for large-vocabulary speech recognition is presented. Deep belief networks have undir‐
ected connections between the 2 top layers and directed connections to all other layers
from the layer above. In that research, a hybrid DNN-HMM architecture was used; it
was shown that DNN-HMM model can outperform GMM-HMMs and the authors have
achieved a relative sentence error reduction of 5.8 %.

In [8], context-depended DNNs-HMMs (CD-DNN-HMMs) are described. CD-
DNN-HMMs combine ANN-based HMMs with tied-state triphones and deep-belief-
network pre-training. Efficiency of the models was evaluated on the phone call tran‐
scription task. The application of CD-DNN-HMMs has reduced the word error rate
(WER) from 27.4 % to 18.5 %.

An application of the tandem approach to acoustic modeling is presented in [9]. The
input of the network was a window of successive feature vectors. Training of the network
was performed according to the standard procedure that is used for a hybrid DNN-HMM
system. Then extracted features were fed to the GMM-HMM system. The training was
performed according to the standard expectation-maximization procedure. The authors
have obtained a relative WER reduction of 31 % over baseline MFCC and PLP acoustic
features with the context-independent models.

In [10], the possibility of obtaining the features directly from DNN without a conver‐
sion of output probabilities to features suitable for GMM-HMM system was researched.
Experiments with the use of a 5-layer perceptron in a bottle-neck layer were conducted.
After training the DNN, the outputs of the bottle-neck layer were used as features for
GMM-HMM system for speech recognition system. There was obtained the reduction
of WER comparing to the system with probabilistic features, as well as the reduction of
model size because only a part of the network was used.

A research of DNN for acoustic modeling for large vocabulary continuous speech
recognition (LVCSR) was also presented in [11]. In this paper, the authors have
conducted an empirical investigation on what aspects of the DNN-based AM design are
most important for performance of a speech recognition system. It was shown that
increasing model size and depth is effective only up to a certain point. In addition, a
comparison of standard DNNs, convolution NNs and deep locally untied NNs was made.
It was found out that deep locally untied NNs perform slightly better.
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In [12], the Kaldi toolkit was used for DNN-based children speech recognition for
Italian. Karel’s and Dan’s DNN training was explored. Speech recognition results
obtained using the Karel’s implementation were slightly better than the Dan’s DNN, but
both implementations significantly outperformed non-DNN configuration.

The Kaldi toolkit was used for Serbian speech recognition in [13]. The DNN models
were trained using the Karel’s implementation on a single CUDA GPU. Depending on
the test set a relative WER reduction of 15–22 % comparing to the GMM-HMM system
was obtained.

In [14], Kaldi was used in conjunction with PDNN (Python deep learning toolkit)
developed under Theano environment (http://deeplearning.net/software/theano/). The
authors used Kaldi for training GMMs. DNN was trained with the help of PDNN, and then
obtained DNN models were loaded into Kaldi for speech recognition. Four receipts were
described in [14]: DNN Hybrid, Deep Bottleneck Feature (BNF) Tandem, BNF+DNN
Hybrid, convolution NN Hybrid.

A continuous Russian speech recognition system with DNNs was described in [15].
The DNNs were used to calculate probabilities of states for a current observation vector.
The speech recognition was performed with the help of finite state transducers (WFST).
Feature vectors were represented as a sequence of characters, which were used as an
input to the finite state transducer. In that paper, it was shown that the proposed method
allows increasing speech recognition accuracy comparing to HMMs.

Another research of DNN for Russian speech recognition system is presented in [16],
where a speaker adaptation method for CD-DNN-HMM AM was proposed. GMM-
derived features were used as an input to DNN. There was obtained a relative WER
reduction of 5 %–36 % on different adaptation sets comparing to the speaker-independent
CD-DNN-HMM systems.

DNN-based acoustic modeling using Kaldi for Russian speech is presented in [17].
The authors applied the main steps of the Kaldi Switchboard recipe to one Russian
speech database. The obtained results of speech recognition were compared with those
for English speech. The absolute difference between WERs for Russian and English
speech was over 15 %. So, the authors have proposed two methods for spontaneous
Russian speech recognition, namely i-vector based DNN adaptation and speaker-
dependent bottle-neck features, which provided 8.6 % and 11.9 % relative WER reduc‐
tions respectively.

3 DNN-Based Acoustic Modeling for Russian ASR

A general architecture of the DNN-HMM hybrid system is presented in Fig. 1. The DNN
is trained to predict posterior probabilities of each context-depended state with given
acoustic observations. During decoding the output probabilities are divided by the prior
probability of each state forming “pseudo-likelihood” that is used in place of the state
emission probabilities in the HMM [18].
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Fig. 1. Architecture of the DNN-HMM hybrid system [1]

The first step in training DNN-HMM model is to train GMM-HMM model using
training data. The standard Kaldi receipt for DNN-based acoustic modeling consists of
the following steps:

– feature extraction (13 MFCCs can be used as the features);
– training a monophone model;
– training a triphone model with delta features;
– training a triphone model with delta and delta-delta features;
– training a triphone model with Linear Discriminative Analysis (LDA) and Maximum

Likelihood Linear Transform (MLLT);
– Speaker adapted training (SAT), i.e. training on feature space maximum likelihood

linear regression (fMLLR) adapted features;
– training the final DNN-HMM model.

The DNN-HMM model is trained using fMLLR-adapted features; the decision tree
and alignments are obtained from the SAT-fMLLR GMM system. We have tried DNNs
with two types of nonlinearities (activation functions): tanh and p-norm. The p-norm
generalization was proposed in [18], it is calculated as follows:
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where vector x represents a small group of inputs. The value of p is configurable. In [18],
it was shown that p = 2 provides better results. The output layer is softmax layer with
output dimension equal to the number of context-depended states (1609 in our case).
The DNN was trained on top of FMLLR features. The system was trained for 15 epochs
with the learning rate varying from 0.02 to 0.004 and then for 5 epochs with a constant
final learning rate (0.004).

4 Training and Test Speech Datasets

For training and testing the Russian ASR system we used our own Russian speech
corpora recorded in SPIIRAS. The training speech corpus consists of two parts; the first
part is the speech database developed within the framework of the EuroNounce project
[19]. The database consists of 16,350 utterances pronounced by 50 native Russian
speakers (25 men and 25 women). Each speaker pronounced a set of 327 phonetically
rich and meaningful phrases and texts. The second part of the corpus consists of record‐
ings of other 55 native Russian speakers. Each speaker pronounced 105 phrases: 50
phrases were taken from the Appendix G to the State Standard P 50840-95 [20] (these
phrases were different for each speaker), and 55 common phrases were taken from a
phonetically representative text, presented in [21]. The total duration of the entire speech
corpus is more than 25 h.

To test the system we used a speech dataset of 500 phrases pronounced by 5 speakers
[19]. The phrases were taken from the materials of one Russian on-line newspaper that
was not used in the training data.

The recording of speech data was carried out with the help of two professional
condenser microphones Oktava MK-012. The speech data were collected in clean
acoustic conditions, with 44.1 kHz sampling rate, 16-bit per sample. The signal-to-noise
ratio (SNR) is about 35 dB. For the recognition experiments, all the audio data were
down-sampled to 16 kHz. Each phrase was stored in a separate wav file. Also a text file
containing orthographical representation (transcription) of utterances was provided.

5 Experiments with DNN-Based AMs

ASR was performed with the n-gram language model trained on Russian text corpus of
on-line newspapers [22] using Kneser-Ney smoothing method [23]. The language model
was created using the SRI Language Modeling Toolkit (SRILM) [24]. For Russian
speech recognition 150 K vocabulary was used. Phonetic transcriptions for the words
from vocabulary were made automatically by applying a set of G2P rules [25, 26].

At first, we made experiments using the GMM-HMM AMs. The obtained results are
presented in Table 1.

Then, we made experiments on Russian speech recognition using the DNN-based
AMs. We have created some DNNs with a different number of hidden units. Our DNNs
with the tanh function have 3–5 hidden layers with 1024–2048 units in each hidden layer.
The speech recognition results obtained with these tanh DNN-based AMs are presented
in Table 2. The obtained results show that the number of layers has only slightly influence
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on speech recognition results. The best result was obtained when DNN with 6 hidden
layers and 1024 units in each hidden layer was used. Increasing the number of hidden
units led to increasing the WER, it can be caused by small amount of training data.

Table 2. WER with tanh-based DNN-HMM models (%)

Number of hidden layers Number of units in each hidden layer
1024 2048

3 22.58 24.10
4 21.87 24.25
5 21.91 23.11
6 21.80 22.70

For the p-norm DNNs, there is no parameter of hidden layer dimension. Instead,
there are two other parameters: (1) p-norm output dimension and (2) p-norm input
dimension. The input dimension needs to be an exact integer multiple of the output
dimension; normally a ratio of 5 or 10 is used [18]. We have tried p-norm DNNs with
input/output dimensions of 2000/200 and 4000/400 respectively. The obtained results
are presented in Table 3.

Table 3. WER with p-norm DNN-HMM models (%)

Number of hidden layers Input/output dimension
2000/200 4000/400

3 20.99 22.66
4 21.61 23.41
5 21.48 23.33
6 20.30 23.69

The lowest WER was achieved with the p-norm DNN, it was equal to 20.30 %. It
was obtained using the DNN with 6 hidden layers and input/output dimension of
2000/200.

6 Conclusion and Future Work

We have studied some DNN-based AMs for continuous Russian speech recognition with
very large vocabulary using the Kaldi toolkit. We have experimented with DNNs with
two types of nonlinearity (tanh and p-norm), different numbers of hidden layers and

Table 1. Speech recognition results with the baseline GMM-HMM models

AM WER %
Triphone model with deltas 30.30
Triphone model with deltas and delta-deltas 30.04
LDA_MLLT 28.88
SAT_fMLLR 25.32
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hidden units in tanh-based DNNs. The speech recognition experiments showed that the
best results were obtained with the p-norm DNN-based AM. The relative WER reduction
was 20 % comparing to the baseline system with fMLLR features (the absolute WER
reduction was 5 %). In further research, we will investigate some other DNN’s config‐
urations as well as make experiments with tandem models.
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