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Abstract. In this paper we present the latest improvements to the
Russian spontaneous speech recognition system developed in Speech
Technology Center (STC). Significant word error rate (WER) reduc-
tion was obtained by applying hypothesis rescoring with sophisticated
language models. These were the Recurrent Neural Network Language
Model and regularized Long-Short Term Memory Language Model. For
acoustic modeling we used the deep neural network (DNN) trained with
speaker-dependent bottleneck features, similar to our previous system.
This DNN was combined with the deep Bidirectional Long Short-Term
Memory acoustic model by the use of score fusion. The resulting system
achieves WER of 16.4%, with an absolute reduction of 8.7% and rela-
tive reduction of 34.7% compared to our previous system result on this
test set.
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1 Introduction

Spontaneous conversational speech recognition is one of the most difficult tasks
in the field of automatic speech recognition (ASR). The difficulties are due to the
following characteristics of spontaneous conversational speech: high channel and
speaker variability, presence of additive and non-linear distortions, accents and
emotional speech, diversity of speaking styles, speech rate variability, reductions
and weakened articulation.

There is a large number of studies on recognizing English spontaneous speech,
such as [1–5]. Systems proposed in these papers demonstrate high effectiveness,
which makes it possible to use them in commercial applications. As far as we
know, the state-of-the-art English spontaneous speech recognition system [4]
achieves word error rate (WER) of 8.0 % on the Switchboard part and 14.1 %
on the CallHome part of the HUB5 2000 evaluation set. This impressive results
were obtained by combining various effective techniques of acoustic and language
modeling.
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Our goal is to build a speaker-independent system for high-quality Russian
spontaneous speech recognition. At present none of the Russian spontaneous
speech recognition systems provide recognition accuracy comparable with the
above-mentioned English systems. We would like to highlight two reasons of this.
First, there are not available training and evaluation datasets for the Russian
language, such as the Switchboard and Fisher English speech corpora and the
HUB5 2000 evaluation set. Second, Russian is an inflective language with a
several times larger number of unique words than English. Moreover, the Russian
language is characterized by a relatively free word order in a sentence. This
considerably complicates the recognition task [6]. Our previous system achieved
WER of 25.1 % [7]. In this work we present the set of recent improvements of
the system.

The rest of this paper is organized as follows. Section 2 contains the
experimental setup description. Section 3 presents the acoustic modeling app-
roach based on speaker-dependent bottleneck features. Section 4 describes deep
BLSTM acoustic models and score fusion of DNN and BLSTM acoustic models
(AMs). Section 5 presents the experiments on hypothesis rescoring with language
models (LMs) based on Recurrent Neural Networks (RNNs). Finally, Sect. 6 con-
cludes the paper and discusses future work.

2 Experimental Setup

For experiments we used the Kaldi speech recognition toolkit [8]. AM training
was performed using a 390 h Russian spontaneous speech dataset (telephone
channel, several hundreds of speakers). A test set consisted of about 1 h of
Russian telephone conversations. Both training and test sets are the same as
used in our previous work [7].

Language models training data consisted of 2 datasets. The first one con-
tained the transcriptions of the AM training dataset. The second one was a large
amount (about 200 M words) of texts from Internet forum discussions, books and
subtitles from the OpenSubtitles site. The baseline 3-g language model with a
vocabulary of 214 K words was built in the SRILM Toolkit [9]. It was obtained by
interpolation of 3-g LMs trained on the first and second datasets using Modified
Kneser-Ney smoothing. The size of this model was reduced to 4.16 M bigrams
and 2.49 M trigrams by the use of pruning.

3 Speaker-Dependent Bottleneck Features

Here we describe the acoustic modeling approach based on speaker-dependent
bottleneck (SDBN) features. This approach was proposed in our previous
works [7,10]. Its underlying idea is to extract high-level features from the DNN
model, which is adapted to the speaker and acoustic environment by the use
of i-vectors. The extracted features are applied to training another acoustic
model (Fig. 1).
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Fig. 1. Speaker-dependent bottleneck approach scheme

Our approach consists of the following main steps:

1. Training the DNN model on the source features using the Cross-Entropy (CE)
criterion.

2. Expanding an input layer of the DNN trained at the first step and retraining
using an input feature vector appended with i-vector. The regularizing term

R = λ
L∑

l=1

Nl∑

i=1

Nl−1∑

j=1

(Wl
ij − W̄l

ij)
2 (1)

is added to the CE criterion for penalizing parameters deviation from the
source model. Here Wl and W̄l are weight matrices of l-th layer (1 ≤ l ≤ L)
of the current and the source DNNs, Nl is the size of l-th layer, and N0 is the
dimension of the input feature vector.

3. Transforming the last hidden layer into two layers. The first one is a bottleneck
layer with the weight matrix Wbn, a zero bias vector and linear activation
function. The second one is a non-linear layer with the dimension of the source
layer, with weight matrix Wout and the original bias vector b, activation
function f and the dimension of the source layer:

y = f(Wx + b) ≈ f(Wout(Wbnx + 0) + b). (2)

These layers are formed by applying Singular Value Decomposition (SVD) to
the weight matrix W of the source layer:

W = USVT ≈ ŨbnṼT
bn = WoutWbn, (3)

where bn designates reduced dimension.
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4. Retraining the network formed at the previous step using the CE criterion
with the penalty (1) for parameters deviation from original values.

5. Discarding all layers after the bottleneck and extracting high-level SDBN
features using the resulting DNN.

6. Training the GMM-HMM acoustic model using the constructed SDBN fea-
tures and generating the senone alignment of the training data.

7. Training the final DNN-HMM acoustic model using SDBN features and the
generated alignment.

The extractor of 120-dimensional SDBN features was trained using the pre-
sented approach. Training was carried out using 23-dimensional log mel fil-
terbank energy (FBANK) features with Cepstral Mean Normalization (CMN),
appended with the first and second order derivatives. These features were taken
with the temporal context of 11 frames (± 5) and appended with an i-vector.
We applied 50-dimensional i-vectors extracted by the use of the Universal Back-
ground Model with 512 Gaussian, which was trained with our toolset [11] on the
full 390 hour training set. We applied the following configuration of the basic net-
work: 6 hidden layers with 1536 sigmoidal neurons in each, the output softmax
layer with about 13000 neurons corresponding to senones of the GMM-HMM
acoustic model. DNN parameters were updated using the Nesterov Accelerated
Gradient algorithm with the momentum value equal to 0.7. Extractor training
was initialized using the algorithm presented in the paper [12].

DNN training with the constructed SDBN features (SDBN-DNN) was per-
formed using the temporal context of 31 frames taking every 5th frame. We
applied the following DNN configuration: 4 sigmoidal hidden layers with 2048
neurons in each, the output softmax layer with about 13000 neurons correspond-
ing to senones of the GMM-HMM model, which was trained using the same
SDBN features. The training was carried out with the CE criterion and the
state-level Minimum Bayes Risk (sMBR) sequence-discriminative criterion.

Table 1. SDBN results

Acoustic model Training criterion WER, %

DNN-ivec CE 23.8

SDBN-DNN CE 22.0 (−1.8)

DNN-ivec sMBR 21.7

SDBN-DNN sMBR 19.5 (−2.2)

Table 1 gives the comparison of SDBN-DNN and DNN trained in a speaker
adaptive manner using i-vectors (DNN-ivec). It can be seen that the SDBN
approach provides a significant gain. Note that SDBN-DNN WER of 19.5 % is
much lower than the result of our previous system (25.1 % WER). This is due
to the larger SDBN features extractor, more careful tuning of the AM training
procedure and the larger language model.
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4 Deep Bidirectional Long Short-Term Memory
Recurrent Neural Networks

Acoustic models based on deep Bidirectional Long Short-Term Memory
(BLSTM) recurrent neural networks demonstrate high effectiveness in various
ASR tasks [5,13]. In this section we describe our experiments with these models
carried out with the nnet3 setup of the Kaldi speech recognition toolkit.

We used BLSTM architecture with projection layers described in the
paper [13]. The following configuration of the network was applied: 3 forward
and 3 backward layers, 1024 cell and hidden dimensions, 128 recurrent and non-
recurrent projection dimensions. Training examples consisted of chunks of 20
frames with additional left context of 40 frames and right context of 40 frames.
We performed 8 epochs of cross-entropy training with an initial learning rate of
0.0003 and final learning rate of 0.00003. Model parameters were updated using
BPTT algorithm with the momentum value equal to 0.5. The models obtained at
the iterations of the last epoch were combined into the final BLSTM model. For
BLSTM training we used 23-dimensional log mel filterbank energy (FBANK)
features with CMN with the first and second order derivatives, appended with
the 50-dimensional i-vector described before. Training data alignments prepared
using the SDBN-DNN acoustic model were used for the training.

4.1 Score Fusion of SDBN-DNN and BLSTM Acoustic Models

The underlying idea of the score fusion technique is in combining the benefits of
both different model architectures and different input features. In this subsection
we analyze effectiveness of this technique applied to SDBN-DNN and BLSTM
acoustic models. We used log-likelihoods (LLH) determined by the formula

LLH = α log
(

P1(s|x)
P1(s)

)
+ (1 − α) log

(
P2(s|x)
P2(s)

)
(4)

for the decoding with fusion of these acoustic models. Here P1(s|x) and P2(s|x)
are posterior probabilities of state s given an input vector x on the current
frame, P1(s) and P2(s) are prior probabilities of state s for SDBN-DNN and
BLSTM models respectively. We estimated prior probability of state s as average
posterior probability calculated with the corresponding model on the training
data. α value was chosen equal to 0.5. The results of deep BLSTM acoustic
model and score fusion are given in Table 2.

Table 2. Deep BSLTM acoustic models and score fusion results

Acoustic model WER, %

SDBN-DNN 19.5

BLSTM 19.8

score fusion 17.8 (−1.7)
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5 RNN-based Language Models

In this section we describe the experiments with sophisticated language models
based on recurrent neural networks. Word lattices obtained on the decoding pass
with the 3-g LM and the best DNN+BLSTM models fusion in subsection 4.1 were
taken as a starting point for these experiments.

We trained two RNN-based language models on shuffled utterances from
transcriptions of the AM training dataset. To speed-up the training we used
the vocabulary of 45 K most frequent words. All other words were replaced with
the <UNK> token. Utterances were divided into two parts: a valid set (15 K
utterances) and a train set (all other, 243 K utterances).

Table 3. Rescoring results

Language model WER, %

3-g 17.8

RNNLM 17.4 (−0.4)

LSTM-LM (medium) 16.7 (−1.1)

LSTM-LM (large) 16.4 (−1.4)

Fig. 2. System architecture

The first RNN-based LM was the Recurrent Neural Network Language Model
(RNNLM) [14] which significantly outperforms n-gram LMs in various speech
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recognition tasks. We applied the following RNNLM configuration: 256 neurons
in the hidden layer and 200 classes in the output layer.

The second RNN-based LM was the LSTM recurrent neural network LM
(LSTM-LM) trained with dropout regularization [15]. We trained two LSTM-
LMs using the Tensorflow toolkit [16]: “medium” (2 layers with 650 units each,
50 % dropout on the non-recurrent connections) and “large” (2 layers with
1500 units each, 65 % dropout on the non-recurrent connections) configurations
from the paper [15].

The trained RNNLM and both LSTM-LMs were applied for hypothesis
rescoring. We generated 100-best lists from the word lattices using Kaldi scripts.
For the rescoring we took the weighted sum of n-gram LM and RNN-based LM
scores. If the sentence contained a word missing in the 45K RNN vocabulary,
we added an unigram score of this word from the 3-g model to the RNN score.
The results of the rescoring are given in Table 3. It can be seen that RNNLM
provided substantial improvement over the n-gram LM, as well as LSTM-LM
over RNNLM.

6 Conclusion

The architecture of our system is depicted in Fig. 2. The system achieves WER
of 16.4 %, with an absolute reduction of 8.7 % and relative reduction of 34.7 %
over our previous system.

We consider several ways of further improvement of our system. First,
BLSTM acoustic models improving techniques, such as sequence-discriminative
training and dropout regularization, can lead to substantial WER reduction.
Second, significant acoustic models improvement can be obtained by the use
of the data augmentation approach [17]. Last but not least, we plan to carry
out experiments with other promising language model architectures as well as
to investigate more complicated approaches of applying sophisticated language
models than simple n-best rescoring.
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I., Ronzhin, A. (eds.) SPECOM 2013. LNCS, vol. 8113, pp. 278–285. Springer,
Heidelberg (2013)

12. Medennikov, I.P.: Two-step algorithm of training initialization for acoustic models
based on deep neural networks. Sci. Tech. J. Inf. Technol. Mech. Opt. 16(2), 379–
381 (2016). doi:10.17586/2226-1494-2016-16-2-379-381

13. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural net-
work architectures for large scale acoustic modeling. In: 15th Annual Conference
of the International Speech Communication Association (Interspeech). Singapore
(2014)

14. Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., Khudanpur, S.: Recurrent
neural network based language model. In: 11th Annual Conference of the Interna-
tional Speech Communication Association (Interspeech), pp. 1045–1048. Makuhari
(2010)

15. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
arXiv preprint (2014). arXiv:1409.2329

16. Abadi, M., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems (2015). http://tensorflow.org/

17. Ko, T., Peddinti, V., Povey, D., Khudanpur, S.: Audio augmentation for speech
recognition. In: 16th Annual Conference of the International Speech Communica-
tion Association (Interspeech). Dresden (2015)

http://dx.doi.org/10.17586/2226-1494-2015-15-6-957-968
http://dx.doi.org/10.17586/2226-1494-2015-15-6-957-968
http://dx.doi.org/10.17586/2226-1494-2016-16-1-195-197
http://dx.doi.org/10.17586/2226-1494-2016-16-1-195-197
http://dx.doi.org/10.17586/2226-1494-2016-16-2-379-381
http://arxiv.org/abs/1409.2329
http://tensorflow.org/

	Advances in STC Russian Spontaneous Speech Recognition System
	1 Introduction
	2 Experimental Setup
	3 Speaker-Dependent Bottleneck Features
	4 Deep Bidirectional Long Short-Term Memory Recurrent Neural Networks
	4.1 Score Fusion of SDBN-DNN and BLSTM Acoustic Models

	5 RNN-based Language Models
	6 Conclusion
	References


