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Preface

The Speech and Computer International Conference (SPECOM) has become a regular
event since the first SPECOM that was held in St. Petersburg, Russian Federation, in
1996. Twenty years ago, SPECOM was established by St. Petersburg Institute for
Informatics and Automation of the Russian Academy of Sciences and State Peda-
gogical University of Russia thanks to the efforts of Prof. Yuri Kosarev and Prof.
Rajmund Piotrowski.

SPECOM is a conference with a long tradition that attracts researchers in the area of
computer speech processing (recognition, synthesis, understanding etc.) and related
domains (including signal processing, language and text processing, multi-modal
speech processing, or human–computer interaction). The SPECOM international
conference is an ideal platform for know-how exchange — especially for experts
working on Slavic and other highly inflectional languages — including both less-
resourced and standard, well-resourced languages.

In its long history, SPECOM conference was organized alternately by the
St. Petersburg Institute for Informatics and Automation of the Russian Academy of
Sciences (SPIIRAS) and by the Moscow State Linguistic University (MSLU) in their
home cities. Furthermore, in 1997 it was organized by the Cluj-Napoca Subsidiary
of the Research Institute for Computer Technique (Romania), in 2005 and 2015 by the
University of Patras (Greece), in 2011 by the Kazan Federal University (Russian
Federation, Republic of Tatarstan), in 2013 by the University of West Bohemia (Pilsen,
Czech Republic), and in 2014 by the University of Novi Sad (Serbia).

SPECOM 2016 was the 18th event in the series and this time it was organized by the
Budapest University of Technology and Economics (BME) and the Scientific Asso-
ciation for Infocommunications (HTE), in cooperation with Moscow State Linguistic
University (MSLU), St. Petersburg Institute for Informatics and Automation of the
Russian Academy of Sciences (SPIIRAS) and St. Petersburg National Research
University of Information Technologies, Mechanics and Optics (ITMO University).
The conference was held during August 23–27, 2016, in the Aquincum Hotel Budapest
located in a prime area alongside the river Danube, on the Buda side of this magnificent
city and across the river from the serene Margaret Island, with its famous thermal
waters.

During the conference the invited talks were given by Prof. Nick Campbell (Speech
Processing Lab, Trinity College Dublin, Ireland), Prof. Ralf Schlüter (Faculty of
Mathematics, Computer Science and Natural Sciences, Human Language Technology
and Pattern Recognition, RWTH Aachen University, Germany), and Attila Vékony
(NNG Software Developing and Commercial Llc., Hungary) on the latest achievements
in speech technologies and the relatively broad and still unexplored area of human–
machine interaction. The invited papers are published as a first part of the SPECOM
2016 proceedings.



This volume contains a collection of submitted papers presented at the conference,
which were thoroughly reviewed by members of the Program Committee consisting of
around 40 top specialists in the conference topic areas. A total of 85 accepted papers
out of 154 submitted for SPECOM and ICR were selected by the Program Committee
for presentation at the conference and for inclusion in this book. Theoretical and more
general contributions were presented in common (plenary) sessions. Problem-oriented
sessions as well as panel discussions brought together specialists in limited problem
areas with the aim of exchanging knowledge and skills resulting from research projects
of all kinds. This year, the conference had a satellite event – the First International
Conference on Interactive Collaborative Robotics — where problems and modern
solutions of human–robot interaction were discussed.

We would like to express our gratitude to the authors for providing their papers on
time, to the members of the conference reviewing team and Program Committee for
their careful reviews and paper selection, and to the editors for their hard work in
preparing this volume. Special thanks are due to the members of the local Organizing
Committee for their tireless effort and enthusiasm during the conference organization.

August 2016 Andrey Ronzhin
Rodmonga Potapova

Géza Németh
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Abstract. In automatic speech recognition, as in many areas of machine
learning, stochastic modeling relies on neural networks more and more.
Both in acoustic and language modeling, neural networks today mark the
state of the art for large vocabulary continuous speech recognition, pro-
viding huge improvements over former approaches that were solely based
on Gaussian mixture hidden markov models and count-based language
models. We give an overview of current activities in neural network based
modeling for automatic speech recognition. This includes discussions of
network topologies and cell types, training and optimization, choice of
input features, adaptation and normalization, multitask training, as well
as neural network based language modeling. Despite the clear progress
obtained with neural network modeling in speech recognition, a lot is
to be done, yet to obtain a consistent and self-contained neural network
based modeling approach that ties in with the former state of the art.
We will conclude by a discussion of open problems as well as poten-
tial future directions w.r.t. to neural network integration into automatic
speech recognition systems.

1 Introduction

Even though artificial neural networks (ANN) have been known for long, their
application to automatic speech recognition remained a limited area of research
for quite a time. An efficient learning algorithm for the free parameters of neural
networks by error backpropagation was introduced in [64]. A few years later,
neural networks with a single (non-linear) hidden layer have been shown to have
the universal approximator property, meaning that, similar to Gaussian mixture
models, they are capable of approximating any continuous function to any level
of accuracy [44]. In [53], an overview of early approaches to automatic speech
recognition using neural network based modeling is given. Notable trends at that
time include the time-delay neural network approach [92], the softmax opera-
tion for probability normalization on the output layer of neural networks [10],
and the introduction of the hybrid concept to hidden Markov models (HMM)
by interpreting neural network outputs as class posteriors (in the context of
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the squared error criterion), and using them to model HMM emission probabili-
ties [7]. Finally, first results which were competitive to standard Gaussian mix-
ture HMMs on the Wall Street Journal task were presented using a recurrent
neural network [63]. Nevertheless, only with the new millennium, approaches
including neural network modeling started to outperform the former state-of-
the-art. Nowadays, ANN-based ASR systems show considerable improvements
of 30 % and more relative in word error rate (WER) over Gaussian mixture based
HMMs, e.g. [73]. In this work, we provide an overview of recent developments
and results obtained using ANNs of various flavors in both acoustic and lan-
guage modeling. In Sect. 2, general approaches to ANN-based acoustic modeling
are compared. Section 3 presents network topologies and cell types, followed by a
discussion of corresponding training criteria in Sect. 4, regularization methods in
Sect. 5, and corresponding optimization methods in Sect. 6. In Sect. 7, input fea-
tures for ANN-based ASR are discussed. Section 8 shows how multitask learning
introduces generalization across multiple languages. Section 9, discusses current
approaches to adaptation and normalization for ANN-based ASR. Section 10
gives an overview of ANN-based language modeling. Finally, Sect. 11 discusses
recent developments especially in decoding using neural network based modeling,
followed by general conclusions in Sect. 12.

2 Acoustic Model Integration

The introduction of neural networks to acoustic modeling can be divided into
the hybrid, and the tandem approach. In the hybrid approach [7,8], HMM emis-
sion probabilities are modelled explicitely using (appropriately renormalized)
neural networks representing phoneme class posteriors, thus dropping the need
for Gaussian mixture models (GMM). In [63], an early success was obtained
on the Wall Street Journal task using recurrent neural networks within the
hybrid approach. Nevertheless, GMMs still remained the prevalent acoustic mod-
eling scheme for large vocabulary continuous speech recognition for at least a
decade. Meanwhile, the tandem approach was proposed [39], where the frame-
wise phoneme classifier neural network output is post-processed and used as addi-
tional input feature to a conventional GMM-based recognition system. A pow-
erful extension to the tandem approach was suggested in [33], where the output
of one of the hidden layers rather than the output layer is used. Since the size
of hidden layers is not constrained, this leaves more freedom to choose its size,
position among the layers, and activation function for feature extraction. Due
to the usually reduced layer size, this discriminatively learned representation of
input data is termed bottleneck features.

Universally considered a breakthrough for hybrid modeling, the authors in
[73] presented very good results on the widely used conversational telephone
speech recognition task Switchboard, beating a strong speaker adapted and dis-
criminatively trained GMM baseline. The key to their success was twofold: first,
a large number of context-dependent phoneme state targets, instead of mono-
phone targets was modelled. Second, deep neural networks (DNN) with a num-
ber of large hidden layers were employed. The authors were also among the first
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groups to transfer training of large models to a graphics processing unit (GPU),
that offers a great speed-up over CPUs on matrix operations. Both tandem and
hybrid approaches have been shown to outperform standard GMM baselines
trained on cepstral features [89]. In principle, both methods can be considered a
deep stack of non-linear models trained to optimize different objective functions
following different schemes for parameter updates [90]. From an even more gen-
eral point of view, both models consist of a classifier and some representation
learning mechanism, although there is no explicit distinction of the two. In [85],
both approaches are compared on the Switchboard part of the Hub5’00 test cor-
pus. A hybrid DNN model achieved a word error rate (WER) of 13.7 %, while
a comparable tandem system trained w.r.t. the maximum likelihood criterion
yielded 14.2 % WER. Same concepts such as speaker adaptation and sequence
discriminative training can be applied to both models, making the gap even
smaller.

3 Neural Network Topologies

The network topology has a major influence on performance. This includes opti-
mization of the number of hidden layers, their size, the choice of activation
functions, the cell types, the connectivity between the layers. Recently, a vari-
ety of novel activation functions have been suggested in the literature, including
Maxout [26], Exponential Linear Unit [17], and many modifications. Of these,
the piece-wise linear function rectified linear unit (ReLU) [57] turned out to be
very effective. Although unbounded, the ReLU does not violate the universal
approximator property of the networks [74]. ReLU networks allow to train very
deep models even for hard optimization problems, as shown e.g. in [24,84]. Bot-
tleneck layers are not only useful for the tandem approach, but also in a hybrid
scenario, allowing to reduce the number of trainable parameters, increasing the
processing speed and the generalization ability of the acoustic models [95]. Hier-
archical stacking of multiple neural networks [91] provides another choice in net-
work design that has been shown to provide further gains in performance [88].
Convolutional neural networks (CNNs) provide another design choice, where a
layer with local connectivity shares the weights of its receptive field across the
positions in the input, to support learning of more robust position-independent
features [51]. This concept was applied to speech recognition by defining the con-
volution layer over a spectrogram, approximated by critical band energies [1]. In
[24], convolution in time was used even to jointly learn feature extraction and
acoustic model on raw waveform input. Highway networks [76] provide a way to
improve information flow across layers and enables training of even deeper net-
works. Highway networks also were combined with recurrent neural networks in
[100]. Recurrent neural networks (RNNs) provide another powerful extension of
the topology by introducing recurrent connections. Here, hidden layers perform
a time-dependent operation taking its own output at the previous time step as
input in addition to the output from the previous hidden layer. Optimization of
RNNs requires backpropagation through time (BPTT), which is known to have
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the exploding/vanishing gradient effect [42]. Various approaches were suggested
to overcome this problem, like gradient clipping [59], or second-order optimiza-
tion methods [94,95]. However, the most prominent variant is to modify the
recurrent model itself, which led to the long short-term memory (LSTM) [43]
model which allows for better gradient flow via gating units. Further analyses
and variants of LSTMs are presented in [9,16,31,47]. Recently, LSTMs were
shown to clearly outperform feed-forward acoustic models [22,66], and can also
be stacked to form deep LSTM networks [27]. Also, bidirectional LSTMs were
shown to outperform unidirectional LSTMs [30]. Bidirectional LSTMs can also
be used in online recognition setups [99]. In recent work [98], based on a fast
LSTM implementation [20], we observed an improvement from 15.3 % WER for
an highly optimized DNN to 13.1 % WER using LSTM modeling on a 50 h subset
of the English Quaero task.

4 Training Criteria

Early approaches to neural network acoustic model training applied the squared
error criterion [7]. Nevertheless, the common approach is to minimize frame-
level cross entropy over a training set. The cross entropy criterion was shown to
be more robust to poor initialization, than the squared error criterion [23]. The
training criterion in connectionist temporal classification (CTC) overcomes the
necessity for allophone alignment by integrating over all alignments [29], similar
to Baum-Welch training. Frame-level cross entropy does not take the word level
into account, treating all frames independently and with equal weight. Also,
both the cross entropy and the frame classification error on a held-out data
set are only loosely correlated with the target evaluation measure for speech
recognition, word error rate. In the tandem approach, GMM/HMM training can
be done with discriminative training [35,36], but usually does not include further
optimization of the underlying neural network, even though joint training would
be possible [85,90]. Sequence training [49] is the corresponding approach realizing
discriminative training criteria for hybrid modeling. The criteria are the same in
both cases, comprising maximum mutual information (MMI), minimum phone
error (MPE) (cf. e.g. [35]), and state-level minimum Bayes risk (sMBR) criterion
[50]. A direct comparison of MMI and MPE can be found e.g. in [93]. For encoder-
decoder models (cf. Sect. 11), a promising approach using upper estimates on the
training error are presented in [5]. In [85], MPE training results are presented
on the Switchboard. MPE training reduces the WER of a cross entropy trained
hybrid model from 13.7 % to 12.6 %. Further, sequence discriminative training
has been found to play a crucial role for performing keyword search [25].

5 Regularization

Neural networks usually have a huge amount of trainable parameters and are
thus prone to overfitting, i.e. they fit very good to the training data but perform
badly on unseen data. Regularization aims at better generalization by avoiding
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overfitting in various ways. One approach would be to balance the amount of
trainable parameters with the amount of training data available. Nevertheless,
it has been shown that depth boosts neural network performance, both theoret-
ically [56] and experimentally [98]. A straight-forward approach to reduce the
amount of parameters is to use a reduced matrix representation such as linear
bottlenecks [95], cf. Sec. 3. Also, constraints can be introduced on the parame-
ters or to penalize them in various ways, where minimizing the L1 or L2 norm
is the simplest solution. This is usually added as an additional term to the opti-
mization criterion. Another class of methods stochastically modifies the network
architecture so that the overall model can be seen as an ensemble model of all
the stochastic variants. The most prominent method of this kind is dropout [75],
where hidden nodes are randomly dropped. Another recent promising method
is stochastic depth [45], where hidden layers are randomly dropped. In [98] we
studied the effect of different regularization methods for LSTM based acoustic
models and we found a combination of L2 and dropout to perform best.

6 Optimization

Neural network weights usually are trained by using error backpropagation
and stochastic gradient descent (SGD) on the corresponding training
criterion [64]. Improving the initial starting point of the optimization was
addressed by so called pretraining techniques [41]. Here, the weights are ini-
tialized layer-by-layer using unsupervised restricted Boltzmann machines or
supervised methods like discriminative pretraining [72]. As an alternative to
SGD, also batch methods are possible, usually applying second-order informa-
tion, e.g. LBFGS, Rprop, or the Hessian-Free approach [95]. Second-order opti-
mization can also be transferred to SGD by normalizing mean and variance
within a batch [34,95]. The step size for the adjustment is usually treated as
hyperparameter and various methods have been proposed to improve the esti-
mate of the optimal step size, like AdaGrad [21], Adadelta [97], or Adam
[48], which was reported to give very stable optimization. Also, gradient
clipping and noise addition are commonly used methods to improve convergence.

Table 1. Word error rate on
50 hours of English spoken sen-
tences from the Quaero cor-
pus using different optimization
methods. The results are taken
from [98].

Systems WER [%]

Gradient Descent 15.0
AdaGrad 15.6
Adadelta 15.1
Adam 14.8
+ gradient noise 14.6

Table 1 shows the performance of these methods
on an ASR task. In order to benefit from modern
computing architectures like GPUs, algorithms
have to be designed to perform simple opera-
tions on large amounts of data in parallel. The
workload of each single operation can be distrib-
uted on several machines. More commonly, train-
ing times are reduced and a direct extension to
gradient descent is obtained by data parallelism,
where samples are partitioned into batches and
considered as single step in the optimization pro-
cedure, c.f. e.g. [19,20].
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7 Input Features

Despite similarities in standard feature extraction pipelines like MFCC, PLP, or
Gammatone [18,38,70], they can be expected to complement each other when
combined. Using these features as concatenated input to neural networks, about
5–10% relative WER reduction was observed on a broadcast news and conver-
sation task in [60,84]. Further investigation also revealed that the optimal cep-
stral/critical band energy features for MLP requires higher resolution (up to
50–60 dimensional) than for GMM (15–20 dimensional) [85]. Recent studies
demonstrated that feature extraction can even be learned completely from data
[65,84]. However, this usually requires a large amount of transcribed speech. In
low-resource scenarios, well-established static standard feature extraction proce-
dures still show a significant performance margin over data-driven feature extrac-
tion. Using 50 hours of broadcast news and conversations data showed about
10 % relative performance loss [24,85] for data driven feature extraction, even
if the modeling was informed by standard feature extraction steps. In acousti-
cally challenging recognition tasks, with only a few hours of speech available,
well-established preprocessing steps like RASTA filtering [37] of critical band
energies and feature combination can still be beneficial [83].

8 Multilingual Modeling

Cepstral features typically capture formant related information and are a good
starting point to develop acoustic models for any language. As neural networks
have become a major component of recent HMM based ASR techniques, it was
observed that neural network based posterior features possess language indepen-
dent properties to a certain degree. This can be exploited in the tandem approach
[61,77,82]. Taking advantage of multiple language acoustic data poses the ques-
tion of how to handle differing phoneme sets. Language independent mappings
can be done using international phonetic alphabets like IPA or SAMPA [71], or
by various data driven approaches [12,81]. Nevertheless, this often introduces
ambiguities. In another approach, a joint phoneme set was generated by having
language dependent phonemes [32], although this might introduce unnecessary
discrimination between similar phonemes. The inherent layer-wise structure of
an MLP also allows to train the model on multiple languages by sharing only
hidden layers across languages [68], which forces the network to learn a language
independent representation on a deeper level. This multiple output training is
closely related to multi-task training proposed by [13] and to subspace methods
[11]. One of the biggest advantages of multilingual modeling is that the training
can be done without knowing the target language. Thus, system development
on a new, unseen language becomes more efficient and even leads to significant
performance gains. In [87], multilingual features gave relative gains of 9–11% in
WER, and 30–40% in key word search on low resource tasks for a number of
quite different languages within the Babel project [2]. Also, performance benefits
from using more languages, with their relation to the target language becoming
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less important. Even for tasks with large training sets, significant improvements
were observed. Between 3–7% relative WER reduction was observed on broadcast
news and conversation LVCSR tasks for four languages using between 110 h and
320h for training per language, and 700 h overall for training the multilingual net
[88]. In summary, multilingual features and corresponding initialization schemes
provide an efficient acoustic modeling framework for unseen qalanguages, and
could reduce system development time and costs significantly.

9 Adaptation and Normalization

Adaptation and normalization w.r.t. to speaker, environment, or recording chan-
nel usually provides significant improvements in ASR. Using GMMs, vocal tract
length normalization (VTLN), maximum likelihood linear regression (MLLR),
as well as feature space/constrained MLLR (CMLLR), together with speaker
adaptive training work well, and have already been transferred to neural net-
work based ASR successfully [33,69,72]. Although many approaches still necessi-
tate GMMs as target models in the background, optimization within the neural
network structure also is possible [72]. E.g., for the real test set on the noisy,
multi-channel CHiME3 task we observed an improvement from 8.6 % to 6.9 %
WER using CMLLR over an LSTM-based hybrid system and using beamforming
kindly provided by the authors of [40]. I-vectors are a well known low-dimensional
speaker representation used in the domain of speaker recognition/verification,
which can be used to inform neural network acoustic models with speaker infor-
mation. Using i-vectors, in [67] a 5–6% relative improvement in WER over a
DNN baseline trained on already speaker adapted features was obtained on the
Switchboard task. Neural networks can also be used to generate a variety of
adaptation codes, by using speakers or environmental conditions as classification
targets for a network [54,62]. Besides CMLLR, different affine transformations
can be used throughout the network for speaker adaptation [52,96].

10 Neural Network Based Language Modeling

The earliest ANN-based approach to language modeling known to us was pro-
posed in [58] and termed NETgram. However, the first application of ANN-based
language models in ASR only appeared in [6]. While competitive results against
the conventional count-based models were already reported with feed-forward
ANN-based n-gram models, neural networks have become truly popular for lan-
guage modeling only after introducing recurrent neural networks into language
modeling [55]. As opposed to the count model and feed-forward ANN, the recur-
rent neural network effectively can handle unlimited context by compressing it
into a fixed size context vector. This property is an elegant solution to the con-
text length problem which is fundamental in language modeling. Finally, the long
short-term memory recurrent network was first applied for language modeling in
[79], which is considered the state-of-the-art architecture for language modeling
today. In practice, the combination of count-based and neural network-based
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Table 2. Standalone perplexities
on the Quaero English 2012. Train-
ing data of 50M running words.
The results are taken from [46,86].

Model type PPL

4-gram Count 163.0

MLP (20-gram, 4 layers) 109.2

LSTM (2 layers) 98.3

Table 3. Interpolated perplexities and
word error rate on Quaero English 2013 [46,
86]. 250h acoustic training data, 3B/50M
running words for training count/neural
models. CN decoding.

Model type PPL WER[%]

4-gram Count 131.1 10.5

+ MLP (20-gram, 4 layers) 97.2 9.5

+ LSTM (2 layers) 90.5 9.0

approaches gives best results in ASR. Linear interpolation is the most popular
and effective combination method (a small improvement by an alternative back-
off level combination has been reported in [15]). Due to the high computational
complexity of neural language models and the context-induced search complex-
ity, ANN-based language models mostly are applied in a rescoring step using
N -best lists, or lattices [80] generated using count models. Overall, the relative
improvements from a 4-gram count model in perplexity of about 30 % and in
word error rate of 16 % were reported in [78] by using a neural network with two
LSTM layers. Further recent results can be found in Tables 2 and 3.

11 Recent Developments - Integrated Modeling

While neural networks proved a powerful tool in local and sequential classifi-
cation tasks, segmentation and length modeling is still entirely done within an
HMM framework. Although CTC [29] provides a simpler topology, it could still
be seen as realizing a specific HMM topology, where search can be done using
standard HMM-based implementations. Recently, a new approach was intro-
duced to integrate segmentation and length modeling into a recurrent topology
[3]. These so called end-to-end systems separate the input and output handling
into two different models: an encoder, which reads the input and is trained to
compute discriminative features from the observations, and a decoder, which pro-
duces the desired output target sequence label-by-label by utilizing the encoded
features. The decoder includes modeling of label (word) context, thus even inte-
grating language modeling to the extent of utilizing labeled acoustic training
data, while the encoder is designed to generate significant representations that
are neither constrained by input nor output length. The topology of these models
is furthermore closely related to generative RNNs [28] and has been applied to
ASR tasks, already [4,14]. In the decoder, length modeling is done by including
and hypothesizing an end-of-sequence symbol. In its simplest form, the encoder
only produces a single final activation that is subsequently used to initialize
the decoder. However, the performance of these models quickly degrades even
for moderately long sequences (around 10 symbols, depending on the recurrent
cell used) [3]. It is furthermore commonly seen as unfavorable that an output
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sequence of arbitrary size is encoded into a fixed size representation and the
effective capacity of those representations is not entirely understood. To account
for arbitrary input length, several so-called attention-mechanisms were devel-
oped [3,14]. Here, at each decoder step, an expected input is computed as a
normalized and statistically localized linear combination of all features provided
by the encoder. End-to-end approaches usually employ beam search with static
beams of limited sizes; their recognition results do not yet outperform hybrid
HMM approaches [14]. Nevertheless, improvements can be expected from more
dynamic pruning and improved external language model integration.

12 Conclusions

In this work, an overview of recent developments in automatic speech recognition
using neural network based modeling approaches was presented. Approaches for
both acoustic and language modeling already show considerable improvements,
especially using recurrent topologies, and combined with discriminative sequence
training criteria. Already, relative improvements of 30 % and more in WER are
observed compared to standard GMM/HMM models with count-based language
modeling, only. Nevertheless, additional improvements are to be expected. More
independence from e.g. GMM-based model initialization, or separate modeling
aspects like CART would be desirable to obtain more consistent neural network
based modeling. Also, further exploitation of the high potential of neural network
based modeling, especially w.r.t. the integration of recurrent models into the
decision rule, as well as consistent modeling, training, and decoding w.r.t. the
target evaluation measure word error rate seem worthwhile.

References

1. Abdel-Hamid, O., Mohamed, A., Jiang, H., Penn, G.: Applying convolutional
neural networks concepts to hybrid NN-HMM model for speech recognition.
In: IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Kyoto, Japan, pp. 4277–4280, March 2012

2. Babel: US IARPA Project (2012–2016). http://www.iarpa.gov/Programs/ia/
Babel/babel.html

3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: International Conference on Learning Representations
(ICLR), San Diego, CA, USA, May 2015

4. Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., Bengio, Y.: End-to-End
attention-based large vocabulary speech recognition. In: IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), Shanghai, China,
pp. 4945–4949, March 2016

5. Bahdanau, D., Serdyuk, D., Brakel, P., Ke, N.R., Chorowski, J., Courville, A.C.,
Bengio, Y.: Task loss estimation for sequence prediction. CoRR abs/1511.06456
(2015). http://arxiv.org/abs/1511.06456

6. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In:
Advances in Neural Information Processing Systems (NIPS), Denver, CO, USA,
vol. 13, pp. 932–938, November 2000

http://www.iarpa.gov/Programs/ia/Babel/babel.html
http://www.iarpa.gov/Programs/ia/Babel/babel.html
http://arxiv.org/abs/1511.06456


12 R. Schlüter et al.
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25. Golik, P., Tüske, Z., Schlüter, R., Ney, H.: Multilingual features based keyword
search for very low-resource languages. In: Interspeech, Dresden, Germany, pp.
1260–1264, September 2015

26. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout
networks. In: International Conference on Machine Learning (ICML), Atlanta,
GA, USA, June 2013

27. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition withdeep recurrent
neural networks. In: IEEE International Conference on Acoustics, Speech, and
SignalProcessing (ICASSP), pp. 6645–6649. IEEE (2013)

28. Graves, A.: Generating Sequences with Recurrent Neural Networks. CoRR
abs/1308.0850 (2013). http://arxiv.org/abs/1308.0850

29. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural net-
works. In: International Conference on Machine Learning (ICML), NY, USA, pp.
369–376 (2006). http://doi.acm.org/10.1145/1143844.1143891

30. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. 18(5), 602–610
(2005)
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Abstract. This keynote talk presents some ideas about ‘conversational’
speaking machines, illustrated with examples from the Herme dialogues.
Herme was a small device that initiated conversations with passers-by in
the Science Gallery at Trinity College in Dublin and managed to engage
the majority in short conversations lasting approximately three minutes.
No speech recognition was employed. Experience from that data collec-
tion and analyses of human-human conversational interactions has led
us to consider a theory of Conversational Entropy wherein tight cou-
plings become looser through time as topics decay and are refreshed by
speaker changes and conversational restarts. Laughter is a particular cue
to this decay mechanism and might prove to be sufficient information for
machines to intrude into human conversations without causing offence.

Keywords: Interactive speech synthesis · Human-machine-interaction ·
Conversational engagement · Laughter · Interactional entropy · Intrusive
machines

1 Introduction

People talk with machines a lot. Sometimes intentionally, sometimes unknow-
ingly, and sometimes just for the sheer fun of it. We sit in from of our computers
and many of us do actually say things in the direction of that machine, though
not always with the intention of being understood. Sometimes those words are
unrepeatable. Speech-based interfaces are now ubiquitous. Siri, Cortana, Hi-
Google, and the rest, have become tools in our pockets that provide a short-cut
to the internet; saving our thumbs for better uses than typing.

In the Speech Communication Lab (SCL) in Dublin, part of the School of
Computer Science and Statistics (SCSS) at Trinity College (TCD, the Univer-
sity of Dublin), we are designing machines that know how to talk back. Speech
synthesis is an old technology now, and can be found in many places - often
unrecognised for what it is - but it is a rare synthesiser that knows it is being
listened to. Yet how many people can talk to someone without checking that
what they say is being heard, comprehended, understood, taken in?

Our SCL research task is the delivery of information derived from electronic
content in various forms, and our need is to be sure that the person we are
talking to (‘we’ is a machine in this case) has got the message.
c© Springer International Publishing Switzerland 2016
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So we use cameras, movement detection, and tone-of-voice changes; any data
that we can sense from the outside world to inform our computers that . . .
. . . well, in the first place, that there is a person present, and that the person
has functioning ears, and is listening . . . and that he or she can follow what is
being said (i.e., that we speak the same language), and that they are following
mentally . . . and even (one day) that they have understood.

Then we adapt what we have to say to the way that they are taking it in -
perhaps by speaking faster or slower, or by using simpler words, or more intricate
ones - adjusting our style of speech and manner in a way that makes it easier
for the person to follow. That is the goal. This is still work in progress.

As a first step to learning more about how we should be doing this, we
implemented a conversational robot, called Herme, and left it out in a public
space to talk with people for three months. That was some years ago.

2 The Herme Dialogues

Herme didn’t listen; like many people, she spoke a lot and she watched the
person she was talking to, so as to sense their reactions, and then she just
carried on speaking - drawing the interlocutor into her dialogue but not paying
much attention to their replies. She could keep people ‘chatting’ with her for
about three to five minutes before her conversation came to an end. She asked
simple questions like “What’s your name?” and “Why are you here today?” and
waited while they replied, sometimes interjecting a “Really!” or an “Oh?” to
keep them talking. Her main task was to get them, eventually, to sign a consent
form so that we could use the material we were filming of their interaction. By
showing them that she had found their face in her environment1, she managed
to persuade people that she was listening to them. She was certainly watching
them . . . she needed to see when their face stopped moving so that she could
start her next utterance. A very simple technique, but one that we found most
effective.

We collected dialogues from about 1500 people of whom about two-thirds
voluntarily signed our consent-form. All were recorded. Laughter was common.
People were charmed by her voice (like that of a small child) and she was cute,
and told them a joke, and even managed to get them to tell her a joke themselves;
well, a ‘knock-knock’ joke anyway. Anyone can tell a knock-knock joke. And
everyone laughs when they’re chatting. Herme has a cute laugh.

Laughter seems to be a special form of lubricant that keeps the conversations
going, but not all laughter has to do with jokes. People laugh when they’re
embarrassed, when they don’t know what to say (if they are relaxed) and when
they get the point of what you are trying to say to them. Laughs work as a sign
that the conversation is going well. They’re a great signal to process.

1 There was a large screen behind Herme’s stand showing passers-by what she could
see, with a coloured circle drawn around each face in the scene.
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3 Conversational Speech Synthesis

Herme used a very old speech synthesiser, Apple’s ‘Princess’ voice, warped by
compressing the formants and raising the pitch to make it sound as if it came
from a smaller body. We used a hardware filter for this2 but it is trivial to do in
software nowadays.

For laughs, she could only say “tee hee hee” and “ho-ho-ho” but it was
enough. People responded to her laugh with great warmth and it relaxed them
enough to keep them listening through the next stage of her spiel.

Herme was a testbed for one type of conversational interaction, but the need
for more flexible conversational speech synthesis is probably great and growing.
Machines must learn how to speak. They can talk already; talking machines have
been around for a long time, but speaking is different: speaking needs a partner.
A partner is not the same as a listener. Students listen when the professor speaks,
but that is a complicated form of partnership. Most people speak in informal
environments, and they intersperse their speech with chat.

We have shown that a machine can chat with a person - Herme was proof
of that - but it was an unbalanced conversation. The robot took the lead and
the conversation didn’t get beyond the early getting-to-know-you stages. She
couldn’t have held a sustained conversation or spoken easily with the same people
on different days without being caught out.

The machines that we use to deliver our spoken digital content will need to
have a memory of what has been said (or spoken about) and will need a sense
of timing or knowing when to speak. There are strong social rules for that.

3.1 A Talking Fridge

Let’s imagine the smart home of the near future. Each room is wired up with
sensors that stream information into the home-server (a computer that links
the home with the outside world of information). It will probably be part of
the fridge. The refrigerator is the one device that doesn’t get switched off when
people go out so there’ll be a constant supply of power. The fridge is also in the
place where people gather most. They might relax in front of a large screen but
they probably eat round a table in the kitchen. It’s the family place.

Like Herme, the fridge (or the home-server, an interactional device) can mon-
itor what is going on in the room around it. It doesn’t have to listen to what
is being said or talked about; just know enough about who is doing what to be
able to interrupt with a message if it has one. If the people around the table
are deep in conversation (i.e., their heads are moving in a certain pattern and
sounds are being made), then it might be wiser to wait for a lull in the talk
before butting in with what it has to say. If they are watching the news, then it
might be better to wait until the adverts come on.

It would good for our machine if it had a notion of conversational states and
of the types of engagement of each conversational participant in the real world
around it. The fridge needs awareness.
2 A Roland Sound Canvas.
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3.2 Entropy (An Interlude)

Erwin Schrodinger [5] was at TCD when he gave his lectures on “What is life?
The Physical Aspect of the Living Cell”3. He said:

Every process, event, happening - call it what you will; in a word, every-
thing that is going on in Nature means an increase of the entropy of the
part of the world where it is going on. Thus a living organism continually
increases its entropy - or, as you may say, produces positive entropy - and
thus tends to approach the dangerous state of maximum entropy, which is
of death. It can only keep aloof from it, i.e. alive, by continually drawing
from its environment negative entropy -which is something very positive
as we shall immediately see. What an organism feeds upon is negative
entropy. Or, to put it less paradoxically, the essential thing in metabolism
is that the organism succeeds in freeing itself from all the entropy it cannot
help producing while alive.

Conversation is a living organism. Entropy kills conversation. Laughter reduces
entropy by resetting the topic, and so keeps conversation alive.

He also said (in the same lectures):

The disintegration of a single radioactive atom is observable (it emits a
projectile which causes a visible scintillation on a fluorescent screen). But
if you are given a single radioactive atom, its probable lifetime is much less
certain than that of a healthy sparrow. Indeed, nothing more can be said
about it than this: as long as it lives (and that may be for thousands of
years) the chance of its blowing up within the next second, whether large
or small, remains the same.

but this is a matter for discussion elsewhere.

3 Lectures delivered under the auspices of the Dublin Institute for Advanced Studies
at Trinity College, Dublin, in February 1943.
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4 A Notion of Conversational Entropy

After Herme, we became more interested in laughter and especially how it
punctuates a discourse. Francesca Bonin’s PhD [2] examined the structure of
conversational interaction and explored the relation between social signals and
discourse phenomena such as topic changes, investigating whether social signals
have a discourse function in addition to their social function. Different analy-
ses that investigated the temporal dynamics of laughter, backchannels, silences
and overlaps, were explored, finding a relation between topic changes and a
decrease of social signals. Specifically, it was found that immediately after a
topic change there is a significant drop in social activity, defined by her as inter-
actional entropy: “The interactional entropy of a segment x is defined as the
number of occurrences of social signals in x” (ibid p.71).

Through comparing topic changes in two corpora of spontaneous spoken
interaction, she concluded that a constant trend emerges in both TableTalk and
AMI: topic terminations (wt) show a significantly higher presence of signals if
compared to topic beginnings (wb). In AMI [4], among all the distributions of
frequencies of laughter, overlaps, silences, lexical and non-lexical backchannels
in wt and wb the non-parametric Wilcoxon test rejects the null hypothesis of
wb = wt and validates the alternative hypothesis of wb < wt, p < 0.0005. In
TableTalk [1] the same applies to laughter, overlaps, and lexical backchannels.
In other words, topic terminations reveal higher interactional entropy than topic
beginnings.

In fact a drop in social signals appears to occur immediately after a topic
change when the interactional entropy [. . . ] is reduced. Participants show
the tendency to limit the interaction immediately after a topic change,
probably to leave the floor to the speaker who has introduced the new
topic (ibid p.128).

She clearly showed that after a topic change a decrease of interactional entropy
occurs, and concludes that this information might be used to better understand
the discourse structure via non-linguistic information such as laughter, overlaps,
backchannels, and silence, and thereby shed new light upon the discourse func-
tionality of social signals.

It seems that introducing a new topic reduces the entropy of a conversation
(‘feeding it’, as Schrodinger would say). Conversely, by observing the amount
of non-verbal behaviour in speech (particularly laughter) we can estimate the
likelihood of a forthcoming topic change, and thereby enable our device to inter-
rupt at a timely point without having to listen in on the actual content of any
conversations.4

The system can be aware of its environment through sensing movement and
the dynamics of vocal activity around it. It doesn’t need to listen. Perhaps that is
what many people do too? Conversation is a uniquely human form of behaviour.
4 The idea that household devices might be capable of eavesdropping on nearby con-

versations is rightly anathema to many kitchen owners and occupants.
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5 Social Interactions and Signal Processing

For our system though, a conversation is a data source; a signal that is available
to be processed. With Herme, we avoided the use of ASR (automatic speech
recognition) for several reasons; it often fails in a noisy environment, it needs
specialised domain dictionaries and language models, and it is intrusive. It is the
last point that is of most concern to us now. Herme was in a public space and
engaged in trivial social chat with a large number of unknown people. Nothing
sensitive or really personal was discussed. In the home though, the situation is
different. The potential for misuse of available information has been much in
the news recently and people in general are now becoming quite wary of devices
that leak or pass on information. The law may be clear (voluntary sign-in usually
absolves the supplier of legal responsibility), and the ethical issues are certainly of
concern to most scientists, but the technology must be made watertight against
leaks if our work is to be trusted in society-at-large.

5.1 Natural Human-Machine Conversational Interaction

The ‘listening & watching’ fridge that may host our technology in the future
should be able to observe the goings-on in its environment much as a pet dog
may watch and be aware of the happenings of the home. It will of course have
to ‘listen’ carefully when commands or instructions are given, but when in ‘sleep
mode’, it should not be hearing everything.

The work presented above may offer a solution to this conundrum. If the
device keeps a measure of the entropy of conversations in the home, without
listening to what is being said, through processing of non-verbal and behavioural
information, then it can perhaps be considered safe.

At the same time, the amount of processing that is required from a ‘conver-
sational agent’ can also perhaps be significantly reduced; if the machine only
has to devote energy to processing linguistic/semantic propositional information
at certain isolated points in the signal then its energy can be greatly preserved,
and more time may be devoted to the arduous symbolic processing needed to
‘understand’ speech.

By maintaining an awareness of the social energy in its environment, perhaps
our speaking device will appear well-mannered, only interrupting when necessary
and maybe often with a delicate or appropriate sense of timing? It might be far-
fetched to imagine the machine joining in with a joke as Herme did, but if it has
the sense to ‘understand’ what processes are happening in the human sphere,
then like a pet cat or dog at home, it might be a welcome guest.

6 Conclusions

This paper describes some ideas to be presented in a Keynote at Specom 2016.
The invitation tentatively specified “Overview of speech technology results, chal-
lenges, trends, promising directions in Social Interactions and Signal Processing”
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as a title. We chose instead to present some current work from our lab in Dublin
as the basis for speculation about higher matters. The facts of current research
are perhaps well represented by other papers in these proceedings.

The concept of entropy was introduced at the beginning of the previous
century and has been well-understood by physicists, chemists, and information
engineers, among others, but has failed to take hold in the humanities. This is
sad. Our entire world is subject to entropy, and its concepts may throw light
on more than mere mechanics or thermodynamics. The actions of people in
society, and particularly the structured actions of participants in conversation
are subject to the same laws, and the same probabilistic processes.

Addendum Gibbs’ definition of free energy : (something good to think about)

the greatest amount of mechanical work which can be obtained from a given
quantity of a certain substance in a given initial state, without increasing its
total volume or allowing heat to pass to or from external bodies, except such
as at the close of the processes are left in their initial condition [3].

Fig. 1. Graphical representation of the free energy of a body. The figure shows a plane
of constant volume, passing through the point A that represents the body’s initial state.
The curve MN is the section of the “surface of dissipated energy”. AD and AE are,
respectively, the energy (ε) and entropy (η) of the initial state. AB is the “available
energy” (now called the Helmholtz free energy) and AC the “capacity for entropy”
(i.e., the amount by which the entropy can be increased without changing the energy
or volume). From Gibbs, J.W. (1873). “A method of geometrical representation of
the thermodynamic properties of substances by means of surfaces”. Transactions of
the Connecticut Academy of Arts and Sciences 2: 382–404., Public Domain, https://
commons.wikimedia.org/w/index.php?curid=3279793

https://commons.wikimedia.org/w/index.php?curid=3279793
https://commons.wikimedia.org/w/index.php?curid=3279793
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Abstract. Until a few decades ago, machines talking and understanding human
speech were only the subject of science fiction. Nowadays, Text to Speech (TTS)
and Automatic Speech Recognition (ASR) became reality, but they are still being
considered to be fancy. Automotive infotainment is a selling point for car manu‐
facturers, it is a symbol of being hi-tech, and car commercials often feature the
display of the head unit for a few seconds. As avoiding Driver Distraction has
grown a major design aspect, ASR is becoming trendy and almost compulsory.
But let us see how far we have gotten. In the first part, this talk will summarize
the most popular Speech features in today’s car navigation systems, and will look
into the underlying technology, solutions and limitations widely applied in the
industry. We will mention typical context designs, dialogue systems and address
search, and we will show how the common technology leads to typical HMI
solutions. We will point out the possibilities and limitations of on-board and
server-based recognition, and consider why we need to resort to exclusively
offline solutions for a while in this industry. At this point we will have an overview
of the ingredients, so the talk will focus on problematic and sub-optimal ASR
features requested by automotive manufacturers, explaining why they negatively
affect recognition accuracy. A workaround often leads to troublesome and seem‐
ingly unnecessary questions for the user, so it is not easy to compromise. In the
last part, we will examine a certain address search scenario which is trivial for
users, and is feasible with a server-based ASR, however being an open question
when done offline.

Keywords: Car navigation · On-board speech technology · Connected car

1 Infotainment in a Car

Entertainment with information technology has entered vehicles: airplanes, trains, buses
and cars. You have a couple of loud speakers, a radio and a digital audio player at
minimum. But contemporary cars tend to have multiple displays. A main display in the
dashboard, the smaller cluster display behind the steering wheel, and on higher grade
cars there may be displays in the back of the front seats, for the passengers. Also,
contemporary cars tend to have multiple microphones. What to do with so many
displays, microphones and loud speakers? Automotive manufacturers want to offer more
and more. They want to provide a cutting edge driver experience: it should be natural,
fun and off course it should be safe. They want to entertain you, but also, they want to
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protect you. Today, the vision is an intelligent car integrated to your everyday life via
cloud-based technology, caring about your well-being and safety. The industry regards
speech recognition as having the fun and safe property, and according to the gossips
about upcoming regulations, lawmakers do.

Another motivation in the car industry, which is affecting in the opposite way, is that
manufacturers want a 5 to 10 years of life cycle for their products. The investment per
unit is considerable, so it is in the OEM’s interest to have the same model on the market
for a couple of years. It is not like the mobile phone industry, where several models are
released within each year. Car makers typically negotiate a ten years support with a
navigation provider, though mainly content update is expected. The car industry has a
certain inertia, changes come more slowly.

2 Most Popular Speech Features in a Car

The first line-fit speech-based features were telephony and turn-by-turn navigation. With
the development of the hardware and navigation data, the list has grown longer in the
recent decade, but although ASR appeared, telephone and turn-by-turn navigation are
still considered to play a key role in avoiding user distraction.

3 Talking Cars: A Few TTS Questions in Car Navigation

3.1 Who has the Right to Speak?

In an automotive head unit, a few applications and their modules are competing for the
access of the TTS engine. The speech engine is a shared resource, and components have
to request for an exclusive access, tagging the request to let the system know the inten‐
tion. It is up to the HMI designer to prioritize components or intentions. Here are some
generic rules that are considered, often contradicting each other. Unfortunately, it is not
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possible to have everything at the topmost level. Each customer has some reasoning why
the priorities should be like that, for example that surveys had proven so. The software
has to have the flexibility to support whatever the customer wants.

• Prompts should not be interrupted. (Let us queue requests instead, manage priority
and timeout. Sources should be able to create sentences with various verbosity
levels.)

• An incoming phone call is very important, because it requires immediate high priority
actions.

• Phone calls should not be disturbed with voice prompts. (Short sound effects may be
all right, letting the user about what is happening meanwhile.)

• Warnings must have high priority, due to safety reasons. (The whole announcement
flow may have to be rearranged.)

• Speech recognition sessions may be interrupted, so that the user does not miss impor‐
tant events.

• Speech recognition sessions should not be interrupted, as the driver is just about
expressing their wish.

3.2 Pre-recorded Voice or TTS?

Although technically different only by granulation, pre-recorded voices and a TTS voice
have different pros and cons. A pre-recorded voice, although more flexible regarding
the sentence collection, is limited to a scale of available languages of a particular TTS
engine. A pre-recorded voice requires a real speaker, a “talent”, whose voice is recorded
in audio files per word or expression. Thus, it is possible to implement any languages
or dialects with fine-tuned, high quality material, at the cost of storage space and flexi‐
bility. An important feature is missing: being able to read out place names. (With the
notable exception of Japan, where a map supplier recorded a raw audio data filling seven
DVD’s. This data is rarely used due to its high price.) In general, a TTS voice being able
to announce street names is considered to be more desirable, but celebrity or themed
voices certainly add some fun factor. What is for sure is that having excellent prompts
is expensive.

3.3 Timing and Verbosity

In turn-by-turn navigation, automotive customers often define the distances from the
maneuver, at which the voice guidance has to speak. Then, it is a typical task for the
navigation to generate a similar sentence about the maneuver at different verbosity
levels, e.g. depending on how far the maneuver is:

• “In 100 m turn right on Wellington St West, then take next left.”
• “In 70 m, turn right on Wellington St West.”
• “In 50 m, turn right.”
• “Take the next right.”

28 A. Vékony



The aim is to inform the driver in time so that they have the chance to react. The algorithm
needs to measure how much time a given sentence takes a TTS engine has to support
that. If it is not supported, the navigation algorithm has to estimate the time, based on
the sentence itself. Observe the difference between these two possibilities:

• “Turn right in 50 m.”
• “In 50 m, turn right.”

It is the matter of localization, and customers may prefer one of them, but there is an
important difference regarding timing. The sentence has to be aligned so that the display
shows exactly 50 m by the time it is announced. The first sentence tells the user what to
do, and only then does it mention the distance. However, the user may miss the direction,
because they are not prepared to receive the information after a long silence from the
voice guidance. With the second sentence, the direction is mentioned in the end, leaving
more time for the user to prepare. A popular trick is to play a short sound effect, have a
little pause and only then comes the announcement. But still, the exact time is to be
calculated, at which the whole process starts. The heuristics rely on the data delivered
by the hardware, but current speed and direction may change unexpectedly, leading to
misaligned announcements (and bug reports).

3.4 Is Phonetical Data Always Beneficial for the Driver?

Phonetical data is meant to polish the pronunciation of the TTS. (Additionally, it is an
essential ingredient for the ASR content.) Although map suppliers provide an increasing
phonetical coverage of place names, it is not evident that users benefit of this feature.
As a native speaker, they definitely do, but driving abroad may be a challenge, when
you have to match what you hear with what you see. The original pronunciation in a
voice guidance announcement may not help you to identify foreign street names - maybe
it would be better to let the engine make a guess without phonetics - just as the user
would. The best practice is to have it as an option in Settings, with Enabled as a default.

3.5 Grammatically Correct Monolingual Sentences

Another aspect of the dilemma is that many languages require the alteration of names, when
fit in a sentence. It is so easy to say in English: “Traffic jam ahead on S Franklin St” or “I
heard S Franklin St. Is that correct?” where S Franklin St, Chicago and IL are to be substi‐
tuted with their corresponding phonetical transcription. But what about Russian or German?
“Traffic jam ahead on Presnenskiy Pereulok” is problematic, because “Пpecнeнcкий
пepeyлoк” becomes “нa Пpecнeнcкoм пepeyлкe” in the Russian sentence, which does not
have its phonetical form in the data. So the only thing to do here is to play the string as is,
and let the TTS engine guess the pronunciation. This use case is somewhat easier in
German, where “die Bahnhofstrasse” has to be fit with the correct definite article: “Stau vor
an der Bahnhofstrasse”. But in general, having a grammatically correct sentence with
perfect pronunciation requires deeper linguistic processing, which does not usually happen
in this industry. It is up to the creativity of translators, to find a sentence where the original
form can be used. Then the phonetics is positively useful.
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3.6 Multilingual Sentences

Lately, TTS engines feature the ability of being able to use more languages within an
announcement. This is not trivial, even from the perspective of the integration in the
navigation. Here are some challenging use cases.

• English name in a Chinese sentence - different scripts are be involved.
• Polish driver in Germany - no Polish phonetics available in Germany.
• French driver in Spain - there is phonetical coverage in Spanish, but it is a language-

dependent phonetical alphabet.

Each TTS speaker has a list of supported languages, and the navigation software has to
select orthography or phonetics accordingly. The engine is capable of using the phonet‐
ical alphabet of a few selected languages. The pronunciation is quite good, but nowhere
perfect. It sounds like when a German person is speaking Russian name. The integration
of such feature is easier if the TTS engine supports a language-independent phonetical
alphabet.

3.7 Sound Quality

Human ear is very tolerant human speech is well intelligible in the worst conditions - it
may be a result of our evolution. Still, car manufacturers want to provide the best possible
quality. A voice guidance announcement at the quality of 22 kHz, 16 bit mono is accept‐
able on a small speaker, but it may sound cheesy on the loud speaker system of an
expensive car.

As of 2016, the TTS speakers in a typical car are neutral, calm and polite. Embedded
TTS engines are offered in scalable packages regarding footprint, audio format and
expressiveness, it is the matter of disk space, processing capacity and price. But TTS
engine suppliers are developing cloud-based solutions with more interesting qualities,
trying to make the dreams of automotive manufacturers come true. Upcoming connected
digital assistants feature semantic analysis, advanced machine learning based on neural
networks and artificial intelligence techniques. The purpose is to help the driver keeping
their eye on the road, and reduce the cognitive load of the interaction with the machine.
The more natural the interaction, the safer the vehicle - this is what the main motivation
is. As nothing is more natural to a human then speech, ASR is regarded as one of the
safest means of communication in a vehicle.

4 When the Driver is Speaking: ASR Solutions in Navigation

An ASR context is the representation of the search space, that describes the recognizable
elements. The aim is to identify the driver’s intention uttered in a certain language or
dialect, so that the system can perform an action accordingly. Before looking at chal‐
lenging scenarios, let us quickly run through the techniques used in automotive speech
recognition, as of 2016. Unfortunately, we are living in the dawn of speech recognition,
the available solutions in the industry is rather limited.
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4.1 Contexts for On-board Recognizers

In case of an on-board recognition, the whole search space is phonetized and optimized
off-line. Then, the generated contexts are deployed to the head unit, in order to provide
the least possible processing at run time. As part of this optimization, it is typical to
assign unique numbers to phonetic buffers, which represent intentions or names, so that
the context can get rid of the orthographic form. After the recognition has returned a
hypothesis list as a vector of ID’s, a pre-generated ASR dictionary is used to map
identifiers to intention tokens or real names.

4.1.1 Voice Commands
In case of simple voice commands, even if the context contains alternative phonetics,
they are typically mapped to the same ID to represent one certain intention, like
ASR_KEY_PARKING. Then this token is localized in the HMI to be displayed or to
be read back for the driver.

The essential rules about voice commands are:

• The language of voice commands must match that of the GUI.
• Whatever is displayed in the GUI as a caption, it has to be represented in the context.

(If the driver reads “Fuel Station”, then it is not enough to recognize only “petrol
station” and “gas station”.)

• Localize the voice commands so that they are distant enough phonetically. (It is
unfortunate to have “Answer” and “Cancel” to accept or ignore an incoming phone
call, because they are easy to be misrecognized.)

In most Speech UI designs, the hypothesis list or voice command is never displayed for
the driver, the item with the best confidence level is accepted instead, if the confidence
is above a certain threshold.

4.1.2 Destination Entry
A wildly used approach is to organize the context in a way, that the address structure is
defined for the country in terms of fields (like state-city-street), and then all the valid
addresses are listed. Then the phonetical data is used to generate ASR data for this region,
then a hypothesis is a well-structured address, consisting of fields. It is also possible to
select a block from this context, like street recognition York, AL.
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In scenarios like this, where larger lists are involved, localized place names are not
included in the context. Names are represented by numerical identifiers, and the mapping
is described in ASR dictionaries, localized in a certain language. (E.g. there are alter‐
native names in Switzerland in multiple languages, and unless the recognizer has multi‐
lingual capabilities, you cannot have Genève in a German context.) The best practice is
to assign the same ID to homonyms, e.g. all of the cities called Saint-Julien get the same
ID, and all of the places called Saint-Junien have another common ID. The first question
for the driver after resolving the ID’s is whether they want Saint-Julien or Saint-
Junien, and the selected name is used as a keyword in an address search on navigation
side. Then the navigation lists the matching addresses, disambiguating the name.

4.1.3 Address Points
Note that, house numbers and address points are not represented in the previous design,
as adding a house number field would make the context explode. Instead, address points
are recognized with an unconstrained grammar, meaning that it implements a relatively
free dictation along predefined rules, and it is optimized for recognition accuracy. The
result may be an invalid address point, which has to be handled later on. E.g. a Russian
address point grammar would look like this.
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4.2 Contexts for Server-Based Recognizers

Server based generic recognizers typically return simple text in the hypothesis list, paired
with some confidence scores. The client cannot define a certain domain, only a language
is to be set. In this scenario there have to be two contexts. A rather large and complex
context on server side, and a smaller context on client side. The server is powerful with
great processing capacity, so the search space may be huge, not necessarily described
in the form of lists, as flexible grammars and statistical models may be involved. The
capacity on client side is more modest, so the task is restricted to string parsing, finding
things in the output that are meaningful in the realm of navigation. Although the user
can say anything eventually, it is important to point out that it is always clear on client
side what the driver is expected to say. The reason is that the system is not listening
continuously, we either have a Push to Talk (PTT) button or a wake up word. The
navigation is not prepared to get lyrics or food ingredients, but it is prepared to get some
navigation related voice commands, place names, an address or some combination of
these. With a clever string parsing, it is possible to implement some NLU-like behavior.
(Natural Language Understanding).

4.2.1 Voice Commands on Client Side
In order to extract the driver’s intention from the text result on a basic level, it is enough
to define certain keywords, and have some heuristics to measure the confidence. Confi‐
dence levels coming from the server are not enough. Even if the server is quite sure the
user said “Heat olive oil in a large Dutch oven”, it’s not meaningful, it is out of context.
But if the result text is “Is there a car park around here?” or “Find parking around my
destination.” we can have an algorithm to make the user happy. In these cases, the basic
POI categories are regarded as simple voice commands.

4.2.2 Destination Entry on Client Side
It is possible to implement more sophisticated destination entry with a server-based
recognizer, because the server has such a large search space. Recognition-wise, an
utterance may contain a command, a POI brand name and a city/suburb name, like
“Drive me to a Shell station in Berkely, MI.” Although it is not trivial to parse this string
on client side, the processing complexity cannot be compared that of phonetizing and
typing the utterance.

5 Dialogue Systems in a Car

The dialogue between user and the system involves a series of voice prompts and
answers from the user, refining the data in order to define a certain action. There is a
trend of replacing the usual speech menu with an all-commands-at-top-level solution.

It is very common in the industry to create a UI flow dedicated to speech recognition,
separating them from the corresponding haptic interface. In an ordinary GUI, it is
acceptable to feature lots of visual information in a single screen, but the Speech UI is
typically streamlined to be easy to comprehend. Although distraction is a concern,
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manufacturers often expect multi-modality: you can control the system by either speech
or touch, and it is expected to implement a fluent transition between the two worlds.
(People may want to use voice destination entry before even starting the engine, simply
because it is faster than typing all of those historical names. Still, the UI flow has to be
the same no matter if the car is moving or not.)

5.1 Professional Approach

The leader speech engine provider in the automotive market does not only offer the basic
TTS and ASR engines, they also offer the service of providing a customized dialogue
system. This is quite attracting to automotive Tier1’s because they get a professional
service, which has proven in many products for many cultures. Another advantage is
that the whole head unit becomes ASR-capable, as the Professional Service covers a
couple of domains.

This approach is rather expensive, though, and the reason is not only the cost of this
service. A unique property of this approach is that the speech flow is controlled by the
Dialogue, and not by a GUI flow consisting of screens. The Dialogue keeps track of the
details of the topic, and asks more questions if necessary. So from the perspective of
integration, an address search by speech scenario is one of the most complex things on
an automotive head unit. There may be multiple parties involved:

• Map supplier
• Speech engine provider, often implementing a speech-only dialogue system
• (Optionally, another professional speech company, adding value to the basic TTS

and ASR engines, sometimes also supplying the ASR graphical interface.)
• Automotive Tier1 providing hardware, and the graphical interface
• An IT company providing the OS or communication between applications.

The address search dialogue requires the communication between the dialogue system
and the navigation, running through the software layers in between. So when a modifi‐
cation is necessary, there are multiple layers involved, multiple parties with whom the
matter has to be discussed. So such ASR projects have a rather long integration phase.
Off course, after a larger investment in the first product in a series, other regions may
require a shorter development.

5.2 Unique Dialogue System on Navigation Side

Lower cost projects require speech features only on navigation side, generally excluding
other applications. In these cases, the TTS and ASR engines are integrated by their
provider, they are in the navigation app or in Tier1 software instead. Since the speech
UI and GUI is also there, this approach has less integration cost. This approach is more
demanding for the integrators, requiring a deeper understanding in speech technology.

34 A. Vékony



5.3 Similar Designs in the Industry

Although automotive manufacturers are eager to differentiate their products by custom‐
ization, there is a certain standard in the industry. Manufacturers design their own
appearance, menu structure and speech error handling, but since the underlying speech
engine is the same, they end up at about the same level of quality. It is true that the main
speech technology provider improves the engine, continuously increasing accuracy and
the language portfolio, but this is available to all automotive OEM’s. As a result, no
matter who implements the dialogue, navigation related ASR content is generated on
navigation side, and similar context designs lead to the same recognition accuracy. And
the limitation of offline contexts lead to similar refinement questions for the user, leading
to similar HMI flows. On the other hand, the professional dialogue approach has a certain
set of recommendations and best practices, which affect in the same direction.

6 Limitations and Sub-optimal ASR Features

6.1 Connected Cars are Coming Soon

If the infotainment system in a car has access to external data, then it may be regarded
as connected. However, in the strict meaning a connected car has access to resources on
the Internet. The possibilities of a connected car are very exciting, almost all of the usual
features can be greatly improved with the processing power and knowledge base of
distant servers. Still, as of 2016, the era of connected cars has not come. As there are
huge areas without mobile net coverage, and mobile charges are rather pricey, car
manufacturers still not willing to provide sufficient hardware. However, it is possible to
use the driver’s mobile phone for connectivity, either with direct HTTP based inquiries
to certain data sources, or via a branded companion application. In urban scenarios this
may work, and it may provide improved functionality.

This kind of hybrid solution seems to be the best approach, but major companies are
reluctant to provide features that behave in a different way without an Internet connec‐
tion. The main reason is that drivers are used to a certain flow, and it is disturbing to get
something else sometimes. We may argue with it, and the future is inevitably connected,
but still, providing offline solutions is compulsory in this industry.

The limited size of the content, limited amount of memory and the limited processing
capacity lead to significant restrictions in the embedded on-board speech recognition.
We have to find the balance between tolerable response time and recognition accuracy.
Following the recommendations from the ASR engine provider, it is possible to get the
optimum from this limited system. Still, automotive customers are often not willing to
compromise, they ask for sub-optimal use cases, which then lead to bug reports and
unnecessary cycles in the development. In some cases, that certain feature is modified
even in the first model in the series, and sometimes it happens only in 2.0 or higher. Let
us mention a few problematic scenarios in the embedded on-board recognition.
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6.2 Separate Address Recognition and Address Disambiguation

Although among engineers there is a general consensus about the best practice,
customers sometimes want to get rid of unnecessary questions for the driver. Assigning
the same ID to homonyms is a necessary step in optimizing recognition accuracy for
large field contexts. This means that the recognizer is unable to differentiate among cities
of identical names or streets of identical names. For instance, the driver says “5 Church
Hill London”. The recognizer does not differentiate instances of Church Hill, they have
the same ID throughout the country. In the dialogue, the first question typically refers
to phonetically similar ASR hypothesis list:

(1) London
(2) Longdon.

Once the driver selected London for instance, then the matching addresses are looked
up in the map database, and there is a second question if the address is ambiguous:

(1) 5 Church Hill, Winchmore Hill (London) N21 1
(2) 5 Church Hill, Wimbledon (London) SW19 7.

Automotive partners would like to have these two questions in a single list:

(1) 5 Church Hill, Winchmore Hill (London) N21 1
(2) 5 Church Hill, Wimbledon (London) SW19 7
(3) Church Hill, Longdon (Rugekey) WS15 4.

Looking at this example, this sounds reasonable. The problem is that in Europe, there
may be dozens or even hundreds of places with identical names. There are 109 places
in France called Saint-Julien and more than 200 places called Berg in Germany.
Although only 9 of the 109 Saint-Julien’s have that exact name, the rest have Saint-
Julien as an alternative name, so they should be represented indeed. The separation of
the hypothesis list from the address disambiguation list is necessary, because ASR is
dealing with phonetics (or even orthography), so for the sake of accuracy, the only thing
the recognizer has to decide whether it is London or Longdon, Saint-Julien or Saint-
Junien. With one-shot address entry over a field context, there is a geographical-based
connection between the fields, but this is merely for the sake of accurate one-shot recog‐
nition, to be able to decide what the user wants. And then, let the navigation do the
address search job.

6.3 Recognition of All Address Points in One-Shot

In Western Europe and North America, house numbers are simple integers, however
they may be spelled in a different fashion, like digit by digit or grouping digits. Although
recognizing the house number digits alone would give pretty high confidence, pairing
the unconstrained grammar with the large field lists will decrease the confidence of the
address. And as one-shot address entry is expected so much in car navigation, this
decrease is tolerated. The situation becomes more complicated in cultures where the
house number describes an address point which is not necessarily accessible by car,
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lying in a pedestrian area, in the certain side of a house block. We mentioned the house
numbers in Russia, but could also mention Poland, Taiwan, Korea, etc. The more
complex an address point system is the less accurate one-shot address entry becomes.
The worst scenario we came across is the addressing system of India, where a wide
variety of digit-letter combination exists, separated by two special characters, which
must also be recognized. (“-” is “dash”, “/” is “by”.)

The result is a disaster, and all we can do is separate the address point recognition from
the rest of the address. Actually, the most accurate method to recognize such strings
currently is the building of spelling trees. Unfortunately, with this very popular ASR
engine, spelling trees cannot be used in a single recognition with large field contexts.

6.4 Address Search with NLU at Top Level

NLU at top level is a common feature in navigation. It is convenient for the user: simply
press the button and say what you want. With the professional approach, it is imple‐
mented with statistical language modelling. By training the NLU buffers, and processing
a gate command to branch to a relevant domain, it is possible for the driver to say
“Destination 121 Jackson St, Trenton, NJ” or “Drive me to 121 Jackson St, Trenton,
NJ”. There are more problems here. The address recognition involves a large list, which
is demanding enough. Then the accuracy is decreased with an unconstrained house
number recognizer, which may consume some of the syllables by mistake. And finally,
there comes the audio of the voice command. The feature vector is extracted from the
utterance, and the vector is processed against multiple contexts, but the NLU approach
allows uncertainty in the voice command. So the syllables of the command, and the
syllables for the unconstrained grammar definitely reduce the recognition accuracy of
the large list.

By removing NLU and restricting this voice command to a single expression
(“Destination …”) would help, but then the driver would have to remember that certain
phrase. For optimal accuracy, two separate utterances are required: a command to enter
address entry mode, and another one to recognize the address.

6.5 Places in a City

The typical approach for POI category selection, POI brands and addresses involves
large lists, and alone they are all feasible with embedded recognition. But automotive
customers would like to have the convenient feature of having the place and the city in
a single utterance: “Shell station in Berkeley, MI.” This is natural for the user, and it is
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generally available in a cloud-based environment. People are used to it in the world of
smart phones. However, in case of embedded recognition, this feature is rather chal‐
lenging, as there is size limitation on ASR content. What projects do is they pair the POI
context and the address context, creating a very large search space, as those two contexts
are independent. This leads to really bad recognition results.

The easiest solution is to implement this feature in two questions: “What place?”,
“In what city?”, but customers are unwilling to accept this one. Another solution could
be to sacrifice some space, and generate a dedicated large field context, listing all the
places with city names per state: < place > <city > <state >. Such a context returns
valid hypothesis items, because this is guaranteed at compilation time. And it has optimal
accuracy. Unfortunately, the size of such content file is comparable to a full one-shot
context, so the Place in a City feature is a challenge.

6.6 Step-by-Step Address Entry with the One-Shot Context

The aforementioned content size reasoning leads the speech engine provider to develop
the technology to use the same content for one-shot and set-by-step recognition. This is
a workaround, having some drawbacks, but the result is quite satisfying, so this solution
is featured in millions of cars. The context is optimized for one-shot address entry,
homonyms have identical ID’s. And when it comes to step-by-step, and the city is
selected, the streets of a super Saint-Julien is activated: all the streets in the union of
Saint-Julien’s. Suppose the user has disambiguated the city, and specified one certain
Saint-Julien. But then, certain streets names in the street hypothesis list may be invalid
in that certain city. What happens if the user happens to select that one? The workaround
is that the navigation has to filter the hypothesis list, removing non existing addresses.
And what happens, if all of the elements in the street hypothesis list belong to another
city? The problem is that automotive ASR systems typically show the best 3 or 5 items,
and phonetically similar items may push at the top results.

7 Open Questions

The previous scenarios were problematic, but there is always a workaround, and despite
their drawbacks they are applied in the car navigation industry. As a last topic, let me
mention two problems that the industry is facing, without a satisfying answer in 2016.

7.1 Address Entry in India

Several languages are spoken in India, and although many of them are related, they
cannot understand each other. The common language is English and Hindi, so these
languages are suitable for address entry by speech. But a speaker of one Indian language
does not know how to pronounce a name in another language, so users are guessing
when navigating to another part of the country. We can state that address entry by speech
is only feasible if the expectation of the user meets the expectation of the recognizer. A
viable approach could be if we used phonetics for well-known places, and have the
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engine guess everything else. Unfortunately, this question is not decided yet, there is no
best practice here. The customers should not expect to get a decent voice destination
entry in India, not even in English, not even separating the address point from the one-
shot recognition.

7.2 Fixing a Wrong Address in the USA

Here comes the problem that gives the biggest headache to engineers. It’s not about a
multilingual scenario or exotic languages. It’s about the long streets of the United States,
which often run through more suburbs. Here is the challenge: “Even if the user speaks
an out of context combination, the systems has to intelligently offer an existing one.”
People may be not sure about the suburb, points of the compass or read type. What really
counts there, is the house number, and the partial street name. So when the confidence
level for the city is lower, we can guess that the driver said something else, and start
look for similar places within a certain radius.

Examples:

• The driver speaks “L”4490 Buckingham Avenue, Birmingham, Michigan” then the
system has to realize that it is actually 4490 Buckingham Road and belongs to Royal
Oak, so the system has to offer “4490 Buckingham Rd, Royal Oak, Michigan”.

• The driver speaks “6412 South Telegraph Road, Redford, Michigan” then the system
has to realize that 6412 belongs to North Telegraph Road and is actually in Dearborn
Heights, Michigan as they all belong to Detroit, Michigan.

It is feasible with a server, just try it in one of the net search engines. But what can we
do if the spoken address is out of context? Then the recognizer will return with something
phonetically similar and in-context. To understand this, let us look into a small context,
like this: {A, B, C} What if the user speaks an out-of-context D? We will get a similar
item from the context with pretty high confidence: B. So it is not a good idea for large
contexts to have smart algorithms based on confidence level, because there may be
phonetically similar item, in a great geographical distance from the user’s intention.

8 Vision

As I mentioned, we are living in the dawn of speech recognition, there is so much yet
to come. These years, car infotainment industry is searching for offline solutions, at least
as a fallback, due to the pure mobile net coverage and high mobile prices. On the other
hand, the industry wants the same features, as with the server-based variant. Currently
the server is a required for two reasons:

• To perform operations that are not possible on an embedded system.
• To access community resources and other dynamic data.

I believe the first reason is temporary, and it won’t take a huge server park to do NLU
and advanced machine learning in the future. Why should command and control
messages travel around the world to get processed? Why aren’t they handled locally?
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The time will come when powerful embedded systems can handle the natural interaction
between human and machine. Whoever will make that come true, they will start a new
era in automotive infotainment.
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Abstract. The goal of this study is to find out the acoustic features specific for
ASD children vocalizations and speech. Three types of experiments were
conducted: emotional speech, spontaneous speech, and the repetition of words.
Participants in the study were children with ASD (F 84.0 according to ICD-10),
biologically aged 5–14 years (n = 25 children) and typically developing (TD)
children aged 5–14 years (n = 60). We compare acoustic features that are widely
used in speech recognition and speech perception: pitch values, max and min
values of pitch, pitch range, formants frequency, energy and duration. Formant
triangles were plotted for vowels with apexes corresponding to the vowels [a],
[u], and [i] in F1, F2 coordinates, and their areas were compared. For all children
with ASD voice and speech is characterized by high values of pitch, abnormal
spectrum, and well-marked high-frequency. Stressed vowels from the words of
children (TD & ASD), spoken in discomfort, have higher values of pitch and the
third (emotional) formants than spoken in a comfortable condition. ASD children
showed higher values of pitch in spontaneous speech than in repetition speech.
The current results are a first step toward developing speech based bio-markers
for early diagnosis of ASD.

Keywords: Acoustic features · Pitch · Formants frequency · Energy · Children
typically developing · ASD children · Speech

1 Introduction

Autism spectrum disorders (ASD) are pervasive developmental disorders that have been
defined as a triad of impairment: atypical development of reciprocal social interaction,
atypical communication, and restricted, stereotyped, and repetitive behaviors. Since the
first delineation of the autistic syndrome [1], abnormal prosody has been identified as a
core feature for individuals who speak [2]. Monotonic or machine-like intonation,
varying from flat and monotonous to variable, sing-song, or pedantic [1]. Problems in
vocal quality, the control of volume, and use of aberrant stress patterns have also been
widely reported [3–5]. Abnormal prosody production is a consistent feature of the ASD
communication profile [6–8].

© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 43–50, 2016.
DOI: 10.1007/978-3-319-43958-7_4



Studies of the acoustic properties of prosody production in height functional autism
(HFA) [e.g. 3], generally showing that participants with ASD produce longer utterance
durations even when their prosody is perceived as appropriate by listeners. In another
study it was found larger spectral variability in the ASD group, which “blurs” or averages
out the harmonic structure [6]. These authors note that the ASD children had a signifi‐
cantly larger pitch range and variability across time. The increased pitch range was found
in speakers with HFA during both conversation and structured communication.
Although the HFA group demonstrated an increased acoustic pitch range, listeners did
not rate speakers with HFA as having increased pitch variation [5]. The same was noted
in an earlier study [7]. In the studies of ASD pre-school children living in the Japanese
language environment the negative correlation between the pitch variation and the
domain of social reciprocal interaction scores of Japanese Autism Screening Question‐
naire was revealed. Monotonous speech in school-aged children with ASD was
detected [9].

So, given literature data indicate contradictory data regarding the prosodic speech
features of children with ASD. The goal of this study is to find out the acoustic features
specific for ASD children vocalizations and speech.

2 Method

2.1 Data Collection

Participants in the study were children with ASD (F84.0 according to ICD-10), biolog‐
ically aged 5–14 years (n = 25 children) and typically developing (TD) children (coevals,
n = 60). For this study the ASD sample was divided into two groups according devel‐
opmental features: presence of development reversals at the age 1.5–3.0 years (first
group - ASD-1) and developmental risk diagnosed at the infant birth (second group -
ASD-2). For these children, the ASD is a symptom of neurological diseases associated
with brain disturbed. Mean Child Autism Rating Scale [10] total scores was calculated
for each group. In order to assess whether differences in autism severity varied across
groups, a one-way ANOVA was conducted for two groups. The groups don’t differ
significantly.

Three types of experiments were conducted: emotional speech, spontaneous speech,
and the repetition of words. For first experiment recording conditions for a TD the model
experiment included playing with toys (a standard set of toys); repetition of words from
a toy-parrot in the game store situation; watching the cartoon and the retelling of the
story; for ASD children - playing with toys, and the pictures description [11]. Child
speech recording of the second experiment was carried out in a situation of child dialogue
with the experimenter (neutral theme as possible as), in the third - when the child
repeated the words of the experimenter or parent (for ASD children). Places of recording
were at home, in the laboratory and kindergarten for TD children and in the laboratory
and the swimming pool for ASD children. The recordings were made by the “Marantz
PMD222” recorder with a “SENNHEIZER e835S” external microphone.
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2.2 Data Analysis

The child’s emotional state was revealed based on recording situation and video frag‐
ment analysis by 5 speech experts. The test sequences were presented to 140 adults
(native Russian speakers) for perceptual analysis. Spectrographic analysis of speech was
carried out in the Cool Edit (Syntrillium Soft. Corp. USA) sound editor. We analyzed
and compared pitch values, max and min values of pitch, pitch range, formants frequency
(F1 - first formant, F2 - second formant, F3 - third formant), energy and duration. Along
with the absolute values of the F1 and F2 formants, their relative values, /F2 – F1/, were
compared. Formant triangles were plotted for repetition vowels with apexes corre‐
sponding to the vowels /a/, /u/, and /i/ in F1, F2 coordinates, and their areas were
compared. Vowel formant triangle areas were calculated as described in [12] modified
for Russian [13]. To consider word stress development the vowel duration and its
stationary part duration were compared in the stressed versus the unstressed vowels, as
well as the pitch and formants values in the stationary parts. The same parameters were
compared using the Mann-Whitney criterion in /a/, /i/ and /u/ after the following conso‐
nants: /k/ and /d/ for /a/, /b/ and /g/ for /u/ and /t’/ for /i/. These consonants cause the
minimal articulator and hence acoustic influence on the corresponding vowels in
Russian. The values of the amplitudes (energy) of pitch and the first three formants of
vowels by the dynamic spectrogram were determined. The normalized values of
formants amplitude concerning to the amplitude of the pitch (E0/En, where E0 –
amplitude of pitch, En – amplitude of formants, where n = 1 for F1, n = 2 for F2, n = 3
for F3). All statistical tests were conducted using Statistica 10.0.

All procedures were approved by the Health and Human Research Ethics Committee
(HHS, IRB 00003875, St. Petersburg State University) and written informed consent
was obtained from parents of the child participant.

3 Result

3.1 Acoustic Features of TD and ASD Child Emotional Speech

Different emotional states were used for comparing TD children and RAS children that
allowed finding the variable characteristics of the voice. Both discomfort and comfort
conditions in the speech of TD children were recognized by adults with the perception
rate of 0.75–1.0 better compared to the neutral condition. Positive correlation between
TD age and recognition of discomfort state r = 0.9747 (p < 0.05 Spearman) was revealed.
Discomfort state in the vocalizations and speech of ASD children, adults recognized
better (p < 0.01 Mann-Whitney test) than comfort and neutral state. Spectrographic
analysis revealed that speech interpreted by listeners as discomfort, neutral and comfort
is characterized by a set of acoustic features. Discomfort TD children’s speech sample
are characterized by highest maximum pitch values (p < 0.01), average pitch values
(p < 0.05) and pitch variation values (F0max–F0min) (p < 0.05) vs. neutral speech
sample. Discomfort state significantly don’t differ from comfort state on the base of
average pitch values of stress vowels from words. Correctly recognized by adults
discomfort and comfort speech do not differ in pitch variation values. Changes of
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comfort and neutral state recognition with a child’s age are bonded together: positive
correlations between recognition of comfort and neutral test samples were revealed
r = 0.9. Discomfort state is mostly characterized by falling pitch contour type, comfort
state – by rising and neutral – by flat pitch contour.

Discomfort ASD children’s speech sample are characterized by vowels’ highest
average pitch values, pitch range, and third formant frequency of vocalizations and
words (p < 0.001) than comfort and neutral speech samples (Fig. 1A, B).
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Fig. 1. Vowel’s pitch range value (F0max–F0min) (A) and third formant frequency of vowels
in discomfort, neutral and comfort (B). * - p < 0.05, ** - p < 0.01, *** - p < 0.001 Mann-Whitney
test.

Pitch variation values (F0max–F0min) in ASD-1 child’s discomfort, neutral and
comfort speech significantly higher (p < 0.001) than in ASD-2 child’s speech. Pitch
contour type does not change depending on the emotional state of ASD children. The
F3 values in discomfort speech of ASD-1 children significantly higher than in corre‐
sponding voice features in ASD-2 children (p < 0.01) and TD peers (p < 0.01).

Child membership to an ASD group F(5.13) = 8.536 p < 0.0009 associated with
average pitch values (Beta = −0.364, R2 = 0.7665), values of third formant (emotional)
(Beta = −0.743, R2 = −0.7665), the level of speech (Beta = −0.484, R2 = 0.7665 –
Multiple Regression analysis). The relation between the heaver child disease, the higher
pitch values and third formant values, and the lower speech level was revealed.

3.2 Acoustic Features of TD and ASD Spontaneous Child Speech

The purpose of this experiment is to examine the process of the acoustic features of the
vowel from ASD spontaneous speech approaching corresponding values in the TD
speech. For all children with ASD voice and speech is characterized by high values of
the pitch, abnormal spectrum, and well-marked high-frequency. Pitch values of spon‐
taneous speech of ASD children higher (p < 0.001) than pitch values of TD children,
pitch values of ASD-1 children higher (p < 0.01) than in ASD-2 were shown. Compar‐
ison of formant frequency values showed differences for the vowel /a/ by F1 and
[F2–F1] values between ASD-1 and ASD -2 (p < 0.05), ASD-1 and TD (p < 0.001); for
the vowel /u/ between ASD-1 and TD (p < 0.05); for the vowel /i/ - between [F3–F2]
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values between ASD-1 and TD (p < 0.05). Comparison of vowel formant triangle areas
showed that areas were greatest for the vowels of ASD-2 children than ASD-1 ones.
Decrease the area of the vowel formant triangle of TD child speech was shown.

In our study, in the ASD-1 were more boys than girls. Therefore additionally only
boy’s spontaneous speech was analyzed. Belonging to a group F(6.443) = 57.861
p < 0.0000 was a predictor of the acoustical features of vowels: vowels duration
(Beta = 0.1175, R2 = 0.4393), average pitch values (Beta = −0.6811, R2 = 0.4393),
values of F1 (Beta = −0.1237, R2 = 0.4393), and values of F2 (Beta = −0.1024,
R2 = 0.4393 – Multiple Regression analysis). Boy’s age F(6.443) = 11.455, p < 0.0000
was a predictor of the same acoustical features of vowels as a group. Child’s membership
to a groups (data for all ASD & TD children) F(4.59) = 43.902 p < 0.0000 correlated
with average pitch values (Beta = −0.4027, R2 = 0.7485), values of third formant
(Beta = −0.5647, R2 = −0. 4027– Multiple Regression analysis).

A specific characteristic of the dynamic spectrum of the vowels of the ASD –1 child
is the intensity of the third formant (Fig. 2). The intensity of the vowel formants ASD-2
children was not significantly different from the TD corresponding data, except for
F3/E0 for vowel /a/.
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Fig. 2. The distribution of the three first format’s amplitudes normalized to the amplitude of pitch
for vowels /a/, /u/, /i/ is spontaneous speech. Vertical axis – En/E0 (normalized amplitude),
horizontal axis – F0 and formants (F1, F2, F3).

3.3 Acoustic Features of TD and ASD Repetition vs. Spontaneous Child Speech

In speech task - words repetition child membership to an ASD group (first & second)
F(18.163) = 2.7161 p < 0.0004 associated with child sex (Beta = 0.4168, R2 = 0.2307),
and stress vowel duration (Beta = 0.1804, R2 = 0.2307).

At 5 years of age in all the TD children the stressed vowel and its stationary part
duration, as well as their difference, is higher in the stressed vowels than in unstressed
ones. This is unusual for Russian language where the stress is expressed by the duration
of vowels. For ASD children stressed vowels don’t differ significantly from unstressed
vowels on the base of the vowel duration was shown. Stressed vowel extracted on the high
pitch values or vowel duration and pitch with a typical allocation of each child was
revealed. The context (/a/, /i/ and /u/ after the following consonants) influence on the
characteristics of vowels in speech repeated was not significant for ASD and TD children.
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Type of speech task (spontaneous and repetition) was revealed as predictor for stress
vowels duration F(6.337) = 3,965 p < 0.007 (Beta = 0.1234, R2 = 0.065), and for average
pitch values p < 0.0001 (Beta = −0.2625, R2 = 0.065) – Multiple Regression analysis.
Child’s membership to a group (ASD & TD) was revealed as predictor for speech task
realization F(7.336) = 106.33 p < 0.0000 (Beta = −0.6932 R2 = 0.6889), words duration
p < 0.003 (Beta = −0.0092, R2 = 0.6889), stress vowels average pitch values p < 0.0000
(Beta = −0.667, R2 = 0.6889), and F1 values p < 0.019 0000 (Beta = 0.0916, R2 = 0.6889
– Multiple Regression analysis).

Pitch values don’t differ significantly in stress vowels from TD children’s words in
twice task. Pitch values of the ASD-1children was significantly higher (p < 0.001) then
in the ASD-2 child’s spontaneous speech. Pitch values variation (F0max–F0min) signif‐
icantly higher in spontaneous speech ASD-1 children than ASD -2 и TD children, and
in repetition words ASD-2 children were revealed.

The formant triangles of vowels from the words from the spontaneous speech of
ASD children were shifted on the two-formant plane to the higher-frequency region (for
vowels /a/ and /u/, and F1 for vowel /i/) as compared with the formant triangles of vowels
from repetition words (Fig. 3A). The largest shifts in the values of the first two formants
of the vowels /a/, /i/, and /u/, leading to displacement of the formant triangles into the
higher-frequency area, were seen for the vowels of ASD -1 children vs. ASD-2 peers
(Fig. 3B). The differences in the location on the two coordinate plot of formant triangles
from the twice types of speech for TD children was not revealed. Comparison of vowel
formant triangle areas showed that areas were greatest for the vowels of TD children’s
repetition speech (Fig. 3C) and ASD-1 children’s repetition speech (Fig. 3D).

Fig. 3. The vowels formant triangles with apexes /a/, /u/, /i/: A - of ASD and TD children in twice
speech tasks (spontaneous and repetition), B - of ASD children (ASD-1 - group 1, ASD-2 - group
2). Horizontal axis values are F1, Hz, vertical axis values are F2, Hz. Areas of vowels formant
triangles (in conventional unit): C - data for TD and ASD child’s areas of vowels formant triangles
in twice speech tasks, D - ASD children (ASD-1 - group 1, ASD-2 - group 2).
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These data indicate a clearer articulation of repetition words vs. word articulation in
spontaneous speech.

The values of the normalized intensities of formants in repetition speech demonstrate
a distribution pattern similar to that in spontaneous speech.

4 Discussion

We present the first data for Russian ASD children of acoustic measures of participant’s
speech. This study has shown that the ASD children differ from TD children on the base
of higher values of pitch, pitch values variability and formant characteristics. These
acoustic features and well-marked high-frequency in spectrum more clearly presented
in the speech of the first group ASD children than the second group ASD children. ASD
children from the first group have diagnosis ASD (F 84.0) as a primary. A common data
about the high values of pitch and pitch variability of children with ASD was obtained
on the base of three complementary experiments. Our data confirm other studies with
similar results [5, 6, 14, 15]. Contrary to the common impression of monotonic speech
in autism, the ASD children had a significantly larger pitch range and variability across
time. These results indicate that speech abnormalities in ASD are reflected in their spec‐
tral content and pitch variability [6]. Paul et al. [15] reported prosodic deficits in only
47 % of the 30 adult speakers with HFA studied. They compared participants with HFA
and a typical control group on both the perception and production of a range of specific
prosodic elements. Results suggested between-group differences in both the perception
and production of prosodic stress, suggesting that both understanding and producing
appropriate stress patterns appear to be difficult for participants with HFA [15].

The current results are one of the first steps toward developing speech based bio-
markers for early diagnosis of ASD. We believe that the acoustic features of speech of
children with different neurological state are perspective for early diagnosis of devel‐
opmental risk.

5 Conclusions

Differences between children with ASD and TD on the basis of higher values of pitch,
pitch variability and formant characteristics of ASD children were revealed. In general,
for all children with ASD voice and speech is characterized by high values of pitch and
pitch variability. These acoustic features and well-marked high-frequency in spectrum
were more clearly presented in the speech of the first group ASD children than the second
group ASD children.
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Abstract. Gaussian Mixture Models (GMM) has been the most common used
models in pronunciation verification systems. The recently introduced Deep
Neural Networks (DNN) has proved to provide significantly better discriminative
models of the acoustic space. In this paper, we introduce our efforts to upgrade
the models of a Computer Aided Language Learner (CAPL) system that is used
to teach the Arabic pronunciation for Quran recitation rules. Four major enhance‐
ments were introduced, firstly we used SAT to reduce the inter-speakers varia‐
bility, secondly, we integrated a hybrid DNN-HMM models to enhance the
acoustic model and decrease the phone error rate. Third, we integrated Minimum
Phone Error (MPE) with the hybrid DNN. Finally, in the testing phase, we used
a grammar-based decoding graph to limit the search space to the frequent errors
types. A comparison between the performance of the conventional GMM-HMM
and the hybrid DNN-HMM was performed with results showing significant
performance improvements.

Keywords: Pronunciation learning · Deep neural networks · Speaker adaptive
training

1 Introduction

Computer Aided Pronunciation Learning (CAPL) has recently been considerable in the
research community. Many efforts have been done for enhancement of such systems
specifically in the field of second language teaching [1]. One of the most challenging
applications of a (CAPL) system is Holy Qur’an training for correct recitation. Training
foreign languages can be tolerant to a wide variety of different pronunciations, however;
Qur’an recitation has to be done as in the classical Arabic dialect which makes it a more
challenging task. Several research works were done to overcome this problem [2].

As technology advanced, attempts have become more mature and it was possible to
build more advanced CAPL systems. For example [3], a commercial system for automatic
system of recitation of Holy Qur’an (HAFSS©) was presented. Much more efforts in
enhancing usability of the (HAFSS©) system was presented in [4] by using SAT training
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to boost system performance. Another modification was suggested in order to reduce the
amount of the enrolment time while keeping the system accuracy at the same level.

The hybrid CD-DNN-HMM architectures have been proposed for phoneme recog‐
nition [5, 6] and have reached noticeable competitive performance. An acoustic model,
using the context-dependent CD-DNN-HMM presented in [7], was successfully applied
to large vocabulary speech recognition data. Word error rate was reduced up to one-
third in conversational speech transcription tasks compared to the CD-GMM-HMM
systems [8]. An application for using DNN-HMM in verification pronunciation system
was suggested in [9]. In this research, a comparison between GMM-HMM and hybrid
DNN-HMM was applied for Assessment of childhood Apraxia of speech. Further
research work in using DNN-HMM in CAPL systems was presented in [10].

In this paper, we enhance our earlier pronunciation verification method in [4] by
utilizing the power of various recent ASR algorithms to boost the performance of our
baseline system on the basis of phoneme accuracy. First, Speaker Adaptive Training
(SAT) technique [11] was used during the training phase to reduce the inter-speakers
variability in training data. Second, Hybrid DNN-HMM was used to enhance the
acoustic model and utilize the discriminative nature of the Neural Networks to decrease
the phone error rate. Third, we integrated Minimum Phone Error (MPE) with the hybrid
DNN. Finally, in the testing phase, we used a grammar-based decoding graph for forcing
the output to current arbitrated statement to avoid nonsense pronunciations. A compar‐
ison between the performance of the conventional GMM-HMM and the hybrid DNN-
HMM was performed. We also compare the performance of different ASR toolkits:
Kaldi and HTK. The correlation between the system judgment and linguistic judgments
was also improved. The remainder of this paper is structured as follows. Section 2
presents the baseline CAPL system description and the new proposed enhancements. It
also explains the proposed Grammar-based decoding graph creation. Section 3 describes
the speech corpus used. Section 4 shows the experiments performed and results. Finally,
the conclusions are summarized in Sect. 5.

2 Baseline System Description

Our baseline system is a speech-enabled Computer Aided Pronunciation Learning
(CAPL) system that helps non-native speakers to learn Arabic pronunciations. First, the
input speech is segmented into a sequence of phonemes clusters. Comparing the
sequence of reference with the given hypothesized sequence generates substitution,
insertion and deletion errors. Second, these units are tested by trained HMM models.
Then, it could assess the quality of a user’s recitation and produce a feedback messages
to help him locate his pronunciation errors and eventually overcome them.

Figure 1 shows the block diagram of the HAFSS© system [12]. Its main blocks are:

1. Verification HMM Models: Traditional HMM acoustic models for the system.
2. Speaker Adaptation: Maximum Likelihood Linear Regression (MLLR) speaker

adaptation algorithm is used to adapt acoustic models to each user acoustic properties.
3. Pronunciation Hypotheses Generator: It analyzes current verse and all possible

pronunciation variants are generated in order to test them against the spoken utterance.
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4. Confidence Score Analysis: It receives n-best decoded word sequence from the
decoder, then analyzes their scores to determine whether to report that result or not.

5. Phoneme Duration Analysis: For phonemes that have variable duration according
to its location in the Holy Qur’an, this layer determines whether these phonemes
have correct lengths or not.

6. Feedback Generator: Recognizer results are then analyzed and appropriate feed‐
back message appeared to the user.

Fig. 1. Baseline system description

2.1 Enhancements in Proposed System

The main enhancements were in two branches; acoustic modeling and language
modeling. Block diagram of the new proposed system is shown in Fig. 2.

Acoustic Model Modifications:

• SAT + FMLLR: Is used to adapt acoustic models to each user by using speaker
adaptive training. It uses FMLLR features which are based on (MLLR) speaker
adaptation.

• Hybrid DNN-HMM: A deep structure of neural network was trained using back
propagation algorithm. Output nodes replaced GMM-HMM states in the decoding
process. This stage is considered the main concept of hybrid DNN-HMM approach
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since it represents the state better than Gaussians since it comes from a discriminative
model – the neural network – while GMM-HMM is a generative model.

• DNN-MPE: The final training block was DNN-MPE which is sequence-discrimi‐
native training of deep neural networks implemented in the open-source Kaldi toolkit.

Language Model Modifications:

Decoding Graph. The most challenging part in grammar modification was converting
classical lattice-based grammar generated from lattice-generator described in [12] into
a finite-state transducer to fit the decoding graph creation process. The Grammar is
produced depending on the current verse to be arbitrated according to rules of Quran.

Fig. 2. Proposed system modification

3 Data Description

The training dataset is about 24 h of Quran. The overall utterances used in training are
about 17050 utterances. The dataset was manually transcribed by experts. It contains
verses from all the thirty parts of the Holy Quran. It was collected from many speakers.
It is mainly divided to two countries of native speakers which are Egypt and Kuwait.
The variety of speakers and verses gives a significant impact on the acoustic model
which will be built using that data. The model includes all the pronunciations with two
dialects. It also includes most of recitation rules in the Holy Quran. There are two types
of speakers: reference speaker who knows all recitation rules clearly and nearest speaker
who are also native, but have some errors in their pronunciations. The test dataset is
divided into two main sets. One of which for development and the other is for testing
as shown below:

• Development Testing Corpus: It consists of 270 utterances from 12 speakers. Each
speaker has 23 utterances. The total number of phonemes in this corpus is about 5,000
phones. The disadvantage of that corpus is the small size.
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• Core Testing Corpus: It consists of 1500 utterances from 45 speakers. It is about
six times of the above testing corpus. Utterances consist of a lot of small verses. The
total number of phonemes in this corpus is about 32,000 phones. The advantage of
that corpus that is its size is moderate so it can give reliable conclusions and results.

Two types of lexicons were used for our proposed system:

• Lexicon Dedicated for Training: A phoneme to phoneme lexicon in order to guar‐
antee best model for each phoneme individually.

• Lexicon Dedicated for Testing: Which contains the all possible pronounced
phonemes of the verse which to be detected at the moment.

4 Experimental Setup

Extracted features – in most of our experiments – from speech utterances were Mel
Frequency Cepstral Coefficients (MFCCs) and energy, along with their first and second
temporal derivatives. As such, the length of feature vector is of dimension 39. Extracted
features are then normalized to make the whole training data as a real Gaussian random
variable with zero mean and unit variance. In Kaldi setup, adjusting the number of
Gaussians and number of leaves depends on number of hours of speech to avoid over
fitting and under fitting. We started from Resource Management example setup since
its training hours closer to ours. The initial number of leaves was 1900 and the total
number of Gaussians was 9000. After tuning we reached the best performance at 1800
leaves and 8000 Gaussians.

5 Results and Discussion

First, an acoustic model based on HMM with HTK toolkit was built. On the other hand,
a similar HMM model with the same configuration was built with Kaldi toolkit. The
phone error rates of the baseline systems are presented in Table 1. Second trial was to
improve the performance of the first system implemented by HTK toolkit, a proportion
of half-hour of speech data extracted from test-speakers was used for doing MLLR
adaptation on the acoustic model. This experiment made an absolute improvement on
the error rate by about two percent. On the other hand, SAT training with feature like‐
lihood linear regression (fmllr) was performed on the second implementation. Results
training are tabulated in Table 2.

Table 1. HMM baseline phone error rates

System Development-set Core-test
GMM-HMM (HTK) 10.92 % 9.7 %
GMM-HMM (Kaldi) 9.3 % 8.5 %
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Table 2. Effect of adapting acoustic models

System Development-set Core-test
GMM + MLLR (HTK) 8.7 % 7.6 %
GMM + SAT (Kaldi) 8.2 % 7.2 %

The next enhancement was by applying the Hybrid DNN-HMM training. In all of
the experiments 40-dimensional fmllr were used as the input representation. Finally,
input was represented as context frames. For all experiments, we fixed the main param‐
eters for the Viterbi decoder. Specifically, we used a one phone insertion probability and
a language model scale factor of 1.0. Since the phonemes of Quran consume more
frames, it was a noticeable note to take more care of the context frames. It appeared that
increasing the context enhances the performance of the system.

Fig. 3. Changing the context size effect on phoneme accuracy

From results in Table 3, we can see that the system performance has improved
significantly with using Hybrid DNN-HMM with absolute 2.4 % improvement in phone
error rate with respect to the best results of GMM-HMM.

Table 3. Comparison between hybrid DNN-HMM and classical GMM

System Development-set Core-test
GMM 9.3 % 8.5 %
GMM + SAT 8.2 % 7.2 %
Hybrid DNN-HMM 6.9 % 6.5 %

Another important metric in CAPL system evaluation is correlation matrix between
CAPL system judgment and Human experts’ judgment. First, Human expert listened to
each verse under test and made his decision. Second, CAPL system produces its decision
based on the acoustic model. Finally, a correlation matrix between the two decisions is
calculated.

From results in Table 4. For correct speech segments which constitute about 94.2 %
of the data, the system yielded “correct” for about 93.2 % of the total correct words and
the system made false rejection for about 1 % of them. For wrong speech segments,
which constitute 5.8 % of the data, the system correctly identified the error in 0.3 % of
pronunciation errors and it made false acceptance for 5.5 % of the mispronounced
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phones. This phone recognition accuracy is better than the best performance described
in [4] with an absolute improvement of 1.3 %.

Table 4. CAPL system evaluation results for development test data

Human Judgment

Sy
st

em
 

ju
dg

m
en

t Correct Wrong Total

Correct 93.2 % 5.5 % 98.7%
Wrong 1 % 0.3 % 1.3%
Total 94.2 % 5.8 % 100%

The final experiment was sequence discriminative training with Neural Network
(DNN + MPE). We performed 5-iterations and achieved a phoneme error rate of 6.9
(Figs. 3 and 4).

Fig. 4. Minimum phone error iterations VS phone error rate

6 Conclusion

The work in this paper presented a modified verification pronunciation system HAFSS©.
Our main aim was minimizing the phoneme error rate by enhancing the acoustic model
using DNN-HMM. A comparative study was also performed between the baseline
GMM-HMM system and the proposed DNN-HMM system to determine the best
configuration for our CAPL system. The DNN-HMM system reached an overall
phoneme error rate of 6.9 % thus, it can accurately classify mispronunciation errors.
Also, decoding-graph size was moderate which make it applicable to be used in portable
devices. However, the classical GMM-HMM achieved a PER of 8.5 %. In classical
GMM-HMM, the Kaldi toolkit gave better performance than HTK. For the DNN-HMM
increasing context frame window size results in decreasing PER.
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Abstract. One of the most recently proposed techniques for modeling the
prosody of an utterance is the decomposition of its pitch, duration and/or energy
contour into physiologically motivated units called atoms, based on matching
pursuit. Since this model is based on the physiology of the production of sentence
intonation, it is essentially language independent. However, the intonation of an
utterance in a particular language is obviously under the influence of factors of a
predominantly linguistic nature.   In this research, restricted to the case of Amer‐
ican English with prosody annotated using standard ToBI conventions, we have
shown that, under certain mild constraints, the positive and negative atoms iden‐
tified in the pitch contour coincide very well with high and low pitch accents and
phrase accents of ToBI. By giving a linguistic interpretation of the atom decom‐
position model, this research enables its practical use in domains such as speech
synthesis or cross-lingual prosody transfer.

Keywords: Atom decomposition · Pitch contour · ToBI

1 Introduction

A relatively small number of widely used intonational modeling techniques make direct
reference to the physiology of the production of sentence intonation, despite their
inherent advantage of being language independent [1–3], with the assumption of
language independence coming from the fact that the same physiological apparatus is
used to produce the intonation in any language. The reason for this is, most probably,
that the language independence of these modeling techniques is exactly what makes
them less practical for use in speech processing and speech technology for a particular
language. For this reason, it is of particular practical interest to give a linguistic inter‐
pretation to a physiologically based model, preferably one that would easily extend to
a number of languages.

One of the most recently proposed techniques for the modeling of sentence prosody
is based on the decomposition of its pitch, duration and/or energy contour into units
called atoms, which originate in the physiology of the production of prosody [4, 5]. Most
of the research in this area focuses on the atom decomposition of the pitch contour,
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having in mind its particularly important role in the perception of prosody. However,
atoms to which the pitch contour is decomposed do not have any a priori linguistic
explanation, which is not convenient from the point of view of a practical speech tech‐
nology system faced with a task of e.g. synthesizing a pitch contour from a given text
in a particular language. The problem of describing the intonation of a sentence using
sets of linguistically motivated discrete events, on the other hand, has been a matter of
extensive research, and a number of practical intonational models have been proposed,
including phonological tone sequence models such as Pierrehumbert’s theory of into‐
nation [6] or ToBI (tone and break indices) [7], phonetic sequential models involving
acoustic stylization [8], phonetic superpositional models [9, 10] and prosodic models
[11, 12]. This research focuses on ToBI, as one of the most widely used standards for
linguistic annotation of speech prosody, initially developed for American English, but
since extended to a number of other variants of English and other languages [13]. As is
the case with all other mentioned models, ToBI avoids making direct reference to the
physiology of prosody production in the sense of articulatory effort or specific activity
of relevant muscles, but it does recognize sequences of high and low tones attached to
prominent words or relevant boundaries between intermediate or full intonational
phrases. Having in mind the obvious relationship between prominence and articulatory
effort, this research attempts to prove a high degree of correlation between the high and
low tonal events of ToBI, on one side, and the positive and negative atoms, as identified
by the atom decomposition algorithm. Due to the limited availability of ToBI annotated
material, the research at present focuses on the case of American English.

The remainder of the paper is organized as follows. Section 2 presents the basics of
the atom decomposition intonation modeling, while Sect. 3 gives an overview of the
ToBI system for American English. Section 4 presents our experiments on the Boston
University Radio Speech Corpus of American English [14], which show a very good
match between atoms of positive and negative amplitudes identified by the atom decom‐
position algorithm, and high and low tonal events of ToBI. Section 5 concludes the
paper, giving an outline of the future work as well.

2 Intonation Modeling by Atom Decomposition

The intonation modeling approach analysed in this paper is based on decomposing the
pitch, duration, and energy contour into meaningful units called “atoms”, focusing on
the pitch contour as the primary source of information in prosody perception. The
weighted correlation atom decomposition (WCAD) model represents a generalization
of the command-response (CR) model [1] and has the advantage of having a simple
method for the extraction of parameters. It is based on the matching pursuit algorithm
[15] relying on the perceptually relevant weighted correlation as a cost function [16].

The command-response (CR) model defines intonation in terms of the physiological
process behind its production. It has been shown [1] that, with respect to the influence
of the muscles ruling the vocal folds on their tension, the f0 contour can be decomposed
into several additive components in the log domain. In this model two types of compo‐
nents are related to the translation and rotation of the cricoid in respect to the thyroid,
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effected by the cricothyroid (CT) muscle. The influence of some other muscles as well
as the subglottal pressure has been identified in [2], and in [4] the CR model was gener‐
alized in order to take into account more than two types of movements related to the
control of the fundamental frequency (f0). The components of the model were defined
as impulse responses to a second-order critically damped system, as they are assumed
to be the responses of the muscles involved in the production of intonation. Based on
previous research [17], the CR model defines the logarithm of f0 as the sum of a baseline
level, phrase components, and accent components [1], assuming that the global shape
of an utterance’s log f0 is generated from the response to phrase command impulses,
while the local variations are accounted for by responses to accent commands, which
are basically step functions. However, if these step functions are viewed as trains of
impulses, all parameters of the CR model can be defined in terms of impulse responses
of the following type [4]:

(1)

or, if higher order models are used, which has been shown to improve performance [18],
the previous expression assumes the general gamma functional form

(2)

Following this line of reasoning, the log f0 contour is decomposed into a linear
combination of “atoms” by the matching pursuit algorithm [15], given a dictionary of
kernel functions:

(3)

where  is the dictionary,  is the gain of the instance  of kernel  and
 its time delay, and  is the residual error. The decomposition is achieved up to the

error  by greedy iterative optimization. At each step, the correlation between the signal
and every atom from the dictionary is computed, the atom with the highest correlation
is found and its weighted version is subtracted from the signal. These steps are repeated
until a predefined accuracy threshold is reached or some other exit criterion is met.
Having in mind the global character of the intonation phrase component, log f0 is
decomposed in a two pass process: first an iteration of matching pursuit is applied on
the continuous f0 contour to get the single intonation phrase component, using a
dictionary of long atoms that can span more than the length of the utterance, and the
second step consists of applying matching pursuit on the residual obtained in the first
step.
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3 An Overview of ToBI System for Prosodic Labeling

Tone and Break Indices (ToBI) is a set of conventions for prosodic transcription and
annotation of speech. Primarily developed for English [7], it has since been extended
into a number of other languages [13]. Here only a brief overview of ToBI will be given,
with the aim of providing the reader with a good understanding of prosodic events
considered in this research.

A ToBI transcription minimally indicates the tonal events in an utterance as well as
the intended prosodic grouping of its elements. The term tonal event refers to pitch
accents and boundary tones. Pitch accents, occurring as combinations of high (H) and
low (L) tones, give prosodic prominence to a word, and their use is to some extent ruled
by the semantics as well as specific user intention. In each pitch accent either a high or
a low tone can be aligned with the stressed syllable, and thus they can be divided into
two broad groups of high pitch accents (such as H*) and low pitch accents (such as L*).
ToBI also provides means for indexing breaks, i.e. boundary strength between adjacent
words. Sentences are composed of intonational phrases (IPs), delimited with breaks of
type 4, and each intonational phrase is divided into intermediate phrases (ips), delimited
with breaks of type 3. The edges of ips are marked with phrase accents (L-, !H- and L-,
where ‘!’ marks a downstep) while the edges of IPs are marked by boundary tones (L%
and H%). Having in mind that each IP consists of one or more ips, each edge of an IP
is also an edge of an ip, and thus IPs end in one of six possible combinations of phrase
accents and boundary tones (L-L%, L-H%, etc.). Initial IP boundary tones (%L and %H),
whose use is less regular, could not be taken into account in this research as they were
not marked in the corpus used for the research.

4 Experiment Results

In our experiments we investigated the relationship between positive and negative atoms
of the atom decomposition paradigm and high and low tonal events of ToBI, along the
lines of [19]. The assumption that we tried to prove was that, provided the atoms are
relatively wide, which depends on the parameter  of Eq. (2), positive atoms tend to
coincide with high pitch accents (such as H*) or high boundary tones, while negative
atoms tend to coincide with the low pitch accents (such as L*) or low boundary tones.
If proven true, this would provide a very convenient linguistic interpretation of the atom
decomposition approach.

All our experiments were carried out on the Boston University Radio Speech Corpus
of American English [14] (more precisely, a portion of this corpus restricted to the female
speaker marked as F2, whose 910 utterances were ToBI annotated). It should be noted
that the prosodic annotation in the corpus was far from perfect, not only in terms of the
accuracy of prosodic tags used, but also in terms of basic consistency. For instance, in
the analyzed 904 recordings1 there were 2,726 intonational phrases, and in 30 % of cases

1 Six recordings from the initial set of 910 recordings were excluded because they contained the
ERROR tag where a boundary tone was expected.
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the time difference between the phrase break of type 4 and the corresponding boundary
tone was more than 50 ms, while in 11 % of cases the difference was more than 100 ms.
As boundary tones are intrinsically linked to breaks of type 4, they should obviously be
located at the same time instants, corresponding to word endings. Regardless of the fact
that such errors would give a negative bias on the experiment results, we decided to
conduct the experiment on the corpus “as is”, to allow others to replicate it.

Atom decomposition of each utterance was carried out (with  and  ranging
from 0.02 to 0.09), and then the discovered atoms were compared to the ToBI pitch
accents and boundary tones as illustrated in Fig. 1 (phrase accents at breaks of type 3
were not taken into account). The discovered atom was considered to coincide with a
pitch accent if its peak was located within the stressed vowel or adjacent stressed vowel
(if there is one). Boundary tones were also modeled by atoms (with the possible excep‐
tion of L-L%, see below), and the discovered atom was considered to coincide with a
boundary tone if its peak was located within the last word in the IP.

Fig. 1. The atom decomposition of the log f0 contour of the intonational phrase “near a Roxbury
housing project”. Two positive atoms correspond to two H* pitch accents, while the remaining
positive atom corresponds to the L-H% boundary tone.

In our experiments we introduced the following three variables:

(a) The atom decomposition algorithm can be allowed to discover only the number of
atoms defined by ToBI annotations, or it can be allowed to discover as many atoms
as it can, using its standard exit criterion. In the following text, these two variants
will be denoted as  and  respectively.

(b) The experiment can be conducted on L-L% IPs only (1,238 IPs), or on all six types
of IPs (2,750 IPs). These two variants will be denoted as  and . In the latter case
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boundary tones other than L-L% were all considered to correspond to positive
atoms.

(c) The boundary tone of L-L% IPs can be modeled with a negative atom, or with the
absence of an atom. These two variants will be denoted as  and .

To illustrate the introduced notation, the experiment referred to e.g. as  allows
the atom decomposition algorithm to discover as many atoms as it can, it is carried out
on all six types of IPs, and models the L-L% boundary tone with a negative atom.

The evaluation of the success rate of the algorithm is expressed through standard
measures used in binary classification, including precision and recall. In this specific
case, if a tonal event is expected and a coinciding atom is found, it is considered a true
positive if it is of appropriate polarity. A non-coinciding atom or an atom with inap‐
propriate polarity is considered as false positive, while the failure to detect an atom
where a tonal event exists is considered as false negative. A true negative represents the
case when no atom has been detected on a stressed vowel without tonal events. Success
rate measures are calculated according to their standard definitions and are given in
Table 1.

Table 1. Experiment results

Precision 0.74 0.88 0.78 0.86 0.74 0.88 0.78 0.86
Recall 0.80 0.97 0.86 0.95 0.86 0.97 0.89 0.95
Accuracy 0.73 0.93 0.81 0.91 0.75 0.93 0.82 0.91
FNR 0.20 0.03 0.14 0.05 0.14 0.03 0.11 0.05
TNR 0.64 0.90 0.76 0.88 0.62 0.90 0.75 0.87
FDR 0.26 0.12 0.22 0.14 0.26 0.12 0.22 0.14

It can be seen that the best results are achieved in cases where the analysis is limited
to the case of L-L% (declarative) IPs, and the boundary tone is modeled with the absence
of an atom rather than with a negative atom ( ). This is in line with previous research,
which focused on declarative phrases and did not find evidence of atoms occurring at
phrase endings particularly frequently [4]. Firstly, a relatively high precision and recall,
which reach 0.88 and 0.97 in the most favourable case, show that there is indeed a strong
connection between positive and negative atoms and high and low tonal events of ToBI.
In other words, atom decomposition modeling as a physiologically based and thus
language independent modeling technique, can also be given a linguistic interpretation.
When comparing the results of the experiments under different conditions, other inter‐
esting conclusions can be drawn. Firstly, the results are quite similar in the case where
the algorithm is restricted to finding only the number of atoms equal to the expected
number of tonal events and in the case when it is allowed to find as many atoms as it
can (  vs. ). This shows that the algorithm does not tend to find linguistically irrelevant
atoms even if it is given the opportunity to do so. Secondly, not modeling the boundary
tone instead of modeling it with a negative atom (  instead of ) invariably leads to a
significant increase of precision and affects other measures as well, particularly if the
analysis is restricted only to L-L% phrases ( ). It is also interesting to note that the
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algorithm was much more successful in matching high pitch accents with coinciding
atoms (69 % to 87 %, depending on the conditions), than in matching low ones (34 % to
49 %), which is reminiscent of the fact that for a human labeller as well it is more difficult
to identify a low pitch accent than a high one. It should also be noted that the frequency
of low pitch accents in the corpus is much lower than the frequency of high ones (3.5 %
or 4.8 %, depending on the conditions), which explains a relatively low impact of the
accuracy of matching low pitch accents on the overall results.

5 Conclusion

By showing that positive and negative atoms to which an intonation contour can be
decomposed have a high degree of correspondence with high and low tonal events of
the ToBI prosody annotation system (with precision and recall reaching 0.88 and 0.97
in the most favourable case), we have provided a linguistic interpretation to the atom
decomposition paradigm, at least for the case of American English. However, since the
experiment results clearly indicate the relationship between positive/negative atoms and
an effort of the speaker to reach a high/low intonation target, which is arguably a
language independent phenomenon, there are grounds to expect similar results for other
languages, which remains to be verified. Our future work will also include the construc‐
tion of a framework that will enable the construction of f0 contours from ToBI annota‐
tions, which would enable the use of the atom decomposition modeling technique in
tasks such as expressive text-to-speech synthesis.
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and Fathy Yassa3

1 Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
{edvin.pakoci,bpopovic,jakovnik}@uns.ac.rs
2 AlfaNum Speech Technologies, Novi Sad, Serbia

darko.pekar@alfanum.co.rs
3 Speech Morphing Inc., Campbell, CA, USA

fathy@speechmorphing.com

Abstract. In this paper, a novel variant of an automatic phonetic seg-
mentation procedure is presented, especially useful if data is scarce. The
procedure uses the Kaldi speech recognition toolkit as its basis, and
combines and modifies several existing methods and Kaldi recipes. Both
the specifics of model training and test data alignment are explained
in detail. Effectiveness of artificial extension of the starting amount of
manually labeled material during training is examined as well. Exper-
imental results show the admirable overall correctness of the proposed
procedure in the given test environment. Several variants of the proce-
dure are compared, and the usage of speaker-adapted context-dependent
triphone models trained without the expanded manually checked data is
proven to produce the best results. A few ways to improve the procedure
even more, as well as future work, are also discussed.

Keywords: Kaldi · Phonetic segmentation · Hidden Markov models

1 Introduction

In recent years, there is an evident increase in the amount of available multimedia
data including speech. This data is interesting for research in social sciences, as
well as for speech technologies. These studies usually require audio content and
the corresponding phonetic transcription synchronized with it. Manual alignment
of audio and text data is very laborious and expensive (30 s of audio data requires
about an hour of manual work [1]), thus many automatic and semi-automatic
procedures have been developed.

All these procedures can be classified into two broad groups depending on
whether or not additional acoustic information about phone identities are used.
The first group is comprised of methods which for phonetic segmentation use
the information contained in the given audio signal, and order of phones in
the corresponding phoneme sequence. These methods are referred to as text-
independent or linguistically unconstrained segmentation methods. They exploit
c© Springer International Publishing Switzerland 2016
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the fact that sudden changes in speech signal characteristics usually coincide
with phone boundaries. Exceptions of this rule are plosives/affricates consisted
of occlusion and explosion/friction parts as well as transitions between successive
vowels or vowels and semi-vowels [2]. These changes are usually detected in the
spectral or cepstral domain [3–5]. Additionally, the level of feature similarity can
be exploited in segmentation as in [6]. An advantage of these methods is their
independence from language, but the accuracies of obtained phone boundaries
are significantly poorer compared to accuracies of text-dependent methods.

Text-dependent or linguistically constrained segmentation methods align
audio signal with corresponding phone sequence using phone models similar
to those used in the automatic speech recognition (ASR) task. The dominant
approach to phone modeling is hidden Markov models (HMMs), and interest-
ing results are obtained in [7–13], among others. Besides HMMs, dynamic time
warping [14] and artificial neural networks - ANNs [15,16] are used as well.

The width of analysis frames varies from 10 ms up to 30 ms, and frame shift
varies from 1/5 of the frame width up to whole frame width. There are some vari-
ations of the extracted features in existing methods, but most of them include
12–14 mel-frequency cepstral coefficients (MFCCs), normalized energy and their
first and second order time derivatives. In some studies, the set of features addi-
tionally includes a spectral variation function [17], perceptual loudness, measure
of periodicity [9] and fundamental frequency (f0) contour [15]. The basic mod-
eling units can be monophones, triphones or tied-state triphones. The choice
between those depends primarily on the size of the training corpus. Sometimes
the improvement in alignment accuracy, which is usually obtained with context-
dependent modeling units, is not sufficient to justify the increase of duration
of the training procedure. Since the objective function for estimation of HMM
parameters does not involve accurate position of phone boundaries after align-
ment, additional boundary refinement is possible. It is usually based on principles
exploited in linguistically unconstrained methods [10,17] or using trained GMM
or ANN models for boundaries [15,16]. The proposed procedure belongs to the
group of linguistically constrained methods based on HMMs in case of scarce
data. The procedure is tested on several databases in English whose description
is given in Sect. 2. Detailed description of the procedure is presented in Sect. 3,
and results of evaluation with discussion in Sect. 4. Section 5 concludes the paper.

2 Speech Corpora

Appen “USE ASR001” database [18] of natural English (US) speech in studio
quality, resampled to 16 kHz, 16 bits per sample, mono PCM, was used in our
research. The database contains more than 80000 utterances (almost 7 GB of
data, 100 male and 101 female speakers), or approximately 41 h of speech and
20 h of silence segments, and it is transcribed in SAMPA format. Only a small
part of the database (in further text referred to as the bootstrapped part),
containing around 35 min of speech and 15 min of silence segments, was man-
ually labeled. This part of the database consists of short cropped audio files
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(around 1900) containing only about 2 to 3 words, which are selected in a way
to cover all phone pairs (one after the other) which exist in the source database
among all the given speakers. The extraction of audio segments is done auto-
matically using information from initial forced alignment using flat-start models.
These phone boundaries are manually checked and corrected by trained anno-
tators. It has been shown that by applying manual alignments on a part of the
database throughout the procedure, significant improvement can be obtained in
comparison to flat-start training (e.g. [9]). Additionally, in our procedure the
bootstrapped part of the database was artificially expanded several times, by
modifying pitch and duration (i.e., by applying spectral warping and tempo
modifications). It was feared that such a procedure could not provide sufficient
data variability, so it was only applied in a limited amount. The original tempo
was increased or decreased by 10 % and 20 % and the original pitch was increased
(for males) or decreased (for females) by 1, 2 or 3 semitones. Male speakers whose
pitch was increased by 1 and 2 semitones, along with the original unmodified
male speakers, and female speakers whose pitch was decreased by 3 semitones,
were used for the training of specialized male models. The bootstrapped part
of the database (along with all the mentioned extensions) was then addition-
ally doubled by marking all the words and phonemes as damaged in the copied
instance. This was done in order to provide minimal number of samples needed
to train the damaged phoneme models - they were needed primarily since the
starting and ending phones in cropped segments had to be marked as dam-
aged, as these are not full sentences by themselves, but segments not necessarily
surrounded by silence. Therefore, the bootstrapped part of the database was
increased 40 times for male speakers ([male + male pitch {+1,+2} + female pitch
{−3}] × tempo {−20,−10, 0,+10,+20} × 2 for damaged phonemes). A special
characteristic of our training was that the phone boundaries on the whole boot-
strapped set (expanded) were kept fixed during the entire procedure, so they
could have a greater influence on the accuracy of alignment in the remainder of
the database.

Our test database, on which the results presented in this paper were cal-
culated, included an array of phonetically rich utterances, spoken by 3 male
speakers - Sean, Doug and Ben - from completely independent single-speaker
databases, provided by Speech Morphing Inc. All the utterances for testing
were manually labeled, so that automatically aligned phone boundaries could
be compared to them. Sean’s test database contains 50 utterances (around 1800
phonemes), which added up to 2 min 13 s of speech and 33 s of silence. Ben’s
test database contains 43 slightly longer utterances, 4 min 17 s of speech and
1 min 5 s of silence in total (around 2700 phonemes). Finally, Doug’s test data-
base contains 50 utterances - 2 min 28 s of speech and 23 s of silence (around 1800
phonemes). At the time of tests, no similar female databases were at our disposal.
Nevertheless, the obtained results confirm our previous assertions and they were
highly comparable among all test databases, as shown by the experiments (see
Sect. 4).
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3 Segmentation Procedure

The complete training procedure has been done using the Kaldi speech recogni-
tion toolkit [19] and modified Kaldi recipes. Inputs were Kaldi data files created
using an input lexicon (in SAMPA format), which included all needed words and
their pronunciations with multiple alternative pronunciations in some cases, as
well as utterance transcriptions with marked speaker identifiers. Model topolo-
gies were initialized to 3 states for non-silence phones, and 5 states for silence
phones, with a possibility to skip one state at a time (for a minimum of 3 states).
For decoding purposes, as in all Kaldi training procedures, a lexicon FST (i.e.,
finite state transducer) is created based on the input lexicon. In our procedure,
this FST is modified by adding alternative arcs for all arcs that have a vowel as
their input label, and it concerns vowel stress - if the vowel is stressed, alternative
arc with the unstressed version of the same vowel as input label is created, and
vice versa. Also, for the arc containing the optional silence between and after
each spoken word, an arc with optional glottal stop is created as an alternative.
This was done because a lot of places in the database were identified where the
gap between words includes rather a glottal stop then something than can be
considered as a silence (which would lead to a “dirty” silence model).

The feature vectors include energy and 14 MFCCs, calculated by using a filter
bank of 26 overlapping triangular windows, along with their first and second
order time derivatives. They were extracted on 30 ms frames, with 7 ms frame
shift. Multiplication coefficient of 0.33 was additionally applied to static MFCCs
(excluding energy) to bring their value variability closer to that of energy. On
the other hand, delta and delta-delta energy values were multiplied by coefficient
20, to effectively change their dynamic range. The mentioned coefficient values
were concluded to be appropriate through several previous tests and extracted
feature values analysis. No cepstral mean or variance normalization is performed,
as the training type (explained below) makes it unnecessary.

The first stage of model training, which is the training of monophones on
bootstrapped data set only, comes next. This step included manual alignments
as the starting point and a 10 iterations of model and alignment reestimation.
After each internal alignment, phone boundaries were reset to manually-given
positions, but the within-phone frames per state distributions were saved. Out-
put was the final monophone model set with 1000 Gaussians in total. Afterwards,
these models were used to create the initial context-dependency tree for the
speaker-adapted training (SAT) step, and to produce initial alignments for the
rest of the database. The first pass of SAT started from the aforementioned align-
ments, i.e., there is no equidistant initial alignment at all. The bootstrapped data
set is still used, alongside the whole regular database. The context-dependency
tree which is created here has a goal of 1500 leaves (i.e., states). Next, ini-
tial fMLLR transforms are calculated using initial alignments, producing a
diagonal transform matrix for each of the speakers in the database. Then 10
iterations of model reestimation follow, with periodic internal alignments and
fMLLR transform matrices updates, ending with a goal of 4500 Gaussians for
final models. Manually set boundaries are also forced throughout the stage
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(in the bootstrapped part of the database). In the end, the so-called “align-
ment model” is created - it is computed with speaker-independent (SI) features,
but matches Gaussian-for-Gaussian with the speaker-adapted model.

The training procedure ends with the final SAT training pass. The alignment
model is first used to align the whole database. Also, a new tree is created,
slightly more complex with 2500 leaves, using these new, better alignments. The
rest of the stage is very similar to the previous stage, with 12 iterations and
a goal of 7000 Gaussians. It outputs the final SAT model set, as well as the
final alignment model set. In all internal alignments a large decoding beam is
used, to prevent potentially important tokens from being discarded in the early
stages of utterance decoding. All the selected numbers - of iterations, states and
Gaussians - have shown the best performance on a validation set (a part of the
bootstrapped set) during exhaustive testing where these numbers were varied.
Now that the models are ready, they can be used to align the given test data. The
start is the same as for the training – there are given transcriptions matched to
an audio file name each with marked speaker identifiers, and a lexicon containing
all the words in transcriptions with possible pronunciations. These are converted
to appropriate Kaldi data files. The procedure setup has to be the same as for
model training - number of states for certain phones, list of used phones, MFCC
and energy extraction specifications. Firstly, lexicon FST is created and modified
the same way as in training, which is followed by static feature extraction. Delta
and delta-delta features are added later on the fly. Decoding graphs are created
from lexicon FST, provided models and corresponding tree. This is followed by
first-pass alignment using SI features and the alignment model, the output of
which is used to estimate fMLLR transforms, producing a diagonal matrix for
each speaker in the test database, used to transform features (on the fly). In the
end, the final alignment is performed, using transformed features and provided
SAT models. The results are phone alignments within a label file.

4 Results and Discussion

Our test data sets include exclusively male speakers, so the results were obtained
using male models. Several experiments were conducted. First, the possibility of
using simple monophone models to align test data directly using just SI features
is examined [9]. This of course shortens the training procedure a lot, but mono-
phone models may not be precise enough. Then, the described procedure with
triphones and SAT is evaluated. Both of these experiments are performed both
by using the basic bootstrapped set (without tempo and pitch modifications),
and the fully extended bootstrapped set. All the given results were obtained by
calculating the difference between the phone start times in the manually labeled
set and in the automatically obtained labels, then putting each of those num-
bers in the appropriate category based on the difference, e.g. up to 10 ms, up to
20 ms, and so on. In the special cases of inserted and deleted optional silences and
glottal stops, they are instead compared to the previous phone in the manually
marked database (if inserted) or automatic labels (if deleted).
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Results for monophones with the extended bootstrapped set are given in
Fig. 1 (left). Percentages for phones within 10 ms on all test sets are around
60 %, with more than 80 % within 20 ms, around 90 % within 30 ms and 95 %
within 50 ms, and around 5 % of outliers. Outliers mostly include silences or
phones after silences, especially if the neighboring phone is a plosive, affricate
or a silent fricative. If silences and their adjacent phones are excluded from the
results, around 85 % of phone boundaries fall within 20 ms of manual ones. The
remaining outliers are mostly boundaries between two plosives, two similar vow-
els and finally borders between some vowels and lateral ‘L’ or approximant ‘R’,
which is not that surprising as these borders are hard to put in the correct place
even by hand (at most times there is actually no clear border). These kinds of
outliers appear in other experiments as well. As for context-dependent triphones
trained with the SAT procedure, the results are given in Fig. 1 (right). For the
percentage of phones within 20 ms of manual boundaries, a 4–7% improvement
was obtained at average, which is a lot when talking about segmentation qual-
ity. After excluding silence borders, these improve to over 90 %. The usage of
triphones and SAT is justified, even considering the longer training.

The results with the non-extended bootstrapped set are shown in Fig. 2.
The results are better then with artificial extension. It can be assumed that the
artificial extension of the bootstrapped set results in significant feature dispersion
which could not be covered with the monophone models using the same target

Fig. 1. Results for extended bootstrapped set.

Fig. 2. Results for non-extended bootstrapped set.
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number of Gaussians. On the other hand, in case of tied-state triphones it is
largely compensated by fMLLR. It will be a subject of further research.

5 Conclusion and Further Directions

In this paper, a novel approach to automatic phone segmentation of an arbi-
trary speech database in case of scarce data is presented. It is concluded that
context-dependent SAT models produce best and most stable overall results,
but monophones are not too far behind, if procedure speed is of more concern.
Artificial extension of the manually labeled part of the database is examined
as well, and it was not proven to improve the results, at least if used in the
way described. In the near future, more experiments will be done with versions
of the expansion procedure which will conclude what exactly went wrong here.
For now, it is assumed that either bad modification parameters are chosen, or
the expansion went too far (the part with manual boundaries became too signifi-
cant compared to the rest of the database). Future work will also include training
parameter variations, other speech databases (including other languages as well),
and finally improving the alignment analysis tool to get even more data which
can help with pointing in the right direction. The greatest value of the described
procedure is that the obtained correctly aligned speech databases can be used
relatively quickly and successfully for any given application.
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Abstract. Sensing human social engagement in dyadic or multiparty
conversation is key to the design of decision strategies in conversational
dialogue agents to decide suitable strategies in various human machine
interaction scenarios. In this paper we report on studies we have carried
out on the novel research topic about social group engagement in non-
task oriented (casual) multiparty conversations. Fusion of hand-crafted
acoustic and visual cues was used to predict social group engagement
levels and was found to achieve higher results than using audio and
visual cues separately.

Keywords: Acoustic and visual signal processing · Human social
behaviours · Social engagement recognition

1 Introduction

Although engagement can be expressed through the voice and body gestures of
interlocutors and easily perceived by human beings, machines have no ability
to sense such human social cognitive behaviours. Levels of engagement are also
referential parameters that can be used for conversation assessment and topic
detection. In this paper, we describe engagement concepts and highlight relevant
works in both group and dyadic conversational engagement. We then outline our
proposed engagement recognition methodology and report on several evaluations
based on a multiparty casual conversation corpus.

The most widely used definition of social engagement in human - human
or human - machine conversation is that formulated by Sidner as: the process
by which two (or more) participants establish, maintain and end their perceived
connection. This process includes: initial contact, negotiating a collaboration,
checking that other is still taking part in the interaction, evaluating whether
to stay involved and deciding when to end the connection [20]. In measuring
engagement it is also vital to take account of auditory and visual non-verbal
c© Springer International Publishing Switzerland 2016
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cues, as they have been reported to contain much of the affective information
transferred during conversations [9].

2 Related Works

There has been much valuable research into social engagement in various conver-
sation scenarios. Many perceptible non-verbal cues have been analysed in social
conversations. Eye gaze has been widely studied in terms of social engagement
or interest during dialogues. Argyle and Cook (1976) [3] noted that the failure
to attend other’s gaze contact was evidence of having no interests and atten-
tion. Cassell et al. (1999) [7] examined the relationship between information
structure and gaze behavior. They suggested that interlocutors’ gaze behav-
iour served to integrate turntaking cues with the information structure of the
propositional content of an utterance. They found that the beginnings of themes
were frequently accompanied by a look-away from the hearer, while speakers fre-
quently looked towards the hearer at theme endings. Rich et al. (2010) [19] built
a computational model to recognize engagement by using manually annotated
data on mutual facial gaze, directed gaze, adjacency pairs, and back-channels.
Nakano and Ishii (2010) also used eye-gaze behaviours to estimate user engage-
ment between human users and virtual agents [16].

Gustafson and Neiberg (2010) demonstrated that prosodic cues in Swedish,
including change in syllabicity, pitch slope and loudness in non-lexical response
tokens, could be used to detect engagement, and investigated prosodic alignment
as a cue to engagement between speaker and listener [12]. Gupta et al. (2012)
used speech cues to analyse childrens’ engagement behavior, with results showing
that vocal cues were informative in detecting children’s engagement. [11] Hsiao
et al. (2012) also investigated engagement level estimation using higher level
speech cues like turntaking extracted from low level cues such as MFCCs and
intensity [13].

Oertel et al. (2011) [18] used multimodal cues to predict the degree of
group involvement during spontaneous conversation, extracting acoustic features
including pitch level and intensity and visual features including eye blinking and
mutual gaze from manually annotated data. The resulting automatic prediction
was based on Support Vector Machines (SVM) with three classes of involvement.
Oertel and Salvi (2013) [17] modelled individual engagement and group involve-
ment in an eight-party dialogue corpus. Their results showed that engagement
and involvement can be modelled by using gaze pattern. In order to describe
engagement, they introduced presence, entropy, symmetry and MaxGaze fea-
tures to summarize different eye-gaze pattern aspects. Their group involvement
classification using Gaussian Mixture Models got accuracies of 71.0 % on training
sets and 71.3 % on test sets. Lai et al. (2013) used turn-taking features to detect
group involvement and used the involvement cues to predict extractive summary
content in meeting segments; they concluded that automatically derived mea-
sures of group level involvement, like participation equality and turn-taking free-
dom, could help in identifying relevant meeting segments for summarization [15].
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Bohus et al. (2009) introduced an approach to detect human participants’
engagement intentions during dialogue with an avatar agent [4]. Yu et al. (2015)
built an engagement awareness dialogue system named TickTock [21], which
has a social engagement model to offer information to dialogue manager where
conversational strategy was decided.

In this work, we focus more on studying group engagement level recognition,
considering the group as a whole rather than individuals. We investigated fea-
tures which can take all interlocutors into account and contribute to the whole
conversation. Visual and acoustic cues like group head movement distance, opti-
cal flow, direction of head address (yaw), leaning forward or backward, voice
quality and intensity were used for the recognition task.

3 Methodology

We propose a set of features which can represent group talking traits. These
comprise visual and auditory visual and auditory cues, which are used in com-
bination for engagement prediction. Figure 1 shows a flowchart overview of our
methodology, while the features and steps are described in more detail below.

Visual

Auditory
Voice Quality

MFCCs

Image Frames 
& Audio Segments 

Image 
Pre-processing

Optical 
Flow

LibSVM

Head Movement

Lean Forwards/
Backwords

Pitch Level

PCA

Head 
Locations

Address to

Audio 
Pre-processing

Fusion or
Separately

Fig. 1. Methodology overview

3.1 Optical Flow with Principal Component Analysis (PCA)

Optical flow is used to compute the motion of the pixels of an image sequence.
It provides a dense (point to point) pixel correspondence over the entire scene,
and thus provides an indication of how much movement is occurring overall.
We used the algorithm proposed by Gunnar Farnback [10] based on polynomial
expansion, which provides all the motion of all the pixels between previous and
current frames. PCA was also used for dimensionality reduction.

3.2 Head Pose Related Features

The face detection and the yaw head position library were used from the work
of [1], Camshift tracking [6] was also used tracking the detected faces. Yaw
angle range from −90 degrees to +90 degrees. Backward or forward body move-
ment (leaning) was computed by comparing the size of participants’ faces across
sequential frames in 10-frame steps on 30 fps videos.
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3.3 Auditory Features

Audio recordings were down-sampled to 16 kHz for feature extraction in this
work. The features extracted from the audio signal comprised pitch level, 12
MFCCs, MFCC energy, and glottal parameters.

3.4 Applying Additional Windows

The auditory features were extracted in a small window size, and the video data
was recorded at 30 frames per second. However, changes in human cognitive state
occur over a longer time frame, up to several minutes. To model these events
more reliably, we tested additional window lengths. To make the visual results
more reliable, we downsampled the video data from 30 frames per second to 3
frames per second. The method was motivated from previous studies [13]. For
the audio, we calculated average feature values across longer window lengths.

4 Experiments and Results

To test the general performance of our engagement model, the LibSVM package
[8] with RBF kernel was used for binary classification tasks with grid search
method for best parameters selection, cost (set Cost, search from 2−5 to 215)and
gamma (set gamma, search from 2−15 to 23) to avoid overfit and underfit. The
number of instances of each class used for training was balanced with an baseline
accuracy of 50 %.

Fig. 2. Screenshot of TableTalk with face detection and head yaw angle
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4.1 Data Sets and Annotation

TableTalk [2] is a 210-min corpus of group social conversations collected at the
ATR Research Labs in Japan. A 360-degree camera was used to capture the
frontal faces of participants chatting around a table. Audio was captured using
a centre mounted microphone. Figure 2 shows a screen shot of the video of the
corpus with face detection. The TableTalk corpus has been widely studied for
social tasks e.g. Scherer [14] studied it for visual interaction management; Bonin
F. investigated the engagement annotation study based on TableTalk corpus [5].
We annotated engagement levels on a 0–4 scale in maintain segment as shown
in Table 1 and Fig. 3, and the binary classes of engaged (A) and not engaged (C)
were analysed in this paper. The maintenance or central phase part engagement
was annotated into different degrees, and was the focus of this analysis, rather
than the initial phase or approach phase examined in other works [4].

4.2 Feature Analysis

Box plots of several features are shown in Fig. 4. The first two box plots from
the left show the distributions of two selected visual cues - head pose (yaw)

Initial Contact End  ConnectionMaintain

One Engagement Segment

Negotiating a Collaboration. 
In Interaction Checking?

 Deciding When to End the 
Connection 

Fig. 3. One engagement segment

Table 1. Annotation rules

5-level Engagement Annotation

End of the previous segment

Engagement Initialization

Maintain 0. Strong Engaged A. Engaged Very engaged and strongly want
to maintain the conversation

1. Engaged Interest but not very high, e.g.
willing to talking with no
passion

2. Neutral B. Neutral Neither show interest or lack of
interest

3. Disengaged C. Disengaged Less interest in the conversation

4. Strong Disengaged No interest to continue the
conversation at all, want to
leave the conversation

End Connection



80 Y. Huang et al.

and move distance. We observe that for these visual cues, as expected, the non-
engaged category has lower values (p<0.005). The two plots on the right show
the distributions of MFCC energy and Open Quotient (OQ). Again, non-engaged
has lower values. Optical Flow visualization using Munsell Color System is shown
in Fig. 5.

(a) Head Pose (b) Move Distance

(c) MFCC energy (d) OQ

Fig. 4. Box plots of selected features

4.3 Visual Cues Results

Table 2 shows the results for different combinations of visual features. The head
backward/forward movement obtained the lowest accuracy rate. A higher result
was obtained when head movement distance, optical flow and head yaw angle
were considered together.

4.4 Acoustic Cues Results

Table 3 shows the results for the auditory features. Glottal and MFCCs features
achieve a higher accuracy of 71 % than other acoustic feature sets.
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Fig. 5. Optical flow visulization

Table 2. Classification results of group engagement using visual features

Feature set Accuracy

Head forward/backward 65.0024%

Head move distance 71.0875%

Head Pose 71.2081%

Optical flow with PCA 73.4748%

Head move distance + Optical flow + Head yaw angle 74.1741%

Table 3. Classification results of group engagement using auditory features

Feature set Accuracy

F0 60.9187%

Glottal 71.9074%

MFCCs 72.2691%

Glottal + MFCCs 72.679%

4.5 Fusion Feature Set Results

A ‘fusion’ feature set consisting of both audio and video features was obtained
by concatenating the visual and auditory vectors which had been time-aligned.
The mean values of head move distance and head pose for the four speakers were
calculated. The auditory features were extracted from a single recorded audio file
containing all participants. Table 4 shows the results of the combination of these
audio-visual feature sets with 82.23 % prediction rate. These results indicate that
the combined audio-visual feature is better for detecting engagement than using
the auditory and visual feature sets separately.
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Table 4. Prediction results of combined features

Feature set Accuracy Recall Precision F-Score

Auditory and visual combined 82.23% 0.822 0.816 0.815

5 Conclusion

Low level visual and auditory cues of engagement have been analysed in the
TableTalk corpus. In general, the visual parameters performed slightly better
than the auditory parameters in recognition of engagement in this work. We
compared recognition results using feature fusion and using visual/audio fea-
tures separately, and found that audio-visual fusion gave higher accuracy. As a
shallow analysis, we believe that advanced detailed visual and audio features can
definitely increase the prediction accuracy, deep learning may also increase the
results, which is conducted in the future works. Model-level and decision-level
fusion will also be investigated in the future.
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Abstract. Prosody is a phenomenon that is crucial for numerous fields
of speech research, accenting the importance of having a robust prosody
model. A class of intonation models based on the physiology of pitch pro-
duction are especially attractive for their inherent multilingual support.
These models rely on an accurate model of muscle activation. Tradi-
tionally they have used the 2nd order spring-damper-mass (SDM) mus-
cle model. However, recent research has shown that the SDM model
is not sufficient for adequate modelling of the muscle dynamics. The
3rd order Hill type model offers a more accurate representation of mus-
cle dynamics, but it has been shown to be underdamped when using
physiologically plausible muscle parameters. In this paper we propose an
agonist-antagonist pitch production (A2P2) model that both validates
and gives insight behind the improved results of using higher-order crit-
ically damped system models in intonation modelling.

Keywords: Prosody · Intonation · Muscle models · Resonant fre-
quency · Damping

1 Introduction

Prosody is a multidimensional phenomenon comprising the intonation, energy,
and duration contours of the speech signal, which carries both linguistic and
paralinguistic information [3,15]. Prosody is crucial in speech technology sys-
tems, especially in Text to Speech synthesis (TTS) where it is necessary for
generating natural speech output, but also in Automatic Speech Recognition
(ASR), Speech Emotion Recognition (SER) [19], emotional speech synthesis [2],
and emphatic human-machine dialogue systems. Intonation is arguably the most
studied and modelled dimensions of prosody [14]. Most intonation models fol-
low one of two general approaches: (i) modelling the pitch contour directly, and
(ii) modelling the underlying mechanisms, i.e. the physiology of pitch production.
The physiology-based models are especially attractive because they offer insight
into the way prosody is produced, and because of their inherent multilinguality.

One of the most well-known physiological models is the command-response
(CR) model of Fujisaki [4], which models the pitch contour as a sum of global,
c© Springer International Publishing Switzerland 2016
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phrase components, and local, accent components. Both components are output
from a 2nd order critically damped system that models laryngeal muscle activa-
tion based on the Spring-Damper-Mass (SDM) muscle model [5]. More recently,
research has shown that using higher order system models increases intonation
modelling performance. The quantitative target approximation (qTA) model,
for example, uses a 3rd order system to generate the surface pitch contours [13].
We have also observed improved performance in our Weighted Correlation Atom
Decomposition (WCAD) based intonation model1, when higher 6th order system
responses are used [8,9]. These findings necessitate a closer examination of the
muscle model used in intonation modelling.

There are different muscle models suggested in literature, which go from very
detailed ones – modelling the internal mechanics of the muscle fibre, to more
general ones – modelling only the output to a given input of the muscle as a
whole [20]. Recently, we have analysed the two most commonly used muscle mod-
els: the 2nd order SDM model and the 3rd order Hill type model [7]. Research sug-
gests that the SDM model is too simple to capture the basic mechanics of muscle
activation [10]. On the other hand, the Hill type model while offering improved
modelling of muscle-tendon dynamics, exhibits underdamped behaviour when
using physiologically plausible muscle parameters [11]. In this paper we propose
an agonist-antagonist pitch production (A2P2) model [12] and analyse how it
relates to recent results in physiological intonation modelling. The analysis shows
that the A2P2 model validates and gives insight behind the improved results of
using higher-order critically damped system models in intonation modelling.

2 SDM and Hill Muscle Models

The spring-damper-mass (SDM) model shown to the left in Fig. 1 is the simplest
model of muscle activation. It comprises a parallel elasticity (PE) k, a damper
c and a force generator F . If we assume steady state initial conditions and an
impulse driving force its transfer function is given by (1) [6]. From it, we can
extract the damping ratio ζ and the undamped resonant frequency ω0, which
are given by (2). If we plug in physiologically plausible parameters taken from
the elbow muscles [11] into the SDM, we obtain the zero-pole diagram and
corresponding impulse responses in Fig. 2. The diagram shows that the system
reaches critical damping only for c = 10, which is at the extreme end of the
physiologically plausible range:

y(s) =
1

m
k s2 + c

ks + 1
, (1)

ζ2 � c2

4mk
, ω2

0 � k

m
. (2)

The three-element Hill muscle model [20] is shown in its Poynting-Thomson (PT)
form to the right of Fig. 1. It improves on the SDM by adding a series elasticity
1 The WCAD implementation code is available on gitHub at https://github.com/

dipteam/wcad.

https://github.com/dipteam/wcad
https://github.com/dipteam/wcad
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Fig. 1. The 2nd order spring-damper-mass (SDM) muscle model (left), and the Hill
three element model (right).

Fig. 2. Zero-pole diagram (left) and impulse response (right) of the SDM model, for
a sweep of values of c ∈ [1, 10], for k = 178 and m = 0.12.

(SE) ks that models the tendons connecting the muscle to the bone. It is the
simplest model that takes into account the essential interactions arising from
the stiffness of the tendon [10]. Its transfer function under steady state initial
conditions and an impulse driving force is given in (3). To derive its resonant fre-
quency ω0 (4) we can use the impedance electro-mechanical analogy [1] to draw
the equivalent electrical circuit, find its input impedance Zi(jω), and equate its
imaginary part to 0 [7]. Unfortunately, there is no straightforward solution for
the damping ratio ζ [11]:

yo(s) =
1

cm
ks

s3 + m
ks+kp

ks
s2 + cs + kp

, (3)

ω2
0 =

kpks
m(kp + ks)

. (4)

The movement of the poles is shown in Fig. 3 for a sweep of muscle damping c
and an increasing SE to PE ratio k = ks/kp. We can see that the system reaches
critical damping only for k ≥ 8, when the two imaginary poles reach the real
axis, and is underdamped over most of the parameter range. In fact, for k ≥ 8
the Hill model exhibits underdamped oscillatory behaviour independent of its
damping c [11].
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Fig. 3. Movement of the poles for the Hill model for a sweep of c ∈ [0.1, 1000].

3 Physiology of Pitch Production

It is clear the the SDM, and even the Hill muscle model, with their underdamped
behaviour cannot on their own account for the dynamics of the laryngeal mus-
cle system. In order to build a better model we have to take a examine more
closely the physiology of pitch production. Such a detailed analysis reveals four
physiological sources of pitch change [16]:

(i) Cricothyroid (CT) muscle that rotates the thyroid cartilage in respect to
the cricoid, stretching the vocal folds and raising pitch,

(ii) Vocalis (VOC) muscle, whose contraction decreases vocal cord length, but
increases their tensile stress, effecting a rise in pitch [18],

(iii) Sternohyoid (SH) muscle that lowers the larynx decreasing vocal fold ten-
sion and pitch, and

(iv) Subglottal pressure (PSB), which linearly correlates to pitch.

Other researchers have suggested that thyrohyoid (TH), rather than the SH
muscle effectuates the drop in pitch [5], but these muscle have been found to
activate in unison.

4 The Agonist-Antagonist Pitch Production Model

Reflecting the complexity of the laryngeal muscle system we propose an agonist-
antagonist pitch production (A2P2) model to capture the opposing muscle phys-
iological environment of pitch production [5,16]. The agonist-antagonist concept
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was first proposed by Plamondon and colleagues [12], mainly in the context of
handwriting analysis. Plamondon’s model is built around the velocity of muscles
following a lognormal profile. The lognormal in turn arises as a limiting case
where complex muscles are driven by signals travelling some distance from the
brain, and driving large masses. In considering the Hill model (and derivatives),
we rather model the absolute offsets of individual muscle fibres. Of course, com-
plex muscles lead to higher order models which likely tend towards lognormal
profiles. It is an open question whether the muscles associated with prosody
are small enough to be modelled as individual fibres. At least, the thrust of the
present work is to understand what can be gained from assuming so. Conversely,
the difference between a lognormal and the gamma-like profiles that arise from
such analysis is not large, and probably below the noise level of measurements
of prosody.

The A2P2 model is shown in Fig. 4 and consists of an agonist Hill muscle that
models the CT and VOC muscles, an antagonist Hill muscle that models the SH-
TH muscle complex, and a mass with its damper and elasticity that represents
the thyroid cartilage held in place by the elasticity of the vocal folds and whose
movements are damped by the friction at its joint with the cricoid. Although
PSB is not explicitly modelled, it is indirectly included in the two opposing
muscle models, as it is also due to the activation of muscles in the respiratory
system. The physiological plausibility of the proposed model is grounded on the
assumption that we can group all of the muscles responsible for the produc-
tion of the pitch into two equivalent opposing muscles, whilst still being small
enough to merit the small muscle assumption in the Hill model. This has been
common practice when modelling muscle systems [11] and is also justified by the
correlation seen in the activation of the CT and the VOC [16].

Transfer Function. To obtain the transfer function of the proposed model we
can use the impedance electro-mechanical analogy [1] to obtain the equivalent
electrical circuit shown in Fig. 5. When solving in the Laplace domain [17] we find
that the proposed system is 4th order with one zero. It is possible to simplify the
equivalent circuit by applying Thévenin’s theorem between the connection points
of the two muscles, here marked A and B and thus calculating a joint equivalent
Hill model for the opposing muscles. If we assume that the two opposing muscles
have identical parameters, which is physiologically plausible, then the system
simplifies to a 3rd order system, whose impulse is given by (5) response for
steady state initial conditions, and an impulsive driving force:

yo(s) =
1

cpm

ks
s3 +

cmcp+m(kp+ks)

ks
s2 +

cm(kp+ks)+cp(km+ks)

ks
s +

kmkp

ks
+ km + kp

(5)

Resonant Frequency ω0. We can now find the input impedance of the system
and use it to calculate the resonant frequency ω0. A simplified analysis, which
disregards the elasticity km, gives (6), showing that the A2P2 model has two
resonant frequencies. It is interesting to note that if we let cm = 0, the simplified
A2P2 model reduces to the Hill model, and as solutions of (6) we have (7).
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Fig. 4. The agonist-antagonist pitch production (A2P2) model.

Fig. 5. Equivalent electrical circuit of the A2P2 model.

While the first solution ω0 is equivalent to (4), ω1 explains the outer resonant
frequency seen in the movement of the poles in Fig. 3:

ω2
0 =

1

2

(
− c2m

m2
+

ks(2kp + ks)

(kp + ks)m
±
√

c4m
m4

− 2c2mks(2k2
p − 3kpks − k2

s) − k4
sm

m3 (kp + ks)
2

)
, (6)

ω0 =

√
kpks

m(kp + ks)
, ω1 =

√
kpks + k2

s

m(kp + ks)
. (7)

Pole Movement. To understand the A2P2 model’s behaviour and compare it
to the Hill model, we will look at the movement of the poles in the simplified
model for various k-s keeping cm = 2, shown in Fig. 6. We can see that (i) for
k = 1 the two resonant frequencies coincide, (ii) the asymptotic movement of
the poles towards ω0 and ω1 is from the outside rather than from in between as
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Fig. 6. Movement of the poles for the AA model for cm = 2 and a sweep of cp ∈
[0.1, 1000].

for the Hill model, and (iii) we have critical damping already for k = 5, instead
of k = 8 as was the case for the Hill model. Thus, the added damping cm in the
A2P2 compensates for the underdamped behaviour of the individual Hill model,
granting critical damping and overdamping for a physiologically plausible set of
parameters. This effect is emphasised if we let cm > 2.

5 Conclusions

The proposed agonist-antagonist pitch production model appears to be a rea-
sonable hypothesis for the model that is being implicitly assumed when higher
orders are used in prosody models. Combined with the feedback assumption of
Prom-on, it justifies use of a model order somewhere between the 2nd order of
the CR model and the limiting lognormal case of Plamondon. Moreover, the
A2P2 model also grants physiological plausibility to the use of critically damped
system models in intonation modelling.
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Abstract. While human auditory system is predominantly sensitive to the
amplitude spectrum of an incoming sound, a number of sound perception studies
have shown that the phase spectrum is also perceptually relevant. In case of
speech, its relevance can be established through experiments with speech
vocoding or parametric speech synthesis, where particular ways of manipulating
the phase of voiced excitation (i.e. setting it to zero or random values) can be
shown to affect voice quality. In such experiments the phase should be
manipulated with as little distortion of the amplitude spectrum as possible, lest
the degradation in voice quality perceived through listening tests, caused by the
distortion of amplitude spectrum, be incorrectly attributed to the influence of
phase. The paper presents an algorithm for phase manipulation of a speech
signal, based on inverse filtering, which introduces negligible distortion into the
amplitude spectrum, and demonstrates its accuracy on a number of examples.

Keywords: Phase perception � Parametric speech synthesis � Zero phase �
Random phase � Inverse filtering

1 Introduction

Due to the early studies of sound perception, it has been assumed for a long time that
human auditory system recovers all information from the amplitude spectrum of the
incoming signal and that it does not rely on phase spectrum at all [1, 2]1. However,
more recent studies have shown that, on the contrary, our sound perception is sensitive
to phase information to a certain degree [4–6]. In practice this dependence is still often
ignored. For example, most contemporary automatic speech recognition systems still
rely on features extracted from amplitude spectra only [7], and in speech enhancement
it is common practice to modify the magnitude spectrum and keep the corrupt phase
spectrum [8, 9]. Nevertheless, a number of recent studies have shown that pitch
information has particular relevance in case of speech signals [10], and that, e.g. the

1 A review of most important early studies in phase perception can be found e.g. in [3].
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accuracy of both human and automatic speech recognition can be improved if phase
information is taken into account in some way [7, 11, 12].

Most practical studies related to the influence of phase to speech perception are
based on listening tests in which listeners are presented with speech samples containing
a number of different versions of the same utterance, which are assumed to have
identical amplitude spectra and different phase spectra. A direct consequence of this
approach is that any difference in quality that is perceived between sound samples will
inevitably be attributed to the influence of the phase information. However, in reality it
is not possible to modify the phase spectrum of an utterance in an arbitrary way without
affecting the amplitude spectrum as well, which implies that the interpretation of the
results of such studies has to take into account the specific algorithm used to modify the
phase spectrum. For instance, some representative phase perception studies, including
most notably [13], are based on the manipulation of either excitation signal or speech
itself by superimposing overlapping frames previously shifted in time, which is known
to affect the amplitude spectrum as well. This paper presents an alternative approach,
based on the decomposition of the speech signal according to the source-filter model
and phase modification by using an all-pass filter whose phase response varies from
sample to sample of the input signal.

The remainder of the paper is organized as follows. Section 2 presents the
source-filter separation algorithm which enables subsequent manipulation of the phase
spectrum. Section 3 presents the proposed algorithm for phase manipulation in detail,
Sect. 4 presents the results of a simple experiment carried out on recordings of four
speakers of Serbian and English, and Sect. 4 concludes the paper, giving an outline of
the future work as well.

2 Source-Filter Separation Algorithm

The source-filter separation algorithm used in this research is based on inverse filtering
with filters obtained through the estimation of MFCC coefficients of the spectrum, as
outlined in Fig. 1. Since this study is concerned with phase information, the discussion
will be restricted to the case of voiced speech segments, with well-defined fundamental
frequency (f0). The speech signal under analysis is firstly separated into individual
frames using overlapping Hamming windows, positioned pitch-synchronously, which
requires the knowledge of f0 as well as glottal closure instants. A slightly modified

Fig. 1. Outline of the source-filter separation algorithm for voiced speech.

An Algorithm for Phase Manipulation in a Speech Signal 93



approach can be used even if these are not available, but with inferior results. The
spectral envelope for each frame is estimated in the following steps:

(1) FFT of size N is calculated for each frame in a sufficient number of points.
(2) Obtained values are used to calculate the estimated value of the spectrum at

integer multiples of f0, using linear interpolation.
(3) Based on the values of the spectrum at integer multiples of f0, FFT coefficients are

re-interpolated.
(4) Thus obtained FFT coefficients are passed through a filter bank of K overlapping

mel-spaced triangular filters, where K is one of the analysis parameters.

The estimates of filter bank outputs at equidistant reference time instants (the
distance d between them being another analysis parameter) are obtained by linear
interpolation between filter bank outputs previously obtained at glottal closure instants
(i.e. pitch-synchronously). Thus obtained values are used to interpolate the full spec-
trum envelope in L points (where L is also specified as input parameter) for each
reference time instant. Linear interpolation is used, since some other techniques, which
were also investigated, did not lead to an improvement. In the i-th reference time
instant the spectrum envelope is normalized by:

normi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
WL

XL�1

k¼0
X2ðkÞ;

r

ð1Þ

where XðkÞ is the interpolated spectrum and W is the length of the analysis window.
Thus obtained spectrum envelope can be converted into the impulse response of the

corresponding filter using IFFT. The actual frequency response of the inverse filter at
each sample between reference time instants n� 1 and n is given by:

I fð Þ ¼ 1
Hðf Þ ¼

1
c1Hn�1 fð Þþ c2Hnðf Þ ; ð2Þ

where Hn�1 fð Þ and Hn fð Þ are the frequency responses at reference time instants n� 1
and n, and c1 and c2 represent the relative distance of the sample under consideration
from time instants n� 1 and n respectively. It is important to note that the inverse filter
obtained in this way varies with each sample of the speech signal. The excitation signal
e nð Þ can now be easily obtained by inverse filtering.

It should be noted that the described procedure is computationally too demanding
to be performed at real time due to the necessity of calculating the inverse filter
coefficients for each sample. However, having in mind its purpose, this is only a minor
disadvantage, particularly having in mind that the resynthesis process does not suffer
from the same drawback. Namely, for resynthesis purposes it is possible to keep only
the filters related to reference time instants and to perform linear interpolation in time
domain.

94 D. Pekar et al.



3 Phase Manipulation

In this approach phase manipulation is performed on the excitation signal, which is
processed within symmetrical rectangular windows of length equal to the current T0.
The windows are centered around glottal closure instants (GCIs), which are also used
for calculating the current T0 and as reference points during the analysis. Assuming that
the aim is to obtain zero phase spectrum, the phase spectrum for each voiced frame is
manipulated in the following steps:

(1) Firstly, the T0 of each fundamental period is calculated by subtracting two adja-
cent GCIs, and this value is assigned to the centre of that period (i.e. it will be
assumed that at that point T0 has this value). Then, each sample is assigned its
current T0, calculated by interpolating the values of T0 of the two adjacent fun-
damental periods between whose centres the sample in question is located.

(2) A DFT of size T0 (in samples) is calculated for each sample, using a symmetrical
rectangular window, without zero padding. The obtained phase spectrum is
unwrapped in order to avoid phase discontinuities, using an appropriate function
from Matlab.

(3) For each sample, the corresponding phase spectrum is calculated from the pre-
viously obtained unwrapped phase spectrum by adding the term 2kpd, where k is
the index of a particular spectral component and d is the parameter that provides
the relative distance of the relevant sample of the signal from the previous GCI
(0� d\1). In this way a phase spectrum that varies with each sample of the
excitation signal is obtained.

(4) For each sample it is now possible to obtain an all-pass filter with a phase
spectrum exactly the inverse of the phase spectrum obtained in the previous
step. By filtering the excitation signal eðnÞ using the time-variant all-pass filter, a
modified excitation signal e0ðnÞ with zero-phase spectrum is obtained. It is
important to note that all-pass filtering is carried out on a sample-by-sample basis,
i.e. although the all-pass filter obtained for sample i of the input signal operates on
a number of samples in the neighbourhood of i, it produces only one sample of the
output signal. For each new sample of the input signal, a new filter has to be
obtained.

The algorithm is summarized by the pseudocode given in Fig. 2.
It should be noted that it would be possible to shape the phase spectrum in any

other way by applying an obvious modification to the step 3. However, to obtain a
random-phase excitation signal it is not necessary to perform a sample-by-sample
modification proposed above, i.e. it is sufficient to manipulate the excitation signal all
at once, by using a time-invariant all-pass filter. Figure 3 illustrates a segment of the
excitation signal for the vowel /a/ before and after phase manipulation. The modified
speech segment belongs to the corpus of studio recordings of a female speaker of
Serbian (referred to as D in the following section), used for expressive speech synthesis
[14]. It should be noted that the excitation signal modified in this way has the most of
its energy concentrated around GCIs, which makes it more robust to windowing. This,
in turn, is beneficial for a number of speech processing techniques that include
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overlap-add modifications of excitation signals. Figure 4 illustrates the difference
between the original phase spectrum, the phase spectrum set to zero using the proposed
algorithm, and the phase spectrum of the generic HTS (Hidden Markov model based
TTS) excitation [15], shown here as a reference.

Fig. 2. Pseudocode of the phase modification algorithm.

Fig. 3. A segment of voiced speech excitation (vowel /a/) (a) with original phase distribution
(b) with phase spectrum set to zero using the proposed method.
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4 Experiment Results

Preliminary experiments aimed at the verification of the proposed methods for
source-filter separation and phase manipulation were carried out on speech recordings
of four speakers – one female and one male speaker of Serbian, as well as one female
and one male speaker of English. Five recordings from each speaker were analyzed,
selected at random from large speech corpora recorded for the purposes of expressive
speech synthesis. All of the corpora were made in a professional studio using high
quality equipment. The selected recordings were downsampled to 16 kHz and the
original bit depth of 16 bits per sample was kept.

Firstly, in order to verify the proposed method for source-filter separation, the
selected recordings were separated into their source and filter components and then
resynthesized, with no phase manipulation (Experiment 1). The amplitude spectra of
the original recordings were then compared frame by frame to the amplitude spectra of
their resynthesized versions, and the results are shown in Table 1. The comparison was
carried out on the full frequency range by calculating the amplitude of the FFT at
30 ms long successive overlapping frames with a shift of 5 ms, and then averaging the
result. A very small distortion of the amplitude spectrum occurs, which was con-firmed
by informal listening tests, where no perceptual difference between the original and the
resynthesized sample was detected by any of the listeners.

Secondly, in order to verify the proposed phase manipulation algorithm and to
examine the extent of the distortion of the amplitude spectrum that it introduces, the
source component obtained in Experiment 1 was re-created with zero phase spectrum at
voiced segments, while on unvoiced segments it was not modified in any way. It has
been confirmed by listening tests that the different treatment of frames due to the
difference in their voicing does not lead to audible discontinuities in resulting speech.
The phase modification was limited to the frequencies below 5 kHz. The signal was

Fig. 4. Phase spectra of the original excitation, the excitation with phase spectrum set to zero,
and the generic HTS excitation (pulse train with noise).
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then resynthesized from the source component modified in this way, using the filter
component which was not altered (Experiment 2). The difference in the amplitude
spectra was then calculated in the same way as in Experiment 1, and the results are
shown in Table 2. The distortion that occurs is somewhat greater than in the first case,
but can still be considered very small, while the informal listening tests reveal only a
slight perceptual difference between the original and the resynthesized signal.

5 Conclusion

In this paper we have proposed a novel technique for manipulating the phase spectrum
of a speech signal by firstly decomposing the signal into its source and filter compo-
nents by inverse filtering and then modifying the phase of the excitation on a
sample-by-sample basis. The proposed technique thus avoids the need for overlap-add,
which is often used for phase manipulation regardless of the fact that it can affect the
amplitude spectrum significantly. The results of the preliminary experiments, including
the resynthesis of the original speech using the original excitation signal and the
excitation signal with phase spectra set to zero, confirm that the distortion of the
amplitude spectrum caused by phase manipulation is indeed relatively small. This
makes the proposed technique useful in a range of speech processing scenarios which
require the modification of excitation phase spectrum, including the construction of
excitation signals for parametric speech synthesis or speech vocoding. Our future work
will include the re-implementation of most widely used phase modification algorithms
from their descriptions in the literature, and their direct comparison with the proposed
algorithm, both through objective measurements as well as more extensive listening
tests.
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Table 1. Results of Experiment 1: Original vs. resynthesized recordings.

Serbian English Average
D (female) J (male) K (female) D (male)

Mean [%] 1.38 0.71 1.42 0.56 1.02
Variance [%] 0.36 0.14 0.23 0.06 0.20

Table 2. Results of Experiment 2: Original vs. zero-phase resynthesized recordings.

Serbian English Average
D (female) J (male) K (female) D (male)

Mean [%] 5.21 9.65 5.24 5.86 6.49
Variance [%] 0.63 0.98 0.66 1.07 0.83
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Abstract. The research presented in this paper has been conducted in the frame‐
work of the large sociolinguistic project aimed at describing everyday spoken
Russian and analyzing the special characteristics of its usage by different social
groups of speakers. The research is based on the material of the ORD corpus
containing long-term audio recordings of everyday communication. The aim of
the given exploratory study is to reveal the linguistic parameters, in terms of which
the difference in speech between different social groups is the most evident. An
exploratory subcorpus, consisting of audio fragments of spoken communication
of 12 respondents (6 men and 6 women, 4 representatives for each age group, and
representatives of different professional and status groups) with the total duration
of 106 min and of similar communication settings, was created and fully anno‐
tated. The quantitative description of a number of linguistic parameters on
phonetic, lexical, morphological, and syntax levels in each social group was
made. The biggest difference between social groups was observed in speech rate,
phonetic reduction, lexical preferences, and syntactic irregularities. The study has
shown that the differences between age groups are more significant than between
gender groups, and the speech of young people differs most strongly from the
others.

Keywords: Russian everyday speech · Sociolinguistics · Multilevel linguistic
analysis · Phonetics · Vocabulary · Syntax · Social groups · Speech corpus

1 Introduction

The speech of any person inevitably reflects features of the sociolects that are connected
to those social groups or strata to which this person belongs to and in the scope of which
he or she mainly communicates with other people. Nowadays, it seems quite impossible
to study speech in any language independently of speaker’s gender and age parameters.
The examples of sociolinguistic studies of spoken Russian may be found in [1–4] and
other works.

Therefore, “making a speech portrait” not of an individual but of a particular social
group has become a challenging topic that attracts the linguists’ attention. The decision of
this problem is important for solution of many theoretical and practical tasks (e.g., for
creation of speech synthesis and recognition systems, speaker’s verification and identifi‐
cation, elaboration of speaker adaptive dialogue systems, forensic phonetics, etc.) [5].
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The research presented in this paper has been conducted in the framework of the
large sociolinguistic project aimed at describing everyday spoken Russian and analyzing
the special characteristics of its usage by different social groups of speakers.

The study is based on the material of the ORD corpus containing long-term audio
recordings of everyday communication [6, 7], which is one of the most representative
corpus of spoken Russian and the largest multimedia resource of Russian everyday
discourse, containing more than 1200 h of recordings gathered from 127 respondents
and hundreds of their interlocutors. The respondents which took part in the ORD record‐
ings represent different gender groups (66 men and 61 women), different age groups
(with individual ages of participants ranging from 18 to 77 years), different professional
and status groups [8].

The aim of the given exploratory study is to reveal the linguistic parameters, in terms
of which the difference in speech between different social groups is the most evident.
Taking into account the high labor requirements of spoken data transcription and anno‐
tation [9], it was decided firstly to conduct an exploratory study on the limited speech
sample in order to detect linguistic parameters that are the most indicative for different
social groups (mainly, for the age and gender groups). The results of this research are
presented in the given article.

2 The Exploratory Subcorpus and the Methodology
of the Pilot Study

For this study, the pilot subcorpus, containing fragments of everyday communication
of 12 respondents and their 10 interlocutors, lasting 1 h 46 min in total, was formed and
completely annotated. The episodes for this subcorpus have been selected from everyday
(non-professional) conversations of respondents with their relatives, friends or collea‐
gues in alike communicative situations [10]. The amount of the explored speech material
is comparable to a well-known spoken Russian corpus “Rasskazy o snovideniyax”
(Night Dream Stories) [11].

The subcorpus contains episodes of speech communication of the balanced
sample of respondents, representing two gender groups (6 men and 6 women), three
age groups (four representatives for each – youth, middle-aged and seniors – group)
and at least one representative of 4 social class groups: (a) high-level personnel,
businessmen and self-employed individuals, (b) salaried employees, (c) students,
(d) unoccupied people, including non-working pensioners. Besides, the subcorpus
contains speech of representatives of the following professions: (1) a worker,
(2) a soldier, (3) an engineer, (4) an IT-specialist, (5) a teacher, (6) a physicist,
(7) an art historian, (8) a marketer, (9) a lawyer, and (10) a musician.

All speech data have been segmented into utterances, phrases, words and allophones.
Phonemic and phonetic transcriptions have been performed. Linguistic annotation is
made on phonetic, lexical, morphological and syntax levels.

In total, the subcorpus contains 16060 tokens of speech transcripts (10259 of which
are word tokens), 2039 clauses, and 41850 allophones. Multilevel statistical analysis of
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annotations has been conducted on all levels for the whole subcorpus and separately for
two gender and three age groups.

3 The Phonetic Level

On phonetic level, the statistical data concerning the distribution of individual phonemes
and allophones have been obtained, and the duration of sounds, words and phrases has
been measured; the speech rate has been analyzed, and the realization of reduced forms
has been described in detail.

It proved that in speech of all social groups, the phonemes /a/ (18 %), /i/ (9 %), /t/
(6 %), /o/ (5 %), /u/ (4 %) are the most frequent. At least, there is no difference between
the groups up to the 10th rank. In the allophone frequency ranging, the stressed [a0]
(7 %) predictably ranked first, the second is [t] (6 %), followed by two unstressed allo‐
phones of /a/ – [a1] (5.3 %) and [a4] (4.9 %), the stressed [o0] holds the fifth position
(4.9 %). No evident difference between social groups has been observed in this aspect.

The analysis of duration of allophones, words and phrases has been made. The
average allophone duration for the whole subcorpus was 66.81 ms (61.54 ms for men
vs. 69.51 ms for women). Speech rate, being an integrative factor for time values of
units from different linguistic levels, was specially investigated. The average speech
tempo in the subcorpus is 5.32 words/s (SD = 8.28). It turned out that in general men
speak a little bit faster than women: 5.46 words/s vs. 5.25 words/s (SD = 2 and SD = 10
respectively). The speech of young people is characterized by the highest speech rate –
5.91 words/s (SD = 12). Thus, the previously suggested hypothesis concerning corre‐
lation between the age of speakers and their speech ratio was confirmed [12].

Further, all reduced forms have been found in the pilot subcorpus and their acoustical
analysis has been performed. The overall number of all reduced word forms is 350 that
adds up to 3.4 % of the whole subcorpus vocabulary, and refers to 111 different variants
of reduced forms. The examples of variants are the following: gar’ú, gr’ú, gu and gru
for govor’ú (‘I say’) or tos’ and tóis’ for tó est’ (‘I mean’, ‘so’), etc.

On top of the frequency list there are the forms š’:as (seichas ‘now’; 10.6 %) and
ch’o (chto ‘what’; 10.3 %). They are followed by búit (búd’et ‘will be’; 4.3 %), ch’ó-to
(chtó-to ‘something’; 4.0 %), nich’ó (nichego ‘nothing’; 3.1 %), gar’ú (govor’ú ‘I say’;
3.1 %) and t’a (teb’á ‘you’– Gen. or Acc.; 3.1 %), tóka (tól’ko ‘only’, ‘just’; 2.6 %), kadá
(kogdá ‘when’; 2.3 %) and tos’ (to est’ ‘that is’; 2.3 %).

The upper zones of the frequency lists analyzed separately for men’s and women’s
speech show certain differences. Men’s “priorities” have appeared to be ch’o (14.5 %),
š’:as (7.2 %), búit (6.5 %), nich’ó (4.3 %) and t’a (3.6 %). Women prefer š’:as (12.9 %),
ch’o (7.1 %), ch’o-to (5.7 %), gar’ú (4.3 %), tos’ (3.3 %), búit (2.9 %), gyt (govorit
‘s/he says’; 2.9 %). It may be seen that the most popular reduced form š’:as is used by
women almost twice more often than by men (12.9 vs. 7.2 %). Men in their turn use
forms ch’o, búit and nich’ó more often: ch’o (14.5 vs. 7.1 %), búit (6.5 vs. 2.9 %) and
nich’ó (4.3 vs. 2.4 %). It’s only in the men’s speech, that the forms disítna (deistvítel’no
‘really’), kadá (kogdá ‘when’) and sho (chto ‘what’) are frequent. In women’s speech,
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the reduced form gyt (govorít ‘s/he says’; 2.9 %) is on top of the frequency list, while it
is not observed in men’s conversations.

Further, it turned out that the most popular reduced form š’:as is on top of the
frequency lists only for the middle and senior age groups (17.9 and 7.4 % respectively).
In the youth group, however, the reduced form ch’o (14.5 %) turned out to be the most
“popular”, with š’:as taking only the second position (9.8 %). The data show that only
the younger generation actively uses the form vaš’é, whereas the forms of politeness
pozhálsta (pozhaluista ‘please’) and pasíb(a) (spasíbo ‘thank you’) are found mainly in
the speech of the middle-aged respondents.

The study of the phonetic realization of discourse markers and hesitation phenomena
has not revealed any regularities. The intonation contours of phrases were not analyzed
on this stage of the research.

4 The Lexical Level

The lexical study in the given research involves the analysis of usage of stylistically
marked words, professional words, neologisms, slang words, etc. in everyday speech
data, the comparison of words’ functional activity in speech of different social groups
and their lexical richness, as well as describing the usage of pragmatic items and
constructions in everyday spoken Russian.

The frequency word lists have been compiled for the whole subcorpus and for indi‐
vidual social groups. For subcorpus in total, the rank distribution of the upper zone of
the frequency word list is the following: ya (I) (3.1 %), nu (well/er) (2.9 %), ne (no)
(2.6 %), da (yes/but) (2.4 %), i (and/here) (2.2 %), vot (here is/well/now) (2.1 %), eto
(this) (1.95 %), v (in/at) (1.9 %), chto (what) (1.83 %), a (and/but/ah) (1.58 %). This
ranking is repeated in all gender and age groups’ frequency lists with slight variations.
For studying of less-frequent word distribution, it is necessary to conduct the research
on more representative speech sample.

The index of lexical diversity which is defined as the ratio of words occurring only
once to the whole number of words is 0.164 for the total sample. For men’s speech it is
slightly higher (0.169) and for women’s speech it is considerably lower (0.128).

The distribution of neologisms is strongly correlated with the speakers’ age. Thus,
the share of neologisms is maximum in speech of the youth (0.42 %), it is less in speech
of the middle-aged (0.32 %) and is exceptionally low in speech of seniors (0.02 %). The
youth’s speech is also characterized by the high rank of the words such as ayfon
(iPhone) and KASKO (a car insurance package), thereby indicating some dominants of
their interests and priorities.

The analysis of the youth slang did not bring any surprises. Thus, youth speakers
give preference to low-style words at least twice as often as other age groups. Swear
words are especially frequent here.

One of the brightest features of everyday speech is the verbal elements that cannot
be indisputably identified neither as lexical nor lexicogrammatical items. For example:
(tak) skazhem, (ne) eto samoye, (ya) ne znayu, kak (yego, yeyo, ikh, eto), (i) vsyo takoye
(procheye), vse dela, tuda-syuda etc. These items unambiguously mark the oral
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spontaneous speech and are very frequent in everyday communication. In recent works,
such items are usually called “pragmatic markers”, “pragmatic constructions”, or “prag‐
matemes” [13, 14].

17 pragmatic constructions have been found in the research material. On top of the
list, there are metacommunicative markers (or, “contact verbs”) znayesh/znayete (you
know), ponimayesh (you understand), vidish (you see), slushay (listen), etc., that form
19.4 % of all pragmatemes in the sample. The other popular pragmatic markers are used
less frequently: koroche (in short) (15.5 %) and v obschem (generally) (10.7 %). The
usage of approximating constructions i tak dalee and to-syo is sporadic, as well as the
use of uncertainty markers tipa (6.3 %) and vrode (3.4 %).

Sociolinguistic variation of these markers is difficult to be analyzed on these data
because their number in the subcorpus is rather small. However, women used them twice
as often as men (67.5 and 32.5 % correspondently), giving preference to metacommu‐
nicative markers, which are used to attract and keep interlocutor’s attention (80 % of
their realizations took place in female speech). The “favourite” male pragmateme is
koroche; 56.3 % of its use was observed in speech of men, predominantly of the youth
age group. One-third of all pragmatic markers was found in speech of seniors, mainly
female, who give preference to the pragmateme v obschem.

5 The Morphological Level

On the morphological level, the distributions of parts of speech, grammatical forms,
agrammatical and occasional forms, as well as some “rare” or “complicated” forms,
have been analyzed in speech of various social groups.

There was not observed much difference in parts of speech usage among men and
women. Cf. two lists: (1) POS distribution in men’s speech: PART (11.0 %), V (10.0 %),
SPRO (9.9 %), APRO (2.7 %), S (9.0 %), PR (5.0 %), ADV (6.0 %), CONJ (4.64 %),
INTJ (2.58 %), A (2.4 %); and (2) POS distribution in women’s speech: V (11.0 %),
SPRO (11.0 %), PART (10.0 %), S (8.9 %), ADV (6.0 %), PR (4.8 %), CONJ (4.5 %),
ADVPRO (2.9 %), APRO (2.5 %), A (2.2 %). As for the differences among the age
groups, the younger respondents use significantly more emotional speech markers,
discourse markers and particles (11.36 %). The speech of seniors is characterized by the
dominance of substantive pronouns (especially ya (I/me)) (11.52 %).

No agrammatical forms have been detected in the exploratory subcorpus. The occur‐
rence of “rare” grammatical forms (e.g., the second genitive case and the second prep‐
ositional case) is lower than expected. As for grammatically complicated forms, only
26 participles (0.25 %) were found in the whole sample; no adverbial participles were
observed. Nouns in vocative case have 20 occurrences, being used mainly by women
addressing to women.

6 The Syntax Level

The syntactic analysis involved the following aspects: (1) the study of verbal and noun
syntactic branches, (2) the identification of the most frequent syntactic structures of
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spoken Russian, (3) the description of their complexity, and (4) measuring the frequency
of some syntactic phenomena which are typical to spontaneous speech (parcellation,
ellipsis, incomplete utterances, self-correction, etc.).

Altogether, 2039 clauses have been found in the given subcorpus and annotated in
terms of syntactic structures. The highest frequency for the speech of all social groups
has been shown by the most simple structures, consisting of one or two elements, namely
SV (a simple clause consisting of noun (subject) + verb (predicate); 2.75 %), V (verb
predicate without dependent words, 1.8 %), S (a single subject noun, 1.6 %), and Q? (a
single interrogative word, 0.8 %).

As for the noun groups, the most frequent structures are S (subject), xS (prepositional
group), AS (attributive construction with preposition attribute), xAS (prepositional group
with preposition attribute). No significant difference in preferences between different
social groups under study has been discovered.

Sixteen non-projective dependency trees have been found in speech data of the pilot
subcorpus. It is impossible to draw any research conclusions based on such low number
of occurrences. However, it’s worth noticing that non-projective syntactic structures are
more frequently used by young people with poor educational background.

Further, the analysis of syntactic structures has shown that left-branching verbal
groups prevail over the right-branching ones in everyday oral Russian speech in contrast
to Russian written language where symmetrical structures dominate [15]. This feature
of oral speech is characteristic to all social groups.

The biggest difference between social groups is observed in the following syntactic
irregularities of speech: the number of interrupted or incompleted utterances (CUT),
ellipsis (EL), parcellation (PARS), and self-correction (COR). From all analyzed clauses
(2039 units), interrupted utterances prevail covering 6.9 %, further goes (in descending
order) EL (4.2 %), PARC (1.8 %) and COR (1.2 %). All these features occur mainly in
women’s speech, in which 63.6 % of incomplete utterances, 78.5 % of ellipses, 65.7 %
of parcellation, and 65.2 % of self-corrections have been found.

The similar tendency has been discovered in speech of youth: 54.4 % CUT, 68.1 %
EL, 85.7 % PARC, and 66.7 % COR. The lowest index in this respect is typical for
seniors’ speech: 11.4 % CUT, 7.2 % EL, 3.6 % PARC, and 6.7 % COR respectively. In
other words, it can be cautiously supposed that the peculiarities of Russian everyday
speech are concentrated mainly in women’s language as against to men’s and in the
speech of youth as against to the speech of middle-agers and seniors.

The analysis of syntactic features in respect with informants’ social status has been
also performed. It turned out that incomplete syntactic structures prevail noticeably in
speech of employees and businessmen (29.4 and 32.1 % respectively) and are very
scarcely represented in speech of retired pensioners’ (8.3 %). Elliptic structures most
often appear in the speech of students (35.9 %), often enough in managers’ speech
(26.6 %), having the minimum in speech of retired pensioners (1.6 %). Parcellations that
clearly prevail in students’ speech (66.7 %) did not appear at all in speech of retired
pensioners’ and turned out to be evenly distributed among the rest social groups: 11.1 %
for employees, 7.4 % for managers and 14.8 % for businessmen. The cases of self-
correction have shown the following distribution: businessmen – 30.0 %, employees and
managers – 25.0 % each, students – 15.0 %, retired pensioners – 5.0 %.
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It can be also observed that syntactical correctness of speech is most common for
the group of retired pensioners.

7 Conclusion

This study has shown that the differences in usage of everyday language between age
groups are more significant than between gender groups, and the speech of young people
differs most strongly from the others. The biggest difference between social groups is
observed in speech rate, phonetic reduction, lexical preferences, POS distribution, prag‐
matic markers, and in some syntactic irregularities of speech (namely incomplete utter‐
ances, ellipsis, parcellation, and self-correction). No principle differences in speech
between different gender and age groups were detected in terms of the other linguistic
parameters that have been analyzed in this study.

The results of this study are of exploratory nature. This sociolinguistic research is
planned to be further continued on the expanded sample of the ORD corpus with a focus
on those linguistic parameters which have turned out to be the most indicative for
different social groups. Statistical hypothesis testing should be obligatory for obtaining
reliable results. Taking into consideration high variability of such parameters as prosodic
patters (in particular, intonation contours), lexical preferences and syntactic structure
distribution, their further study should be also undertaken on a more representative
speech sample.
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Abstract. The adaptation of context-dependent deep neural network
acoustic models is particularly challenging, because most of the context-
dependent targets will have no occurrences in a small adaptation data
set. Recently, a multi-task training technique has been proposed that
trains the network with context-dependent and context-independent tar-
gets in parallel. This network structure offers a straightforward way for
network adaptation by training only the context-independent part dur-
ing the adaptation process. Here, we combine this simple adaptation
technique with the KL-divergence regularization method also proposed
recently. Employing multi-task training we attain a relative word error
rate reduction of about 3 % on a broadcast news recognition task. Then,
by using the combined adaptation technique we report a further error
rate reduction of 2 % to 5%, depending on the duration of the adaptation
data, which ranged from 20 to 100 s.

Keywords: Deep neural net · Speaker adaptation · Multi-task learning

1 Introduction

In the recent years, deep neural network (DNN) based acoustic models have
become the state-of-the-art in speech recognition, replacing the Gaussian mix-
ture (GMM) component of hidden Markov models (HMM). However, there are
several refinements of HMM/GMM systems that cannot be trivially transferred
to HMM/DNNs. One such issue is the construction and training of context-
dependent (CD) units. Currently, the CD states of HMM/DNN systems are
usually created by training and aligning a conventional HMM/GMM [2,7,12].
Although alternative solutions that try to get rid of GMMs have been proposed,
these are not yet widely accepted [4,14,19]. As regards training, it was found
recently that the learning of CD units by DNNs can be improved by multi-task
training. Namely, Bell et al. found that the training of CD targets can be regular-
ized by also showing context-independent (CI) targets to the net in a multi-task
fashion [1]. Here, we follow the multi-task training recipe of Bell for training CD
units, and we report a gain of 3 % in the word error rate.
c© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 108–115, 2016.
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Another task where regularization can help a lot is the adaptation of DNN-
based acoustic models. The DNNs we use usually have a lot of parameters (many
wide layers), hence they can easily overfit the adaptation data, especially when
the adaptation set is small. Perhaps the most common solution is to extend
the network with a linear layer, and adapt only this layer that allows only lin-
ear transformations [3,16]. One might also control overfitting by reducing the
number of layers or weights that are adapted [9,10]. A further possibility is to
adapt only the biases [17] or the amplitudes of hidden unit activations [15]. Yet
another group of solutions applies some sort of regularization during training
on the adaptation data. Li et al. proposed a form of L2 regularization to penal-
ize the difference between the adapted and the unadapted weights [8]. Gemello
introduced “conservative training”, which uses the outputs of the unadapted
network as adaptation targets for the classes not seen in the adaptation set [3].
Yu et al. proposed getting the training targets by interpolating between the out-
put of the unadapted model and the (estimated) transcripts of the adaptation
data. Mathematically, this corresponds to a Kullback-Leibler divergence-based
regularization of the network outputs [18].

The use of CD models makes the adaptation task even more challenging, as it
decreases the number of adaptation samples per class. Hence, Price et al. came up
with the idea of using a hierarchy of two output layers, the lower corresponding
to the CD classes, and the upper to the CI classes [11]. This construct allows the
use of CD units during training and evaluation, while one can use the CI output
layer during adaptation, when only a much smaller amount of data is available.

Here, we propose an adaptation method that is similar to the approach of
Price et al., but the network structure applied is different. While they positioned
the layers corresponding to the CD and CI targets on top of each other, we place
them side by side, following the arrangement used for multi-task training. This
structure yields a straightforward way for adaptation using only the CI data:
while we present both CD and CI samples to the network during full (multi-task)
training, during adaptation just the CI output layer receives input. This way,
we can exploit the regularization benefit of CI samples during both training and
adaptation. While Huang et al. have recently published a similar approach [6],
our solution is different in that we combine the multi-task training strategy with
the KL-regularization method of Yu et al. [18]. We found that this regularization
step is vital for reducing the chance of overfitting, and thus for obtaining good
results for our data set, especially when the adaptation data set was very small.
With the combined method, in an unsupervised adaptation task with 20–100 s
of adaptation data we report relative word error rate reductions of 2 % to 5 %,
depending on the duration of the adaptation utterances.

2 Multi-task Training

Multi-task learning was proposed as a method for improving the generalization
ability of a classifier by learning more tasks at the same time. To our knowledge,
it was first applied to DNN acoustic models by Seltzer and Droppo [13]. They



110 L. Tóth and G. Gosztolya

Input features

CD targets
(1233 states)

CI targets
(52 monophones)

Fig. 1. The structure of the multi-task network.

found that besides training the network to recognize the actual frame, the phone
recognition accuracy can be improved by also training on the phone context as
a secondary task. More recently, Bell et al. applied CI labels as the secondary
task during the training of CD states, and they obtained a 3 %–10 % relative
improvement in the word error rate compared to conventional training [1].

Figure 1 shows the structure of the network we applied here. As can be seen,
there are two output layers, one dedicated to the CD states, and the other to the
CI targets. We also split the uppermost hidden layer, which is different from the
work of Bell et al., where all the hidden layers were shared between the CD and
the CI training paths [1]. We obtained slightly better results with this structure,
although the improvements were not significant.

Following Bell et al. [1], we did not model the monophone states separately,
so the CI targets corresponded to the monophone labels. During training, the
network training routine received both the CD and CI labels as input, and each
mini-batch was randomly assigned to the CD or the CI output layer. Based on
this assignment, we either presented the given batch of CD targets to the CD
output layer or the corresponding CI targets to the CI output layer. Naturally,
while the shared hidden layers were updated for each batch, the weights were not
updated for that target-specific output layer and uppermost hidden layer pair
which was inactive for the given batch. We give an analysis of how this weight
update technique affects convergence in the next section.

3 Experiments with Multi-task Training

The data used in the experiments was the “Szeged” Hungarian broadcast news
corpus [5]. It contains 28 h of broadcast news recordings taken from eight TV
channels. The train-dev-test division was the same as that used in our earlier
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Fig. 2. The convergence of CD frame error rates on the development set for conven-
tional and multi-task training.

work [5], and the language model was also the same. To create the CD state
targets we applied the KL-divergence based state tying method described in [4],
which resulted in 1233 triphone states. The number of monophone labels used
during multi-task training was 52.

The deep neural network which served as the baseline contained 4 hidden lay-
ers with 2000 rectified linear units (ReLU) in each hidden layer [5]. For multi-task
training, the network structure was modified according to Fig. 1. This network
contained two output layers, one for the CD targets and one for the CI targets,
and the uppermost hidden layer also had a separate copy of 2000-2000 units
for the cases of CD and CI training. During multi-task training, the network
receives a batch of training data for either the CD or the CI output layer in a
random fashion. The error is computed and propagated down only on the active
side, while the weights of the other, inactive output and uppermost hidden layer
remain unchanged. The training was performed using the backpropagation algo-
rithm with the conventional frame-level cross-entropy error function.

During experimentation, we tried to tune the probability of the network
receiving CD or CI data batches. Compared to the 0.5-0.5 ratio preferred by
Bell et al., a weighting of 0.75-0.25 (in favor of CD input) gave slightly better
CD frame error rates, but this did not influence the word error rate significantly.

Learning two things at the same time slows down the convergence of the
backpropagation training process. We applied the usual “newbob” learning rate
schedule, which basically corresponds to an exponential decay of the learning
rate. We found that multi-task training required a slower decay rate, hence
we applied a multiplying factor of 0.8 instead of 0.5. Using the same stopping
criterion, multi-task training required about twice as many training epochs as
with conventional training. Figure 2 shows how the CD error rate dropped during
training for conventional versus multi-task training.

Table 1 shows the error rates obtained with conventional and with multi-
task training. Multi-task training yielded a relative word error rate reduction of
about 3 %, which is similar to the findings of Bell et al. [1]. However, while they
reported that the frame error rate of CD units actually increased in spite of the
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Table 1. Frame and word error rates for conventional and multi-task training.

Training method FER % WER %

Train set Dev. set Dev. set Test set

Conventional 25.9 % 31.4 % 17.7 % 17.0 %

Multi-task 23.5 % 30.4 % 17.4 % 16.5 %

drop in word error rate, in our case the CD frame error rate also decreased. This
difference might be due to our uneven balancing of the distribution of the CD
and CI data blocks, which put more emphasis on the CD frame error rate.

4 Acoustic Adaptation with the Multi-task Model

The number of CD states used in a recognition system is chosen in accord with
the amount of training data available. That is, we work with as many CD states
as can be safely trained on the full training set without risking overfitting. How-
ever, during adaptation the amount of adaptation data available is much smaller
than the size of the full train set. Hence, training the network with CD output
units on the adaptation set will almost inevitably result in overfitting. However,
the multi-task framework yields a straightforward solution for alleviating over-
fitting: during adaptation we do not train the CD part of the network, as for
most of the CD units there would be no training examples in the adaptation
data. Instead, we adapt the network only through the CI output layer, which is
much less affected by the data scarcity problem.

Deep neural networks have a huge amount of parameters (i.e., weights), which
increases their flexibility when training on a large data set, but it also increases
the chance of overfitting on a small set of adaptation data. Several authors sug-
gested that one should update only a small set of parameters – for example, only
one hidden layer – during adaptation [10]. Besides alleviating overfitting, it also
reduces the amount of time required by the adaptation process. We decided to
restrict the adaptation to only the uppermost hidden layer that is shared by the
CD and CI paths of the multi-task network (Fig. 1). Even doing it this way, we
had difficulties finding the optimal learn rate for unsupervised adaptation. We
observed that while smaller learn rates gave stable but moderate improvements
for all files, larger learn rates resulted in a much larger error rate reduction for
some files, while significantly increasing the error for others. Supposing that this
unstable behavior was caused by the incorrect adaptation labels, we decided to
apply some sort of regularization. We chose the KL-divergence based regulariza-
tion technique recently proposed by Yu et al. [18]. Mathematically, this approach
can be formulated as penalizing the output of the adapted model straying too
far from the output of the unadapted model. As the DNN outputs form a dis-
crete probability distribution, a natural choice for measuring this deviation is the
Kullback-Leibler divergence. After some reorganization (cf. [18]), the formulas
boil down to smoothing the target labels estimated for the adaptation data by
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Fig. 3. The reduction of word error rate as a function of the duration of adaptation
data.

the probability output produced by the unadapted model. That is, the training
targets are got by applying the linear interpolation:

(1 − α)p(y|x) + αpun(y|x),

where p(y|x) are the “hard” targets obtained during the recognition pass (or
alignment pass in the supervised case), pun(y|x) are the probability values
yielded by the unadapted model, and α is the parameter that controls the
strength of smoothing.

5 Experiments with Unsupervised Adaptation

The development set of our broadcast news corpus contained 448 files (about
2 h in length), while the test set consisted of 724 files (about 4 h in length). The
duration of the files ranged from just one sentence (a couple of seconds) to about
100 s. For the adaptation experiments, we threw away the files with a duration
less than 10 s, as we judged these to be too short for adaptation. It was known
that the identity of the speaker and the acoustic conditions do not change within
a file, but besides this, no further speaker information was available. The silence
ratio of the corpus was very low, as the manual verification of the transcripts
included the removal of long silent segments. In all our adaptation experiments
we sought unsupervised adaptation, which means that we recognized the given
file with the unadapted model, and then used the transcript obtained this way as
target labels for the adaptation. This was followed by a second pass of recognition
using the adapted model.

The adaptation process involved several parameters that we had to tune
on the development set. These included the learn rate, the number of training
iterations and the α parameter of KL-divergence regularization. In the initial
experiments we found that the optimal learning rate varied from file to file,
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Fig. 4. The influence of the α parameter of KL-divergence regularization on the word
error rate.

making it difficult to chose one global value. However, after the introduction of
KL-divergence the scores become much less sensitive to the actual choice of the
learn rate and the number of iterations. Eventually, we got the best results by
going five training epochs with a relatively large learning rate.

Figure 3 shows the word error rates attained before and after adaptation as
a function of the duration of adaptation data, for both the development set
and the test set. For this evaluation the files were arranged into four groups,
according to their duration. As can be seen, the error rate improvement on the
test set was minimal for the files with duration between 10 and 20 s, and it was
still slightly below 2 % for the duration range of 20 to 40 s. However, for the
recordings longer than 40 s the relative error rate reduction went up to 5–6% on
the development set and to 5 % on the test set. Unfortunately, our database did
not contain longer recordings, so we could not test the algorithm for adaptation
durations longer than 100 s.

Figure 4 shows how the α parameter of KL-divergence regularization influ-
ences the word error rate of the adapted model. The scores are plotted for those
files of the development set that were longer than 40 s. The figure clearly shows
that the use of KL-divergence regularization significantly contributed to our
good results. Actually, we had to use a large α value around 0.8–0.9 to attain
the best results, even for the file group with the longest duration (60–100 s).

6 Conclusions

The adaptation of DNN acoustic models has become a very active topic recently.
The use of context-dependent DNNs presents a special challenge because it
increases the scarcity of the adaptation data labels. As the recently introduced
multi-task training method makes direct use of the monophone training labels,
it was straightforward to extend it to model adaptation by just using only the
monophone labels of the adaptation set. Even by doing this, we had to apply
the recently proposed KL-divergence regularization method of Yu et al. [18] to
get good results. On a broadcast news recognition task we obtained a relative
word error rate reduction of about 3 % using multi-task training, and a further
2 % to 5 % error rate reduction by applying the proposed adaptation technique.
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Abstract. In this paper we present the latest improvements to the
Russian spontaneous speech recognition system developed in Speech
Technology Center (STC). Significant word error rate (WER) reduc-
tion was obtained by applying hypothesis rescoring with sophisticated
language models. These were the Recurrent Neural Network Language
Model and regularized Long-Short Term Memory Language Model. For
acoustic modeling we used the deep neural network (DNN) trained with
speaker-dependent bottleneck features, similar to our previous system.
This DNN was combined with the deep Bidirectional Long Short-Term
Memory acoustic model by the use of score fusion. The resulting system
achieves WER of 16.4%, with an absolute reduction of 8.7% and rela-
tive reduction of 34.7% compared to our previous system result on this
test set.

Keywords: Spontaneous speech recognition · Bottleneck features ·
Deep neural networks · Recurrent neural networks

1 Introduction

Spontaneous conversational speech recognition is one of the most difficult tasks
in the field of automatic speech recognition (ASR). The difficulties are due to the
following characteristics of spontaneous conversational speech: high channel and
speaker variability, presence of additive and non-linear distortions, accents and
emotional speech, diversity of speaking styles, speech rate variability, reductions
and weakened articulation.

There is a large number of studies on recognizing English spontaneous speech,
such as [1–5]. Systems proposed in these papers demonstrate high effectiveness,
which makes it possible to use them in commercial applications. As far as we
know, the state-of-the-art English spontaneous speech recognition system [4]
achieves word error rate (WER) of 8.0 % on the Switchboard part and 14.1 %
on the CallHome part of the HUB5 2000 evaluation set. This impressive results
were obtained by combining various effective techniques of acoustic and language
modeling.

c© Springer International Publishing Switzerland 2016
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Our goal is to build a speaker-independent system for high-quality Russian
spontaneous speech recognition. At present none of the Russian spontaneous
speech recognition systems provide recognition accuracy comparable with the
above-mentioned English systems. We would like to highlight two reasons of this.
First, there are not available training and evaluation datasets for the Russian
language, such as the Switchboard and Fisher English speech corpora and the
HUB5 2000 evaluation set. Second, Russian is an inflective language with a
several times larger number of unique words than English. Moreover, the Russian
language is characterized by a relatively free word order in a sentence. This
considerably complicates the recognition task [6]. Our previous system achieved
WER of 25.1 % [7]. In this work we present the set of recent improvements of
the system.

The rest of this paper is organized as follows. Section 2 contains the
experimental setup description. Section 3 presents the acoustic modeling app-
roach based on speaker-dependent bottleneck features. Section 4 describes deep
BLSTM acoustic models and score fusion of DNN and BLSTM acoustic models
(AMs). Section 5 presents the experiments on hypothesis rescoring with language
models (LMs) based on Recurrent Neural Networks (RNNs). Finally, Sect. 6 con-
cludes the paper and discusses future work.

2 Experimental Setup

For experiments we used the Kaldi speech recognition toolkit [8]. AM training
was performed using a 390 h Russian spontaneous speech dataset (telephone
channel, several hundreds of speakers). A test set consisted of about 1 h of
Russian telephone conversations. Both training and test sets are the same as
used in our previous work [7].

Language models training data consisted of 2 datasets. The first one con-
tained the transcriptions of the AM training dataset. The second one was a large
amount (about 200 M words) of texts from Internet forum discussions, books and
subtitles from the OpenSubtitles site. The baseline 3-g language model with a
vocabulary of 214 K words was built in the SRILM Toolkit [9]. It was obtained by
interpolation of 3-g LMs trained on the first and second datasets using Modified
Kneser-Ney smoothing. The size of this model was reduced to 4.16 M bigrams
and 2.49 M trigrams by the use of pruning.

3 Speaker-Dependent Bottleneck Features

Here we describe the acoustic modeling approach based on speaker-dependent
bottleneck (SDBN) features. This approach was proposed in our previous
works [7,10]. Its underlying idea is to extract high-level features from the DNN
model, which is adapted to the speaker and acoustic environment by the use
of i-vectors. The extracted features are applied to training another acoustic
model (Fig. 1).
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Fig. 1. Speaker-dependent bottleneck approach scheme

Our approach consists of the following main steps:

1. Training the DNN model on the source features using the Cross-Entropy (CE)
criterion.

2. Expanding an input layer of the DNN trained at the first step and retraining
using an input feature vector appended with i-vector. The regularizing term

R = λ
L∑

l=1

Nl∑

i=1

Nl−1∑

j=1

(Wl
ij − W̄l

ij)
2 (1)

is added to the CE criterion for penalizing parameters deviation from the
source model. Here Wl and W̄l are weight matrices of l-th layer (1 ≤ l ≤ L)
of the current and the source DNNs, Nl is the size of l-th layer, and N0 is the
dimension of the input feature vector.

3. Transforming the last hidden layer into two layers. The first one is a bottleneck
layer with the weight matrix Wbn, a zero bias vector and linear activation
function. The second one is a non-linear layer with the dimension of the source
layer, with weight matrix Wout and the original bias vector b, activation
function f and the dimension of the source layer:

y = f(Wx + b) ≈ f(Wout(Wbnx + 0) + b). (2)

These layers are formed by applying Singular Value Decomposition (SVD) to
the weight matrix W of the source layer:

W = USVT ≈ ŨbnṼT
bn = WoutWbn, (3)

where bn designates reduced dimension.
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4. Retraining the network formed at the previous step using the CE criterion
with the penalty (1) for parameters deviation from original values.

5. Discarding all layers after the bottleneck and extracting high-level SDBN
features using the resulting DNN.

6. Training the GMM-HMM acoustic model using the constructed SDBN fea-
tures and generating the senone alignment of the training data.

7. Training the final DNN-HMM acoustic model using SDBN features and the
generated alignment.

The extractor of 120-dimensional SDBN features was trained using the pre-
sented approach. Training was carried out using 23-dimensional log mel fil-
terbank energy (FBANK) features with Cepstral Mean Normalization (CMN),
appended with the first and second order derivatives. These features were taken
with the temporal context of 11 frames (± 5) and appended with an i-vector.
We applied 50-dimensional i-vectors extracted by the use of the Universal Back-
ground Model with 512 Gaussian, which was trained with our toolset [11] on the
full 390 hour training set. We applied the following configuration of the basic net-
work: 6 hidden layers with 1536 sigmoidal neurons in each, the output softmax
layer with about 13000 neurons corresponding to senones of the GMM-HMM
acoustic model. DNN parameters were updated using the Nesterov Accelerated
Gradient algorithm with the momentum value equal to 0.7. Extractor training
was initialized using the algorithm presented in the paper [12].

DNN training with the constructed SDBN features (SDBN-DNN) was per-
formed using the temporal context of 31 frames taking every 5th frame. We
applied the following DNN configuration: 4 sigmoidal hidden layers with 2048
neurons in each, the output softmax layer with about 13000 neurons correspond-
ing to senones of the GMM-HMM model, which was trained using the same
SDBN features. The training was carried out with the CE criterion and the
state-level Minimum Bayes Risk (sMBR) sequence-discriminative criterion.

Table 1. SDBN results

Acoustic model Training criterion WER, %

DNN-ivec CE 23.8

SDBN-DNN CE 22.0 (−1.8)

DNN-ivec sMBR 21.7

SDBN-DNN sMBR 19.5 (−2.2)

Table 1 gives the comparison of SDBN-DNN and DNN trained in a speaker
adaptive manner using i-vectors (DNN-ivec). It can be seen that the SDBN
approach provides a significant gain. Note that SDBN-DNN WER of 19.5 % is
much lower than the result of our previous system (25.1 % WER). This is due
to the larger SDBN features extractor, more careful tuning of the AM training
procedure and the larger language model.
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4 Deep Bidirectional Long Short-Term Memory
Recurrent Neural Networks

Acoustic models based on deep Bidirectional Long Short-Term Memory
(BLSTM) recurrent neural networks demonstrate high effectiveness in various
ASR tasks [5,13]. In this section we describe our experiments with these models
carried out with the nnet3 setup of the Kaldi speech recognition toolkit.

We used BLSTM architecture with projection layers described in the
paper [13]. The following configuration of the network was applied: 3 forward
and 3 backward layers, 1024 cell and hidden dimensions, 128 recurrent and non-
recurrent projection dimensions. Training examples consisted of chunks of 20
frames with additional left context of 40 frames and right context of 40 frames.
We performed 8 epochs of cross-entropy training with an initial learning rate of
0.0003 and final learning rate of 0.00003. Model parameters were updated using
BPTT algorithm with the momentum value equal to 0.5. The models obtained at
the iterations of the last epoch were combined into the final BLSTM model. For
BLSTM training we used 23-dimensional log mel filterbank energy (FBANK)
features with CMN with the first and second order derivatives, appended with
the 50-dimensional i-vector described before. Training data alignments prepared
using the SDBN-DNN acoustic model were used for the training.

4.1 Score Fusion of SDBN-DNN and BLSTM Acoustic Models

The underlying idea of the score fusion technique is in combining the benefits of
both different model architectures and different input features. In this subsection
we analyze effectiveness of this technique applied to SDBN-DNN and BLSTM
acoustic models. We used log-likelihoods (LLH) determined by the formula

LLH = α log
(

P1(s|x)
P1(s)

)
+ (1 − α) log

(
P2(s|x)
P2(s)

)
(4)

for the decoding with fusion of these acoustic models. Here P1(s|x) and P2(s|x)
are posterior probabilities of state s given an input vector x on the current
frame, P1(s) and P2(s) are prior probabilities of state s for SDBN-DNN and
BLSTM models respectively. We estimated prior probability of state s as average
posterior probability calculated with the corresponding model on the training
data. α value was chosen equal to 0.5. The results of deep BLSTM acoustic
model and score fusion are given in Table 2.

Table 2. Deep BSLTM acoustic models and score fusion results

Acoustic model WER, %

SDBN-DNN 19.5

BLSTM 19.8

score fusion 17.8 (−1.7)
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5 RNN-based Language Models

In this section we describe the experiments with sophisticated language models
based on recurrent neural networks. Word lattices obtained on the decoding pass
with the 3-g LM and the best DNN+BLSTM models fusion in subsection 4.1 were
taken as a starting point for these experiments.

We trained two RNN-based language models on shuffled utterances from
transcriptions of the AM training dataset. To speed-up the training we used
the vocabulary of 45 K most frequent words. All other words were replaced with
the <UNK> token. Utterances were divided into two parts: a valid set (15 K
utterances) and a train set (all other, 243 K utterances).

Table 3. Rescoring results

Language model WER, %

3-g 17.8

RNNLM 17.4 (−0.4)

LSTM-LM (medium) 16.7 (−1.1)

LSTM-LM (large) 16.4 (−1.4)

Fig. 2. System architecture

The first RNN-based LM was the Recurrent Neural Network Language Model
(RNNLM) [14] which significantly outperforms n-gram LMs in various speech
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recognition tasks. We applied the following RNNLM configuration: 256 neurons
in the hidden layer and 200 classes in the output layer.

The second RNN-based LM was the LSTM recurrent neural network LM
(LSTM-LM) trained with dropout regularization [15]. We trained two LSTM-
LMs using the Tensorflow toolkit [16]: “medium” (2 layers with 650 units each,
50 % dropout on the non-recurrent connections) and “large” (2 layers with
1500 units each, 65 % dropout on the non-recurrent connections) configurations
from the paper [15].

The trained RNNLM and both LSTM-LMs were applied for hypothesis
rescoring. We generated 100-best lists from the word lattices using Kaldi scripts.
For the rescoring we took the weighted sum of n-gram LM and RNN-based LM
scores. If the sentence contained a word missing in the 45K RNN vocabulary,
we added an unigram score of this word from the 3-g model to the RNN score.
The results of the rescoring are given in Table 3. It can be seen that RNNLM
provided substantial improvement over the n-gram LM, as well as LSTM-LM
over RNNLM.

6 Conclusion

The architecture of our system is depicted in Fig. 2. The system achieves WER
of 16.4 %, with an absolute reduction of 8.7 % and relative reduction of 34.7 %
over our previous system.

We consider several ways of further improvement of our system. First,
BLSTM acoustic models improving techniques, such as sequence-discriminative
training and dropout regularization, can lead to substantial WER reduction.
Second, significant acoustic models improvement can be obtained by the use
of the data augmentation approach [17]. Last but not least, we plan to carry
out experiments with other promising language model architectures as well as
to investigate more complicated approaches of applying sophisticated language
models than simple n-best rescoring.

Acknowledgement. This work was financially supported by the Ministry of
Education and Science of the Russian Federation, Contract 14.579.21.0057 (ID
RFMEFI57914X0057).
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Abstract. In last years satisfactory performance of speaker recognition
(SR) systems have been achieved in evaluations provided by NIST. It
was possible due to using large datasets to train system parameters and
accurate speaker variability modeling. In such a cases test and train con-
ditions are similar and it ensures good performance for the evaluations.
However in practical applications when training and testing conditions
are different the problem of mismatching of the optimal SR system para-
meters occurs. It is the main problem in the deployment of the real
application systems. It leads to reducing SR systems effectiveness. This
paper investigates discriminative and generative approaches for the adap-
tation of the parameters of the speaker recognition systems and proposes
effective solutions to improve their performance.

Keywords: Speaker recognition · Domain adaptation · Mismatch
conditions

1 Introduction

Recent progress in speaker recognition has been built on using large speaker
labeled speech databases to train model parameters [5,10,11]. Such datasets
with thousands of multisession speakers allow to estimate within class variabil-
ity characterizing distortions and interclass variability to derive speaker infor-
mation with high accuracy. It ensures the speaker recognition performance with
low error rates. Such results are obtained due to using in-domain data for the
evaluation. However in spite of the large amount speech data available the lack of
generalization of the speaker recognition systems application is the main problem
in their deployment. It occurs when speech data of development set to train the
model parameters and evaluation set are mismatched. Differences in background
noise, microphone settings, specific channel distortions reduce speaker recogni-
tion performance. So the adaptation of the model parameters for the mismatch
compensation is needed. It allows to find the optimal settings of the speaker
recognition system when evaluation environment is out of target domain.
c© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 124–130, 2016.
DOI: 10.1007/978-3-319-43958-7 14
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In practice there are no large amount labeled speech datasets for retraining
the speaker recognition system to use at new (out-of-domain) conditions. But
as a rule very small amounts speech data to make adaptation are available. The
data may be speaker labeled so it can be used for supervised out-of-domain
adaptation [7]. Also very common case when data is not speaker labeled so the
preliminary clusterisation have to be used [8].

This work explores the approaches to the supervised out-of-domain adapta-
tion on the limited speech dataset. The state-of-the-art PLDA speaker recogni-
tion system to be trained on development set with large amount speaker labeled
data was considered in our investigation. The PLDA model parameters were
adapted on the small amount out-of-domain dataset using generative and dis-
criminative ways detailed in [7,13] respectively.

We considered the generative approach of the adaptation based on the estima-
tion of within and inter speaker variability matrix by using maximum a posterior
criterion (MAP). There were two covariance matrices to be estimated within in-
domain dataset as prior parameters in the approach. Then the covariance matrix
were corrected on the small out-of-domain dataset to maximize posterior prob-
ability.

Also the discriminative adaptation approach was investigated in our work. In
contrast mentioned above probabilistic generative approach the estimation of the
covariance matrix of the PLDA model was obtained by optimization of the cost
function [13]. We made recognition trials on small part of out-of-domain dataset
and used all trial scores to estimate the gradient of the objective function. As
initial settings for solution of the optimization problem we used the PLDA model
parameters that were estimated on the in-domain set.

There is a description of the speaker recognition system and experimental
speech bases in Sects. 2 and 3 respectively in the paper. Different approaches for
the out-of-domain adaptation and their performance measures are detailed in
Sects. 4 and 5. Conclusion of the paper is presented in Sect. 6.

2 Speaker Recognition System

In our experiments we used the text independent speaker recognition system
based on total variability space. In this case i-vectors in low dimension space
[4] are applied for speaker modeling. We used probabilistic linear discriminant
analysis (PLDA) [9] to model i-vectors distribution. The variability factors were
assumed to have multivariate Gaussian Distribution and we considered only
speaker variability factors. Channel variability factors had been excluded from
the PLDA model. I-vector length normalization and covariance normalization
[6] were applied preliminarily at the testing stage for optimal recognition per-
formance.

We trained our PLDA model using out-of-domain speaker labeled data
detailed in the next section. As mentioned above in PLDA model we took into
account only speaker factors and their number was 400. We report performance
in terms of equal error rate (EER) and normalized minimum detection cost
function (DCF)] [3] with probability of target trials set to 10−3.
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3 Databases

We followed the DAC setup detailed as follows. The i-vector extractor uses
40-dimensional MFCCs (20 base + deltas) with short-term mean and variance
normalization. It uses a 2048-component gender-independent UBM with a 600
dimensional gender-independent i-vector extractor. As for our previous experi-
ments [12], the SRE10 telephone data (condition 5 extended task, males) was
used for evaluation. This evaluation set consists of 3,465 target and 175,873
non-target trials. For parameter training two datasets are defined. The out-of-
domain SRE set includes telephone calls from 1,115 male speakers and 13,628
speech cuts taken from SRE 04, 05, 06, and 08 collections. The in-domain SWB
set includes calls from 1,461 male speakers and 15,164 speech cuts taken from
Switchboard [2]. More details of this setup can be found at [1]. In our experi-
ments, the small amount of out-of-domain SRE dataset was used only for the
supervised adaptation of in-domain PLDA trained parameters to out-of-domain
conditions.

4 Adaptation Approaches

In the section we present two different approaches to the out-of-domain adap-
tation using speaker labeled data. The first is a generative approach that based
on definition of inter and intra speaker covariances from MAP estimation [7].
Assuming μ the center of the PLDA model is an observed variable so the matrices
can be obtained separately from equation:

Σmap = (1 − α)Σin + αΣout, (1)

where Σin and Σout are covariances computed on the large in-domain and small
part out-of-domain datasets respectively. Parameter α defines the strength of the
prior and can be chosen experimentally. It depends on the extent of confidence
to the out-of-domain adaptation data. The smaller the value of the α the weaker
the adaptation. The larger the interpolation parameter α ∈ [0, 1] the stronger
the contribution of the out-of-domain data.

The second adaptation technique we considered is the discriminative app-
roach. We used discriminative training of the PLDA model developed in [13].
The main distinctive features of the discriminative approach are using target
and not target trials and minimizing detection cost function computed on trial
scores to determine the parameters of the PLDA model. The approach allows
to take into account the requirements on balance between the recognition errors
(FR/FA) in objective function [3]. If we denote PLDA model parameters as θ
then objective function to be optimized for the supervised out-of-domain adap-
tation can be written as:

E(θ) =
N∑

i=1

N∑

j=1

βij l(tij , sij(θ)) + λ‖θ − θ̄‖. (2)
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where θ = vec([B,W ]) is a vectorized B between and W within speaker covari-
ance matrices, θ̄ denotes initial PLDA model parameters that are obtained on
out-of-domain development set, tij is a trial indicator that equals to 1 if i-vector
voice models with indices i and j are from the same speakers and -1 if otherwise,
N is a total number of trials and l(·) is a trial loss function [13]. Finally sij and
βij are denoted as trial scorers and weights. Weights determine the contributions
of errors FR/FA in the objective function and have to be specified accordingly
to the application dependent requirements. It should be noted that trial scores
in (2) are obtained on the out-of-domain small dataset but not the evaluation
dataset. Parameter λ allows to control the deviation of the adapted PLDA model
from the initial state.

Also we propose effective supplementation to the discriminative approach
based on using self-target trials (STT). The trials are obtained when compared
voice models are identical. They give max possible scores and can be effectively
used to regularize optimization problem. This regularization can be done by
using the restriction of search region for the PLDA model parameters. In this
way we can label the self-target scores as non-target. Thus target scores occur
to be bounded by non-target scores on the left and self-target scores on the right
sides, as it is shown in Fig. 1a. This regularization trick allows us to get more
stabilized scores.

We studied the approaches in respect to the adaptation of the covariance
matrices of the PLDA model with the exception of the mean. In both the gen-
erative and discriminative cases the mean of the model is computed separately
on the same data that is used for the adaptation of the covariance matrix.

5 Experiment Results

In the section we present the analysis of adaptation approaches and experimental
results. We used three types of dataset for our investigation that are defined as
out-of-domain, in-domain and small speaker labeled dataset that is similar to

Table 1. Evaluation results for the adaptation

Num speakers/files from
in-domain set Ns/Nf

Adaptation approaches

Generative
EER(%)/DCFmin

Discriminative

Conv STT

EER(%)/DCFmin EER(%)/DCFmin

10(100) 3.97/0.56 3.91/0.59 3.33/0.54

50(563) 3.28/0.45 3.83/0.53 2.94/0.42

100(1126) 2.97/0.43 3.47/0.50 2.60/0.42

200(2252) 2.79/0.40 3.13/0.43 2.55/0.37
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Fig. 1. Distributions of the trial scores obtained on the adaptation dataset during
discriminative training of the PLDA model parameters: (a) with self-target trial (STT)
scores (b) conventional approach. (Color figure online)

in-domain dataset. The datasets applied for training, testing and the supervised
adaptation of the PLDA model respectively.

It is important to note that the adaptation is needed when properties of
voice models are different. The difference between test and train conditions we
considered in our investigation occur due to mismatch on telephone channels
between SWB and SRE datasets. The distributions of the i-vectors from these
dataset do not have general center in the multidimensional space and are local-
ized in different areas. Proposed adaptation approaches allow to compensate
the mismatch on the PLDA model level. The results of using the discriminative
and the generative approaches are presented in the Table 1. We reported the
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performance of the speaker recognition system in terms equal error rate (EER)
and minimum of the detection cost function. The amount of speakers and files in
dataset used for the adaptation is presented in the first column of the table. We
investigated the speaker recognition system performance depending on amount
of speakers/files. We considered the generative and discriminative approaches
to tune the parameters of the PLDA model. The conventional discriminative
approach and supplemented with self-target trials were investigated.

Our results have shown the generative approach more effective in compare
with the conventional discriminative approach for all amounts of speakers/files
in the adaptation dataset. The supplementation of the discriminative approach
with the self-target trials allows to increase the effectiveness of the adaptation
and to improve the performance of speaker recognition system. It is reached due
to the restriction of searching area on the parameters of the PLDA model so
it permits to get suitable conditions for resolution of the optimization problem.
The distributions of target and non target scores in the cases of using the self-
target trial scores and without ones are shown in Fig. 1. The distributions that
are presented in the figure are obtained on the adaptation dataset during the
iterations of the optimization problem solving. It can be seen that improvement
of the adaptation using of the self-target trials gives possibility to avoid local
extremum and to update the model parameters on each iteration. In the second
case the update of the parameters ceases after a few iterations. Green double
arrows show directions change of target distribution accordingly to class labels
during the discriminative training. It is shown that using additional regulariza-
tion restriction with the help of self-target trials let us to improve significantly
the results of the adaptation of the discriminative method (see Table 1).

6 Conclusion

In this paper a comparative investigation of the supervised domain adaptation
approaches has been presented. The problem occurs when development and eval-
uation dataset are mismatched. The reason of mismatch is a difference of channel,
environment conditions that impact on speech signal. So the adaptation system
recognition to new conditions is needed for improving effectiveness in real appli-
cations. We considered two approaches to the supervised adaptation based on
the generative and discriminative techniques. Also we proposed supplementa-
tion of the discriminative approach with using self-target trials to increase the
performance of the adaptation. All results were obtained using a state-of-the-art
PLDA speaker recognition system with Gaussian priors for speaker factors and
length normalized i- vectors.

The investigation results presented in the paper demonstrate that generative
adaptation approach is superior than discriminative one in terms of minDCF
performance measure. But using additional regularization restriction with the
help of self-target trials let us to improve significantly the results of the adapta-
tion of the discriminative method. Improving composes on average about 15%
relative in the minDCF point.
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Abstract. This work aims to assess the relation between low-frequency
speech features and velum opening by using data coming from an elec-
tromagnetic articulograph system (EMA). In previous works, features
related to frequency content below first formant has been proposed in
order to detect nasalized sounds and hypernasality; however, those low-
frequency features have not yet been assessed on real articulatory data
regarding the dynamical behavior of velum opening. In order to evaluate
the relationship between low-frequency features and velum opening, sta-
tistical association between acoustic information and velum movement
is measured. In addition, the parameters are evaluated in an acoustic-
to-articulatory system based on radial basis neural networks. Results
suggest the existence of low-frequency features related to velum posi-
tion. Therefore, this kind of parameters could be useful in acoustic-to-
articulatory mapping systems.

Keywords: Velum opening · Electromagnetic articulograph (EMA) ·
Low-frequency features · Acoustic-to-articulatory mapping ·
Articulatory phonetics

1 Introduction

The analysis of soft palate movements using voice signals is of interest in several
areas as articulatory inversion, and, classification and detection of hypernasality
and nasal sounds. In particular, hypernasality is characterized by an excessive
sound coming from the nasal cavity during the utterance of speech sounds since
the soft palate is not closed properly [8]. Still, these episodes should be not always
assumed as irregular, in fact, those sounds that are close to the nasal phonemes
have nasality to a some degree. Furthermore, previous studies have documented
some properties of the speech spectral representation allowing detection of hyper-
nasality and nasalized sounds. Among the properties related to nasalized sounds
the following are worth of mentioning: (i) widening of the bandwidth of formants
c© Springer International Publishing Switzerland 2016
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F1 and F2 [17]; (ii) introduction of additional resonances that cause flattening
of nasalized spectra [13]; and (iii) introduction of a resonance below F1 due to
acoustic coupling to a sinus [10]. Nonetheless, in this work we pay particular
importance to the spectral changes arising below the first formant.

For detection of hypernasal and nasalized sounds, several works have been
formulated recently, for instance, the ratio of energies between [0, 320] and
[320, 5360] Hz as the energy proportion to detect nasal sounds in [12]. Since
cleft palate patients tend to concentrate the emitted acoustic energy on these
low-frequency bands, authors in [6] introduce a parameter accounting for the
energy shift towards the low frequencies that is by the ratio R = Efc/Efs/2,
where Efc is the energy within the bandwidth from 0 to fcHz, and Efs/2 is
the total energy of the signal. The parameter (termed voice low tone to high
tone ratio) is also computed in [9], but as the ratio between low-frequency and
high-frequency powers split by specific cutoff frequency at 600 Hz. Besides, other
aspects of the spectral distribution are considered like in [18] where the appear-
ance of an additional resonance frequency below the first formant in nasalized
sounds is reported. Thus, estimations of group delay function around the first
peak frequency (resonance nasalised) and the second peak (first formant) are
involved as well. Although these approaches have been tested in the detection of
hypernasality and nasalized sounds, works that directly assess the relationship
of this kind of parameters with the movement of the velum are scarce or even
carried out using only vocal tract simulations [10,13,17].

We evaluate the relationship between the acoustic parameters related to
information located below the first formant with the degree of velum open-
ing. Consequently, we concurrently make use of the signals measuring (speech
recordings) acoustic emission as well the movement of the soft palate (electromag-
netic articulography). Firstly, the non-linear statistical correlation between low-
frequency related acoustic and measured articulatory information is estimated.
Then, these acoustic parameters are evaluated on an acoustic-to-articulatory
mapping system based on radial basis neural network. The following parameters
are tested: (i) energy ratio [13]; (ii) ratio of group delay [18]; (iii) frame energy (iv)
energy filter related to the higher value of statistical association below the first for-
mant. As a result, we detect a peak confidently by the used statistical association
measure; this peak is related to the frequency band just below the first formant.
Finally, we show that the low-frequency parameters allow improving performance
of the acoustic-to-articulatory mapping of the soft palate.

2 Methods

2.1 Database

The present study uses the MOCHA-TIMIT database consisting of a collection of
sentences that are designed to provide a set of phonetically diverse utterances
[19]. The MOCHA-TIMIT database includes four data streams recorded concur-
rently: the acoustic waveform (16 kHz sample rate, with 16 bit precision), laryn-
gograph, electropalatograph, and EMA data where the EMA system corresponds
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Fig. 1. PCA basis vectors resulted for each considered speakers, in blue. Original data
in red. (Color figure online)

a to 2D electromagnetic articulography (AG100) device. Movements of receiver
coils attached to the articulators are sampled by the EMA system at 500 Hz.
Coils are affixed to the lower incisors (li), upper lip (ul), lower lip (ll), tongue
tip (tt), tongue body (tb), tongue dorsum (td), and velum (vl). The two coils
at the bridge of the nose and upper incisors provide reference points to correct
errors produced by head movements. The EMA trajectories are resampled from
500 to 100 Hz after a filtering process with an 8th order Chebyshev Type II low–
pass filter of 20 Hz cut-off frequency. Then, the normalization process described
in [14] is carried out. In the present study, we use the horizontal and vertical
information provided by the coil attached to the velum [vx vy].

2.2 Feature Extraction

Representation of the Velum Position. EMA data provide information about
the movement of the velum along the directions (x, y) using a sensor placed at
approximately 1–2 cm beyond the hard palate. Yet, we only make use of the
direction having the maximum variability of EMA data. To this end, we apply
the principal component analysis (PCA) fixing as the variance explained the
values of 98.7% and 86% for fsew0 and msak0 speakers, respectively. In both
cases, the angle of major component is approximately 45◦. The velum position
representation is given by ν = [vx vy]ap; where, ap is the 2 × 1 vector, inside
PCA transformation matrix, related to the highest eigenvalue of the covariance
matrix of the EMA vector [vx vy]. Figure 1 shows scatter plot of EMA data and
the PCA vectors.

In the velopharyngeal mechanism, the levator veli palatini (LVP) is the mus-
cle mainly engaged in the movement of the soft palate, and it has an orientation
angle close to 122.4◦ (i.e. 57.6◦ in its complementary version) [15]. This dif-
ference in the values of orientation angle (57.6◦ and 45◦, respectively) can be
explained by the disagreement of the references between the EMA and the plane
used in [2].
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Acoustic Feature Extraction. Computation of the considered acoustic parameters
is as follows:

– Filter-banks, ξ1. Grounded on the fact that the filter banks simulating
the human hearing process supply less uncertainty in articulatory inference
tasks [3], we implement a 20-order Mel filter bank for representing the spec-
trum of speech, where the center frequency of the first filter is located at
110 Hz while the center frequency of the last triangular filter – at 7026 Hz.
As a result, we get 20 values representing the energy of frequency domain,
denoted as z = [z1 . . . zk . . . z20] where the selected configuration of the spec-
tral banks has equivalent filtering areas. However, we only use the energy value
of greater statistical association located immediately below the first formant
(denoted as ξ1).

– Energy ratio (ER), ξ2. Since the energy of the very low-frequency bands
increases in nasalized and nasal sounds, ER measures the relation between
the energies within the bandwidth [0, 320] to the range [320, 5360] Hz [12].

– Center of mass of modified group delay function (CM-MGDF), ξ3. The group
delay spectrum (MGDS), denoted as δg, allows improving the resolution of the
low-frequency speech spectrum for the detection of hypernasal speech [18]. To
avoid the influence of the outliers, however, we compute the center of mass of
the approximated version of MGDS, δ̃g, as follows:

ξ3 =

∑
f ∈ F f δ̃g(f)

∑
f ∈ F δ̃g(f)

(1)

where F = [0, 800] Hz, and the approximated group delay δ̃g(f) of the signal
x(n) (corresponding to speech segment at current time frame) is obtained as:

δ̃g(f) = sgn(δg(f))
(

XR(f)YR(f) + XI(f)YI(f)
X̃(f)2γ

)α

where X(f) and Y (f) are the N -point discrete Fourier transform (DFT) of the
sequences x(n) and nx(n), respectively. α and γ are the tuning parameters,
resulting in α = γ = 0.8 [1]. The subscripts R and I denote the real and
imaginary parts, respectively. In turn, X̃(f) is the cepstrally smoothed version
of X(f); and notation sgn(·) stands for the sign function computed for the
expression: δg(f) = (XR(f)YR(f) + XI(f)YI(f))/X(f)2.

– Frame energy, ξ4. This parameter infers the way the energy is varying along
the time, and is calculated in the sliding window mode where each frame lasts
20 ms with overlaps of 10 ms.

2.3 Measure of Statistical Association

Correlation measures are typically developed only for an assumed linear piece-
wise relationship between random variables. Nonetheless, the correlated variables
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(acoustic and articular ones) mostly should be related through a nonlinear rela-
tionship. To this end, we can capture nonlinear statistical relationships between
the articulatory and the acoustic variables through the widely used the Kendall’s
coefficient or χ2 information measures [16]. Several reasons account for the choice
of the former measure: It is implemented by robust and simple algorithms [4].
Besides, the estimation of the information measure χ2 may be not confident as
the number of samples drops.

Given a bivariate distribution model of zk(t) and ν(t) random variables, the
Kendall coefficient (noted τ ∈ [−1, 1]) is a measure of random association defined
in terms of probability P as follows:

τk = τ(zk(t), ν(t)) (2)

= P ((zi
k(t) − νi)(zj

k(t) − νj) > 0)

− P ((zi
k(t) − νi(t))(zj

k(t) − νj(t)) < 0) (3)

Both terms of τ in Eq. (3) are estimated from the given set of independent
observations pairs (zi

k(t), νi(t)), (zj
k(t), νj(t)), selected from the N samples. So,

the measure τ(·, ·) becomes 1 if there is a perfect concordance, i.e., if the direct
relationship holds, zi

k(t) ≶ zj
k(t) whenever νi(t) ≶ νj(t). On the contrary, the

measure of perfect discordance yields −1 meaning that the inverse relationship
holds: zi

k(t) ≶ zj
k(t) whenever νi(t) ≷ νj(t). If neither the concordant criterion

nor discordant criterion is true, the measure between pairs will lie within the
interval (−1, 1).

Given the specific set of pairs (zi
k(t), νi(t)), (zj

k(t), νj(t)), the respective ele-
mental pair indicator of association measure aij ∈ [−1, 1] is defined as:

aij
k = sgn(zi

k(t) − νi(t)) ( zj
k(t) − νj(t))

Therefore, the value of τk = E
{

aij
k

}
(notation E {·} stands for the expec-

tation operator), denoting the Kendall coefficient is provided by the following
expected value:

τk =
∑ ∑

1≤i<j≤N

aij
k(

N
2

) .

2.4 Acoustic-Articulatory Mapping

For evaluation of the proposed acoustic-to-articulatory mapping system, we per-
form testing of all the above extracted acoustic parameters that are compared
further to the baseline system based on MFCC parameters. The mapping func-
tion is accomplished using radial basis neural network (RBNN). Although there
are more sophisticated approaches of regression that may provide better perfor-
mance, we make use of the RBNN because of its ease implementation.

The following three feature sets are tested. S1 = [ξ1 ξ2 ξ3 ξ4], the proposed
feature set; S2 containing 13 MFCC (Mel-frequency cepstral coefficients) para-
meters; and, S3 corresponding to the union of S1 and S2 sets.
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Fig. 2. Kendall’s coefficient values between filter-bank’s energy values and velum open-
ing measure.

3 Results and Discussion

Relevant Frequencies. As seen in Fig. 2 showing the piecewise Kendall’s coeffi-
cient, several peaks arise including the one for the fourth triangular filter and
located near the first formant frequency. The appearance of these peaks in the
first formant proximity has been already reported. In fact, the presence of an
additional peak before the first formant is reported in [5], especially in nasal
sounds, within the bandwidth ranging from 250 to 450 Hz for utterance of French
and Japanese vowels. Besides, authors in [10], based on simulations of the nasal
tract, state that the sinuses cause low-frequency peaks neighboring the first for-
mant. This finding is proved too in [13] using volumetric MRI images for creating
simulations of the vocal tract.

Low-Frequency Parameters. Estimation of the statistical association of the ER
(ξ2) and CM-MGDF (ξ3) parameters, both related to the movement of the
soft palate, provides higher values than those computed by the filter bank.
Namely, τ(ξ2(t), ν(t)) = −0.29 and τ(ξ3(t), ν(t)) = −0.15 for msak0 speaker,
and τ(ξ2(t), ν(t)) = −0.25 and τ(ξ3(t), ν(t)) = −0.16 for the fsew0 speaker. On
the other hand, in [7] it was used the results of previous works ([18]) showing
the appearance of nasal resonance below first formant to formulate a parame-
ter they named as Energy Amplified Frequency Bands (EAFB); however, as
reported, the feature EAFB did not achieve good results. In present work, based
on first observations, it was not seen any relational pattern between the velum
movement and the distance from first to second peak on group delay function;
but, in contrast, the centre of mass over group delay function (ξ3) showed better
results.

Test of the Proposed Parameters with the RBNN-Based Acoustic-to-Articulatory
System. As seen in Fig. 3 showing the resulting components of the
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Fig. 3. Mean square error results when testing sets S1, S2 and S3 on RBN acoustic-
to-articulatory mapping system.
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Fig. 4. Percentage of improvement in acoustic-to-articulatory mapping task when form-
ing the feature sets MFCC ⊕ ξi; i = 1, . . . , 4.

acoustic-to-articulatory mapping system, the use of just S3 (MFCC ⊕ low-
frequency parameters) leads to improve the performance. Consequently, rates of
gain are 14.8% and 8.5% for msak0 and fsew0 speakers respectively. Although
the low-frequency based set S2 outperforms the proposed MFCC-based S1 (5%
and 14.4% for msak0 and fsew0, respectively), we only employ one-third of the
amount of the parameters for S2. It is worth noting that the former set aims
at representing only part of spectral information while the latter set extracts
information from the whole spectrum. Finally, when adding the features ξi to
the MFCC set (S2) such that new sets are obtained S2 ⊕ ξi; i = 1, . . . , 4, the
accuracy increased. Figure 4 shows these results.

4 Conclusions

This work provides enough evidence for the presence of peak values of statistical
association between velum position and fourth filter energy. We support this
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finding in the light of previously obtained results stating the effects of nasaliza-
tion within the first formant region. Also, we suggest the use of low-frequency
energy parameters for estimating the velum position. Although the performance
of these low frequency based parameters are a bit less than using MFCCs, it is
important to note that the proposed feature set aims to represent only part of
spectral information while MFCC parameters provide information about whole
spectrum. Finally, as a future work, we propose to test a greater set of acoustic
features in a larger database, for instance, by using the recently developed USC-
TIMIT database [11].
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Abstract. This paper addresses speech summarization of highly
spontaneous speech. Speech is converted into text using an ASR, then
segmented into tokens. Human made and automatic, prosody based tok-
enization are compared. The obtained sentence-like units are analysed by
a syntactic parser to help automatic sentence selection for the summary.
The preprocessed sentences are ranked based on thematic terms and
sentence position. The thematic term is expressed in two ways: TF-IDF
and Latent Semantic Indexing. The sentence score is calculated as linear
combination of the thematic term score and a sentence position score.
To generate the summary, the top 10 candidates for the most informa-
tive/best summarizing sentences are selected. The system performance
showed comparable results (recall: 0.62, precision: 0.79 and F-measure
0.68) with the prosody based tokenization approach. A subjective test is
also carried out on a Likert scale.

Keywords: Speech summarization · Latent semantic indexing · Spon-
taneous speech

1 Introduction

Automatic summarization is used to extract the most relevant information from
various sources: text or speech. Although speech is most often transcribed and
summarization is carried out on text, the automatically transcribed text contains
several linguistically incorrect words or structures resulting from the spontane-
ity of speech and also from speech-to-text errors. Spontaneous speech is “ill-
formed” and very different from written text: it is characterized by disfluencies,
filled pauses, repetitions, repairs and fragmented words, but behind this variable
acoustic property, syntax can also deviate from standard.

Another challenge originates in the speech-to-text conversion. Errors can
propagate into the text-based analysis phase. The recognition of spontaneous
speech is probably the hardest recognition task, due to the extreme variable
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acoustics, environmental noise (especially other’s speech), and language coverage
(or language model perplexity) [10].

A possible approach of summarizing written text is to extract important sen-
tences from a document based on keywords or cue phrases. Automatic sentence
segmentation (tokenization) is crucial before such a sentence based extractive
summarization [5]. The difficulty comes not only from recognition errors, but
also from missing punctuation marks, which would be fundamental in syntac-
tic parsing and POS tagging (disambiguation). In current work we propose a
prosody based automatic tokenizer which recovers intonational phrases (IP) and
use IPs as sentence like units in further analysis. Summarization will also be
compared to a baseline version using tokens available from human annotation
The baseline tokenization relies on acoustic (silence) and syntactic-semantic (sin-
tactically or semantically closely together belonging) axes.

Other research showed that using speech-related features beside textual-based
features can improve the performance of summarization [6]. Prosodic features such
as speaking rate; minimuma, maximuma, mean, and slope of fundamental fre-
quency and those of energy and utterance duration can also be exploited.

In this work we present an initial effort to develop a Hungarian speech sum-
marization system. In Hungarian, both speech recognition [10] and text-based
syntactical analysis [1] are difficult compared to English due to the very rich
morphology of the language. Mainstream works on extractive summarization
use two major steps: the first step is ranking the sentences based on their scores
which are computed by combining features such as term frequency (TF), posi-
tional information and cue phrases; the second step consists in selecting a few
top ranked sentences to prepare the summary.

2 Material and Speech-to-Text

2.1 Speech Material

For the summarization experiments, we use 4 interviews from the BEA Hungar-
ian Spontaneous Speech database [8]. Participants talk about their jobs, family,
and hobbies. Three of the speakers are male and one of them is female. All
speakers are native Hungarian, living in Budapest (aged between 30 and 60).
The total material is 28 min long (average duration was 7 min per participant).

2.2 The Speech-to-Text System

We use 160 interviews from BEA, accounting for 120 h of speech (the interviewer
discarded) to train Speech-to-text (S2T) acoustic models. Speakers involved in
the 4 interviews used for summarization are held out.

Using the Kaldi toolkit we train 3 hidden layer DNN acoustic models with
2048 neurons per layer and tanh non-linearity on 160 interviews from BEA (Hun-
garian). Input data is 9x spliced MFCC13 + CMVN +LDA/MLLT. A trigram
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language model is trained on transcripts of the 160 interviews after text normal-
ization, with Kneser-Ney smoothing. Dictionaries are obtained using a rule-based
phonetizer (spoken Hungarian is very close to the written form).

Word Error Rate (WER) was found around 44 % for this task. This relative
high WER is justified by the high spontaneity of speech. Stem error rate was
found to be somewhat smaller, 39 %.

2.3 The IP Tokenizer

A segmentation tool capable of recovering phonological phrases (PP) was pre-
sented in [11]. This system uses phonological phrase models and aligns them
to the input speech based on prosodic features F0 and mean energy. The PP
alignment is conceived in such a manner that it encodes upper level intonational
phrase (IP) constraints (as IP starter and ending PPs, as well as silence are mod-
elled separately), and hence is de facto capable of yielding an IP segmentation,
capturing silence, but also silence markers (often not physically realized as real
silence). The algorithm is described in detail in [11], in this work we use it to
obtain sentence-like tokens from speech-to-text output. We use the IP tokenizer
in an operating point with high precision ( 96 % on read speech) and lower recall
( 80 % on read speech) as we consider less problematic missing a token boundary
(merge 2 sentences) than inserting false ones (splitting the sentence into 2 parts).

3 The Summarization Approach

Once speech-to-text conversion and tokenization for sentence-like units took
place, text summarization is split into three main modules. The first module
does the preprocessing of the output of the ASR (Automatic Speech Recognizer,
S2T), the second module is responsible for sentence ranking, and the final mod-
ule generates the summary. This approach is based on [9], but we modify the
thematic term calculation method. The overall scheme of the system is depicted
in Fig. 1.

3.1 Pre-processing

Stop words are removed from the tokens and stemming is performed. Stop-words
are collected into a list, which contains (i) all words tagged as fillers by the S2T
component (speaker noise) and (ii) a predefined set of non-content words such
as articles, conjunctions etc.

Hungarian is an agglutinating language, with a very rich morphology, and
consequently, grammatical relations are expressed less by the word order but
rather by case endings (suffixes). The magyarlánc toolkit [13] was used for the
stemming and POS-tagging of the Hungarian text. In case of Hungarian, stem-
ming is very important and often ambiguous due to the rich morphology. There-
after, the POS-tagger module was applied to determine a word as corresponding
to a part-of-speech. The words are filtered to keep only nouns.
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Fig. 1. Block scheme of the speech summarization system.

3.2 Textual Feature Extraction

In order to rank sentences based on their importance, some textual features need
to be extracted:

TF-IDF. (Term Frequency - Inverse Document Frequency) reflects the impor-
tance of a sentence and is generally measured by the number of keywords present
in it. The importance value of a sentence is computed as the sum of TF-IDF
values of its constituent words (in this work: nouns) divided by the sum of all
TF-IDF values found in the text. TF shows how frequently a term occurs in
a document divided by the length of the document, whereas IDF shows how
important a term is. In raw word frequency each word is equally important, but,
of course, not all equally frequent words are equally meaningful. For this reason
it can be calculated using the following equation:

IDF (t) = ln
Total number of documents

Number of documents containing term t
. (1)

TF-IDF weighting is the combination of the definitions of term frequency and
inverse document frequency, to produce a composite weight for each term in each
document, calculated as a dot product:

TF ∗ IDF. (2)

Latent Semantic Analysis. (LSA) exploits context to try to find words with
similar meaning. LSA is able to reflect both word and sentence importance.
Singular Value Decomposition (SVD) is used to assess semantic similarity.

LSA based summarization needs the calculation of the following items [3]:
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– Represent the input data in the form of a matrix (input matrix), where
columns contain sentences and rows contain words. In each cell, a measure
reflecting the importance of the given word in the given sentence is stored.

– use SVD to capture relationships among words and sentences. The input
matrix is decomposed into 3 constituents (sub-matrices):

A = UΣV T, (3)

where A is the input matrix U represents the description of the original rows
of the input matrix as a vector of extracted concepts, Σ is a diagonal matrix
containing scaling values sorted in descending order, and V represents the
description of the original columns of input matrix as a vector of the extracted
concepts [3].

– The final step is the sentence selection for the summary.

Positional Value. Generally, a reasonable a priori assumption is that the more
meaningful sentences can be found at the beginning of the document. This is even
more true in case of spontaneous narratives, as the interviewer asks the partici-
pant to tell something about her/his life, job, hobbies. The following equitation
was used [9]:

Pk = 1/
√

k, (4)

where the Pk is the positional score of kth sentence.

Sentence Length. Sentences are of different length (they contain more or less
words) in documents. Usually a short sentence is less informative than a longer
one and hence, readers or listeners are more prone to select a longer sentence than
a short one when asked to find good summarizing sentences in documents [9].
However, a too long sentence may contain redundant information. The idea
is then to eliminate or de-weight sentences which are too short or too long
(compared to an average). If a sentence is too short or too long, it is assigned a
ranking score of 0.

Sentence Ranking. The ranking score RSK is calculated as the linear com-
bination of the so-called thematic term based score Sk and positional score Pk.
The final score of a sentence k is:

RSk =

{
αSk + βPk, ifLk ≥ LL & Lk ≤ LU ;
0 otherwise,

(5)

where α is the lower, β is the upper cut-off for the sentence position (0 ≤ α, β ≤ 1)
and LL is the lower and LU is the upper cut-off on the sentence length Lk [9].

3.3 Summary Generation

The last step is to generate the summary. In this process the N-top ranked
sentences are selected from the text [9]. We set N to 10, so the final text summary
contains the top 10 sentences.
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4 Results

4.1 Metrics

The most commonly used information retrieval evaluation metrics are precision
and recall, which are appropriate to measure summarization performance as
well [7]. Beside recall and precision, we use the F1-measure:

F1 =
2 ∗ precision ∗ recall

precision + recall
. (6)

The challenge of evaluation consists rather in choosing or obtaining a ref-
erence summary. For this research we decided to obtain a set of human made
summaries, whereby 10 participants were asked to select up to 10 sentences that
they find to be the most informative for a given document (presented also in spo-
ken and in written form). Participants used 6.8 sentences on average for their
summaries. For each narrative, a set of reference sentences was created: sentences
chosen by at least 1/3 of the participants were added to the reference summary.
Overlap among human preferred sentences was ranging from 10 % to 100 %,
with an average overlap of 28 %. Sentences are appended to the summaries in
the order of their appearance in the original text. When used for comparison, we
filter stop words, fillers (ASR output) and require at least a 2/3 overlap ratio for
the content words. We will refer to this evaluation approach as soft comparison.

An automatic evaluation tool is also considered to obtain more objective mea-
sures. The most commonly used automatic evaluation method is ROUGE [4].
However, ROUGE performs strict string comparison and hence recall and preci-
sion are commonly lower with this approach [7]. We will refer to this evaluation
approach as hard comparison.

4.2 Experiments

Text summarization was then run with 3 setups regarding pre-processing (how
the text was obtained and tokenized):

– OT-H: Use the original transcribed text as segmented by the human annota-
tors into sentence-like units.

– S2T-H: Use speech-to-text conversion to obtain text, but use the human anno-
tated tokens.

– S2T-IP: Use speech-to-text conversion to obtain text and tokenize it based on
IP boundary detection from speech.

Summary generation is tested for all the 3 setups with both TF-IDF and LSA
approaches to calculate the thematic term Sk in Eq. (5). Results are shown in
Table 1.

Overall results are in accordance with known peformance for similar tasks [2].
When switching to the speech-to-text output, there is no significant differ-
ence in performance regarding the soft comparison, but we notice a decrease
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Table 1. Recall, precision and F1.

Setup Approach Soft comparison Hard comparison (ROUGE)

Recall [%] Precision [%] F1 Recall [%] Precision [%] F1

OT-H TF-IDF 0.51 0.76 0.61 0.36 0.28 0.32

LSA 0.36 0.71 0.46 0.36 0.30 0.32

S2T-H TF-IDF 0.51 0.80 0.61 0.34 0.29 0.31

LSA 0.49 0.77 0.56 0.39 0.27 0.32

S2T-IP TF-IDF 0.62 0.79 0.68 0.33 0.28 0.30

LSA 0.59 0.78 0.65 0.33 0.32 0.32

(rel. 8 %) in the hard one (comparing OT-H and S2T-IP approaches). This is
due to speech-to-text errors, however, keeping in mind the high WER for spon-
taneous speech, this decrease is rather modest. Indeed, it seems that content
words and stems are less vulnerable to speech-to-text errors: in [12] it is shown
that 35 % WER in the S2T output results in 12 % POS-tag error for nouns.

An important outcome of the experiments is that the automatic, IP detection
based prosodic tokenization gave almost the same performance as the human
annotation based one (in soft comparison it is even better).

4.3 Subjective Assessment of Summaries

In a separate evaluation step, participants were asked to evaluate the system
generated summaries on a Likert scale. Thereby they got the system generated
summary as is and had to rate it according to the question “How well does the
system summarize the narrative content in your opinion?”. The Likert scale was
ranging from 1 to 5: “Poor, Moderate, Acceptable, Good, Excellent”. Results
of the evaluation are shown in Fig. 2. Mean Opinion score was 3.2. Regarding
redundance (“How redundant is the summary in your opinion?”) MOS value
was found to be 2.8.

Excellent
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Poor

M
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50

40
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20

10

0

Error bars: +/- 1 SD

Fig. 2. Likert scale distribution of human judgements.
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5 Conclusions

This paper addressed speech summarization for highly spontaneous Hungarian.
Given this high degree of spontaneity and also the heavy agglutinating property
of Hungarian, we believe the obtained results are promising as they are com-
parable to results published for other languages [2]. The proposed IP detection
based tokenization was as successful as the available human one. The overall
best results were 62 % recall and 79 % precision (F1 = 0.68). Subjective rating
of the summaries gave 3.2 mean opinion score.

Acknowledgment. The authors would like to thank the support of the Hungarian
National Innovation Office (NKFI) under contract IDs PD-112598 and PD-108762.

References
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Abstract. Backchanneling plays a crucial role in human-to-human com-
munication. In this study, we propose a method for generating a rich vari-
ety of backchanneling, which is not just limited to simple “hm” or “sure”
responses, to realize smooth communication in conversational dialogue
systems. We formulate the problem of what the backchanneling generation
function should return for given user inputs as a multi-class classification
problem and determine a suitable class using a recurrent neural network
with a long short-term memory. Training data for our model comprised
pairs of tweets and replies acquired from Twitter. Experimental results
demonstrated that our method can appropriately select backchannels to
given inputs and significantly outperform baseline methods.

Keywords: Conversational dialogue systems · Recurrent neural net-
work · Backchanneling

1 Introduction

Backchanneling plays a crucial role in human-to-human communication. Clancy
defined backchanneling as a short utterance produced by an interlocutor playing
the role of a listener during another interlocutor’s speakership [4]. In human con-
versation, the listener’s active participation is important because the backchan-
neling, i.e., the listener’s reaction and positive attitude, are essential for most
speakers to talk and communicate effectively. Moreover, a previous study has
reported that dialogues in which a listener uses backchanneling more frequently
tend to be more enthusiastic [16].

Overall, in the field of dialogue systems, the importance of backchannel-
ing has been recognized; moreover, suitable backchanneling generation has been
extensively studied [6,10,19]. Okato et al. proposed a method for backchannel-
ing using particular pitch patterns in the human user’s utterances [12]. Simi-
larly, Kobayashi et al. estimated the user’s degree of interest about the current
topic and selected suitable backchannels using the estimated degree [9]. Kitaoka
estimated suitable timings of backchannels using a decision tree [8]. The key
problem with these and other previous studies is that they employ a limited set
of backchannels such as “hm” or “sure” or repeat a part of the user’s previous
utterance. This is particularly true of conversational dialogue systems (also called
c© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 148–155, 2016.
DOI: 10.1007/978-3-319-43958-7 17
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non-task-oriented or chat-oriented dialogue systems) that use various backchan-
nels for their dialogues.

Given the above issues, in this study, we propose a method for generating a
rich variety of backchanneling to realize smooth communication in conversational
dialogue systems. We employ Twitter data to train our model to be able to reply
with suitable backchannels given a human user’s input. Because backchanneling
is frequently used by Twitter users, we acquire a large amount of backchanneling
data in response to various types of tweets. Therefore, we collect backchannel-
ing replies and the corresponding tweets they respond to by using this data as
training data for our model. In our proposed method, we use a recurrent neural
network (RNN) to determine suitable backchannels.

2 Proposed Method

We formulate the problem of what the backchanneling function should return for
given utterances as a multi-class classification problem. Thus, we consider given
utterances as input and suitable responses as one of the many output classes. In
short, we determine replies using this multi-class classifier. To train our classifier,
we first determine the reply (output) classes in advance. In this study, we used
the 44 reply classes shown in Table 1.

In the subsections that follow, we describe the training data acquisition and
response selection mechanisms in detail.

2.1 Data Acquisition

We employed tweet—reply pairs as our training data, with data acquired through
the Twitter API. To increase the size of the acquired data, we searched Twitter
not only for the reply classes shown in Table 1 but also for other expressions. For
example, in the “That’s incredible ( )” class, we used “ ” a kanji
expression with the same pronunciation and meaning as “That’s incredible” as
an additional search query. Moreover, we searched Twitter using reply classes
and these other expressions (hereafter called reply expressions) and acquired
corresponding tweets. From the search results, we extracted tweets that satisfied
the following conditions:

– Tweet is a reply tweet with a corresponding target tweet
– Containing a reply expression at the beginning of a reply tweet

Finally, we acquired the target tweet corresponding to the extracted one.
From the above procedures, we acquired the training data for our model. We
used the acquired target tweets as inputs and the reply classes of the reply
expressions as the correct classes for the target tweets.
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Table 1. Reply classes used in our proposed method. Note that these replies were
originally in Japanese and then translated by the authors. The original Japanese replies
are shown in parentheses.

2.2 Backchanneling Learning

Long Short-Term Memory. For suitable backchanneling learning, we used a
RNN with long short-term memory (LSTM) (LSTM-RNN) [7]. We proposed our
RNN models to handle sequential data; however, normal RNNs have a problem
called vanishing gradients [2] when learning with backpropagation.

The LSTM takes in and holds errors selectively into memory cell ct to pre-
serve vanishing gradients. The LSTM has input, forget and output getes for
managing functions when it takes in, deletes and outputs errors respectively.
Mathematical expressions of the LSTM are as follows:

it = σ(Wixt + Uiht−1 + bi);

ft = σ(Wfxt + Ufht−1 + bf );

ot = σ(Woxt + Uoht−1 + Voct + bf ; )

ct = it � tanh(Wcxt + Ucht−1 + bc) + ft � ct−1;

ht = ot � tanh(ct).
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Fig. 1. Illustrative example of our four-layer LSTM backchanneling model in which the
input is “Kaze wo hiki mashi ta (I caught a cold)” and the output is “Are you OK?”.
The LSTM-RNN reads each word sequentially and outputs a 44-dimensional proba-
bility distribution. The highest probability in this distribution indicates the suitable
reply class identified by our model.

Here xt is a input vector at time t, ht is output, σ is the sigmoid function,
it, ft and ot are input, forget, and output gates respectively, and ct is the memory
cell. Note that � indicates element-wise multiplication.

Recently, application of statistical machine translation methods using RNNs
to dialogue models has been proposed [14,17]. These models receive word
sequences (of target sentences or user input) and output word sequences (of
translated sentences or system output). Our model receives word sequences but
outputs a reply class rather than a translated sentence.

Proposed Model. An illustration of our model is shown in Fig. 1. The LSTM-
RNN reply model reads one word at a time and outputs a 44-dimensional prob-
ability distribution corresponding to each reply class. When the last word in the
input sequence is read, the model checks the output distributions and identi-
fies the reply class with the highest probability. For our experiments (described
in the next section), we used a four-layer LSTM with 1000 memory cells. In
the learning phase, the cross-entropy function calculates the error between the
output distribution and the answer distribution with a probability of correct
reply class of 1.0; subsequently, the weights in the model are updated via
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backpropagation of the errors. Input words are converted into a 1000-
dimensionally distributed representation using the method proposed by Mikolov
et al. in [11], which was implemented in Word2Vec. We used 120 GB of Twitter
data to train Word2Vec.

3 Experiment

To evaluate our proposed method, we conducted experiments and made both
automatic and manual evaluations. In the automatic evaluation, performance is
evaluated by calculating the co-incidence ratio between our method’s outputs
and the original replies in the acquired pairs of tweets and replies; however, a
given utterance may yield multiple “correct” replies. Therefore, to better mimic
real human conversations, we employed human subjects to evaluate the gener-
ated replies.

3.1 Data

For our dataset, we collected 460 K Japanese pairs of tweets and replies in
advance, from which, we used 455 K pairs for training the model and 5 K pairs
for evaluation in our experiments. Note that we constructed this data to obtain
44 equally distributed reply classes.

3.2 Experimental Procedure

We used the following two baseline methods for comparison.

Baseline 1: Random. The first baseline method randomly selects a reply class
from among the 44 classes, using it as output to a given input utterance.

Baseline 2: Multi-class Support Vector Machine. The second baseline
method learns and classifies replies via a multi-class support vector machine
(SVM) with a linear kernel using unigram and trigram features. Here we
used LIBSVM [3], an SVM library implemented by Chang et al. Multi-class
classification in the LIBSVM adopts the one-versus-one strategy, where the
LIBSVM builds classifiers for all possible pairs of classes and determines a
class by majority.

We evaluated our proposed and baseline methods via both automatic and
manual methods. The automatic method used 5000 pairs of tweets and replies,
which were not previously used as training data. We inputted tweets into each
method and calculated the co-incidence rates between each method’s outputs
and the original replies.

For the manual method, we randomly extracted 200 data points from 5 K
pairs, and then had two human subjects (not authors of this paper) evaluate
outputs from each method for each given tweet. The subjects judged the natural
quality of replies to tweets using a five-point Likert scale, in which 1 was the
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Table 2. Accuracy, average natural quality, and acceptable rate of our proposed
method and the two baseline methods. The accuracy is calculated by comparing each
model’s output to replies in the original data. The natural quality and acceptable rate
values are calculated by averaging the results of the two human judges.

Random Multi-class SVM Proposed Original data

Accuracy 0.02 0.31 0.34 1.00

Naturality 1.69 3.08 3.28 3.57

Acceptable rate 0.18 0.63 0.68 0.73

worst and 5 was the best; the average score from the two subjects was used for
our evaluation. Moreover, each backchanneling method was evaluated based on
its acceptable rate, which is the number of three or more natural quality outputs
versus the number of total outputs. This measure indicates that the system forms
a suitable response in conversation using the target method.

3.3 Results

Table 2 shows the results of our evaluations. Original data in the table indi-
cates that original replies in the test data were regarded as outputs; hence, the
accuracy of the original data is shown as 1.00. The results show that the perfor-
mance of our proposed method is better than the two baseline methods for all
evaluation indices.

Regarding the accuracy and acceptable rate values, McNemar’s test demon-
strates that our proposed method and the other methods significantly differ at
the 1 % level. Moreover, in terms of natural quality, the t-test shows that our
proposed method significantly differs, with our proposed method and multi-class
SVM meeting the significance level of 5 % and others meeting 1 %.

When we look further at accuracy, the absolute value of our proposed method
(0.34) is not very high; however, in terms of natural quality and acceptable rate
values, our proposed method outperformed the multi-class SVM and is closer
to the results of the original data. On the other hand, the acceptable rate of
the original data is far from perfect (0.73) regardless of using actual human-
to-human conversation data. We consider this last point is due to a substantial
amount of noise in the Twitter data, i.e., the data is not as clean as news articles
or an annotated corpus. At present, our proposed method does not contain
countermeasures for the noise; therefore, we note that our proposed method
could potentially be improved by decreasing noise from the initial training data.

4 Related Work

Existing well-known conversational dialogue systems, such as ELIZA [20],
PARRY [5] and Artificial Linguistic Internet Computer Entity (A.L.I.C.E.) [18],
typically use response rules for utterance generation. dialogue systems that
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employ such rule-based strategies require a large amount of time and cost to
construct rules, primarily because these rules are manually created. Therefore,
researchers have more recently focused on response methods using Web data.
For example, Shibata et al. and Yoshino et al. proposed dialogue systems that
employ text acquired from websites (the text obtained via search engines) as
system utterances [15,21].

Similar to our current study, research involving response methods that uti-
lize social media data has been conducted. Banch et al. proposed a method that
searches a dialogue database based on user input, selecting an utterance that
follows after the most similar input as a response [1]. Ritter et al. applied a
statistical machine translation method to response generation [13]. More specif-
ically, they used Twitter data and regarded pairs of tweets and replies as pairs
of inputs and translated sentences. For example, using their method, “Today is
my birthday” would translate into “Happy birthday”. Other studies based on
the statistical machine translation method include [14,17].

5 Conclusions

In this study, we proposed a method for generating a rich variety of backchan-
neling for conversational dialogue systems to realize smooth human–machine
communication. Our proposed method formulates the problem of what backchan-
nel to return for a given utterance as a multi-class classification problem that
determines a suitable reply class using a LSTM-RNN. The training data for
the LSTM-RNN comprises pairs of tweets and replies acquired from Twitter.
Experimental results demonstrated that our method significantly outperformed
two baseline methods, i.e., random and multi-class SVM classification.

In a future study, we plan to reduce noise in the training data by implement-
ing a filtering technique. We conjecture that the performance of our model will
improve using cleaner training data. Furthermore, we aim to study backchan-
neling timing control to build a spoken conversational dialogue system.
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Abstract. Current paper devoted to the sparse audio and speech signal mod-
elling via the matching pursuit (MP) algorithm. Redundant dictionary of the
time-frequency functions is constructed through the frame-based psychoacoustic
optimized wavelet packet (WP) transform. Anthropomorphic adaptation of the
time-frequency plan allows minimizing perceptual redundancy of the signal
modelling. Psychoacoustic information at MP stage for the best atom selection
from the dictionary is used. It improves algorithm performance in terms of
human hearing system and computational complexity. Described signal model
can be applied in many audio and speech processing tasks such as source
separation, watermarking, classification and so on. Presented research focused
on the signal encoding. Universal audio/speech coding algorithm that is suitable
for the input signals with different sound content is proposed.

Keywords: Sparse approximation � Matching pursuit � Wavelet packet �
Audio/speech coding

1 Introduction

A sparse signal approximation represents the input signal with the minimum amount of
nonzero elements. It is very suitable tool for audio/speech processing since such type of
the signals has a big informational redundancy. MP is a greedy iterative algorithm, which
maps the input signal onto redundant dictionary of the time-frequency functions [1].

A signal modelling based on MP uses in various works. In [2] perceptual MP with
Gabor dictionary is introduced. The time-frequency masking model utilized after MP
decomposition to select only audible atoms. Modified Discrete Cosine Transform
(MDCT) based dictionary is proposed in [3]. This approach shows decomposition with
two types of dictionary consist of MDCT bases. Switching between them is based on
the decomposition residual energy decay. Some approaches use MP not for the entire
input frame but for some part of it [4, 5]. Such models separate the input signal into
three fundamental parts: harmonic (sinusoidal), transient and noise (HTN or STN
model), and work with them separately. MP is used for modelling of some part of the
signal. STN allows rather robust parameterization since every part of the signal is
processed with a suitable model in terms of its nature.
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The proposed approach uses an idea of the transients modelling via MP from [5]
but with the application to the entire input signal frame. MP with the time-frequency
dictionaries that are formed out from the input signal by WP decomposition (WPD)
parameterize the signal. Perceptually motivated cost functions can minimize atoms
amount and the psychoacoustic criterion allows improving MP stage for the best
parameter selection.

One of the fast developing field of audio/speech processing for which signal
modelling highly necessary is coding. Modern transmission technologies such as VoIP,
VoLTE, DAB allow to work with the wideband signal and require high quality of the
transmitted signal. Many state-of-the-art algorithms work well with a specific type of
the input data. Transform audio coders are suitable for the high quality music pro-
cessing but they do not work in real time scale and do not provide high compression
rate for the speech signals that vocoders do for example. Therefore, a task of the
development of the universal audio/speech coder is highly relevant. One of such coders
is Opus [6, 7]. It shows high quality of the reconstructed signal but its model is
composite that process audio and speech separately.

In this work universal scalable audio/speech coding algorithm based on the
developed bio-inspired sparse signal representation is proposed. One of the main goals
of the conducted research is effectively work with all known types of sound content.

2 MP Algorithm with Perceptually Optimized WP Dictionary

MP is a procedure that maps a signal onto an over-complete set of functions called
atoms which are selected from the dictionary D. The dictionary determined in the
following way:

D ¼ gm nð Þ;m ¼ 0::M; n ¼ 0::N � 1; gmk k ¼ 1f g; ð1Þ

where M is the dictionary size, N is a function length. MP selects such atoms that has
the best matching with the modelled signal, i.e. has the biggest inner product [1, 8]:

rkðnÞ ¼ akgk þ rkþ 1ðnÞ; ð2Þ

where gk n½ � 2 Dwithmax j\gk; rk [ j, ak ¼ \gk; rk [ , rk – residue at the current
iteration k. Atoms must be related to the signal structure to make such decomposition
useful. Based on this fact the redundant dictionary must contain functions that have
good time-frequency resolution. These properties can be produced by WP based
dictionary.

WP has a tree structure E with the corresponding scale level: 0� l\L and the node
number on the scale level: 0� n\2l. Each node l; nð Þ 2 E of WP tree is associated
with the frequency band.

MP with the perceptually optimized WP based dictionary consist of two parts. At
the first part of the algorithm, WPD tree growth is considered. This part is based on the
cost functions minimization [5, 9]. One function estimates the information density of
WP tree level (wavelet time entropy – WTE). The other one computes perceptual
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entropy (PE) for each node. The optimization stops when WTE or PE (or both of them)
start to grow, or when the limiting tree structure is reached. In contrast of [5] in this
work, the limiting tree is different from the critical band WPD (CB-WPD).

Second part of the algorithm performs MP procedure [5]. The input information for
this stage is the signal frame; optimized WP tree structure; masking threshold and
temporal masker; auditory excitation salogram. The goal of this stage is to select the
most perceptual relevant atom gc from the WP-based dictionary. Selection is made by
the best matching the original and the modelled scalograms. For the signals of
N samples each atom is indexed in the following way: c 2 ðl; n; kÞ, where
0� l\ log2 N, 0� n\2l, 0� k\N=2l. Figure 1 shows an example of the scalogram
for the original frame and modelled with 200 atoms.

MP stops when the desirable atoms number is reached. The energy threshold can
also be a stop criterion of MP and this provides a scalability of the scheme.

3 Time-Frequency Plan Adaptation

The structure of WP based dictionary depends on the time-frequency (TF) plan of
WPD. The reconstructed signal quality at the decoder side depends on how good TF
plan adjusted to the input frame at the encoder side. The most appropriate tuning of TF
plan for audio and speech processing is adaptation to the human auditory system. CB-
WPD form [9] is chosen as the maximum tree structure and in most cases a huge
amount of the input frames are decomposed based on this one. According to the
numerical experiments, it was defined that the decomposition of the low frequency
nodes is not suitable for sparse representation. As it is known from the uncertainty
principle [10] it’s impossible to obtain high frequency and time resolution simulta-
neously. Therefore, the terminal nodes at level 8 of CB-WPD tree have almost fre-
quency resolution and scale factor can be expanded through frame segment length.

Fig. 1. Auditory excitation scalograms for one frame
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The modification of WPD tree structure growing procedure is consist in PE cost
function optimization that responds to the individual nodes splitting. Therefore, the
estimation of PE was reviewed based on the original expression [5]:

PEl;n ¼
XKl;n�1

k¼0
log2ð2ðnint

Xl;n;k

�� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 � Tl;n=Kl;n

p
 !

Þþ 1Þ; ð3Þ

where Kl;n is a number of WP coefficients Xl;n;k , k is the coefficient index, Tl;n is the
masking threshold,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 � Tl;n=Kl;n

p
is the maximum quantization step Dl;n in a corre-

sponding node l; nð Þ 2 E.
The cost function optimization is obtained by PE calculation based on selecting the

most perceptually relevant coefficients X�
l;n ¼ fX�

l;n;0; . . .;X
�
l;n;M�1g that is chosen

according to:

X�
l;n;m ¼ Xl;n;kð8Xl;n;k=Dl;n [ 1Þ; ð4Þ

where m ¼ 0; . . .;Ml;n � 1 is an index and Ml;n is a number of the chosen coefficients
X�
l;n;m of the node l; nð Þ 2 E and k ¼ 0; . . .Kl;n � 1 is an index of the input coefficient

Xl;n;k . Then, applying X�
l;n;m, Ml;n in (3) instead of Xl;n;k, Kl;n for PE computation and

involving it in WPD tree structure growing procedure, allows to obtain a calibrated
WPD tree that provides flexible TF plan for the low frequency nodes. Resulting WP
tree has 24 instead of 25 frequency bands of CB-WPD and they are shown in Fig. 2.
The objective assessments of the reconstructed signals of encoder/decoder solution
using the calibrated WPD tree and CB-WPD as a maximum one is described in Sect. 5.

Fig. 2. CB-WPD (top) and the calibrated WPD (bottom) tree structures
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4 Coding Algorithm Structure

The described modelling approach is used in the development of the universal audio
coding algorithm that can effectively work with both audio and speech input signal. Its
structure is illustrated in Fig. 3. The algorithm consist of the following main parts:
adaptiveWPD with psychoacoustical model, parameters selection based on MP, coding
and quantization.

The audio encoding flow can be described as follows. The input signal is divided
into the frames of 1024 samples length (for 44.1 kHz sampling rate) with the overlap
between neighboring frames in 1/8 of the frame size. Adaptive WPD part computes the
decomposition tree structure for each frame. Reconfiguration is based on the perceptual
features of the input data. The decomposed signal and the psychoacoustic information
are transferred to MP. At this stage, the algorithm is choose the most relevant in terms
of the human hearing atoms from WP dictionary. The parameters are represented by the
weights and their position in WP tree structure. The scalar non-uniform quantizer is
used for the weights quantization and the tree structure is encodes via estimation of the
difference between the frames in the quantization and coding block that produces
compact representation of the selected parameters and provides the output data to the
decoder side.

The input data is reconstructed at the decoder according to Fig. 4 where the
parameters are recovered and dequantize and then they are allocated into the full WP
reconstruction tree structure due to each atom position is obtained. The inverse WPD
located in the signal reconstruction block produces the output signal.

Fig. 3. Encoder structure

Fig. 4. Decoder structure
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5 Experimental Results

For the objective quality assessment of the proposed audio coding scheme PEMO-
Q model [11] was used. This metric estimates the perceptual similarity measure (PSM).
This mark can be mapped into the objective deference grade (ODG) and has the
following scale: 0.0 – imperceptible impairment; −1.0 – perceptible, but not annoying;
−2.0 – slightly annoying; −3.0 – annoying; −4.0 – very annoying impairment. As a test
sequence, samples with a different content were used (Table 1). They are one-channel
signals with 44.1 kHz sampling rate and 16-bit resolution.

The average bit budget for the atom encoding can be estimated in the following
way. During the implementation of Huffman coding, bits distribution per each level of
WP tree was determined. Sum of this number divided by the maximum number of the
frequency bands (24 in the proposed case) shows the mean bit budget per parameter.
Adding certain bit budget for the structure and the atom position coding shows that 200
atoms have the average bitrate 36.4 kbps, and each 50 atoms add 8.6 kbps for the
bitrate.

Objective quality difference between the encoding based on the calibrated tree and
CB-WPD expressed in ODG improvement is shown in Fig. 5.

Table 1. Test sequence

Test item Description Test item Description

es01 Vocal (Suzan Vega) si01 Harpsichord
es02 German speech si02 Castanets
es03 English speech si03 Pitch pipe
sc01 Trumpet solo and orchestra sm01 Bagpipes
sc02 Orchestra piece sm02 Plucked strings
sc03 Contemporary pop music

Fig. 5. Improvement of the calibrated tree
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The enhancement of the assessment of the calibrated tree can be seen at every
atoms set. The biggest improvement is in the low bitrate part. Moreover, for 250 atoms,
the difference is 0.23 and thus the overall mark for the new tree structure is moved to
the “imperceptible” impairment area.

The objective quality of each test sample is shown in Fig. 6. None of the test
samples is located below the “slightly annoying” impairment. At the lowest bitrate,
only three sounds are in the “slightly annoying” area. Speech sequences es02, es03
have the “imperceptible” impairment with the 200 atoms number. Speech-like sample –
es01 (vocal, Suzan Vega), has mark in the “perceptible, but not annoying” impairment
diapason, but closer to the “imperceptible”. With the growth of the bitrate, the objective
marks distribution moves to the “imperceptible” area. For 350 atoms (or 62 kbps), all
of the samples have marks from −1 to 0 (only sm01 is at the border of −1 mark).

So as it seen, proposed universal audio/speech coding algorithm provides good
quality of the reconstructed signals and effectively works with the different types of
input sound content.

With the help of the scalability scheme, it can run with the “imperceptible”
impairment for all of the test samples by changing the atoms number on the go for each
frame.

Fig. 6. Quality distribution of the test samples encoded by the proposed algorithm
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Comparison of the overall objective quality of the provided coding algorithm with
the state-of-the-art coders (Opus and Vorbis) viewed in Fig. 7 (confidence interval is
95 %). It is seen that from 45 kbps and higher all three coders are in the “impercep-
tible” diapason. Opus mark for 36 kbps is on the border of this area. As for Vorbis and
the proposed algorithm, they have “perceptible, but not annoying” impairment both.

6 Conclusions

The method of an audio/speech modeling based on MP with the psychoacoustic
optimized WP dictionary is shown. This model allows preserving perceptual features of
the processed signal and selecting only relevant for the human hearing components.
The cost function optimization approach is proposed and applied into the
encoder/decoder solution where it allows limiting WP tree structure for better sparse
representation. The objective quality assessment of the reconstructed audio/speech
signals of the presented algorithm is compared with Opus and Vorbis and demonstrated
similar performance.

Further research will be focused on: MP procedure optimization that improves
model even more; the encoding algorithm quantization scheme enhancement for the
output signal quality increase.

Acknowledgement. This work was supported by ITForYou company.

Fig. 7. Overall quality comparison
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Abstract. Weighted Correlation based Atom Decomposition (WCAD)
algorithm is a technique for intonation modelling that uses a match-
ing pursuit framework to decompose the F0 contour into a set of basic
components, called atoms. The atoms attempt to model the physiolog-
ical activation of the laryngeal muscles responsible for changes in F0.
Recently, WCAD has been upgraded to use the orthogonal matching pur-
suit (OMP) algorithm, which gives qualitative improvements in the mod-
elling of intonation. A possible exploitation of the OMP based WCAD
is the automatic detection of stress in speech, which we undertake for
the Hungarian language. Correlation is demonstrated between stress and
atomic peaks, as well as between stress and atomic valleys on the previous
syllable. The stress detection technique based on WCAD is compared to
a baseline system using HMM/GMM stress/phrase models. 7 % improve-
ment is noticed in the F-measure compared to baseline when evaluating
on hand-made reference. Finally, we propose a hybrid approach which
outperforms both individual systems (by 11% compared to the baseline).

Keywords: Prosody · Atom decomposition · Orthogonal matching
pursuit · Intonation modelling · Phrasing · Stress

1 Introduction

The contribution of speech prosody in human speech perception and speech
understanding is a well-known issue. Prosody provides cues revealing the infor-
mation structure (by layering of the content in terms of its relevance) and adds
information linked to emotions and attitudes. Automatic stress detection and
phrasing are important, open problems in spoken language understanding.

Stress detection implies relying on some intonation models. The plethora of
models can be split roughly into two groups: (i) surface models, which model
c© Springer International Publishing Switzerland 2016
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the pitch contour directly, such as ToBI, INSINT, Tilt, and SFC, and (ii) phys-
iological models, that model the underlying mechanisms of pitch production,
such as StemML, qTA and the Fujisaki model [1]. Recently, the physiologically
based Weighted Correlation Atom Decomposition (WCAD) model has been pro-
posed that models intonation by decomposing it into elementary atoms [3]. As
these atoms pertain to model the activation of laryngeal muscles that change
pitch, they can be used to infer higher linguistic meaning, such as the detection
of emphasized words in an utterance [4]. In this paper, we assess the WCAD
approach to automatic stress and phrase boundary detection in Hungarian.

The paper is organized as follows: Sect. 2 introduces the weighted correlation
based atom decomposition algorithm for the F0 track. Section 3 presents the
material used for experiments and the proposed approach for the alignment of
the extracted atoms to syllables, as stress is related to the syllables. Thereafter,
Sects. 4 and 5 presents the results of the WCAD based approach, using the
hand-made reference phrase annotations as ground truth, and Sect. 5 compares
them to the results obtained with the Gaussian Mixture Model (GMM)/Hidden
Markov Model (HMM) stress detection system relying on statistical modelling.
Finally, conclusions are drawn.

2 The Atom Decomposition Algorithm

The Weighted Correlation based Atom Decomposition (WCAD) algorithm1

decomposes the pitch contour into a set of superposed elementary gamma dis-
tribution based atoms (1). The whole decomposition of the pitch contour takes
place in the log frequency domain:

Gk,θ(t) =
1

θkΓ (k)
tk−1e−t/θ for t ≥ 0. (1)

WCAD is built on the basis of a matching pursuit framework that uses the
weighted correlation (WCORR) as a cost function, due to its perceptual signifi-
cance [5]. The WCAD algorithm decomposes the pitch contour into two types of
elementary atoms: (1) a global phrase atom, and (2) local accent atoms. While
the accent atoms are calculated using (1), the phrase atom is calculated using a
concatenation of a two gamma functions, in order to capture its dynamics [3].

The steps taken by the WCAD algorithm are outlined in Algorithm 1. First,
the energy contour e, as well as the pitch f0 and probability of voicing (POV)
p contours are extracted. Then, the weighting function w used for the WCORR
is calculated, and the algorithm uses the provided annotations, or alternatively
the energy, to estimate the moments when phonation starts ts and ends te.
The phrase atom aphrase is then extracted by determining the θ that gives the
maximum WCORR for the whole intonation contour minus an offset toff meant
to compensate for phrase-final tones. The phrase atom is then subtracted from
f0 to obtain fdiff and forms the initial pitch contour reconstruction frecon.
1 The WCAD implementation code is available on gitHub at https://github.com/

dipteam/wcad.

https://github.com/dipteam/wcad
https://github.com/dipteam/wcad
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Algorithm 1. Weighted Correlation Atom Decomposition algorithm.
1: procedure WCORR Atom Decomposition
2: Extract f0, e and p from waveform.
3: w = e · p
4: Extract ts and te from annotation.
5: Extract aphrase at position ts with maximum WCORR.
6: Calculate aphrase amplitude using CORR.
7: fdiff = f0 − aphrase.
8: frecon = aphrase.
9: repeat
10: Extract aloc with maximum WCORR.
11: Calculate aloc amplitude using CORR.
12: fdiff = fdiff − aloc.
13: frecon = frecon + aloc.
14: until WCORR(frecon) > WCORRthresh or aloc < athresh

Next, local atoms aloc are iteratively extracted from fdiff using the WCORR
as a measure, by selecting the atom that maximises it at each iteration. Each new
atom is subtracted from fdiff , and added to frecon. Local atom extraction ends
when either a) the reconstruction frecon reaches a selected WCORR threshold,
or b) when the amplitude of the atoms goes below a set threshold.

The selection of the local atoms is based on an orthogonal matching pursuit
(OMP) approach [6] in which the amplitudes of all of the previously selected
atoms are recalculated before calculating the new reconstruction and thus the
residual for the next iteration. In this way, OMP takes into account the inter-
atom interference due to atom overlap and uses it in the modelling process.
Improved efficiency has been demonstrated by OMP over MP in terms of a faster
diminishing residual energy. In our WCAD algorithm, OMP was implemented
again using the WCORR as a cost function. The use of the OMP gives qualitative
improvements in the WCAD algorithm with equal quantitative performance [2].

Two example atom decompositions are shown in Fig. 1 demonstrating the
difference between the OMP and MP based WCAD implementations. Here, the
top plot shows the waveform, the 2nd the F0 contour, phrase atom and the F0
reconstruction, the OMP extracted local atoms are shown in the 3rd plot, the MP
atoms in the 4th, and finally the bottom plot shows the weighting function. We
can see that although the two approaches give similar results, there are subtle
differences in that the OMP atoms work together rather than against each other.
This is for example evident in the atom complex around 0.3 s in which the MP
algorithm extracts two small negative atoms that counteract the big positive
atom at its edges. The OMP in contrast, produces three positive atoms with
reduced amplitudes, eliminating the need for compensation.

3 Materials and Methods

We use passages composed of 5–6 sentences from the Hungarian BABEL speech
database [7] (404 utterances in total). Word, syllable and phone annotations are
available in parallel to a hand-made labelling of phonological phrases, which is
used as a reference.
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Fig. 1. Example WCAD output using MP and OMP for the Hungarian sentence
“Ha tanúnak h́ıvnák őket, biztosan azt mondanák, nem láttak semmit. [If they were
warranted to appear they would say having seen nothing, undoubtedly.]”

Phonological phrases (PP) constitute a prosodic unit, characterized by its
own stress and some preceding/following intonation contour. A PP by definition
contains one and exactly one stressed position on its first syllable. Given Hun-
garian stress is fixed on the first syllable, phrasing (for PP) and stress detection
are almost equivalent tasks (stress follows PP onset).

3.1 Stress Detection Based on WCAD

The F0 track of all utterances is decomposed by the WCAD algorithm (Sect. 2).
The number of iterations of the atom decomposition, which directly influences
atom density, is determined based on the duration of the utterance. We control
atom density with an incrementation factor in the range 0.025–1.

The extracted atoms are then divided into positive (peaks) and negative
atoms (valleys) and are associated to underlying syllables (atom position is also
known). In Fig. 1, syllables peaks are labelled ‘H’ (high accent), and those with
valleys ‘L’ (low accent).

If atom density is higher, one syllable can have several matching atomic peaks
or valleys. Ambiguity becomes a problem if a syllable has both associated peaks
and valleys. In such occasions, we apply a majority decision. If there is an equal
amount of peaks and valleys, the atom which appears first is considered to be
the dominant.

Given the fixed stress on the first syllable in Hungarian we hypothesize that
(i) peaks coincide with initial (or singleton) syllables when revealing stress, and
may appear on word-terminal syllables when associated to a continuation rise;
(ii) valleys coincide with terminal (or singleton) syllables. Indeed, this valley is
thought to be equivalent to a peak on the next syllable.



Robust Stress Detection in Speech 169

Following this logic, it is easy to construct a PP segmentation from atoms
linked to syllables. We keep silence regions longer than 200 ms from the phone
segmentation (and hence we know the intonational phrase segmentation), then
proceed as follows: (i) a peak (H) signals a PP onset if it is associated with
the first syllable of any word; (ii) a peak (H) signals a PP is ending with a
continuation rise if it is associated with the last syllable of any word; (iii) a
valley (L) signals a PP ending. If it is followed by silence, also the intonational
phrase (IP) ends.

3.2 The Baseline GMM/HMM Approach

This system is documented in detail in [9]. The baseline relies on machine learn-
ing of a small set of PP types, based on their stress and intonation contour, using
F0 and energy as acoustic-prosodic features. A labelled dataset is necessary for
the training of the PP models. The Viterbi alignment is used to match PPs to
the input speech, which yields a phrasing. The density of phrase boundaries can
be controlled by an insertion likelihood-like parameter. This phrasing can be
compared to that derived from WCAD.

4 Assessing Correlation Between Atoms and Stress

To test out hypotheses, we use the following relative frequency-like measures: the
ratio of word-initial (WI) or singleton (WS) syllables associated with an atomic
peak (H) vs. all syllables (syl):

R1H,I =
c(H|syl ∈ WI ∪ WS)

c(H)
, (2)

where c() is a count operator and ∪ refers to set union and | to auxiliary condi-
tions.

The ratio of word-terminal (WT) or singleton (WS) syllables associated with
a valley (L) vs. all syllables:

R2L,T =
c(L|syl ∈ WT ∪ WS)

c(L)
. (3)

As peaks can be also associated with WT syllables, we calculate another score,
reflecting the ratio of peaks which are potentially IP boundary markers:

R3 =
c(H|syl ∈ WI ∪ WS ∪ WT )

c(H)
. (4)

Results are shown in Fig. 2. Around 60 % of WI (or WS) syllables get marked by
an atom peak (R1), and around 50 % of WT (or WS) them by atom valleys (R2).
Around 85 % of peaks can be potentially relevant in signalling an IP boundary
(see R3). For all measures, results are significantly better than chance, which
confirms our hypotheses.
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Two more additional measures intend to reflect the ratio of peak (or valley)
syllables with respect to all potential WI (or WT) syllables, respectively. These
measures are intended to give a recall related feedback, i.e. the ratio of words
potentially stressed. For this, singleton words are distributed and added to the
WI and WT mass according to their ratio seen in atom labelling (H or L).

The ratio of syllables with peak (H) out of all potential word-initial (WI’)
syllables:

R4I′,H =
c(WI ′|atom = H)

c(WI ′)
,where (5)

c(WI ′) = c(WI) + c(WS|atom = H) + c(WS|atom /∈ (H ∪ L)) (WS|atom=H)
(WS|atom∈(H∪L) .

The ratio of syllables with valley (L) out of all potential word-terminal (WT’)
syllables:

R5T ′,L =
c(WT ′|atom = L)

c(WT ′)
,where (6)

c(WT ′) = c(WT )+ c(WS|atom = L)+ c(WS|atom /∈ (H ∪L)) (WS|atom=L)
(WS|atom∈(H∪L) .

Results are shown in Fig. 3. As not all words are stressed, the theoretical
maximum is well below 100 %: approximately 33–50 % of the words are stressed
on average in Hungarian read speech [8]. Taking this into account, these recall
rates are rather satisfactory.

Fig. 2. Precision-like measures of PP recovery R1, R2 and R3.

An exact evaluation of stress detection can be performed if phonological
phrasing is addressed. With this approach, both peaks and valleys can be simul-
taneously taken into account, and the evaluation is closer to possible applications
as well. This is presented in the next section.

5 Robust Stress Detection

Once all utterances have the automatic PP segmentation ready, recall, precision
and F-measures F1 and F2 are calculated to evaluate performance. Evaluation
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Fig. 3. Recall-like measures of stress recovery R4 and R5.

Fig. 4. Recall and precision of the HMM/GMM (baseline), the WCAD system and the
hybrid system in phonological phrasing.

of PP segmentation is done with a leaving-one-out cross-validation in case of the
HMM system, hence it is based on machine learning and most of the samples
are needed for training.

The automatically generated (WCAD and HMM/GMM) PP alignment is
compared to the hand-made reference. Detection is regarded to be correct if
the boundary is detected within 100 ms compared of the reference one. In the
respective sections we have seen that both the baseline and the WCAD meth-
ods allow for the control of PP insertion “willingness” of the systems. We use
these parameters (insertion log-likelihood in HMM/GMM and multiplier factor
in WCAD) to obtain plots of operation curves in the precision and recall space.
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Precision-recall plots and F-measures can be seen in Fig. 4. In some operating
points, the WCAD algorithm perform betters than the baseline. Regarding the
F-measure, the WCAD system outperforms the baseline by 7 %.

Observing that the two systems yield different PP boundaries several times, a
hybrid approach is tested. The combination of the systems occurs in the terminal
phase, the two PP alignment predictions are merged so that only boundaries
further apart than 250 ms are kept (to avoid overlapping intervals from the
two alignments). The precision, recall and F-measures for the hybrid system are
also shown in Fig. 4. The hybrid approach outperforms both individual systems
(11 % improvement in F-measure compared to baseline). The average deviation
between detected and reference PP boundaries was found 21 ms for the baseline;
23 ms for WCAD and 22.5 ms for the hybrid approach, because HMM system
marked less phrases but more accurately than WCAD and hybrid system.

6 Conclusions

In PP detection for Hungarian, results confirmed the high correlation between
atom peaks and stress and between atom valleys and upcoming stress on the next
word. The evaluation of the two methods shows comparable performance: higher
precision for the HMM/GMM baseline system and higher recall and F-measure
for the WCAD system. A hybrid architecture was proposed which outperformed
both systems in F-measure. The results have also confirmed the plausibility of
using the WCAD algorithm as a means for inferring higher linguistic meaning
from the intonation contour.
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Abstract. In this paper we consider a language identification system based on
the state-of-the-art i-vector method. Paper presents a comparative analysis of
different methods for the classification in the i-vector space to determine the most
efficient for this task. Experimental results show the reliability of the method
based on linear discriminant analysis and naive Bayes classifier which is sufficient
for usage in practical applications.

Keywords: Language recognition · i-vectors · SVM · LDA · Naive bayes

1 Introduction

Speech technologies for various applications are widely developing in today’s world.
These are synthesis, identification, speech recognition. The last two technologies allow
to extract different types of information from the speech signal: “who” is talking on the
soundtrack and “what” it is said. However, it is also possible to obtain other type of
information from the voice recording: speaker gender, emotional state, etc. This article
deals with the problem of speaker language determination on the spontaneous speech
recording [1].

Information about the speaker’s language is important for a variety of applications.
For example, application of the appropriate acoustic models for speech recognition can
depend on the speaker language. This is particularly true for countries where there are
two or more official languages. Language detection in automated processing of voice
calls in a call centers and the Internet make it possible to improve its efficiency.

The most popular approaches in acoustic space modelling for language detection
problem currently are based on Gaussian Mixture Models (GMM) [2] and their repre‐
sentation in the form of so-called i-vectors [3]. Also recently, much research has been
proposed using Deep Neural Networks (DNN) and Restricted Boltzmann Machines
(RBM) for speech, speaker and language modeling [4–6]. It should be mentioned that
the problem of language identification is a multiclass, and the key issue here is the
selection of efficient classifier for this purpose. In this paper, we investigate different
approaches for the solution of the language identification problem: support vector
machines, linear discriminant analysis, and Naive Bayes classifier.
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2 The Structure of Language Identification System

The structure of language identification system by spontaneous speech recordings is a
sequential processing of the input signal by the following modules: voice activity
detector, speech features extractor, i-vector voice modelling, i-vector classification to
determine the target language. The system scheme is performed in Fig. 1.

Fig. 1. Language identification scheme.

In this paper we use state-of-the-art methods for feature and i-vector extraction and
concentrate on the problem of i-vector classifier investigation for language identification
of the proceeding utterance.

3 Front-End Features Extraction

Speech detecting module consists of several preprocessing algorithms, including energy,
clipping, tonal noise, overload and clicks detectors, briefly described in [7].

Acoustic features extraction module includes signal windowing by the segments of
22 ms length and 50 % overlap. Feature vector, used in language identification system,
is a contaminated vector of the original MFCC features with its smoothed first order
derivatives along some continuous time interval (Shifted Delta Cepstrum, SDC) [8].
These features are characterized by four parameters: M-d-p-k. M parameters means the
amount of MFCC coefficients, using for SDC-features building, d – is degree of the
smoothed derivatives, p – is a shift, that is used for SDC features extracting and k – is
amount of MFCC derivatives vectors, taken for building the result vector. In this paper
we used well-proven feature set of SDC features 7-1-3-7 with 56 features length.

For the acoustic space modelling we used Total Variability super-vectors (so called
i-vectors) to achieve state-of-the-art performance. According to this approach, the distri‐
bution of the i-vectors can be expressed as following:

where  is the super-vector of the Gaussian Mixture Models (GMM) parameters of the
speaker model,

 is the super-vector of the Universal Background Model (UBM) parameters,

Comparative Analysis of Classifiers 175



 is the matrix defining the basis in the reduced feature space,
 is the i-vector in the reduced feature space, ,
 is the error vector.

In our system the dimension of i-vector space was 600 and UBM was gender-inde‐
pendent with 512 components. UBM was obtained by standard ML-training. UBM and
i-vector extractor were trained on the telephone part of the NIST’s SRE 1998-2012 [9]
and NIST LRE 2003-2011 [10] datasets (all languages, both genders).

In our study we used 10844 files with spontaneous speech in total. We also used a
diagonal, not a full-covariance GMM UBM.

4 Multiclass Classification Problem

The language identification problem is a classical problem of multiclass identification,
where the input data are multidimensional vectors. In this case, we are talking about the
“open” task, as it is possible for input vector to be from the other language set. In this
case input vector won’t match any of the detecting classes and the detector should make
an appropriate decision that language on the input recording was not included in the
training set and it is impossible to detect this language or mark it as the “unknown”
language.

The dimension of the input i-vector was set to be 600. The number of target languages
was 10: Arabic, Chinese, English, French, Japanese, Korean, Russian, Spanish, Tamil,
Vietnamese.

For training we used speech database with 15 languages with several dialects or
accents for each language (28 accents in total). For testing we used NIST LRE 2007
database [9] that was not included in training, with 18 languages, 10 of which were target
languages and 8 were used to simulate the situation of non-target languages.

In this research we investigated different classifiers in i-vector space. These were
support vector machine (SVM), linear discriminant analysis (LDA), and Naive Bayes
classifier. The brief description of these classifiers is presented further.

4.1 SVM Based Classifier

SVM classifier was firstly proposed by Vapnik in [12]. The main idea of SVM is to find
the optimal separating hyperplane between two classes. The distance from a test i-vector
 to the SVM hyperplane can be defined by the formula:

where  - number of supporting vectors,

 - i-th supporting vector,
 - SVM kernel.
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Since SVM classifier is designed to separate a set of input data into 2 classes, and
language detection problem includes more than 2 languages, then individual SVMs were
trained for each language, which should separate this language from all the others. At
the decision making stage all SVMs output scores were compared to each other and the
maximum score denoted the result language.

During the SVM training all accents and dialects of each language were combined
into a single class. Thus, only 27 SVM classifiers were trained. We used linear kernel
for our SVM classifiers. The choice of this kernel function was based on the fact that
the amount of data for the majority of languages was comparable to the dimension of
data equal to 600. Using complex non-linear kernels in these cases can lead to strong
overfitting of classifiers on the training dataset.

4.2 LDA Based Classifier

Linear discriminant analysis (LDA) is a generalization of Fisher’s linear discriminant,
a method used in statistics, pattern recognition and machine learning to find a linear
combination of features that characterizes or separates two or more classes of objects
or events. The resulting combination may be used as a linear classifier, or, more
commonly, for dimensionality reduction before later classification.

In the case where there are more than two classes, the analysis used in the derivation
of the Fisher discriminant can be extended to find a subspace which appears to contain
all of the class variability. This Due to generalization in [13], we suppose that each of
N classes has a mean  and the same covariance . Then the scatter between class
variability may be defined by the sample covariance of the class means:

where  - is the mean of the class means. The class separation in a direction  in this
case be given by:

This means that when  is an eigenvector of  the separation will be equal to
the corresponding eigenvalue.

During the LDA training, similarly to SVM, all accents and dialects of each language
were combined into a single class. Thus, only 27 LDA classifiers were trained. On the
decision step testing vector was compared to the center of each cluster with the use of
cos-metrics. Belonging to the concrete class was determined by the maximum value of
cos-metrics.
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4.3 Naive Bayes Based Classifier

Naive Bayes classifier is a simple probabilistic classifier based on applying Bayes’
theorem with strong (naive) independence assumptions between the features. Abstractly,
naive Bayes is a conditional probability model: given a problem instance to be classified,
represented by a vector  representing some features (independent variables), it assigns
to this instance probabilities:

for each of N possible outcomes or classes [14].
In this work we used Gaussian Bayes classifier, thus the value of  was

modelling by Gaussian Mixture Model. However, it should be noticed, that this classifier
used the information about all accents and dialects of each language. This means that
the model of each language was represented as the mixture of multivariate normal
distributions, which amount was equal to amount of all accents and dialects corre‐
sponding to this language:

where  is number of dialects and accents of n-th language;

 is weight coefficient of k-th accent of n-th language;

 is a mean of k-th accent of the n-th language.

Thus, one dialect or accent was modeled by one Gaussian distribution. It should be
noted that, given amount of the training data for some accents were not enough. In order
to ensure the classifier robustness we used one “shared”  for all Gaussian mixtures, and
we used LDA before the Bayes classifier to reduce the dimensionality of data from 600
to 26 (the number of classes minus 1).

5 Experiments

We used NIST LRE 2007 speech data base [11] for our experiments. As quality evalu‐
ation metrics for classifiers we used the following:

1. The probability of correct language identification P. We accept the correct language
classification if the classifier was applied to the input recording corresponding to the
one of the 10 target languages, and the output language index matched the correct
answer. At the same time the output of the classification Score for that language had
to be more than a certain threshold value T.
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2. The probability of false acceptance FA (false acceptance). This is a situation when
the input recording corresponds to non-target language, and the output classification
Score is above the threshold T at least for one target languages.

3. Equal error identification rate . That is the point on the ROC curve, where the
probability P is equal to 1−FA.

We produced a comparison of the methods described in Sects. 4.1 (SVM), 4.2 (LDA-
cos) and 4.3 (LDA-Bayes) on the evaluation data base (Table 1).

Table 1. Comparison of the classifiers on the base of NIST LRE 2007.

Classifier
SVM 88.9 %
LDA-cos 87.0 %
LDA-Bayes 89.5 %

After that we produced a comparative analysis of the language detector robustness
against the changing duration of the speech signal, which the i-vector was extracted from
(Table 2).

Table 2. Dependency of identification reliability on the duration of the speech signal.

Classifier
13 s 8 s 5 s 3 s

SVM 84.4 % 76.1 % 66.7 % 55.0 %
LDA-cos 82.6 % 75.3 % 67.0 % 55.5 %
LDA-Bayes 84.0 % 77.3 % 69.2 % 57.1 %

Figure 2 demonstrates the ROC curve of the identification reliability dependency P
on the false acceptance for language detector based on the LDA-Bayes method.

After that we simulated the situation when the number of non-target languages
increases. We propose that the classifier should be resistant to the change of the non-
target languages amount. This was done by using an additional database with speech
recordings in languages that were included neither in training set, nor in the first test
data set. The experimental results are summarized in Table 3.

Table 3. Investigation of the classifiers resistance against the amount of non-target languages.

Classifier
8 (original) 9 10 11 12 13 14 15

SVM 88.9 % 87.4 % 86.4 % 85.9 % 86.0 % 86.1 % 86.0 % 86.2 %
LDA-cos 87.0 % 85.4 % 84.2 % 82.6 % 82.8 % 83.0 % 83.3 % 83.3 %
LDA-Bayes 89.5 % 88.0 % 86.6 % 84.7 % 84.6 % 84.7 % 84.6 % 84.9 %

Interesting result in Table 3 is that SVM classifier is more resistant against increasing
amount of non-target languages. Thus, for language amount increasing from 8 to 15 the
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reliability LDA-Bayes classifier dropped down by 4.6 %, while the reliability of SVM
classifier by only 2.7 %.

6 Conclusions

This paper presents the investigation of the state-of-the-art language identification
system by the spontaneous speech recordings. The aim of this research was to produce
the comparative analysis of different approaches for classification in i-vector space for
the most efficient problem solution. Experiments results for long and short speech
recordings demonstrated slight advantage of the LDA based and naive Bayes classifiers.
However, investigation of the system resistance against the amount of non-target
languages show high performance of the SVM based classifier.

Acknowledgement. This work was financially supported by the Ministry of Education and
Science of the Russian Federation, Contract 14.578.21.0126 (ID RFMEFI57815X0126).

Fig. 2. ROC for different speech length (LDA-Bayes classifier).
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Abstract. This article has several objectives. First, it is to compare
the most used information retrieval methods on a single speech retrieval
collection. The collection, used in the CLEF 2007 Czech task, contains
automatically transcribed spontaneous interviews of holocaust survivors
and is to our knowledge the only Czech collection of spontaneous speech
intended for speech information retrieval. Apart from the first exper-
iments presented in the CLEF competition, no comprehensive experi-
ments have been published on this collection to compare the different
information retrieval methods. The second objective of this paper is to
compare the results of using the blind relevance feedback methods with
the individual retrieval methods and introduce the possibility of using
the score normalization methods for the selection of documents for the
blind relevance feedback. The third objective of this article is to compare
different normalization methods among themselves. Exhaustive experi-
ments were performed for each method and its settings. For all infor-
mation retrieval methods used, the experiments results showed that the
use of score normalization methods significantly improves the achieved
retrieval score.

Keywords: Query expansion · Blind relevance feedback · Spoken doc-
ument retrieval · Score normalization · Czech malach collection

1 Introduction

The focus of the information retrieval (IR) field shifted in the past years from
the text IR to the speech IR. It is only natural that researchers from many fields
like history, arts or culture request comfortable and easy access to the large
audio-visual documents available nowadays. Listening to every audio document
is impossible. With the improving quality of the automatic speech recognition
(ASR) systems, the most frequent approach to handling this problem is the use
of ASR to transcribe the speech into the text and then use the IR methods
to search in them. To deal with the query words not present in the searched
c© Springer International Publishing Switzerland 2016
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documents the query expansion techniques are often used. One of these methods
often used in the IR field is the relevance feedback method. The idea behind this
method is that the relevant documents retrieved in the first run of the search
are used to enrich the query for the second run of the search. In most cases,
the retrieval system does not have the feedback from the user and thus it does
not know which documents are relevant. The blind relevance feedback (BRF)
method can be used, where the system “blindly” selects some documents, which
it considers to be relevant and uses them for the enrichment of the query.

The paper presents the comparison of the two most used methods in IR and
also the use of the BRF method. Experiments aimed at the better automatic
selection of the relevant documents for the BRF method are presented. Our idea
is to apply the score normalization techniques originally used in the open-set
text-independent speaker identification problem.

2 Information Retrieval Collection

All the experiments were performed on the spoken document retrieval collection
used in the Czech task of the Cross-Language Speech Retrieval track organized
in the CLEF 2007 evaluation campaign [1]. The collection contains automatically
transcribed spontaneous interviews of the holocaust survivors (segmented by a
fixed-size window into 22 581 “documents”) and two sets of TREC-like topics -
29 training and 42 evaluation topics. Each topic consists of 3 fields - <title> (T),
<desc> (D) and <narr> (N). The training topic set was used for our experiments
and the queries were created from all terms from the fields T, D and N, stop
words were omitted. All terms were also lemmatized [2].

The mean Generalized Average Precision (mGAP) measure that was used
in the CLEF 2007 Czech task was used as an evaluation measure. The mea-
sure (described in detail in [3]) is designed for the evaluation of the retrieval
performance on the conversational speech data, where the topic shifts in the
conversation are not separated as documents. The mGAP measure is based on
the evaluation of the precision of finding the correct beginning of the relevant
part of the data.

3 Information Retrieval System

In this paper, we wanted to compare the two still most used IR methods in the
speech retrieval task. For our experiments, we have selected the vector space
retrieval model and language modeling approach with several smoothing vari-
ants. In our previous work, we have experimented separately with the use of the
score normalization methods for the blind relevance feedback in the vector space
model [4] and in the language modeling environment - basic query likelihood
model [5,6]. This paper presents experiments with more complex smoothing
methods for the language modeling - the Dirichlet prior smoothing method [7]
and the Two-stage smoothing method presented by Zhai and Lafferty in [8].
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3.1 Language Modeling

For the previous experiments [5,6], the language modeling (LM) approach [9]
was used as the information retrieval method, specifically the query likelihood
model with a linear interpolation of the unigram language model of the document
Md with an unigram language model of the whole collection Mc (Jelinek-Mercer
smoothing). The idea of this method is to create a language model from each
document d and then for each query q to find the model which most likely gener-
ated that query, that means to rank the documents according to the probability
P (d|q). The final ranking of the documents according to the query is:

P (d|q) ∝
∏

t∈q

(λP (t|Md) + (1 − λ)P (t|Mc)), (1)

where t is a term in a query and λ is the interpolation parameter.

Dirichlet Prior Method. With the Dirichlet prior smoothing method the
Eq. (1) changes to the form:

P (d|q) ∝
∏

t∈q

tft,dj
+ αP (t|Mc)
Ldj

+ α
, (2)

where α is the smoothing parameter, tft,dj
is the term frequency and Ldj

is the
length of the document d.

Two-Stage Smoothing Method. The Two-stage smoothing method is a
combination of the Dirichlet prior smoothing and the Jelinek-Mercer smooth-
ing methods. It is defined:

P (d|q) ∝
∏

t∈q

λ
tft,dj

+ αP (t|Mc)
Ldj

+ α
+ (1 − λ)P (t|MU ), (3)

where P (t|MU ) is a language model of the query user environment.

3.2 Vector Space Model

In the vector space model VSM [10] the document dj and query q are represented
as vectors containing the importance weights wi,j of each of its terms:

dj = (w1,j , w2,j , ..., wn,j), q = (w1,q, w2,q, ..., wn,q)

For the wi,j we have used the TF-IDF weighting scheme:

wi,j = tfti,dj
· idfti , idfti = log

N

ni
, (4)
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where N is the total number of documents and ni is the number of documents
containing the term ti. The similarity of a document dj and a query q is then
computed using the cosine similarity of vectors:

simdj ,q =
dj · q

‖dj‖ ‖q‖ =
∑t

i=1 wi,jwi,q√∑t
i=1 w2

i,j

√∑t
i=1 w2

i,j

. (5)

The most similar documents are then considered to be the most relevant.

3.3 Blind Relevance Feedback

Query expansion techniques based on the blind relevance feedback (BRF)
method has been shown to improve the results of the information retrieval [2].
The idea behind the blind relevance feedback is that amongst the top retrieved
documents most of them are relevant to the query and the information contained
in them can be used to enhance the query for acquiring better retrieval results.
First, the initial retrieval run is performed, documents are ranked according to
some similarity or likelihood function. Then the top N documents are selected
as relevant and the top k terms (according to some term importance weight Lt,
for example TF-IDF ) from them is extracted and used to enhance the query.
The second retrieval run is then performed with the expanded query.

In the standard approach to the BRF, the number of documents and terms is
defined experimentally in advance the same for all queries. In our experiments,
we would like to find the best setting of the standard BRF method and then
compare it with the use of the score normalization methods.

BRF in Vector Space Model. First, for each document its similarity simdj ,q

is computed and the documents are sorted accordingly. For the selection of terms
we have used the TF-IDF weight defined in (4).

BRF in Language Modeling. In the language modeling approach, the impor-
tance weight Lt defined in [9] was selected for weighting the terms for the BRF
method, R is the set of relevant documents:

Lt =
∑

d∈R

log
P (t|Md)
P (t|Mc)

. (6)

4 Score Normalization Methods

In the previous work, the score normalization methods were derived for the
language modeling IR system [6] and for the vector space system [4]. In the
following, the derivation process will be summarized for the language model-
ing environment since its principle is the most similar to the open-set text-
independent speaker identification (OSTI-SI) and then it will be shown how the
normalization methods are used in the VSM system.
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After the initial run, we have the ranked list of the document likelihoods
p(d|q). Similarly as in the OSTI-SI [11], we can define the decision formula:

p(dR|q) > p(dI |q) → q ∈ dR else q ∈ dI , (7)

where p(dR|q) is the score given by the relevant document model dR and p(dI |q)
is the score given by the irrelevant document model dI . By the application of
the Bayes’ theorem, formula (7) can be rewritten as:

p(q|dR)
p(q|dI) >

P (dI)
P (dR)

→ q ∈ dR else q ∈ dI , (8)

where l(q) = p(q|dR)
p(q|dI)

is the normalized likelihood score and θ = P (dI)
P (dR) is a

threshold that has to be determined. Setting θ a priori is a difficult task, since
we do not know the prior probabilities P (dI) and P (dR). Similarly as in the
OSTI-SI task the document set can be open - a query belonging to a document
not contained in our set can easily occur. A frequently used form to represent
the normalization process [11] can therefore be modified for the IR task:

L(q) = log p(q|dR) − log p(q|dI), (9)

where p(q|dR) is the score given by the relevant document and p(q|dI) by the
irrelevant document. Since the normalization score log p(q|dI) of an irrelevant
document is not known, there are several possibilities how to approximate it:

World Model Normalization (WMN). The unknown model dI can be
approximated by the collection model Mc created as a language model from all
documents in the retrieval collection. This technique was inspired by the World
Model normalization [12]. The normalization score of a model dI is defined as:

log p(q|dI) = log p(q|Mc). (10)

Unconstrained Cohort Normalization (UCN). For each document model,
a set (cohort) of N similar models C = {d1, ..., dN} is chosen [13]. These models
are the most competitive models with the document model, i.e. models which
yield the next N highest likelihood scores. The normalization score is given by:

log p(q|dI) = log p(q|dUCN ) =
1
N

N∑

n=1

log p(q|dn). (11)

Standardizing a Score Distribution. Another solution called Test normal-
ization (T-norm) stated in [13] is to transform a score distribution into a standard
form. The formula (9) now has the form:

L(q) = (log p(q|dR) − μ(q))/σ(q), (12)

where μ(q) and σ(q) are the mean and standard deviation of the distribution.
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4.1 Score Normalization in VSM

The likelihood p(d|q) in the normalization formula (9) can be replaced with the
similarity simdj ,q, but since the likelihoods are in logarithms of probabilities the
formula has to be changed to the form:

l(q) = simdR,q/simdI ,q. (13)

Then the actual score normalization methods can also be rewritten. We have
done our experiments with the UCN and the T-norm methods since they are
easily transformed for the use in VSM system. The WMN on the other hand,
requires replacing the “world” model defined with the collection model Mc with
some equivalent in the vector space. The UCN method can be rewritten as:

simdI ,q =
1
N

N∑

n=1

simdn,q, (14)

and the T-norm method will now have the form:

l(q) = (simdR,q − μ(q))/σ(q). (15)

Threshold Selection. Even when we have the scores normalized, we still have
to set the threshold for verifying the relevance of each document in the list.
Selecting a threshold defining the boundary between the relevant and the irrel-
evant documents in a list of normalized scores is more robust because the nor-
malization removes the influence of the various query characteristics. Since in
the former experiments the threshold was successfully defined as a percentage
of the normalized score of the best scoring document, the threshold θ will be
similarly defined as the ratio k of the best normalized score.

5 Experiments

First, we have done experiments with the setting (smoothing parameters) of
each presented method to find the best one. Then thorough experiments with
the standard blind relevance feedback method (the selection of the number of
documents and the number of terms) were done for each presented method. We
have found the best parameters settings and selected it for our baseline. Finally,
detailed experiments with the score normalization methods were performed.

5.1 IR Methods

According to the experiments, the parameter λ in Jelinek-Mercer smoothing was
set to the best value - λ = 0.1. The Dirichlet prior smoothing parameter α was
set to the best value α = 10000 and for the Two-stage smoothing method the
parameters achieving the best results were found to be λ = 0.99 and α = 5000.
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Number of Documents for Standard BRF. We have experimented with
the number of documents to select equal to 5, 10, 20, 30, 40, 50, 100. For all
methods except Jelinek-Mercer (JM) smoothing it seems that the best results
are achieved with higher number of documents. But we have found out that the
number of documents and the number of terms to select are dependent on each
other, so with 40 terms and 100 documents the result of JM is almost the same
as presented in the results table.

Number of Terms. We have done experiments with the number of terms to
select with all the described methods in this paper. The number of terms was
selected from 5 to 45 terms, with 5 term interval (5, 10, 15...). For all methods,
the experiments show that best results are achieved with a moderate number of
terms selected - around 30 terms.

Score Normalization. In score normalization methods, the number of docu-
ments to select for the BRF is dependent on the threshold θ defined as the ratio
k of the best normalized score. The final number of documents selected this way
is different for each query. The experiments with the different ratio setting (from
0.1 to 0.95 with 0.05 distance) were done for all the methods presented. In the
UCN method apart from the ratio k also the size C has to be set. Experi-
ments with C from 5 to 800 with distance 10 were performed. The ratio k and
the cohort size C depends on each other directly, because the normalization score
in (11) is bigger (an average from the higher likelihoods) for a smaller cohort.

The final comparison of the vector space model (VSM) and language model-
ing methods with Jelinek-Mercer (JM), Dirichlet prior (DP) and Two-stage (TS)
smoothing methods can be seen in Table 1. As can be seen from the table, in all
cases the BRF methods achieved a better score than without BRF. All the score
normalization methods achieved a better mGAP score than the standard BRF,
except the WMN method in TS smoothing. The best score for all IR methods
achieved the UCN score normalization method.

Table 1. IR results for all methods (mGAP score) for no blind relevance feedback,
with standard BRF and BRF with score normalization.

Method No BRF Standard BRF WMN UCN T-norm

params VSM - # doc.= 100 - k=0.95, C=295 k=0.35

VSM(25 terms) 0.0456 0.0560 - 0.0602 0.0597

params JM - # doc.= 20 k=0.5 k=0.25, C=85 k=0.55

JM (30 terms) 0.0392 0.0513 0.0568 0.0570 0.0564

params DP - # doc.= 100 k=0.5 k=0.35, C=710 k=0.4

DP (35 terms) 0.0413 0.0523 0.0572 0.0576 0.0569

params TS - # doc.= 100 k=0.9 k=0.3, C=245 k=0.55

TS (30 terms) 0.0445 0.0574 0.0557 0.0614 0.0614
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6 Conclusions

We have compared the most used methods in the information retrieval task in
the environment of the speech retrieval. We have also compared these methods
with the use of the standard blind relevance feedback method. For the standard
BRF method, the extensive experiments have been done to find the best possible
setting to be able to further compare it with the use of the score normalization
methods. In all cases, the results were better with the use of the BRF method
than without it and also were better with the use of the score normalization
methods for the selection of documents for the BRF than with the standard
blind relevance feedback. It also seems that the Two-stage smoothing method is
the best method for incorporating the blind relevance feedback, the results show
the biggest improvement when comparing without and with the use of BRF.

Acknowledgments. The work was supported by the Ministry of Education, Youth
and Sports of the Czech Republic project No. LM2015071 and by the grant of the
University of West Bohemia, project No. SGS-2016-039.
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Abstract. This paper presents an approach to detect speaker changes
in telephone conversations. The speaker change problem is presented as
a classification problem. We use a Convolutional Neural Network to ana-
lyze short audio segments. The Network plays a role of a regressor. It out-
puts higher values for segments that are more likely to contain a speaker
change. Upon thresholding the regressed value the decision about the
segment is made. The experiment shows that the Convolutional Neural
Network outperforms a baseline system based on the Bayesian Informa-
tion Criterion. It behaves very well on previously unseen data produced
by previously unheard speakers.

Keywords: Convolutional neural network · Speaker change detection ·
Spectrogram

1 Introduction

Speaker change detection is the task of identifying the instances in an audio
stream when a change of speakers occurs. This procedure yields segments in
which the audio sources are constant. From this point of view the segments
can be generated by one speaker, by more (but the same) overlapping speakers,
by noises, or by silence. These segments can then be used in different tasks,
e.g. speaker identification, speech recognition, speaker adaptation and so on.
The standard approaches are based on computing dissimilarities of two neigh-
boring regions. They are usually based on the Bayesian Information Criterion
[1] or other forms of distances such as the Generalized Likelihood Ratio or the
Kullback-Leibler divergence. Energy-based approaches can also be found in lit-
erature [2]. Other approaches are based on classification [3]. In such setup each
segment of speech is analyzed whether a speaker change is present or not. In this
paper we present an approach with a Convolutional Neural Network (CNN) in a
role of regressor. When a threshold is applied to the regressed value the decision
about the segment is made.

c© Springer International Publishing Switzerland 2016
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2 Convolutional Neural Network

CNNs are deep neural networks with a special kind of layer - the convolution
layer. In this layer the weights of the neurons are bound together into kernels.
The layer performs a convolution of its input with the kernels. First experiments
were conducted on images of handwritten postal codes [4]. Later the CNNs were
redesigned to be able to classify a huge amount of images [5]. CNNs proved to be
useful for regression. In this scenario they have been successfully used for estimat-
ing hand pose [6]. In speech, the CNNs have been used for speaker recognition
[7,8], speaker diarization [9], speech recognition [10], or speaker adaptation [11].

2.1 Architecture of the CNN

The architecture of our CNN consists of three convolution layers with ReLU
activation functions. Each convolution layer is followed by a max pooling layer
and a batch normalization layer [12]. The last two layers are fully connected with
sigmoid activation function.

Fig. 1. Examples of typical spektrograms. The first depicts a segment where a speaker
change occurs. In the second one there is no speaker change. The third is an example
of overlapping speech.

There are 50 kernels in the first convolution layer with the shape of 16-by-8
samples. The 16 samples are in the time domain and the 8 samples are in the
frequency domain. This reflects the usually rectangular shapes of high energy
wrinkles in the spectrograms of speech (see Fig. 1) which correspond to formants
and higher harmonics. The first layer serves as a “visual” features detector. The
kernels should learn typical shapes of the energy wrinkles. The kernels are shifted
by 2-by-2 samples. There are 200 kernels in the second layer with the shape of
4-by-4 samples, and 300 kernels in the last convolution layer with the shape of
3-by-3 samples. In these layers the shift is 1-by-1 sample. The role of the latter
layers is the accumulation of responses of the shape filters from the first layer.
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Fig. 2. Architecture of the CNN with the dimensionality of intermediate outputs.

Max pooling layers use windows of size 2-by-2 samples and are shifted by
2-by-2 samples. The first fully connected layer consists of 4000 neurons. The
last fully connected layer has only one neuron. The scalar output of the last
layer represents the likelihood that a speaker change is present in the analyzed
spektrogram. To avoid any confusion it needs to be noted that this likelihood
does not behave as a probability of the speaker change in the sense of absolute
values (e.g. likelihood grater than 0.5 does not mean that a change is present).
The CNN can be used for inferences about speaker change given a spektrogram.
The architecture can be seen in Fig. 2 and is summarized in Table 1.

Table 1. Summary of the architecture of the CNN.

Layer Kernels Size Shift

Convolution 50 16× 8 2× 2

Max pooling 2× 2 2× 2

Batch norm

Convolution 200 4× 4 1× 1

Max pooling 2× 2 2× 2

Batch norm

Convolution 300 3× 3 1× 1

Max pooling 2× 2 2× 2

Batch norm

Fully connected 4000

Fully connected 1
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2.2 Training of the CNN

The training of the CNN is a process of finding the optimal parameters according
to a criterion given some data. We use the binary cross-entropy criterion

L(ω) = − 1
N

N∑

n=1

[
yn log ŷn + (1 − yn) log(1 − ŷn)

]
, (1)

where yn is the desired output, ŷn is the output of the CNN, and ω are the
parameters of the net - weights and biases. The desired output is either equal
to one when there is a speaker change present in the spektrogram and zero
otherwise. The criterion needs to be minimized and the optimal parameters are

ω∗ = arg min
ω

L(ω). (2)

For the minimization we used Stochastic Gradient Descent (SGD) on mini-
batches of data. The batch size was set to 64. We used the Nesterov momentum
[13] in the gradient updates, which has been shown to yield good results [14].
Similar to [5] we use momentum of 0.9, weight decay of 0.0005, and learning rate
of 0.01. The update of the parameters is then

ωt+1 = ωt + Δωt − γ∇L(ωt + Δωt), (3)

where γ is the learning rate and

Δωt = 0.9Δωt−1 − 0.0005.γ.ωt − γ∇L(ωt) (4)

is the momentum variable.

3 Data

For the training purposes we used a fraction of telephone conversation data from
CallHome [15] corpus. The data are sampled at 8 kHz and are in English. We
consider only the conversations where two speakers are present. This gives us a
total of 112 conversations. The input for the CNN is a spectrogram computed
on a 1.4 s window of the waveform. The window is shifted by 0.2 s where another
spektrogram is computed and so on. We compute 1024 frequencies with a window
shift of 800 samples. Due to the symmetry of the spectrum we can omit half of
the frequencies. Preliminary experiments have shown that the lower frequencies
are sufficient to discriminate between audio sources. Thus the final shape of the
CNN input is 256 × 128 samples (frequency × time).

3.1 Labeling of Data

The data are annotated according to the speech segments. The beginning
and the end of a speech segment is labeled as well as the identity of the
speaker in the segment and the transcribed speech. These are so called “turns”.
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From these annotations we create labeling of the data. These labels are then used
in the training phase of the CNN. We define a tolerance threshold τ = 0.1 s. We
look at the boundary of each turn. The boundary represents the time of the
speaker change. In our window the local time of the change is 0.7 s i.e. the mid-
dle of the window. We shift the window by ±τ seconds. This gives us three
spectrograms that represent the speaker change and we label them as “1”. The
negative samples are generated from segments of speech that last longer than
the window size (=1.4 s). These are given a label of “0” and two consecutive
windows must be at least 0.2 s away from each other.

4 Experiment

To test the efficiency of our proposed system we compare it to a baseline system
of speaker change detection.

4.1 Baseline System

The baseline system uses a simple distance-based approach with a pair of fixed-
length sliding windows. We use the Bayesian Information Criterion (BIC) [1] as
the distance using Gaussians with full covariance matrices. In order to allow us
to more easily compare the two systems, we adjusted the BIC decision process
by replacing the selection of a penalty factor with the use of a distance threshold.

The Gaussians were computed on features based on Linear Frequency Cep-
stral Coefficients (LFCCs) of the signal using Maximum Likelihood Estimation.
We used a Hamming window of length 25 ms with a 10 ms shift. There were 25
triangular filter banks which were spread linearly across the frequency spectrum
and 20 LFCCs were extracted. Delta coefficients were added to the vector lead-
ing to a 40-dimensional feature vector. The parameters were chosen according
to the work of Machlica et al. [16].

4.2 Evaluation

The probability of the speaker change is proportional to the ΔBIC value. The
same holds for the output of our CNN. The comparison of the systems is based
on the shapes of the Detection Error Tradeoff (DET) curves [17] and Equal Error
Rate (EER). A point laying on the DET curve represents the relative false alarm
and relative miss rate for a given threshold imposed on the output values of the
analyzed system. The false alarm represents how many detections were produced
in instances where there is no change present relative to the length of the audio
data stream. The miss rate represents the number of speaker changes that were
not detected relative to the number of all changes in the audio stream. A better
system produces a DET curve that is closer to the origin (zero) point. EER is
such a point on the DET curve for which the false alarm rate is equal to the
miss rate. A better system has lower EER.
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The baseline system does not require any training phase. Our CNN system
was trained on 35 conversations. The duration of the training data is 5 h and
48 min. The remaining 77 conversations with unheard speakers were used for
testing of both systems. The testing data have duration of 11 h and 20 min. The
speech signal was analyzed window by window with shifts of 0.2 s. For the CNN
we used window of length 1.4 s. For the BIC system we used a pair of windows
of length 0.7, 2.0 or 5.0 s. The resulting DET curves and EERs can be seen
in Fig. 3 and Table 2 respectively. We used tolerance of 0.4 s which is due to
imperfect annotations and the 0.2 s shift of input window.

Fig. 3. DET curves for different systems.

The CNN performed notably better. It has to be noted that the telephone
conversations are “wild”. They are recorded as they were. No filtering was done.
The turns are very frequent. One speech segment is usually shorter than one
second. The BIC system is comparing the speech characteristics from neighboring
windows. We experiment with windows of different lengths. When the length of
the window is shorter the performance is better. But in such short times the
extracted features seem to be not fully descriptive and a speaker change can
occur based on the phonemes uttered rather than an actual change of speakers.
When longer windows are used the system is failing because the utterances are
shorter than the window and the speech characteristics of a single speaker cannot
be modeled. The CNN handles short utterances well. It seems that the model
is learning the shapes of the wrinkles in the spectrograms and finds out when a
sudden change happens. The localization of the speaker change is not perfect.
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Table 2. EER values for different systems.

System BIC 0.7 BIC 2.0 BIC 5.0 CNN

EER 0.3229 0.3679 0.3704 0.2482

This is given by the length of the window used in training and by the shift of
this window. The phenomena need to be looked into in the future.

5 Conclusion

In this paper we presented an approach for speaker change detection in tele-
phone conversations. The conversations were unscripted and natural with rela-
tively fast speaker turns. We used a Convolutional Neural Network trained on
mini-segments of the speech (1.4 s) as a regressor. The CNN maps the input
spectrogram to a value between zero and one where higher values mean a higher
probability of a speaker change in the given segment. The CNN performs very
well on unseen test data. Since the unseen data are produced by speakers not
available in the training process it can be concluded that the CNN was able
to detect the speaker changes via the visual changes in the spectrogram rather
than by learning the acoustic parameters of the speakers. The presented CNN
can be used as a filter of speech segments that can be helpful for recognition,
identification, or adaptation of speaker/speech. In the future we plan to experi-
ment with the architecture of the network more thoroughly. We want to test the
capabilities of the network by presenting test data from different sources (e.g.
TV broadcast) and different languages.
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Abstract. Since the prosody of a spoken utterance carries informa-
tion about its discourse function, salience, and speaker attitude, prosody
models and prosody generation modules have played a crucial part in
text-to-speech (TTS) synthesis systems from the beginning, especially
those set not only on sounding natural, but also on showing emotion or
particular speaker intention. Prosody transfer within speech-to-speech
translation is a recent research area with increasing importance, with
one of its most important research topics being the detection and treat-
ment of salient events, i.e. instances of prominence or focus which do
not result from syntactic constraints, but are rather products of seman-
tic or pragmatic level effects. This paper presents the design and the
guidelines for the creation of a multilingual speech corpus contain-
ing prosodically rich sentences, ultimately aimed at training statistical
prosody models for multilingual prosody transfer in the context of expres-
sive speech synthesis.

Keywords: Prosody · Speech corpus · Speech synthesis · Speech-to-
speech translation

1 Introduction

The ambition of current state-of the art systems is not only to produce intelli-
gible and natural sounding speech, but also to approach humans in their ability
to convey emotion or a particular speaker intention [6,16,24,25]. For that rea-
son, prosody modeling and prediction are arguably the most important research
challenges in the domain of text-to-speech (TTS) synthesis [1,6,26]. The rele-
vance of prosody for automatic speech recognition (ASR) has also begun to gain
c© Springer International Publishing Switzerland 2016
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appreciation, particularly with the advent of speech-to-speech (STS) transla-
tion systems [2]. Just as humans disambiguate spoken utterances and give them
a proper linguistic interpretation relying on prosody, automatic systems now
attempt do the same, which can be of particular importance in the context of
STS [22]. Furthermore, by taking sentence intonation and other prosodic features
into account, salient prosodic events, which represent intentional speaker devia-
tions from the canonical prosody, can be detected and, if properly modelled, can
be carried over to the target language and introduced into synthesized speech,
with the ultimate goal of preserving the original speaker intention. However, the
treatment of salient prosodic events is a complex task, since their realization con-
stitutes an interplay between the basic prosody features (intonation, timing and
dynamics), just as is the case with canonical prosody, which is generally deter-
mined by the morphology and syntax of the utterance (e.g. by stress patterns
and ordering of sentence constituents).

Since prosody transfer within speech-to-speech translation is a recent research
area, there have so far been relatively few approaches to analyse source speech
prosody in terms of salient events and carry them over to the target language.
The assumption that there exists some isomorphism between the source and the
target language greatly simplifies the problem. For instance, the research in [2],
using a bilingual speech corpus as training material, was based on performing
unsupervised clustering of intonation patterns in the source speech in order to
directly map them to corresponding intonation clusters in the target speech.
However, a general case where such an assumption cannot be made requires a
more high-level approach. In [19] the generation of pitch accent information was
integrated into statistical translation models using factored translation models
[14], in order to avoid possibly erroneous reconstruction of prosody of the target
utterance based on the translated text only. However, besides focusing on the
intonation contour and excluding other prosodic features from consideration,
both approaches are based on the detection of each and every pitch accent and
translating them to the output speech, rather than explicitly considering salient
prosodic events which occur relatively unfrequently.

The modeling and treatment of salient prosodic events is closely related to
prosodic labeling, i.e. annotating speech corpora for prosodic events (stress,
accent, boundary between prosodic constituents, emphasis etc.). Prosodically
annotated corpora are an indispensable tool for training statistical prosody mod-
els for a range of applications including speech synthesis or syntactic analysis of
spoken utterances [22]. However, the construction of such corpora is an extremely
time-consuming task, requiring a lot of manual effort, which makes such cor-
pora relatively scarce and prompts the need for the development of automatic
prosodic labeling techniques [17]. To this date, a number of various classifiers for
automatic prosodic labeling of speech have been proposed (cf. e.g. [13,20,27]),
based on annotation systems such as Tone and Break Indices (ToBI) [3] or other
conventions for marking tones and breaks (cf. e.g. [9]), but their accuracy is
still below the one that can be achieved by expert humans. This paper presents
the design and the guidelines for the creation of a multilingual speech corpus
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containing prosodically rich sentences, representing an invaluable resource for
the research in the domain of cross-lingual prosody transfer in the context of
expressive speech synthesis. The corpus has been created within the research
project “SP2: SCOPES Project on Speech Prosody” supported by the Swiss
National Science Foundation [23], covers 5 languages at the moment, and to the
best knowledge of the authors, represents the only existing multilingual corpus
specifically aimed at supporting the research into salient prosodic events and
their cross-lingual transfer.

The remainder of the paper is organized as follows. Section 2 will present
the content of the speech corpus in more detail and discuss the motives behind
several choices that have been made. Section 3 will present the annotation guide-
lines and present several characteristic examples. Section 4 will briefly illustrate
the utility of the corpus with an example research based on it, and Sect. 5 will
conclude the paper with an outline of the future work.

2 Contents of the SP2 Speech Corpus

At the moment, the SP2 Speech Corpus contains sections covering English,
French, Hungarian, Serbian and Macedonian, and each section contains record-
ings from one or two speakers so far, amounting to 7 speakers in total.1 Following
the existing guidelines for new contributions, the corpus can be easily extended
to new speakers and new languages.

The set of sentences for a single speaker contains 50 prosodically rich sen-
tences, with the same text translated into different languages. Each utterance
has one or more words marked in bold to indicate emphasis. When translating
the text into a new language, care was taken to preserve the original meaning
of the sentence, but just as importantly, to preserve the emphasis in the trans-
lation without signaling it by other means such as a particular choice of words.
For instance, for the Serbian sentence:

--Dor --de[n.George] im[pron. to them] je[aux.v.] to[pron. about it] saopštio[v. told].

the translation into English “George told them about it” would be preferable
to a translation that introduces a cleft sentence, such as “It was George who
told them about it.” The sentences are divided into the following 5 groups of 10
sentences:

• Emphasis on a single word. (“It turned out that it was a fake gun”.)
• Emphasis early in the sentence. (“Money is what I like the most”.) This spe-

cific case is treated separately in order to give a better insight into post-focus
compression [5,8], i.e. the perceptible reduction of pitch range and intensity
after prosodic focus.

• Emphasis marking an explicit contrast. (“Since he cannot buy it, he’s going to
rent it”.) This section is expected to provide an insight into the differences in
prosodic realization of the opposed syntactic constituents in various languages.

1 The SP2 Speech Corpus can be downloaded from https://github.com/
SP2-Consortium/SP2-Speech-Corpus, and contributions are welcome.

https://github.com/SP2-Consortium/SP2-Speech-Corpus
https://github.com/SP2-Consortium/SP2-Speech-Corpus
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• Emphasis marking an explicit contrast in a question. (“Are you emotional
or rational?”)

• Emphasis as a result of semantic focus on a relatively large constituent. (“It
was because she felt so lonely that she decided to move”.) This section is
expected to provide an insight into the speaker dependence of focus projection,
i.e. the degree of variability with which different speakers map the semantic
focus on a certain constituent into emphasis or pitch accent on particular
words [18].

Each speaker was required to deliver:

• the described 50 sentences with particular emphasis on the words or parts of
sentences marked in bold,

• the same 50 sentences without particular emphasis on the marked word or
parts of sentences, to the degree to which it is reasonably possible, having
in mind that in some sections, especially ones dealing with explicit contrast,
it can be difficult to pronounce a particular sentence without emphasis, as
emphasis “comes naturally”.

The set of recordings for each speaker thus contains 100 utterances. The number
of the sentences per speaker is arguably too small for the corpus to be directly
used for training statistical prosody models, but it offers a possibility to study
inter-speaker variability in using prosodic cues to signal emphasis in a particular
language, as well as the relations between their use in different languages in a
number of typical situations.

3 Annotation Guidelines

The existing speaker sets have been annotated with Praat [4], using the following
interval tiers:

• Emphasis. The only mandatory tier, in which the emphasized word(s) are
marked with ‘+’, while other words are not marked. If the word is pronounced
with an unusually strong emphasis, ‘++’ is used instead. Clearly, not all words
marked in bold in the text get a ‘+’ or ‘++’, but only ones actually empha-
sized. For each word marked with ‘+’ or ‘++’ in the emphasized utterance,
there is a corresponding ‘(+)’ or ‘(++)’ in the neutral utterance (the non-
emphasized counterpart), indicating the position of the corresponding word.

• Contrast. This is a semantic tier, which marks the opposing sentence con-
stituents in sentences with explicit contrast (e.g. “Instead of getting a rest, I
got tired”). Here, words in contrast (“rest” and “tired”) are marked with ‘1’
and ‘2’ respectively. In some cases, where more than one element is empha-
sized on either of the opposing sides, multiple ‘1’ or ‘2’ tags are assigned. If
a word is marked with a ‘1’ or ‘2’ in the emphasized utterance, it carries the
same tag in the neutral utterance, regardless of the fact that it is may not be
actually emphasized there.
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• Words. This tier indicates boundaries between words, which are given in their
orthographic forms in order to be matched with the text more easily.

• Syllables. This tier indicates boundaries between syllables, which are also
given in their orthographic forms.

• Lexical stress. This tier marks lexically stressed syllables with a ‘+’. If the
speaker stressed a different syllable than the one required by the standard
pronunciation, a syllable actually stressed is marked with a ‘+’ (in general,
at least for some languages and particular words, there can be more than one
acceptable location of the lexical stress).

• Lexical tone. This tier is applicable only to tonal languages or languages with
pitch accent, and indicates the tone or pitch accent of a particular syllable
(according to the conventions adopted for the langauge in question).

• Phones. This tier indicates phone boundaries and gives a phonetic transcrip-
tion in SAMPA format. The purpose of this tier is to enable a more detailed
analysis of pitch contours, since stress is usually related primarily to the vowel
in the syllable.

The following point tier can also be used:

• Breaks. This tier indicates the positions of phrase breaks which significantly
affect pitch in either of the two versions of the utterance. The purpose of this
tier is to indicate possible sources of major pitch variations which are not due
to emphasis. Unless otherwise specified for a particular language, such breaks
are indicated by ‘B’ in both versions of the utterance even if their impact is
significant in only one of them.

The following example (Fig. 1) shows the full annotation of the following
Macedonian sentence (version with emphasis): “

.” (“Everybody thought that he knew about the plot.”). The con-
trastive stress is not marked, as there is none in this example. Similarly, lexical
tones are not applicable to Macedonian, so this tier is empty, as well as the phrase
breaks tier.

4 Example Research

In the course of the SP2 project several sections of the SP2 Speech Corpus
have been used in research focused on salient prosodic event analysis and detec-
tion. Specifically we have looked at how emphasis is communicated in the three
dimensions of prosody, through the comparison between emphasized and non-
emphasized renditions of the same utterance. In the English language, both
syllable duration [15] and energy [21] were seen as indicative of emphasis. Based
on their analysis, emphasis detection algorithms were designed and evaluated
using the SP2 Speech Corpus. Moreover, an adapted version of our Weighted
Correlation Atom Decomposition (WCAD) based intonation modelling algo-
rithm [10,12] was used to decompose the energy contour, achieving results in
emphasis detection [11] comparable to the state-of-the-art [7]. The database is
currently being used for the design of more sophisticated emphasis detection
algorithms, as well as cross-lingual transfer of emphasis.
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Fig. 1. Annotation of an emphasized sentence in Macedonian. In the corresponding
non-emphasized sentence, the absence of emphasis would be indicated by a ‘(+)’ marker
on the emphasis tier, positioned at the corresponding word (‘ ’).

5 Conclusions and Future Work

The prosodically rich SP2 Speech Corpus has been specifically designed for the
research in salient prosodic event detection and their cross-lingual transfer. This
is an area of research gaining particular importance with the introduction of STS
translation systems which aim at conveying not only the information contained
in what was said but also in how it was said. The corpus in its current form
covers 5 languages and includes voices of 7 speakers, each having delivered 50
pairs of unemphasised-emphasised utterances, divided into 5 categories based
on the type and/or location of emphasis. Our team has, thus far, used the cor-
pus to successfully design and evaluate emphasis detection algorithms. It is our
intention that the corpus should be of use for research conducted by the whole
scientific community. Moreover, owing to well-defined guidelines for preparing
contributions to the corpus, it is our hope that the community will help the
corpus to expand to other languages soon.

Acknowledgments. The authors would like to acknowledge the support of the Swiss
National Science Foundation via the research project “SP2: SCOPES Project on Speech
Prosody”.
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1 Faculty of Applied Sciences, Department of Cybernetics,
University of West Bohemia, Pilsen, Czech Republic

2 NTIS-New Technologies for the Information Society, Faculty of Applied Sciences,
University of West Bohemia, Pilsen, Czech Republic

{juzova,dtihelka,jmatouse}@ntis.zcu.cz

Abstract. The paper focuses on building a text corpus suitable for the
conservation of the voices of non-professional speakers, who are loosing
their voices due to serious healthy problems. Since we do not know in
advance, how many sentences a speaker will be able to record, we pro-
pose a multi-level greedy algorithm which can ensure the coverage of
selected texts by various phonetic and prosodic units. The comparison
of such coverage is presented for various corpus sizes, and compared to
the generic TTS corpus recorded by a healthy professional speaker.

Keywords: Voice conservation ·Voice banking · Speech synthesis · Text
corpus · Phone · Diphone · Greedy algorithm

1 Introduction

In the last decade, speech technology became extremely useful helping handi-
capped people to improve their quality of life. Let us name, above all, the support
programmes for the blind or vision impaired (so-called screen readers which uti-
lize text-to-speech (TTS) technology to read out the contents of the screen) and
for the dumb or speech impaired (so-called speaking aids which use TTS to
enable the speech impaired to communicate with voice).

Recent advances in speech synthesis have also shown that TTS technology is
mature enough to offer synthetic speech of a reasonable quality, also in a very
specific application so-called personalised speech synthesis. Such an application
can primarily be used by persons loosing their ability to speak due to a severe
illnesses or degradations of their vocal tract, and it enables them to communi-
cate somehow with their original voice. However, prior to the creation of the
personalised synthesizer, a person must record a number of samples, ideally in
high quality, which will serve as the source for the personalization. Such process
is usually called as voice conservation, or voice banking. The main problem is
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that we do not know in advance, how many samples will those people be able
to record. For example, patients diagnosed with severe laryngeal cancer have in
average approximately 2 weeks between the diagnosis and the total laryngec-
tomy, but sometimes there are only few days from a diagnosis to the surgery
— and besides other consequences, the patient permanently loses the ability
to communicate with voice [5,13]. As a result, a significantly lower amount of
speech recordings are obtained from such patients when compared to healthy
professional speakers used to record “generic” TTS. In addition, the quality of
the recordings is often considerably deteriorated, as the patients usually has no
experience with speech recording and/or with using a computer, they are most
likely rather distressed with a progressing disease, and the quality of their voice is
often very affected by the disease. All the aforementioned facts make the design
of a personalised speech synthesizer which would “speak” in the patient’s own
voice very challenging.

The limited amount of recorded samples is often coped with using a statisti-
cal parametric speech synthesis framework (HMM based), in which an average
statistical model trained from many voices is adapted by a small number of
the particular target conserved recordings [15]. A different approach was chosen
by [11] who used voice conversion to convert alaryngeal speech produced by the
laryngectomised patient to a more human-like speech. However, both the quality
of synthetic/converted speech and the resemblance of synthetic/converted voice
to the original one still suffer from the principle of speech vocoding/conversion
given the limited amount of the target speech data.

Our primary goal is, in the contrary, to prepare source material allowing
to efficiently record as much speech data from a non-proffesional speakers as
possible, given their limited time and speaking abilities. In this way, the voice
of the patient can be conserved forever, and later used to create a high-quality
personalised synthesizer for a pocket device like a smartphone, or, in a distant
future, for a device implanted into the body of the speaker.

We also try to design the material for recording in such a way, that it can
be used to create a synthetic voice directly, avoiding any voice conversion or
adaptation technique. Depending on the amount of recorded data, HMM syn-
thesis mentioned above (for smaller number of recordings) and unit selection
(yielding very good quality when more recordings are available) could be used
as the actual speech synthesis methods. To achieve this, we propose an algorithm
for text corpus design which, in multiple levels, optimises its both phonetic and
prosodic coverage. The resulting text prompts are then recorded in a level-by-
level fashion.

2 Text Corpus Building

As mentioned in Sect. 1, the aim is to prepare a (smaller) text corpus for the
voice conservation recording. Our primary requirement is to maximize the cov-
erage of appropriate speech units, no matter the number of sentences will finally
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be recorded. Since the unit selection synthesis is considered to be more nat-
ural compared to HMM synthesis [10], we focus primary to that, while HMM
represents a backup solution when too few recordings are available.

2.1 Source Text Data Analysis

For the purpose of our TTS system research and development, we have at dis-
posal a large collection of Czech texts – 524,481 sentences from various domains
(news, culture, economy, sport, etc.). In the phonetic form, converted into by
our TTS frontend using letter-to-phone rules ([9], we intentionally work on finer
level than on phonemes), these texts contain all 44 Czech phones, with the
rarest phone being e u, one of three Czech diphthongs occurring in loanwords,
with 1,412 occurrences (0.0034% of the whole phone set). Theoretically, the total
number of diphones1 should be 442 = 1,936. Nevertheless, as follows from our
text materials and linguistic rules, some phone combinations are inapplicable in
Czech (even at word boundaries). Thus, the text collection contains only 1,397
of diphones, with 41 of them occurring only once.

The average sentence length is 13.8 words in the whole collection. Neverthe-
less, since we are building a text corpus for voice banking, the speakers are usu-
ally not professionals, not used to talk publicly, often with only basic computer
control skills. Long sentences, in general, are thus quite difficult to concentrate
on and to read them fluently without any stammering, spoonerisms and mis-
pronunciations. Also, the final synthetic voice is expected to be used mainly for
common communication in which rather shorter sentences are used. On the other
hand, however, very short sentences (containing 3 words and less) have different
prosodic structure comparing to “average” sentences. Therefore, we decided to
leave only sentences with the length from 5 to 8 words in our source data. In
addition, also those containing some very long, usually foreign-like words difficult
for reading, were excluded. Note that we can do that because all theoretically
synthesized foreign-like words are ordinarily transcribed with Czech phones. The
proposed length preselection should be a good compromise between the number
of words non-professionals are able to read fluently, and the need to keep the
natural sentence structure. The number of available sentences thus decreases to
97,033, approximately one fifth being questions.

Our further attention was focused on the missing diphones. We stated above
that the collection does not contain all theoretically possible diphones and the
removal of long and short sentences has also caused a further loss. To encourage
the presence of rare, yet meaningful, diphones, the additional set of almost 1,500
sentences was prepared manually to cover the rare or missing diphones. Since we
are aware that these sentences are a bit more difficult for reading (they contain
shorter, but not very common words), we added them into higher levels of the
source data (see Sect. 2.3, step 4).

1 We consider here a diphone as TTS system unit, i.e. signal from a middle of one
phone to the middle of the next phone. Nevertheless, the numbers presented will be
the same when considering a diphone as the join of any two neighbouring phones.
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To ensure not only phonetically, but also prosodically covered corpus, the
phonetic form was tied with prosodeme–based symbolic prosody description [12].
It means that words in the collection sentences were first joined into prosodic
words, each of them was then assigned with the following base prosodeme types:
0 - “null” prosodeme, 1 - declarative prosodeme, 2 - interrogative prosodeme and
3 - non-terminating prosodeme (for details see [12]). Such a description allows us
to capture the base, but the most prominent prosodic patterns of each sentence
as expected2 to be pronounced. Having the prosodeme labels, each phonetic unit
can be tied with the prosodeme type according to the prosodic word it belongs
to (see prosodic grammar description in [14] for the example) – we will call these
couple units phone-in-prosodeme and diphone-in-prosodeme, respectively.

2.2 Greedy Algorithm for Sentences Selection

When recording a phonetically and prosodically rich corpus for a generic high-
quality TTS system, we can presume that a professional or semi-professional
speaker will record the whole corpus, and thus we can use a single criterion
for the text corpus building – e.g. 10,000 sentences with uniformly balanced
diphones-in-prosodeme with at least 5 occurrences of each [7,8]. However, not
knowing the number of sentences finally recorded, we cannot use such a global
requirement – when maximizing one criterion, there is no guarantee that other
requirements (e.g. at least 50 phone occurrences) will be satisfied as well.

To deal with this, we have split the corpus building process into several steps,
where in each step a different level of units is used to maximize their coverage. In
each step (i.e. units level), we have used the greedy algorithm, described in [8],
which ensures that with each selected sentence it maximizes the given criteria.
Thus, no matter the number of sentences a speaker is able to record, we can
guarantee the highest coverage reached by the last recorded sentence at the level
the sentence belongs to, as well as the fulfilment of all lower-level criteria.

2.3 Multi-level Text Corpus Building

Let us describe the details of the whole process of the multi-level text corpus
building. We will use R to describe the set of sentences from which we select
(i.e. |R| = 97, 033 as explained in Sect. 2.1), and R̄ the set of sentences selected.
It is clear, that with each selected sentence s it is true that s ∈ R̄ and s /∈ R.
Also, once a sentence is stored to R̄, it will remain there forever.

Step 1: At the beginning, we consider a unit being raw phone and we require at
least 15 occurrences of every phone in the selected sentences. The algorithm
ends with |R̄| = 96 sentences fulfilling this criterion.

Step 2: At this level, the unit is the phone-in-prosodeme, since we need to ensure
enough units in the various basic prosodic positions. We also demand at least

2 Let us emphasize that we work with text now, so we can only expect how the sentence
will, or should be pronounced.
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15 occurrences for each unit. The algorithm selected 380 additional sentences,
|R̄| = 476 in total. 14 units did not reach the required minimum number of
occurrences (the worst case is 1 occurrence for 2 out of 162 different units),
but as all the occurrences available in the source text collection were selected
(see Table 1), no other sentence in the source text collection could improve
the criterion.

Step 3: Since our unit-selection synthesizer [9] works with diphones, this level
focuses on diphones’ coverage; the requirement of at least 2 occurrences of
each diphone in R̄ was set. The number of selected sentences stopped at
|R̄| = 1, 040, where no further sentence was available to improve the required
coverage.

Step 4: Having selected more than 1,000 sentences so far, we have changed the
paradigm of the corpus preparation. Until this point, the input texts were
chosen with respect to the speakers, however when they are able and will-
ing to record this number of sentences, we can start to optimize the corpus
with respect to the speech synthesis method we use. Here, the manually cre-
ated sentences covering rare Czech diphones (see Sect. 2.1) were added to the
source text collection. Therefore, still the same algorithm but with extended
R was used to select sentences with at least 5 occurrences of each diphone in
R̄, after that |R̄| = 2, 317. There are 77 diphones not fulfilling the require-
ment, but again, no further sentence could improve it.

Step 5: In the last step we demanded at least 3 occurrences of diphones-in-
prosodeme units. However, it would enlarge the set to almost 7, 000 sentences,
which is impossible to record by our target speakers. Therefore, the selection
process was stopped when the number 2, 500 was achieved.

Step 6: Finally, the algorithm tried to uniformly balance the distribution of
diphones-in-prosodemes – see [8] for details – until |R̄| = 3, 500 sentences
were selected, when the process was stopped.

Only one patient has managed to record the whole prepared corpus yet; nev-
ertheless, the number 3, 500 was chosen to be sure that the text corpus is well
prepared and large enough even for very capable speakers with more time. This
amount of sentences also guarantees enough data for high-quality unit selection
synthesis being considered the most natural method of speech synthesis.

3 Final Text Corpus Statistics

The sequential selection process described above guarantees the widest possible
coverage of speech units (phones, diphones in different prosodemes) in the group
of sentences selected in the particular step. Some more detailed statistics of the
corpus are shown in Table 1, as well as the comparison with the full sentence
collection, the reduced set used in greedy algorithm and a general corpus used
for standard TTS. Since it is expected that people undergoing voice conservation
are usually not able to record the whole corpus, we also counted the statistics for
corpus subsets, meaning the sets of first N sentences from the prepared corpus.
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Table 1. Text corpus statistics presented for full text corpus (0.5M sentences),
reduced corpus with sentences 5–8 words long plus the manually created sentences
(98 k in total), corpus being the final selection from reduced, and corpus subsets repre-
senting the first N selected sentences from the corpus. Also, general corpus represents
the set selected from full and recorded by a professional female voice talent [4] for our
generic–purpose TTS. Px means a prosodeme X.

Statistics Full Reduced Corpus Corpus subsets General

No. sentences 524, 481 98, 498 3, 500 2, 000 1, 000 300 12, 151

Average sent. length 13.8 6.7 6.9 7.2 7.0 7.0 9.8

No. different phones 44 44 44 44 44 44 44

No. different diphones 1, 397 1, 449 1, 449 1, 449 1, 284 934 1430

Units I

Phones 15x 44 44 44 44 44 44 44

Phones in P0 15x 44 44 44 44 44 41 44

Reduced texts coverage 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 99.96 % 100.00 %

Phones in P1 15x 42 42 42 42 42 37 42

Reduced texts coverage 94.38 % 94.38 % 94.38 % 94.38 % 94.38 % 94.27 % 94.38 %

Phones in P2 15x 39 37 37 37 37 32 39

Reduced texts coverage 94.34 % 94.27 % 94.27 % 94.27 % 94.27 % 91.48 % 94.34 %

Phones in P3 15x 42 39 39 39 39 37 41

Reduced texts coverage 94.38 % 94.34 % 94.34 % 94.34 % 94.34 % 94.27 % 94.36 %

Diphones 5x 1, 397 1, 280 1, 280 1, 203 801 527 1, 249

Reduced texts coverage 99.99 % 99.99 % 99.99 % 99.90 % 98.55 % 92.32 % 99.97 %

As follows from the table, not all required minimum occurrences were met in
the process of sentence selection, e.g. the requirement of at least 15 occurrences
of all phones-in-prosodemes in the step 2. The source sentence collection used
to select from, however, does not contain enough units in prosodemes 2 and 3,
so having the number of sentences selected in a particular step, selection of no
additional sentence would increase the given criterion (i.e. none of the missing
units is added). We have considered further extension of the set with those miss-
ing units, but it has been finally refused, since there are too many units missing,
and it would mean extremely large amount of manual work. Moreover, even if
the required number of occurrences was not fulfilled, the algorithm guarantees
that at least one instance of every unit (except the step 5) is selected. Also,
considering the rare nature of the units, unnatural artefacts possibly caused by
their inappropriate placement in synthetic speech will not be very frequent.

The second part of the table contains more detailed information about the
units as used in the individual selection steps. The numbers in cells correspond to
the numbers of units with the required occurrence appearing in the individual
corpora. The percentage, then, illustrates the coverage of the reduced set by
occurrences of those units which appeared at least the given number of times in
the particular set of selected sentences. For example, there are 1, 280 different
diphones, each with at least 5 occurrences in the reduced set. All the occurrences
of those diphones then cover 99.99% of all the diphone occurrences in this set.
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Table 2. The base statistics of speech corpora recorded by 12 laryngectomees (marked
as Px) whose voice was conserved before the surgery. The duration of speech in the
corpus is excluding pauses.

# Sent. Speech dur. # Sent. Speech dur. # Sent. Speech dur.

P1 3,500 227.6min P5 856 79.5min P9 555 34.7min

P2 2,014 116.6min P6 769 41.3min P10 469 46.2min

P3 1,431 99.0min P7 700 73.3min P11 403 26.2min

P4 1,038 62.8min P8 683 52.6min P12 300 17.2min

When, for example, the first 300 selected sentences (full step 1 and part of
step 2) are recorded, we will get (theoretically) 527 various diphones with the
given minimum occurrence amount. While this is lower amount of diphones, they
still cover 92.32% of all the diphone occurrences in the reduced set. It is clear
that the percentage is sometimes higher for the full collection, as there is the
higher number of different units with the required minimum occurrences.

From the TTS engine point of view, it is interesting to look at the diphones
coverage for the selected corpus and its subsets. The percentage value can be
interpreted as the chance that unit selection synthesis will require a diphone
not having at least 5 occurrences, so this is the worst–scenario estimate of the
frequency of unnatural artefact appearance due to a missing unit3. For example,
having 300 recorded sentences, there is 7.68% such a chance, but when a speaker
is capable to record at lest 1, 000 sentence, this chance is only 1.45%.

4 Conclusion

Although the paper describes mainly the procedure of text corpus building, using
the set of 3500 sentences, we have already conserved voices of several patients
undergoing total laryngectomy surgery. Due to their various social status, tech-
nical capabilities and speak difficulties, most of them were able to record only
a subset of the whole sentence set, ranging from 300 to 2, 000 sentences; the
details are listed in Table 2. For all of them, the personalised TTS system was
built from their recordings (see [6]) and it was given to them to simplify they
everyday communication. The samples can be listened in table online (please see
[3]) and it can be heard that even the unit selection version has a reasonable
quality, leaving aside some audible artefacts caused by insufficient coverage of
some diphones. Let us also note that the recordings of the patients are the most
valuable source of their original voice which will never be returned them.

In our future work, we would like to keep recording patients’ voices. As for
speech synthesis, we plan to research into incremental speech synthesis frame-
work [1]. We would also like to propose a fully automatic process of voice building

3 Let us note that the real unnatural artefacts appearance will be much lower and it
will be influenced by other factors like recording style, speech units segmentation,
unit selection criteria etc. Those will not be influenced by the speech corpus per se.
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without any need of human intervention. We are testing the possibility to col-
lect recordings at patients’ homes, but unfortunately, it brings some problems
relating to speech quality, proper loudness etc. Similarly to [2], a more patient-
friendly recording application is being implemented within this process.
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13. Romportl, J., Řepová, B., Betka, J.: Vocal rehabilitation of Laryngectomised
patients by personalised computer speech synthesis. In: Phoniatrics. European
Manual of Medicine. Springer, Heidelberg (2015) (in press)

https://docs.google.com/presentation/d/1iWeeWFW-jYIO1fMV9CxImC261QoPUUiZKOsT9w8UxXc/present#slide=id.gc411cf050_0_0
https://docs.google.com/presentation/d/1iWeeWFW-jYIO1fMV9CxImC261QoPUUiZKOsT9w8UxXc/present#slide=id.gc411cf050_0_0
https://docs.google.com/presentation/d/1iWeeWFW-jYIO1fMV9CxImC261QoPUUiZKOsT9w8UxXc/present#slide=id.gc411cf050_0_0


Designing Text Corpus for Non-professional-voice Conservation 215
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Abstract. In this paper we present novel ways of incorporating sylla-
ble information into an HMM based speech recognition system. Syllable
based acoustic modelling is appealing as syllables have certain acoustic-
phonetic dependencies that can not be modeled in a pure phone based
system. On the other hand, syllable based systems suffer from sparsity
issues. In this paper we investigate the potential of different acoustic
units such as phone, phone clusters, phones-in-syllables, demi-syllables
and syllables in combination with a variety of back-off schemes. Experi-
mental results are presented on the Wall Street Journal database. When
working with traditional frame based features only, results only show
minor improvements. However, we expect that the developed system will
show its full potential when incorporating additional segmental features
at the syllable level.

Keywords: Hidden Markov Models · Syllables · Continuous speech
recognition · Back-off schemes

1 Introduction

Hidden Markov Models (HMM) are a very powerful statistical method of char-
acterizing the observed data samples of discrete-time series [7]. HMM are a
standard approach used in speech recognition for acoustic modeling. In recent
years, great progress has been made in the modeling of the frame observation
probabilities by the introduction of deep neural nets (DNNs). While improving
on accuracy, thanks to the powerful discriminative training of the DNNs, the
HMM-DNN framework still suffers from some of the intrinsic simplifications and
limitations in the HMM architecture. In particular, the traditional approach to
use beads-on-a-string to model states in (context-dependent)-phones is known
to be overly simple for many reasons: there is the HMM frame-by-frame inde-
pendence assumption; it does not allow to incorporate segmental information;
and mismatches between canonical phonetic transcriptions and the observed
acoustics are common. In this paper we focus on the latter two problems.
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A syllable is an attractive unit for usage in speech technology applications
for several reasons: it is much more salient than the shorter phone-unit, co-
articulation tends to be stronger within than across syllables, and it is the short-
est unit that contains all acoustic attributes relating to phonetics, rhythm and
prosody. All syllabifications used in this paper are derived from our syllabifi-
cation algorithm proposed in [11]. While using syllables as basic units is not
novel, we believe that there is still room for improvement on how such syllabic
information can be used best in an HMM based system.

The rest of the paper is organized as follows. We first talk about simi-
lar research. Then we describe the problem of the unit selection. Next, phone
syllable-based labeling system is explained. In the end we give conclusions, dis-
cussions and further work.

2 Related Work

Decision trees, HMM, neural networks and trajectory models have all been used
for speech recognition where syllable information is incorporated in the system.

Liao et al. [9] examine the use of the word or syllable context as a feature
in the decision tree. This way, they introduce word- and syllable-specific models
into the recognition system. Since they employ finite state transducer based ASR
the syllable information is incorporated as features on the arcs in the transducer.

Jones and others [8] analyzed a phonetically annotated telephony database at
the syllable level and built a set of syllable-based HMMs. Recognition performance
was improved with syllable-level bigram probabilities and both word- and syllable-
level insertion penalties. They built prototype HMMs for each syllable with the
number of states set proportional to the number of phonemes in the syllable.

Zhang and Edmondson showed how a model of syllable articulation can
be used with Pseudo-Articulatory Representations (PARs) to provide a gen-
eral articulatory transcription of speech without phonetic labeling [14]. First,
they establish the mapping between PARs and acoustic parameters. After that
they perform recognition in three steps. The first step is the transition from the
acoustic representation of the incoming signal to the PAR with feature trajec-
tories available as a function of time. The second step makes a move from the
PARs to the syllable structures and produces a sequence of the recovered sylla-
bles. The third stage focuses on the transition from the syllable patterns to the
phonetic level and produces a sequence of phone labels.

Hu and colleagues proposed a recognition strategy which uses syllable-like
units as the basic unit for recognition [6]. They define the criterion of group-
ing phonemes into syllable-like units as follows: phoneme sequences for which
the boundary is difficult to detect are grouped together forming a new set of
base recognition units. After syllable-like units are defined according to the set
of predefined rules, word pronunciation models are generated using these units.
Statistical trajectory models [4] are computed for each defined unit. Artificial
neural networks or Gaussian mixture models are then trained to estimate prob-
abilities of the units. The search is implemented using the Viterbi algorithm in
a time-asynchronous manner.
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Hauenstein [5] applied a hybrid Hidden Markov Model - Artificial Neural Net-
work (HMM-ANN) recognition system to small and medium vocabulary recog-
nition tasks using syllables as basic modelling units. Features are kept the same
as in the phoneme-based baseline.

Syllable-level acoustic units were also used in [3] for large vocabulary contin-
uous speech recognition (LVCSR) on telephone-bandwidth speech. The major
innovation of their syllable system is the smooth integration of a large inventory
of syllable models and a mixture of acoustic models ranging from monosyllabic
words to CD phones.

3 Unit Selection

The main modeling unit in our system is a syllable. To make an accurate sta-
tistical model, it is essential to have enough data. The original phone-based
recognition system had 43 context independent phones for which the problem
of sparsity does not exist. The situation with syllables is different: there exist
quite a lot of rare syllables. Therefore a back-off mechanism to smaller units is
required.

The first back-off option we investigate are demi-syllables: a syllable-initial
consonant cluster plus the first half of the vowel or a second half of the vowel
and syllable-final consonant cluster [12]. If there is still not enough data to
model a demi-syllable, we back-off to the phone sequence. For example, the
word “string” is transcribed as “strIN”. Demi-syllable back-off looks like
“〈strI=〉〈=IN〉”.

There are two main problems with this approach. The first one is sparsity.
The second is how to divide the vowel in the middle and how to model it. To
overcome this issue we propose another back-off mechanism. Instead of using
demi-syllables, we model the syllable by three parts namely onset, vowel and
coda in which onset and coda are optional consonant clusters. We call this the
“cvc-scheme”. The same example for “string” in cvc-version is “〈str.〉〈.I.〉〈.N〉”.

The other question is how to decide, how many examples are needed to train
a unit, and when to back-off. In this research we set this threshold to a 100
examples. The statistics were counted on the WSJ database training data [10].
We will report statistics for cvc-scheme in two ways: measured on the syllable
lexicon independently of the number of occurrences and measured on running
text. The database contains 5648 unique syllables. 78 % of the syllables do not
occur more than 100 times and hence need to use the back-off scheme (going
to cvc). On the other hand, if we take into consideration the syllable frequency,
the back-off from syllable to cvc needs to be done only in 7.5 % of the cases.
The same happens with the back-off from cvc to phones. On running text this
happens in less than 0.5 % of times. Based on these results only the CVC backoff
scheme will be considered in the remainder of this paper.



Designing Syllable Models for an HMM Based Speech Recognition System 219

4 HMM with Syllables

For all our experiments we use the WSJ database [10], the CMU dictionary [13]
and the SPRAAK toolkit [2]. SPRAAK (Speech Processing, Recognition and
Automatic Annotation Kit) is an open source speech recognition package. It is
an efficient and flexible tool that combines many of the recent advancements in
automatic speech recognition with a very efficient decoder in a proven HMM
architecture. Our speech recognition system consists of a preprocessing unit,
the acoustic models and the language model, a lexicon and a search-engine.
Preprocessing for all systems is the same consisting of filterbank features with
vocal track length normalization and mida transformation [1]. Acoustic models
are made for phones, onsets, codas, vowels and syllables separately. The lexicon
includes phone, cvc and syllable descriptions of words. A semi-continuous HMM-
GMM with a common pool of gaussians for all states is used. Decoding is done
using Viterbi alignments.

4.1 CI Syllable Units

To create the initial context-independent (ci) syllable HMM model, we start
from an existing cd-phone HMM system. Based on the phone segmentation we
create ci-syllables. After the first iteration of training we regenerate segmenta-
tion of the training corpus and retrain the system. The number of states per
unit depends on its length: 3 states for phones and between 3 and 19 states
for the various syllables. We create three sub-models: syllables, consonant clus-
ters+vowels, phones. These sub-models are independent, except for the shared
Gaussian set.

4.2 CD Syllable Units

Modeling context-dependent (cd) syllables can be done in several ways. In our
research we started from the ci-syllable system and use a phone-based context i.e.
context-dependency is determined by the first or last phone of the neighbouring
right/left syllable. We split all syllables, cvc and phones into two groups of long
and short units. Units of 3 states are considered short units (su). Units having
more than three states are called long units (lu). All states of the short units
are context-dependent. In long units, only the first and last states are context-
dependent. In the other words, a long unit is split as follows:

[lu] → [lu]:L [lu]:C [lu]:R

[lu]:L, [lu]:R left/right context-dependent states

[lu]:C

the remaining 2 to 17 context-
independent states in the syllable
model.
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4.3 Results

For our work we used the WSJ-based speaker independent acoustic training
data [10]. We report word error rates (ERR, %) for the nov92 bigram 5 K closed-
vocabulary test set (b05) and for the trigram 20 K open-vocabulary test set (t20).
The results of our initial experiments are presented in Table 1. While creating
the ci-syllable system, we trained it twice (as described above). The first line,
first column shows the results after the first iteration. The second iteration was
based on the retrained syllable system and improved the recognition result as
shown in the second line, first column of the table.

We made extra analysis to find the problems of the recognition. Firstly, we
evaluated the sub-models (syllable/cvc/phone) in two different ways: separately
and in parallel and also investigated which unit was used (syllable/consonant
cluster/phone) more often. Separate evaluation of the sub-models of the system
means that the we limit the used units by the sub-model (last three columns).
That means that if cvc sub-model is evaluated, we don’t present any full-syllable
information. The back-off to phones in the canonical transcription is used only
with the limited amount of training data. Parallel evaluations means that all
the units are presented in the canonical transcription and the system can choose
which unit to use (first and second columns).

Secondly, we improved the Gaussians initialization. It is possible to initialize
Gaussians from the phone model only and to share Gaussians only within the
same model. This improved the result on 0.5 %. The results are shown in the
third row of the table. cd-results are presented in the last line of the table.

Table 1. Results for the HMM system, WSJ, nov92, b05, phone ci-result: 6.86

syl/cvc/ph cvc/ph syl cvc ph

Syllable system, 1st iteration 6.09 7.1 6.67 7.08 8.16

Syllable system, 2nd iteration 5.66 6.46 7.01 5.58 6.87

Gaussians initialization from phone model 6.63 7.6 9.42 7.58 6.95

cd-syllable system 4.15

There are still a number of uncertainties and difficulties to solve. The main
one is the sparsity issue: for long units (such as syllables and some conso-
nant cluster) we don’t have enough training data. To solve this, we need to
have another back-off mechanism. Though, developing such a mechanism is
not a trivial task. Another uncertainty concerns the system initialization and
Gaussians distribution among units of different size. Pronunciation ambiguity
also causes some problems. Depending on the phonetic writing, there might be
several syllabification versions.
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5 Phones with Syllabic Labels

In this approach we use phones as units, but all phones get a label indicating
it’s position in a syllable or/and word. This helps to solve the sparsity issues
that we faced in the previous approach. Label is always added after the phone:
<phone>:<label>. After that we train the system as it was done with regular
phones. We worked out several labeling schemes. The first one (called SylPosit)
is a simple indication the position of a phone in a syllable.

We use 4 labels :I, :C, :F, :S to indicate initial, central, final or single
position of the phone in a syllable. For 2-phone syllables, the central label is not
used.

The rest of the labeling schemes have the same idea and are explained in
Table 2.

Table 2. Different schemes of syllabic labels

WordPosit

Position in a word; Initial Central Final I:I f:C I!:C S:C @:C n:C s:C i:F

PWPosit

Both word and syllable positions; “:CF”:
a center phone in a word and final in
a syllable. We use 8 labels (3 for
words and 4 for syllables)

I:IS f:CI I!:CF S:CI @:CC n:CF s:CI i:FF

SylPositBound

Mark only a syllable boundary; :I(initial),
:C(central), :F(final) for position in a
syllable. First phone can be marked as
:F is it is an only phone in a syllable

I:F f:I I!:F S:I @:C n:F s:I i:C

SylPositCC

Vowels :I(initial), :M(middle), :F(final),
:S(single); and consonants :O(onset),
:C(coda) in a syllable

I:S f:O I!:F S:O @:M n:C s:O i:F

SylPositVC

Position-independent vowel (:V); position
dependent consonant (initial, center,
final)

INCIDENTS I!n-s@-d@nts

I!:V n:f s:i @:V d:i @:V n:C t:C s:f

6 Modelling Syllable Boundary (SylBound)

In this approach we again use phones as basic units, but now we add syllable
boundary ([:S:]) in the phonetic transcriptions. No observations or state are
associated with it. For example:
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PREDICTION [pri[:S:]dI!k[:S:]S@n]

By adding an extra syllable boundary marker and by using tri-phones only
(looking one phone or syllable boundary marker to the left/right), the obtained
phones models are fully context-dependent within a syllable only. Phones in a
syllable initial or syllable final position are conditioned only on the presence of
a syllable boundary and no longer on the specific left/right phone.

7 Experiments and Results

Experiments were carried on the same data as in previous research (WSJ). CI
results are not presented as they are the same in all the labeling schemes. The
starting point is the cd-phone HMM system. The results are presented in the
Table 3.

Table 3. Results for WSJ experiments with phone labels.

phon WordPosit SylPosit PWPosit SylPositCC SylPositVC SylPositBound SylBound

b05 3.92 3.36 3.66 3.53 3.59 3.75 3.42 5.06

t20 7.6 7.27 7.66 7.57 7.50 7.64 7.74 8.24

The results indicate that loosing (or reducing) context-dependency informa-
tion at syllable boundaries is not a good idea. That means that it is important to
retain the phone-boundary dependency at syllable boundaries. The best results
was shown with “word position” labeling system though all of the systems gave
very similar results between each other and original phone system.

8 Discussion and Conclusions

In this research we tried two approaches for speech recognition using syllables.
The first one is modelling syllables and making the back-off to onset-vowel-
coda structure. The second one is done with labeling phones depending on their
position in a syllable/word. We also tried the approach with inserting a syllable
boundary that gave very poor results. We showed that the HMM with syllable
position dependent phones gives better accuracy result than modelling complete
syllable. The observed difference in results may be connected with the lack of
training data or unefficient gaussians initialization and estimation.

Our work is similar to the research in [9] from Google though there are a few
relevant some differences. While Liao and others take extra information about
the syllable boundary, we model the syllable in more detail. For example, in the
labeling system we model separately phones depending on the syllable position.

This system is being used as starting point for an exemplar-based system
with syllable information. It is a done because we get consistent results with a
well-established approach. This research is still carried on.
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Abstract. Spontaneous speech differs from any other type of speech in
many ways. And the presence of speech disfluencies is its prominent char-
acteristic. These phenomena are important feature in human-human com-
munication and at the same time a challenging obstacle for the speech
processing tasks. This paper reports the experiment results on automatic
detection of filled pauses and sound lengthenings basing on the automat-
ically extracted acoustic features. We have performed machine learning
experiments using support vector machine (SVM) classifier on the mixed
and quality diverse corpus of Russian spontaneous speech. We applied
Gaussian filtering and morphological opening to post-process the proba-
bility estimates from an SVM classifier. As the result we achieved F1–score
of 0.54, with precision and recall being 0.55 and 0.53 respectively.

Keywords: Speech disfluencies · Filled pauses · Lengthenings · Speech
processing · Support vector machines

1 Introduction

Speech disfluencies are common in spontaneous speech. They consist of hesita-
tions, self-repairs, repetitions, substitutions, etc. They do not add the semantic
information to the speech signal, but may play a valuable role such as helping a
speaker to hold a conversational turn or expressing the speakers thinking process
of formulating the upcoming utterance fragment [4,17].

However human language technologies are often developed for other than
spontaneous type of speech, and the occurrence of disfluencies is one of the
factors that makes the spontaneous speech processing challenging [19]. The need
of detecting them automatically emerged mainly from the problems of automatic
speech recognition (ASR): disfluencies are known to have an impact on ASR
results, they can occur at any point of spontaneous speech, thus they can lead
to misrecognition or incorrect classification of adjacent words.

Speech disfluencies occur quite often: for example, in conversational speech
in American English about 6 per 100 words are disfluent [21]. Though evidence
on filled pauses and lengthenings (jointly reffered as FPs later on) differs across
languages, genres, and speakers, on average there are several disfluencies per 100
syllables, FPs being the most frequent disfluency type [16]. According to [25] in
c© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 224–231, 2016.
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the conversational Switchboard database [7], about 39.7 % of the all disfluencies
contain a filled pause. In the corpus of Portuguese lectures LECTRA filled pauses
correspond to 1.8 % of all the words and to 22.9 % of all disfluency types being
the most frequent type in the corpus [14]. In Russian speech FPs occur at a rate
of about 4 times per 100 words, they also occur at approximately the same rate
inside clauses and at the discourse boundaries [13].

FPs exhibit universal as well as linguistic and genre specific features. FPs
are represented mainly by vocalizations with rare cases of prolonged consonants
(which was shown to be a peculiarity of Armenian hesitational phenomena [12]).
These vocalizations in FPs are usually phonetically different from the lexical
items, since they are pronounced with minimal movements of the articulatory
organs due to the articulatory economy [24]. However, it was also shown that
phonological system of the language may influence the quality of FPs vocal-
izations [6]. Even universal characteristics of FPs, such as lengthenings being
accompanied by creaky voice, may operate differently in different languages:
e.g. in Finnish it was proposed that creaky voice may indicate turn-transitional
locations [17], which is not the case for English [22].

Although the speech technologies, and particularly ASR systems, have to
account for all types of disfluencies (filled pauses, prolongations, repetitions,
deletions, substitutions, fragments, editing expressions, insertions, etc.), in the
present study we focus on the detection of the most frequent disfluent categories:
filled pauses and sound lengthenings. In this paper we present the results of
experiments on detection of FPs on the mixed and quality diverse corpus of
Russian spontaneous speech. We used an SVM classifier and two methods applied
at the stage of post-processing: Gaussian filtering and morphological opening.

2 Related Work

During last years speech disfluencies and particularly FPs have received more
attention in the field of speech processing due to speech recognition tasks: ASR
systems are usually trained on the structured data without any types of speech
disfluencies.

It has been shown that along with duration the prominent characteristic of
FPs is a gradual fall of fundamental frequency (F0) [18]: FPs tend to be low in
F0 as well as displaying a gradual, roughly linear F0 fall. In [23] it was shown
that for fair detection of FPs these two characteristics and distance to a pause
are enough. In [28] authors used duration and statistical characteristics of F0,
first three formants and energy for the experiments based on gradient decent
optimizing parameters for maximization of F1–score; achieved result was F1–
score = 0.46.

In [8], filled pauses are detected on a basis of two features (small fundamental
frequency transition and small spectral envelope deformation) using as material
100 utterances extracted from a Japanese spoken language corpus where 91.5 %
precision and 84.9 % recall were achieved. In [26] authors developed a detec-
tion system in order to improve the speech recognizer performance, achieving
precision of 85 % at a recall rate of 70 %.
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In [15] authors focused on detection of filled pauses basing on acoustic and
prosodic features as well as on some lexical features. Experiments were carried
on a speech corpus of university lectures in European Portuguese Lectra. Several
machine learning methods have been applied, and the best results were achieved
using Classification and Regression Trees. The performance achieved for detect-
ing words inside of disfluent sequences was about 91 % precision and 37 % recall,
when filled pauses and fragments were used as a feature, without it, the perfor-
mance decayed to 66 % precision and 20 % recall. Further experiments on filled
pauses detection in European Portuguese were carried out using prosodic and
obtained from ASR lexical features; the best results were achieved using J48,
corresponding to about 61 % F-measure [14].

The INTERSPEECH 2013 Paralinguistic Challenge [11] raised interest in
automatic detection of fillers providing a standardised corpus and a reference
system. The winners of the Social Signals Sub-Challenge introduced a system,
built upon a DNN classifier complemented with time series smoothing and mask-
ing [9].

In [20] authors presented a method for filled pauses detection using an SVM
classifier, applying a Gaussian filter to infer temporal context information and
performing a morphological opening to filter false alarms. For the feature set
authors used the same as was proposed for [11], extracted with the openSMILE
toolkit [5]. Experiments were carried out on the LAST MINUTE corpus of nat-
uralistic multimodal recordings of 133 German speaking subjects in a so called
Wizard-of-Oz (WoZ) experiment. The obtained results were recall of 70 %, pre-
cision of 55 %, and AUC of 0.94.

3 Material

The material we have used in this study consists of several parts. The first part
is the corpus of task-based dialogs collected at SPIIRAS in St. Petersburg in
the end of 2012 - beginning of 2013 [27]. It consists of 18 dialogs from 1.5 to
5 min, where people in pairs fulfilled map and appointment tasks. Recording was
performed in the sound isolated room. Participants were students: 6 women and
6 men from 17 to 23 years old with technical and humanitarian specialization.
Recordings were annotated manually into different types of disfluencies, the FPs
being the majority - 492 phenomena (222 filled pauses and 270 lengthenings).

For the second part of our material we used part of Multi-Language Audio
Database [29]. This database consists of approximately 30 h of sometimes low
quality, varied and noisy speech in each of three languages, English, Mandarin
Chinese, and Russian. For each language there are 900 recordings taken from
open source public web sites, such as http://youtube.com. All recordings have
been orthographically transcribed at the sentence/phrase level by human listen-
ers. The Russian part of this database consists of 300 recordings of 158 speakers
(approximately 35 hours). The casual conversations part consists of 91 recordings
(10.3 h) of 53 speakers [29]. From this Russian part we have taken the random 6
recordings of casual conversations (3 female speakers and 3 male speakers) that

http://youtube.com
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were manually annotated into FPs. The number of annotated phenomena is 284
(188 filled pauses and 96 sound lengthenings).

The third part is the corpus of scientific reports from seminar devoted to
analysis of conversational speech held at SPIIRAS in 2011. Recordings of reports
of 6 people (3 female and 3 male speakers) were manually annotated into speech
disfluencies. Since speakers didn’t base their reports on a written text, these
recordings ontain considerable amount of speech disfluencies. 951 FPs were man-
ually annotated: 741 filled pauses and 210 lengthenings.

Another part we added for making our corpus more quality and situation
diverse is the the records from the appendix No5 to the phonetic journal “Bul-
letin of the Phonetic Fund” belonging to the Department of Phonetics of Saint-
Petersburg University [1]. The 12 recorded reports concerned different scientific
topics (linguistics, logic, psychology, etc.). They were all recorded in 70s-80s in
Moscow except one that was recorded in Prague. All speakers (6 men and 6
women) were native Russian speakers, and were recorded while presenting on
conferences and seminars. The number of manually annotated FPs is 285 (225
filled pauses and 60 lengthenings).

In total, the data set we used is about 3 h and comprises 2012 filled pauses.
Distribution of FP duration over the corpus is shown on Fig. 1. The duration of
a single FP lies between 6 ms and 2.3 s, the average duration is 388 ms.

The data has been separated into two classes: “FPs” and “Other”. First one
consists of FPs only, while the other comprises the rest of the frames. Each 10th
file was selected for train set, then again each 10th - for development set, and the
rest was used as the test set. This operation was performed 10 times producing
10 different triplets of train, development and test sets.

Since the classes were not balanced (there were about 12 times more Other
instances than FPs ones) we downsampled the train set to avoid the bias towards
the class Other [20]. Thus we created subset containing randomly chosen 8 % of
the instances of the class Other and all the FPs data. To train the classifier we
use these downsampled training set.

4 Filled Pauses and Lengthenings Detection

In our study we have followed [20], basing our experiments on support vector
machine (SVM) classifier. The extreme learning machines (ELM) in our unre-
ported study shows that SVM provides better detection accuracy with better
harmonized mean of precision and recall (with ELM we got F1–score = 0.4). We
used a scikit-learn Python library [2] implementation of SVM with polynomial
kernel, that enables the probability estimates by means of C-Support Vector
Classification, the implementation is build upon libsvm [3].

The feature set is based in the set that was used for the INTERSPEECH
2013 Social Signals Sub-Challenge [11]. Features were extracted with the openS-
MILE toolkit [5] on the frame-level basis (25 ms window, 10 ms shift). This set
is derived from 54 low-level descriptors (LLDs): 14 mel-frequency cepstral coeffi-
cients (MFCCs), logarithmic energy as well as their first and second order delta
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Fig. 1. The distribution of FPs duration

and acceleration coefficients; there are also voicing probability, F0 and zero-
crossing rate, together with their deltas. For each frame-wise LLD the arithmetic
mean and standard deviation across the frame itself and eight of its neighbouring
frames (four before and four after) are used as the actual features. As the result
we have in 162 values per frame.

After training our SVM classifier, as the post-processing step we applied
Gaussian filter and morphological opening [10,20] that proved to be reasonably
efficient for improving both precision and recall rates due to the usage of con-
textual information. Both these techniques are applied in the signal and image
processing tasks for noise removal. Gaussian filter was used to smooth the spikes
and remove the outliers on the probability estimates. Morphological opening is
proved to be useful for making the detection of FPs more balanced by filter-
ing false alarms and improving F1–score [20]. The parameters for Gaussian and
morphological opening, as well as the decision threshold were determined using
grid search on the development set.

The Gaussian filter allows us ahieve 12 % improvement for F1–score (precision
rate improving by 17 % and recall rate by 5 %). Morphological opening gave us
only 2 % improvement for F1–score, precision and recall, reducing false alarm
rate. The example of dependence of results from varying decision threshold on
SVM output is shown on Fig. 2.

As the result we achieved F1–score = F1–score = 0.54 ± 0.027, with precision
and recall being 0.55 ± 0.05 and 0.53 ± 0.04 respectively. Measures on the test
set are reported in terms of mean and standard deviation over the ten evaluations
using classifiers trained on ten training subsets.
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Fig. 2. The dependence of results from decision threshold

5 Conclusion

In this paper we present the experimental results on the detection of filled pauses
and lengthenings in Russian spontaneous speech. For the purposes of this study
we have united several corpora, that differ in quality, recording sites and situa-
tions, into one corpus that was used for the experiments. We used an SVM clas-
sifier and applied Gaussian filtering and morphological opening to post-process
the probability estimates from an SVM, since these two techniques make use of
contextual information. As the result we achieved F1–score = 0.54 ± 0.027, with
precision and recall being 0.55 ± 0.05 and 0.53 ± 0.04 respectively. The future
work will be aimed at addressing the remaining problem of false positives and
false negatives by tuning SVM and introducing more contextual information.
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Abstract. Social signal detection, where the aim is to identify
vocalizations like laughter and filler events (sounds like “eh”, “er”, etc.)
is a popular task in the area of computational paralinguistics, a subfield
of speech technology. Recent studies have shown that besides applying
state-of-the-art machine learning methods, it is worth making use of the
contextual information and adjusting the frame-level scores based on
the local neighbourhood. In this study we apply a weighted average time
series smoothing filter for laughter and filler event identification, and set
the weights using genetic algorithms. Our results indicate that this is a
viable way of improving the Area Under the Curve (AUC) scores: our
resulting scores are much better than the accuracy of the raw likelihoods
produced by both AdaBoost.MH and DNN, and we also significantly
outperform standard time series filters as well.

Keywords: Social signals · Laughter and filler event detection · Time
series filter · Genetic algorithms

1 Introduction

In speech technology an emerging area is paralinguistic phenomenon detection,
which seeks to detect non-linguistic events (laughter, conflict, etc.) in speech.
One task belonging to this area is the detection of social signals, from which,
perhaps laughter and filler events (vocalizations like “eh”, “er”, etc.) are the most
important. Many experiments have been performed with the goal of detecting
laughter (e.g. [11,12]), and this task might prove useful in emotion recognition
and in general man-machine interactions. Apart from laughter, the detection of
filler events has also become popular (e.g. [14,18]). Besides serving to regulate
the flow of interaction in discussions, it was also shown that filler events are an
important sign of hesitation; hence their detection could prove useful during the
automatic detection of various kinds of dementia such as Alzheimer’s Disease [10]
and Mild Cognitive Impairment [18].

In the tasks of detecting laughter and filler events, it is well known (see e.g.
[3,6,9]) that although classification and evaluation are performed at the frame
c© Springer International Publishing Switzerland 2016
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level, it is worth making use of the contextual information and adjusting the
frame-level scores based on the local neighborhood. Gupta et al. [9] applied
probabilistic time series smoothing; Brueckner et al. [3] trained a second neural
network on the output of the first, frame-level one to smooth the resulting
scores; while Gosztolya [6] used the Simple Exponential Smoothing method on
the frame-level posterior likelihood estimates.

What is common in these studies is that first they trained a frame-level clas-
sifier such as Deep Neural Networks (DNN) to detect the given phenomena, and
then, as a second step, they aggregated the neighbouring posterior estimates to
get the final scores. It is not clear, however, what type of smoothing may prove
to be optimal. In this study we compute the weighted mean of the neighbouring
scores as a time series smoothing filter; but even with this type of aggregation,
the optimal weight values have to be determined. We treated this task as an
optimization one in the space of frame-level weights, where we seek to maximize
the Area Under the Curve (AUC) score for the phenomena we are looking for
(now laughter and filler events). To find the optimal weight values, we applied
genetic algorithms. Using the optimal filters found on the development set, we
significantly outperformed both the unsmoothed (“raw”) values and some stan-
dard time series filters of the same size on the test set of a public English dataset
containing laughter and filler events.

2 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive methods which may be used to solve
search and optimization problems [1]. The concept and mechanisms applied are
based on the genetic processes of biological organisms. Mimicking the evolution
of biological populations by selection and recombination, genetic algorithms are
able to “evolve” solutions to real world problems.

Genetic Algorithms use a direct analogy of natural behaviour. They work
with a population of individuals, each representing a valid solution to the given
problem. Each individual consists of a number of parameters (genes). To each
individual, a fitness score is assigned, which is based on how good a solution it is
to the given task. Individuals with higher fitness scores are given opportunities
to “reproduce” by “cross breeding” (crossover) with other individuals in the
population. In this way new individuals are generated that share some features
taken from each parent. Then, to each child, mutation is applied, which usu-
ally means that with a small probability (e.g. 0.001), a gene is changed to some
random value. The traditional view is that, from the two recombination steps,
crossover is the more important one for rapidly exploring the search space, but
mutation provides a small amount of random search [1]. The individuals con-
structed in this way will form the population of the next generation. Traditional
GAs start from a randomly generated population and repeat the above steps for
several generations. Lastly, the best solution will be the individual in the last
population with the highest fitness score.
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3 Experimental Setup

3.1 The SSPNet Vocalization Corpus

The SSPNet Vocalization Corpus [14] consists of 2763 short audio clips extracted
from telephone conversations of 120 speakers, containing 2988 laughter and 1158
filler events. We used the feature set provided for the Interspeech 2013 Computa-
tional Paralinguistics Challenge (ComParE, [16]). It consisted of the frame-wise
39-long MFCC + Δ + ΔΔ feature vector along with voicing probability, HNR,
F0 and zero-crossing rate, and their derivatives. To these 47 features their mean
and standard derivative in a 9-frame long neighbourhood were added, resulting
in a total of 141 features [16]. Each frame was labeled as one of three classes,
namely “laughter”, “filler” or “garbage” (meaning both silence and non-filler
non-laughter speech).

We followed the standard routine of dividing the dataset into training, devel-
opment and test sets published in [16]. As evaluation metrics, we used the method
of evaluation which is the de facto standard for laughter detection: we calculated
the Area Under Curve (AUC) score for the output likelihood scores of the class
of interest. As we now seek to detect two kinds of phenomena (laughter and
filler events), we calculated AUC for both social signals; then these AUC values
were averaged, giving the Unweighted Average Area Under Curve (UAAUC)
score [16].

3.2 Frame-Level Classification

Before applying a time series filter, first we have to somehow get a likelihood
estimate for each class and frame of the utterances. For this, we utilized two
state-of-the-art machine learning methods, which we will briefly describe below.

AdaBoost.MH. AdaBoost.MH [15] is an efficient meta-learner algorithm,
which seeks to build a strong final classifier from a linear combination of simple,
scalar base classifiers. For more complex problems, the state-of-the-art perfor-
mance of AdaBoost.MH is usually achieved using decision trees as base learners,
parametrized by their number of leaves.

We utilized an open source implementation (the multiboost tool [2]), and
followed a multi-armed bandit (MAB) setup, which can speed up training signif-
icantly. In it, for each boosting iteration step, the optimal base learner is found
using only a small subset of features, and the usefulness of these subsets are
learned from the accuracy of these basic classifiers [4]. We sampled the over-
represented “garbage” class, and included the feature vectors of 8 neighbouring
frames on each side. We then used 8-leaved decision trees as base learners, and
trained our model for 100, 000 iterations. For the details, see [7].

Deep Rectifier Neural Networks. Deep neural networks differ from conven-
tional ones in that they consist of several hidden layers. This deep structure can



Detecting Laughter and Filler Events by Time Series Smoothing 235

provide significant improvements in results compared to earlier techniques used,
but the conventional backpropagation algorithm has problems when training
such networks. For this, one possible solution is deep rectifier neural networks [5].

In deep rectifier neural networks, rectified linear units are employed as hidden
neurons, which apply the rectifier activation function max(0, x) instead of the
usual sigmoid one [5]. The main advantage of deep rectifier nets is that they can
be trained with the standard backpropagation algorithm, without any tedious
pre-training (e.g. [8]). We used our custom implementation, originally developed
for phoneme classification. On the TIMIT database, frequently used as a refer-
ence dataset for phoneme recognition, we achieved the best accuracy known to
us [17].

For the actual task, we trained our model on 31 consecutive neighbouring
frame vectors. (Due to shorter execution times, we were able to carry out more
experiments with neural networks than with AdaBoost.MH.) After preliminary
tests, we used five rectified hidden layers, each consisting of 256 neurons, and
we had neurons that used the softmax function in the output layer.

3.3 Frame-Level Likelihood Aggregation

After obtaining the frame-level likelihood estimates of our classifiers (the “raw”
scores), in the next part we will aggregate the values in the local neighbourhood
in order to improve the AUC scores. We chose the weighted form of the moving
average time series filter; that is, for a filter with a width of 2N + 1 we define
the weight values as w−N , w−N+1, . . . , wN ≥ 0 and

∑N
i=−N wi = 1. Afterwards,

for the jth frame with the raw likelihood estimate aj we calculate

a′
j =

N∑

i=−N

wiaj+i. (1)

(Here we used the simplification that, for an utterance consisting of k frames,
aj = a1 for ∀j ≤ 0, and aj = ak for ∀j > k.) We then optimized the wi weight
values using genetic algorithms. To test whether the (possible) improvements in
the AUC scores come from the actual weight vector and not from the fact that
we use some kind of aggregation, we also tested two simple approaches. In the
first one, we took the unweighted average of the raw likelihood estimates; that
is, we had wi = 1

2N+1 (constant filter). In the second approach we randomly
generated the wi values (random filter).

3.4 Applying Genetic Algorithms

We represented each time series filter by a vector of the wi weights (i.e. each gene
corresponded to a wi weight). We used filters of size of 129 (64 frames at both
sides), based on the results of preliminary tests. We supposed that the optimal
weights of the neighbouring frames are not completely independent of each other,
so we only stored one weight for every eight frames, while we linearly interpolated
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Table 1. The AUC scores for the laughter and filler events got by using the different
classification and aggregation methods.

ML method Filter type Dev. set Test set

Lau. Fil. Both Lau. Fil. Both

AdaBoost.MH — 94.0 94.9 94.5 91.9 87.9 89.9

Random 97.7 94.2 95.9 94.6 87.5 91.0

Constant 97.8 94.1 95.9 94.7 87.6 91.2

Genetic alg. 98.0 96.4 97.2 95.0 89.5 92.2

DNN — 92.9 95.5 94.2 91.3 87.9 89.6

Random 96.7 94.4 95.5 94.2 86.9 90.5

Constant 96.9 94.3 95.6 94.4 86.9 90.7

Genetic alg. 96.7 96.5 96.6 94.3 88.8 91.6

DNN + Prob. time series smoothing [9] 95.1 94.7 94.9 93.3 89.7 91.5

DNN + DNN [3] 98.1 96.5 97.3 94.9 89.9 92.4

ComParE 2013 baseline [16] 86.2 89.0 87.6 82.9 83.6 83.3

the weight values for the intermediate frames. This approach resulted in a more
compact weight vector (only 17 values overall instead of 129), which should be
easier to optimize.

We utilized the JGAP Java Genetic Algorithm Package [13]. The population
size was 250, while we evolved for 100 generations. We used averaging crossover,
while for mutation we randomly changed the value of one weight in the weight
vector (with the default probability value of 0.001). To keep the frame weight
values on the same scale, for each step we normalized each weight vector so that
the weights summed up to one. We optimized the filter of the laughter and the
filler phenomena independently; the fitness function was the AUC score of the
given phenomenon on the development set.

4 Results

Table 1 lists the output AUC and UAAUC scores we got for the two classifier
methods and the time series filter approaches. The first thing to notice is that the
raw scores (indicated by the “—” filter type) are quite competitive, compared
to the ComParE baseline, which were not smoothed over time either. As for the
two classifier methods, AdaBoost.MH performed somewhat better; the reason for
this is probably that we sampled the database during classifier model training,
therefore the distribution of the three classes (that of garbage, laughter and filler
events) was more balanced, resulting in more precise likelihood estimations for
the laughter and filler classes.

Upon examining the two basic smoothing approaches used for reference (fil-
ters “random” and “constant”), we can see that applying these approaches alone
brings a significant improvement over the raw likelihood scores. This indicates
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Fig. 1. The optimal filters found using the genetic algorithm for laughter events

that just by utilizing a smoothing filter of this width (which is over a second
long) we can noticeably improve the AUC values of the likelihood estimates.
Over these scores, however, the weight vectors optimized by the genetic algo-
rithm gives an additional 1 % gain in AUC on the test set, which, in our opinion,
justifies our approach of utilizing a weighted average time series filter over the
raw likelihood estimates, and optimizing the weights using genetic algorithm.
Of course, the width of the filter has to be set carefully, which requires further
investigation, just as the number of weights in the weight vector (recall that
now for each eight frame we optimized only one weight, while the remaining
ones were linearly interpolated). Furthermore, the application of other crossover
operators besides the averaging one (for example single point crossover, or a
crossover operator which takes the mean of neighbouring filter weight values,
therefore smoothing the whole time series filter) could be tested as well, but this
falls outside the scope of this study.

4.1 The Time Series Filters Found

Figures 1 and 2 show the time series smoothing filters got by using a genetic
algorithm for the laughter and filler events, respectively. The weight values were
scaled up to 129 times for better readability (i.e. a weight value of 1 means ave-
rage importance for the given frame). The large straight sections are due to the
linear interpolation of the intermediate frames. It can be seen that the filters are
not really smooth themselves, which is probably due to the optimization tech-
nique used. Despite this, the two filters belonging to the two different machine
learning methods are quite similar to each other for both phenomena.

The filters found for the laughter events have slightly higher weight values
around the central frame than those further away (although this tendency is
disturbed by the noise present in the weight vectors, which is probably due to
the random population initialization of GA). However, what is quite interesting is
that the first and last weight values for both machine learning methods are quite
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Fig. 2. The optimal filters found using the genetic algorithm for filler events

high, being 3–4 times the average weight. For an explanation of this phenomenon
recall that our classifier models were trained using the feature vectors of the 8-
8 and 15-15 neighbouring frames on both sides for AdaBoost.MH and DNNs,
respectively. This means that the posterior estimate provided by a DNN for the
first frame in the smoothing filter already includes some information about the
15 preceding frame, and using the likelihood estimate of the last frame we can
“peek” into the 15 consecutive frames. This makes the first and last frames in
the averaged filter more important than the inner ones, while the values of the
inner frames are redundant to some extent.

This effect is present on the time series smoothing filters found for the filler
events, although surprisingly only at the end of the filter. Here, however, the
middle frames seem to be very important, having a relative importance of about
3.5 times that of an average frame. This holds for the filters found for both
machine learning methods.

5 Conclusions

In this study, we investigated the task of laughter and filler detection. As was
shown earlier, after some frame-level posterior estimation step performed via
some machine learning method, it is worth smoothing the output likelihood
scores of the consecutive frames; so we applied a weighted averaging time series
smoothing filter. To set the weights in the filter, we applied genetic algorithms,
using the development set of a public English dataset. Our AUC scores got on
the test set significantly outperformed both the unsmoothed likelihood values
and standard time series filters of the same size.

Acknowledgments. The Titan X graphics card used for this research was donated
by the NVIDIA Corporation.
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7. Gosztolya, G., Busa-Fekete, R., Tóth, L.: Detecting autism, emotions and social
signals using AdaBoost. In: Proceedings of Interspeech, Lyon, France, pp. 220–224,
August 2013
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12. Neuberger, T., Beke, A., Gósy, M.: Acoustic analysis and automatic detection of
laughter in Hungarian spontaneous speech. In: Proceedings of ISSP, pp. 281–284
(2014)

13. Rotstan, N.: JGAP: Java Genetic Algorithms Package (2005). http://jgap.
sourceforge.net/

14. Salamin, H., Polychroniou, A., Vinciarelli, A.: Automatic detection of laughter
and fillers in spontaneous mobile phone conversations. In: Proceedings of SMC,
pp. 4282–4287 (2013)

15. Schapire, R., Singer, Y.: Improved boosting algorithms using confidence-rated pre-
dictions. Mach. Learn. 37(3), 297–336 (1999)

16. Schuller, B., Steidl, S., Batliner, A., Vinciarelli, A., Scherer, K., Ringeval, F.,
Chetouani, M., Weninger, F., Eyben, F., Marchi, E., Salamin, H., Polychroniou, A.,
Valente, F., Kim, S.: The interspeech 2013 computational paralinguistics challenge:
social signals, conflict, emotion, autism. In: Proceedings of Interspeech (2013)
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Abstract. In this article we study verbal expression of aggression and
its detection using machine learning and neural networks methods.
We test our results using our corpora of messages from anonymous
imageboards. We also compare Random forest classifier with convolu-
tional neural network for “Movie reviews with one sentence per review”
corpus.

Keywords: Word2vec · CNN · Random forest · Verbal aggression ·
Sentiment analysis · Imageboards

1 Introduction

With the development of the Internet, verbal aggression and cyberbullying have
become a problem on the Net. For example, the US government has proposed
an incentive to stop cyberbullying [2] and Russian criminal code [20] persecutes
verbal aggression both in oral and written speech, but there is no clear definition
of what is aggression and what is not. For this reason many researchers study
expression of aggression both on all levels nowadays. A lot of studies have been
devoted to the analysis of the semantic field of aggression [14] and its aspects in
multicultural communities both for written [15,17] and oral speech [13,18].

In recent years the number of works using neural network and machine learn-
ing techniques has seen a dramatic increase. While neural networks per se or
combined with machine learning methods such as Random forest [4] or SVM [5]
make it possible to discard vocabulary-based methods and to switch from these
and other similar methods requiring manual editing. That is why the field of
sentiment analysis, being already studied [7], has become even more prominent
with the advent of machine learning and neural networks as it can be efficiently
solved using these methods. Word2vec [10], glove [11] and other word vector
models have shown better results than usual bigram and trigram models and
helped to overcome the computational difficulties of larger n-gram spaces. They
provided an efficient and computationally affordable method of finding similar-
ity between different words and building semantic vector space. They require no
manual annotation, only large corpora of texts, thus any set of texts can be used
as a corpus. Skip-gram models combined with deep learning methods are widely
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used now for sentiment analysis [21], for object labeling [9] and for other NLP
tasks.

CNN neural networks first used for image object classification and detection
and other computer vision tasks, have been shown to be efficient for NLP tasks.
Kim [8] has proposed to combine CNN’s and Word2vec for sentiment analysis
tasks. His model outperformed other deep learning models for the majority of
tasks on different corpora. His model included word2vec [10] word embeddings
for every word of the text and a set of convolutional filters. Chunting Zhou
et al. [22] have showed close results to Kim’s CNN using a LSTM-model. It was
also [19] proposed to decrease the size and number of filters for such a tiny corpus
as “Movie reviews with one sentence per review” [12].

In this article we compare the results of a CNN-model with usual machine
learning techniques (Random forest) for the task of analysis of aggression.

We used a corpus of movie reviews by Pang and Lee and our tiny corpus of
aggressive imageboard messages for this task and compared the results with our
Random Forest classifier.

2 Methods and Materials

We selected imageboards (4chan.org, 2ch.hk) as the material for our tiny cor-
pus because these communities are considered to be extremely aggressive and
messages containing expression of verbal aggression are abundant there [16].
Bernstein who has conducted research on imageboard culture supports this state-
ment [3]. By verbal aggression we understand a personality trait that predisposes
persons to attack the selfconcepts of other people instead of, or in addition to,
their positions on topics of communication [6].

Movie reviews corpus is a subset of Stanford Sentiment Treebank containing
only one-sentence reviews. Data is labeled there as positive or negative (Table 1).

Imageboard aggression corpus of English messages consists of about 2000
annotated messages for Russian and English languages. Both parts consist of
about 1000 messages. They are labeled as positive or negative, neutral reviews
are removed. There is no test data, so 90 % of data was used training and 10 %
for evaluation (see Table 1). From the table we can see that the vocabulary is
much more diverse for movie reviews, while imageboards suffer from primitive
lexics.

We used a CNN model with backpropagation of embeddings (CNN-non-
static) similar to Kim’s with some adjustments suggested by Rakhlin. Thus,
we decreased the number of filter sized from 3 to 2 and However, instead of
using Google-news corpus or training word2vec vectors we used model based on
4chan.org threads with about 600-dimensional vector trained on about 1,089,000
messages and containing about 30 million words for the American corpus. For
2ch.hk and the Russian language we used our corpus of 974654 messages con-
taining 13640000 sentences, For the task of aggression classification we treated
messages as single sentences. There is also no test data, and 90 % of data was
used training and 10 % for evaluation.

http://4chan.org
http://2ch.hk
http://4chan.org
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Table 1. Comparison of movie reviews and aggressive messages corpora

Corpora Classes (N) Avg. sentence
length

Dataset (sent.) Voc. size Voc. in
model

Movie reviews 2 20 10662 18765 17121

SVAggr. (eng.) 2 19 19732 3765 3690

SVAggr. (rus.) 2 13 5101 1030 989

Movie reviews is a corpus of on sentence per movie review, SVAggr.(eng.) is
the corpus of American anonymous messages, SVAggr.(rus) is the corpus of
Russian anonymous messages

Other CNN models were trained to compare the results. We also tried to use
some language features to improve CNN-predictions. As linguistic information
we used preprocessed part-of-speech (POS) tags. Tags were gained using nltk
library. Its efficiency rate is between 88 % and 94 % [1]. These tags were combined
in another convolutional network (CNN POS). We tried to implement these
tags into a neural model, so we added another neural model in parallel and
then merged its results with the neural network that uses embeddings (CNN-
non-static). CNN-neural network that used word embeddings into a final neural
network. We tried several models for the POS neural network.

For the Random forest classifier, first, we chose a set of words and phrases
using our background knowledge of typical expressions for aggressive messages.
Then after clearing and tokenizing raw data we computed features F used for
Random forest training and evaluation:

F1,i = {f1 f2, ..., fi}, (1)

where {f1, f2, ..., fi} is a set features for sentences {s1, s2, ..., si} and

ḟn = {∑z
i=1(w2v({w1, w2, ..., wz})),mean(w2v(sn)),

max(w2v(sn)) −min(w2v(sn)), len(sn))}, (2)

where sn is a sentence with words {w1, w2, ..., wz} and w2v is a function that
computes distance between a given word and a chosen set of aggressive words
and phrases for sentence sn, len is a length of the sentence sn.

3 Results and Discussions

Results of CNN-based and Random forest models are listed in Table 2. Random
Forest classifier outperforms CNN-based methods for aggression detection task
for the English language. It can be a result of overfitting, although train and
test sets are not mixed and properly divided. Also it is possible to consider that
word2vec distance performs well enough for the task of aggression detection and
that features were selected successfully or that concatenating sentences is not
effective. Moreover, with the increase of the set, the results are prone to worsen
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Table 2. Results of CNN and random forest classificators

Classifier MR (%) Verb. Aggr.
(eng.) (%)

Verb. Aggr.
(rus.)

Random forest 58.39 88.4 59.13

CNN-non-static 81.1 81.39 66.68

CNN (POS) 80.9 81.17 62.37

CNN-non-static, CNN (POS) combined 81 81.22 64.53

MR - Movie reviews corpus, Verb. aggr. (eng.)- is a corpus of American image-
board messages annotated with consideration of containing or not state of
aggression, Verb. Aggr. (rus.) is the corpus of Russian anonymous messages

because more types of aggression will be included and it will be expressed in
other wording. We can see that it performed poorly for movie reviews classifi-
cation task, also we failed to select a good set of feature words. Moreover, as
said by Chunting Zhou [8] a simple SVM algorithm with hand-crafted features
outperformed more robust and complicated models, however, it requires manual
featuring.

We also supported the results of the article by [19]. It is asserted there that
the result of the work by Kim is caused not by the amount and complexity of
convolutional layers. So Kim’s model may be greatly simplified without affecting
the performance. We should also admit that Kim says himself that the philosophy
of his work is that pretrained deep learning features work well for other tasks as
well and asserts it in conclusion as well.

Also using not a Google news word2vec model, but a model from another
domain having substantial vocabulary did not affect the results.

Adding POS-tags did not help to improve the results. At first we tried usual
recurrent network, it gained decent 76 % after the 5th epoch for the aggression

Fig. 1. The structure of neural networks. On the right is a branch using POS-tags, on
the left is CNN with word-embedding vectors
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detection corpus, however, it overfitted soon after it. Then we tried the same
model as used for the word2vec embeddings. The only difference was that we
changed word2vec embeddings with random coefficients, it helped to get decent
81.1 % for the same task, almost the same as with using word2vec embeddings.
After that, we tried to combine two models, unfortunately, we increased the
results above the threshold of CNN-rand model that used nothing besides part-
of-speech tags only a little (see Fig. 1).

4 Conclusion

In this article we have considered ways of automatic determining of state of
aggression. We used two classifiers for this task and later compared them. We
used Random forest classifier and a convolutional neural network for this task.
They were tested on two different corpora: “Movie reviews with one sentence
per review” containing positive and negative movie reviews and a 2-language
Anonymous imageboards corpus annotated whether a message is aggressive or
not. Random forest classifier surpassed CNN for the task of detecting aggression
for the English language, however, the gap between two classifiers is very sig-
nificant for the task of sentiment analysis of movie reviews and Random forest
performed poorly for the Russian language. That is why convolutional neural
network (and deep learning, in general) classifiers are considered more perspec-
tive and promising. We also tried implementing linguistic features, such as part
of speech tagging, but it did not lead to better results. However, the results are
promising and in future works we will continue their implementation.
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Abstract. In the paper, we describe a research of DNN-based acoustic modeling
for Russian speech recognition. Training and testing of the system was performed
using the open-source Kaldi toolkit. We created tanh and p-norm DNNs with a
different number of hidden layers and a different number of hidden units of tanh
DNNs. Testing of the models was carried out on very large vocabulary continuous
Russian speech recognition task. We obtained a relative WER reduction of 20 %
comparing to the baseline GMM-HMM system.

Keywords: Deep neural networks · Acoustic models · Automatic speech
recognition · Russian speech

1 Introduction

Investigations of combining artificial neural networks (ANNs) and hidden Markov
models (HMMs) for acoustic modeling were started between the end of the 1980s and
the beginning of the 1990s [1]. At present the usage of ANNs in automatic speech
recognition (ASR) becomes very popular because of increasing performance of
computers.

For acoustic modeling, ANNs are often combined with HMMs using hybrid and
tandem methods [1]. In the hybrid method, ANNs are used for estimating the posterior
probabilities of an HMM state. In the tandem method, outputs of ANNs are used as an
additional stream of input features for HMM-GMM (Gaussian Mixture Models) system.

In this paper, we present a study on deep neural network (DNN) based acoustic
models (AMs) for Russian speech recognition. For training and testing the speech
recognition system we have used the open-source Kaldi toolkit [2]. The Kaldi software
is written in C++ and based on the OpenFST library, and uses BLAS and LAPACK
libraries for linear algebra. There are two implementations of DNNs in Kaldi. The first
one is Kerel’s implementation [3]. It supports Restricted Boltzmann Machines (RBM)
pre-training, stochastic gradient training using graphics processing units (GPU), and
discriminative training. The second implementation is Dan’s implementation [4]. It does
not support Restricted Boltzmann Machine pre-training; instead a method similar to the
greedy layer-wise supervised training [5] or the “layer-wise backpropagation” [6] is
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used. For the given research, we have chosen the latter DNN implementation because
it supports parallel training on multiple CPUs.

The paper is organized as follows. In Sect. 2 we give a survey of various DNNs
acoustic modeling, in Sect. 3 we give a description of DNN-based AMs in our Russian
speech recognition system, in Sect. 4 we present our own training and test speech
corpora, finally experiments on speech recognition using DNN-based AMs are presented
in Sect. 5.

2 Related Works

In many recent papers, it was shown that DNN-HMM models outperform traditional
GMM-HMM models. In [7], context-depended model based on a deep belief network
for large-vocabulary speech recognition is presented. Deep belief networks have undir‐
ected connections between the 2 top layers and directed connections to all other layers
from the layer above. In that research, a hybrid DNN-HMM architecture was used; it
was shown that DNN-HMM model can outperform GMM-HMMs and the authors have
achieved a relative sentence error reduction of 5.8 %.

In [8], context-depended DNNs-HMMs (CD-DNN-HMMs) are described. CD-
DNN-HMMs combine ANN-based HMMs with tied-state triphones and deep-belief-
network pre-training. Efficiency of the models was evaluated on the phone call tran‐
scription task. The application of CD-DNN-HMMs has reduced the word error rate
(WER) from 27.4 % to 18.5 %.

An application of the tandem approach to acoustic modeling is presented in [9]. The
input of the network was a window of successive feature vectors. Training of the network
was performed according to the standard procedure that is used for a hybrid DNN-HMM
system. Then extracted features were fed to the GMM-HMM system. The training was
performed according to the standard expectation-maximization procedure. The authors
have obtained a relative WER reduction of 31 % over baseline MFCC and PLP acoustic
features with the context-independent models.

In [10], the possibility of obtaining the features directly from DNN without a conver‐
sion of output probabilities to features suitable for GMM-HMM system was researched.
Experiments with the use of a 5-layer perceptron in a bottle-neck layer were conducted.
After training the DNN, the outputs of the bottle-neck layer were used as features for
GMM-HMM system for speech recognition system. There was obtained the reduction
of WER comparing to the system with probabilistic features, as well as the reduction of
model size because only a part of the network was used.

A research of DNN for acoustic modeling for large vocabulary continuous speech
recognition (LVCSR) was also presented in [11]. In this paper, the authors have
conducted an empirical investigation on what aspects of the DNN-based AM design are
most important for performance of a speech recognition system. It was shown that
increasing model size and depth is effective only up to a certain point. In addition, a
comparison of standard DNNs, convolution NNs and deep locally untied NNs was made.
It was found out that deep locally untied NNs perform slightly better.
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In [12], the Kaldi toolkit was used for DNN-based children speech recognition for
Italian. Karel’s and Dan’s DNN training was explored. Speech recognition results
obtained using the Karel’s implementation were slightly better than the Dan’s DNN, but
both implementations significantly outperformed non-DNN configuration.

The Kaldi toolkit was used for Serbian speech recognition in [13]. The DNN models
were trained using the Karel’s implementation on a single CUDA GPU. Depending on
the test set a relative WER reduction of 15–22 % comparing to the GMM-HMM system
was obtained.

In [14], Kaldi was used in conjunction with PDNN (Python deep learning toolkit)
developed under Theano environment (http://deeplearning.net/software/theano/). The
authors used Kaldi for training GMMs. DNN was trained with the help of PDNN, and then
obtained DNN models were loaded into Kaldi for speech recognition. Four receipts were
described in [14]: DNN Hybrid, Deep Bottleneck Feature (BNF) Tandem, BNF+DNN
Hybrid, convolution NN Hybrid.

A continuous Russian speech recognition system with DNNs was described in [15].
The DNNs were used to calculate probabilities of states for a current observation vector.
The speech recognition was performed with the help of finite state transducers (WFST).
Feature vectors were represented as a sequence of characters, which were used as an
input to the finite state transducer. In that paper, it was shown that the proposed method
allows increasing speech recognition accuracy comparing to HMMs.

Another research of DNN for Russian speech recognition system is presented in [16],
where a speaker adaptation method for CD-DNN-HMM AM was proposed. GMM-
derived features were used as an input to DNN. There was obtained a relative WER
reduction of 5 %–36 % on different adaptation sets comparing to the speaker-independent
CD-DNN-HMM systems.

DNN-based acoustic modeling using Kaldi for Russian speech is presented in [17].
The authors applied the main steps of the Kaldi Switchboard recipe to one Russian
speech database. The obtained results of speech recognition were compared with those
for English speech. The absolute difference between WERs for Russian and English
speech was over 15 %. So, the authors have proposed two methods for spontaneous
Russian speech recognition, namely i-vector based DNN adaptation and speaker-
dependent bottle-neck features, which provided 8.6 % and 11.9 % relative WER reduc‐
tions respectively.

3 DNN-Based Acoustic Modeling for Russian ASR

A general architecture of the DNN-HMM hybrid system is presented in Fig. 1. The DNN
is trained to predict posterior probabilities of each context-depended state with given
acoustic observations. During decoding the output probabilities are divided by the prior
probability of each state forming “pseudo-likelihood” that is used in place of the state
emission probabilities in the HMM [18].
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Fig. 1. Architecture of the DNN-HMM hybrid system [1]

The first step in training DNN-HMM model is to train GMM-HMM model using
training data. The standard Kaldi receipt for DNN-based acoustic modeling consists of
the following steps:

– feature extraction (13 MFCCs can be used as the features);
– training a monophone model;
– training a triphone model with delta features;
– training a triphone model with delta and delta-delta features;
– training a triphone model with Linear Discriminative Analysis (LDA) and Maximum

Likelihood Linear Transform (MLLT);
– Speaker adapted training (SAT), i.e. training on feature space maximum likelihood

linear regression (fMLLR) adapted features;
– training the final DNN-HMM model.

The DNN-HMM model is trained using fMLLR-adapted features; the decision tree
and alignments are obtained from the SAT-fMLLR GMM system. We have tried DNNs
with two types of nonlinearities (activation functions): tanh and p-norm. The p-norm
generalization was proposed in [18], it is calculated as follows:
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where vector x represents a small group of inputs. The value of p is configurable. In [18],
it was shown that p = 2 provides better results. The output layer is softmax layer with
output dimension equal to the number of context-depended states (1609 in our case).
The DNN was trained on top of FMLLR features. The system was trained for 15 epochs
with the learning rate varying from 0.02 to 0.004 and then for 5 epochs with a constant
final learning rate (0.004).

4 Training and Test Speech Datasets

For training and testing the Russian ASR system we used our own Russian speech
corpora recorded in SPIIRAS. The training speech corpus consists of two parts; the first
part is the speech database developed within the framework of the EuroNounce project
[19]. The database consists of 16,350 utterances pronounced by 50 native Russian
speakers (25 men and 25 women). Each speaker pronounced a set of 327 phonetically
rich and meaningful phrases and texts. The second part of the corpus consists of record‐
ings of other 55 native Russian speakers. Each speaker pronounced 105 phrases: 50
phrases were taken from the Appendix G to the State Standard P 50840-95 [20] (these
phrases were different for each speaker), and 55 common phrases were taken from a
phonetically representative text, presented in [21]. The total duration of the entire speech
corpus is more than 25 h.

To test the system we used a speech dataset of 500 phrases pronounced by 5 speakers
[19]. The phrases were taken from the materials of one Russian on-line newspaper that
was not used in the training data.

The recording of speech data was carried out with the help of two professional
condenser microphones Oktava MK-012. The speech data were collected in clean
acoustic conditions, with 44.1 kHz sampling rate, 16-bit per sample. The signal-to-noise
ratio (SNR) is about 35 dB. For the recognition experiments, all the audio data were
down-sampled to 16 kHz. Each phrase was stored in a separate wav file. Also a text file
containing orthographical representation (transcription) of utterances was provided.

5 Experiments with DNN-Based AMs

ASR was performed with the n-gram language model trained on Russian text corpus of
on-line newspapers [22] using Kneser-Ney smoothing method [23]. The language model
was created using the SRI Language Modeling Toolkit (SRILM) [24]. For Russian
speech recognition 150 K vocabulary was used. Phonetic transcriptions for the words
from vocabulary were made automatically by applying a set of G2P rules [25, 26].

At first, we made experiments using the GMM-HMM AMs. The obtained results are
presented in Table 1.

Then, we made experiments on Russian speech recognition using the DNN-based
AMs. We have created some DNNs with a different number of hidden units. Our DNNs
with the tanh function have 3–5 hidden layers with 1024–2048 units in each hidden layer.
The speech recognition results obtained with these tanh DNN-based AMs are presented
in Table 2. The obtained results show that the number of layers has only slightly influence
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on speech recognition results. The best result was obtained when DNN with 6 hidden
layers and 1024 units in each hidden layer was used. Increasing the number of hidden
units led to increasing the WER, it can be caused by small amount of training data.

Table 2. WER with tanh-based DNN-HMM models (%)

Number of hidden layers Number of units in each hidden layer
1024 2048

3 22.58 24.10
4 21.87 24.25
5 21.91 23.11
6 21.80 22.70

For the p-norm DNNs, there is no parameter of hidden layer dimension. Instead,
there are two other parameters: (1) p-norm output dimension and (2) p-norm input
dimension. The input dimension needs to be an exact integer multiple of the output
dimension; normally a ratio of 5 or 10 is used [18]. We have tried p-norm DNNs with
input/output dimensions of 2000/200 and 4000/400 respectively. The obtained results
are presented in Table 3.

Table 3. WER with p-norm DNN-HMM models (%)

Number of hidden layers Input/output dimension
2000/200 4000/400

3 20.99 22.66
4 21.61 23.41
5 21.48 23.33
6 20.30 23.69

The lowest WER was achieved with the p-norm DNN, it was equal to 20.30 %. It
was obtained using the DNN with 6 hidden layers and input/output dimension of
2000/200.

6 Conclusion and Future Work

We have studied some DNN-based AMs for continuous Russian speech recognition with
very large vocabulary using the Kaldi toolkit. We have experimented with DNNs with
two types of nonlinearity (tanh and p-norm), different numbers of hidden layers and

Table 1. Speech recognition results with the baseline GMM-HMM models

AM WER %
Triphone model with deltas 30.30
Triphone model with deltas and delta-deltas 30.04
LDA_MLLT 28.88
SAT_fMLLR 25.32
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hidden units in tanh-based DNNs. The speech recognition experiments showed that the
best results were obtained with the p-norm DNN-based AM. The relative WER reduction
was 20 % comparing to the baseline system with fMLLR features (the absolute WER
reduction was 5 %). In further research, we will investigate some other DNN’s config‐
urations as well as make experiments with tandem models.
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Abstract. Statistical parametric speech synthesis conventionally utilizes deci-
sion tree clustered context-dependent hidden Markov models (HMMs) to model
speech parameters. But decision trees are unable to capture complex context
dependencies and fail to model the interaction between linguistic features.
Recently deep neural networks (DNNs) have been applied in speech synthesis
and they can address some of these limitations. This paper focuses on the
prediction of phone durations in Text-to-Speech (TTS) systems using feedfor-
ward DNNs in case of short sentences (sentences containing one, two or three
syllables only). To achieve better prediction accuracy hyperparameter opti-
mization was carried out with manual grid search. Recordings from a male and a
female speaker were used to train the systems, and the output of various con-
figurations were compared against conventional HMM-based solutions and
natural speech. Experimental results of objective evaluations show that DNNs
can outperform previous state-of-the-art solutions in duration modeling.

Keywords: Speech synthesis � Deep neural network � Hidden markov model �
Duration modeling

1 Introduction

With state-of-the-art text-to-speech (TTS) systems high quality, intelligible artificial
speech can be generated. However the naturalness of synthesized speech is still below
the levels of human speech [1]. One of the key aspects that makes machine speech
sound unnatural or inadequate is the generated synthetic prosody. Studies on the
dimensions of perceptual speech quality found that naturalness of voice and prosodic
quality are correlated [2, 3]. Sound duration is an important prosodic feature that
contributes not only to naturalness but to the meaning of speech also. The influence
duration has on naturalness and intelligibility of speech has been extensively studied
[4]. Explicit modeling of speech-sound durations in statistical parametric speech syn-
thesis improves the naturalness of synthetic speech [5].

In the last decade among statistical parametric speech synthesis methods the hidden
Markov model (HMM) based approach [6] has become the most promising and it went
through significant improvements. The open source HMM-based speech synthesis
system (HTS) [7] uses context dependent decision tree clustered hidden semi Markov
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models (HSMMs) with Gaussian duration distributions. The quality of HMM-based
systems is limited by state-level averaging across differing linguistic contexts that can
degrade the naturalness of synthesized speech [8]. Decision trees are inefficient at
modeling complex and specific dependencies between linguistic features, and model
parameters are learned only on a subset of the training material [9, 10]. In order to
improve duration modeling, multi-level duration models were introduced where pho-
neme- and syllable-duration distributions were also taken into account [11]. Although
this approach improves duration prediction there is much space for improvements.
Deep neural networks (DNNs) can overcome the limitation of the modeling ability of
HMMs and they can achieve significantly better performance than decision tree clus-
tered HMMs [9, 12]. Besides feed-forward DNN-based acoustic modeling [9] there
have been investigations with promising results utilizing deep belief networks [13],
unidirectional [14] and bidirectional [15] long short-term memory recurrent neural
networks (LSTM-RNNs).

In this paper we investigate the use of feed-forward neural networks for duration
prediction for short sentences in Hungarian speech synthesis. In the study utterances
with only one, two or three syllables are considered as short sentences. Phoneme
durations are context dependent [16] and the sound durations are highly dependent on
the length of the given word and utterance [17]. Intelligibility is highly degraded in the
Hungarian HMM-based framework due to the state-level inherent averaging addressed
earlier. In this study we investigate if DNNs are capable to model these kind of
utterances better.

The rest of the paper is organized as follows. Section 2 describes the architecture
and methods used to train the DNN, together with the assessment of a HMM-based
system used as a baseline in the study. The parameter optimization and the performed
evaluation is presented in Sect. 3 including the results of objective assessments. Sec-
tion 4 summarizes the work and describes future directions.

2 Methods

2.1 Database

The Hungarian PPSD (Parallel Precision Speech Database) corpus [18] contains
recordings from 14 (7 male and 7 female) speakers. This corpus contains 1992 sen-
tences that were selected from different novels. The aim of the corpus was to cover all
possible different sound transitions, thus the database is considered phonetically bal-
anced. The original corpus was expanded with 522 additional sentences in earlier
studies. The extension contains one, two and three syllable sentences in equal pro-
portion. The PPSD corpus with the extension contains 2514 utterances per speaker (3 h
of speech on average). The recordings were annotated and segmented using HMM
forced alignment. The resulting segmented database thereafter was corrected and
refined manually based on auditory and visual inspection of the waveforms. The
combined automatic and manual methods allow us to use it as a reference in com-
prehensive studies. To compare the HMM and DNN-based duration prediction for
short sentences 2 speakers (1 male, 1 female) were selected from this corpus. For DNN
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duration modeling [19] introduced robust statistical methods to overcome the issues
caused by the errors and excess variation in common databases. These statistical
methods were not applied in this study, since this database was manually corrected to
be suitable for speech synthesis.

2.2 HMM Training

In this study we wanted to compare the modeling capability of HMM and DNN
statistical methods for duration prediction. Three different voices were trained for both
speakers. Two speaker adapted voices: in the first case the adaptation corpus contains
500 utterances with normal length denoted in the study by HMM-NO. The second
adaptation corpus contains 400 short sentences and 100 normal length sentences
(HMM-SH). Besides these, a speaker dependent voice was trained with 2300 sentences
for both speakers (HMM-SI). The feature vectors consist of 39 mel-cepstral coefficients
(including the 0th coefficient), log(F0), and aperiodicity measures with their dynamic
features. Decision tree-based context clustering was used with context dependent
labeling applied in the Hungarian derivative of HTS 2.3beta [20]. Independent decision
trees are built for the spectral and excitation parameters, and for duration also, using a
maximum likelihood criterion.

2.3 DNN Training

In this study we focused on using feed-forward deep neural networks. The input
features to train the network are introduced in Table 1 together with the output features.
The training samples were randomly shuffled and both input and output features were
transformed. The input features were standardized to zero mean and unit variance,
while the output feature was normalized between 0.01 and 0.99. Due to its robustness
as an optimization function we employed Adadelta [21]. This optimization function
gives the opportunity to adaptively control the learning rate, and instead of accumu-
lating all past gradients, the window size for accumulation is fixed. It is able to handle
noisy gradients well, converges fast and can handle a number of data representations.
The loss function used during training was the mean squared error function. In hidden
layers we used parametric rectified linear units (PReLUs) [22] as an activation function.
PReLUs can adaptively learn the shape of activation function and this additional
parameter means negligible computational overhead compared to non-parametric rec-
tifiers. In the output layer linear activation was applied. Between hidden layers
orthogonal weight initialization was used and in case of input-hidden and
hidden-output layers Glorot weight initialization [23] was performed. In order to avoid
feature co-adaptation, after each layer (except the output layer) dropout with 50 %
probability was applied during training. To avoid overfitting early stopping regular-
ization was used with patience set to 50 epochs.
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3 Evaluation

During the evaluation durations predicted by decision tree clustered HSMMs were
compared to DNN predicted ones. In case of DNNs the training, validation and test
data were 80, 14 and 6 percentage of the corpus, respectively. In order to find the
optimal hyperparameter set, we performed optimization with manual grid search. In the
optimization step only the number of hidden layers, number of neurons and minibatch
size parameters were taken into account, other hyperparameters were set according to
the previous section. In this phase the number of hidden layers, the number of neurons
and minibatch size were set between 1..7, 64..2048, 16..256, respectively. Altogether
89 training cycles were performed with the female and 74 with the male corpus. The 4
best combinations of hyperparameters in case of both the female and the male voice
together with the validation mean squared error are shown in Table 2.

Table 1. Input and output features of the deep neural network of this study

Feature
type

Feature # Type

Input Quinphone 5*68 One-hot
Forward/backward position of actual
phoneme/syllable/word/phrase in
syllable/word/phrase/sentence

4*2 Numerical

Number of phonemes/syllables/words/phrases in the
previous/current/next syllable/word/phrase/sentence

4*3 Numerical

Number of phonemes/syllables/words in the current
sentence

3 Numerical

The previous/current/next phoneme is a vowel of a short
sentence

3 Binary

Total number of input features: 366
Output Duration 1 Continuous
Total number of output features: 1

Table 2. The 4 best performing hyperparameter sets as a result of manual grid search

Voice # of Layers # of Neurons Minibatch Epochs MSE

Female 7 900 128 292 0.0029671
5 1024 128 230 0.0030813
5 1800 64 317 0.0030924
7 2048 128 142 0.0031296

Male 7 750 64 126 0.0030007
5 2048 128 147 0.0030062
3 1024 64 65 0.0030277
5 1024 128 230 0.0030813
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3.1 RMSE and Correlation

After hyperparameter optimization we measured the RMSE and correlation between
the sound durations of the natural utterances and those predicted by the HMM and
DNN-based methods. The measurements were done on the 5 percent test data selected
during the DNN training. Neither the DNN, nor the HMM training corpus included the
utterances that were present in the test set. The test set contained 120 short sentences
and 30 utterances with normal length.

The RMSE values for normal length and short sentences are shown in Fig. 1. In
case of normal length sentences it can be seen, that DNN-based duration prediction in
case of the female speaker resulted slightly better and in case of the male speaker
slightly worse results, but the difference between the measured error values are not
statistically significant. If we consider only predicted durations for segments in
prominent words the DNN based solution outperforms all the HMM-based ones, but
the difference is still not statistically significant. Nevertheless in case of short sentences,
DNN-based prediction resulted significantly (p < 0.05) lower errors than any
HMM-based voice. It is also worth mentioning that while the differently trained
HMM-based voices resulted in relatively similar results for both male and female
voices, the measured error values are lower for the female voice with DNN-based
duration prediction. This may occur as a consequence of the selected voice talents
unique characteristics. While the female speaker is a trained professional announcer,
the male speaker has no such qualifications.

The correlation values are shown in Fig. 2. The results here are also presented
separately for normal length and for short utterances. In general DNN-based duration
prediction resulted in both cases and for both speakers significantly (p < 0.05) higher
correlation values than any HMM-based solutions. An important result is clearly visible
in case of short sentences: while HMM-based systems could not perform equally for
both of the speakers, DNN-based prediction resulted in consistently high values. Based
on the results of this objective evaluation we concluded that the selected contextual
features are appropriate to train DNNs for duration prediction, but there is still room for
improvements.

Fig. 1. RMSE between natural and predicted durations in case of normal length (left) and short
(right) sentences for both speakers
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3.2 Mean Durations

In a comprehensive study Olaszy [17] found that speech sound durations are related to
the syllable count of the utterance. An inverse proportion can be observed between the
two quantities in natural speech. The fewer syllables a sentence contains, the longer the
mean phoneme duration becomes. In order to evaluate if the investigated approaches
follow this behavior, we measured the mean durations for vowels and consonants
separately for each system. The results are summarized in Table 3.

Generally we can see that both HMM and DNN-based methods were able to
capture the syllable count dependency of durations, but at different rates. All three
HMM-based voices for both speakers resulted in significantly shorter sound durations
in case of short sentences than expected. This may produce degraded intelligibility for
these utterance in synthetic speech. It is also worth mentioning that for male voice
HMM-SI preformed the best approximation, while for female voice the speaker
adapted HMM-SH system. It can also be seen that HMM-based prediction of sound
durations in short sentences performed significantly better for the female voice,
regardless of the used training method. In contrast, DNN-based prediction tends to

Fig. 2. Correlation between natural and predicted durations in case of normal length (left) and
short (right) sentences for both speakers

Table 3. Mean duration values in [ms] for the systems under study, separated by speaker and
utterance length (No.-Normal, Sh.-Short), compared to natural speech

Natural 
speech

HMM-
NO

HMM-
SH

HMM-SI DNN

Fe
m

al
e No.

V 101.9 103.3 104.5 101.1 109.6
C 70.6 70 71.1 69.8 74.7

Sh.
V 176.7 138.3 148.5 137.7 174.9
C 114.9 95.5 97.5 85.1 113.9

M
al

e No.
V 85.1 82.6 83.7 82.2 96.1
C 65.5 65.3 65.8 67.9 74.6

Sh.
V 153 105.2 111.3 122.8 162.4
C 101.6 83.5 86.4 93.8 109.9
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predict longer durations for both vowels and consonants in normal length sentences
than expected. In this preliminary study no subjective evaluation was performed, but in
order to determine how such a behavior affects the perceived naturalness, further
studies are necessary. If we only consider short sentences it can be seen, that DNN
prediction is much closer to natural speech than any of the HMM-based ones. Similarly
to the RMSE evaluation, we can see that DNN prediction performs better for the female
voice, the mean sound durations are closer to natural ones. Based on this comparison
we concluded that DNNs are able to capture the duration changes in short sentences
and they outperform traditional HMM-based prediction for both speakers.

4 Conclusions and Future Work

The aim of our preliminary study was to evaluate the DNN-based duration prediction to
synthetize short sentences. The results show that the selected contextual features are
suitable for DNN-based duration prediction. For normal length sentences the trained
DNNs could reach the modeling performance of previous state-of-the-art HMM-based
solutions. However if the results are discussed with taking into account only prominent
parts DNNs can outperform HMMs in these type of sentences. However further
evaluation is necessary to address the phenomenon. Nevertheless DNNs outperformed
HMM-based solutions regarding duration prediction for short sentences. Duration is
predicted with lower error rates and higher correlation in this case. Although results of
the objective evaluation show improvements, subjective preference tests are necessary
for assessing the possible naturalness improvement.

One limitation of the feed-forward DNN-based acoustic modeling used in this study
is that the sequential nature of speech is ignored. In order to overcome this issue, and to
further improve duration modeling we plan to apply different architectures such as long
short-term memory recurrent neural networks. In addition involve further contextual
features that could further improve duration prediction for short sentences.
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Abstract. The goal of the study is to compare emotional speech and vocaliza‐
tions of 3-years old healthy children (control) and children with neurological
disorders (risk), brought up in families and children from the orphanage (depri‐
vation). Audio and video recording of the child’s speech and behavior were made
in model situations, designed to evoke the emotional expressions of children
during interaction with their mothers and the experimenter. Perceptual analysis
was conducted to estimate the possibility of child’s emotional state recognition
when listening the child’s speech and vocalizations by groups of native speakers:
parents, experts, adults who do not have their own children. Native speakers have
been attributed child’s utterances to the state of comfort, discomfort, neutral and
to clarify the emotional state as anger, fear, sadness, happiness, surprise, calm.
The acoustic characteristics of the child’s speech and vocalizations: pitch values,
the range of pitch values, duration of utterances, duration of vocalizations and
stressed vowels, formant frequencies were measured. Dialogues of children with
mothers and experimenter were described for evaluation of the level of the child’s
speech mastering. Phonetic analysis of child’s emotional utterances was made.
Differences in recognition of emotional state between groups of children were
revealed: native speakers identified emotional state in the voice of healthy chil‐
dren grown up at families better than in orphans’ voice, whereas experts recog‐
nized emotional state better compared to parents and adults without experience
of interaction with their own children. The communication between children of
risk and deprivation groups and adults is obstructed due to the features of the
acoustic characteristics of their emotional speech.

Keywords: Emotional state · Orphanage · Acoustic features · Perceptive analysis ·
Neurological disorders

1 Introduction

The child begins to manifest an emotional state from the moment of birth in facial
expression and vocalizations. Adults able to detect gradations of emotions listening
two months old child’s vocalizations [1]. Age and emotion-related changes are
studied during first year of child’s life by acoustic analysis [2]. Infant’s cries features
are studied on the base of their perception by adults and acoustic analysis [3]. The
study of acoustic characteristics of early vocalizations and speech of children up to
the age of three years is difficult, because high values and variability of the pitch
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make automatic measurements inaccurate [4]. However, at the present time research
on speech based automatic recognition of child’s emotional state is carried out, but
most of them is devoted to the speech of children older than 5 years [5, 6]. Such
studies of younger children, especially on the material of the Russian language are
single [7].

The determination of the acoustic features of child’s emotional speech and vocali‐
zations could be useful for early diagnostics of emotional disorders in children [8]. At
the present time much attention is paid to study of acoustics of emotional manifestations
in the speech of children with different disorders: autistic children [9], children with
cochlear implants [10]. As a course of these researches, our study is aimed at comparing
of emotional speech and vocalizations features of 3-years old healthy children and chil‐
dren with neurological disorders, brought up in families and children from the
orphanage.

2 Method

Participants in the study were Russian healthy children (n = 15) brought up in families –
control group; children with light neurological disorders diagnosed after birth (P.91.8 - ICD
10, n = 10) from families – risk group; children (F83 - ICD 10, n = 10) brought up in an
orphanage (Child Home) – deprivation group. The age of children was 36 months. Audio
registration of mother-child (control and risk group) and experimenter-child (deprivation
group) dialogues at play with toys and book reading model situations, designed to evoke
the emotional expressions of children, was made by the digital recorder “Marantz
PMD660” with external microphone “SENNHEIZER e835S”. Two experts with profes‐
sional experience of work with children selected typical for the child’s age and group
utterances, which were pronounced by children at the discomfort, neutral and comfort state
(by viewing video and using recording protocol). There were 90 utterances – speech
samples of children: 30 for each investigated group (10 in each state). Then native speakers
listened speech samples organized in the test sequences. Native speakers had to deter‐
mine: 1. child’s state as discomfort, comfort, neutral; 2. emotional state of child as anger,
fear, sadness, gladness, surprise, and calm. Native speakers were selected in three groups:
experts (n = 5) with professional experience of work with child’s speech, parents (n = 5,
age 37 ± 6) and auditors - adults without their own children (n = 95, age 18.4 ± 2). Spec‐
trographic analysis of speech was carried out in the Cool Edit (Syntrillium Soft. Corp.
USA) sound editor. We evaluated the duration of utterances, maximum (F0 max) and
minimum (F0 min) pitch values and variability of pitch (the difference between maximum
and minimum values: F0 max - F0 min) in utterance; stressed vowels’ and their stationary
fragments’ duration, pitch (F0) and formant frequencies (F1, F2).

Ethical approval was obtained from the Ethics Committees (Health and Human
Services, HHS, IRB 00003875, St. Petersburg State University).
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3 Results

3.1 Speech Level of Children from Control, Risk and Deprivation Groups

Speech level of 3-years old children from a control, risk and deprivation groups signif‐
icantly differ. Analysis of dialogues of children with their mothers and with experimenter
(for deprivation group) revealed that replicas of children could be represented by sound
combinations (vocalizations and syllables), separate words, simple phrases, and
constructions of several phrases. Simple phrases occurred more often in speech of the
control group children. Separate words were most frequent in speech of risk group chil‐
dren. Sounds combinations prevailed in the speech of deprivation group children. On
the base of phonetic analysis the number of different consonants in children’s utterances
that could characterize the complexity of child’s articulation was calculated. Amount of
different consonants in the utterances of deprivation group children was lower than in
the utterances of risk and control groups children. Deprivation group children used 9
different consonants in discomfort, 11 in neutral and 10 in comfort state. Risk group
children used 14 different consonants in all states. Control group children used 14
different consonants in discomfort, 19 in neutral and 18 in comfort state. Children of
control and deprivation group used in discomfort state less different consonants than in
neutral and comfort state.

So the assessment of the level of speech development in children allowed to choose
the utterances that are typical for children of investigated groups in different states for
future perceptive and acoustic analysis.

3.2 Recognition of Discomfort, Comfort and Neutral State of Children by Native
Speakers: Experts, Parents and Auditors

Experts recognized child’s state on the base of listening of the child’s speech samples
better than other native speakers. The average recognition accuracy in a group of experts
was 84% at children of the control group, 75% at risk group and 68% at deprivation
group. So errors in experts answers were mainly connected with recognition of state in
deprivation group children: speech samples uttered by children in comfort state were
recognized as neutral (Table 1).

Table 1. Confusion matrices for state recognition of children from control, risk and deprivation
groups by experts, amount of responses (%).

 State Groups
Control Risk Deprivation
disc neutral comf disc neutral comf disc neutral comf

disc 92 6 2 64 14 22 84 14 2
neutr 12 78 10 4 84 12 16 74 10
comf 8 10 82 4 20 76 10 48 42

Experts correctly recognized with perception rate 0.75–1.0 state in 80 % speech
samples at control group children, 67 % at risk group children, and 53 % at deprivation
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group children. Though experts in some utterances defined incorrectly with high percep‐
tion rate (0.75–1.0) state of risk group children (single discomfort speech samples were
described by experts as comfort) and deprivation group children (single comfort speech
samples were determined as neutral).

The average recognition accuracy of children’s state by parents was 67 % at control
group, 67 % at risk group and 54 % at deprivation group. Most mistakes in state classi‐
fication were associated with attribution of comfort state to neutral state. Neutral state
more often was recognized by parents as a comfort than discomfort state in control and
risk groups. In deprivation group neutral state was attributed as discomfort and comfort
state with equal probability (Table 2). Parents correctly recognized with perception rate
0.75–1.0 state in 57 % speech samples at control group children, 53 % at risk group
children and 30 % at deprivation group children. Parents incorrectly recognized with
perception rate 0.75–1.0 single comfort speech samples as neutral and neutral speech
sample as comfort in the control group, single discomfort and comfort speech samples
as neutral in the risk group. Parents made more kinds of errors with speech samples of
deprivation group children: single discomfort samples were recognized with perception
rate 0.75–1.0 as comfort, comfort samples as neutral, and neutral samples as comfort
and discomfort.

Table 2. Confusion matrices for state recognition of children from control, risk and deprivation
groups by parents, amount of responses (%).

State Groups
Control Risk Deprivation
disc neutral comf disc neutral comf disc neutral comf

disc 70 20 10 60 16 24 56 26 18
neutr 14 64 22 4 72 24 22 54 24
comf 0 34 66 4 30 68 4 48 48

The average recognition accuracy in group of auditors (young people without their
own children) was 63 % at control group, 58 % at risk group and 55 % at deprivation
group. Errors in classification were connected mainly with the determination of neutral
speech samples as comfort (Table 3).

Table 3. Confusion matrices for state recognition of children from control, risk and deprivation
groups by auditors, amount of responses (%).

State Group
Control Risk Deprivation
disc neutral comf disc neutral comf disc neutral comf

disc 72 11 17.5 57 15 28 70 15 15
neutr 12 44.5 43.5 11 53 36 22 39 39
comf 11.5 15 73.5 9 21 70 12 33 55

Auditors recognized with perception rate 0.75–1.0 state in 40 % speech samples at control
group children, 30 % at risk group children, and 23 % at deprivation group children.
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As a whole discomfort and comfort state are recognized rather than a neutral state
in the control group. Neutral and comfort state are recognized well in the risk group. All
native speakers recognized rather discomfort state than comfort state in deprivation
group. Experts and parents recognized with perception rate 0.75–1.0 discomfort,
comfort and neutral speech sounds of children. Auditors could not recognize unambig‐
uously (with perception rate 0.75–1.0) speech sounds uttered by children in a neutral
state.

3.3 Recognition of Base Emotional States of Children by Native Speakers

Experts and parents mainly described discomfort speech samples as sadness and anger.
Neutral samples were mainly described as calm; rarely as sadness or gladness. Comfort
speech samples were attributed as gladness in control and risk groups, but as calm in
deprivation group. Experts and parents did not answer “I don’t know” about the child’s
emotional state. Auditors (without their own children) attributed discomfort speech
samples as sadness and anger, but a large number of responses were fear. Neutral
samples were mainly determined as calm, but also as sadness in control and risk groups
and surprise in deprivation group. Comfort speech samples were determined as gladness
and calm in control and risk groups, and as calm, gladness and surprise in deprivation
group (Table 4). Answer surprise was given by auditors more frequently in deprivation
group children than in other groups.

Table 4. Amount of auditors’ responses (%) in emotional state recognition task.

state
state

group
anger fear sadness gladness surprise calm don't

know
disc control 32.5 21 25 4 12,5 5 0

risk 26 11 33 13 10 4 3
deprivation 28 21 24 7 13 5 2

neutr control 3 3 21 10 16 47 0
risk 1,5 3 15 13,5 13,5 51.5 2

deprivation 12 8 10 13 23 32 2
comf control 3 4 6 55 8 23 1

risk 6 2 6 58 11,5 16.5 0
deprivation 5 4 10 25 24 31 1

In this task with perception rate 0.75–1.0 experts recognized emotional state in 70 %
speech samples at control group children, 63 % at risk group children, and 47 % at
deprivation group children; parents recognized emotional state in 43 % speech samples
at control group children, 50 % at risk group children, and 17 % at deprivation group
children; auditors recognized emotional state in 23 % speech samples at control group
children, 20 % at risk group children, and 13 % at deprivation group children.
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3.4 Acoustic Features of Speech and Sounds Uttered by Children in Discomfort,
Neutral and Comfort State

Speech samples correctly recognized by at least one group of native speakers as discom‐
fort, comfort or neutral state were analyzed spectrographically for the estimation of their
acoustic features underlying successful recognition.

The speech samples correctly recognized as discomfort is characterized by higher
pitch values (pitch of stressed vowels, maximum and minimum pitch values in an utter‐
ance) and duration of stressed vowels than comfort and neutral speech samples. Lowest
values of these characteristics were in neutral speech samples. Comfort speech samples
are characterized by high values of second formant and common duration of utterances
(Table 5). The tendency to decrease of stressed vowels’ stationary fragments was
revealed in comfort samples versus discomfort samples. Pitch contour of vowels from
discomfort samples was mainly falling. The rising pitch contour of stressed vowels was
more common in comfort speech samples. Flat and falling pitch contours were more
typical for neutral state speech samples.

Table 5. Differences in the acoustic features of speech samples correctly recognized by native
speakers as comfort, neutral and discomfort.

Number Features Differences
1 T utterance C>N>D
2 T vowel D>C>N (D>N**, D>C*)
3 T stationary fragment D>N>C
4 F0 max D>C>N (D>N***, D>C*)
5 F0 min D>C=N (D>N**, D>C**)
6 F 0 stressed vowel D>C=N (D>N**, D>C**)
7 F1 D>C>N (D>N*)
8 F2 C>D>N (C>N*)

Note: D-discomfort, C – comfort, N-neutral state. Comparing of the corresponding
features of states D, C, N. Measured values: > - higher, < - lower, = - equal. * - p < 0.05,
** - p < 0.01, *** - p < 0.001 – Mann-Whitney test.

Comparing of the acoustic features of speech samples unambiguously attributed by
at least one group of native speakers (perception rate 0.75–1.0) as sadness and anger
revealed differences between these emotional states. Speech samples attributed as anger
have higher values of minimum pitch in utterance, duration, pitch and formant frequency
values of stressed vowels than sadness. Speech sample recognized with high perception
rate as a surprise is characterized by the high value of pitch range of stressed vowel and
high maximum pitch.

It is important to note that instrumental analysis of all test material revealed differ‐
ences between groups of children. The acoustic features, which underlie the allocation
of speech samples to discomfort, neutral and comfort state categories, more realized in
the speech samples of the control group children. Thus neutral and comfort speech
samples were not differed in pitch values of stressed vowels and in maximum pitch
values of utterances in risk group children. The duration of stressed vowels and
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maximum pitch values in the comfort and neutral speech samples of deprivation group
children were not differed. The formant triangle of vowels of the control group children
constructed for stressed vowels from discomfort, neutral and comfort speech samples
occupy different positions on two-formant plot. The formant triangle of vowels for
discomfort speech samples of the control group children is shifted to high frequency
region of two-formant plot than the formant triangle of vowels for neutral speech
samples (Fig. 1). The formant triangle of vowels for the discomfort and comfort speech
samples of risk group children are located on the joint area of two-formant plot. All three
formant triangles of vowels of deprivation group children are located on the common
area of two-formant plot.

The connection between the perception rate and acoustic features for every state was
revealed (Spearman Correlation, Multiple Regression analysis).

Fig. 1. The formant triangles of vowels (medians) of children. Perceptive bounds for adult
Russian vowels. A – data for control group; B – risk group; C – deprivation group. Bold black
lines – discomfort, dropped lines – neutral, thin line – comfort.

4 Discussion and Conclusion

Significant differences were revealed between experts and auditors - adults without their
own children: experts recognized state of children better. Parents detected emotion state
of children better than the auditors, but worse than the experts. In other studies [11] no
differences were found between the results for parents and nonparents in cry perception.
We can assume that professional and parental experience plays a role in the recognition
of emotions in the speech of 3-years old children. The results showed differences in
recognition of emotional state between groups of children: native speakers identified
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emotional state in the voice of healthy children grown up at families better than in
orphans’ voice. These results are consistent with the facts about emotional development
problems in children from the orphanage. Orphanage staff did not respond to vocaliza‐
tions and other attempts to attract their attention by children that leads to a mismatch of
interaction between nurses and children. In our work, discomfort state was recognized
better both for children from deprivation group and for children from control groups.
That is in line with previous studies about better recognition of discomfort emotional
state reflection in the voice of adults, children, chimpanzees [8]. Neutral and comfort
state is recognized well in risk group children that could be interpreted as specificity of
children’s behavior reactions. So it was shown that very preterm infants with neurolog‐
ical problems demonstrate at the age of 12 month the level of facial and vocal joy the
same as heathy full-term children, but the very preterm born infants exhibited higher
levels of positive motor activity [12]. The communication between children of risk and
deprivation groups and adults is obstructed due to the features of the acoustic charac‐
teristics of their emotional speech. These data could be used in the future as an additional
criterion for diagnostic of emotional development disorders, also in systems of automatic
recognition of the child’s emotional state and developmental risks by child’s voice.

Acknowledgements. This study is financially supported by the Russian Foundation for Basic
Research (projects N 15-06-07852a, 16-06-00024a).
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Abstract. Stress annotations in the training corpus of speech synthesis systems
are usually obtained by applying language rules to the transcripts. However, the
actual stress patterns seen in the waveform are not guaranteed to be canonical,
they can deviate from locations defined by language rules. This is driven mostly
by speaker dependent factors. Therefore, stress models based on these corpora
can be far from perfect. This paper proposes a waveform based stress annotation
technique. According to the stress classes, four feedforward deep neural networks
(DNNs) were trained to model fundamental frequency (F0) of speech. During
synthesis, stress labels are generated from the textual input and an ensemble of
the four DNNs predict the F0 trajectories. Objective and subjective evaluation
was carried out. The results show that the proposed method surpasses the quality
of vanilla DNN-based F0 models.

Keywords: Text-to-speech · TTS · Deep learning · Deep neural networks · F0 ·
Ensemble learning · Stress annotation

1 Introduction

For training statistical parametric speech synthesis systems a speech corpus is required
that contains utterances from a natural speaker, the phonetic transcriptions of the utter‐
ances and additional metadata is defined automatically or annotated manually. Prosodic
stress is one of these features. While the importance of prosodic stress in human conver‐
sations is unquestionable, in speech corpora usually this feature is calculated automat‐
ically based on the phonetic transcriptions.

Generally, language rules unambiguously define the positions where prosodic stress
should occur, however, even in case of planned speech, the location of stress greatly
depends on the speaker. Thus it is likely to observe a high number of mismatches
between the prosodic and syntactic stress labels. Therefore the statistical models neglect
stress labels and attempt to model the emphasized parts based on other features, like the
position of the current phoneme/syllable/word within the actual syllable/word/sentence.
The result is synthetic prosody with monotonous, slight stress patterns. To improve the
pitch variance (and thus the emphases) the first and second derivatives of the funda‐
mental frequency can also be modeled and used during speech parameter generation [1],
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as well as global variance [2]. However the prosodic stress in synthetic speech probably
will still have low correlation with the actual stress model of the original speaker.

Another approach is to annotate prosodic stress in speech corpora manually. The disad‐
vantage of this solution is the relatively high cost of manual stress annotation and it is also
very time consuming. Furthermore, human work introduces subjectivity. For example,
inter-annotator agreement scores using ToBI annotation are usually found between 70–80 %
for pitch-accents in English [3]. Our experience shows that the interpretation of syntax
greatly influences manual annotators, even if they are high-qualified experts.

Given these difficulties of stress annotation, and the fact that even manual labelling is
ambiguous (consensus labeling results in about only 80 % overlap) a method that predicts
prosodic stress extracted from audio could be effective for speech synthesis systems.

In this paper, an automatic stress labelling approach is used [4], which relies on
acoustic-prosodic parameters. Regarding prosodic stress, the smallest unit which by
definition contains one and a single stress is called phonological phrase. The idea of
stress detection is to perform a Viterbi-alignment for phonological phrases, and then
locate the stressed syllable within each phrase. In case of Hungarian, which is stressed
on the first syllable, the stress occurs at the left edge of the phonological phrase. The
Viterbi alignment requires a pre-trained set of phrase models, which are HMM/GMMs
having fundamental frequency and energy as input features. Labelling the text-to-speech
corpus with this approach is shown to augment naturalness of synthesized speech [4],
and the accuracy of stress detection is fairly comparable to inter-annotator agreement
rates (75–90 % depending on the exact setup) [5].

This paper is organized as follows: in the next section the waveform inspired stress
model is introduced, and the general deep neural network based F0 modeling technique
is described. Next a novel deep ensemble based F0 model is proposed and eventually,
the stress annotation from transcripts for F0 trajectory generation is shown. In Sect. 3
objective and subjective evaluation, including a CMOS (Comparison Mean Opinion
Score) listening test, take place. Finally, in Sect. 4, the conclusions are drawn.

2 Proposed Method

Our proposed method for modeling the fundamental frequency (F0) of human speech
uses an ensemble of Deep Neural Network (DNN) models. Properly assembled
ensemble models have been shown to outperform single-model deep learning solutions
in several cases [6]. During this research, a single Multi-Layer-Perceptron model was
trained and compared against an ensemble model which consists of four smaller Multi-
Layer-Perceptron networks.

The main idea was that each network in the ensemble specializes on modeling the
F0 frequency at a distinct stress level. Unlike in the case of the single, larger model,
where the stress level appears just as a single input to the neural network, the training
database of the networks were split into four parts before training, based on the stress
level obtained directly from the waveform. Each of the four networks represents a
different stress level, and was trained on its appropriate part of the database. In realistic
text-to-speech use case scenarios, waveform based stress levels are not available,
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therefore all the testing was performed with stress levels produced by applying the
language rules. During the testing of the ensemble model, the ensemble member network
from which the given frame is obtained is chosen based on the stress level.

2.1 Waveform Inspired Stress Model

The waveform inspired automatic stress labelling approach relies on an automatic
phonological phrasing of speech. Exploiting the fact that phonological phrases carry one
and a single stressed syllable each, this latter should be identified within the phrase once
the phrase boundaries are known. In fixed stress Hungarian, the stressed syllable follows
the onset phrase boundary, as stress is realized always on the first syllable (if present,
as usually not all words are stressed in an utterance).

Phonological phrasing is obtained by Viterbi alignment using a phonological phrase
model set (Hidden Markov Models with Gaussian Mixture Models). The model set
consists of 7 different models, including silence. The remaining 6 models model phono‐
logical phrases with different properties regarding the strength of the stress and the
following intonation contour. The overall approach is documented in [7] in detail. For
the current application, the intonation contour is irrelevant (at this stage) only the
strength of the stress is extracted to derive a 3 level stress labelling schema: unstressed,
stressed and strongly stressed syllables are differentiated. These levels correspond to the
levels used by stress labelling based on text (transcripts). Indeed, we know syllable
boundaries from a phone level segmentation, and compute phonological phrase boun‐
daries by the Viterbi alignment. The first syllable in a phrase gets a stressed or a strongly
stressed marking (depending on the detected phrase type), the remaining syllables get
an unstressed label.

2.2 Single Deep Neural Network Based F0 Modeling

Recently deep neural network based solutions became widespread in the field of artificial
speech synthesis. Various test architectures were presented [8, 9] using either Recurrent
Neural Networks (RNN) or feedforward neural networks. When working with feedfor‐
ward models, deep MLP networks are often used for modeling the fundamental
frequency (F0) of human speech. Input and output data for the networks are usually
collected from the transcription of recorded waveforms. Our training database consisted
of the transcripted form of 1984 short declarative sentences. Obtaining reference F0
values from the waveforms is possible with pitch extractors. In this research, the SWIPE
software [10] was used with the resolution of 5 ms per frame. The extracted sequence
is non-continuous, since F0 is not defined for unvoiced phonemes, therefore a linear
interpolation of the unvoiced frames of the sentences was implemented before training.

Training a deep MLP requires supervised learning techniques and a labeled database
of input-output pairs. In this research, each model was trained using mini-batch gradient
descent with Nesterov accelerated gradient [11]. Early stopping and a 30 % dropout was
used in each training case. The input array contained information about phonemes with
context using the quinphone model and 25 numerical features. The single model used
an extra input feature, the stress level itself. The output of the networks were the natural
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logarithm of the F0 value, and a binary voiced/unvoiced flag. For training, the input
features were transformed to have a mean of zero, and unit variance, the output features
were minmax scaled between 0.01–0.99.

Several network architectures were trained and compared against each other. For the
single feedforward model, a network with 3 hidden layers where each layer contains
3000 neurons gave the best results. The hidden layers used ReLU as an activation func‐
tion, the output layer was equipped with a sigmoid activation.

2.3 Ensemble Deep Neural Network Based F0 Modeling

The main goal of an ensemble model is to improve output performance by creating
smaller, more specialized networks whose aggregated knowledge may result in a better
performance. This approach is especially useful when dealing with sparse signal
modeling. In the case of F0 modeling, training data with higher prosodic stress level is
significantly less frequent in the database, therefore a large, single model is likely to
ignore the effect of these data elements, resulting in a reduced performance of the whole
model. To address this problem, an ensemble of four smaller feedforward networks was
trained on different parts of the training database. The distinction was performed
according to the prosodic stress levels. During testing, each ensemble member calculated
its associated frames, again based on the prosodic stress levels. The end result was
compiled from these frames. Each ensemble member model had the same 3 hidden layer
architecture, but it contained only 1000 neurons in each hidden layer. The learning
strategy, and the input-output values were also the same.

2.4 Stress Annotation from Text

After the F0 models are trained, in the evaluation phase, the stress annotations are deter‐
mined from the input text. First morphological and syntactic analysis and preprocessing
is performed. Then a dependency grammar is used for further analysis [12]. Stress
annotation is performed based on the results of this analysis. Generally, four levels of
stress are distinguished:

1. Very strong stress. It is assigned based on an exception list, typically covering
contrastive negation.

2. Strong stress, also assigned based on an exception list (different than in case of very
strong stress).

3. Medium stress assigned by linguistic rules. The basic principles are the following:
a. Sentence initial words are medium stressed with predefined exceptions.
b. All words following an article or conjunction word ‘és’ (‘and’) are medium

stressed.
c. All words following a comma have medium stress–exceptions may apply based

on a list.
d. The last word of a sentence is never medium stressed.

Neutral stress (unstressed) form.
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The details of these stress categories can be found in [13]. In current paper the first and
second stress categories are merged, consequently 3 levels of stress are distinguished:
strongly stressed, stressed and neutral. This way the stress levels predicted from the text
for evaluation is in accordance with the waveform inspired stress levels, which were
introduced in Sect. 2.1.

3 Evaluation

In the evaluation part single and ensemble DNNs were trained as described in Sects. 2.2
and 2.3. For training a female speaker was selected from the Precisely Labelled
Hungarian Database (PLHD) containing 1984 sentences [14]. Precise labelling refers to
manually corrected phonetic transcription and phone boundaries. In this research declar‐
ative sentences were investigated only. The training, validation and test data were the
70, 20 and 10 percentage of the corpus, respectively. In the evaluation part phone dura‐
tions from natural utterances were used for the temporal information of the input vector.
The spectral parameters were also obtained from the natural utterances. The F0 trajec‐
tories were generated by the different DNN models. The stress annotation of the input
sentence was calculated according to Sect. 2.4. The deep neural networks introduced in
Sect. 2 was implemented in Keras deep learning framework [15], and the calculations
were done on high performance NVidia GPUs.

Both in subjective and objective evaluation three systems were involved: (1) vocoded
natural utterances; (2) vocoded natural utterances with F0 trajectories generated by
single deep neural networks; (3) vocoded natural utterances with F0 trajectories gener‐
ated by ensemble deep neural networks. The three systems will be referred to as NAT,
SINGLE and ENSEMBLE throughout the evaluation.

3.1 Objective Evaluation

To get an objective picture of how the two approaches (single model versus the ensemble
model) perform during evaluation, Pearson correlation (Eq. 1) was calculated on the
sentences of the testing database twice:

(1)

First, the correlation between the NAT and the SINGLE trajectories, then the corre‐
lation between the NAT and the ENSEMBLE was calculated. A higher value shows a
better fit to the natural trajectory of the sentence. The results show that in approximately
61 % of the sentences, the ensemble model had a slightly worse Pearson value than the
large model. The remaining 39 % of the sentences gave a larger Pearson value for the
ensemble model. The differences between the two models were very small, 75 % of the
sentences had a difference of the Pearson correlation smaller than 0.05.
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To better understand the differences between the two systems, the F0 trajectories of
test sentences were plotted. These sentences were not part of the training corpus. An
example sentence can be seen in Fig. 1. The blue line shows the NAT system (reference),
the green shows the SINGLE configuration, and the red is the ENSEMBLE model.
Frames between 500 and 800 are of particular interest, since these show the benefits of
using the ensemble model. This part of the trajectory has a large prosodic stress, and the
ensemble model is able to provide much better result than the single configuration.

Fig. 1. An example F0 trajectory (Color figure online)

3.2 Subjective Evaluation

In order to measure the perceived improvement in intonation modeling with deep
ensemble models compared to single deep neural networks a CMOS (Comparison Mean
Opinion Score) type listening test was carried out [16]. In this listening test the subjects
had to compare pairs of utterances in a three level scale if the first or second utterance
has more emphases. Altogether, 72 utterances were included in the test (1 speaker × 3
types × 24 sentences). Before the test, listeners were asked to listen to an example from
the male speaker to adjust the volume. The utterances were presented in a randomized
order (different for each participant). Altogether 16 listeners participated in the test (5
females, 11 males). All subjects were native Hungarian speakers, between 22–70 years
(mean: 36 years). On average the test took 8 min to complete. The CMOS scores of the
listening test are presented in Fig. 2.

Fig. 2. The results of the CMOS listening test
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The results of the listening test show that deep ensemble outperformed the single
model when the intonation of natural utterances was compared to deep ensemble and to
single feedforward deep neural network separately (NAT-SINGLE versus NAT-
ENSEMBLE). However, when the ensemble was directly compared to the single model
significant preference was not traceable (SINGLE-ENSEMBLE).

4 Conclusions and Discussion

The results of objective and subjective evaluation show that the deep ensemble models
trained with waveform-driven stress annotations can produce more precise F0 trajectories
and emphases than the vanilla DNN intonation model. The enhancement generally occurs –
according to the test samples – in the first emphasis of the declarative sentences – that is the
sentence stress in Hungarian. Thus we can conclude, that the deep ensemble model helps to
approach the natural sentence stress.

Naturally there is space for improvements. Continuous F0 with Maximum Voices
Frequency excitation model has been proven to produce more natural F0 trajectories
than the vanilla vocoder [17]. Introducing uni- and bidirectional Long Short-Term
Memory (LSTM) networks to intonation modeling is expected to further increase the
quality of the stress model. Furthermore the effect of dynamic components besides
the static F0 values to the proposed stress model is planned to be investigated as well.
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Abstract. User interfaces to access mobile and handheld devices usually incor‐
porate touch screens. Fast user responses are in general not critical, however,
some applications require fast and accurate reactions from users. Errors and
response times depend on many factors such as the user’s abilities, feedback types
and latencies from the device, sizes of the buttons to press, etc. We conducted an
experiment with 17 subjects to test response time and accuracy to different kinds
of speech-based auditory stimuli over headphones. Speech signals were spatial‐
ized based on stereo amplitude panning. Results show significantly better
response times for 3 directions than for 5, as well as for native language compared
to English, and more accurate judgements based on the meaning of the speech
sounds rather than their direction.

Keywords: Speech stimuli · Spatial sound · Response time · Mobile device

1 Introduction

Reaction times to different auditory stimuli are important in many cases, especially when
dangerous situations arise and users have to act and respond as quickly and reliably as
possible [1–3]. Such situations include both real safety issues and simulated scenarios.
Good examples are flight and combat simulators, driving assistance systems, auditory
games, and alarm systems [4–9]. The relative importance of fast reactions and precision
varies depending on the application: sometimes errors are less important than the reac‐
tion itself, while in other cases, errors are required to be small, and longer response times
are tolerated.

Reaction time depends on the measurement setup, first of all on the auditory stimuli
(signal type) and the device itself. Furthermore, additional information such as vibration,
or spatialization of sound can influence the results. In general, visual information cannot
be relied upon when testing auditory performance. However, in practice contradictory
information via concurrent sound sources or spatial information can also influence the
outcome.

Selection of sound types to respond to is one of the key elements during the design
of any audio feedback-based system. Loudness, length and type play a significant role
[10–17]. If it is required to recognize the sound itself, recognition (processing) time adds
to the time needed for physical perception. In the case of speech commands, subjects
have to wait and “understand” what to do, but the same is also true in the case of iconic
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sounds, such as auditory icons, alarms etc. which produce a minimum limit of temporal
and spectral cues for perception.

Focusing on speech, short iconic commands can be used in some scenarios. If reac‐
tion time is a key issue, long sentences are insufficient. One-syllable words indicating
directions, interference etc. are well-suited and even applicable for non-native speakers.
Thus, one of the main drawbacks of speech (language dependence) can be eliminated
or reduced. Speech is a special signal even if it is of iconic length [18–22]. Sounds with
meaning–independent of whether they are intuitive (auditory icons) or have to be learned
(earcons)–are meant to also be processed based on the meaning and not just based on
the sound’s physical parameters. Meaningless sounds, such as noise signals, sinusoidal
samples are the same over time and fully active from the beginning of playback. On the
other hand, speech samples can differ according to the first vocals. Meaningless sounds
can be sonified based on their physical parameters, e.g. sinusoidal signals with different
frequency or loudness can initialize different actions [20].

Regarding the equipment, the device collecting the responses also influences
response time. The required reaction can be any kind of movement (e.g. turning a wheel
or pressing a button) or speech input. Most generally, users are required to press a button,
such as a key on a keyboard, a mouse button, or some other button on dedicated equip‐
ment or on a virtual touch-screen. The actual recorded response time is always a summed
value of the reaction of the subject and the latencies of the device. This latency may or
may not be important. For example, when it is approximately the same for all subjects,
it can be deducted from the results.

As mobile and handheld devices often incorporate touch-screens, reaction times can
be evaluated separate from other hardware devices. Our former experiment compared
reaction times using smartphones and a dedicated hardware architecture to test various
acoustic stimuli [23, 24]. This focused mainly on sinusoidal and noise signals, and as
expected, reaction times were higher in the case of a touch-screen. However, the same
tendencies and preferences were observed among the signal types. This paper presents
more recent results using speech excitations from two languages (Hungarian and
English), prompting users through short commands to press different buttons in different
directions on the touch-screen. Sound is also spatialized in the horizontal plane using
stereo panning, and this spatialization can be in alignment or in contradiction with the
meaning of the speech commands. The experiment was aimed at testing whether subjects
use the spatial information or the meaning of the speech in their judgements. Further‐
more, error rates in case of 3 and 5 directions should be evaluated.

2 Measurement Setup

For testing, an Android-based application was developed and installed on a Samsung
mobile device (Samsung Galaxy S2 smartphone) [24]. During operation, users listen to
speech commands indicating various directions and buttons on the touchscreen that have
to be accessed based on the direction of the sound source. Each subject performed the
following tests in the same order:
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3-direction Hungarian
5-direction Hungarian
3-direction English
5-direction English
3-direction Hungarian (mixed–source directions differed from commands)
3-direction English (mixed–source directions differed from commands)

Each test consisted of a minimum of three runs of 10 trials (in randomized order).
In the case of three directions, possible answers were left, right and front (see Fig. 1).
In the case of five directions, left middle and right middle directions were added. In the
first four tests, speech commands were in alignment with the simulated direction of
sound source. All samples were pre-recorded TTS samples in Hungarian and English
suing the same engine [25]. Stereo amplitude panning was applied as follows:

• “left” is 90 degrees to the left, so that only the left speaker of the headphone is active,
• “right” is 90 degrees to the right, so that only the right speaker of the headphone is

active,
• “front” is in the middle, so that each speaker contributes 50–50 % to the mono-aural

signal
• “left front” and “right front” are simulated 45 degrees to the left and right respec‐

tively, with appropriate percentages contributed from each of the speakers.

Fig. 1. Feedback on correctness and measured time delay following a test question.

In tests 5 and 6, the simulated direction was different from that indicated by the
speech sample (e.g. the sample “left” was played back from the right or from the middle).
In all cases, users had to indicate the direction of the sound source. The number of errors
and response times were collected. Furthermore, gender, age and a unique ID were
recorded for each test subject.
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In the application, different environmental parameters can be set. For this test, an
idle time of 2 s between each sample (pause time) was set. The maximum (random)
delay before playing back a sound was also 2 s. Thus, after responding to one sound, a
random delay between 2–4 s was inserted before the next sound. If the response time
was greater than 5 s the test was aborted. If all 10 questions were answered, the results
(number of errors, response times for each direction and user data) were saved in CSV
format.

17 test subjects (8 males and 9 females) participated in the test, all of whom were
native Hungarian speakers. One full testing procedure including all 6 tests took about
20-25 min for one subject. The Sennheiser HD 595 headphone was used. Playback level
was set to equal loudness for all subjects.

3 Results

In the tests 17 participants (min. age 20, max. age 40, mean age 25.7) participated. In
total, 3350 answers were collected. Out of this number, 184 were incorrect (5,5 %). The
largest error statistics were obtained on test 5 (67) followed by test 6 (24)–i.e. the mixed
tests in Hungarian and English. Figure 2 shows the number of errors for these two tests.

0

20

40

1 2 3

Error Sum Compare

Fig. 2. Number of errors for the first three answers in tests 5 and 6 (blue Hungarian, red English).
(Color figure online)

Mean and SD values for response times are shown in Table 1. Results larger than
2,5 s in case of 5 directions and larger than 1,75 s for 3 directions were deleted as outliers.
For statistical analysis a Kolmogorov-Smirnov test was performed for normality,
followed by ANOVA. ANOVA could be performed on the four 3-direction tests and
results were controlled by paired Welch T-tests as well. Table 2 and Fig. 3 show corre‐
sponding ANOVA results.
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Table 1. Mean and SD values for response times.

Eng mixed Hun mixed Eng 5 Eng 3 Hun 5 Hun 3
Mean 0.89 0.99 1.35 0.85 1.0 0.82
SD 0.21 0.31 0.41 0.23 0.24 0.24

Table 2. ANOVA table for the four 3-direction tests.

SS df MS F Prob > F
Groups 10.99 3 3.66 69.83 4.38e-43
Error 1.12e + 02 2143 0.0525
Total 1.23e + 02 2146

Fig. 3. Boxplot for the ANOVA based on Table 2.

4 Discussion

As results indicate, 5,5 % of total error was measured. This was strongly biased by the
mixed version tests, so if we extract these, the total error is reduced to 2,8 %. Based on
the normality tests, after filtering the outliers, all results could be analyzed with ANOVA.

Comparing English and Hungarian 5-direction tests through the Welch T-test, the
response times for English were significantly worse (slower) than for Hungarian
(p = 7,3e-05). The same comparison for 3-direction tests showed a similar result: the
Hungarian test was significantly better (p = 6,7e-04).

Based on Fig. 2, most of the errors were due to the shift in the test from regular to
mixed. As the first mixed test was in Hungarian, subjects tended to answer the first
question based on the meaning rather than the direction. It took 2-3 questions to accom‐
modate and after this, both Hungarian and English test errors were around the mean
value. This conclusion is also supported by the response times, i.e. the English version
was significantly faster (p = 1,4e-10), but we assume that this effect is mainlydue to the
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fact that the Hungarian test was performed first, followed by the English version. On
the other hand, it also seems somewhat likely that even when test subjects answered
correctly, the meaning of the speech commands still had an influence on their reactions.
First, error rates were generally higher in the mixed as opposed to the normal tests.
Second, in the case of 45-degree directions, subjects waited for a relatively longer time,
so as to hear the second part of the speech sample (as in “straight right”). Table 1 shows
the mean and SD values of the response times in the tests.

We can also compare the 3-direction regular test with the mixed ones. As expected,
for both languages, the regular test results are significantly faster and better than the
mixed tests’ results (p = 2,1e-04 for English; p = 1,5e-24 for Hungarian). Comparing
all results, the best was achieved in the 3-direction regular Hungarian (test 1). Mean
response times of about 0,8–0,9 s were measured for three directions, and 1–1,3 s for
five directions. Native Hungarian samples were detected faster, meaning that subjects
still made their judgements based on the meaning and not on the direction, even if they
were clearly instructed to rely only on the latter. This is also supported by the mixed
tests, where response times were higher and errors more frequent.

Our conclusion is that stereo panning can be used for directional simulation, but by
increasing the possible directions, both error rates and reaction times increase. Given
more options, subjects need more processing time and have to “think” about making the
correct judgements based on the directions of the stimuli only.

Future work will include statistical analysis and comparison of speech samples and
former results with noise and sinusoidal signals [24]. Furthermore, multiple (concurrent)
sound sources and different reaction methods (such as tilting the handheld device) are
planned to be included into the test scenarios. As the application is able to use vibration
as feedback, this could also enhance reaction times.

5 Conclusion

Auditory response times and error rates to speech commands indicating 3 or 5 directions
in Hungarian and English were recorded with 17 subjects. Users responded on a touch-
screen according to the direction of the sound source. Directions were emulated using
stereo panning at left, right, middle and 45 degree directions. Mean response times of
about 0.8–0.9 s (for three directions) and 1–1.3 s (for five directions) were measured.
These results are similar to other experiments’ results. Native speakers responded
significantly better for the native language. The tests with mixed directions-commands,
where the semantic meaning (e.g. “left”) of the speech sample was different from the
spatially panned direction revealed that subjects made their judgements based on the
meaning and not on the direction. It takes 2–3 questions for users to handle this confusion
and give correct answers–nevertheless, error rates were higher and response times
increased.
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research and innovation programme under grant agreement No 643636 “Sound of Vision”.
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Abstract. In this paper, we propose the selection of parameters for
quality evaluation criterion of pronunciation of certain phonemes. Is pre-
sented a comparison of the different options and criteria for the selection
of the parameter metric serving their basis - the Minkowskian metric.
This approach is used for the comparative assessment of the quality of
their utterances in the process of voice rehabilitation of patients after
surgical treatment of cancer of the oral cavity and oropharynx. The pro-
nunciation before surgery, taken as a etalon, and after the operation in
the course of employment with a speech therapist are compared. The pro-
posed criterion is calculated based on a comparison of the Fourier spectra
of these signals and detect differences on the basis of Minkowskian dis-
tance. Pre-signals are subjected to the procedure of normalization for
the comparability of the spectra. At the end of the experiment the value
of the Minkowskian distance parameter to ensure the greatest legibility
signals in comparing the quality of pronunciation was suggested. Various
approaches to the formation of the quality evaluation criteria pronounc-
ing phonemes are presented. The applicability of the proposed approach
for an objective comparative evaluation of the quality of pronouncing
phonemes [k] and [t] in patients before and after surgery is confirmed.

Keywords: Speech quality · Speech rehabilitation · Cancer of the oral
cavity and oropharynx · Speech quality criteria

1 Introduction

The problem of speech rehabilitation of patients after surgical treatment of can-
cer of the oral cavity and oropharynx is relevant. The higher incidence of these
diseases says in favor of the relevance of this problem. In 2014 in Russia the
c© Springer International Publishing Switzerland 2016
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incidence of cancer of the oral cavity and pharynx was 5.6 per 100 thousand.
The prevalence −36.5 per 100 thousand. Thus, each year in the country revealed
near 13,000 new cancers oropharyngeal localization, and the total number of
patients suffering from this disease calculated over 53,000 people [1,2]. One of
the main problems in the treatment is the need of learning the speech of patients
after partial or complete surgical removal of some organs of speech production
path, for example, tongue. During rehabilitation it is necessary to estimate the
quality of the patient’s speech. Until recently, this problem was solved only by
subjective evaluation of speech quality. In previous studies we have proposed a
method based on the use of GOST R-50840-95 Speech transmission over varies
communication channels. Techniques for measurements of speech quality, intelli-
gibility and voice identification [3]. This technique allows to obtain a quantitative
assessment of the quality of speech, for example, syllable intelligibility. However,
to obtain objective assessments in the framework of this method requires an
estimate of not less than 5 auditors. In terms of the actual process of voice reha-
bilitation, this requirement is at least exigeant. There is a task of automation of
the patient’s quality of speech estimation while minimizing the participation of a
speech therapist. Such assessment may be obtained by comparing the reference
speech (speech of patient before the surgery), and the speech in the rehabilitation
process. This approach solves the problem of taking into account the character-
istics of different speakers - comparisons are made only in one speaker, that
simplifies the solution of the problem. This paper presents one of the steps to
solve this problem - the formation of the quality criteria of pronouncing certain
phonemes.

2 The Current State of Research

In previous stages of research was carried out the analysis of groups of the
phonemes at the greatest change at a surgical treatment of cancer of the oral
cavity and oropharynx. Using developed software for automation the evaluation
of speech quality on the basis of GOST R 50840-95 [4,5] it have been received the
list of the phonemes at the greatest change, namely [r], [t], [s], [f], [k], and also
their softened options. In many cases, there was a modification of the softening
feature. Comparison of the received list with classical sources, that contains infor-
mation about the phonemes at the greatest change by this disease, was carried
out [6] (referencing to earlier work of the authors team I. Bolov, M. Solovyev, L.
Dushak, D. Podgornykh, A. Shenderov, 1974.), high extent of coincidence con-
firms reliability of the obtained data. Besides, it has been made a preliminary
research of Fourier spectrums of phonemes which are most prone to change that
has allowed to make the assumption of the greatest susceptibility to change of
the top part of a spectrum (areas with a frequency of 2 kHz and above). The
example of these spectrum is presented in the Fig. 1. On the basis of the analysis
of the received results the task on the current stage of implementation of the
project has been formulated.
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Fig. 1. Fourier spectrogram for russian syllable [tCtaë] (left half). Top part of figures
contain spectrogram for syllables records before surgery, down part spectrogram for
syllables records after surgery. Fourier spectrogram for russian syllable [s@s’] (right
half). Top part of figures contain spectrogram for syllables records before surgery,
down part spectrogram for syllables records after surgery. The X axis - the time in
seconds, Y - frequency in hertz, the upper limit of 5000 Hz

3 Setting Objectives for Research

In this stage it was proposed to form a simple measure to estimate the differences
between the normal pronunciation of sounds (as a reference are used the sounds
obtained from patient records syllables recorded in the preliminary examination
before surgery) and sounds in process of rehabilitation. The first step is to make
assumptions based on the analysis of the spectra of healthy speakers, who in the
first instance pronounced syllables in normal mode, and in the second - with the
minimization of the use of language in speech production. It was set the task
of definition of localization of the used range to form a measure of distinction:
does it better to use the whole syllable or changed phoneme only, as well as the
whole spectrum or only the upper part. The task of the choice of a concrete
measure of distinction at determination of distance between the received ranges
is also set. As part of this task is carried out research of the application of the
Minkowskian distance (1) at different values of parameters. At the same time
are considered special cases of this distance - the Euclidian distance (2) and the
Manhattan distance (3) (p = 2,p = 1) [7]:

ρ(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

, (1)
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d(x, y) =

√√√√
n∑

i=1

(xi − yi)2, (2)

m(x, y) =
n∑

i=1

|xi − yi|, (3)

where x is a first signal, y is a second signal, i is a position in the signal, ρ is the
Minkowskian distance, d is the Euclidian distance, m is the Manhattan distance,
p is a parameter of Minkowskian distance.

Minkowskian distance is used to solve the problem for different values of its
parameters. The following values of parameter p are selected: p = [−10 − 9.9 −
9.8 ... 9.9 10]. This involves a consideration of the practical application of these
values, in spite of the fact that for p < 1 considered distance is not a met-
ric. After receiving the values of distances between different implementations of
phonemes in the normal and modified pronunciation it was carried out consid-
eration of some preliminary approaches to formation the criterion of phonemes
pronouncing quality on the basis of the distance. The details of these criteria
and their characteristics are given in the appropriate section. It is carried out
the assessment of the received results at various parameters of determination of
Minkowskian distance on the basis of the offered criteria and also it is made the
preliminary choice of parameter for practical use. After the choice of a measure
for a distance assessment between realization of syllables or phonemes, and also
the analysis of criteria for evaluation of quality of pronouncing it is carried out
an inspection of the received assumptions with use of records of real patients
and it is made the decision on applicability of the offered approach.

4 The Basic Signal Processing Steps in Determining the
Quality of the Pronunciation of Syllables or Phonemes

Speech signal processing can be represented as a sequence of performing the
following steps:

1. normalization of all studied speech signals on duration;
2. normalization of all studied speech signals on signal power;
3. definition of the Fourier spectrum [8] of all signals. The calculation is car-

ried out with an analysis window of 256 samples and the offset between the
windows in a 1 count;

4. determination of paired distances between all signals on the basis of
Minkowskian distance;

5. calculation of an assessment of quality of pronouncing of a syllable or phoneme
on the basis of the analysis of paired distances between various realizations
of a syllable (phoneme).

As a result of this procedure it turns out the criterion or a set of the criteria
allowing to estimate quality of pronouncing a syllable (phoneme).
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5 Preliminary Normalization of a Speech Signal

5.1 Normalization of All Studied Speech Signals on Duration

It is carried out a reduction of each phoneme to duration equal 0.050 s with
application of interpolation. Using of this value is based on the fact that there is
no loss of information because it is certainly more than the duration of a single
phoneme.

5.2 Normalization of all Studied Speech Signals on Middle Power
of Signal

It is carried out a reduction of signals to identical power if they contain identical
number of phonemes. Coefficient of normalization can be defined by square root of
Middle power of a signal. Middle power of a signal is determined by a formula [9]:

MP =
n∑

i=1

A2
i

n
, (4)

where A is the amplitude of signal on descrete number i, MP is the middle
power value, n is the length of signal.

This normalization is non-obvious and disputable at application in the syl-
lables consisting of several phonemes differing in the compared syllables. The
reason is different contribution of phonemes to the overall energy value, but
when used in a single phoneme this deficiency is absent.

6 Determination of Paired Distances on the Basis of
Minkowskian Distance

Taking into account the processed spectrum of signal and the normalization of
the spectrum length the measure takes the form below:

l(x, y) =

(∑nf

j=1

∑nt

i=1 |xij − yij |p
nf · nt

)1/p

, (5)

where x is the first specrum, y is the second spectrum, i is the number of time
discrete, j is the number of frequency discrete, ni is the count of time discrete,
nj is the count of frequency discrete.

Results of calculation are brought in the diagonal matrix presented in Fig. 2.
In this case area S1 corresponds to comparison of the initial and modified signals,
area S2 to comparison only of initial signals and area S3 to comparison only of
the modified signals. n1 is a quantity of initial signals, n2 is a quantity of modified
signals. lij is a distance between spectums of signals number i and j.

Average distance by each area are determined on the basis of this matrix
using formulas:

l1 =

∑
i,j∈S1

lij

n1 · n2
, (6)
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Fig. 2. View of matrix of distances between spectrum.

l2 =
2
∑

i,j∈S2
lij

n1 · (n1 − 1)
, (7)

l3 =
2(

∑
i,j∈S2,S3

lij)
n1 · (n1 − 1) + n2 · (n2 − 1)

(8)

and also the minimum distance on area S1 and the maximum distance on area S2.

l1min = mini,j∈S1 lij , (9)

l2max = maxi,j∈S2 lij . (10)

These values are used to form criterion of phoneme pronouncing quality. As
criteria for evaluation of phoneme pronouncing quality is offered:

1. The ratio between average distance between the initial and modified signals
to average distance between initial signals.

Cr1 = l1/l2. (11)

The closer this value to 1, the closer modified signal to initial and vice versa.
Among the shortcomings can be noted the possibility of almost complete
determination of the final value by stands out in big side values;

2. The ratio between average distance between the initial and modified signals
to average distance between signals of one type.

Cr2 = l1/l3. (12)

The closer this value to 1, the closer modified signal to initial and vice versa.
Among the shortcomings can be noted the possibility of almost complete
determination of the final value by stands out in big side values. Use of dis-
tinctions between the modified signals is doubtful because Fof their smaller
stability and, as a result, great values of distances. However the possibility of
application of this criterion demands additional practical check.

3. The ratio between the minimum distinction between the initial and modified
signals to the maximum distinction between initial signals.

Cr3 = l1min/l2max. (13)



Evaluation of the Speech Quality During Rehabilitation 293

If this value more than 1, then obviously metrics for classes aren’t crossed
and the farther they from each other, the better created criterion. However
in reality the similar assessment is defined by extreme values dropping out of
the general set and in practice will almost always be less than 1. Then, on
the one hand, the closer this value to 1, the less an area of crossing of sets of
value of distances for the initial and modified signals. With another, it isn’t
considered the quantity or a share of the signals getting to this area.

4. A share of couples of initial signals between which distance exceeds the min-
imum distance between couples of initial and modified signals, and also a
share of couples of initial and modified signals between which distance is less
maximum between couples of initial signals.

Cr41 = 2 · counti,j∈S2(lij > l1min)/n1(n1 − 1), (14)

Cr42 = counti,j∈S1(lij < l2max)/n1n2. (15)

Ideally shares have to be equal 0, is really the less value, the better because
the crossings of distances of couple of signals getting to the area are leveled
by application of the averaging criterion 1 (on condition of a small amount
of such couples).

7 Analysis of the Signal of Healthy Speaker with Using
the Proposed Approach

On this stage research conducted on records of one male and one female speakers.
10 records were made by every speaker, herein 5 first and 5 last syllables differed,
but they contain the same phoneme in same part inside the syllable.

Further comparison was made for every individual speaker. Comparison of
different speakers between each other obviously less important, because account-
ing of several factors in the same time (specific speaker and condition of speech
formation tract), that lead to a change in pronunciation is problematic.

Below in Fig. 3 is shown the values of obtained criteria of quality for all
area of studied values with step in 1 (on left half). Values of criteria are also
presented for the most characteristic part on the results of the previous stage of
the experiment (on right half).

At the result is possible to say, that most appropriate Minkovskian distance
when the parameter p is between 1.6 and 3.1. Moreover, Fig. 4 shows a similar
addiction, obtained by upper half of the spectrum (3–6 kHz).

Results showed that on this stage of considered range of values is sufficient
to preselect the Minkovskian distance parameter and it not requires further
expansion. The usefulness of localization in upper range of frequency, potentially
more informative according to the results of preliminary experiments, it is not
confirmed and requires further research.

Preliminary experiment on recordings of real patients was conducted to con-
firm the results. It is possible to talk about the correctness of the findings, but
in this article is not enough space for its detailed description and it will be
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Fig. 3. Values of criteria for p = −10 . . . 10 (left) and −0.5 . . . 0.5 (right)

Fig. 4. Values of criteria for p = −10 . . . 10 (left) and −0.5 . . . 0.5 (right)

made in subsequent publications. In addition, the next step will be the using
of mel-cepstral coefficients [10], linear prediction coefficients [11] and autocorre-
lation [12] for evaluation of speech quality. Automation of the segmentation of
syllables into phonemes also is a problem for next stage of research [13].

8 Conclusion

As part of this work presents the results of phase for the formation of the qual-
ity evaluation criteria pronouncing phonemes by patient in the process of speech
rehabilitation after surgery for cancer of the oral cavity and oropharynx. The
criteria on the basis of Minkowskian distance between normalized spectra defec-
tive phonemes was formed. Preliminary parameter of the distance for the most
informative criterion was selected. The approbation of the proposed method
of assessing the quality of pronouncing phonemes [t] and [k] on a real patient
records was implemented. The tasks for the next phase of the study were set.
This work is one part of the big task of assessing the quality of speech in the
speech rehabilitation.

Acknowledgments. The study was performed by a grant from the Russian Science
Foundation (project 16-15-00038).
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Abstract. We present a sequence of experiments with one–class clas-
sification, aimed at examining the ability of such a classifier to detect
spectral smoothness of units, as an alternative to heuristics–based mea-
sures used within unit selection speech synthesizers. A set of spectral
feature distances was computed between neighbouring frames in natural
speech recordings, i.e. those representing natural joins, from which the
per–vowel classifier was trained. In total, three types of classifiers were
examined for distances computed from several different signal parame-
trizations. For the evaluation, the trained classifiers were tested against
smooth or discontinuous joins as they were perceived by human listeners
in the ad–hoc listening test designed for this purpose.

Keywords: Speech synthesis · Unit selection · One–class classification ·
Concatenation cost · Speech parametrization · Spectral distance

1 Introduction

Although unit selection speech synthesis systems are still often preferred in the
commercial sphere, according to [5] and our own experience, it is clear that
heuristics–based approaches of unit selection features tuning basically fail. For
example, papers such as [1,6,7,15,17,19,20,23–25] examined various concatena-
tion cost features, but the results are rather inconsistent and sometimes even
in contradiction. Therefore, instead of manual features tuning, we have started
to examine machine–learning techniques for a data–driven automatic per–voice
unit selection tuning.

One of the interesting ideas was introduced in [4], where the one–class classi-
fication (OCC) technique was used as a replacement for a classic spectral–related
smoothness measure in concatenation cost computation. In [22], we tried to vali-
date the results of the original research on our own speech database. In this paper,
we present extended results, primarily focusing on parametrizations computed
c© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 296–303, 2016.
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fromvarious speech signal framings and their impact on theability ofOCCtodetect
the joins of speech units where unnatural artefacts are perceived by humans.

2 One–Class Classification in Unit Selection

One–class classification [10,21], also known as anomaly or novelty detection, is
used to address the problem of finding such occurrences in data that do not con-
form to expected behaviour. This is very advantageous and not yet widely used
for unit selection speech synthesis, where usually large speech databases with nat-
ural recordings are available. However, it is common in this synthesis technique
that unnatural disturbing artefacts may occur when incompatible units are con-
catenated. The reason is that the target and concatenation costs are generally
designed to prefer units minimizing the trade-off of features evaluating similar-
ity to the requirements, instead of reflecting whether the units will sound natural
in the sequence they are used in. These artefacts, obviously not occurring in the
source speech corpus, can thus be viewed as “anomalies” or “outliers”. However,
the occurrence of the artefacts can be considered as a random process (if they
could be predicted, they can be avoided), which makes their collection and the
reliable analysis of their causes rather difficult. Therefore, the existence of nat-
ural sequences and the unavailability of unnatural anomalies lead to the idea of
exploring the abilities of OCC to detect, and thus to avoid, those anomalies.

2.1 Distances to Train the Classifiers on

For the initial experiment [22], we focus only on spectral continuity classification
(following [4]) but using our Czech male speech corpus [3] containing approxi-
mately 15 h of speech, designed as described in [11,14].

To capture natural spectral transitions, for every two consecutive speech
frames, with signal pre–emphasized by value 0.95 and Hamming–windowed,
we computed Euclidean and Mahalanobis distances between MFCC vectors,
Itakura–Saito distance between LPC coefficients and symmetrical Kullback–
Leibler distance between spectral envelopes obtained from the LPC and between
power FFT spectrum (referred to as “targets” or “references”); each distance vec-
tor thus consists of 5 values. Contrary to [4,22], however, we examined several
different framings of the signals:

async 20/20 is the original scheme from the initial experiment, where the
signal frames are 20 ms long without overlap (20 ms shift). Since we compute
feature distances on rather stable vowel parts (see Fig. 1), it is supposed that
the spectrum does not change very much within a particular phone. Thus,
the natural transition of neighbouring frames should lead to rather small
features distance, contrary to a spectral change perceived as an artefact.

async 04/25 is a scheme with frames 25 ms long, shifted by 4 ms. This scheme
was chosen as it provides the most accurate automatic phone segmentation for
this voice. The significant signal overlap, and thus accented spectral similarity
of the consecutive frames, was assumed to emphasize the effect of natural and
smooth signal transition pattern which the OCC is required to train.
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async 12/25 scheme, having 25 ms long frames with 12 ms shift, was chosen as
a compromise between large overlap (4 ms shift) and no overlap at all, while
there is still slight preference towards frame overlapping.

psync pm/25 is a pitch–synchronous framing, where 25 ms long frames are
centred around pitch–marks [8,9]. In this way, the MFCC, energy and F0

are computed for the “classic” concatenation cost computation in our TTS
system. Contrary to the previous schemes, the shift is always one pitch period
long and the overlap varies dynamically as pitch changes. In unvoiced regions,
the distances were not computed.

Fig. 1. The example of non-overlapped framing for two illustrative variants of phone
[a] with phone boundaries and centre marked by bold and dashed, respectively, vertical
lines. Feature vectors are outlined for each frame.

As already mentioned, we limit the experiment to vowels only, as unnatural
artefacts are perceived more strongly due to their larger amplitude. Nevertheless,
the extension to other voiced phones is planned as soon as reliable results are
obtained.

For all the various signal framings, the target (natural) distance vectors used
to train OCC were collected per–vowel from:

– all the consecutive frames covering the signal of the vowel, except frames span-
ning 8 ms at the vowel’s beginning and end, i.e. for (fi, fi+1), (fi+1, fi+2) and
(fj , fj+1), (fj+1, fj+2), (fj+2, fj+3) pairs from Fig. 1. By using of diphones in
our TTS system, with boundaries approximately in the middle of the under-
lying phone, this exclusion allows us to avoid distances near phone (vowel)
transitions in the training/testing set.

– the two consecutive frames nearest to the middle of each vowel, i.e. for
(fi+1, fi+2) and (fj+1, fj+2) pairs from Fig. 1 — we will mark it as mid.only
in Table 1. This might seem to be a natural choice reflecting the fact that
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only signal around phone centre is examined for smoothness during diphones
concatenation.

2.2 Evaluation of Real Concatenations

When using only (smooth) distances computed on the corpus data, we do not
know much about how well a trained classifier is able to detect real non–
continuous spectral transitions. Therefore, we created artificial join in the middle
vowel of several words by concatenating two halves of the words from different
parts of the corpus. Around the join, the distance was computed in the way that
when [a] from sentence m is to be concatenated with [a] from sentence n (see
Fig. 1), (fi+1, fj+2) vectors are used — fi+1 is nearest to the middle of the initial
vowel half and fj+2 is the one after the vector nearest to the middle of the final
vowel half. Each such distance was coupled with the listeners evaluation when-
ever a concatenation discontinuity is perceived in the word (further referred to
as outlier distances) or not. Since details can be found in [22], we just summarize
here that only examples where at least two of three listeners agreed were taken
for further processing.

2.3 Classifiers Examined

Having obtained positive experience with OCC [12,13], we examined 3 classifier
types, all implemented in Scikit-learn toolkit [16]. The first one is Multivariate
Gaussian distribution (MGD), with all the distances modelled together in one go,
tied through covariance matrix. The second one is One-class SVM (OCSVM),
mapping distances into a high dimensional feature space via a kernel function,
and iteratively finding the maximal margin hyperplane which best separates the
training data from the outliers [18]. And the last one is Grubbs’ test [2] modified
as described in [12] to detect multidimensional distance vector as outlier when
any of the individual features is detected outlying (GRT).

Prior the training, the whole per–vowel set of target distances was reduced to
4, 000 randomly selected vectors, mostly due to speeding up the training process,
but also to prevent potential OCC overfitting (see [22] for the total number of
distances in async 20/20, which is the lowest of all used here). This reduced
set was then further randomly split into 80 % for training distances targets and
20 % distances being held out for the final evaluation (see Sect. 3). From the
training targets, 20 % were randomly chosen for 10–fold cross–validation. All
the classifiers were trained to minimize F1 score, the details about parameters
setup can be found in [22].

To further increase the robustness of the training, we added 50 % of the out-
lier distances (with discontinuity perceived, see Sect. 2.2) to the cross–validation
process, if these were available for the corresponding vowel.

3 Results

Once the classifiers are trained, the 20 % of target corpus distance vectors and all
the distance vectors for smooth joins evaluated by listeners (i.e. those without an
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Table 1. The classification performance when the given number of target distances (for
all the words without artefacts perceived) and the remaining 50% of outlier distances
(those not used for cross–validation), obtained by evaluations described in Sect. 2.2
and computed for the given framing, were passed to the classifier trained on the corre-
sponding data. All the values are in %.

phones a e i o a: a e i o a:

No. of examples to classify

targets 60 45 30 50 17

outliers 9 18 10 21 52

async 20/20 async 20/20, mid.only

OCSVM TPR 48.3 82.2 93.3 72.0 100.0 56.7 77.8 80.0 86.0 94.1

TNR 55.6 33.3 50.0 23.8 0.0 44.4 33.3 80.0 0.0 96.2

F1 62.4 78.7 88.9 70.6 73.9 68.7 76.1 85.7 75.4 91.4

MGD TPR 100.0 95.6 96.7 98.0 100.0 100.0 75.6 96.7 100.0 88.2

TNR 0.0 0.0 0.0 4.8 78.8 0.0 22.2 10.0 0.0 94.2

F1 93.0 81.1 84.1 82.4 75.6 93.0 73.1 85.3 82.6 85.7

GRT TPR 55.0 86.7 83.3 96.0 100.0 63.3 82.2 86.7 94.0 100.0

TNR 44.4 33.3 40.0 4.8 53.8 33.3 27.8 70.0 0.0 82.7

F1 67.3 81.2 82.0 81.4 58.6 73.1 77.9 88.1 79.7 79.1

async 04/25 async 04/25, mid.only

OCSVM TPR 8.3 0.0 0.0 8.0 5.9 6.7 0.0 0.0 2.0 5.9

TNR 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

F1 15.4 n/a n/a 14.8 11.1 12.5 n/a n/a 3.9 11.1

MGD TPR 41.7 44.4 26.7 36.0 58.8 38.3 42.2 30.0 34.0 29.4

TNR 100.0 88.9 90.0 95.2 100.0 100.0 88.9 90.0 95.2 100.0

F1 58.8 59.7 41.0 52.2 74.1 55.4 57.6 45.0 50.0 45.5

GRT TPR 53.3 24.4 63.3 44.0 29.4 46.7 17.8 23.3 38.0 17.6

TNR 88.9 100.0 100.0 100.0 100.0 88.9 100.0 100.0 100.0 100.0

F1 68.8 39.3 77.6 61.1 45.5 62.9 30.2 37.8 55.1 30.0

async 12/25 async 12/25, mid.only

OCSVM TPR 56.7 44.4 63.3 58.0 100.0 45.0 37.8 50.0 50.0 64.7

TNR 100.0 72.2 90.0 85.7 100.0 100.0 94.4 100.0 0.5 100.0

F1 72.3 57.1 76.0 70.7 100.0 62.1 54.0 66.7 64.9 78.6

MGD TPR 46.7 51.1 70.0 54.0 100.0 55.0 44.4 66.7 44.0 58.8

TNR 100.0 72.2 50.0 66.7 84.6 55.6 88.9 80.0 90.5 92.3

F1 63.6 63.0 75.0 64.3 81.0 68.0 59.7 76.9 59.5 64.5

GRT TPR 65.0 51.1 73.3 66.0 100.0 68.3 46.7 56.7 72.0 88.2

TNR 88.9 61.1 70.0 66.7 90.4 44.4 77.8 100.0 57.1 100.0

F1 78.0 61.3 80.0 73.3 87.2 77.4 60.0 72.3 75.8 93.8

psync pm/25 psync pm/25, mid.only

OCSVM TPR 38.3 37.8 43.3 46.0 58.8 30.0 22.2 40.0 30.0 11.8

TNR 100.0 88.9 100.0 90.5 100.0 100.0 88.9 90.0 100.0 100.0

F1 55.4 53.1 60.5 61.3 74.1 46.2 35.1 55.8 46.2 21.1

MGD TPR 65.0 26.7 26.7 50.0 76.5 45.0 33.3 46.7 48.0 47.1

TNR 55.6 88.9 80.0 95.2 92.3 100.0 88.9 60.0 90.5 96.2

F1 75.7 40.7 40.0 65.8 76.5 62.1 48.4 58.3 63.2 59.3

GRT TPR 53.3 48.9 70.0 52.0 100.0 63.3 35.6 63.3 56.0 100.0

TNR 100.0 83.3 90.0 81.0 100.0 100.0 88.9 90 85.7 100.0

F1 69.6 62.9 80.8 65.0 100.0 77.6 50.8 76.0 69.1 100.0
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artefact perceived)were used to evaluate the ability of classifiers to recognize target
distances never seen.Also, the remaining50 %of outlier distances notused in cross–
validation were used to enumerate the reliability of probable artefacts detection.

In Table 1 we present results for all the framings mentioned in Sect. 2.1 and all
the classifiers described in Sect. 2.3. In the table, the abbreviation TP describes
true positives (targets detected as targets) and TPR is then percentage of TP
from all the targets to be classified (also called recall). Similarly, TN stands for
true negatives (correct outliers classification) and TNR is its percentage (speci-
ficity). Due to space limitation, we exclude here vowels with a smaller number of
examples to evaluate (both due to less joined words evaluated and lower mutual
agreement of listeners on artefact absence/presence, see Sect. 2.2). Also, we do
not present here the classification of the 20 % target distances being held out.

It can clearly be seen that the results are rather shuffled, with no significant
preference for a framing and/or classifier type. In general, the mid.only variant
behaves worse than when distances taken through the whole vowels are taken
into account. Another surprising fact is that the larger overlap leads to worse
results – although the distances to train are computed from very similar signals,
the classifiers are not able to recognise outlier distances. It can be said that
distances between non–overlapping frames are better in recognising targets, while
distances between frames with large overlap recognise outliers instead. The best
compromise seems to be async 12/25, for which OCSVM can reliably classify
phone [a:] and rather successfully detect outliers for other phones as well.

Looking at raw F1 scores, most of the best results are for async 20/20 fram-
ing, spread through various classifiers. However, taking for example phone [a]
with F1 = 93% (MGD), none of the 9 outliers was detected successfully. Similar
situation is for [i ] (F1 = 88.9%, OCSVM ), where only 5 out of 10 outliers were
detected. From the point of view of unit selection, where the classifiers should
finally be used, we would prefer reliable detection of outliers at the expense of
higher FN (continuous joins classified as outliers). This would ensure that no
audible artefact (or minimum of them) will appear in the synthesized speech.
On the other hand, however, discarding wrongly classified smooth joins can eas-
ily lead to the inability of following the required target specifications (those with
better match were discarded), which is not a desirable situation either.

4 Conclusion

Hopefully, we have shown that this alternative approach to feature hand–tuning
may have its potential despite the fact that there is no ultimate answer to the
question of what features/classifiers to use to avoid unnatural artefacts some-
times occurring in unit selection generated speech (neither did in [4]).

To address further research directions, it is important to start with an error
analysis, i.e. to examine the causes of the classification failures. Our hypothesis
for them is that the cause of the artefacts perceived is either due to a mismatch
of non–spectral related features, or due to a spectral mismatch not covered well
by the features and distance scheme computations chosen. Therefore, we need
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to search for another set of features, not necessarily entirely spectral–related,
which has a better capability of capturing the causes of artefacts perception —
this may affect both concatenation and target cost features. And since the vowel
joins evaluated by listeners (described in Sect. 2.2 and in details in [22]) were
intentionally not limited with respect to spectral features anyway, they can be
gradually extended and reused when searching for and experimenting with some
other mismatch–describing features.

To make our results verifiable as well as to provide a solid springboard for
prospective followers, we put all the data required to repeat the experiment
on github under ARTIC-TTS-experiments/2016 SPECOM/ repository. Also, more
detailed results can be found there. Do not hesitate to contact us in case of any
questions.
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9. Legát, M., Tihelka, D., Matoušek, J.: Pitch marks at peaks or valleys? In:
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Abstract. In this paper we investigate GMM-derived features recently
introduced for adaptation of context-dependent deep neural network
HMM (CD-DNN-HMM) acoustic models. We present an initial attempt
of improving the previously proposed adaptation algorithm by apply-
ing lattice scores and by using confidence measures in the traditional
maximum a posteriori (MAP) adaptation algorithm. Modified MAP
adaptation is performed for the auxiliary GMM model used in a
speaker adaptation procedure for a DNN. In addition we introduce two
approaches - data augmentation and data selection, for improving the
regularization in MAP adaptation for DNN. Experimental results on the
Wall Street Journal (WSJ0) corpus show that the proposed adaptation
technique can provide, on average, up to 9.9 % relative word error rate
(WER) reduction under an unsupervised adaptation setup, compared to
speaker independent DNN-HMM systems built on conventional features.

Keywords: Speaker adaptation · Deep neural networks (DNN) ·MAP ·
CD-DNN-HMM · GMM-derived (GMMD) features · Speaker adaptive
training (SAT) · Confidence scores

1 Introduction

Nowadays, deep neural networks (DNNs) have replaced conventional GMM-
HMMs in most state-of-the-art automatic speech recognition (ASR) systems,
because it has been shown that DNN-HMM models outperform GMM-HMMs
in different ASR tasks. However, various adaptation algorithms that have been
developed for GMM-HMM systems cannot be easily applied to DNNs because of
the different nature of these models. Many new adaptation methods have recently
been developed for DNNs, and a few of them [4,7,10,13–15] take advantage of
robust adaptability of GMMs. However, there is no universal method for effi-
cient transfer of all adaptation algorithms from the GMM framework to DNN
c© Springer International Publishing Switzerland 2016
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models. The purpose of the present work is to make a step in this direction using
GMM-derived features for training DNN models.

Most of the existing methods for adapting DNN models can be classified into
several types: (1) linear transformation, (2) regularization techniques, (3) aux-
iliary features, (4) multi-task learning, (5) combining GMM and DNN models.
Linear transformation can be applied at different levels of the DNN system: to
the input features, as in linear input network transformation (LIN) [2] or feature-
space discriminative linear regression (fDLR); to the activations of hidden layers,
as in linear hidden network transformation (LHN) [2]; or to the softmax layer, as
in LON or in output-feature discriminative linear regression. The second type of
adaptation consists in re-training the entire network or only a part of it using spe-
cial regularization techniques for improving generalization, such as L2-prior
regularization [6], Kullback-Leibler divergence regularization [16] and conserv-
ative training. The concept of multi-task learning (MTL) has recently been
applied to the task of speaker adaptation and has been shown to improve the
performance of different model-based DNN adaptation techniques, such as LHN
and learning speaker-specific hidden unit contributions [12]. Using auxiliary
features is another approach in which the acoustic feature vectors are aug-
mented with additional speaker-specific or channel-specific features computed
for each speaker or utterance at both training and test stages. An example of
effective auxiliary features is i-vectors [11]. Alternative methods are adaptation
with speaker codes [1] and factorized adaptation [5]. The most common way of
combining GMM and DNN models for adaptation is using GMM-adapted
features, for example fMLLR, as input for DNN training [10]. In [4] likelihood
scores from DNN and GMM models, both adapted in the feature space using
the same fMLLR transform, are combined at the state level during decoding.
The authors of [7] propose combining the GMM and DNN models using the
temporally varying weight regression framework.

In this work we investigate a novel approach for SAT of DNNs based on
using GMM-derived features as the input to DNNs [13,14]. We present an initial
attempt of improving the previously proposed scheme for DNN adaptation by
using recognition lattices in MAP adaptation and by the data augmentation and
data selection approaches.

2 SAT for DNN-HMM Based on GMM-derived Features

Construction of GMM-derived features for adapting DNNs was proposed in
[13,14], where it was demonstrated, using MAP and fMLLR adaptation as an
example, that this type of features makes it possible to effectively use GMM-
HMM adaptation algorithms in the DNN framework.

Our features are obtained as follows (Fig. 1). First, 39-dimensional Mel-
frequency cepstral coefficients (MFCC) with delta and acceleration coefficients
are extracted with per-speaker cepstral mean normalization (CMN). Then an
auxiliary GMM monophone model is used to transform cepstral feature vectors
into log-likelihoods vectors. At this step, speaker adaptation of the auxiliary
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GMM-derived feature extraction

MFCC feature extraction

Input sound

Context extension: ×11(±5)

Auxiliary   GMM

SAT-DNN training

Speaker adaptationCepstral mean normalization

Fig. 1. Using speaker adapted GMMD features for SAT DNN training.

speaker-independent (SI) GMM model is performed for each speaker in the train-
ing corpus and the new speaker-adapted (SA) GMM model is obtained in order
to extract SA GMM-derived features.

In the auxiliary model, each phoneme is modeled using a three state left-right
context-independent GMM-HMM. For a given acoustic MFCC-feature vector, a
new GMM-derived feature vector is obtained by calculating log-likelihoods across
all the states of the auxiliary GMM monophone model on the given vector.
Suppose ot is the acoustic feature at time t, then the new GMM-derived feature
vector ft is calculated as follows:

ft = [p1t , . . . , p
n
t ], (1)

where n is the number of states in the auxiliary GMM model,

pit = log (P (ot | st = i)) (2)

is the log-likelihood estimated using the GMM. Here st denotes the state index
at time t. In our case n is equal to 132 (39×3+3×5), coming from: 39 three-state
phones, one five-state silence model, and two five-state (speech and non-speech)
noise models. Hence this procedure leads to a 132-dimension feature vector per
speech frame. After that, the features are spliced in time taking a context size of
11 frames (i.e., ±5). We will refer to these resulting features as GMMD features.
The dimension of the resulting features is equal to 1452 (11×132). These features
are used as the input for training the DNN. The proposed approach can be
considered a feature space transformation technique with respect to DNN-HMMs
trained on GMMD features.
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3 MAP Adaptation Using Lattices Scores

The use of lattice-based information and confidence scores [3] is a well-known
method for improving the performance of unsupervised adaptation. In this
work we use the MAP adaptation algorithm for adapting the SI GMM model.
Speaker adaptation of a DNN-HMM model built on GMMD features is per-
formed through the MAP adaptation of the auxiliary GMM monophone model,
which is used for calculating GMMD features. We modify the traditional MAP
adaptation algorithm by using lattices instead of alignment from the first decod-
ing pass as follows. Let m denote an index of a Gaussian in SI acoustic model
(AM), and μm the mean of this Gaussian. Then the MAP estimation of the
mean vector is

μ̂m =
τμm +

∑
t γm(t)ps(t)ot

τ +
∑

t γm(t)ps(t)
, (3)

where τ is the parameter that controls the balance between the maximum likeli-
hood estimate of the mean and its prior value; γm(t) is the posterior probability
of Gaussian component m at time t; and ps(t) is the confidence score of state
s at time t in the lattice obtained from the first decoding pass by calculating
arc posteriors probabilities. The forward-backward algorithm is used to calculate
these arc posterior probabilities from the lattice as follows:

P (l|O) =

∑
q∈Ql

pacc(O|q) 1
α Plm(w)

P (O)
, (4)

where α is the language model scale factor; q is a path through the lattice
corresponding to the word sequence w; Ql is the set of paths passing through arc
l; pacc(O|q) is the acoustic likelihood; Plm(w) is the language model probability;
and p(O) is the overall likelihood of all paths through the lattice. In a particular
case, when ps(t) = 1 for all states and t, formula (3) represents the traditional
MAP adaptation. In addition to this frame-level weighting scheme, we apply
confidence base selection scheme, when we use in (3) only those observations,
which confidence scores exceed the given threshold.

4 Data Augmentation and Data Selection for SAT

In this work we explore two approaches to improve the performance of SAT DNN
models with MAP adaptation. The first approach is based on using different
values of τ (in formula (3)) when extracting adapted GMMD features for DNN
training. In this approach we extract features for all training corpus several times
for a set of τ values. And then the DNN models are trained on the union of the
obtained features. The intuition behind this approach is similar to that used in
data augmentation.

The second approach, which we call data selection strategy, consists in split-
ting training data for each speaker in the training corpus into several parts and
then performing MAP adaptation independently on each of the part. In this
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paper we use a simple implementation of this strategy - we randomly separate
training data for each speaker into several subsets so that the total amount of
data in each subset is approximately equal to the average amount of data per
speaker in the test set. This strategy serves as a regularization and is supposed
to make adaptation more robust to the size of the adaptation set.

Fig. 2. Data augmentation and data selection scheme for SAT

Hence, the original data from the training corpus are used in AM training
several times with different values of τ and inside different subsets of data chosen
for adaptation. The motivation for these two approaches lies in obtaining more
robust SAT DNN models for MAP adaptation, especially when the training
corpus is relatively small.

The GMMD feature dynamic in the training corpus for different values of
τ and for different data selection strategies is shown in Fig. 2. In both pictures
“full” means that during the SAT training for a given speaker all data of that
speaker from the training corpus are used for MAP adaptation, whereas “selec-
tion” means that data selection strategy is applied and training data for this
speaker is randomly split into two subsets so that MAP adaptation is performed
for each subset independently. Let denote T1 and T2 two types of features, (or
more precisely, to GMMD features extracted with different parameters). Every
curve in Fig. 3a and b, marked as “T1–T2”, corresponds to the average differ-
ences between T1 and T2 features and is calculated as follows. First, we subtract
coordinatewise features T2 from T1 on the training corpus. Then we found mean
(Fig. 3a) and standard deviation values (Fig. 3b) for each feature vector coordi-
nate. Finally, we sort the obtained values for each feature vector dimension by
descending order. We can see that GMMD features calculated for various τ and
with (or without) data selection strategy have different amplitude and dynamic
characteristics, therefore they can contain complementary information. Hence
data augmentation might improve AM by making them more robust to τ and
to the size of the adaptation set.
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Fig. 3. Differences in GMMD-features.

5 Experimental Results

The experiments are conducted on the WSJ0 corpus [8]. For AM training we
use 7138 utterances of 83 speakers from the standard SI-84 training set, which
correspond to approximately 15 hours of data, recorded with the Sennheiser
microphone, 16 kHz. AMs are trained using the Kaldi speech recognition toolkit
[9], following mostly Kaldi WSJ recipe (except for GMMD-features and adapta-
tion). We use conventional 11×39MFCC features (39-dimensional MFCC (with
CMN) spliced across 11 frames (±5)) as baseline features and compare them
to the proposed GMMD features. We train four DNN models: SI model on
11×39MFCC; SI and two SAT models on GMMD features. These four DNNs
have identical topology (except for the dimension of the input layer) and are
trained on the same training dataset. An auxiliary GMM is also trained on the
same data.

The first SAT DNN on GMMD features is trained as described in Sect. 2 with
parameter τ for adaptation equal to 5. The second SAT DNN on GMMD fea-
tures is trained using data augmentation (with τ equal to 0.1, 1 and 5) and data
selection strategy, as described in Sect. 4. For training SI-DNN on GMMD fea-
tures, we apply the scheme shown in Fig. 1, but eliminate the speaker adaptation
step. All four CD-DNN-HMM systems had six 2048-neuron hidden layers and
2355-neuron output layer. The neurons in the output layer correspond to context-
dependent states determined by tree-based clustering in CD-GMM-HMM. The
DNN is initialized with the stacked restricted Boltzmann machines by using
layer by layer generative pre-training. It is trained with an initial learning rate
of 0.008 using the cross-entropy objective function. After that five iterations of
sequence-discriminative training with per-utterance updates, optimizing state
Minimum Bayes Risk (sMBR) criteria, are performed.

In all experiments further we consider SI DNN trained on 11×39MFCC fea-
tures as the baseline model and compare the performance results of the other
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models with it. Evaluation is carried out on the standard WSJ0 evaluation test
si et 20, which consists of 333 read utterances (5645 words) from 8 speakers.
A WSJ trigram open NVP LM with a 20k word vocabulary is used during recog-
nition. The OOV rate is about 1.5%. The LM is pruned as in the Kaldi [9] WSJ
recipe with the threshold 10−7. The adaptation experiments are conducted in
an unsupervised mode on the test data using transcripts or lattices obtained
from the first decoding pass. For adapting an auxiliary GMM model we use
MAP adaptation algorithm. We perform two adaptation experiments: (1) with
traditional MAP and (2) with lattice-based MAP using confidence scores, as
described in Sect. 3. For lattice-based MAP the value of confidence threshold
is 0.6. The performance results in terms of word error rate (WER) for SI and
adapted DNN-HMM models are presented in Table 1. We can see that using
confidence scores can give an additional slight improvement in MAP adaptation
for DNN models over adaptation, which uses an alignment. The best result is
obtained using data augmentation and data selection strategies. For comparison
purposes we also train six DNN models with τ values 0.1, 1 and 5 with and
without data selection strategies, but in all cases the results are worse than the
one obtained combining both strategies, so we do not report other results here.

Table 1. Summary of WER (%) results on WSJ0 evaluation set si et 20. Δ WER -
relative WER reduction.

Type of Features Adaptation WER, % Δ WER, %

11×39MFCC SI 7.51 baseline

GMMD SI 7.83 −
MAP (alignment) 7.09 5.6

MAP (lattice-based) 6.93 8.4

MAP (data augmentation & selection) 6.77 9.9

6 Conclusion

In this work we have investigated GMM-derived features recently introduced for
adaptation of DNN AMs. MAP adaptation algorithm is performed for the aux-
iliary GMM model used in a SAT procedure for a DNN. We present an attempt
of improving the previously proposed adaptation algorithm by using confidences
scores in adaptation. In addition we introduced two approaches, so called data
augmentation and data selection strategies, for improving the regularization in
MAP adaptation for DNN. The proposed approaches are especially suitable when
the training corpus is small, or when the amount of adaptation data is not known
in advance and can vary. Experimental results on the WSJ0 corpus demonstrate
that, in an unsupervised adaptation mode, the proposed adaptation technique
can provide, approximately, up to 9.9% relative WER reduction compared to
the SI DNN system built on conventional 11×39MFCC features.
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Abstract. A new variant of Vector Taylor Series based features com-
pensation algorithm is proposed. The phase-sensitive speech distortion
model is used and the phase term is modeled as a multivariate gaussian
with unknown mean vector and covariance matrix. These parameters are
estimated based on Maximum Likelihood principle and EM-algorithm
is used for this. EM formulas of parameter update are derived as
well MMSE estimate of the clean speech features. The experiments on
Aurora2 database show that taking phase term into account and data-
driven estimation of its parameters result in relative WER reduction of
about 20% compared to phase-insensitive VTS version. The proposed
method is also compared to the VTS with constant phase vector and
this approximation is shown to be very efficient.

Keywords: Robust speech recognition · Feature compensation · Vector
taylor series · Distortion model · Phase-sensitive · Aurora2

1 Introduction

Vector Taylor Series (VTS) is an effective and popular approach widely used
in robust speech recognition. Its simplest form was proposed in the middle 90’s
[18,19] and since then many improvements and generalizations have been made.
The scope of VTS comprises the compensation of the acoustic features distortion
[10,14,21], the acoustic models adaptation to the environment [2,10–13] and
various forms of noise adaptive training [8,9,14]. Besides, VTS is often used
in combination with other approaches, for instance Join Uncertainty Decoding
(JUD) [15–17] and Support Vector Machines (SVM) [5].

The important assumption used in almost all VTS papers is a possibility to
approximate the distribution of the clean speech features with Gaussian Mixture
Model (GMM). Due to the linearity of the VTS distortion model it can be shown
that the distribution of noisy speech features can be also described by GMM.
This property makes it possible to effectively use VTS for GMM-HMM acoustic
model adaptation to the environment. However, in the last decade the GMM-
HMM acoustic models have been superseded by models based on various neural
networks such as DNN, CNN, LSTM etc. [1,3,6]. That’s why the use of VTS in
the feature space to compensate feature distortions due to channel and additive
noise becomes more demanded.
c© Springer International Publishing Switzerland 2016
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The “phase-sensitive” feature distortion model was first introduced in [4]. In
comparison to previously considered models, it includes extra summand which
depends on the phase difference between complex noise and channel-passed
speech spectra. It was proposed to model phase-dependent vector as a multivari-
ate gaussian random vector with zero mean and diagonal covariance estimated
from the training data. It was shown that using this model improves the results
of the VTS acoustic model adaptation. The same distortion model was used in
[13] again in the acoustic model space but there the phase vector was assumed to
be deterministic and all its elements were equal. The experiments demonstrated
that such an approach provides the recognition improvement and the optimal
value of phase vector elements was found to be 2.5. This result is at odds with
the theoretical estimates which state that these elements magnitude must not
be greater that 1. The authors of [13] proposed several explanations for this and
one of them is that the phase vector is stochastic by its nature but it was forced
to be deterministic.

This paper considers the usage of phase-sensitive distortion model for the
feature compensation. It assumes the phase vector to be a multivariate gaussian
vector as in [4] but with the unknown mean vector and covariance matrix which
are estimated from the noisy features by means of EM-algorithm in spirit of [10].
The experiments on Aurora2 database confirm the significant WER reduction
of the proposed approach in comparison to not using phase-dependent term.

2 Phase-Sensitive Speech Feature Distortion Model

Most of the VTS papers rely on the following clean speech distortion model:

y(t) = x(t) ∗ h(t) + n(t), (1)

where x(t), h(t), n(t) and y(t) represent the clean speech, channel impulse
response, noise and noisy speech signal respectively and ∗ stands for the con-
volution operation. As shown in [4], such model generates the corresponding
distortion models for various acoustic features, which have the same algebraic
form

y = x + g(x,h,n,α), (2)

for both linear and mel-frequency log-power spectra as well as for MFCCs. These
models differ only in form of nonlinearity g. Here h is a corresponding feature
vector of an impulse response h(t) and α is a vector which depends on phase
difference between complex spectra of n(t) and x(t) ∗ h(t). As shown in [4], all
the components of α meet the condition |α(l)| � 1.

The form of function g for the MFCC is1

g(x,h,n,α) = h + C log
(
1 + eD(n−x−h) + 2α • eD(n−x−h)/2

)
, (3)

1 In what follows we deal with only mel-cepstral domain since log-spectral domain is
similar but more simple to explore.
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where exponent and logarithm are applied element-wise, • means element-wise
multiplication and C and D stand for DCT matrix and its right pseudo-inverse
matrix respectively.

By expanding g(x,h,n,α) into the Taylor series around the point
(x0,h0,n0,α0) up to the first order terms it is possible to obtain a linearized
version of the expression (2):

y = x + g(x0,h0,n0,α0)
+∇xgT (x − x0) + ∇hgT (h − h0) + ∇ngT (n − n0) + ∇αgT (α − α0)

= (I + ∇xgT )x + ∇hgTh + ∇ngTn + ∇αgT α + f(x0,h0,n0,α0), (4)

where for the brevity ∇varg stands for the gradient of g with respect to variable
var taken in the point (x0,h0,n0,α0) and

f(x0,h0,n0,α0) = g(x0,h0,n0,α0)−∇xgT )x0−∇hgTh0−∇ngTn0−∇αgT α0.

The model (4) takes into account the dependence of distorted features on
phase vector α which is assumed to be gaussian with unknown mean vector μα

and covariance matrix Σα:

α ∼ N (α;μα, Σα). (5)

The similar assumption is made for the noise features vector, n ∼
N (n;μn, Σn), and the channel feature vector h is considered to be unknown but
deterministic and constant during the whole recording. Notice that the dimen-
sion of the vector α is equal to the number of mel-frequency bands while vectors
x, h, n dimensions are equal to the number of cepstral coefficients, so they a
generally different.

The gradients of the non-linearity g is easy to compute. The gradients with
respect to h and α look like

∇hg(x,h,n,α) = DT diag
{

1 + α • eD(n−x−h)/2

1 + eD(n−x−h) + 2α • eD(n−x−h)/2

}
CT , (6)

∇αg(x,h,n,α) = diag
{

2eD(n−x−h)/2

1 + eD(n−x−h) + 2α • eD(n−x−h)/2

}
CT , (7)

and the gradients with respect to x and n are equal to

∇xg(x,h,n,α) = −∇ng(x,h,n,α) = I + ∇hg(x,h,n,α). (8)

It should be also noted that the gradient with respect to α is in general a
rectangular but not a square matrix of dimensions equal to those of matrices D
and CT .

Let’s assume as usual in VTS that the distribution of the clean speech features
is described by GMM:

p(x) =
K∑

k=1

P (k)p(x | k) =
K∑

k=1

P (k)N (x;μx,k, Σx,k). (9)
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Then the linearized distortion model (4) application entails that the distribution
of the noisy speech features is also described by GMM:

p(y) =
K∑

k=1

P (k)p(y | k) =
K∑

k=1

P (k)N (y;μy,k, Σy,k) (10)

which has the same weights and whose other parameters are defined by the
following expressions2

μy,k = (I + ∇xgT )μx,k + ∇hgTh + ∇ngT μn + ∇αgT μα (11)
+ f(x0,h0,n0,α0), (12)

Σy,k = (I + ∇xgT )Σx,k(I + ∇xg) + ∇ngT Σn∇ng + ∇αgT Σα∇αg. (13)

It is important to notice that for different GMM components the Taylor
expansion points may generally differ from each other, so they should have
the corresponding index k which is omitted for brevity. Usually, the point
(μx,k,h, μn, μα) is taken as an expansion point for the k-th GMM component,
where h, μn, μα are the current estimates of the distortion model parameters.

3 Estimation of the Distortion Model Parameters

To estimate the set of distortion model parameters λ = (h, μn, Σn, μα, Σα) the
maximum likelihood method is used conventionally. Unfortunately, the direct
likelihood optimization is infeasible so we have to use EM-algorithm for the
iterative parameters reestimation. We use the approach from [10] where vectors
h and nt (as well as αt in this paper) are considered as hidden variables and the
EM auxiliary function has the following form:

Q(λ, λ) =
T∑

t=1

K∑

k=1

∫

nt

∫

αt

p(nt,αt, k | yt, λ) log p(yt,nt,αt, k | λ)dαtdnt, (14)

where λ is current parameters vector, and its new value is determined as a
solution of an optimization problem

λ̃ = arg max
λ

Q(λ, λ). (15)

The optimization task (15) is more complicated then in [10], because even
if n and α are considered to be independent, they are no longer independent
given yt. Nonetheless it is possible to derive their conditional distributions given
yt and they turned out to be gaussian. By differentiating Q(λ, λ) with respect

2 The equation (13) holds when noise and phase vectors are considered as independent.
Otherwise the additional cross-correlation term appears.



316 M. Korenevsky and A. Romanenko

to each component of λ and equating gradients to zero the following update
equations can be derived:

h̃ = h + S−1
K∑

k=1

∇hgΣ
−1

y,k

T∑

t=1

γk(t)(yt − μy,k), (16)

μ̃n = μn +
1
T

Σn

K∑

k=1

∇ngΣ
−1

y,k

T∑

t=1

γk(t)(yt − μy,k), (17)

Σ̃n =
1
T

K∑

k=1

T∑

t=1

γk(t)
(
Σ̆n,k + μ̆n,k(yt)μ̆n,k(yt)T

)
− μ̃nμ̃T

n , (18)

μ̃α = μα +
1
T

Σα

K∑

k=1

∇αgΣ
−1

y,k

T∑

t=1

γk(t)(yt − μy,k), (19)

Σ̃α =
1
T

K∑

k=1

T∑

t=1

γk(t)
(
Σ̆α,k + μ̆α,k(yt)μ̆α,k(yt)T

)
− μ̃αμ̃T

α, (20)

where

μ̆α,k(yt) = μα + Σα∇αgΣ
−1

y,k(yt − μy,k), (21)

Σ̆α,k = Σα − Σα∇αgΣ
−1

y,k∇αgT Σα, (22)

μ̆n,k(yt) = μn + Σn∇ngΣ
−1

y,k(yt − μy,k), (23)

Σ̆n,k = Σn − Σn∇ngΣ
−1

y,k∇ngT Σn, (24)

S =
K∑

k=1

∇hg(I + ∇xg)−1Σ−1
x,k(I + ∇xgT )−1∇hgT

T∑

t=1

γk(t) (25)

and the notation γk(t) = P (k|yt, λ) is introduced. Notice that expressions for
channel and noise parameters re-estimation are formally identical to those pre-
viously obtained in [10] without phase-sensitive term.

However it should be realized that non-linearity gradients and noisy features
distribution parameters involved into these expressions do actually depend on
phase vector.

4 Estimation of the Clean Speech Features

After the EM-algorithm converged and the final estimates of the distortion model
parameters were found the estimate of the clean speech features xt should be
obtained.

If the minimum mean square error (MMSE) approach is used for this, then
the clean features estimate is defined as xMMSE

t = Ext|yt
{xt} and it can be

shown that

xMMSE
t =

K∑

k=1

p(k | yt)
(
μx,k + Σx,k(I + ∇xg)Σ−1

y,k(yt − μy,k)
)
. (26)
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Once again one can notice that (26) looks identical to the estimates from [14,
21] obtained without phase-sensitive term, however there is an implicit difference
in gradient expressions and noisy speech features distribution parameters.

5 Experiments and Results

In order to evaluate the effectiveness of the proposed approach we produced sev-
eral experiments on Aurora2 database [7]. This database consists of digits string
utterances distorted with several kinds of additive noise at different SNRs as well
as lowpass filtering which emulates channel distortions. For our experiments we
used “simple backend” [7] based on HTK Toolkit [22].

The clean speech features GMM (9) was trained on the clean trainset of
Aurora2 by means of GmmBayes toolkit [20]. Only the full-covariance compu-
tations were used throughout the experiments. The initial estimates of noise
distribution parameters for a given utterance were obtained from its first ten
and last ten frames. The initial parameters of the phase vector distribution were
set to zero vector and unit matrix respectively.

We compared recognition accuracy on MFCCs processed with conventional
[10] and proposed VTS variants as well as without any processing for both clean
and multi-condition training. The results are presented in the Table 1.

Table 1. The recognition accuracy, % on Aurora2 tests (averaged over SNRs from 0
to 20 dB)

Processing of data Clean training Multi-condition training

Test A Test B Test C Avg Test A Test B Test C Avg

No processing 59.1 55.5 66.5 59.1 87.0 86.4 85.1 86.4

VTS phase-insensitive 83.8 84.1 82.8 83.7 86.6 85.8 86.4 86.3

VTS phase-sensitive 86.1 86.4 86.2 86.2 88.9 88.3 89.1 88.7

The results from the Table 1 show that the proposed modeling of the phase
term improves the recognition accuracy significantly compared to the conven-
tional phase-insensitive VTS. Indeed, the average WER is reduced by 20 % for
the clean training scenario and by 18 % for the multi-condition training. Besides,
in the clean training scenario the proposed variant of VTS almost fills the large
gap which is between clean and multi-condition training results without using
any processing. It can be noticed that the largest accuracy gain due to phase
modeling is achieved on the Test C, where channel distortion is applied to data.

The simplified version of the phase-sensitive VTS was also tested. It uses the
idea from [13] where phase vector is treated as deterministic with equal elements.
The dependence of recognition accuracy on elements value α is depicted in the
Fig. 1.

The figure shows that constant equal-element vector is indeed a good approx-
imation to the stochastic gaussian model of phase. For the clean training scenario
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Fig. 1. Comparison of speech recognition accuracy of the proposed phase modeling
and deterministic constant phase approximation. CT and MT stand for clean and
multi-condition training respectively

this approximation is even slightly better than proposed one while for the multi-
condition training the results are slightly worse but the difference is subtle. How-
ever, the optimal value of vector elements (1.5) differs from that one obtained
in [13] in application to acoustic model adaptation (2.5). So this optimal value
is algorithm-dependent and we guess that it may be task and data dependent as
well.

6 Conclusions

The feature compensation algorithm based on Vector Taylor Series approxima-
tion of phase-sensitive distortion model is proposed. The formulas for parameters
update and clean speech features estimate are derived. The comparison of the
proposed method to its phase-insensitive analogue made on Aurora2 database
shows that it provides WER reduction of about 20 % relative. The simplified
variant of phase-sensitive VTS is also tested and shown to be reasonable approx-
imation which provides comparable results at reduced complexity.
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Abstract. In this paper are presented different approaches for speaker position
identification that use a microphone array and known voice models. Comparison
of speaker positioning is performed by using acoustic maps based on FBF and
PHAT. The goal of the experiments is to find best algorithm parameters and
their approbation for different types of noises. The proposed approaches allows
for better results in automatic positioning under noisy conditions. It enables to
identify the target speaker whose speech duration is longer than 10 s.

Keywords: Microphone array � Acoustic map � Speech enhancement

1 Introduction

Microphone arrays are widely used for speech enhancement in noisy environments and
different acoustic situations. Using fixed beamforming (FBF), minimum variance dis-
tortionless response (MVDR) [1] and other algorithms, speech capturing must be
executed in a certain direction. So, to use microphone array as efficiently as possible,
direction to the target speaker must be known. Also, it would be useful to have more
detailed information about directions of noise sources, to be able to suppress them. For
finding target directions usually used sound intensity maps or visual pinpointing. These
methods have several disadvantages.

Sound intensity maps (acoustic maps) allow finding the loudest sound source. For
the computation of acoustic maps are used algorithms such as FBF and phase transform
(PHAT) [14]. One of its main weaknesses is that speaker voice cannot be differentiated
from a noisy background, like loud music or conversation of other speakers. Because of
the fact that sound is reflects from surfaces, a lot of unwanted sources may appear.

Method of visual pinpointing allows transmitting information about target speaker
direction to a microphone array. The process of tracking necessary objects is widely
used today. However, this method has restrictions caused by cameras that are used for
tracking. As a rule, camera view angle is smaller than possible pointing angle of a
microphone array. Camera can have difficulties on providing an accurate image due to
poor lightening. There are situations when two speakers turn their back on a
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microphone array and this method cannot find position of a target speaker. Also it is
difficult to find position of a target speaker in case of fog or other interference.

In practice, automatic speaker positioning meets many difficulties in many acoustic
situations, especially in situations with two or more speakers.

Problem of separation of the target speaker can be resolved with use of identifi-
cation algorithms. There are solutions that use beamforming to estimate speakers’
positions and then identify them [12]. There are solutions that estimate speakers’
positions using audio information captured by microphone array and video captured by
several camcorders [13]. In this paper we propose to focus on the problem of deter-
mining the position of the speakers through audio data only, in difficult listening
situations using identification algorithm based on PLDA and NMF.

2 Description of the Used Speaker Identification System [2]

2.1 Total Variability Approach

GMM based approach for i-vector extraction consists of mean values estimation of
speaker voice features attributed to each component of Universal Background Model
(UBM). The distribution of concatenatedmean vectors (mean supervector) is assumed as:

s ¼ m0þ Tx; ð1Þ

where m0 is mean supervector of UBM, T is the matrix defining the basis in the
reduced feature space, x is the i-vector in the reduced feature space, with prior
p xð Þ ¼ N ð0; IÞ.

T and m0 are global parameters which can be estimated using Factor Analysis and
Expectation-Maximization algorithm. The reader can refer to [3] for more details.

UBM is obtained by unsupervised training using huge amount of representative
unlabeled speech data. Thus, UBM is used for posteriors calculation on each speech
frame followed by Baum-Welch statistics accumulation [4].

2.2 PLDA Based Back-End [5]

Among state-of-the-art speaker verification systems, leading positions are occupied by
PLDA-based systems [4, 6–9] working in the i-vector space.

is;r ¼ lþVyysþ 2s;h; ð2Þ

where is;h is an f-dimensional i-vector from set {i1; . . .; iH}, obtained from H utterances
belonging to speaker s, and y;2s;h is hidden speaker factors and Gaussian noise,
respectively. Vy- is an eigenvoices matrix.

In order to carry out a large number of experiments we did not use costly
EM-algorithm [5] to estimate the model parameters. Instead of that, similar to our
study [8], we estimated between-speaker and within-speaker covariances, respectively,
according to formulas:
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RB ¼ 1
S

X

S
is � lð Þ iS�lð ÞT ; ð3Þ

RW ¼ 1
S

X

h
is;h � is
� �

is;h � is
� �T

: ð4Þ

The vector is;h is an i-vector extracted from the h-th session of the s-th speaker, the
vector is is the average over all sessions of this speaker. is can be viewed as the
maximum likelihood estimate in the Gaussian model of within-speaker variability. l is
the dataset mean and S is the number of speakers in the training set. Given a pair of
i-vectors i1 and i2, assuming zero mean and skipping the scalar term, the commonly
used PLDA verification score can be written as:

Score ¼ iT1Qi1þ iT2Qi2þ 2iT1Pi2; ð5Þ

where square matrices P and Q can be expressed in terms of (3) and (4).

3 Sparse Non-negative Matrix Factorization

Alternative approach that was used for solving speaker targeting problem is SNMF
[10]. Let Y be a spectrogram of speech mixture. Y is a non-negative n� m matrix that
can be factorized into an n� r matrix D and an r � m matrix H:

Y ¼ DH; ð6Þ

where D is a dictionary and H is a code matrix. D and H also consist of only
non-negative elements and H is sparse. The SNMF minimizes the following cost
function:

E ¼ Y � DHk k2þ l
X

ij
Hijs s:t:D;H� 0; ð7Þ

where l controls degree of sparsity. D and H are update by following rules:

Hij  Hij
DTYð Þij

DTDHð Þijþ l
; Dij  Dij

YHTð Þij
DHHTð Þij

: ð8Þ

We first apply SNMF to learn matrix D of individual speakers. To separate speech
mixtures we keep the matrix D fixed and update only the matrix H.

After separation we estimate speech of target speaker and residual noise. Score is
calculated like an energy of estimated signal.
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4 Comparing Results of Identification with BSS

We recorded data using FBF method [11] from directions in range from −90 to 90
degrees with interval 1. We compared results from each direction with a model, using
identification algorithm or SNMF. For each direction, we calculated a score, which are
presented in Fig. 1. For this data we also calculated a score that shows situation on
acoustic maps based on sound intensity evaluation from a target direction.

Since we know the direction of a target speaker, we introduced metric for char-
acterization of the obtained plots, whether speaker direction is identified well or not:

M ¼ Fd � Fr

r
; ð9Þ

where Fd – score corresponding to a speaker direction;
Fr – average score for all directions;
r – standard deviation.

5 Data

In our experiments we used a microphone array with 66 microphones: 11 microphones
in 6 rows with 3.5 cm horizontal distance and 5 cm vertical distance between micro-
phones. Audio data was recorded in rooms with reverberation time of 0.3 s. Audio data
was recorded in the following acoustic conditions:

• Speech of one speaker in a calm environment.
• Simultaneous speech of two speakers.
• Speaker with a white noise on a background, SNR * 8 dB.

6 Results

For comparing algorithms, we used audio recording with simultaneous speech of two
speakers. Results are presented in Table 1.

Next we are going to analyze more detailed results of optimizing parameters, using
identification method.

Table 1. Algorithm comparison

Algorithm Metric

Identification 1,24
SNMF 2,40
FBF 0,63
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A microphone array focuses on low frequencies worse than high frequencies; that is
why we made a decision to analyze the influence of filter that cuts off low frequencies.
The results are shown in Table 2.

We were highly interested in analyzing this method on short time intervals. Table 3
shows the dependence of supplied metric on duration of an analyzed recording interval.

Table 4 shows dependence of metric values on acoustic environment. Fields
marked “N/A” means that it’s impossible to find target position in this case.

Let us consider an example of a simultaneous speech of two speakers. The figure
shows an acoustic map that displays the score of finding a target speaker and presents
an opportunity of identifying a target speaker position automatically. On this map, the
acoustic map (Energy), NMF and identification maps are displayed. In energy map, it is
impossible to distinguish direction of target speaker from a direction of another
speaker. On NMF and identification maps we achieve result presented in Fig. 1.

On the acoustic map, you can see that the first (target) speaker is significantly
quieter than the second speaker, and it is impossible to identify his/her position by a
volume level. On the score map, his/her position can be easily seen and automatically
identified.

Table 2. Dependence between equalizer settings and the metric

Lower frequency limit Identification SNMF

50 Hz 1,66 1,34
500 Hz 1,87 1,06
1000 Hz 1,27 2,40
2000 Hz 1,13 2,68

Table 3. Dependence between duration and the metric

Duration of analyzed interval Identification SNMF

7 s 1,59 2,56
15 s 1,77 2,43
30 s 0,92 2,47
60 s −0,04 2,38

Table 4. Comparison of algorithms by acoustic environment

FBF SNMF Identification

One speaker 1,41 2,40 0
2 speaker N/A 2,40 1,24
Speaker and white noise SNR 8 dB N/A N/A 2,40a

a In this case two peaks were obtained. We propose to compare SNR
in both directions to find real position of target speaker.
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7 Conclusion

In this paper we proposed methods for finding speaker position under difficult acoustic
conditions. We achieve that goal using identification or SNMF algorithms and calcu-
lating score for each direction. Using those methods, we can achieve positive results for
recordings of 7-15 s. SNMF showed better accuracy in direction estimation, but
identification was able to work in very noisy environment. The disadvantage of the
proposed methods is that their current realizations are too resource and time consuming
for an online use. The proposed methods now presents for post-processing mode.

Acknowledgements. This work was partially financially supported by the Govern-ment of the
Russian Federation, Grant 074-U01.
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Abstract. The aim of this study is the analysis of voice and speech
recordings for the task of Parkinson’s disease detection. Voice modality
corresponds to sustained phonation /a/ and speech modality to a short
sentence in Lithuanian language. Diverse information from recordings is
extracted by 22 well-known audio feature sets. Random forest is used as
a learner, both for individual feature sets and for decision-level fusion.
Essentia descriptors were found as the best individual feature set, achiev-
ing equal error rate of 16.3 % for voice and 13.3 % for speech. Fusion of
feature sets and modalities improved detection and achieved equal error
rate of 10.8 %. Variable importance in fusion revealed speech modality
as more important than voice.

Keywords: Parkinson’s disease · Audio signal processing ·
OpenSMILE · Essentia · MPEG-7 · jAudio · YAAFE · Random
forest · Information fusion

1 Introduction

Parkison’s disease (PD) is the second most common neurodegenerative disease
after Alzheimer’s [5] and it is expected that the prevalence of PD is going to
increase due to population ageing. Medicine and surgical intervention may slow
down the progression of PD if it is detected early, resulting in increased life
span and life quality for PD patients. Acoustic analysis is considered as an
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important non-invasive tool in screening for PD. Some studies use large feature
sets aiming to obtain comprehensive characterization of the voice/speech signal,
while others rely on “clinically useful” measures or perform feature selection to
obtain a compact set of audio descriptors. There are almost no studies comparing
performance of many different feature sets and exploring fusion of feature sets
and modalities by a committee of PD detectors.

Size of previously used databases (less than 100 subjects) is a major problem
leading to unreliable estimates of reported performance. Another common prob-
lem is the lack of conformity to leave-one-subject-out [14] or leave-one-individual-
out [15] validation scheme. The need for such scheme arises when subject has
several recordings, where all recordings of a subject should be included either in
a training or in a testing fold, but not in both. Detailed review of the related
work can be found in [14].

2 Voice and Speech Data

Two vocal exercises were recorded as separate voice and speech modalities. Voice
modality corresponds to sustained phonation of vowel /a/ vocalized at com-
fortable pitch and loudness level for at least 5 s and repeated 3 times. Speech
modality corresponds to single pronunciation of phonetically balanced sentence
in a native Lithuanian language, – “turėjo senelė žil ↪a ožel ↪i ”, – which translates
into “granny had a little greyish goat”. Audio samples were recorded in a sound-
proof booth using an acoustic cardioid microphone AKG Perception 220 (AKG
Acoustics). The microphone was placed at ∼ 10 cm distance from the mouth at
about 90◦ microphone-to-mouth angle. The audio format was wav (mono PCM,
16 bit samples at 44 kHz rate). A mixed gender database containing 383 subjects
was collected. Several subjects had speech modality missing, therefore, fusion of
modalities was possible only for 375 subjects. For full details see Table 1.

Table 1. Summary of database: numbers denote amount of subjects (recordings), PD
stands for Parkinson’s disease patients and HC for healthy control subjects.

Modality: Voice Speech Fusion

PD male 36 (107) 35 35 (103)

PD female 39 (116) 39 39 (116)

PD 75 (223) 74 74 (219)

HC male 105 (312) 101 101 (302)

HC female 203 (599) 200 200 (594)

HC 308 (911) 301 301 (896)

Total 383 (1134) 375 375 (1115)
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3 Feature Extraction

Information, contained in audio recordings of voice or speech signal, can be
extracted using various signal analysis methods. Resulting measures are com-
monly known as features. Various feature collections with total number of fea-
tures are listed in Table 3. All feature sets were published before and have pub-
licly available extractors. Depending on the amount of signal used for extracting
features they can be categorized into:

– global features: long-term or recording-based or high-level descriptors;
– local features: short-term or frame-based or low-level descriptors (LLDs).

Short-term parametrization is performed by dividing a recording into short and
usually overlapping segments (frames or windows) and applying an algorithm
that computes respective local feature for each segment. Short-term features
later are compressed into long-term features by computing various statistical
functionals. Feature sets # 1 – 12 had their own predefined choice from 42 sta-
tistical functionals. Statistical functionals in feature sets # 13 – 17 encompass
the following 13 characteristics: minimum, maximum, mean, median, lower quar-
tile (Qlo), upper quartile (Qup), trimean (2·median+Qlo+Qup

4 ), standard deviation,
inter-quartile range, lower range (median − Qlo), upper range (Qup − median),
skewness, and kurtosis. Feature sets # 18 – 22 use mostly mean and standard
deviation.

OpenSMILE Features. Feature sets # 1 – 12 are computed using predefined
configurations available in openSMILE [7] toolkit (version 2.2 RC 1). Name of each
feature set is identical to the name of the respective configuration file with .conf
ending. Most of these configurations are rather similar, therefore, for illustration,
only emobase.conf is described further. The feature set emobase, introduced
for emotion recognition, contains 26 LLDs and also the 1st derivative (delta
or velocity) of each LLD. To summarize various aspects of frame-based data
distribution for each LLD and its delta, a collection of statistical functionals
is applied. Details are in Table 2, and the overall size of the feature set is 988
features = (26 LLDs + 26 deltas) × 19 functionals.

Table 2. Overview of the emobase.conf file settings.

Low-level descriptors Statistical functionals

pitch, pitch envelope, intensity, loud-
ness, 12 MFCCs, probability of voicing,
8 frequencies of line spectral pairs, zero-
crossing rate

min (or max) value and its respective rela-
tive position within a signal, range, arith-
metic mean, 2 linear regression coefficients
and linear and quadratic error, standard
deviation, skewness, kurtosis, 3 quartiles,
and 3 inter-quartile ranges
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Configuration file emobase.conf contains these processing-related settings:

– pitch and pitch envelope are estimated using pre-emphasis (of 0.97) and over-
lapping (by a step of 10 ms) Hamming windows (of 40 ms duration);

– other LLDs are obtained without pre-emphasis and the signal is windowed
into overlapping (by a step of 10 ms) Hamming windows (of 25 ms duration).

All extracted LLDs are smoothed using a simple moving average filter (with
window size 3) before proceeding to compress them by statistical functionals.

Essentia Descriptors. Feature set # 13 was computed using Essentia [1] (ver-
sion 2.1 beta 2) – an open-source C++ library for audio analysis – out-of-the-
box extractor streaming extractor freesound.exe (version 0.3). Descriptors
of lowlevel and sfx type were selected and descriptors of tonal and rythm type
were discarded. A detailed list of 1915 (17 global + 146× 13 local) descriptors:

– 1 global descriptor of lowlevel type – average loudness;
– 16 global descriptors of sfx type – 5 temporal (centroid, decrease, kurtosis,

skewness, spread), 4 morphological (the ratio between the index of the max-
imum value of the envelope of a signal and the total length of the envelope,
the ratio of the temporal centroid to the total length of a signal envelope, the
weighted average of the derivative after the maximum amplitude, the maxi-
mum derivative before the maximum amplitude), pitch centroid, strong decay,
flatness, log attack time of a signal envelope, the ratio between the index of
the maximum value of the pitch envelope of a signal and the total length of
the pitch envelope, the ratio between the index of the minimum value of the
pitch envelope of a signal and the total length of the pitch envelope, the ratio
between the pitch energy after the pitch maximum to the pitch energy before
the pitch maximum;

– 141 local descriptors of lowlevel type – spectral energy in 77 bands (28 fre-
quency bands, 4 bands of low/mid-low/mid-high/high frequencies, 18 ERB
bands, 27 Bark bands), 3 statistics of spectral energy in Bark bands (kurtosis,
skewness, spread), 13 GFCC, 13 MFCC, 15 spectral (energy, entropy, com-
plexity, centroid, strong peak, crest, the high frequency content measure of
Masri & Bateman, RMS, roll-off, decrease, flatness in dB, flux, kurtosis, skew-
ness, spread), 6 spectral contrasts, 6 spectral contrast valleys, 3 pitch-related
(pitch, instantaneous confidence of pitch, salience of pitch), 3 silence rates (20
dB, 30 dB, 60 dB), dissonance, zero-crossing rate;

– 5 local descriptors of sfx type – 3 tristimulus values, inharmonicity, odd-to-
even harmonic energy ratio.

MPEG7 Descriptors. Feature set # 14 was combined from some descrip-
tors of the MPEG-7 standard, extracted using Java library MPEG7AudioEnc [4]
(version 0.4 RC 3). The MPEG-7 audio standard specifies normative for audio
content description as a comprehensive form of meta-data to enhance searcha-
bility among multimedia content. A detailed list of 527 (7 global + 40× 13 local)
descriptors:
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– 7 global descriptors – 4 harmonic spectral (centroid, deviation, variation,
spread), 2 centroid (spectral, temporal), log attack time;

– 40 local descriptors – 36 audio spectrum (24 flatness, 10 envelope, centroid,
spread), 2 audio harmonicity, audio fundamental frequency, audio power.

KTU Features. Feature set # 15 was introduced for voice pathology screening
by [8] at Kaunas University of Technology and later expanded to include addi-
tional features. Latest variant of this feature set was devised here by combining
feature subsets # 1 – 13 from [19] with MFCC and PLPCC features from [6].
For MFCC and PLPCC features the signal is pre-emphasized by 0.97, frames
are computed using the sliding 10 ms (440 samples) Hamming window with 5 ms
overlap. Frame-based 19 MFCCs and 19 PLPCCs were characterized by 13 sta-
tistical functionals, providing a subset of 494 features. Combining 773 [19] and
494 [6] features resulted in the feature set with a size of 1267 features.

jAudio Features. Feature set # 16 was generated by Java application
jAudio [12] (version 0.4.5.1), which was developed as a standardized audio fea-
ture extraction system for automatic music classification. All features selected
were frame-based with window size of 1024 (corresponding to ∼ 23.3ms frame
length) and window overlap of 50 %. A detailed list of 1794 (138× 13 local)
features: 100 area method of moments, 13 MFCC, 10 LPC, 4 spectral (cen-
troid, flux, rolloff point, variability), 3 strongest frequency (via zero crossings,
via spectral centroid, via FFT maximum), 2 partial-based spectral (centroid,
flux), peak-based spectral smoothness, compactness, root mean square, fraction
of low energy windows, relative difference function, zero crossings.

YAAFE Features. Feature set # 17 was computed by yet another audio fea-
tures extraction toolbox – YAAFE [11] (version 0.65). Default settings were used
for the following list of 1885 (145×13 local) features: 24 loudness, 23 spectral
crest factor per band, 23 spectral flatness per band, 13 MFCC, 12 shape statistics
(4 envelope, 4 spectral, 4 temporal), 10 LSF, 10 OBSI, 9 OBSIR, 8 amplitude
modulation, 6 spectral (decrease, flatness, flux, rolloff, slope, variation), 2 LPC,
2 perceptual (sharpness, spread), complex domain onset detection, energy, ZCR.

Tsanas Features. Feature set # 18 was developed specifically for PD screen-
ing. Code to compute these features is publicly available as Voice Analysis
Toolbox (version 1.0) for Matlab and the full list of 339 features is described in
PhD thesis [17]. Feature sets # 19 – 22 (compact subsets of the feature set #
18) were refined for PD detection task using 4 different wrapper-based feature
selection techniques with SVM in [18].

4 Methodology

We have used random forest (RF) [2] as a supervised algorithm to detect Parkin-
son’s disease and also to fuse information in the form of soft decisions, obtained
using various audio feature sets from non-invasive modalities – voice and speech.
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4.1 Random Forest

Matlab port of original RF algorithm was obtained from [10]. RF is a com-
mittee of decision trees, where the final decision is derived by majority voting.
The core idea of RF is to combine many (B in total) decision trees, built using
different bootstrap samples of the original data set, and a random subset (of
predetermined size q) of features x1, . . . , xp. RF is known to be robust against
over-fitting and as the number of trees increases, the generalization error con-
verges to a limit [2]. For our experiments B was set to 5000, several specific values
of q (

√
p, 2 ·√p, 1

2 · p) were tested and the best performing q setting retained.
The generalization performance of RF was evaluated using internal out-of-

bag (OOB) validation, where each observation is classified only by the trees
which did not have this observation in bootstrap sample during construction.
It is well known that OOB validation provides an unbiased estimate of a test
set error, similar to leave-one-out scheme. Because of the “repeated measures”
aspect in voice data, where each subject is represented by several recordings of
sustained vowel, sampling part of the RF had to be modified to ensure that all
recordings of each subject are either included in a bootstrap sample or left aside
as OOB. Such modification corresponds to leave-one-subject-out scheme, which
helps to avoid speaker detection intermingling with pathology detection. Also
RF setting, allowing to perform stratified sampling, was configured to preserve
class ratio and gender balance of the full dataset in each drawn bootstrap sample.

4.2 Decision-Level Fusion

Individual RFs were built independently on bootstrap sets and decisions of these
individual experts were combined in a meta-learner fashion. RF was used both
as a base learner and as a meta learner. This implies that outputs from RF
models from the first stage are treated as inputs (meta-features) for another RF
in the second stage. For the detection task, an input to the meta-learner is the
difference between class posteriori probabilities obtained from the base-learner.
Given a trained RF, this difference or variant of soft decision is estimated as:

d({t1, ..., tL},x) =
∑L

i=1 f(ti,x, q = 2)
L

−
∑L

i=1 f(ti,x, q = 1)
L

, (1)

where x is the object being classified, L is the number of trees t1, ..., tL in the
RF for which observation x is OOB, q is a class label (1 corresponds to HC and
2 to PD), and f(ti,x, q) stands for the qth class frequency in the leaf node, into
which x falls in the ith tree ti of the forest:

f(ti,x, q) =
n(ti,x, q)∑Q

j=1 n(ti,x, qj)
, (2)

where Q is the number of classes and n(ti,x, q) is the number of training data
from class q and falling into the same leaf node of ti as x.
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Meta-features were also investigated by performing permutation-based vari-
able importance analysis using mean decrease in accuracy as the variable impor-
tance measure. Values of each meta-feature are permuted several times and the
mean difference in meta-RF performance on OOB data is estimated.

4.3 Assessing Detection

To evaluate the goodness of detection, detector’s scores for OOB data were used.
Votes of RF were converted to a proper score vector by normalizing votes for a
specific class through division by the total number of times the case was OOB,
as in formula (1). Using a score (soft decision) instead of predicted class (hard
decision) enables us with a more precise evaluation of the detection, which can
be visually summarized by the detection error trade-off (DET) curve, as recom-
mended in [16]. A quick way to compare detectors with different DET curves
is the equilibrium point where curve intersects diagonal – the equal error rate
(EER). The cost of log-likelihood-ratio Cllr is the most comprehensive detection
metric, used here as the main criterion for model selection. The log-likelihood-
ratio is the logarithm of the ratio between the likelihood that the target (PD)
produced the signal and the likelihood that a non-target (HC) produced the
signal. The DET curve, EER and Cllr measures were estimated using the ROC
convex hull method, available in the BOSARIS toolkit [3]. A well-calibrated and
useful detector should have Cllr < 1 and EER < 50 %.

5 Experimental Results

Detection performance of individual feature sets and their fusion is summa-
rized in Table 3 and DET curves for the best results are on the left-hand side
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Fig. 1. Evaluation of detection performance by DET curves (left). Meta-RF
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Table 3. Performance of feature sets and their fusion according to Cllr and EER.

# Feature set name Size Cllr EER, %

Voice Speech Voice Speech

1 avec2011 1941 0.785 0.758 25.95 23.93

2 avec2013 2268 0.783 0.768 26.26 22.95

3 emo large 6552 0.768 0.731 24.72 21.54

4 emobase 988 0.780 0.700 27.81 18.80

5 emobase2010 1582 0.805 0.758 27.70 19.60

6 IS09 emotion 384 0.836 0.797 30.00 23.72

7 IS10 paraling 1582 0.806 0.760 27.28 20.27

8 IS10 paraling compat 1582 0.804 0.775 27.83 22.93

9 IS11 speaker state 4368 0.797 0.783 26.23 24.42

10 IS12 speaker trait 5757 0.795 0.804 25.38 22.94

11 IS12 speaker trait compat 6125 0.787 0.800 26.54 24.47

12 IS13 ComParE 6373 0.782 0.792 25.74 25.03

13 Essentia descriptors 1915 0.599 0.571 16.31 13.30

14 MPEG7 descriptors 527 0.756 0.697 22.72 20.80

15 KTU features 1267 0.835 0.766 29.05 22.78

16 jAudio features 1794 0.806 0.769 26.90 21.26

17 YAAFE features 1885 0.778 0.674 26.27 18.12

18 Tsanas features 339 0.788 0.758 26.53 22.81

19 Tsanas LASSO 14 0.912 0.916 34.26 32.35

20 Tsanas LLBFS 14 0.913 0.890 33.45 31.23

21 Tsanas mRMR 15 0.942 0.928 37.60 35.05

22 Tsanas RELIEF 18 0.939 0.813 36.55 26.01

Decision fusion of sets & modalities 44 0.488 10.80

of Fig. 1. Top 5 feature sets for the voice modality: (1) Essentia; (2) MPEG-7;
(3) emo large; (4) YAAFE; (5) emobase. Top 5 feature sets for the speech modal-
ity: (1) Essentia; (2) YAAFE; (3) MPEG-7; (4) emobase; (5) emo large. Essentia
descriptors provided the best detection performance irrespective of the modality.
For all 22 feature sets investigated speech modality outperformed voice.

The fusion of models created using different feature sets and modalities
improved detection performance achieving EER of 10.8 %. Variable importance
analysis from the meta-RF (see the right-hand side of Fig. 1) indicate that for
the most feature sets (except for # 1, 2, 6, 8, 10 – 12) the speech modality
appears as more important than voice in decision-level fusion. Top 5 feature sets
for the fusion of modalities: (1) Essentia; (2) YAAFE; (3) Tsanas; (4) emobase;
(5) avec2011.
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Reason behind the worst performing feature sets (# 19 – 22) could be their
small size and the fact that they were formed by feature selection in [18],
potentially compromising stability and generalization properties of SVM, as
elimination of meaningless features is not so critical for obtaining a good
performance [9,13]. This also conforms to the findings of [20] indicating that
stable algorithm, such as SVM or RF, cannot help in identifying redundant
features.

6 Conclusions

Essentia descriptors proved to be the best collection of features for PD detec-
tion, achieving 16.3 % EER for voice and 13.3 % EER for speech data. Fusion
of 22 feature sets from both modalities improved detection performance down
to 10.8 % EER and revealed that decisions from speech appear somewhat more
important than decisions from voice. Fusion of diverse information could be rec-
ommended over feature selection for robust PD screening from voice and speech
recordings.
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Daqrouq, K., Skodda, S., Rusz, J., Nöth, E.: Automatic detection of Parkinson’s
disease in running speech spoken in three different languages. J. Acoust. Soc. Am.
139(1), 481–500 (2016)

15. Sakar, C.O., Kursun, O.: Telediagnosis of Parkinson’s disease using measurements
of dysphonia. J. Med. Syst. 34(4), 591–599 (2010)
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Abstract. In this paper we present a software-hardware complex for col-
lection of audio-visual speech databases with a high-speed camera and
a dynamic microphone. We describe the architecture of the developed
software as well as some details of the collected database of Russian
audio-visual speech HAVRUS. The developed software provides syn-
chronization and fusion of both audio and video channels and makes
allowance for and processes the natural factor of human speech - the asyn-
chrony of audio and visual speech modalities. The collected corpus com-
prises recordings of 20 native speakers of Russian and is meant for further
research and experiments on audio-visual Russian speech recognition.

Keywords: Multimodal database · Audiovisual speech · Speech tech-
nology · Automatic speech recognition

1 Introduction

A lot of work has been done already in the field of automatic speech recognition
(ASR), but it is still far from human level of performance. The need of mak-
ing ASR robust to various changes in the environment and channel leads to a
search of new approaches and sources to yield ASR improvements. Among these
is audio-visual speech recognition (AVSR). The additional modality of visual
speech is very helpful for making improvements in the environments with a high
level of noises. Visual speech is a source of a great amount of complimentary
information to the acoustic signal, being at the same time independent from
acoustic noises and environment. At present there are many studies in the field
of AVSR done for a number of European languages as well as for Chinese and
Japanese, but there are quite few works on Russian AVSR [5,11,12,22]. In 2012
it was proposed to use high-speed cameras along with microphones for the task
of audio-visual speech recognition [9], since the high frequency of video frames
may improve the performance of AVSR systems allowing more precise analysis
of articulation organs.
c© Springer International Publishing Switzerland 2016
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This paper presents a description of software architecture meant for recording
of AV speech databases by means of a high-speed camera, as well as the corpus
of AV Russian speech HAVRUS collected using this software.

2 State-of-the-Art Audio-Visual Databases

Nowadays there are various audio-visual databases, that are collected for differ-
ent purposes and with different means. For example, there is a European project
CHIL (Computers in the Human Interaction Loop) that aims to introduce com-
puters into a loop of humans interacting with humans, realizing computer ser-
vices that can be delivered to humans in an implicit, indirect and unobtrusive
way [2]. For the aims of this project from 2004 till 2007 the audio-visual corpus
of English speech was collected in the smart rooms located in five different sites,
that were specially equipped for the project: in UKA-ISL (Germany), in AIT
(Greece), in ITC (Italy), in UPC (Spain), and in IBM (USA). The use of differ-
ent places for recording sessions brought variability into the corpus: rooms differ
in size, layout, acoustic and visual environment, as well as sensor properties.
Two types of interaction scenarios were recorded for the corpus: lectures and
meetings.

There are recordings of 46 lectures and 40 meetings in the CHIL corpus.
The database contains rich annotations in multiple channels of both audio and
visual modalities. Recorded speech as well as environmental acoustic events were
segmented and annotated by human transcribers. Video annotations were man-
ually generated using an ad-hoc tool with manual annotating of the 2D face and
3D head location information. Part of the lecture recordings (19 lecture videos)
were also labeled with gross information about the lecturer’s head pose. The
head orientation label corresponded to one of eight discrete orientation classes,
ranging from 0◦ to 315◦ angle, with an increment of 45◦ degrees [15,20]

Another project that is worth mentioning is audio-visual corpus of Australian
English – AusTalk. It was collected in the scope of the Big Australian Corpus
project where 11 Australian universities have collaborated [6]. The main goal
of this project was the collection of a big audio-visual corpus of Australian
English that would allow researchers to investigate social, regional, ethnic and
cultural varieties of the language. Another goal of the project was to provide
the standardized infrastructure for audio-visual recordings all around Australia.
More than 1000 speakers from different geographical regions and social groups
were recorded. The corpus comprises nearly 3000 h of audio-video recordings.
There are four parts of read speech and five parts of spontaneous speech. All
audio and video data was captured by five microphones and two stereo cameras
recording audio and video. Automatic audio-video alignment was provided by
a strobe signal recorded on a separate audio channel. Annotation of the corpus
includes word-level for the part of read speech and orthographic transcription
for the part of spontaneous speech. Corpus was already used for the tasks of
multimodal speech recognition [19].

In the University of West Bohemia, several audiovisual corpora were col-
lected. The very first one is UWB-05-HSCAVC, the database of audiovisual
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Czech speech (UWB means University of West Bohemia, 05 year 2005 when
records were collected, and HSCAVC means Hundred Speakers Czech Audio-
Visual Corpus), that consists of 40 h of audio and video data with high reso-
lution [4]. Corpus comprises records of 100 speakers (39 men and 61 women),
the average age was 22 years. Speakers read 200 sentences: 50 of them were pho-
netically representative texts common for all, the rest were different for every
speaker and comprised as maximum various triphones as possible. Recording
was done with two cameras and two microphones. Annotation included labels
marking the beginning and the end of the phrases allowing segmentation of both
audio and video data into sentences. Each video file comes with such informa-
tion as description of mouth position and size. The similar corpus design was
used for collection of Czech speech corpus for audio-visual continuous speech
recognition [3,4].

The separate trend in audio-visual databases creation is the collection of cor-
pora recorded for the purpose of audio-visual speech recognition in cars, since
there are special and difficult acoustical conditions. An example of such data-
bases is AVICAR project [14]. AVICAR is a big corpus of audio-visual speech
recorded in the real-life conditions of moving car. It was collected in the Uni-
versity of Illinois (USA) with the financial support of Motorola company in
2003–2004. The similar corpus for Czech speech was collected in the University
of West Bohemia in 2003 [23]. The main difference in the design was that for
the Czech corpus the speech of driver speech, not passenger, was recorded.

However, at the moment there are almost no audiovisual databases represent-
ing continuous speech. Such databases are vital for the training of visual and
acoustical models in the scope of statistical method of speech recognition. This
type of modeling requires training corpora as close as possible to the real condi-
tions. For the training of Russian speech recognition systems with one modality
there is a number of commercially available speech resources, such as RuSpeech,
SPEECHDAT, ISABASE, SPEECON, InfantRU/ChildRU. But no audio-visual
Russian speech corpora with video and audio annotations exist. Now the only
known project concerning the creation of a multimodal database for Russian
speech is Multimodal Russian Corpus (MURCO) [8]. This corpus is intended for
investigation of emotional speech and has no phoneme or viseme levels of annota-
tion that are necessary for audiovisual speech recognition. Work on Russian AV
speech databases has been done previously at SPIIRAS, paving the way to the
results of the present study: creating the software for recording the AV speech
databases by means of high-speed camera and collecting HAVRUS corpus [9,10].

There are also some other corpora of audio-visual speech like corpus of affec-
tive communication Biwi 3D [1], corpus of French news shows REPERE [7],
speaker-independent corpus of both connected and isolated digits CUAVE [17].

3 Software Architecture for Recording Audio-Visual
Speech Databases

A typical bimodal speech recognition system fuses both audio and visual modal-
ities. Our goal was to develop and implement an efficient software-hardware
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complex that would allow us to collect the audio-visual corpus for the purposes
of bimodal speech recognition.

In our complex, we use one high-speed camera JAI Pulnix RMC-6740 (200 fps
at 640× 480 pixels resolution) and one dynamic microphone Oktava MK-012 in
order to capture both video and audio signals. High frequency of video frames is
crucial for analysis of dynamical images for at least two reasons. First one is that
visible articulation organs (lips, teeth, tip of tongue) change their configuration
quite fast during speech production. Second reason is that duration of some
phonemes (e.g. explosive consonants) is within 20–30 ms. Duration of each video
frame at 25 fps is 40 ms, so recordings made by a standard camera fps cannot
catch fast dynamics of lips movements, this results in a lot of the important
information missing in these signals.

Figure 1 shows a setup for audiovisual speech recording. There are four types
of equipment installed: (a) A separated microphone (one or two, depends on
requirements). When one microphone is used, it is placed in front of a user at
half-meter distance, when both are used, they are located at the left and right
side of table with 45◦ to a user; (b) A table lamp with a warm light pointed on a
user face. This lamp is used to discard illumination conditions; (c) A screen for
displaying graphical user interface (GUI) of audiovisual recording system, and
interaction with it; (d) A high-speed camera mounted on a tripod. The distance
between a user and the camera may be based on parameters of lenses installed
on the camera.

For the camera we can use one of the three different lenses: Navitar NMV-
25M23 (focal length = 3.5 mm, diagonal angel = 13.2◦, and distortion −0.04 %);
KOWA LM3NCM (focal length = 3.5 mm, diagonal angel = 66.9◦, and distor-
tion −0.46 %); KOWA LM6NCM (focal length = 6mm, diagonal angel = 46.5◦,
and distortion −0.2 %). Usage of these different lenses allows to increase the

Fig. 1. Setup for audio-visual speech recording
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adaptation and robustness of developed system to illumination [21] and other
conditions [18], that may degrade facial features [16].

Figure 2 shows the architecture of software for audio-visual speech database
recording. The developed software provides synchronization and fusion of both
audio and video channels that is suitable for training probabilistic models for
the speech recognition system.

Fig. 2. The architecture of software for audio-visual speech database recording

The software complex consists of four main modules: (1) video data capturing
and buffering; (2) audio data capturing, processing and segmentation; (3) text
phrases displaying; (4) GUI for interaction with a user (speaker). The devel-
oped software has two GUI modules for interaction with the user and receiving
his/her metadata. The modules of GUI provide two modes for data recording:
(1) a “manual” mode, when the user manages the start and end points for each
phrase; (2) an “automatic” mode, when parts of the recording are determined
by a voice activity detection (VAD) method. In the “automatic” mode, audio
signal capturing and processing is carried out continuously, and video data is
buffered in RAM memory for the last 60 frames (300 ms at 200 fps). This buffer-
ing option is based on nature of human speech production: asynchrony of both
speech modalities. One major problem in automatic audio-visual speech recog-
nition is to implement a correct method for synchronization and unification
of different speech modalities. The problem is that the two modalities naturally
become desynchronized, i.e., streams of corresponding phonemes and visemes are
not perfectly synchronous in real life due to natural constraints in the human
speech production process, inertia in human articulation organs, and coarticu-
lation (interdependence and interaction of adjacent elements in spoken speech)
which has different effects on acoustic and visual speech components. All these
aspects lead to desynchronization [11]. The developed system includes method
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for calculation of mistiming between audio and video streams based on analy-
sis of semaphores(events) realised on sending and receiving video frames from
camera as well as reading audio frames from microphone.

After the recording phrase, audio and video data of a current speaker are
saved into the speech database. For synchronizing audio and video signals, the
software calculates the frame mistiming.

4 HAVRUS Corpus Description

The developed software was used for recording of the audio-visual corpus of
Russian speech - HAVRUS. This corpus consists not only of video files without
compression (the optical resolution is 640× 460 px with 200 fps) and of audio
files also without compression (one channel PCM WAV files with 16 kHz sam-
pling rate), it also includes text files of temporal annotation into phrases, words,
phonemes and visemes of the part meant for training. The GUI used for the
recording is presented on Fig. 3.

Fig. 3. The dialogue window of the software for the recording of AV speech databases

20 native monolingual Russian speakers (10 male and 10 female speakers)
with no language or hearing problems participated in the recordings. Each of
them pronounced 200 Russian phrases: (a) 130 phrases for training are 2 phonet-
ically rich texts and are common for all speakers, and (b) 70 phrases for testing
are different for every speaker: 20 phrases were commands for the MIDAS infor-
mation kiosk in SPIIRAS [13] and 50 phrases are telephone numbers. All the
recordings were organized into a logically structured database, that comprises a
file with information about all the speakers and recording parameters, as well as
number of text and audio files for each recorded speaker.

For the audio data Mel-Frequency Cepstral Coefficients (MFCC) are calcu-
lated from 26 channel filer bank analysis of 20 ms long frames with 5 ms step,
these were stored as acoustical parameters. The video signal processing mod-
ule produces 10-dimensional articulatory feature vectors with 200 Hz frequency
calculated as the result of multi-scale face and mouth detection in video frames
using cascaded classifiers with AdaBoost, then applying principal component
analysis (PCA) and linear discriminant analysis (LDA) to the normalized graph-
ical mouth region.
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5 Conclusion

In this paper we presented the developed software-hardware complex for col-
lection of audiovisual speech databases with a high-speed camera JAI Pulnix
RMC-6740 and a dynamic microphone Oktava MK-012, as well as the collected
corpus HAVRUS. The developed framework provides synchronization and fusion
of both audio and video channels making allowance for the asynchrony of audio
and visual speech modalities. Such synchronization is based on calculation of
frames mistiming in a video stream per second as well as by joint implemen-
tation of voice activity detection and facial features analysis allowing to detect
speech start and end time moments. The collected corpus HAVRUS comprises
recordings of 20 native monolingual speakers of Russian with no language or
hearing problems. Each speaker pronounced 200 Russian sentences. HAVRUS
is meant for further research and experiments on audiovisual Russian speech
recognition.
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ods to estimate image blur and recognize faces in the system of automatic confer-
ence participant registration. Autom. Remote Control 76(11), 2011–2020 (2015)

19. Togneri, R., B.M., Sui, C.: Multimodal speech recognition with the AusTalk 3D
audio-visual corpus. In: Tutorial at ITERSPEECH 2014 (2014)

20. Waibel, A., Stiefelhagen, R., Carlson, R., Casas, J., Kleindienst, J., Lamel, L.,
Lanz, O., Mostefa, D., Omologo, M., Pianesi, F., et al.: Computers in the human
interaction loop. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds.) Hand-
book of Ambient Intelligence and Smart Environments, pp. 1071–1116. Springer,
Heidelberg (2010)

21. Xie, X.: Illumination preprocessing for face images based on empirical mode decom-
position. Signal Process. 103, 250–257 (2014)
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Abstract. The paper presents a human-smartphone interaction system that is
aimed at dangerous situation detection in a vehicle while driving. The system
implements the driver head position and face tracking to detect if the driver is
fine or he/she drowsed or distracted. For the image recognition, the OpenCV
computer vision library is used that allows to determine the main head and face
parameters that are analyzed to detect dangerous situations. Taking into account
detected dangerous situation and current situation in the road (e.g., city or coun‐
tryside driving; hotels, gas stations, cafes, restaurants around; Internet availa‐
bility) the system generates recommendations for the driver to prevent accidents
caused by dangerous driver behavior.

Keywords: Human-computer interaction · Image recognition · Head tracking ·
Face tracking · Context-aware recommendations · Dangerous situation detection

1 Introduction

Dangerous situation detection while driving vehicles and accident prevention in the
public roads is a popular research direction last years [1–3]. Such kind of systems are
offered to increase car and road safety. There are two main research direction in this
topic: (1) developed by manufactures complex hardware and software solutions and
integration it to the vehicles; (2) developed a smartphone-based application that uses
built-in cameras and accessible sensors to understand dangerous situation. Solutions
from the first group are very expensive and accessible only in the vehicles from premium
segment. In contrast, solutions from the second group are free (or cheap), they suppose
to use existing personal smartphone to download an application and use it that makes
the second group of application affordable for wide group of drivers. Presented paper
aimed at research and development reference model and implementation for human-
smartphone interaction using the front camera and detection of one of two dangerous
situation: drowsiness and distraction. Based on the detected dangerous situation recom‐
mendations for the driver are generated to prevent an accident.

Presented paper extends authors work in the area of dangerous events detection while
driving a vehicle. In the paper [4] authors present a comprehensive state-of-the-art anal‐
ysis of existing systems for dangerous events detection. Paper [5] contains developed
approach for two-wheeled self-balancing vehicles driver assisting to enhance their trips.
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In the paper [6] authors present a driver ontology that describes main concepts, possible
dangerous states for a driver that have to be taking into account dangerous situations
identification and recommendation generation.

The rest of the paper is structured as follows. Section 2 presents the reference model
of human-smartphone interaction. Two use cases are presented in Sect. 3. Implementa‐
tion of proposed reference model is presented in Sect. 4. Main results are summarized
in Conclusion.

2 Reference Model of Human-Smartphone Interaction While
Driving

For tracking human head and face the reference model has been proposed. Every time
when the mobile application gets image from the front camera this image is recognized
and situation is estimated (is it dangerous or not). Then the process is repeated until the
user closes the application or stops dangerous situation estimation function.

Presented reference model includes three main components: human, smartphone,
and cloud (Fig. 1). Smartphone analyses the human head and face and generate recom‐
mendations in case of dangerous situation is detected. Information for analyzing the
human head and face is collected by the mobile application component from the front
camera using the image recognition module. Application is analyzed head movements
(head rotation and nods), percentage of closure of eyelid (PERCLOS), eye blink rate
and gaze, and yawning using the analysis module that is responsible for extraction of
the visual features from the images taken by front camera. User interface is used to show
the user determined dangerous state and recommendations. Recommendation module

Smartphone Front camera

Mobile Application

User Interface Image
Recognition

Analysis
Module

Recommenda-
tion Module

Human
Ontology

Local
Database

Cloud

Driver Behavior
Patterns

Dangerous Events

Application Usage 
Statistics

Information Services

Human

Head

Head
Movements

PERCLOSE Eye Blink Eye Gaze Yawning

Head and face analysis Recommendations

Fig. 1. The reference Model of Human-Smartphone Interaction while Driving
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is responsible for generation of context-aware recommendations for the human driver
based of the detected dangerous situation and current situation in the road. Local data‐
base is responsible for storing a data collected by the smartphone. If the Internet connec‐
tion is available, the smartphone uses the cloud to exchange useful information with
other system users and to store generic information about the driver’s behavior.

Such information as smartphone characteristics, application usage statistics, and
dangerous events occurred during trip is stored for a deep analysis and using in the future.
Smartphone characteristics are GPU, sensors (GPS, Accelerometer, Gyroscope, Magne‐
tometer), front camera, memory & battery capacity, and version of operation system.
The cloud also is used for keeping behavior patterns to analyze and create new dangerous
situation. Operations that can be carried out in the cloud storage are:

• correctness estimation of dangerous events recognition;
• behavior patterns matching;
• analysis and classification of driver behavior for generating recommendations for

safe driving;

The system is focused on the behavioral and physiological signals acquired from the
driver to assess his/her mental state in real-time [7]. In the presented approach, the driver
is considered as a set of mental states. Each of these states has its own particular control
behavior and interstate transition probabilities. The canonical example of this type of
model would be a bank of standard linear controllers (e.g., Kalman Filters plus a simple
control law). Each controller has different dynamics and measurements, sequenced
together with a Markov network of probabilistic transitions. The states of the model can
be hierarchically organized to describe the short and long-term behaviors by using the
driver ontology that includes visual cues and visual behaviors and determines relation‐
ships between them.

The vehicle drivers are faced with a multitude of road hazards and an increasing
number of distractions (e.g. music, phone calls, smartphone texting and browsing,
advertising information on the road, and etc.).

3 Use Cases

This section contains description of two use cases that have been developed and imple‐
mented for generating recommendations for a driver in case of dangerous event recog‐
nition: drowsiness and distraction.

3.1 Drowsiness Use Case

Drivers are often unaware of these episodes; rather, people typically think they have
been awake the whole time or have lost focus momentarily. As a result, drivers experi‐
encing bouts of micro sleep are at high risk of having an accident [8].

The smartphone’s front camera monitors the head movements, facial expressions
and the prolonged and frequent eye blinks indicative of micro sleep. Existing research
findings have shown that the PERCLOS is an effective indicator for evaluating a driver’s
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drowsiness. A measure of drowsiness, PERCLOS, was generated and associated with
degradation in driving performance in a simulated roadway environment. PERCLOS

Fig. 2. Flow chart of drowsiness dangerous state
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formally represents the proportion of time within one minute that eyes are at least 80 %
closed [9]. This driver state information such as PERCLOS and eye-blink speed is
provided by smartphone’s front-facing camera. We continuously compute PERCLOS
and declare the driver “drowsy” if PERCLOS exceeds a threshold (28 %) [10]. Another
parameter is the speed of blinking, giving a permissible range of 0.5–0.8 s per blink.
One more indicator of drowsiness is a yawning. If the driver makes more than 3 yawns
in 30 min, we consider the driver is in the dangerous state. And finally, the fourth indi‐
cator of this dangerous event is the head nodding. If the number of head tilts exceeds a
threshold (4) in 2 min, the drowsiness is inferred.

If the analysis module detects drowsiness, the application alerts the driver by playing
a signal tone. If the Internet connection is available for a smartphone it checks whether
the driver in a city or in a countryside. If the driver is on the countryside roads, the
recommendation module checks how many kilometers drives has to go to destination
point. If it is more than 100 km it tries to find a hotel around the route and makes the
driver recommendation to stay in hotel and to take a rest. If the driver declines this
proposal, the recommendation module generates recommendation for the driver to drink
2 cups of coffee before continue the trip in the nearest gas station. Otherwise, if driver
goes through the city and the observable distance to the destination point is more than
1 h of driving the recommendation module generates the same recommendation. If driver
declines the recommendation or destination point is not far or the Internet connection is
not available the recommendation module notifies the driver that drowsiness dangerous
state is detected and provides one of the following recommendation: listen radio/music,
talk to passengers, cool the vehicle interior, sign yourself, pull over and take a nap. The
flowchart of the drowsiness state is presented in Fig. 2. Recommendations are high‐
lighted in a grey color in Fig. 2.

3.2 Distraction Use Case

Maintaining eye contact with the road is fundamental to safe driving. The National
Highway Transportation Safety Administration (NHTSA) has defined distracted driving
as “an activity that could divert a person’s attention away from the primary task of
driving”. Distraction occurs when drivers divert their attention away from the driving
task to focus on another activity instead.

Two types of inattentive driving are monitored. In the first type, the output of the
face direction classifier based on head movements and head position is tracked. If the
driver’s face is not facing forward for longer than three seconds while the car is moving
forward (i.e., while a positive speed is reported by the accelerometer) and not turning
as reported by the turn detector (which is based on the gyroscope readings) then a
dangerous driving event is inferred. In the second type, we trace a vehicle movement
and determine whether the vehicle made a turn or not.

In this paper four driver’s face related categories is recognized. They are: (1) no
face is present; or the driver’s face is either (2) facing forwards events, towards the
road; (3) facing to the left events (i.e., a ≥ 15° rotation relative to facing directly
forward); and, (4) facing to the right events (another ≥ 15° rotation but this time to
the right). Each time a turn is detected the historical output of the face direction
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classifier is checked. If there is no head turn corresponding to a car turning event
then the driver did not check that the road is clear before turning – as a result, a
dangerous event is inferred. There is a diversity of distraction tasks that can affect
driver in different ways. Driver distraction is a contributing factor in many crashes.

If the application detects the driver’s distraction, it checks if the driver talks with a
passenger if it is talk it provides him/her information that distraction state is detected
and recommendation to stop talking with passenger (see Fig. 3). If the driver is not
talking with passenger the application checks if he/she is fond of listening to music or
radio. If it is true, the application recommends to turn off radio/music. In the both cases
the application plays a warning tone and flash the smartphone screen to attract the driver
attention that he/she is drowse. The overall scheme of distraction state avoidance is
presented in the Fig. 3.

Fig. 3. Flow chart of distraction dangerous state
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4 Implementation

Implementation of proposed human-smartphone interaction system for dangerous
driving situation detection in the vehicle has been developed for Android-based mobile
device. Mobile application has been developed using C and C ++. For the image recog‐
nition the open source computer vision (OpenCV) library has been used.

The face recognition process includes following key steps:

• The creation of the face detector.
• Face detection and face tracking.
• Facial landmarks detection like as “left eye”, “right eye”.
• Facial characteristics classification like as “eyes open”, “eyes close”.

To provide the functionality for face detection in consecutive video frames the Face
API is used and Classification API that is determining whether a certain characteristic
is present i.e. a face can be classified with regards to whether its eyes are open or closed.
Both of these classifications rely upon landmark detection. A landmark is a point of
interest within a face. The left eye, right eye, and nose base are all examples of land‐
marks. Classification is expressed as a certainty value, indicating the confidence that the
facial characteristic is present. In our case, a value of 0.3 or less for the eye state clas‐
sification indicates that it is likely that person’s eyes are in a closed state.

The overall speed and efficiency of the application has been improved by applying
several optimization techniques. To improve the frame processing performance, the
width and the height of the camera frames to 640 × 480 pixels have been set. Also, the
requested frame rate to 30 frames per second has been adjusted.

Figure 4 illustrate the user interface of mobile application. When a face is detected,
it is marked by a rectangle around the head in the camera image. The face detector marks
landmarks by circles. The Euler Y and Euler Z angles characterize a face’s orientation.
The “Left eye OP” and “Right eye OP” parameters show the probabilities whether the
left or right eye, respectively, is open. The higher value of these measurements is on the
image, the higher probability that the eyes are open.

Fig. 4. Prototype example: drowsiness and distraction dangerous state identification
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5 Conclusion

The paper present a human-smartphone interaction system for drivers in vehicles that
aims at dangerous situation detection while driving and generating recommendations
for the driver to prevent an accident in the road. There are two dangerous situation use
cases have been considered in the paper: distraction and drowsiness. For every use case
a flowchart diagram has been developed for recommendation generation. Implementa‐
tion of the system has been done for Android OS based mobile device. Evaluation shows
that in real situation the calibration is needed that allows to take into account the
displacement of smartphone in the vehicle from the driver gaze line.
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marvin.coto@ucr.ac.cr

2 Metropolitan Autonomous University, México D.F., Mexico
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Abstract. Automatic speech recognition systems (ASR) suffer from
performance degradation under noisy conditions. Recent work, using
deep neural networks to denoise spectral input features for robust ASR,
have proved to be successful. In particular, Long Short-Term Memory
(LSTM) autoencoders have outperformed other state of the art denois-
ing systems when applied to the mfcc’s of a speech signal. In this paper
we also consider denoising LSTM autoencoders (DLSTMA), but instead
use three different DLSTMAs and apply each to the mfcc’s, fundamen-
tal frequency, and energy features, respectively. Results are given using
several kinds of additive noise at different intensity levels, and show how
this collection of DLSTMA’s improves the performance of the ASR in
comparison with the LSTM autoencoder.

Keywords: LSTM · Deep learning · Denoising autoencoders

1 Introduction

Real world environments often adversely affect speech signals through the intro-
duction of contaminants such as noise and reverberation. If the speech signal
is not too damaged, humans are usually able to understand the original utter-
ance, whilst an Automatic Speech Recognition system (ASR) may experience a
degradation in its recognition performance [1,2].

This can be partially explained by the fact that a traditional ASR is HMM-
based, and the HMMs are trained using voices from some controlled environment,
and then tested differently, on real world environments. In this case, there may
be a considerable mismatch between the training and testing data.

As a result of the poorer performance of ASR under noisy conditions, research
is currently focused on making ASR systems more robust in such conditions [3–8],
trying to achieve recognition accuracy similar to that of quiet, controlled environ-
ments. Generally, approaches to noise robustness fall into one of two categories:
feature enhancement methods, which attempt to remove the corrupting noise
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-43958-7 42



DLSTMA in ASR 355

from the observations prior to recognition, and model adaptation, which leaves
the observations unchanged and instead updates the model parameters of the
recognizer to be more representative of the observed speech [9].

Recently, deep neural networks have been shown to be effective for a vari-
ety of speech research tasks, for example, robust speech recognition and speech
enhancement systems c.f. [10–13]. One technique has been to map spectral fea-
tures from speech containing noise, into the same spectral features of the corre-
sponding clean speech, using sigmoid neurons in the hidden layers.

Among the recent models of deep learning, a new kind of recurrent neural
network, called a Long Short-Term Memory Network (LSTM) has proved to be
successful in a variety of machine learning tasks. In particular, LSTM networks
have been used in [14] to map noisy and reverberant speech to clean speech, by
using spectral features of mfcc and Mel filter banks. Spectral features are the
ones primarily used, perhaps because ASR systems are usually based on them.
One interesting possibility is to include other acoustic features e.g. fundamental
frequency (f0) and energy, in this approach to see if this improves the results
obtained.

In this work, we explore an extended LSTM based approach for the feature
enhancement of ASR with additive noise, by considering not only the mfcc map-
ping from noisy to clean speech, but also the mapping of other acoustic features,
namely fundamental frequency and energy, by using a collection of deep autoen-
coders. The collection of autoencoders is trained on part of the CMU ARCTIC
databases by mapping utterances with added noise at different levels to the
clean utterances. Results are given by testing the utterances using a state-of-
the-art commercial ASR system. These results are also compared to the original
approach, using only the spectral features, and also to a third approach using
multilayer perceptrons instead of LSTMs. The results seem to show the benefits
of our proposed system.

The rest of this paper is organized as follows: Sect. 2 briefly presents the
LSTM, Sect. 3 describes the proposed system, Sect. 4 presents the experiments,
Sect. 5 gives the results together with an analysis, and finally in Sect. 6 we give
some conclusions derived from the paper.

2 Long Short-Term Memory Recurrent Neural Networks

Deep learning algorithms which are based on feedforward neural networks have
difficulty in modeling sequential information, where present values may depend
on previous ones. This type of modeling is desirable when dealing with speech
signals. To try to solve this problem, different techniques have been proposed
including Recurrent Neural Networks (RNN) [15]. In this case, there will be
nonfeedforward feedback from some or all of the neurons in the network, allowing
their internal memory to process this sequential information.

An extended type of RNN, which can store information over long or short
time intervals, has been presented in [16], giving the lowest recorded error rates
on the TIMIT database [17,18]. One advantage of the LSTM is in terms of its
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training procedure, which doesn’t suffer from the vanishing gradient problem
common to other RNN architectures.

In a RNN, output vector sequences y = (y1, y2, . . . , yT ) are computed from
input vector sequences x = (x1, x2, . . . , xT ) and hidden vector sequences h =
(h1, h2, . . . , hT ) iterating Eqs. 1 and 2 from 1 to T [19]:

ht = H (Wxhxt + Whhht−1 + bh) , (1)

yt = Whyht + by, (2)

where W is the weight matrix, e.g. Wxh is the weight matrix between input and
hidden vectores, b is the bias vector, e.g. bh is the bias vector for hidden state
vectores and H is the activation function for hidden nodes.

Each cell in the hidden layers of a LSTM, has some extra gates to store
values: an input gate, forget gate, output gate and cell activation, so values can
be stored in the long or short term. These gates are implemented following the
equations:

it = σ (Wxixt + Whiht−1 + Wcict−1 + bi) , (3)

ft = σ (Wxfxt + Whfht−1 + Wcfct−1 + bf ) , (4)

ct = ftct−1 + it tanh (Wxcxt + Whcht−1 + bc) , (5)

ot = σ (Wxoxt + Whoht−1 + Wcoct + bo) , (6)

ht = it tanh (ct) , (7)

where σ is the sigmoid function, i is the input gate activation vector, f the forget
gate activation function, o is the output gate activation function, and c the cell
memory.

3 Description of the System

In order to improve the accuracy of the ASR system in noisy utterances, we train
a collection of networks, each composed of LSTM units, where each network maps
a noisy utterance x to a clean utterance y. We call this special kind of network
a denoising LSTM autoencoder (DLSTMA). Autoencoders usually consist of
the encoder and the decoder; the encoder is a deterministic mapping f that
transforms a n-dimensional input vector x into a hidden representation y. The
typical form is an affine mapping, followed by a nonlinearity: f(x) = s(Wx+ b),
with parameter set θ = {W, b}, where W is a n × n weight matrix and b is an
offset vector of dimensionality d. The resulting hidden representation y is then
mapped back to a reconstructed d-dimensional vector z in input space, with
z = g(y). This mapping is called the decoder [20].

Figure 1 outlines the system, where three denoising autoencoders are trained
to map noisy features (x) of the waveform to clean features (y). The three
autoencoders have the same number of units in each hidden layer.
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Fig. 1. Proposed system

4 Experiments

The CMU ARCTIC databases were created at the Language Technologies Insti-
tute at Carnegie Mellon University, and consist of around 1150 utterances
selected from out-of-copyright texts from Project Gutenberg. The databases
include US English male and female speakers. A detailed report on the structure
and content of the database and the recording conditions is available in the Lan-
guage Technologies Institute Tech Report CMU-LTI-03-177 [21]. For this paper,
the SLT female voice was chosen, and 600 sentences were randomly selected to
define training, validation and test sets.

To evaluate the automatic speech transcription performance of the DLSTMA
and collection of DLSTMAs, we performed a series of experiments adding sev-
eral kinds of noise. The white Gaussian noise, brown noise and pink noise were
generated synthetically, and 50 randomly selected sentences were tested in a
state-of-the art online ASR, Speechmatics [22].

Each sentence was parameterized using the Ahocoder system [23]. Three
DLSTMAs were defined after a process of trial and error with three hidden
layers of 200, 160 and 200 units, to process separately each group of parameters:
f0, energy and 39 mfcc. All the acoustic features were extracted from frames
of 10ms. The training procedure was accelerated by an NVIDIA GPU system,
taking about 7 h to train each DLSTMA.

Four levels of noise of each kind were added to the sentences, thereby affecting
the ASR accuracy from negligible to considerable. For comparison purposes,
three results were analyzed: transforming only the mfcc spectral features with
one DLSTMA (base system), our proposal of transforming three acoustic features
with separate DLSTMA, and changing the LSTM units with simple sigmoid
functions (Multilayer Perceptron).
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5 Results and Analysis

Word Error Rates (WER) were obtained by applying the Speechmatics ASR to
the test data. Figure 2 summarizes the WER obtained for the three cases. It is
noticeable how the DLSTMAs, in general, show an improvement over the MLP
for denoising, when all have the same hidden layer structure. Further, the results
obtained by the collection of DLSTMAs are also significantly better than the
results of the original DLSTMA (trained only on the mfcc parameters).

(a) White noise results (b) Brown noise results

(c) Pink noise results

Fig. 2. Results of WER for the different levels of each noise

The most remarkable results come from the higher noise levels added to the
speech signal. Whereas such levels produce a WER close to 100 % on the original
waveform, the collection of DLSTMAs reduce it to 49.2 % (white noise), 68.9 %
(brown noise) and 90.83 % (pink noise). For the brown and pink noise, the MLP
autoencoder seems to degrade its performance, possibly due to the nature of
non-homogenous power spectral density of the noise over the frequency range of
the voice.

Figure 3 shows four spectrograms of the original signal (a), the higher white
noise level added to the signal (b), the denoised spectrogram of the signal using
the DLSTMA for the mfcc (c), and the spectrogram of the denoised signal using
the collection of DLSTMA for mfcc, fundamental frequency and energy (d).
The spectrograms clarify how well the collection of DLSTMA outperforms the
denoising of the spectral representation of the waveform, and how it achieves
better results for ASR.
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(a) Original (b) Noisy

(c) DLSTMA (d) Collection of DLSTMA

Fig. 3. Spectrograms of original, noisy and denoised waveforms

6 Conclusions

In this paper, we have presented an extension of the DLSTMA, which was trained
using only the mfcc features of a speech utterance, to a collection of DLSTMAs
which also use the fundamental frequency and energy. This has been done in the
context of denoising speech utterances in order to improve ASR performance.
Our system is based on a collection of denoising autoencoders, each composed
of LSTM units.

We evaluated the proposed system on data containing three different noise
types, each at four noise levels, using a commercial ASR. The results showed
that in all cases the collection of DLSTMAs improved the WER performance in
comparison with the DLSTMA trained using only mfccs.

Even for the case where the noise level is high enough to degrade WER to
almost 100 %, the collection of DLSTMAs lowers the WER signicantly. These
are encouraging initial results.

While this paper presents the preliminary results of our research using DLST-
MAs for denoising, there are a number of questions left unanswered:

1. How effective are other combinations of features, such as mfcc features and
energy.

2. Do other architectures for the autoencoder change the results we obtain. In
particular, how can we reduce the training time.

3. Do other types of noise affect the results we obtain with the proposed app-
roach.

We hope to provide some answers to these questions in future work.
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Abstract. In this paper we consider the problem of the DNN-HMM
acoustic models training for automatic speech recognition systems on
russian language in modern commercial trucks. The speech database for
training and testing the ASR system was recorded in various models of
trucks, operating under different conditions. The experiments on the test
part of the speech database, show that acoustic models trained on the
base of specifically modeled training speech database enable to improve
the recognition quality in a moving truck from 35 % to 88 % compared
to the acoustic models trained on a clean speech. Also a new topology of
the neural network was proposed. It allows to reduce the computational
costs significantly without loss of the recognition accuracy.

Keywords: ASR · DNN · MFCC · CMVN · Multi-bottleneck ·
Database · Trucks

1 Introduction

It is hard to imagine modern cars without voice control of media system and
onboard computer. But, until recently, trucks were not equipped by voice control
functionality of the onboard computer. The implementation of the voice control
systems in trucks contains a lot of difficulties for engineers. First of all, the noise
level in the truck cabins is much higher than it is in the interiors of the pas-
sengers cars. Secondly, the standard trucks operations include movements over
the long distances through the territories without a mobile internet connection.
This means that it is impossible to use cloud services for the speech recognition.

In recent years, the error rate of automatic speech recognition systems has
been substantially reduced. Latest studies [1] show that in conditions with SNR
range of −6–9 dB, command recognition reliability can achieve 94.2 %.

At the same time, the current state of up-to-date hardware technologies sug-
gests the possibility of an effective automatic speech recognition implementation
under different trucks operation without the use of cloud-based ASR solutions.

c© Springer International Publishing Switzerland 2016
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Thus, the aim of our study was to develop the command recognition system
that can provide the recognition quality not less than 85 % under different oper-
ation conditions for different trucks models. As a prototype of the onboard truck
computer the Intel AtomTM(E3827) based PC, 2× 1.75 GHz was used with only
2 Gb of RAM. The speed of response of the system on the voice command does
not exceed two seconds.

Additional objectives of this study were to choose the efficient microphone
model and to determine its optimal location in the cabin of the truck.

2 Speech Database

For solving the task of improving the quality of automatic speech recognition in
different models of cargo vehicles, the training and testing speech databases were
collected. The speech database was recorded by three different models of micro-
phones, which characteristics are shown in Table 1. Microphones were mounted
in two different positions. The first “bottom” position, was located on the dash-
board, behind the wheel and before the driver. The second “top” position was
also located directly in front of the driver, but on the panel above the windscreen.

Table 1. Characteristics of microphones used for recording the speech database

Specifications Microphone A Microphone B Microphone C

Frequency response 100–10000Hz 50–20000 Hz 50–18000Hz

Polar pattern Omnidirectional Omnidirectional Unidirectional

Sensitivity −53 dB/Pa −38 dB/Pa −40 dB/Pa

SPL 74 dB 120 dB 136 dB

Dynamic range 100 dB 102.5 dB 112 dB

SNR 75 dB 75 dB 70 dB

The speech database recording was conducted in six different models of
trucks, including long-haul tractor, tractor-trailer, medium-duty trucks and a
flatbed truck in manual and automatic transmission versions.

The recorded speech database includes 22 different speakers. For each speaker
it contains the prepared list of 334 short phrases in Russian language. Examples
of phrases include: “ .” (“Povtornyj nabor nomera.”
– translated: “Redial the number.”); “ ?”
(“Skol’ko kilometrov ostalos’ ehat’?” – translated: “How many kilometers do we
have to go?”); “ ?” (“Kak nazyvaetsja jeta pesnja?”–
translated: “What is the name of this song?”). Table 2 presents the resulting
signal characteristics in case of different recording conditions.

In addition to the recorded phrases uttered by the driver, the noise signal was
recorded at: the listed conditions, additional possible combinations of conditions,
and at the speed of 30 km/h.
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Table 2. Speech database recording conditions

Engine Speed, km/h Driver’s window Ventilation SNR, dB Duration, min

× 0 Closed Off 20–25 236

∨ 0 Closed Off 5–9 267

∨ 0 Closed Max 4–7 223

∨ 0 Open Max 3–7 52

∨ 0 Semi-open Off 5–8 73

∨ 60 Closed Off 3–6 146

∨ 60 Semi-open Off 3–5 58

∨ 90 Closed Off 2–5 104

∨ 90 Semi-open Off 2–4 82

3 Automatic Speech Recognition System

The architecture of the proposed system of automatic Russian speech recognition
in the truck is traditional and it has been successfully applied in a number of
Speech Technology Center products (see [2]).

The system consists of a voice activity detector (VAD), acoustic features
extraction and normalization module, CD-DNN-HMM acoustic models unit and
WFST-decoder. In LVCSR scenario the WFST graph is build on the base of lan-
guage model, lexicon and set of context-dependent triphones states. In grammar-
based recognition, the grammar is also compiled into WFST-graph format.

For successful recognition in case of a strong non-stationary noise we have
trained the special acoustic model that takes into account the acoustic conditions
in the truck cabin.

3.1 Preparation of the Training Database and the Acoustic Models
Training

The amount of speech material recorded in real-life conditions of the truck cabin
interior seemed to be insufficient to train high quality acoustic model. Therefore,
the collected database was augmented by artificially simulated phonograms. For
this purpose we took clean speech microphone recordings from several dictation
Russian speech corpora, including the Russian part of the SpeeCon projects [3],
RuSpeech corpus [4] etc. Total duration of the selected clean speech collection
was about 400 h.

Impulse responses of truck cabins describe the distortion of the drivers speech
picked up by a microphone. They were simulated based on the recordings col-
lected in real conditions of the truck cabin interior. It turned out that they can be
modeled by a highpass filter with a cutoff frequency at about 150 Hz, which basi-
cally simulates signal power attenuation due to the distance to the microphone.
Collected clean speech recordings were passed through this filter and then mixed
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with the additive real noises recorded on different kinds of microphones in the
real truck motion conditions. The SNR values for the signal mixing were selected
randomly according to the Gaussian distribution with parameters estimated on
the base of speech recordings collected in truck cabins.

In our system the DNN-based acoustic model was used. It was trained by
Kaldi toolkit [5]. We tested several types of noise robust speech features like
PNCC [6], MVA [7] and ESTI AFE [8]. However the best results on test corpus
were obtained with the use of conventional MFCC and LMFB (Log-Mel FBanks
energies) energies with mean and variance normalization (CMVN) [9]. The Kaldi
training recipe was developed on the base of the recipe for Switchboard and
includes the following basic steps:

– GMM-HMM models training on the base of MFCC features with delta and
acceleration coefficients.

– Computation of LDA transform based on 7 consecutive frames of MFCCs with
dimensionality reduction to 40, as well as MLLT transform.

– GMM-HMM models training on the base of LDA-MLLT-transformed features.
– Computation of adapting fMLLR-transforms for each utterance and re-

training of the fMLLR-SAT GMM-HMM model to senones (decision tree tied
triphone states). The number of senones in our system was about 1900.

– Re-alignment of training data to senones’ labels based on obtained models.
– DNN-HMM model training on the base of LMFB features, extracted from 11

consecutive frames, with delta and acceleration coefficients normalized with
CMVN that were concatenated into one DNN input vector. The DNN model
outputs posteriors of senones for each frame of the utterance.

The first DNN models that we trained contained 6 fully-connected layers
with 1024 neurons per layer.

3.2 Retraining Acoustic Models to Improve the Recognition Speed

The results of the first DNN preliminary testing showed that it provides satis-
factory recognition accuracy but demonstrates rather low recognition speed and
high memory load. In order to speedup recognition process it was proposed to
train DNN of alternative topology which was called multi-bottleneck (see Fig. 1).
In this DNN the number of hidden layers was increased to 10 but layers of size
1000 are interleaved with layers of size 100. This topology reduces the number of
model parameters by about 5 times, which leads to significant speedup of DNN
computations and the entire recognition process.

Unlike the first DNN which was initialized with a conventional RBM-based
greedy layerwise pretraining [10], the multi-bottleneck DNN was initialized with
the discriminative pretraining [11]. A step of pretraining consisted of appending
two new hidden layers of sizes 1000 and 100 respectively and retraining net-
work to the target senones according to the cross-entropy criterion. The training
process is depicted in Fig. 1.

We found out that two epochs of SGD algorithms were sufficient for net-
work retraining after appending each pair of hidden layers. We used a weight
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decay regularization and Nesterov Accelerated Gradient (NAG) [12] algorithm
for training.

After the addition of hidden layers the entire network was fine-tuned with
the NAG. We regularized this process by adding the term penalizing the L2-
deviation of tuned network weights from the pretrained network ones.

Fig. 1. The Multi-bottleneck DNN training

Despite the fact that multi-bottleneck network has a greatly reduced num-
ber of parameters, it provides the recognition accuracy rates comparable to
the first DNN results (and even better in some tests). This confirms that
using the proposed multi-bottleneck DNN topology leads to impressive speed-up
of the recognition process and reduction in memory consumtion without substan-
tial loss of accuracy.

4 Experiments

The quality evaluation of the automatic speech recognition system was carried
out in the Direct Phrase Recognition scenario. The first experiments were carried
out for the baseline system without the factory fixation of microphones in the
truck cabin and with limited options of traffic conditions. Their goal was to
determine the type of microphone for further speech database recording and
training acoustic models.
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The baseline system is based on the acoustic model trained on a large speech
corpora of pure Russian language speech dictation, as described in the paper [2].

Preliminary experiments on the baseline system with these types of micro-
phones and their installation options given in Table 3 show that the most efficient
microphone location is the top shelf, and the microphone type has no significant
impact on the recognition quality. According to these results microphone type A
has been selected for further experiments as it is the cheapest one. However, dur-
ing the experiments with factory fixed microphones, it was found that vibration
in the “top” position during the process of truck motion is much higher than in
the “bottom” position. Because of that the recognition quality in the “top” posi-
tion appeared to be 10 % less than in the “bottom” position. According to this,
for further experiments we used microphone A fixed on the dashboard, directly
in front of the driver.

Table 3. Baseline system results for the different types of microphones and their
positions, Acc.

Engine Speed, km/h Placement Microphone A Microphone B Microphone C

× 0 Bottom 93.0 % 92.5 % 92.5 %

× 0 Top 97.5 % 96.5 % 96.5 %

∨ 0 Bottom 89.5 % 85.5 % 90.9 %

∨ 0 Top 95.3 % 96.5 % 89.5 %

∨ 60 Bottom 35.0 % 35.0 % 48.0 %

∨ 60 Top 36.5 % 40.5 % 40.0 %

∨ 90 Bottom 38.5 % 34.5 % 55.5 %

∨ 90 Top 43.8 % 46.5 % 41.5 %

The recognition speed of our system was estimated in terms of RT, which is
the ratio of the time required for signal processing to the duration of the signal.
The experiment results showed that the use of retrained acoustic model with
the proposed multi-bottleneck topology leads to the recognition speed increase
from 1.25RT to 0.84RT, and reduction of the memory required for the automatic
speech recognition from 172 Mb to 119 Mb.

Comparative results of baseline and developed system under various condi-
tions are given in Table 4.

Table 4. Results of baseline and final systems, Acc.

System Engine off Engine on, 0 km/h Engine on, 60 km/h Engine on, 90 km/h

Baseline 93.0 % 89.5 % 35.0 % 38.5 %

Final 96.0 % 92.1 % 88.9 % 86.9 %



368 M. Korenevsky et al.

5 Conclusions

This paper describes our investigation of speech recognition task in case of com-
mercial trucks motion conditions. It describes the preparation process of the
speech databases and acoustic models training in details. The outcomes of this
work are the following conclusions:

1. The recognition system can be used successfully in various truck motion con-
ditions despite the low SNR and other problems (for example, the vibration
transmitting to the microphone).

2. Data augmentation by including recordings under emulated truck cabin con-
ditions allows to train efficient recognition model under the noise conditions.

3. Multi-bottleneck topology can significantly speed up the recognition process
and reduce memory requirements without loss of quality.
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Abstract. Dysarthria is a motor speech disorder, characterized by
slurred or slow speech resulting in low intelligibility. Automatic recogni-
tion of dysarthric speech is beneficial to enable people with dysarthria
to use speech as a mode of interaction with electronic devices. In this
paper we propose a mechanism to adapt the tempo of sonorant part of
dysarthric speech to match that of normal speech, based on the severity of
dysarthria. We show a significant improvement in recognition of tempo-
adapted dysasrthic speech, using a Gaussian Mixture Model (GMM) -
Hidden Markov Model (HMM) recognition system as well as a Deep
neural network (DNN) - HMM based system. All evaluations were done
on Universal Access Speech Corpus.

Keywords: Dysarthria · Tempo adaptation · Disordered speech ·
Speech recognition

1 Introduction

Dysarthria is a motor speech disorder resulting from impairment in muscles
responsible for speech production. Neurological injury may result in weakness,
paralysis, or a lack of co-ordination of the motor-speech system, affecting speech
subsystems, giving rise to reduction in intelligibility, audibility, naturalness, and
efficiency of vocal communication. For dysarthric speakers, speech is a more effi-
cient/convenient mode of communication with electronic devices as compared to
keyboard input [14]. Several techniques have been proposed to improve the per-
formance of automatic recognition of dysarthric speech such as: (1) enhancement
of dysarthric speech in the acoustic domain to match that of normal speakers.
(2) Automatic speech recognizer (ASR) based speech recognition using speaker
adaptation. Research methods to improve intelligibility of dysarthric speech by
modifying various aspects of speech such as vowel space [6], energy, fundamental
frequency, formants and tempo of dysarthric speech [15] have been proposed.
In [12] the impact of manipulation of fundamental frequency on intelligibility
has been studied; wherein intelligibility reduced with reduction in variation in
F0. Several studies have been conducted to understand the ASR performance
based on severity levels. Maximum likelihood and maximum a posteriori (MAP)
adaptation has been used for speaker adaptation in [2,8,17] wherein, the authors
c© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 370–377, 2016.
DOI: 10.1007/978-3-319-43958-7 44
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analyze the performance of different types of ASR systems such as speaker inde-
pendent (SI), speaker adapted (SA) and speaker dependent (SD) for various
severity levels. An interpolation technique along with MAP adaptation on a
speaker-wise background model is used in [18] to provide improved ASR per-
formance. In [13], the performances of speaker dependent and speaker adaptive
models have been compared, where the speaker adaptive models performed bet-
ter across various levels of severity of dysarthria.

Automatic recognition of dysarthric speech is poorer as compared to that
of normal speech, owing to the inter-speaker and intra-speaker inconsistencies
in the acoustic space as well as the sparseness of data. Thus far, three popular
dysarthric speech databases, namely Universal Access (UA) speech corpus [7],
Nemours [9] and TORGO [16] exist for American English. No known dysarthric
speech database is available for Indian languages. The objective of our work is
to build an ASR for dysarthric speakers for resource deficient Indian languages,
using zero or small amount of dysarthric data for training the acoustic models
of an automatic speech recognizer (ASR).

In this paper, we propose a mechanism to improve the recognition of
dysarthric speech using tempo adaptation of sonorants (vowels, glides, liquids
and nasals) in dysarthric speech, by using acoustic models primarily built from
healthy control speakers. We show that severity of dysarthria has a bearing on
the duration of sonorants and thereby degree of adaptation can be selected based
on severity of dysarthria. Severity classification itself is beyond the scope of this
work, and can be done using techniques known in literature [5]. We also compare
the performance of speaker independent (SI) and speaker adapted (SA) recog-
nition systems when a small amount of dysarthric data is available and is used
for speaker adaptation. The experimental results show that speaker-adapted
dysarthric speech recognition further improved with tempo adaptation, indicat-
ing that tempo adaptation supplements the speaker-adapted dysarthric speech
recognition. This improvement was seen across both Gaussian Mixture Model
(GMM) - Hidden Markov Model (HMM) and Deep neural network (DNN) -
HMM based recognition system.

The rest of the paper is organized as follows. Section 2 describes the tempo
adaptation and its impact on dysarthric speech recognition, Sect. 3 discusses the
various experimental setups and a description of the data used, in Sect. 4 we
discuss the experimental results and we conclude in Sect. 5.

2 Severity Based Tempo Adaptation

Impairment of the motor nervous system impacts the articulator movements
adversely, causing the articulators to move slowly. This manifests as longer dura-
tions for sonorants in dysarthric speech as compared to normal speech and tempo
adaptation of the sonorants of dysarthric speech leads to improvement in the
performance of ASRs [15]. Tempo adaptation involves temporal reduction of the
sonorant regions of an utterance using a pre-determined adaptation parameter α.

Tempo adaptation needs to be in a manner such that it does not impact the
pitch of the sonorant regions. Hence, a phase vocoder based on short-time Fourier
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transform (STFT) is used [10]. Magnitude spectrum and phase of the STFT are
either interpolated or decimated based on the adaptation parameter, where the
magnitude spectrum is directly used from the input magnitude spectrum and
phase values are chosen to ensure continuity. This ensures that the pitch of the
time-warped sonorant region is intact. For the frequency band at frequency F
and frames i and j > i in the modified spectrogram, the phase θ is predicted as

θ′F
j = θFj + 2πF · (i − j).

The modified spectrogram is then converted into a time-domain signal using
inverse Fourier transform, wherein the tempo of the sonorant regions are adapted
with the pitch unchanged.

2.1 Learning the Adaptation Parameter

We propose a scheme to automatically adapt the tempo of dysarthric speech
based on severity of dysarthria. The adaptation parameter α, has been deter-
mined empirically using healthy control speech data and dysarthric speech of
various severity levels. Both sets of data, healthy control and dysarthric com-
prise the same words. Initially, tempo adaptation is done for the sonorants at
word level, wherein the tempo of the dysarthric speech for the sonorant region in
each word was adapted to match the tempo of the sonorant region in the exact
same word as spoken by healthy control speakers. Consider a word W whose
average sonorant duration for healthy control speakers, is dHC and that for a
dysarthric utterance is ddys. The tempo adaptation parameter for the word W
is computed as

αinitial =
dHC

ddys
.

The sonorant region of the dysarthric utterance is adapted using αinital for
each dysarthric utterance. It was observed that the severity of the speakers had
a clear bearing on the αinital values, as shown in Fig. 1, wherein the letter M
and F in speaker code indicate a dysarthric speakers’ gender. Speaker-wise rel-
ative improvement in recognition of dysarthric speech for both GMM and DNN
systems are as shown in Fig. 2. Also, for some speakers with high intelligibility,
the word error rate (WER) increased using tempo adaptation. This factor was
considered for setting the α parameter. It was also observed that the standard
deviation across words was low for a particular severity class, with the highest
standard deviation (0.82) being for low intelligibility.

Based on the above empirical evidence, the α parameters selected for different
severity levels are as shown in Table 1. Figure 3 shows the proposed system,
wherein tempo adaptation for a particular speaker is done based on the severity
level. Sonorant region in a speech utterance was identified using a three-class
classification technique, wherein an utterance was classified into silence, non-
sonorant and sonorant regions using HTK 3.4 toolkit [19]. For this task, acoustic
models corresponding to the three classes were trained using TIMIT [4] database.
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Fig. 1. Variation in initial tempo adaptation parameter αinitial across various severity
levels of dysarthria

Fig. 2. Relative improvement in WER across various severity levels of dysarthria for
GMM and DNN using αinitial

Table 1. Tempo adaptation parameter α based on severity computed empirically.

Severity Very low Low Mid High

α 1 0.6 0.5 0.4

3 Experimental Setup

3.1 Data

Data from Universal Access (UA) speech corpus [7] was used for both training
and testing of the two ASR systems discussed in this section. UA speech cor-
pus comprises data from 13 healthy control (HC) speakers and 15 dysarthric
(DYS) speakers with cerebral palsy. The recording material consisted of 455
distinct words with 10 digits, 26 international radio alphabets, 19 computer
commands, 100 common words and 300 uncommon words that were distributed
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Fig. 3. Proposed system for tempo adapted dysarthric speech recognition

into three blocks. Three blocks of data were collected for each speaker such that
in each block speaker recorded the digits, radio alphabets, computer commands,
common words and 100 of the uncommon words. Thus each speaker recorded
765 isolated words. Speech intelligibility ratings for each dysarthric speaker, as
assessed by five naive listeners is also included in the corpus. Speakers were
divided into four different categories based on the intelligibility, namely high,
mid, low and very low. We use this information to analyse the performance of
our recognition systems at dysarthria severity level.

3.2 Speech Recognition

We use Kaldi toolkit [11] for both GMM-HMM based and DNN-HMM based
dysarthric speech recognition. A 3-state HMM with a monophone or a tri-
phone context model is used. GMM-HMM system was trained using a max-
imum likelihood estimation (MLE) training approach along with 100 senones
and 8 Gaussian mixtures. Cepstral mean and variance normalization (CMVN)
was applied on each of the above sets of features. Dimensionality reduction was
done using Linear Discriminant Analysis (LDA), wherein LDA builds HMM
states using feature vectors with a reduced feature space. We use a context of 6
frames (3 left and 3 right) to compute LDA. The feature vector size post LDA
is set to 40.

The input layer of DNN has 360 (40 × 9 frames) dimensions using a left
and right context of 4 frames. The output layer has a dimension of 96 (number
of senones available in the data). 2 hidden layers with 512 nodes in each layer
were used. Performance of each of the recognition systems is reported in terms
of word error rate (WER).

We use Maximum Likelihood Linear Transform (MLLT) for speaker nor-
malization. MLLT derives a unique transformation for each speaker using the
reduced feature space from the LDA. An inter-speaker feature space normal-
ization technique known as feature space maximum likelihood linear regression
(fMLLR) [3] is performed for each speaker. Speaker adaptive training (SAT) [1]
is applied at the time of training the acoustic models and aims at eliminating
the inter-speaker variation. fMLLR based SAT was applied to create speaker
adapted (SA) acoustic models; further, fMLLR was applied on the features of
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Table 2. Training and testing corpus

System Training Testing Purpose

SI-01 HC-CC DYS-CC (B1&B3) αinitial and α learning

SI-02 HC-CC DYS-CC (B2) α validation

SA-01 HC-CC, DYS-CC
(B1&B3)

DYS-CC (B2) α + Speaker adaptation

SA-02 HC-CC, HC-digits,
DYS-CC (B1&B3)

DYS-digits (B2) α validation for unseen data

the input utterances at the time of decoding. SAT using fMLLR remain common
to both GMM-HMM and DNN-HMM based systems.

A specific combination of healthy control (HC) and dysarthric data (DYS)
from each of the three blocks (B1, B2 and B3) of computer command (CC)
words and digits, were used for various experiments as described in Table 2.

The above experimental setup is used for both GMM-HMM and DNN-HMM
recognizers. System SA-02 specifically shows the performance obtained for the
recognition of unseen dysarthric data (does not exist in the training set). It is
expected that this would be the typical scenario, considering the challenges in
collecting dysarthric data. The objective of our work is to be able to recog-
nize dysarthric speech when no or small amount of dysarthric data is available
for training. To the best of our knowledge, no other work has reported speech
recognition for this specific combination of testing and training data.

4 Evaluation Results and Discussion

The tempo adaptation parameter α was learned for each severity level, as
described in Sect. 2. Experiments were conducted to understand the applicability
of α under various scenarios such as SI, SA and SA with unseen data (Table 3).
The results indicate that the recognition accuracy improved or the WER reduced
when the tempo was adapted. Acoustic models were trained using both mono-
phone and triphone contexts. It was observed that across all experimental setups,

Table 3. Relative improvement in WER using tempo-adaptation.

System GMM-HMM
%WER

GMM-
HMM-TA
%WER

%relative
improve-
ment

DNN-HMM
%WER

DNN-HMM-
TA %WER

%relative
improve-
ment

SI-01 77.21 40.84 47.11 75.88 39.12 48.44

SI-02 79.36 48.05 39.45 73.42 44.47 39.43

SA-01 49.59 34.12 31.2 34.67 27.57 20.48

SA-02 72.96 52.22 28.42 52.01 42.83 17.65
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Table 4. Impact of tempo adaptation on WER for SA-01 based on severity.

Severity GMM-
HMM
%WER

GMM-
HMM-TA
%WER

%relative
improve-
ment

DNN-
HMM
%WER

DNN-
HMM-TA
%WER

%relative
improve-
ment

Low 39.68 22.83 42.46 26.32 14.18 46.12

Medium 60.39 45.87 24.04 42.69 31.43 26.38

High 108.86 69.15 36.48 86.52 68.53 20.79

triphone models showed higher relative improvement in recognition performance
after tempo adaptation. This indicates that the tempo adaptation improves the
triphone acoustic model of a phone as well.

Further, it can be seen from Table 4, that the recognition performance of the
best performing system SA-01, improved across all severity levels for both GMM-
based and DNN-based system with tempo adaptation (TA). It was observed that
the reduction in WER was largely due to the decrease in the number of insertions
as compared to substitutions.

5 Conclusion

In this paper, we propose a mechanism to improve the speech recognition of
dysarthric speech using tempo adaptation of sonorants in dysarthric speech. We
show that severity of dysarthria has a bearing on the duration of sonorants and
thereby degree of adaptation can be selected based on severity of dysarthria.
This mechanism is especially beneficial when no or less amount of dysarthric
data is available in a specific language (e.g. Indian Languages), for training the
acoustic models of an ASR. We compare the performance of speaker indepen-
dent (SI) and speaker adapted (SA) recognition systems when a small amount
of dysarthric data is available and is used for speaker adaptation. The results
show that speaker-adapted dysarthric speech recognition further improved with
tempo adaptation, indicating that tempo adaptation supplements the speaker-
adapted dysarthric speech recognition. This improvement was seen across both
Gaussian Mixture Model (GMM) - Hidden Markov Model (HMM) and Deep
neural network (DNN) - HMM based recognition system. If we consider the sys-
tem wherein only healthy controls are used for training the acoustic models with
no tempo-adaptation as baseline, the proposed speaker-independent and speaker-
adapted systems provide an improvement of 47.11% and 55.81% respectively,
for GMM-HMM-TA and 48.44% and 63.67% for DNN-HMM-TA respectively.
Severity based tempo adaptation using triphone based acostic models showed
higher relative improvements than monophone acoustic models across all sys-
tems mentioned in Sect. 3. This indicates that the tempo adaptation improves
the acoustic phone model in the triphone context as well.
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Abstract. In this paper we present a fusion methodology for combining
prompted text-dependent and text-independent speaker verification operation
modalities. The fusion is performed in score level extracted from GMM-UBM
single mode speaker verification engines using several machine learning algo‐
rithms for classification. In order to improve the performance we apply clustering
of the score-based data before the classification stage. The experimental results
indicated that the fusion of the two operation modes improves the speaker veri‐
fication performance both in terms of sensitivity and specificity by approximately
2 % and 1.5 % respectively.

Keywords: Speaker verification · Fusion · Machine learning

1 Introduction

Biometric technology has widely been used over the last decade to several applications,
such as access control to physical places, secure login to computer systems and mobile
devices, online banking and ATMs, personalized human-machine interfaces etc. One of
the most widely used modalities in this area is voice-based biometrics and particularly
speaker verification, due to the convenience that offers to the user as well as due to the
fact that the input signal can be captured by a conventional microphone, nowadays
available in most electronic devices, and does not need any specialized sensor or other
hardware equipment to capture the input biometric signal.

In speaker verification the user provides a speech input, usually after a screened
prompted message, and the system decides whether the user is an authorized one or not,
i.e. accepts or rejects the claimed by the user identity. Based on the prompted message,
speaker verification can roughly be divided into two categories, namely the text-
dependent and the text-independent. In text-dependent speaker verification a text
message, selected from a predefined and close-set of utterances, is prompted to the user
in order for him/her to pronounce it [1–3]. In the case of text-independent speaker
verification [4–7] a text generator is used to prompt to the user a text message to be
pronounced, which does not belong to an apriori known to the user close-set of utter‐
ances. Thus, in the text-independent mode of operation the prompted message is random
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and as a result cannot easily be reproduced by audio replay attacks from impostors. On
the other hand, the use of new uttered message to the speaker verification system, which
does not appear (as a whole or even partially) in the training data results in the reduction
of the verification performance, thus result to a trade-off between performance and
robustness against spoofing.

The concurrent technology in speaker verification is based on short-time speech
signal analysis followed by machine learning based modeling. In detail, the most
commonly used features for speaker recognition are the Mel frequency cepstral coeffi‐
cients (MFCCs) [8, 9]. Other speech parameterization techniques, as wavelets have also
successfully been applied [7]. As considers speaker modeling, the state of the art tech‐
nology is dominated by the probabilistic Gaussian mixture models (GMMs) [10]. GMM
technology has proved to perform well using universal background models (UBMs)
trained from a large number of background speakers and maximum a-posteriori (MAP)
adaptation or means-only adaptation of the UBM to speaker specific data. Except prob‐
abilistic modeling discriminative approaches, such as support vector machines (SVMs)
have also successfully been used in the task of speaker verification [11]. SVMs have
also been used in combination with GMMs by concatenating the means of the Gaussian
components of the GMMs to super-vectors and apply discriminative classification on
them [12]. Recently, subspace methods have been proposed for the speaker verification
task such as the i-vectors method [13], which are based on joint factor analysis. Although
in specific setups subspace methods have proved to outperform probabilistic models,
the GMM-UBM approach in general offers more stable results, especially when not
enough training and development data are available. For this reason, in the present eval‐
uation we relied in this technology.

In this work, we present a methodology for fusing the speaker verification scores
produced by two different modes of operation, namely the text-dependent and the text-
independent. The exploitation of the advantages of each of the two modes of operation
is achieved using a machine learning based scheme for fusion, in order to get a final
speaker verification decision.

The rest of the article is organized as follows. In Sect. 2 the proposed fusion meth‐
odology for combining prompted text-dependent and text-independent speaker verifi‐
cation modes is presented. In Sect. 3 the experimental setup that was followed is
described and in Sect. 4 the experimental results are presented. Finally, in Sect. 5 the
conclusions of this work are given.

2 Fusion of Speaker Verification Operation Modes

In real-life voice based biometrics applications the user is asked to provide voice samples
in order the system to verify whether the user is an authorized one or not. Depending on
the mode of operation, the speaker verification performance as well as the vulnerability
to spoofing attacks are affected. Specifically, when using text-dependent prompts the
recognition accuracy is high, while when using text-independent prompts the perform‐
ance significantly drops. On the other hand, prompted text-dependent operation is easy
to be spoofed, for example using audio replay attacks or synthetic speech. In contrast to
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this, text-independent speaker recognition mode of operation offers robustness against
spoofing attacks, since due to the absence of apriori knowledge of the prompted utterance
message audio replays cannot be applied, while in synthetic speech based attacks the
use of phonetically rich prompted messages (which probably will not appear in the
training corpus) can significantly reduce the quality of the output of a text-to-speech
engine. Except this, algorithms based on phase detection can be used to identify synthetic
speech.

The fusion of the prompted text-dependent (TD) and text-independent (TI) modes
of operation is performed on score level. In detail, the user is asked to provide voice
response to two prompted messages (usually shown on a screen), which consist of TD
and TI utterance messages respectively. Each of these messages is processed by a mode
specific speaker verification engine and the TD and TI verification scores are estimated.
The two mode-dependent scores are concatenated to constitute a 2-dimentional feature
vector which is used as input to a machine learning classification algorithm, in order to
decide whether the user is an authorized or an impostor. Since the score values typically
present some variation, in order to support the classification stage, we apply in advance
clustering in order to separate the 2-dimentional score data to areas with less variation.
After clustering the data we apply a cluster-specific classification model and get the
verification decision. The block diagram of the proposed methodology is illustrated in
Fig. 1.

Fig. 1. Block diagram of the proposed methodology for fusion of prompted text-dependent and
text-independent modes of speaker verification operation

As can be seen in Fig. 1, the user is providing to the system a prompted text-
dependent and a prompted text-independent voice input. These inputs are processed by
mode-specific speaker verification engines and one verification score is estimated for
each mode, i.e.  for text-dependent and  for text-independent mode of operation.
The two scores are concatenated to a score vector . During the training phase a
cluster algorithm separates the score vectors to  clusters. In the test phase each score
vector is assigned to a cluster , with . Based on the detected cluster for each
pair of TD and TI inputs a cluster-specific classification model  will be activated and
assign an acceptance or rejection decision label to the input score vector , i.e.:
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(1)

where  denotes the classification model that is dedicated to classify the inputs  which
belong to cluster .

The number of clusters is manually defined based on evaluation of performance on
a bootstrap training data set. The verification in each operation mode-specific speaker
verification engine is made on the basis of thresholded scores, while the speaker verifi‐
cation decision of the fusion methodology is made on the basis of classification results.

3 Experimental Setup

The experimental setup for the evaluation of the fusion methodology described in
Sect. 2, is presented here. Specifically, we describe the dataset used in the evaluation,
the setup of the single-mode speaker verification engines and the setup of the fusion
stage.

3.1 Speech Corpus

In this evaluation we relied on the RSR2015 database [3]. RSR2015 consists of record‐
ings from 300 speakers (157 male, 143 female). For each speaker, there are 3 enrolment
sessions of 73 utterances each and 6 verification sessions of 73 utterances each. In total
there are 657 utterances distributed in 9 sessions per each speaker. The sampling
frequency of the speech recordings is 16 kHz and the speech samples are stored with
analysis equal to 16 bits.

Except RSR2015, we used TIMIT [14] for training a universal background model.
TIMIT consists of recordings of 630 speakers, sampled at 16 kHz with resolution anal‐
ysis equal to 16 bits per sample.

3.2 Single-Mode Speaker Verification Engines

Each of the two single-mode speaker verification engines, i.e. the text-dependent and
the text-independent ones, were based on the well known GMM-UBM technique [10].
Specifically, each voice input was initially pre-processed and parameterized. During
pre-processing an energy-based speech activity detector was applied to retain the speech
only parts. The speech input was frame blocked using a time shifting Hamming window
of 20 ms length with 10 ms overlap between successive frames. For each frame the first
19 Mel frequency cepstral coefficients (MFCCs) were estimated, which were further
expanded to their first and second derivatives, thus resulting to a feature vector of length
equal 57. In order to reduce the effect of handset mismatch and make the feature more
robust RASTA [15] and CMVN processing were applied to the MFCC features.

For both TD and TI speaker models we used the GMM-UBM [10] approach. Specif‐
ically the universal background model (UBM) was built by a mixture of 128 Gaussian
distributions and was trained using all utterances from 630 speakers from TIMIT. For
each of the speakers of the RSR2015 database we applied MAP adaptation (means only
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adaptation) on the UBM model, using the speaker-specific enrollment data and the
speech utterances that corresponded to the text-dependent and the text-independent
sessions for the speaker TD and TI models respectively.

3.3 Setup of the Fusion of Speaker Verification Modes

The verification scores produced by the text-dependent and the text-independent speaker
verification engines described above were concatenated to 2-dimensional feature vectors
as described in Sect. 2. These data were clustered to groups using the k-means algorithm
[16]. The number of the clusters produced by the k-means algorithm was manually
defined. Based on the clustering results we trained one classification model for each
cluster of data.

As considers the classification stage, each pair of TD and TI scores was processed
by a cluster-specific classification model, we relied on a number of well known and
widely used in the bibliography machine learning algorithms for classification. Specif‐
ically, we used the following algorithms: (i) multilayer perceptron neural networks
(MLP), (ii) C4.5 decision trees (C4.5), (iii) support vector machines (SVM) using the
sequential minimal optimization implementation, (iv) Bayesian networks (BN),
(v) classification and regression trees (CART) and (vi) reduced error pruning tree (REP).
For the implementation of these machine learning algorithms for classification we relied
on the WEKA toolkit [16].

4 Experimental Results

The proposed fusion methodology for speaker verification presented in Sect. 2 was
evaluated based on the experimental setup described in Sect. 3. For all evaluations we
relied on a 10-fold cross validation protocol. The performance of the proposed meth‐
odology was evaluated in terms of sensitivity (i.e. the percentage of the correctly clas‐
sified instances of the target speakers) and specificity (i.e. the percentage of the correctly
classified instances of the impostor speakers).

Table 1. Speaker verification, in terms of percentages of sensitivity and specificity, for different
operation mode fusion methods

Method Sensitivity Specificity
TD (single mode) 84.65 97.46
TI (single mode) 84.70 91.83
MLP 71.14 99.82
C4.5 72.89 99.79
SVM 71.12 99.82
Bayesian Network 76.33 99.66
CART 72.13 99.81
REP 73.10 99.78
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As a first step we evaluated the performance of the fusion scheme without applying
clustering. The experimental results for the single-mode TD and TI speaker verification
engines as well as their fusion using several classification algorithms is tabulated in
Table 1.

As can be seen in Table 1, the single mode speaker verification methods outperform
the evaluated fusion methodologies in terms of sensitivity. However, in terms of specif‐
icity it seems that fusion of the text-dependent and text-independent modes offers an
improvement of more than 2 %. Specifically, the best performing fusion algorithm was
the Bayesian network classifier which offered sensitivity equal to 76.33 %, followed by
the decision trees (C4.5, CART and REP). In terms of sensitivity, the MLP and SVM
discriminative algorithms did not offered high accuracy. All evaluated fusion algorithms
proved to offer specificity of more than 99.50 %, while the text-dependent and text-
independent single mode methods achieved 97.46 % and 91.83 % respectively.

In a second step we estimated the performance of the fusion methodology using
different numbers of clusters. The experimental results are tabulated in Table 2. For
direct comparison we replicate the results for the case where no clustering of the data
was applied before the classification stage.

Table 2. Speaker verification, in terms of percentages of sensitivity (sens) and specificity (spec),
for different operation mode fusion methods and different number of clusters

Method c = 1 c = 5 c = 10 c = 20
sens spec sens spec sens spec sens spec

TD (single mode) 84.65 97.46 – – – – – –
TI (single mode) 84.70 91.83 – – – – – –
MLP 71.14 99.82 73.30 99.79 73.30 99.78 72.11 99.81
C4.5 72.89 99.79 72.97 99.79 71.92 99.81 71.53 99.82
SVM 71.12 99.82 76.07 99.70 58.89 99.97 68.43 99.88
Bayesian Network 76.33 99.66 78.70 99.57 86.55 98.88 86.47 98.92
CART 72.13 99.81 73.18 99.79 72.37 99.80 72.47 99.81
REP 73.10 99.78 73.33 99.77 72.52 99.78 72.34 99.79

As can be seen in Table 2, the application of fusion of the two modalities on clustered
data results to significant improvement of speaker verification both in terms of sensitivity
and specificity. In detail, the Bayesian network achieved 86.55 % sensitivity for 10
clusters (i.e. for ), which results to an improvement of 2 % comparing to the text-
dependent single modality. For the same setup Bayesian network achieved specificity
equal to 98.88 %, which corresponds to an absolute improvement of approximately 1.5 %
comparing to the TD single mode case. The application of cluster-based fusion of text-
dependent and text-independent modes of speaker verification improved the sensitivity
accuracy of all evaluated algorithms comparing to the case of fusion without clustering,
i.e. for . This is owed to the fact that in the case of cluster-based fusion the classi‐
fication algorithms are trained on data with less varying characteristics thus can train
their free parameters to be dedicated to each specific data subset’s characteristics.
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5 Conclusions

The score level fusion of prompted text-dependent and text-independent speaker veri‐
fication modalities is a methodology that can directly be applied to real-world applica‐
tions related to voice-based biometrics. The experimental evaluation using clustering of
the single mode score data followed by application of classification for fusion showed
an absolute improvement of more approximately 2 % in terms of sensitivity and an
absolute improvement of 1.5 % in terms of specificity. The best performing algorithm
for fusing the two modes of speaker verification operation was found to be the Bayesian
network classifier. The improvement is owed to the exploitation of the underlying and
complementary information between the distributions of the scores of the two modes of
operation. We deem the fuse of the two modalities can lead to real-world voice biomet‐
rics based applications which will be more accurate and thus more robust to spoofing
attacks.
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Abstract. Statistical parametric speech synthesis has overcome unit selection
methods in many aspects, including flexibility and variability. However, the into‐
nation of these systems is quite monotonic, especially in case of longer sentences.
Due to statistical methods the variation of fundamental frequency (F0) trajectories
decreases. In this research a random forest (RF) based classifier was trained with
radio conversations based on the perceived variation by a human annotator. This
classifier was used to extend the labels of a phonetically balanced, studio quality
speech corpus. With the extended labels a Long Short-Term Memory (LSTM)
network was trained to model fundamental frequency (F0). Objective and subjec‐
tive evaluations were carried out. The results show that the variation of the gener‐
ated F0 trajectories can be fine-tuned with an additional input of the LSTM
network.

Keywords: Text-To-Speech · TTS · Deep learning · Deep neural networks ·
LSTM · Random forest · Fundamental frequency · Prosodic variability

1 Introduction

In statistical parametric speech synthesis pitch, durations and spectral components are
modeled by advanced machine learning methods. The first statistical method that gained
in popularity was Hidden Markov Model-based Text-To-Speech synthesis (HMM-TTS)
[1]. HMM-TTS has proven to surpass unit selection systems in many aspects, including
flexibility and variability (e.g. variable pitch and speaking rate, speaker adaptation,
speaker interpolation) and the storage and computational costs can be significantly
reduced. Thanks to the scientific results, to the great progress in computation power of
GPU (Graphical Processing Unit) based workstations and to the dramatically increased
amount of training data the predictive capabilities of neural networks with multiple
hidden layers have significantly improved [2]. This new paradigm is called deep learning
and the multilayer neural networks, including numerous variants (e.g. convolutional
nets, recurrent nets, autoencoders), are often referred to as Deep Neural Networks
(DNNs). The recent results of deep learning and statistical parametric speech synthesis
were necessary to be able to achieve high quality synthetic speech with DNN-based TTS
systems. Generally, in deep learning feedforward multilayer neural networks [3] and
Long Short-Term Memory (LSTM) architectures [4] are used to model speech
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parameters. The results show that the DNN-TTS can produce even better synthesized
voice quality than the vanilla HMM-TTS. Although state-of-the-art HMM and DNN
Text-To-Speech synthesizers have high quality, natural sounding voice, the prosody
variation of these systems in case of extended passages becomes monotonous due to the
averaging property of statistical models.

Using a large runtime speech corpus, it is possible to inherit and spread the prosody
across similar sentences and thus increase the variation [5]. This technique requires large
runtime storage capacity and a precisely designed and recorded high quality speech
corpus. The prosody variation can be measured automatically, according to [6]. In this
research eight repetitions of 200 Mandarin utterances from multiple speakers was
compared manually and automatically (including tone, intonation and rhythm). Evalu‐
ation shows that the automatic method achieves good correlation with human scoring.
Expressive speech synthesis may introduce intense prosodic variation, however the
emotional classes have great influence on the semantic meaning [7]. We would like to
increase the prosodic variation without modifying the semantics. It has been also shown
that modifying default prosodic parameters in a TTS system, such as widening F0 range
is generally considered more ‘fun’ and less ‘boring’ by Swedish children [8], however
the method was not introduced to speech synthesis systems.

Based on the results of these previous studies the current research targets to improve
the variability of intonation in LSTM based F0 models and hereby the overall quality
of statistical parametric speech synthesis systems.

2 Proposed Method

Our goal was to create a system which can generate fundamental frequency series while
allowing the user to determine the desired level of intonation variation for each sentence.
The overview of the system is depicted on Fig. 1. First the training corpus of the
Text-To-Speech system was extended with labels of pitch variation level by a random
forest (RF) classifier. The random forest was trained with a supplementary, manually
annotated corpus. Later an LSTM-based neural network was trained with the extended
TTS corpus. After training, the neural network can produce fundamental frequency
trajectory for arbitrary sentences with three different levels of pitch variation given as
an input (corresponding the three classes of the RF classifier).

2.1 Random Forest Based Corpus Classification

We preprocessed the data in such way that a random forest classifier could estimate the
perceived pitch variation level of an arbitrary utterance.

To train the classifier, a manually annotated supplementary corpus was set up
(Fig. 1, ‘Pitch variation corpus’ part). This corpus contained a few hundred utterances.
The annotation of such a corpus takes about 5–6 h of manual work. The levels were
assigned according to the perceived dynamism of the pitch (later referred as pitch varia‐
tion level). Rates range on a three-point scale consisting of choices “boring”, “average”
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and “exciting”. These levels will be referred to as DYN-LOW, DYN-MEDIUM and
DYN-HIGH, respectively.

Fig. 1. The main components and steps of the proposed method.

Input feature vectors were calculated from the pitch trajectories of the utterances.
SWIPE [9] was used for pitch tracking. Input features included various statistical repre‐
sentations of the pitch trajectories. Some calculations produce one numerical value for
each utterance while others can produce more as they can be parameterized further, as
shown below. Simple calculations (which produce one numerical output per utterance)
include standard deviation of lengths of unvoiced sections; average pitch value; standard
deviation of pitch sequence; absolute range of pitch (difference of extremes); relative
range of pitch (ratio of extremes); squared sum of the 1st and 2nd derivatives of pitch;
maximum of the 1st and 2nd derivatives of pitch and squared sum of the 1st derivatives
of lengths of unvoiced sections. Parameterized calculations (that produce more numer‐
ical outputs per utterance according to their parameters) include autocorrelation of pitch
sequence (parameters: window length, step length); standard deviation of partial pitch
sequence windows’ deviations (parameter: window length) and count of relatively
extreme jumps in pitch sequence (parameters: absolute and relative threshold for
minimal jump height, minimal and maximal value count per jump).
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These representations were picked on the purpose to support the decision of the
classifier as they tend to be linked with the perceived dynamism of pitch [8]. For each
utterance of the supplementary corpus we calculated these features. The results formed
the input feature vectors that were used to train a random forest (RF) classifier, while
the target classes of RF were the manually annotated level of pitch variation. We calcu‐
lated the same features for the training part (90 %) of the Text-To-Speech corpus and
the trained random forest classifier was used to automatically assign a pitch variation
level to every utterance of this TTS corpus (see Fig. 1). We used inter alia these labels
throughout training the LSTM, as described in Sect. 2.2.

2.2 Long Short-Term Memory Based F0 Modeling

We used unidirectional Long Short-Term Memory-based neural network for learning
and generating pitch trajectories [10]. LSTMs are proven to be very effective in modeling
the temporal structure of time series and they are free of the adverse effect of exploding/
vanishing gradient in vanilla recurrent neural networks [11]. Uni- and bidirectional
LSTMs have been successfully applied for speech synthesis [4], however intonation
variation is not considered in previous research.

Vanilla vocoders use discontinuous F0 contour controlled by a voiced/unvoiced
(V/UV) flag, because F0 is not defined within unvoiced phonemes. However, it has been
shown that excitation models with continuous F0 trajectories are advantageous in stat‐
istical parametric speech synthesis systems [12]. In such continuous systems, often a
separate stream of voicing strength is used for modeling the voicing feature [13]. The
V/UV decision can be left to the dynamic voiced frequency feature in a residual-based
vocoder [14]. Hence in this research continuous F0 modeling combined with the
Maximum Voiced Frequency (MVF) vocoder technique was used [15].

The used TTS corpus contained thousands of studio quality utterances. Various
metadata such as pitch trajectories, phonetic transcription with time alignment and
numerical linguistic contexts are also stored for each utterance. These data were used
for training and testing pitch trajectories as target variable and the others as input
features.

The corpus was split into training, validation and testing parts (Fig. 1). For each
timestep, input features were quinphone (current phoneme and its environment, one-hot
encoded); percentage (position of actual timestep within current phoneme’s time-span);
duration of current phoneme; numerical linguistic context values (position of current
phoneme within current word, position of current word within the utterance etc.) and
the level of pitch variation (one-hot encoded–3 binary inputs).

The level of pitch variation was represented using one-hot encoding. At the LSTM
training phase, the input vectors contained the corresponding pitch variation level
produced by random forest of the utterances as described in the previous section. During
the testing phase of the network, the level of pitch variation could be set to any of the
three valid values (Fig. 1). This means that the network can produce three different
outputs for each utterance based on the chosen pitch variation level. Values were scaled
to zero mean and unit variance, except for the one-hot parts. Every input vector included
4 timesteps.
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The network architecture contained two layers as shown in Fig. 2. The input layer
is made up of 512 LSTM cells while the output layer is a fully connected output layer
containing two neurons. The output neurons produce logF0 and logMVF signals. Soft‐
plus were used as activation function at both layers. During the learning phase mean
squared error was used as loss function and AdaDelta as optimizer. Early stopping was
also applied to prevent overfitting.

Fig. 2. Architecture of the used neural network.

3 Evaluation

In the evaluation part an LSTM was trained as described in Sect. 2. For training a male
speaker was selected from the Precisely Labelled Hungarian Database (PLHD)
containing 1984 sentences [16]. Within this speech corpus the phonetic transcription
and phone boundaries are manually corrected. The supplementary corpus for training
the random forest classifier contained spontaneous radio conversations with a length of
40 min. In this research declarative, complex sentences with two phrases were under
study. For evaluation phone durations from natural utterances were used as the temporal
information of the input vector. The spectral parameters were also obtained from the
natural utterances. The F0 trajectories were generated by the LSTM. The training, vali‐
dation and test data were the 76, 14 and 10 percentage of the corpus, respectively. The
LSTM was implemented in Keras deep learning framework [17], and the calculations
were performed on high performance NVidia GPUs.

Both in subjective and objective evaluation four sentence types were involved:
(1) vocoded natural utterances; (2–4) vocoded natural utterances with F0 trajectories
generated by the LSTM and setting prosodic variation to low, medium and high. The
four types will be referred to as NAT, DYN-LOW, DYN-MEDIUM, DYN-HIGH
throughout the evaluation.

3.1 Objective Evaluation

In this paper only the best performing neural network is described, although we built up
a number of different networks, using different parameters and methods to improve the
results. Quality of the results and the time of learning were mostly affected by the number
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of layers and neurons, inputs’ representation, activation functions as well as batch size
and supplementary techniques such as early stopping.

Figure 3 shows an example F0 sequences of the same part of an utterance. NAT is
the original F0 curve while DYN-LOW, DYN-MEDIUM and DYN-HIGH are the
generated ones made with different levels of pitch variation. Regarding the generated
sequences of the whole testing set, diagrams show that usually DYN-HIGH sequences
tend to reach higher values and higher deviation than the other two.

Fig. 3. F0 trajectories of natural utterance and generated by DYN-LOW, DYN-MEDIUM
and DYN-HIGH.

For evaluation, we estimated the level of pitch variation of the TTS corpus using the
random forest classifier. This formed three disjunctive classes of utterances based on
their level of pitch variation. For every utterance in each class the Pearson product-
moment correlation coefficient was calculated between the original pitch sequence and
their generated pairs. Table 1 shows the average correlation coefficient for each class
against their generated pairs of each level. The results show that the generated F0 trajec‐
tories with higher level of pitch variation are more correlated to the original F0 curves
with lower level of pitch variation in case of DYN-LOW and DYN-MEDIUM. This
phenomenon can be explained by that the proposed model lowers the pitch variation in
case of these categories. The original and generated F0 curves of DYN-HIGH are corre‐
lated most, consequently in this case the variation is preserved the most.

Table 1. Pearson correlation coefficients between utterances with natural and generated F0
trajectories.

ORIGINAL

G
EN

ER
A-

TE
D

DYN-LOW DYN-MEDIUM DYN-HIGH
DYN-LOW 0.665 0.666 0.597

DYN-MEDIUM 0.672 0.659 0.605
DYN-HIGH 0.662 0.676 0.642
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3.2 Subjective Evaluation

In order to measure the perceived pitch variation in DYN-LOW, DYN-MEDIUM and
DYN-HIGH LSTM intonation models a CMOS (Comparison Mean Opinion Score) type
listening test was carried out [18]. In this listening test the subjects had to compare pairs
of utterances in a three level scale whether the speaker of the first or second utterance
is more unexcited. This way the perceived pitch variation is measured indirectly.

Altogether, 96 utterances were included in the test (1 speaker × 4 types × 24
sentences). Before the test, subjects were asked to listen to an example from the male
speaker to adjust the volume. The utterances were presented in a randomized order
(different for each participant) in order to eliminate ‘memory-effect’. Altogether 13
listeners participated in the test (3 females, 10 males). All subjects were native
Hungarian speakers, between 23–74 years (mean: 34 years). On average the test took
7 min to complete. The CMOS scores of the listening test are presented in Fig. 4.

The results show that the synthetic voice was considered more unexcited compared
to the natural utterances–however with higher levels of pitch variation the generated
sentences were perceived less unexcited. Comparing the generated F0 trajectories
DYN-LOW and DYN-MEDIUM have almost the same scores, while DYN-HIGH was
considered significantly less unexciting than DYN-LOW and DYN-MEDIUM. This
result confirms that with the experimental system the perceived pitch variation can be
controlled with constraints.

Fig. 4. The results of the CMOS listening test

4 Conclusions and Discussion

From the objective and subjective evaluations we can conclude that prosodic variation
in Long Short-Term Memory based intonation models can be improved by extending
the inputs with a one-hot encoded value. This input refers to the different classes of the
training corpus classified by random forest based on the perceived prosodic variation.
The results are promising and the application perspective of the proposed method lies
on its simplicity: the prosodic variation of speech synthesis system can be modified by
turning single inputs on and off. This type of simple control over the prosodic variation
could improve the overall negative judgement related to the monotony of speech
synthesis systems.
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This research is only the first step towards improving the prosodic variation and thus
the overall quality of statistical parametric speech synthesis systems. The annotation of
class labels for the random forest should be automated. One approach could be the
introduction of the results of Laskowski et al. [19]. They have developed vector-valued
representation of pitch variation, inspired by vanishing-point perspective, a technique
used in architectural drawing and grounded in projective geometry. The technique is
instantaneous, continuous and distributed, it is formalized in four equations and can be
successfully applied to statistical parametric modeling techniques, including DNNs.
Furthermore, experiments will be carried out with different deep architectures, including
deep ensembles.
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Abstract. In this work, the task is to assist human transcribers to pro-
duce, for example, interview or parliament speech transcriptions. The
system will perform in-document adaptation based on a small amount
of manually corrected automatic speech recognition results. The cor-
rected segments of the spoken document are used to adapt the speech
recognizer’s acoustic and language model. The updated models are used
in second-pass recognition to produce a more accurate automatic tran-
scription for the remaining uncorrected parts of the spoken document.
In this work we evaluate two common adaptation methods for speech
data in settings that represent typical transcription tasks. For adapt-
ing the acoustic model we use the Maximum A Posteriori adaptation
method. For adapting the language model we use linear interpolation.
We compare results of supervised adaptation to unsupervised adapta-
tion, and evaluate the total benefit of using human corrected segments
for in-document adaptation for typical transcription tasks.

Keywords: Automatic speech recognition · Language model adapta-
tion · Acoustic model adaptation · Human guided speech recognition

1 Introduction

Researchers of various fields have an ever increasing access to spoken documents
such as audio recordings and videos. Many researchers also produce their own
material in the form of interviews or lectures. To make full use of the spoken
material, it needs to be transcribed into text one way or the other. Manual tran-
scriptions are time-consuming and many times frustrating to produce. Automatic
speech recogniton (ASR) can help but the result depends on how well the ASR
models match the data. Automatic recognition results are often disappointing for
spoken documents that in terms of topic, style, or recording conditions deviate
from the baseline models.

Adaptation of ASR models has previously been studied exstensively. The
common approach has been to use a small amount of target data (audio or text)
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from a speaker, recording condition, topic, or style to adapt the general models
that are trained on a larger set of data.

In this work we study of how common language and acoustic model adapta-
tion methods can be used for performing in-document adaptation. Our main focus
is on how a small amount of manually transcribed speech data can improve the
automatic recognition of the rest of the document. We will also compare unsuper-
vised and semi-supervised adaptation where adaptation is either performed based
on the first-pass recognition output of the entire document (unsupervised) or on a
combination of the manual transcription of a small segment of the document and
the automatic transcription of the rest of the document (semi-supervised). The
adaptation framework used in this work is illustrated in Fig. 1.

Spoken
document

s1

s2

Decoder

ASR

models

Decoder

Adaptation

(MAP,LIN)

Adapted

models

Decoder

+
Manual

corrections

ASR output

1st pass

1st pass

2nd pass

Fig. 1. Framework for in-document adaptation. A short segment s1 of a spoken doc-
ument, decoded by the ASR system, is corrected by a human transcriber. Based on
the corrected segment the ASR models are adapted. The adapted ASR models are
used in second-pass decoding for recognizing the remaining uncorrected segment s2.
Alternatively the uncorrected segments based on first-pass decoding can be used for
performing unsupervised adaptation.

The adaptation methods that are used in this work are maximum a posteriori
(MAP) for acoustic model adaptation and linear interpolation (LIN) for language
model adaptation.

2 Related Works

Exploiting user feedback in speech recognition applications has been studied in
several previous works. Cross-document adaptation has often been applied in
this context. Fully or partially corrected spoken documents are used to adapt
the language or acoustic model. The adapted models are used in recognizing new
spoken documents of the same domain.

In [11], partially corrected meeting transcripts were used to adapt the back-
ground language model using linear interpolation and unigram rescaling. Sign-
ficant improvements in recognition accuracy were achieved using the adapted



Human Guided Automatic Transcription Service 397

LM when recognizing new meeting documents. In [9], crowdsourcing was uti-
lized letting anonymous users correct recognition errors for Web podcasts. The
corrected transcripts were used for training new component language models.
The same crowdsourcing paradigm had also been used earlier for training new
acoustic models for podcast transcription [8].

User feedback has also been used for learning new pronunciation variants for
words. In [12], in-document pronunciation adaptation was implemented by learn-
ing new pronunciation rules for misrecognized words using a phoneme recognizer.
The adapted pronunciation dictionary was used in recognizing the remaining
part of the spoken document. In our previous work [7], we implemented a system
based on user feedback for learning adapted pronunciation variants for foreign
names. Pronunciation rules were learned for foreign words by force aligning and
re-decoding the misrecognized segment with alternative pronunciation variants
generated with a grapheme-to-phoneme (G2P) model. The new pronunciation
rules were used in recognizing new spoken documents.

Recently there has also been research on how the quality of the ASR output
affects human transcription latency [3]. Results indicate that above a certain
error rate threshold, human transcribers are faster at generating the transcript
from scratch than correcting erroneous low quality ASR output.

The novelty in this work is the evaluation of in-document acoustic and lan-
guage model adaptation, based on a short corrected segment at the beginning
of a longer spoken document.

3 Adaptation Methods

3.1 Maximum A Posteriori Acoustic Model Adaptation

Maximum A Posteriori is a common acoustic model adaptation method and it
has been recently implemented into the Aalto ASR system [6]. A standard GMM-
HMM acoustic model is trained based on maximum likelihood (ML) estimates
of the training data. MAP adaptation is performed by re-estimating the acoustic
model parameters.

Based on the adaptation data x, new ML estimates are calculated. In MAP
adaptation, a new estimate is formed by shitfing the original prior parameters
to the new ML estimates. The MAP estimate can be defined as follows,

θMAP = arg max
θ

f(x|θ)g(θ), (1)

where f(x | θ) is the ML estimate of the adaptation data and g( θ) is the prior
distribution.

Compared to maximum likelihood linear regression (MLLR), another
acoustic model adaptation method, MAP adaptation requires more adaptation
data. In MAP adaptation each parameter of the GMM components are individ-
ually estimated. With small amounts of adaptation data only a small margin of
all the possible triphones are re-estimated. In previous experiments, MAP adap-
tation has been found to outperform MLLR when more adaptation data is made
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available [6]. MAP adaptation has also been found to reduce the acoustic model
size which can be useful in otherwise computationally intensive multi-pass recog-
nition environments. In this work we will also observe how MAP adaptation
performs in multi-speaker environments.

3.2 Linear Interpolation

In this work linear interpolation is used for in-document LM adaptation. It’s a
well established adaptation method within the ASR field because of its ease of
use. For the intended application in this work, we also value that linear interpo-
lation is a relatively quick and computationally cheap process.

An in-document LM PD(w |h) is trained on the first-pass ASR output (cor-
rected or uncorrected). Linear interpolation is used to adapt the background
LM PB(w |h) with the in-document LM PD(w |h). The adapted LM PA(w |h)
is calculated by adding together the weighted probabilities of the two different
models:

PA(w|h) = λPB(w|h) + (1 − λ)PD(w|h). (2)

The interpolation weight λ is tuned on the first-pass ASR output of s2,
using an expectation-maximization (EM) estimation procedure. Because the
background LM PB(w |h) is trained on a substantially larger corpus than the
in-document LM PD(w |h), the weight obtained from the EM estimation λEM is
scaled to a minimum value λmin that the background LM weight can have. In
this work the λmin value is set to 0.90. The scaled weight λscaled which is used
in the interpolation process is calculated as follows:

λscaled = λmin + λEM (1 − λmin). (3)

4 Experiments

4.1 System

Speech recognition experiments were run on the Aalto ASR system [4], which
utilizes crossword triphone GMM-HMM acoustic models. The baseline acoustic
model was trained on a subset of the Finnish Speecon corpus (20 h speech in
16 kHz, 310 speakers) [5].

The Finnish background language model was trained on three different text
sources: the Kielipankki corpus (140 million words) [1], a Web corpus consist-
ing of online news articles (7 million words) and another Web corpus consist-
ing of conversational texts retrieved from discussion forums (76 million words).
A model for morpheme segmentation and a 80 k morph lexicon were trained on
the LM training corpora using Morfessor [2]. A Kneser-Ney smoothed varigram
LM (max n = 6 for n-grams) was trained on the morph-segmented background
corpus with the variKN language modeling toolkit [10].
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4.2 Evaluation Data

The experiments are run on Finnish speech data. In this work the evaluation data
consists of spoken documents which are at least over 50 min long. There are three
types of spoken documents we evaluate in this work: audiobooks, conversational
speech, and parliament sessions. A detailed description of the different data sets
is provided in Table 1.

Table 1. Evaluation data sets used in the experiments.

Data set Spoken
documents

Speakers/
document

Data
set size

Average
length s1

Average
length s2

Audiobook 2 1 3 h 56 min 10 min 1 h 47 min

Conversational 5 2 4 h 30 min 10 min 44 min

Parliament 5 5–10 5 h 2 min 10 min 50 min

Audibooks only have one speaker per document. The type of speech is
planned. The language is formal and in terms of content, one audiobook is a
novel and the other one is related to European politics.

The conversational data set is made up of 5 different dialogues between two
people interviewing each other. The type of speech is unplanned and the language
is colloquial.

The parliament data set consists of 5 Finnish parliament sessions recorded
during 2015. There are multiple speakers in each session, ranging between 5–10
speakers. The type of speech is a mix between planned and unplanned. There
are segments with read speech and there are also segments where speakers are
debating and not speaking from a manuscript. The language is mostly formal
and related to different political issues.

4.3 Adaptation Experiments

The general adaptation framework was presented in Fig. 1. In this context, there
are three different adaptation scenarios that we evaluate: supervised, unsuper-
vised, and semi-supervised adaptation.

Supervised: In the supervised adaptation scenario the adaptation data is only
based on the corrected 10 min segment of the spoken document. In this work
we denote the supervised adaptation data as ŝ1.

Unsupervised: In the unsupervised adaptation scenario the adapation data
is based on the uncorrected first-pass ASR output of both the short 10 min
segment and the remaining longer segment. We denote this adaptation data
as s1 + s2.

Semi-supervised: In the semi-supervised adaptation scenario the adaptation
data is based on the corrected 10 min segment and the uncorrected longer
segment. We denote this adaptation data as ŝ1 + s2.
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In terms of measuring performance we only use s2, the longer segment of the
spoken document, as evaluation data.

5 Results

Results of the adaptation experiments are presented in Table 2. In this work
we measure performance in letter error rate (LER) instead of word error rate
(WER). This is motivated by the intended application for this work. It’s of more
interest for a human transcriber how many letters he/she has to correct instead
of how many words are misrecognized.

Table 2. Results of in-document adaptation on the three different data sets.

Adaptation
method

Adaptation
data

Audiobook
LER [%]

Conversational
LER [%]

Parliament
LER [%]

- 4.1 36.5 20.5

MAP ŝ1 3.3 34.0 19.3

s1 + s2 3.0 35.3 17.6

ŝ1 + s2 3.0 35.0 17.6

LIN ŝ1 4.1 36.5 20.5

s1 + s2 4.1 36.5 20.6

ŝ1 + s2 4.1 36.5 20.6

MAP +
LIN

ŝ1 3.3 33.8 19.2

s1 + s2 3.0 35.3 17.6

ŝ1 + s2 3.0 35.0 17.5

The baseline results on the first row are a clear indicator of the difference
between the data sets. Performance values are best for data that deviate the
least from the baseline ASR models. The audiobook data set, which consists of
read speech and formal language, has the lowest LER. Worst performance is on
the conversational data set, which consists of unplanned speech and colloquial
language.

MAP adaptation results are on rows 2–4. Using MAP, the results improve
significantly for all data sets in every adaptation scenario. Supervised MAP
adaptation (MAP, ŝ1) lowers LER for the audibook data set with 20 %. Relative
LER reduction for the conversational data set is 7 % and for the parliament data
set 6 %. Unsupervised MAP adaptation (MAP, s1 + s2) further lowers LER
for the audiobook and parliament data sets, with 27 % and 14 % respectively
(compared to baseline). Unsupervised MAP adaptation performs slightly worse
on the conversational data set compared to supervised adaptation. Relative LER
reduction is only 3 %. Semi-supervised MAP adaptation (MAP, ŝ1 + s2) does not
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give any additional improvement compared to unsupervised adaptation, except
for the conversational data set where relative LER reduction is 4 %.

Linear interpolation results are on rows 5–7. In general, LM adaptation usu-
ally gives less significant improvements compared to acoustic model adaptation.
In this case LM adaptation in the form of linear interpolation did not give
any performance improvements at all, in any adaptation scenario. It is proba-
ble that 10 min of data is simply not enough for improving language modeling
substantially.

Results for combining both MAP and linear interpolation are on rows 8–10.
Results are quite similar compared to using only MAP adaptation. Letter
error rate is only lowered slightly for conversational data using semi-supervised
adaptation.

6 Discussion and Conclusions

In this work we implemented and studied a framework for performing in-
document adaptation on lengthy spoken documents. In the framework there
is an option for a human transcriber to manually correct a short segment at the
beginning of the document. Our main focus point was how this short manually
transcribed segment could be used in acoustic and language model adaptation,
and how much the adapted models could improve the recognition for the remain-
ing part of the document. A comparison was made between supervised adapta-
tion using the short manually corrected segment, and unsupervised adaptation
using the first-pass ASR output of the entire document.

Linear interpolation was used for performing LM adaptation and MAP adap-
tation was used for acoustic model adaptation. Three different types of spoken
documents were evaluated in the adaptation experiments: audiobooks, conver-
sational recordings, and parliament sessions.

For acoustic model adaptation, supervised adaptation only outperforms
unsupervised adapation on the conversational data set. It seems that human
made corrections are only beneficial on data that is very poorly recognized by
the baseline ASR models. On the audiobook and parliament data sets unsuper-
vised adaptation gave the best results. It is of course important to remember
that the unsupervised adaptation data was larger than the supervised data by
a factor of 5–10. It might be worthwhile studying how increasing the supervised
adaptation data from 10 min can further improve performance compared to unsu-
pervised adaptation. For lengthy spoken documents supervised adaptation could
be called after the corrected segment exceeds a certain threshold.

Language model adaptation did not give any improvements in this work. The
size of adaptation data was of course very small and this limits the capability of
LM adaptation. Other LM adaptation methods could be explored such as uni-
gram rescaling. The only drawback with many of these methods is that they are
computationally expensive and it takes a long time to obtain the adapted model,
which is not ideal for the intended application in this work. Another framework
could be explored for LM adaptation in this context where the adaptation data
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is not used as training text but rather as tuning data for finding optimal internal
parameters of the baseline LM.

For future work we will explore adjusting the corrected segment to differ-
ent lengths, and measure the relative improvements compared to unsupervised
adaptation. We will also study the use of more advanced LM adaptation setups
in the context of in-document adaptation.
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Abstract. The spoken dialogue systems (SDSs), which are designed to replace
employees in different services, need some indicators, which show what hap-
pened in the ongoing dialogue and what the next step in system’s behaviour
should be. Thus, some indicators for the SDSs come from the field of the call
centre’s quality evaluation. In turn, some metrics like Interaction Quality (IQ),
which was designed for human-computer spoken interaction, can be applied to
human-human conversations. Such experience might be used for both call
centres and SDSs for service quality improvement. This paper provides the
results of IQ modelling for human-human task-oriented conversation with
several classification algorithms.

Keywords: Call centres � Classification algorithms � Principal component
analysis � Call centre’s performances

1 Introduction

Many companies have different services such as: call centres, support/information
services, help desk and other. To improve the service quality, to attract and increase the
number of customers (which may influence in some cases on company’s profit), to
detect the problems in company’s work and to increase the qualification of employees,
different performance metrics are used.

With the development of SDSs and based on the fact, that customer-employee and
customer-SDS dialogues are similar, there was a need to introduce some call centre’s
metrics to evaluate and then to improve the SDSs’ work. One of such metrics is user/
customer satisfaction (CS). Later, Schmitt et al. have redesigned CS concept in the IQ
paradigm [1, 2]. In [1, 3] the authors explained the differences between CS and IQ
concepts.

Despite the fact that IQ was developed specifically for SDSs to improve it, this
paradigm might be adapted for evaluating dialogues in call centres. The results of such
adaptation might be used both for the further improvement of SDSs (implementing the
information of the agent’s behaviour into SDSs) and call centre’s service quality.
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This paper describes the attempts of modelling the adapted version of IQ for
human-human conversation (HHC) with several classification algorithms.

The rest of this paper is organised as follows. The description of IQ for
human-computer spoken interaction (HCSI) and some call centre’s metrics are pre-
sented in Sect. 2. Brief information of speech data for our experiments is provided by
Sect. 3. In turn, Sect. 4 gives information about experimental setup and results. Dis-
cussion of the obtained results can be found in Sect. 5, whereas conclusion and future
work are described in Sect. 6.

2 Related Works

In call-centres aswell as in SDSs there aremany approaches, which are utilized tomonitor
and to evaluate the quality of spoken interaction between employees/computer systems
and customers.Most of suchmetrics are customer-centric. Some evaluations are based on
emotion recognition [4, 5], but the customer’s emotion state not necessarily reflects the
quality of interaction in dialogues, because this emotion state may be the result of external
circumstances or customer can be too/not enough emotional. Other metrics use text
mining to identify Customer Orientation Behaviours, described in [6], or the coopera-
tiveness score, presented in [7] as a measure obtained from the argumentative labels.

CS is one of the widely used metrics. There are different scales for CS measure-
ment: in some research works [8, 9] the 5-point scale is used, in other – the 7-point
scale [10]. Mostly call centres conduct a manual survey with their customers at the end
of calls, but these measurements can be done automatically. In [8] authors described
their approach for measuring CS using automatically generated call transcripts. Using
the features from the different categories such as: structured features, prosodic features,
lexical features, and contextual features, the authors tried to identify CS at the end and
in the middle of calls.

Instead of the approach, described in [8], IQ allows to estimate the dialogue per-
formance at any point of an ongoing interaction. The idea of the IQ metric for HHC is
based on the research works, presented in [1–3]. The 5-point scale IQ metric from [1–3]
was designed to assess the SDS performance. It is based on the features from Auto-
matic Speech Recognition, Natural Language Understanding, and Dialogue Manage-
ment system modules. All features for IQ modelling are subdivided into the three level:
the exchange level, describing the current system-user exchange, the dialogue level,
containing information about complete dialogue up to the current exchange, and the
window level, comprising information about the n last exchanges. Being beneficial in
HCSI scenarios, the IQ metric may be useful for evaluating the quality of HHC, what
may be applied then for the service quality improvement.

3 Corpus Description

All computational experiments were conducted using the spoken corpus, described in
[11]. This corpus includes 53 dialogues between customers and employees. These 53
dialogues were transformed into 1165 exchanges. Each exchange consists of an agent’s
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and customer’s turn and may contain overlapping speech. There are more than 1200
features, which describe an agent’s/customer’s/overlapping speech and an exchange in
general. All features are subdivided into three groups: exchange/window/dialogue
levels, which were proposed in [2].

3.1 Interaction Quality

Each exchange from this corpus is associated with two IQ score labels, which are based
on the different guidelines. The guideline, described in [1], was used as a basis for the two
suggested guidelines. For the first approach of an IQ annotation we used the guideline for
HCSI [1] with the small changes in the rules, concerning the difference between HCSI
and HHC. This guideline gives an absolute scale for IQ: “1”, “2”, “3”, “4” and “5” [1, 3].
In contrast to the first approach, the second approach consists of two steps. The guideline
in this case is similar to the guideline for the first approach, but is considered in terms of a
scale of changes. At the first stage, applying the guideline, the scale of changes for IQ
may be obtained, which at the next stage is transformed into an absolute scale, using an
assumption, that the first exchange in all dialogues has IQ score “5”.

The IQ annotation guidelines for both approaches can be found in [11]. For the first
approach IQ score was denoted as IQ1, whereas for the second approaches it was
designated as IQ2abs. The distributions of the IQ1and IQ2abs scores are shown in
Table 1.

3.2 Emotions

All speech fragments in the corpus were accompanied with the emotion labels. Based
on different research works, we have chosen three emotion sets (denote them as em
{1,2,3}), which are described in [11]. For better understanding whether the specific
emotions are important for IQ modelling or not, all initial emotion sets were subdivided
into neutral and other emotions and into neutral (denote them as em{1,2,3}_2), positive
and negative emotions (denote them as em{1,2,3}_3).

4 Experimental Setup and Results

The IQ score identification task can be formulated as a classification problem. For IQ1
it is the three-class classification problem, whereas for IQ2abs it is classification
problem with the four classes according to the corpus. For our research we have
formulated in total eighteen classification problems, each of them is a combination of

Table 1. The IQ score distribution

IQ type Classes
“3” “4” “5” “6”

IQ1 4 38 1123 –

IQ2abs 4 37 1028 96
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an IQ label (IQ1 or IQ2abs) and an emotion set (nine sets: the three main sets and two
sets derived from each of them).

For modelling IQ for HHC we used classification algorithms implemented in
Rapidminer [12] and WEKA [13]: Kernel Naïve Bayes classifier (NBK) [14], k-Nearest
Neighbours algorithm (kNN) [15], L2 Regularized Logistic Regression (LR) [16],
Support Vector Machines [17, 18] trained by Sequential Minimal Optimisation
(SVM) [19].

The settings for these classification algorithms can be found in Table 2. Some
parameters of the algorithms were optimized by the Grid optimisation to maximize
F1-score [20].

As a dimensionality reduction technique Principal Component Analysis (PCA) [21]
is applied with the cumulative variance value 0.99. The data were pre-processed: each
column (attribute values) was centred and normalised, it means, that the mean of each
column is equal to 0 and the variance is equal to 1. Denote the algorithms with using
PCA as NBK1, kNN1, LR1, SVM1.

For measuring the performance of the classification algorithms, we rely on
F1-score, unweighted average recall (UAR) [22] and accuracy, averaged over different
train-test splits, generated by 10-fold cross-validation. The obtained results can be
found in Tables 3, 4 and 5. The best results are highlighted in bold in these tables.

Table 2. The settings for the classification algorithms and parametric optimisation

Parameter Parameter’s value

NBK • laplace correction (helps to
prevent high influence of zero
probabilities)

• estimation mode
• minimum bandwidth
• number of kernels

• true

• greedy
• [0.01, 0.3], step 0.01
• [1, 20], step 1

kNN • k
• numerical measure
• kernel type
• kernel gamma
• kernel degree

• [1, 20], step 1
• KernelEuclideanDistance
• anova
• [0.5, 5.0], step 0.5
• [0.5, 5.0], step 0.5

LR • R (sets set the ridge in the
log-likelihood)

• [0.05, 0.95], step 0.05

SVM • the complexity constant C
• the tolerance parameter L
• fit logistic models to SVM
outputs

• kernel

• 1
• 0.001
• false

• polynomial
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5 Discussion

According to the one-way analysis of variance (one-way ANOVA) [23] and Tukey’s
honest significant difference (HSD) test [24], which are implemented in R program-
ming language [25], with the default settings there are statistically significant differ-
ences between the means almost for all classification problems and for all classification
performance measures for IQ2_abs and for some classification problems for IQ1. These
tests determined, that almost in all the cases the results, obtained with NBK/NBK1
statistically significant differ from the other results.

In terms of F1-score and UAR the obtained results outperform the most frequent
class baselines, which for F1-score for IQ1 and IQ2_abs equal to 0.327 and 0.234
correspondently. In terms of accuracy the results, obtained with the use of PCA, almost
for all algorithms and all classification problems for IQ1 do not outperform the base-
line, which is 0.964. For IQ2_abs this value equals to 0.882.

Given the fact that the data is highly unbalanced the results are not reasonable
enough, although the obtained results outperform the baselines almost in all the cases.
Also the result can be not objective, since emotions and IQ scores were annotated by
only one expert rater.

The best results in terms of F1-score and UAR almost in all classification problems
were obtained with kNN and kNN1, whereas the best results in terms of accuracy were
achieved by LR and SVM.

Finally, based on the statistical tests it can be concluded, that, although the use of
the PCA doesn’t improve the results of classification without applying of the PCA,

Table 3. F1-score for the classification algorithms

Emotion sets

em1 em12 em13 em2 em22 em23 em3 em32 em33

IQ
1

NBK 0.532 0.518 0.532 0.502 0.5 0.499 0.521 0.515 0.516

SVM 0.524 0.5 0.524 0.534 0.522 0.519 0.548 0.523 0.544

kNN 0.509 0.509 0.509 0.48 0.48 0.48 0.509 0.509 0.509

LR 0.506 0.472 0.506 0.484 0.479 0.492 0.52 0.471 0.504

NBK1 0.432 0.428 0.432 0.448 0.438 0.437 0.448 0.411 0.452

SVM1 0.46 0.468 0.46 0.497 0.438 0.493 0.495 0.432 0.499
kNN1 0.58 0.512 0.58 0.581 0.527 0.57 0.548 0.535 0.55
LR1 0.498 0.487 0.498 0.512 0.466 0.512 0.489 0.461 0.5

IQ
2a

bs

NBK 0.452 0.474 0.452 0.455 0.471 0.461 0.441 0.481 0.441

SVM 0.578 0.579 0.578 0.592 0.589 0.591 0.593 0.585 0.594

kNN 0.606 0.606 0.606 0.606 0.606 0.606 0.604 0.604 0.604

LR 0.563 0.541 0.563 0.548 0.541 0.543 0.541 0.531 0.538

NBK1 0.398 0.387 0.398 0.39 0.378 0.389 0.382 0.401 0.403

SVM1 0.498 0.496 0.498 0.504 0.485 0.502 0.487 0.495 0.514

kNN1 0.609 0.606 0.609 0.6 0.604 0.602 0.617 0.603 0.623
LR1 0.538 0.529 0.538 0.532 0.526 0.521 0.521 0.528 0.525
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Table 4. UAR for the classification algorithms

Emotion sets

em1 em12 em13 em2 em22 em23 em3 em32 em33

IQ
1

NBK 0.501 0.485 0.501 0.477 0.469 0.476 0.493 0.477 0.492

SVM 0.497 0.469 0.497 0.495 0.478 0.486 0.499 0.478 0.506

kNN 0.508 0.508 0.508 0.475 0.475 0.475 0.508 0.508 0.508

LR 0.457 0.44 0.457 0.45 0.441 0.449 0.466 0.44 0.458

NBK1 0.411 0.426 0.411 0.423 0.436 0.418 0.423 0.42 0.431

SVM1 0.453 0.462 0.453 0.482 0.435 0.479 0.49 0.435 0.48

kNN1 0.592 0.523 0.592 0.606 0.532 0.581 0.558 0.541 0.558
LR1 0.456 0.448 0.456 0.465 0.44 0.465 0.464 0.439 0.465

IQ
2a

bs

NBK 0.435 0.461 0.435 0.452 0.46 0.458 0.434 0.467 0.434

SVM 0.55 0.547 0.55 0.559 0.553 0.557 0.562 0.551 0.56

kNN 0.596 0.596 0.596 0.596 0.596 0.596 0.593 0.594 0.594

LR 0.518 0.497 0.518 0.522 0.5 0.506 0.512 0.486 0.512

NBK1 0.39 0.406 0.39 0.389 0.393 0.408 0.375 0.406 0.4

SVM1 0.492 0.497 0.492 0.508 0.483 0.503 0.496 0.495 0.514
kNN1 0.581 0.566 0.581 0.585 0.579 0.574 0.589 0.573 0.582

LR1 0.504 0.498 0.504 0.512 0.497 0.498 0.501 0.498 0.506

Table 5. Accuracy for the classification algorithms

Emotion sets

em1 em12 em13 em2 em22 em23 em3 em32 em33

IQ
1

NBK 0.971 0.972 0.971 0.972 0.971 0.971 0.971 0.971 0.97

SVM 0.969 0.966 0.969 0.973 0.969 0.969 0.976 0.969 0.971

kNN 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968

LR 0.973 0.971 0.973 0.974 0.972 0.973 0.976 0.971 0.975

NBK1 0.964 0.951 0.964 0.967 0.958 0.953 0.967 0.95 0.967

SVM1 0.961 0.962 0.961 0.967 0.955 0.967 0.967 0.954 0.968
kNN1 0.968 0.96 0.968 0.962 0.962 0.961 0.966 0.963 0.966

LR1 0.97 0.97 0.97 0.973 0.969 0.973 0.97 0.967 0.973

IQ
2a

bs

NBK 0.856 0.851 0.856 0.847 0.848 0.849 0.852 0.852 0.852

SVM 0.934 0.933 0.934 0.941 0.936 0.939 0.938 0.936 0.939

kNN 0.927 0.927 0.927 0.927 0.927 0.927 0.926 0.926 0.926

LR 0.937 0.936 0.937 0.936 0.937 0.936 0.934 0.933 0.932

NBK1 0.694 0.681 0.694 0.688 0.702 0.691 0.685 0.694 0.694
SVM1 0.897 0.899 0.897 0.906 0.895 0.907 0.894 0.9 0.908
kNN1 0.925 0.924 0.925 0.924 0.924 0.922 0.925 0.924 0.929

LR1 0.924 0.923 0.924 0.924 0.921 0.92 0.921 0.922 0.923
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there are no any statistically significant differences in general and it makes sense to use
the PCA as a dimensionality reduction technique, because it decreases the computa-
tional complexity by reducing the number of features approximately in 2.5 times
(from * 1200 to * 470).

Based on the fact, that all emotion and IQ labels have non-normal distributions (it
was proved by Shapiro-Wilk test [26]), for determination any dependency between
these values the Spearman’s rho [27] was applied. According to the obtained results for
all combinations of emotion sets and IQ labels (the absolute value of Spearman’s rho is
less, then 0.25, but not equals to 0) we can conclude, that there are only weak corre-
lations between these values.

6 Conclusion and Future Work

In this paper we presented the results of modelling IQ for HHC as an adaptation of IQ
for HCSI. IQ can be considered as a HHC performance metric, which may be used in
call centres. Also the results of IQ modelling for HHC can be used for improving SDS
in terms of flexibility, user-friendliness and human-likeness.

As a future direction for our research we plan to extend the list of applying clas-
sification algorithms and dimensionality reduction techniques. Furthermore, to obtain
more objective data the number of expert raters should be increased. In this paper we
presented two approaches of the IQ metric adaptation for HHC. One of the suggested
metrics, which is based on the scale of changes (IQ2abs), showed some drawbacks of
the IQ metric based on the absolute scale (IQ1), but the IQ2abs metric is not an easily
interpretable scale. That is why these metrics should be redesigned in order to get an
alternative scale, which may be easily interpretable.

Acknowledgements. The work presented in this paper was partly supported by the DAAD
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Abstract. The goal of this paper is to evaluate the contribution of
speaker change detection (SCD) to the performance of a speaker diariza-
tion system in the telephone domain. We compare the overall perfor-
mance of an i-vector based system using both SCD-based segmentation
and a naive constant length segmentation with overlapping segments.
The diarization system performs K-means clustering of i-vectors which
represent the individual segments, followed by a resegmentation step.
Experiments were done on the English part of the CallHome corpus.
The final results indicate that the use of speaker change detection is
beneficial, but the differences between the two segmentation approaches
are diminished by the use of resegmentation.

Keywords: Speaker diarization · Speaker change detection · i-vector ·
Segmentation

1 Introduction

Speaker diarization is defined as the task of categorizing different speech sources
in an unlabeled conversation. Or in other words, determining “Who spoke when”,
typically without any prior information regarding the number and identities of
the speakers.

The majority of diarization systems follow one of two basic approaches. The
most common approach consists of the segmentation of the input signal, followed
by the merging of the segments into clusters corresponding to the individual
speakers [1,2]. The alternative is to combine the segmentation and clustering
steps into a single iterative process [3,4].

In systems which have a standalone segmentation step, speaker change detec-
tion (SCD) is often applied to this purpose, as it allows to obtain segments
which ideally contain only the speech of a single speaker (e.g. [1]). However,
due to some of the common obstacles typically present in spontaneous telephone
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Fig. 1. Diagram of the diarization process.

conversation, namely very short speaker turns and frequent overlapping speech,
diarization systems aimed at telephone speech often omit the SCD process and
use a simple constant length segmentation of areas of speech found by a speech
activity detector (e.g. [2,5]).

In this paper, we compare the two segmentation approaches on telephone
data from the CallHome corpus [15]. Our goal is to determine whether the SCD
approach offers any improvement under such conditions.For this purpose, we
implement an i-vector based speaker diarization system. The use of i-vectors
in speaker diarization has become increasingly popular in recent years [2,5],
following their success in speaker recognition tasks [6,7].

This paper is organized as follows: The i-vector based speaker diarization
system is described in Sect. 2. In Sect. 3, two approaches to segmentation are
introduced: segmentation with constant length segments and segmentation based
on SCD. The i-vector extraction is explained in Sect. 4, clustering using K-means
in Sect. 5 and the resegmentation step is described in Sect. 6. The comparison
of the efficiency of the two proposed segmentation approaches is presented in
Sect. 7.

2 Speaker Diarization System

Our speaker diarization system is based on the use of i-vectors to represent
segments of speech, as introduced in [8]. The diarization process starts with the
extraction of acoustic features from the conversation and the identification of
the regions of speech by a voice activity detector. Following this, the non-speech
regions are discarded and the rest is split into short segments, using SCD-based
or constant length segmentation. In the next step, a single i-vector is extracted
from each segment and the i-vectors are clustered using cosine distance in order
to determine which parts of the signal were produced by the same speaker.
Finally, the system iteratively performs resegmentation using a similar i-vector
based clustering process, followed by a single iteration using GMMs to refine the
final results. A diagram of our diarization system can be seen in Fig. 1 and the
main steps are described in detail in the following sections.

3 Segmentation

The purpose of the segmentation step of a speaker diarization system is to divide
an audio recording into short segments, so that they can be subsequently merged
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into clusters corresponding to the individual speakers. The length of the segments
should be enough to allow the extraction of speaker-identifying information, in
our case represented by an i-vector, while limiting the risk of a speaker change
being present within the segment, as may happen in longer segments, depending
on the used method. In the following subsections, we describe the two segmen-
tation approaches which were considered.

3.1 Constant Length Segments

The naive approach to segmentation is to simply split the speech regions into
short segments of fixed length. The main issue with this simple method is that
the segment boundaries do not correspond in any way to the speaker change
points and so many of the segments may contain the speech of more than one
speaker. For this reason, it is preferable to use very short segments. On the other
hand, a certain minimal duration is required for i-vector extraction. Typically,
this is selected as 1–2 s of speech. As in [2], segment overlap is used to increase
the amount of information contained in a single i-vector while retaining the same
precision of the segmentation.

3.2 Speaker Change Detection

The standard approach to speaker change detection consists of applying a pair of
sliding windows on the signal and computing the distance between their contents.
Speaker changes are then found at the boundary between the two windows, at the
points in which the distance achieves a significant local maximum. An example
of this approach can be found in [1].

Commonly used distance metrics include the Bayesian Information Criterion
(BIC), Generalized Likelihood Ratio (GLR) and Kullback-Leibler divergence.

In our system, we use a GLR-based segmentation. In order to obtain segments
of consistent length, comparable to the constant length approach described in
Sect. 3.1, we use a two-step algorithm which incorporates a fixed minimum and
maximum segment length.

In the first step of the segmentation, we identify a smaller number of the
most likely speaker change points by performing standard GLR-based speaker
change detection using two neighboring sliding windows of 2 s with a step size
of 0.1 s.

The distance between two windows Xi and Xj is calculated as

d(Xi,Xj) = − log GLR(Xi,Xj) , (1)

where GLR(Xi,Xj) is the generalized likelihood ratio, which is defined as

GLR(i, j) =
L(Xi ∪ Xj |M)

L(Xi|Mi) · L(Xj |Mj)
(2)

and is used to express whether Xi and Xj are better represented by a single
model M or two different ones, Mi and Mj [9]. In our system, M , Mi and Mj are
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Fig. 2. The process of splitting longer segments.

single Gaussians with full covariance matrices, estimated from the corresponding
data.

Likely speaker changes are identified as the locations of significant local max-
ima of the distances. For this purpose, we calculate the prominence of individual
peaks in the distances and select those with values exceeding a threshold.

Peak prominence measures how much a given peak stands out within the
signal and is calculated as follows: on each side of the peak, find the minimum
of the signal that lies in the area between the peak and either the nearest higher
point or the edge of the signal. The prominence of the peak is given as the
difference between the value of the peak and the higher of the two minima.

The second step of the segmentation consists of further splitting any segments
which are longer than the maximum allowed length. The point where a long
segment is split is found in the following manner:

First, the system identifies an area where a split can occur, such that nei-
ther of the resulting new segments would be shorter than the minimum allowed
length. If there are any peaks within this smaller area, the one with the highest
prominence (as calculated during the first step of the segmentation) is selected
as the new segment boundary. If no peaks are present, the segment is cut at the
edge of the area, at the point where the distance is highest. Figure 2 illustrates
this process.

4 Segment Description

For each segment of parametrized conversation the supervector of statistics is
accumulated. Subsequently, an i-vector is extracted from the supervector.

4.1 Statistics Extracted on GMM

For each segment of a parametrized conversation the supervector of statistics
is accumulated. Supervector of statistics contains the first and zeroth statistical
moments of speakers’ data related to a Universal Background Model (UBM)
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based on GMM. This idea has origins in the speaker adaptation process [10],
where these statistics are used as a descriptor of a new speaker.

First, a GMM trained on a huge amount of data from different speakers is
used as a UBM and consists of a set of parameters λUBM = {ωm,μm,Cm}Mm=1,
where M is the number of Gaussians in the UBM, ωm, μm, Cm are the weight,
mean and covariance of the mth Gaussian, respectively. In our case, the covari-
ance matrix Cm is diagonal with vector σm on diagonal. Let O = {ot}Tt=1 be the
set of T feature vectors ot of dimension D of one segment of conversation, and

γm(ot) =
ωmN (ot;μm,Cm)

∑M
m=1 ωmN (ot;μm,Cm)

(3)

be the posterior probability of mth Gaussian given a feature vector ot. The
soft count of the mth Gaussian (zeroth statistical moments of feature vectors)
is nm =

∑T
t=1 γm(ot) and the sum of the first statistical moments of feature

vectors with respect to the mth Gaussian is bm =
∑T

t=1 γm(ot)ot. The speaker’s
supervector for given data O is a concatenation of the zeroth and first statistical
moments of O.

4.2 i-Vectors

For i-vectors extraction the Factor Analysis (FA) approach [11] (or extended
Joint Factor Analysis (JFA) [12] to handle more sessions of each speaker) is
used for dimensionality reduction of the supervector of statistics. The generative
i-vector model has the form

ψ = m0 + Tw + ε, w ∼ N (0, I), ε ∼ N (0,Σ), (4)

where T (of size D × Dw) is called the total variability space matrix, w is the
segment’s i-vector of dimension Dw having standard Gaussian distribution, m0

is the mean vector of ψ, however often the UBM’s mean supervector m0 is
taken instead as an approximation, and ε is some residual noise with a diagonal
covariance Σ constructed from covariance matrices C1, . . . ,Cm of the UBM
ordered on the diagonal of Σ. The i-vectors are also length-normalised [7]. Details
about training of total variability space matrix T can be seen in [13] or [14].

Because of the differences between each conversation (and the similarity in
one conversation), we also compute a conversation dependent PCA transforma-
tion, which further reduces the dimensionality of the i-vector w. The dimension
of the PCA latent space is dependent on the parameter p, the ratio of eigenvalue
mass [8] (in our case p = 0.5).

5 Clustering

The clustering of all segments is used for determining which segments are pro-
duced by the same speaker. Since our data only includes conversations with
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2 speakers, we use K-means clustering into 2 clusters, based on cosine distance
[8] of two i-vectors:

dist(w1,w2) =
wT

1 w2

‖w1‖ · ‖w2‖ , (5)

where w1 and w2 are these i-vectors.

6 Resegmentation

After clustering the segments, the new i-vector of each cluster is computed (only
from data of each cluster) and resegmentation is made to get better results. This
process is repeated iteratively until the clusters consist of the same segments as
in previous iteration (or the maximum number of iterations is reached). After
the i-vector resegmentation, data (in the form of acoustic features) belonging
to each cluster are used to train the Gaussian Mixture Model (GMM) of this
cluster. The whole conversation is then resegmented frame by frame according
to the likelihood of each GMM.

7 Experiments

In this paper, we try to answer the question of whether segmentation by SCD
can improve the performance of an i-vector based speaker diarization system
compared to the use of a naive segmentation with constant length segments. The
experiment was carried out on telephone conversations from the English part of
CallHome corpus [15], where only two speaker conversations were selected (so
the clustering can be limited to two clusters), this is 109 conversation each with
about 10 min duration in a single telephone channel sampled at 8 kHz.

The feature extraction was based on Linear Frequency Cepstral Coefficients
(LFCCs), Hamming window of length 25 ms with 10 ms shift of the window.
There are 25 triangular filter banks which are spread linearly across the frequency
spectrum, and 20 LFCCs were extracted. Delta coefficients were added leading
to a 40-dimensional feature vector. Instead of the voice activity detector, the
reference annotation about missed speech was used.

For naive segmentation, a 2 s window with 1 s of overlap was used. For seg-
mentation by SCD, the length of the segments was set to 4 s maximum and 0.1 s
minimum.

The i-vector extraction system was trained using the following corpora: NIST
SRE 2004, NIST SRE 2005, NIST SRE 2006, Switchboard 1 Release 2 and
Switchboard 2 Phase 3. The number of Gaussians in the UBM was set to 512.
The latent dimension (dimension of i-vectors) in the FA total variability space
matrix T in the i-vector extraction was set to 400. Finally, the dimension of
the final i-vector was reduced by conversation dependent PCA with the ratio of
eigenvalue mass p = 0.5.

In the resegmentation, the maximum iteration was set to 1000. The GMMs
consisted of 1024 components and were trained by adaptation from a UBM.
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Fig. 3. Comparison of the system using SCD-based segmentation and constant window
segmentation, before and after resegmentation. Results are given as given as DER[%].

7.1 Results

For evaluation, the Diarization Error Rate (DER) was used as described and used
by NIST in the RT evaluations [16], with 250 ms tolerance around the reference
boundaries. DER combines all types of error (missed speech, mislabeled non-
speech, incorrect speaker cluster), but with correct information about the silence
from the reference annotation, DER represents only the error in speaker cluster.
The results are shown in Fig. 3.

The experimental results of two approaches to the segmentation for speaker
diarization task indicate, that the segmentation based on SCD brings better
information for further clustering. However, the following iterations of resegmen-
tation reduce the impact of inaccurate segmentation, making the final differences
between systems with or without SCD negligible.

8 Conclusions

In this work, we compared two approaches to segmentation in an i-vector based
speaker diarization system. The SCD segmentation method is based on finding
the precise boundaries where the speaker is changing. On the other hand, the
segmentation with constant length divides a conversation into short segments
and relies on clustering and further resegmentation to refine the boundaries.
The experimental results of these two approaches show that the SCD approach
offers significantly better performance in the clustering stage, but the differences
are diminished by the resegmentation. Therefore the naive segmentation is a
sufficient approach for the speaker diarization system based on i-vectors.
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Abstract. A review of the existing methods of transmitted information truth
diagnostics is presented. A conclusion concerning the purposefulness of this
function realization in polymodal infocommunication systems has been shown.
Parameters of speech signal that reflect the truth of transmitted information are
considered. The results of testing the developed software are presented. Based on
the undertaken study, a conclusion concerning possibility of realization of trans‐
mitted information truth in the course of interpersonal communication between
subscribers has been drawn and a decisive rule has been formulated.

Keywords: Speech signal · Assessment of the truth of transmitted messages ·
Lie detector · Polymodal infocommunication system

1 Introduction

The constantly growing loads on the psychological activity of infocommunication
systems subscribers make the processes of their communication more and more diverse
and emotionally constrained. Despite the constant necessity in solving the problem of
the transmitted message falsity (truth) under such conditions, nowadays, the secure
methods of the corresponding function realization in the corresponding communication
systems do not exist [1–3].

Nowadays for solving the problem of the message falsity determination the method
of instrumental diagnostics with the help of a polygraph detector (lie detector) is mostly
used. In terms of this method, the conclusion about the falsity of the information trans‐
mitted by a person is shown upon his psychophysical reaction changes character. Despite
its popularity, a number of conditions significantly limit its application in practice.
Particularly, the use of polygraph as a contact method is possible only provided meeting
the range of requirements concerning the place of study organization (comfortable
temperature, optimal humidity, noise insulation etc.) and of personal character (personal
consent to studies, absence of somatic diseases, mental disorder and etc.) [4, 5]. All
listed requirements make the use of polygraph in the course of infocommunication
systems subscriber’s communicative interaction nearly impossible.

A noncontact method of a person’s psychophysiological reaction is also known and
it resides in the person’s psychophysical reaction fixation according to his changing
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electromagnetic field in the process of verbal and nonverbal communication. The disad‐
vantage of this method is in the necessity of instrumental complex implementation and
a stimulating verbal exposure, which makes its exploitation in infocommunication
systems impossible [6].

The degree of users’ replies honesty can be determined with the help of noninvasive
video registration of the eye movement parameters registration during verbal commu‐
nication [7, 8]. The conclusion concerning the emotional psychophysical elevation
which may appear as a result of information concealing or garbling, is drawn based on
the comparison of numbers of blinking acts, figure’s area and pupils diameter with the
control value. The suggested approach appears to be contact and requires special equip‐
ment (video-oculography) and abiding to a set of rules significant for the research
procedure performance, which makes this method complicated for subscribers’ commu‐
nication.

A method of defining the multimodal information falsity transmitted in the course
of communication act with the help of these systems has been suggested in [9]. Common
tendencies concerning the subscribers’ non-verbal behavior parameters dynamics have
been formulated. Based on the factor and multiple regressive analyses the factors
depending on such dynamics have been distinguished. Based on the research carried out
a conclusion concerning the possibility of realization of transmitted information falsity
in the course of interpersonal communication between subscribers was drawn and a
decisive rule has been formulated.

The truth (falsity) evaluation of the speaker can be carried out on the basis of speak‐
er’s emotional-psychological features and states range by a number of experts-observers
using the same video fragment of the test with duration not less than 40-60 s [10]. Experts
[numbered not less than 10 people] must know the basics of the human expressive body
movements on the scale of popular editions [11, 12]. The conclusion concerning the
speaker’s honesty is drawn with the consideration of visual and audio evaluation corre‐
spondence index based on the correspondence degree of the voice intonation and the
total of expressive body movements (facial gestures, posture and gestures).

The stated index is defined through the mean estimator for each group of experts as
a result of Spearmen’s rank-order correlation calculation and accepts it as a psycho‐
physiological measure of the speaker’s honesty. The described approach appears to be
too subjective as it requires expert group participation and does not allow identifying
individual peculiarities of nonverbal behavior of a particular subscriber which signifi‐
cantly reduces the value of the obtained results.

Besides, a great number of medical and special equipment oriented on human func‐
tional features assessment including his behavior exists and in this respect the problem
was successfully solved a long time ago. However, the problem of lie detection in both
technical and methodological respect is far from being simple and requires enhanced
solutions and new approaches.

Application of the existing and expected solutions of the signal processing tasks with
different modalities during the polymodal infocommunication systems (PICS) synthesis
will provide an opportunity of defining the transmitted information falsity  [13]. PICS
should be understood as an interconnected aggregate of multimodal interfaces, infor‐
mation processing and storing subsets, telecommunication systems, their unifiers
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functioning under the sole management with the aim of collecting, processing, storing,
protection transmission and reallocation, reflection and exploitation of multimodal
information to the benefit of the subscribers.

In  [14–18] various methods of deceptive speech detection are considered. These
methods are based on: (1) application of the fractional Mel cepstral coefficient (FrCC);
(2) analysis of speaking rate, response onset time, and frequency and duration of hesi‐
tation markers; (3) analysis of nonlinear spectral features derived using a Bark scale and
psychoacoustic masking property of human speech; (4) non-linear dynamics (NLD)
features and relevance vector machine (RVM) based on sparse Bayesian Learning (SBL)
for feature classification.

The main way to improve the accuracy of estimating the truth of transmitted voice
messages lies through creation of methods and software for their realization, enabling
one to individualize the approach, to implement adjustment, to detect the most infor‐
mative parameters of communicant speech reflecting the truth of transmitted information
in each case  [19–22].

2 Software for Investigation of Speech Signal Parameters

The functional flow diagram of the software solution allowing detection of the param‐
eters of speech signal is presented in Fig. 1. Let us consider it in more details.
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voiced segments 
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Fig. 1. The functional flow diagram of the developed software for speech processing

The module “Creating files for processing of a speech signal” includes: (1) the
module of calculation of weight functions hC(t, k) and hS(t, k) of the filter system; (2)
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the module of calculation of weight function of simultaneous masking W0(k, ki), applied
for extraction of frequency domain of strong correlation; (3) the module of forming a
set of masks PM(k, k0) based on W0(k, ki).

The module “Preprocessing of a speech signal” consists of two modules simultane‐
ously committing convolution of speech signal S(t) with the weight functions hC(t, k)
and hS(t, k) of the filter system. The module “Extraction of speech signal parameters”
includes modules calculating arrays of intensity values I(t, k) and instantaneous frequen‐
cies F(t, k) of the filtered speech signal.

The module “Extraction of voiced segments” includes: (1) the module of simulta‐
neous masking of speech signal; (2) the module determining periodic structure by
convolution of speech signal with the set of masks for each time count; (3) the module
segmenting a speech signal by presence of voiced source based on the algorithm
extracting voice pitch frequency.

In this study, the following speech parameters reflecting the truth of transmitted
information were considered: the presence of voiced sound, voice pitch frequency
(VPF), intensity of pitch, dynamic pattern of VPF, deviation of VPF, dynamic pattern
of intensity of pitch, ratio of intensity of harmonics to pitch intensity  [23–26]. To extract
these parameters the appropriate module was implemented in the software solution
(Fig. 1). The module “Visualization of speech signal parameters” allows saving obtained
graphs both in automatic and manual mode.

3 Experiment Results

The investigation of a speech signal using developed tests and the software solution
yielded results that are partially presented in Table 1 and Figs. 2 and 3. The test included
the following sequence of Neutral (N), Control (C) and Important (I) questions, aimed
to detect implication of the test person in a laptop theft:

Table 1. Patterns of the speech signal characteristics obtained during the experiments

Case VPF Mean
value of VPF

Deviation from
the mean value

A man answers
the neutral questions

120–140 Hz 130 Hz 10 Hz

A man answers
the important questions

120–150 Hz 135 Hz 15 Hz

A man answers
the control questions

110–140 Hz 125 Hz 15 Hz

A woman answers
the neutral questions

200–240 Hz 220 Hz 20 Hz

A woman answers
the important questions

160–250 Hz 205 Hz 45 Hz

A woman answers
the control questions

180–280 Hz 230 Hz 50 Hz
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 N1: Were you born in 1985?
 C1: Have you ever taken other people’s stuff without permission?
    I1: Did you steal the laptop?
N2: Is your name Maxim?
C2: Have you ever broken the law?
    I2: Have you ever been to his house?
N3: Are you 22 years old?
C3: Have you ever stolen something?
    I3: Did you steal the laptop?
N4: Have you had lunch today?
C4: Have you ever lied to somebody to avoid problems?
    I4: Are you involved in the theft of the laptop?
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Fig. 2. Reaction patterns of the male test person at the questions N1-I2
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Fig. 3. Reaction patterns of the male test person at the questions N3-I4

The neutral questions belong to the general category; they do not cause anxiety. The
special important questions are associated with the crime. The control questions always
have generalized nature. They aim is to bring the person being tested into confusion and
cause anxiety. The results presented in Table 1 show that when the test person answers
the neutral questions, he/she has no strong emotional excitement. This fact allows one
to compose a reaction pattern of test person telling a lie and the truth and to compare
the reaction to the control and important questions with it. A lie brings a person in a
stress state, which is reflected in a change of speech parameters.

For numerical expression of the results the reaction to the important questions and
to the subsequent control questions were compared (I1 was compared with C1, I2 was
compared with C2, and I3 was compared with C3). The measure of discrepancy of
physiological response Pr was considered: (1) if there is no difference in physiological
reaction of the test person, the zero rating is assigned, Pr = 0; (2) if the difference is
noticeable, Pr = 1; 3) if the difference is intense or very intense, the Pr = 2 or Pr = 3
respectively.

If the reaction at the important question is stronger than at the control one, the nega‐
tive rating is put (Pr = −1, −2 or −3) and vice versa, if the reaction at the important
question is weaker than at the control one, the positive rating is put (Pr =+1, +2 or +3).
Then the ratings are summed and the total test score is drawn. The final test result is based
on this total score. If it falls to −6 or below (Pr = −7, −8, etc.), the test person is consid‐
ered to fail the test and, consequently, he/she have lied. If the final rating reaches +6 or
above (Pr =+7, +8, etc.), the test person is considered to tell the truth. The ratings in the
interval (-5 ≤ Pr ≤ +5) point to an uncertain result.

Let us consider an example. It is seen in case of interviewing the test person (Fig. 2)
that the reaction at the question C1 is stronger than at the I1; hence, Pr =+3. The reaction
at the C3 is the same as at the I3, Pr = 0. As a result the final score is Pr =+6, that allows
considering the test passed. Consequently, the person being tested has reported the truth
information.
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4 Conclusion

The obtained results testify to the possibility of the realization of the suggested method
of transmitted multimodal information falsity determination in the real-time mode and
in the process of interpersonal communication between PICS subscribers. Its further
development and perfection is due to increasing the accuracy of the algorithms for
modality identification and estimation of nonverbal parameters of human behavior.
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Abstract. In recent years, text-to-speech (TTS) systems have shown
considerable improvement as far as the quality of the synthetic speech
is concerned. Data driven synthesis methods using syllable as basic unit
for concatenation, have proved to generate high quality speech for Indian
Languages because of their advantage of prosodic matching function.
However, still there is no acceptable solution to the optimal selection of
speech segments in terms of audible discontinuities and human percep-
tion. This problem gets aggravated in the cases where there is no enough
data for building the voice due to the missing units. In this paper, we
continue our efforts in trying to address this by investigating the use of a
new continuity measure based on maximum signal correlation for optimal
selection of units in concatenative text-to-speech (TTS) synthesis frame-
work. We explore two formulations for calculating the signal correlation:
cross correlation (CC) based and average magnitude difference function
(AMDF) based. We first perform an initial experiment to understand
the significance of the approach and then build 5 experimental systems.
Evaluations on 30 sentences for each of these languages by native users
of the language show that the proposed continuity measure results in
more natural sounding synthesis.

Keywords: Unit selection synthesis · Cross correlation · Forced align-
ment · Target cost · Average magnitude difference function · Join cost

1 Introduction

Text-to-Speech synthesis systems convert an arbitrary text to a spoken wave-
form. Current TTS systems employing data-driven synthesis techniques are
shown to generate more natural speech than the conventional approaches [5,19].
Data-driven synthesis techniques employ a large speech corpus containing mul-
tiple realizations of each unit with differing prosody [12]. During synthesis,
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a particular manifestation of a unit is selected depending on how well it matches
with the input specification and on how well it matches with other units in the
sequence. Unit selection algorithm tries to select the longest available strings of
units that match a sequence of target units [16]. Following a significant research
progress, via platforms like Blizzard Challenges [2–4,10,13,14] the unit selection
concatenative method and statistical parametric synthesis have become the dom-
inant approaches for building text-to-speech systems. Unit selection systems [6–
8,27] have become popular due to their highly natural-sounding synthetic speech
compared to their statistical parametric counterparts. These systems have large
speech databases containing many instances of each speech unit, with a varied
and natural distribution of prosodic and spectral characteristics. The key idea in
unit selection speech synthesis is to use the database as the acoustic inventory
and to select at run time, different acoustic units that match better according
to a cost function, so as to capture the characteristics of a targeted synthetic
speech and at the same time deliver context-specific prosodic behaviour. The
cost function is typically a combination of two costs: target cost (how closely a
candidate units in the inventory match the required targets) and join cost (how
well the neighbouring units are feasible for joining) [12].

1.1 Motivation

In this paper, the motivation for our approach comes from the understanding
that the human speech database is fully comprised of naturally evolving adja-
cent speech frames, forming sequences of audibly perfect joins. The adjacent
speech frames are highly correlated with each other. We try to emulate this cor-
related behavior in our synthesis framework. Specifically, we investigate the use
of a continuity metric targeted at maximizing such correlation between the units
during synthesis. There are two ways of using the correlation between the units
in a unit selection synthesis framework. One way is use the knowledge of sig-
nal correlation during the concatenation of the selected units so that they are
joined at the point of maximum correlation between the units. We have intro-
duced this approach in [22]. The other way, which we focus on in this paper is
to directly use the correlation as a sub cost in the join cost, thereby controlling
the selection of the units themselves. We employ two formulations for estimating
correlation between the units: Cross correlation based formulation and Average
Magnitude Difference Function (AMDF) based formulation. We try to answer
the following questions: Is signal correlation an important feature to be consid-
ered for obtaining more natural synthesis? Is it sufficient in itself to serve as
join cost to ensure good quality synthesis or should it be used in combination
with the other sub costs? How many time frames have to be considered from
the units to calculate the correlation? Which formulation (CC vs AMDF) has
better performance? Does performance improve if we combine both the formu-
lations using appropriate weighting functions? To answer these questions, we
build experimental systems and cross validate them. The outline of the paper is
as follows: In Sect. 2, we present the current framework which was used in [22].
Section 3 lists the experiments conducted and the systems developed followed by
conclusions.
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2 Overview of the Current Framework: Baseline System

In this section, we give a brief overview of our synthesis system, as used in [24].
The framework follows a frontend/back-end architecture with Natural Language
processing as front end and Digital signal processing module as back end.

2.1 Size of the Unit

The basic units of the writing system in Indian languages are characters which
are an orthographic representation of speech sounds. A character in Indian lan-
guage scripts is close to a syllable and can be typically of the following form:
C, V, CV, VC, CCV and CVC, where C is a consonant and V is a vowel. All
Indian language scripts have a common phonetic base, and a universal phoneset
consists of about 35 consonants and about 18 vowels [15]. Earlier work on Indian
languages suggested that a syllable based approach to synthesis could lead to
more reliable quality. There are a number of reasons for this, some of them being
that (a) the syllable units can capture coarticulation better than phonemes, (b)
the number of concatenation points decreases when syllable is used as the basic
unit, (c) syllable boundaries are characterized by regions of low energy and there-
fore audible mismatches at the boundary are hardly perceived, etc. Also in the
context of Indian languages, the number of polysyllabic words is huge. Due to
these advantages, we have chosen syllable as the basic unit in our concatenative
synthesis framework.

2.2 Voice Building

Forced Alignment. For segmenting the audio data we used the procedure
described in [21] which is based on an HMM forced alignment algorithm. The
alignment has been performed without any change or supervision as it closely
developed to the TTS front-end component.

Pre-clustering. It was seen that syllables of the same type can be easily dif-
ferentiated depending on their position in the word [18]. In addition, syllables
occurring at the beginning of the word are of longer duration than the syllables
occurring at the middle and end of a word [25,28]. The energy and pitch were
also found to vary depending on the position of the syllable in the word [1].
Therefore, we’ve performed pre-clustering based on position of the syllable in a
word, i.e. syllables of the same type were pre-clustered as begin, middle and end
by appropriately depending on their position in the word, in the original context.
In case a syllable of appropriate position is not available during synthesis, an
order of preference is used to pick a syllable of the same type occurring at an
alternate position. During synthesis, if the required begin or an end syllable is
not present in the database, middle syllable is preferred. If the required middle
syllable is not present, a syllable from a word beginning is selected instead.
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Target and Join Costs. Typically mel frequency cepstral coefficients (MFCC)
are used to calculate distance between two units accompanied by duration and
F0 of the unit. Preliminary analysis on the data showed that the energy of
units play a major role in syllable unit synthesis. We have therefore included log
energy, MFCC, dynamic features of MFCC (deltas and double deltas), F0 and
unit durations as the acoustic features. We employed a target cost based on the
distance from the mean duration of the syllables in the current version of the
framework, following [26]. The mean duration for each of the units is computed
using all the occurrences in the database. Thus, the units with minimum distance
from this mean value have a higher probability in getting selected when the total
cost is obtained. The join cost consists of the sub costs arising from log energy,
spectral and pitch based features. We follow the formulation similar to the one
proposed in [17,23] and calculate the spectral, f0 and energy based continuity
metrics using 1, 4 and 2 boundary frames respectively [24]. The weights of the
individual sub costs have been optimized manually over a held out set from the
training data.

Table 1. Preference test on Telugu. The percentages are shown for each system.

CC 4F vs 2F 2F vs 1F 4F vs 1F AMDF 4F vs 2F 2F vs 1F 4F vs 1F

Prefer 4F 23 - 47 Prefer 4F 29 - 46

Prefer 2F 51 73 - Prefer 2F 46 79 -

Prefer 1F - 7 21 Prefer 1F - 9 33

No preference 26 20 32 No preference 25 12 21

Table 2. Preference test on Hindi. The percentages are shown for each system.

CC 4F vs 2F 2F vs 1F 4F vs 1F AMDF 4F vs 2F 2F vs 1F 4F vs 1F

Prefer 4F 22 - 42 Prefer 4F 22 - 44

Prefer 2F 53 77 - Prefer 2F 59 73 -

Prefer 1F - 13 23 Prefer 1F - 17 30

No preference 25 10 35 No preference 19 10 26

Waveform Similarity Concatenation. In order to obtain smooth joins at the
concatenation boundaries we can use overlap addition after finding the suitable
temporal point for joining the units so that the concatenation is performed at a
point where maximal similarity exists between the units. In other words, we try
to ensure that sufficient signal continuity exists at the concatenation point. For
this, we use the cross correlation between the units as a measure of similarity
between the units. Crossfade technique [11] is used to further remove the phase
discontinuities. The number of frames used to calculate the correlation is limited
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by the duration of the available subword unit. Last two frames of the individual
units were used to calculate the cross correlation. We have used reduced vowel
epenthesis based backoff [20] strategy to synthesize the missing units and word
to native speaker phone mapping [9] for the English words.

3 Experimental Setup

3.1 Data

We have used the database provided as a part of Blizzard Challenge 2015 for the
purpose of the current investigation. Although the data was released for 6 lan-
guages, we have used Telugu (a Dravidian language) and Hindi (an Indo-Aryan
language) databases for our experiments, promarily as they are from different
language families. The other reasons for selecting these languages were the avail-
ability of native speakers for testing and larger database size (4 h) compared to
the other languages (2 h). The training and the test set have been used as is
except for leaving out 15 training sentences as a held out set to validate the
findings and tune the weighting functions.

3.2 Embedding Correlation

Our goal is to increase the naturalness of the synthesized speech signal, in order
to achieve this we have embedded correlation between the units as one of the
subcosts in the join cost, which further affects the selection of the units. A simple
experiment with a set of 30 words in both the languages were selected included
4 missing syllable units and 3 borrowed words (English words) was carried out
to know the perceptual acceptability of the synthesized signals by introducing
correlation and Average Magnitude Difference Function based formulation. By
varying the number of frames, 3 files were synthesized for each word to calculate
the correlation between the units. It is important to note that the correlation
score obtained using cross correlation formulation has to be maximized where
as the score obtianed via AMDF has to be minimized. Forced preference test
was performed by native speakers of both the languages. We have followed the
same procedure mentioned in [20] and the results are summarized in Tables 1 and
2. The results indicate that the correlation based approach is indeed preferred
by the users, in both the languages and for both the formulations. They also
indicate that for both the formulations, using 2 frames to the left and right at
the boundary to calculate the correlation has received maximum preference.

3.3 Systems Designed

In this sub-section, we describe the experimental systems designed. Based on the
inferences from the preference test, we have used 2 boundary frames to calculate
the continuity metric in all of the experimental systems.
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Type A Systems. These are the experimental systems built only using cross-
correlation and average magnitude difference function as the join cost compo-
nents. In other words, system CC has only the cross correlation based continuity
metric as the join cost and system AMDF has only the average magnitude dif-
ference function based continuity metric as the join cost. The intention behind
building these systems is to understand if ensuring temporal correlation in the
signal alone would suffice as the join cost to produce highly natural speech.

Type B Systems. The systems built were the baseline combined with cross-
correlation system and the baseline combined with AMDF system. These wer
built to investigate the performance using the continuity measures in combina-
tion with the other subcosts. The weighting functions for each of the sub costs
were optimized manually using a held out set of 15 utterances from the training
set in both the languages.

Hybrid System. Hybrid system has all the three systems in it, the baseline,
cross-correlation system and the AMDF system. Here both the formulations
were used in addition to the existing sub-costs which has improvised the perfor-
mance of the system to the greater extent. The weights used for each of these
formulations were 0.33 for AMDF and 0.67 for Cross-Correlation.

Fig. 1. Results from the Subjective Evaluation. Figure depicts box plots plotted based
on the Mean Opinion Scores on a scale of 5.

3.4 Subjective Evaluation

In order to evaluate the systems, we have performed subjective evaluations using
procedure similar to Blizzard challenge listening tests [2,13,14,22,24]. A set of 15
participants were made to listen to the synthesized files and rate the naturalness
on a scale of 1 to 5, with 5 being the most natural and 1 being the most unnatural.
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The results from the listening test are shown in the Fig. 1. Type A systems have
performed worser compared to the baseline system in both the languages and
both the formulations, showing that the other sub costs have a significant role
in the join cost. In line with our hypothesis, type B systems have better MOS
scores compared to the baseline system, in both the languages and both the
formulations. Further, it is clearly evident that the hybrid system, using both
the formulations has significantly outperformed the baseline system.

4 Conclusion

In this paper, we performed an experimental analysis on the usage of signal
correlation as join cost in concatenative speech synthesis framework. As answers
to the questions posed in Sect. 1, we have observed that the continuity measures
do make a perceptual difference and therefore serves as an important feature
to be considered for obtaining more natural synthesis. We also found from the
preference test that using 2 time frames for calculation of the correlation was
preferred for both the formulations. However, when the measures were used in
isolation (type-A systems), their performance is not very encouraging. When
they are combined with the other costs (type-B systems and hybrid system),
they outperform the baseline. Results on systems developed for the Telugu and
Hindi languages provide evidence on the effectiveness of the proposed method.
The samples and listening test results used in the experiments are available
online via this link: https://goo.gl/XJgOUc.
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Abstract. The paper deals with a problem of short text classification in
Kazakh. Traditional text classification approaches require labeled data to
build accurate classifiers. However the amount of available labeled data
is usually very limited due to high cost of labeling or data accessibility
issues. We describe a method of constructing a classifier without labeled
data in the target language. A convolutional neural network (CNN) is
trained on Russian labeled texts and a language vector space transform
is used to transfer knowledge from Russian into Kazakh. Classification
accuracy is evaluated on a dataset of customer support requests. The
presented method demonstrates competitive results compared with an
approach that employed a sophisticated automatic translation system.

Keywords: Text classification · Language vector space · Word embed-
dings · CNN · Low-resource

1 Introduction

Text classification tasks are ubiquitous and essential for modern technologies.
One may need to categorize documents, detect sentiment, intention or desired
action etc. This paper is devoted to users’ requests classification for customer
support. In modern contact centers all initial appeals are fed to a classifier that
determines a request topic and performs an action which may be to forward a
message to a responsible staff member or to generate a unique answer automat-
ically. The requests are typically short phrases consisting of only several words
and the number of target classes can be fairly large (up to 40). We investigate
a problem of building a classifier when training data in a target language are
scarce but a sufficient amount of labeled requests in another language is avail-
able. Kazakh language was chosen to be the target language while training data
were in Russian (the source language).

Distributed vector representations of words are widely used as input features
in various natural language processing problems. They can be understood as
a mapping from words in a given vocabulary to vectors in a low-dimensional
embedded space. We propose to construct a classifier in the low-resource lan-
guage combining a convolutional neural network (CNN) classifier in the source
c© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 435–442, 2016.
DOI: 10.1007/978-3-319-43958-7 52



436 A. Smirnov and V. Mendelev

language and a linear mapping between source and target vector spaces. The
absence of sufficient amount of training data results in inaccurate mapping which
affects the performance of the classifier. We show how classification accuracy
improves with the training data increase to eventually outperform the baseline
obtained with Google Translate.

The outline of the rest of the paper is as follows. In Sect. 2 a brief overview of
the related works is given. Section 3 describes the proposed model. The detailed
description of our datasets and training procedure is provided in Sect. 4. Exper-
iments are presented in Sect. 5 and followed by a discussion and conclusions.

2 Related Work

Distributed vector representations (or word embeddings) have become a very
useful tool in various Natural Language Processing (NLP) tasks, including lan-
guage modeling, word-sense disambiguation, word similarity and synonym detec-
tion (e.g. [4,7,8,19,21]). Overcoming a data sparsity problem, word embeddings
represent words as low-dimensional dense vectors. Methods of their construction
(e.g. [17,18], see also [21] for a survey of classical vector space models) require
unlabeled text data only.

The two lines of research concerning distributed vector representations are
directly connected to our study. The first one is training multilingual word
embeddings to transfer linguistic knowledge from one language to another, the
other one is learning embeddings for more complex monolingual lexical units like
phrases, sentences and documents.

Several methods have been proposed to train and align bi- and multilingual
word embeddings. In [1] monolingual models of languages are built separately
and then a linear projection between two language vector spaces is learned on
a small bilingual dictionary. More sophisticated approaches [3,6,13] optimize
monolingual and cross-lingual objectives simultaneously (e.g. by minimizing the
sum of monolingual and cross-lingual loss functions). To train such a model
one needs a parallel corpus aligned at a sentence level. The quality of vector
representations can be evaluated on a cross-lingual document classification task.
A common setup was introduced by Klementiev et al. [13]. They used a subset
of English and German sections of the Reuters RCV1/RCV2 corpora [16]. There
are four topics in the corpus. The classifier is trained on documents belonging to
one language and tested on documents in the other language. Coulmance et al.
[6] reported a performance of several bilingual word embedding models for the
setup.

Word vector representations cannot properly capture the semantic proper-
ties of longer phrases, so compositionality has recently received a lot of atten-
tion. A number of approaches have been developed for learning mappings from
word vectors to sentence vectors. Paragraph Vector introduced in [15] learns a
fixed-length feature representations for variable-length texts in an unsupervised
manner. Supervised approaches induce task-specific sentence embeddings using
labeled text corpora. Among them are recursive neural networks [9,20], convo-
lutional neural networks [11,12] and long short term memory recurrent neural
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networks [14]. An appealing feature of these models is that in the absence of
a large supervised training set to boost the performance one could initialize
word vectors with those obtained from an unsupervised neural language model
[5,10,19].

We integrate these two lines of research to solve a text classification problem
in a low-resource language.

3 Approach

The proposed model includes three main components: word embeddings, CNN
trained on top of the embeddings and Transferring Matrix, which is a linear
mapping between vector spaces of the target (Kazakh) and source (Russian)
languages. The model architecture is shown in Fig. 1.

Fig. 1. Model architecture. Data flow for the source language is shown in blue, for the
target language in green (Color figure online)

Embeddings. Having the large unannotated text corpora in both the target
and source languages we pre-trained vector embeddings. The two well-known
algorithms to learn monolingual word embeddings are the skip-gram and con-
tinuous bag of words (CBOW). The training objective of CBOW is to predict
the word by its context in the sentence while the training objective of the skip-
gram model is to predict surrounding words with the word itself. The training
of CBOW is known to be faster but skipgram learns better representation when
the training corpus is small. According to our experiments, monolingual word
embeddings learned by the CBOW model give better results in terms of clas-
sification accuracy on both the source and target request datasets. All results
reported hereafter were obtained using the CBOW model.
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Convolutional Network. A simple CNN with one layer of convolution is
trained on top of precomputed word vector representations for the source lan-
guage as in [12]. During the training phase the word embeddings are fine-tuned.
Kim altered the architecture of the CNN to allow for the use of both task-specific
and static word vectors. We use only the non-static channel since adding the sta-
tic channel does not lead to any improvement in classification accuracy for the
task.

Transferring Matrix. Following the approach proposed in [9] we trained Trans-
ferring Matrix A that maps word vectors from the target into source vector space
by minimizing minA

∑N
i=0 ||Avti −vsi ||2, where vti is the word vector in the target

language, the vsi is the vector of its translation into the source language and
N is the size of the dictionary. Some words in the target language do not have
one-word equivalents and are translated as short phrases. In such cases vsi is
calculated by averaging vectors which compose a phrase.

During the prediction phase the word vectors for the target language are
translated to the vector space of the source language by Transferring Matrix
and then are processed by the CNN.

4 Datasets and Training Details

4.1 Datasets

To evaluate our approach we use the dataset of 6000 users requests in Russian
which were manually split into 40 classes according to their topic and also manu-
ally translated into Kazakh. The average request length was 7.6 words. Discard-
ing the examples from the least represented classes we generate the datasets with
30, 20, 10, 5 and 2 classes, consisting of 5700, 5200, 4200, 3350, 1980 requests
correspondingly. The data for a given number of classes were divided into a train
set (80 %), a development set (10 %) and a test set (10 %).

4.2 Training Details

Word2vec. The word2vec tool [2] was used to produce monolingual word
embeddings. The architecture of the model was CBOW and it was trained by neg-
ative sampling. The training data for the Russian model consisted of transcribed
spontaneous conversational speech, fiction and news articles (200M tokens). The
Kazakh model was trained on the latest dump of Kazakh Wikipedia and Kazakh
news articles (30M tokens). The dimension of vector representation was 100 for
the Russian model. We tested vector space dimensions from 100 to 800 for the
Kazakh model and found that 500-dimensional word embedding gave the best
classification accuracy for 40 classes. We used a 500-dimensional Kazakh vector
space for the rest of experiments.

k-NN. As a baseline classifier we considered the k-nearest neighbors (k-NN)
algorithm in the space of sentence vectors. The number of neighbors was tuned on
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the development set and the weight of a neighbor vote was inversely proportional
to the cosine distance from this neighbor to the test vector. We averaged single
word vectors composing the phrase to get the sentence vector.

CNN. The hyper-parameters of the CNN were tuned on the development set
of the full Russian dataset (40 classes) and were held constant for the other
datasets. We came up with the following settings: the filter size was 2, the number
of feature maps was 192, we used the rectified linear unit activation function, the
dropout rate was 0.5, no l2 regularization was used and the mini-batch consisted
of 64 examples.

5 Experiments

5.1 Transfer Techniques

We compare the performance of the k-NN and CNN classifiers on the Kazakh
test sets for several transfer techniques:

Transferring Matrix (TM). For each word in a given input phrase correspond-
ing vectors from the target language vector space are calculated and mapped to
the source language vector space with Transferring Matrix. The sequence of
vector representations in the source space is then classified.

Google Translate (GT). An input request is translated into the source lan-
guage by Google Translate. The translation is classified.

Manual (Man). The whole source language dataset was translated into the
target language by a human expert. We take the source language translation
that corresponds to the presented target language test phrase and perform clas-
sification.

5.2 Dictionary Variations

The performance of our model strongly depends on the quality of a mapping
(Transferring Matrix) between vector spaces of the target and source languages.
In turn, the quality of the Transferring Matrix depends on the dictionary used
for training it’s size, how accurate it is, if the vocabulary of the target domain
is included. To examine how the classification accuracy depends on the amount
of available manual translations we use the following dictionaries:

GT-dict is a dictionary constructed without manual translation at all. We chose
the 5000 most frequent words from the proprietary Russian telecom-related text
corpus and translate them into the Kazakh language

TrainX%. Randomly chosen X% requests from the Russian train set manually
translated into Kazakh

Train≤ N includes the manual translation of requests from the Russian train
set that did not exceed N words

For each dictionary we discarded the translations that were not present in
the vocabulary of the Kazakh word embedding model. Table 1 shows the sizes
of the dictionaries in terms of requests and tokens.
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Table 1. Statistics of the dictionaries

Train10% Train25% Train50% Train100% Train≤ 1 Train≤ 2 Train≤ 4 Train≤ 7

# req. 307 793 1559 3137 70 415 1442 2321

# tok. 1623 4447 8763 17478 70 760 4113 8690

5.3 Results

The performance of the proposed approach on the datasets with different num-
bers of classes is reported in Table 2. We observed that classifiers based on
Transferring Matrix constructed with GT-dict (dictionary without manually
translated data) perform poorly, significantly worse than classifiers based on
Google Translate or manual translation. This may be due to the fact that for
the Kazakh-Russian language pair GT-dict contains a noticeable amount of inac-
curacies itself. One can also note that CNN outperforms the k-NN classifier for
every translation technique and dataset.

Table 2. Classification accuracy for different transfer techniques for test sets with
different numbers of classes

# of classes Manual GT TM (GT-dict)

k-NN CNN k-NN CNN k-NN CNN

40 72.8 84.3 56.8 61.4 32.8 37.6

30 73.5 85.5 57.8 63.4 35 37.9

20 75.7 87.7 61.6 66.5 38.8 45.2

10 78.4 89.1 65.8 71.9 46.7 51.8

5 82.6 92.4 80.2 87.1 57.6 65.6

2 90.5 97.8 93 95 76.4 84.4

Table 3 shows the classification accuracy for several dictionaries on the test
set with 10 classes. Adding manually translated examples to the translation
dictionary improves the classifier performance significantly. The best accuracy
is obtained when the entire training set is used to construct the Transferring
Matrix. In that case the CNN-classifier slightly outperforms the one based on

Table 3. Dependence of the classification accuracy on the dictionary used to build the
Transferring Matrix

Dictionary k-NN CNN Dictionary k-NN CNN
GT-dict 46.7 51.8 GT-dict∪Train≤ 1 47 52.3

GT-dict∪Train10% 52.8 55.6 GT-dict∪Train≤ 2 56.7 60.2
GT-dict∪Train25% 57.4 60.5 GT-dict∪Train≤ 4 60 67.7
GT-dict∪Train50% 60.5 66 GT-dict∪Train≤ 7 62.8 69.3
GT-dict∪Train100% 64.2 69.5 Train100% 66.7 73.3
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Google Translate. In the original work [1] only single words constitute the dic-
tionary for the Transferring Matrix. The presented results show that the whole
phrases in the dictionary can also be beneficial to the task.

6 Conclusions

In the present work we demonstrate that having some unlabeled data in the
target language and labeled data in the source language it is possible to build
a classifier accurate enough to solve practical problems in the target language.
We exploit a vector space mapping to transfer knowledge from the source to
the target language. The performance of the classifier is poor when only the
automatically translated word pairs are used to train the transfer mapping.
A substantial classification accuracy increase is obtained by adding manually
translated phrases to the training data for the mapping. It is also shown that
despite of inaccuracies in transfer technique it is beneficial to use a more complex
CNN classifier in the source language vector space instead of k-NN one.

Acknowledgments. This work was financially supported by the Ministry of
Education and Science of the Russian Federation, Contract 14.579.21.0008, ID
RFMEFI57914X0008.
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Abstract. This paper describes d-vector language identification (LID)
system on short utterances using time delay neural network (TDNN)
acoustic model for the speech recognition task. The acoustic TDNN
model is chosen for ASR system of ICQ messenger and it’s applied for
the LID task. We compared LID TDNN d-vector results to i-vector base-
line. It was found that the TDNN system performance is close at any
durations while i-vector shows good results only at long time. Open-set
test is conducted. Relative improvement of 5.5 % over the i-vector system
is shown.

Keywords: Language identification · I-vector · D-vector · Speech recog-
nition acoustic model · Neural networks

1 Introduction

I-vector is a gold-standard approach for speaker and language identification [1,2].
Whereas neural networks have a rising power. Deep neural networks (DNN) and
Long Short-Term Memory (LSTM) were introduced. LSTM has demonstrated
a high performance for ASR and LID [3–5] tasks. Auto-encoders and bottleneck
features provided by NNs have also improved the performance in all speech
processing tasks. D-vectors become popular within DNNs. The goal of our team
is to explore the acoustic model of our production ASR based on TDNN for
d-vector [6].

We have built Russian ASR in ICQ messenger. More than 15 % of data queries
is not in Russian. Under a high load there is a need to truncate unwanted traffic
with no Russian speech.

The paper is organized as follows. Section 2 refers to I-Vector Baseline system.
Section 3 describes D-vector and TDNN in detail. Section 4 describes dataset and
data preparation. Section 5 presents and analyzes the results on 3 s durations.
Section 6 presents the conclusions and interesting findings.
c© Springer International Publishing Switzerland 2016
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2 I-Vector Baseline System

2.1 About

I-vector is the state of the art technique that effectively represents speech utter-
ance as low dimensional vector. The underlying idea behind i-vectors is based
on supervectors over concatenated Gaussian Mixture Models (GMM) means M ,
factorized as

M = m + Tw, (1)

where m is concatenated Universal Background Model (UBM) means, T forms
the subspace covering the important variability (both language- and session-
specific) in the supervector space, and w is a random vector distributed as
N(0, 1). For each observation sequence representing an utterance the correspond-
ing i-vector can be estimated using the maximum a posteriori (MAP) method.
For more detail on i-vector extraction see [2,8].

2.2 Configuration

First, the UBM GMM is trained. The next step is to calculate Total Variability
and Sigma matrices on the special dataset from train. The i-vector extra ctor
uses Baum-Welch statistics calculated from voice frames, followed by Support
Vector Machine scoring procedure. We have used RBF kernels to model non-
linear relationship in total variability space (Fig. 1).

Fig. 1. I-vector system configuration

3 TDNN D-Vector System

3.1 About

In proposed LID system we use d-vectors instead of i-vectors as the input lan-
guage features for the SVM classifier. D-vectors are obtained using our best for
ASR acoustic model. We hypothesize that amount of uncertainty in the neural
network output, produced by non-target language, leads to the shift in hid-
den layer activations behavior relatively target language (Russian in our case).
Therefore their averaged representations (d-vectors) must give good discrimina-
tive feature for binary identification task, but not for multiclass identification.
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3.2 Extracting Improved D-Vector

Assume we have a set of raw features of the whole utterance Xutt = {x1, . . . , xT }
Xutt ∈ R

FxT and the last hidden layer activations corresponding to raw features
Hutt = {h1, . . . , hT } Hutt ∈ R

LxT from TDNN where F is a raw feature dimen-
sion, L is a number of neurons in the last hidden layer and T is a number of
frames in the utterance. Next we compute mean and standard deviation of Hutt

and concatenate them into one single vector. Now we have improved version of
d-vectors per utterance as compared with [7].

TDNN is chosen as d-vector extractor because it can model long term tem-
poral dependencies with training times comparable to standard feed-forward
DNNs and shows better Word Error Rate (WER) in speech recognition tasks
[6]. Training TDNN is done using Kaldi toolkit [9].

Scheme below depicts an example of TDNN architecture with sub-sampling
{−3, 3}, {−1,+1} and {−2,+1} applying to its hidden layers correspondingly
(Fig. 2).

Fig. 2. An example of TDNN architecture with sub-sampling. D-vector is extracted
from the last hidden layer activations

3.3 Configuration

To make the comparison clear d-vector is configured as in Subsection 2.2 of
I-Vector Baseline System. However, a slight difference is still present — Prin-
cipal Component Analysis (PCA) was used to whiten d-vectors and reduce the
dimensionality (Fig. 3).
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Fig. 3. TDNN d-vector system configuration

4 Experiment Setup

4.1 Dataset

ASR TDNN model, i-vector UBM, TV & Sigma parameters were obtained on
the proprietary Russian corpus collected from the microphone and telephone
speech.

NIST Language Recognition Evaluation 2007 (LRE07) is a popular cor-
pora and it contains Russian language in train and test sets. We have
used the next 11 languages to train the classifier: Russian, Arabic, Bengali,
Chinese (Min), Spanish (Mexican), Tamil, Thai, Chinese (Taiwan, Wu,
Cantonese), Hindustani (Urdu). It was prepared 26 items for open-set test:
Arabic, Bengali, Chinese (Cantonese, Mainland, Taiwan, Min, Wu),
English (American, Indian) Farsi, French, German, Hindustani (Hindi, Urdu),
Indonesian, Italian, Japanese, Korean, Punjabi, Russian, Spanish (Caribbean,
non-Caribbean), Tagalog, Tamil, Thai, Vietnamese.

We run Voice Activity Detector over train set to split long durations of source
audio files into small parts (Fig. 4). I-vector and d-vector extractors results were
considered at this training corpora.

Fig. 4. Train (left) and test (right) durations histogram
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4.2 I-Vector

13-dimensional MFCCs with double deltas and no normalization were used as
input to the i-vector extractor. UBM has 512 GMMs. Output is 400-dimensional
vector. It’s about 20 h of audio in UBM training and 50 h for TV & Sigma.

4.3 D-Vector

Perceptual Linear Prediction (PLP) with 13 cepstral coefficients, without cep-
stral mean and variance normalization, were used as input to the TDNN at the
each time step. Also we concatenated a 100-dimensional i-vector with the PLP
input.

TDNN consists of 6 nonlinear hidden layers and we use the following sub-
sampling scheme (Table 1) on the first three layers only.

Table 1. Sub-sampling scheme

Layer Input context

1 {−4, 4}
2 {−2, 2}
3 {−4, 4}

Neural network was trained using stochastic gradient descent after that
sequence training based on a state-level variant of the Minimum Phone Error
(MPE) criterion was applied to get the final acoustic model.

The output dimension of d-vector after PCA is 400. It’s about 450 h of audio
for the TDNN train.

5 Results

The research purpose was the investigation of the short utterance LID. Here are
presented DET plots of i-vector and d-vector open-set General LR 3 sec test on
Russian language (Fig. 5). We used a lot of short audio fragments (after VAD)
in train and didn’t expect a great work of i-vectors &d-vectors at 10 s and 30 s
(Tab. 2). But as you can see d-vectors outperforms at 10 s and 30 s i-vectors too.

Table 2. I-vector and D-vector EER on Russian open-set test, %

System 3 s 10 s 30 s

I-vector 28.08 24.09 22.51

D-vector 22.42 21.23 20.34
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We found that d-vectors need less data to reach the best result while i-vectors
take more data to train SVM model. It makes SVM very slow because the high
number of support vectors increases the computing time.

Fig. 5. I-vector (red, dashed) and D-vector (green) DET curves on Russian open-set
test (Color figure online)

All the results, scores and other meta information about the experiments
are stored in the Testarium — research tool and experiment repository [10].
Using this tool we made a grid search of SVM gamma, C, data limits and other
parameters of our setup.

6 Conclusions

In this paper we have successfully applied TDNN framework to model acoustic
features within language verification scenario. The feed-forward architecture of
TDNN allows training and adapting parameters faster than more sophisticated
recurrent nets, whereas gathering sufficiently wide context is important to make
the system robust against outliers. The accurate modeling of target language
phonemes seems to be crucial step for gaining performance when the small por-
tion of acoustic information is given. Furthermore an interesting observation
was concluded: TDNN d-vectors using in training are not so sensitive to audio
durations in contrast to i-vectors.

Though only Russian language was the case study, we believe in the same
effect for other languages. Also we want to build multiple TDNN acoustic mod-
els for other languages and concatenate their d-vectors to reach the best perfor-
mance. The validation addressed to the future work.
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Abstract. Punjabi is a tonal language and belongs to Indo-Aryan family of
languages. Punjabi literature reveals that the suprasegmental phonemes such as
Tone, Nasalization and stress are realized at the syllable level. There is abun-
dance of geminated words in which stress Co-occurs on the geminated conso-
nant. The disyllabic words have highest frequency of occurrence. There are very
few quadrisyllabic/polysyllabic words excluding borrowed words. There is
limited work available on Punjabi generative phonology. Initial efforts were
made however no conclusive work on linguistic rules for stress is available.
Pronunciation lexicon development is a very useful resource for machine
learning and is critical for speech technology research. Pronunciation lexicon
specification (PLS) of W3C enables development of such data in standard XML
format. This PLS data ought to be enriched with stress information encoded in
IPA so that the Punjabi Text-to-Speech systems can use it to deliver near natural
voice. An attempt has been made in this paper to study Non-tonal disyllabic
words for identifying stress patterns. The data was further analyzed to define
linguistic contexts in which stress occurs in Punjabi disyllabic words.

Keywords: PLS � Punjabi � IPA � Syllable � Stress � Pitch � Vowel duration �
Vowel intensity � Disyllabic � Phonology � Voice browser � TTS � Lexicon �
Pronunciation �Acoustic �Articulation �W3C � Phonetics � PRAAT �MATLAB

1 Introduction

1.1 Punjabi Language

Punjabi is a member of Indo-Aryan Language family and it is mainly spoken by
inhabitants of north western India and north eastern Pakistan. Punjabi is most com-
monly written in the Gurmukhi script. Gurmukhi, means proceeding from the mouth of
the Guru. Thus it refers to its use in the Granth Sahib, and is written from left to right.
The number of letters in the Gurmukhi alphabet accounts for its common name “pɛ ̃ti
akʰəri” ‘thirty – five’. According to the ethnologies 2005 estimate, there 88 million
native speakers of the Punjabi language, which makes it approximately the 10th most
widely spoken language in the world and according to 2001 census of India, there are
29,102,477 Punjabi speakers in India.

© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 450–460, 2016.
DOI: 10.1007/978-3-319-43958-7_54



1.2 Punjabi Phonology

Punjabi language uses 42 phonemes (10 vowels and 32 consonants) which are dis-
cussed by (Lata 2011) in “Challenges for Design of Pronunciation Lexicon Specifi-
cation (PLS) for Punjabi Language”. According to the generative theory, the syllable
has been considered as the hierarchical unit in the phonological representation by
Kahn. Subsequently “CV Phonology” (Clements and Keyser 1983), explains CV tier
theory of phonology which provides phonological representation to distinguish func-
tional positions within the syllable and proposed a set of constituents smaller than the
syllable, taking consonant and vowel segments as members. These constituents may be
termed the onset, nucleus and coda. Nucleus plays role in defining the distinction
between heavy and light syllables. There is further distinction between a heavy syllable
and a light syllable depending on the quality of vowels involved. Punjabi vowels can
be classified into (Sharma 1971).

Initial occurrence of class II vowels is very much restricted in Punjabi (Singh
1991). Thus nucleus of a syllable is a category of prosodic element. Therefore the
relative stress of syllables occurring in a word can be studied as per Generative
phonology to identify stress patterns in a language.

1.3 PLS

PLS is a standard of World-Wide Web Consortium (W3C) http://www.w3.org/TR/
pronunciation-lexicon/ and its current version is PLS 1.0 (2008) produced by Voice
Browser Working Group of W3C. The PLS has been designed with a goal to have
Inter-operable specifications of pronunciation information which can be used for
speech technology development. It provides a mapping between the words or short
phrases, their written representations and their pronunciation especially for use by
speech engines. PLS specification provides a framework and guideline which can be
tailored to the needs of a specific language and consequently the XML tag set can be
defined to build the PLS data using IPA & UTF 8 representation. (Lata 2011).

1.4 Stress in Punjabi

Stress is a structural linguistic property of a word that specifies which syllable in the
word, in some sense, is stronger than any others. This acoustic characterization of the
properties can distinguish the stressed syllable from any other unstressed syllable
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surrounding it. In Punjabi, the stress falls on the geminated consonant and it also
Co-occurs with tone in tonal words. The tone gets realized on a stronger syllable. The
stress realization due to presence of tones in Tonemes was examined in (Lata 2012) and
Laryngeal tones were studied (Lata 2013). Punjabi has very high frequency of disyl-
labic words. The current study focuses on stress realization in Non-tonal disyllabic
words in Punjabi.

The paper is organized as follows. Section 2 gives the literature survey. In Sect. 3
we have described the syllabic structure of Punjabi language utilizing the generative
phonology theory. Section 4 elucidates data collection and methodology of experi-
mental study. In Sect. 5 the data recorded along with the syllabic description. Section 6
presents the methodology for annotation and the annotated data. Section 7 derives the
empirical analysis of stress pattern.

2 Literature Survey

2.1 The Problem of Stress

There is a general agreement that stressed syllable is characterized by higher pitch and
duration is also a significant Co-variable. (Lehiste 1970) claims that phonetically
realized word level stress is the capacity of a syllable in a word to receive sentence
level stress. According to (Prakash 2003), stress generally falls on the syllable con-
taining long vowel. Thus the degrees of stress on various syllables in a word should be
predictable by rules and therefore be non contrastive. The phonetic correlate of stress is
a combination of length and pitch. Unstressed syllables lack length and a high pitch.
Emphasized syllables contain a greater amount of energy.

The stress in Punjabi is determined by the phonological form of the word. The
phonological processes such as vowel laxing, vowel reduction & schwa deletion can be
explained by a single parameter i.e. stress. (Kalra 1982) defined three rules and elab-
orated their applicability on a limited set of words. He concluded that stress in Punjabi
can be predicted by rules.

2.2 Phonetic Stress Placement Rules

In disyllabic words, the initial syllable has a stress if the final syllable is open (Bhatia
1993) e.g. ਮਾਲੀ/ˈmali/Gardener.

2.3 Stress in Disyllabic Words

Word stress in Punjabi is robustly perceptible and can be independently motivated
elsewhere in the phonology of the language. Turning to the details of stress placement in
Punjabi, it must be noted that the language has a three way syllable weight distinction as
in language like Hindi (Prince and Smolensky 1993). It has monomoraic light syllables
(L), bimoraic heavy syllables (H) and trimoraic Super-Heavy syllables (S) which have a

452 S. Lata et al.



long vowel and a coda or a short vowel followed by two coda consonants. Thus the need
for scientific study to evolve rules for stress in disyllabic words was identified as
discussed by (Vijayakrishnan 2003), through following examples:

It is observed from these examples that the second syllable is stressed.
No scientific study is available on stress in Non-tonal words in Punjabi language.

Therefore 100 Non- tonal disyllabic words of different syllable categories are being
examined in this paper for the stress patterns as the frequency of occurrence of
disyllabic words in Punjabi is very high.

3 Syllabic Structure of Punjabi

A syllable is a vocalic unit, or a combination of the vocalic unit preceded or followed
by a consonantal margin. There are syllables with zero margins also.

3.1 Syllable Peak

Simple peak syllable consists of one of the vowel phonemes of class I or class II. The
main difference is in their prominence i.e. class I syllable peaks are phonetically less
prominent and have a laxer articulation than class II syllable peaks. Complex peak
syllable consists of a simple peak accompanied by a satellite peak consisting of /h (ə), j,
w/or having overlong vowel occurrences.

3.2 Syllable Margin

A syllable margin (onset, coda or onset & coda) consists of one or more of the
consonant phonemes or Semi-consonants. Simple margin consists of only one con-
sonant. Complex margin consists of consonant cluster/geminated consonants.

3.3 Syllable Classification

Based on literature survey (Vijayakrishnan 2003), following definition of light syllable,
heavy syllable and super heavy syllable has been followed for carrying out this study.

3.3.1 Light Syllable (L)

i. Open syllable containing a class I vowel i.e. V1 or CV1.
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3.3.2 Heavy Syllable (H)

i. Open syllable containing a class II vowel or a dipthong viz. V2, CV2, CV1V2.

ii. Any syllable having class I vowel with a coda/onset or both viz. V1C, CV1C.

3.3.3 Super Heavy Syllable (S)

i. Long vowel followed by one or more consonants viz. V2C, V2C(C) and long vowel
having onset as well as coda viz. CV2C.

ii. Class I vowel followed by one or more consonants viz. V1CC.

4 Articulatory Features for Syllabic Stress

Co-articulation is a phenomenon in which the articulatory moments required for a
syllable are often anticipated (anticipatory Co-articulation) or carried over (carry over
Co-articulation) during the production of an adjacent syllable (Sharma 1971). Stress
plays an important role and depends on: Quality of syllable peak, Openness or
closeness of the syllable, Type of syllable Margin, Position of the syllable in the word
under consideration, Presence of Gemination, Presence of Tone.

Syllable peaks and syllable margins show considerable reduction of quantity,
quality, intensity and pitch when occurring in weak position of a syllable whereas there
is an all around rise in a stronger syllable. Reduction in quality of the initial syllable in
disyllabic words is a common feature which needs to be examined.

5 Recording of Data

For the recoding of the Punjabi speech data, standardized procedure for speech corpora
development based on the ITU recommendations has been adopted. The recording of
data has been done in standard recording environment having SNR >= 45 dB. The
recording format is 16 bit, PCM, Mono and sampling rat is 48 kHz and the speech rate
is medium with neutral emotion as the words are recorded in isolation however each
word has been recorded thrice to avoid contaminating contextual influences.

The number of informants used is 3 male & 2 female native Punjabi speakers from
Malwa (Malwai dialect) region between 25−35 age groups. Each informant recorded
the entire set of 100 words thrice belonging to four linguistic categories based on the
syllable definition as per Sect. 3 i.e. (1) L-H: 36 words, (2) H-H: 44 words, (3) L-S: 16
words, (4) H-S: 04 words. The middle sample of speech data is considered for the
analysis to avoid any contaminating contextual influences.
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6 Methodology

Pitch and Duration are the main acoustic correlates of stress however intensity being a
weak cue also needs to be considered. According to the literature survey various
degrees of links between stress and increase in respiratory effort, subglottal pressure,
amplitude of sound waves and intensity have been found. This needs to be examined in
the context of varying Intra-syllabic linguistic contexts viz Co-occurrence of different
categories of syllables.

The spectrographic analysis using PRAAT of all the male & female samples was
carried out and phoneme level and syllable level annotation was done. Intensity of both
the syllables was recorded for each word by using PRAAT software. MATrix
LABoratory (MATLAB) algorithm was developed to get mean pitch and duration for
both the syllables.

Graphs are represented below for sample words exhibiting pitch contour, duration
and intensity. The pause between the syllables was not accounted while calculating
duration, pitch and intensity.

6.1.1: Syllabic Description: L-H: (See Fig. 1).

6.1.2: Syllabic Description: H-H: (See Fig. 2).

Fig. 1. (a) ਹੁਨਰ /hʊnər /_ Intensity graph. (b) ਹੁਨਰ /hʊnər /_ Pitch & Duration graph

Fig. 2. (a) ਰਸਤਾ /ɾəsta/_ Intensity graph. (b) ਰਸਤਾ /ɾəsta/_ Pitch & Duration graph
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6.1.3: Syllabic Description: L-S: (See Fig. 3).

6.1.4: Syllabic Description: H-S: (See Fig. 4).

7 Data Analysis

7.1 Empirical Formula for Syllabic Stress

The disyllabic words pertaining to different linguistic categories of the collected
samples have been analyzed to investigate the Intra-syllabic stress. Duration is most
significant parameter in terms of acoustic correlate in determining the stress as dis-
cussed in (Sluijter and Van Heuven 1996; Kalra 1982). It has also been found that
stressed syllable reflects higher pitch. However, intensity is a weak cue for identifying
the linguistic stress. The stress pattern of the recorded samples has been analyzed for
identifying weightage of duration, pitch and intensity heuristically as given below:

1. Standard deviations of each of the parameters for 100 words i.e. duration (τ), pitch
(P) and intensity (I) were calculated by substituting these respectively as per
standard formula given below:

Fig. 3. (a) ਅੱਗੇ /əgge/_ Intensity graph. (b) ਅੱਗੇ /əgge/_ Pitch & Duration graph

Fig. 4. (a) ਮੌਜੂਦ /mɔd͡ʒud/_ Intensity graph. (b) ਮੌਜੂਦ/mɔd͡ʒud/_ Pitch & Duration graph
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2. στ, σρ and σI were calculated for each of the sample word averaging the ensemble
over five speakers.

3. Scatter graphs were plotted for each of the parameters στ,σρ and σI for both syllable
1 & syllable 2. The graphs were fitted by the linear curve fitting approach for both
the syllables as shown below (Figs. 5, 6 and 7):

4. It has been observed that στ, σρ, and σI follow the equation as given below
(Table 1):

Fig. 5. (a) Syllable 1. (b) Syllable 2

Fig. 6. (a) Syllable 1. (b) Syllable 2
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5. Analyzing the above functions and the corresponding weightage factors involving τ,
P and I averaging over both the syllables the empirical stress function (ψ) may be
expressed as:
ψ = 0.42τ + 0.42 P + 0.16I where
τ is the duration (ms)
P is the Pitch measured in terms of frequency (Hz)
I is the Intensity (dB)
This reveals that duration and pitch have higher importance in determining lexical
stress as compared to intensity.

7.2 Study of Stress Pattern

Using the above Eq. 1, the stress of syllable 1 and syllable 2 of each word was
calculated and percentage increases of stress in syllable 2 with reference to syllable 1
was calculated as per sample data presented below Table 2:

The data reveals that stress is on the second syllable. Percentage increase of second
syllable over first syllable has been plotted for each word. The standard deviation of
this stress data has been calculated and it is noted from the graph that 14 % of the
words carry minor stress on syllable 2.

Fig. 7. (a) Syllable 1. (b) Syllable 2

Table 1. Linear equations of standard deviation

Syllable 1 Syllable 2

στ = 9.84x + 2.73 στ = 9.87x + 1.22
σρ = 9.90x − 2.35 σρ = 9.9x − 1.84
σI = 1.00x − 7.68 σI = 7.75x + 1.53
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Table 2. Sample data

Disyllabic word Category Syllabic
stress

Percentage Increase

Syb 1 Syb 2

/səɽək/ L-H 16.14 22.41 38.81
/həzəm/ L-H 18.18 22.17 21.94
/ʃəgən/ L-H 20.14 23.07 14.54
/ʊgər/ L-H 17.89 23.19 29.6
/əgge/ L-H 17.22 22.04 27.98
/ɾəsta/ L-H 20.09 24.11 20.01
/ʊtsʊk/ H-H 16.59 20.37 22.76
/gəɾɪpʰt/ H-H 15.41 21.36 38.59
/gad ͡ʒər/ H-H 16.14 21.88 35.55
/gɔkul/ H-H 18.58 23.98 29.08
/ɔrət/ H-H 17.58 23.79 35.31
/pakʰə ̃ɖ/ H-H 17.09 22.00 28.79
/məjur/ L-S 19.41 25.86 33.26
/ʊd ͡ʒɛn/ L- S 15.7 22.4 42.7
/ʋedãt/ H- S 18.55 21.79 17.48
/Iman/ H- S 18.46 26.33 42.63

Fig. 8. Threshold graph
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8 Conclusion

It is evident from the data analyzed that the Non-tonal disyllabic Punjabi words carry
lexical stress on second syllable. Therefore the lexical stress in these words can be
represented on the last syllable. The stress parameter is proposed to be incorporated in
PLS which will increase the intelligibility of the spoken message via TTS. The PLS
data encoded in IPA thus developed incorporating the above study will assist TTS
engines in realization of near human voice.

The further analysis reveals that the following categories of words are below the
threshold in Fig. 8. (a) nasalized L-H, (b) H-H ending with CV1C syllable, (c) both
syllables of CV2 category other than few exceptions. The lexical stress may be ignored
in these cases.

9 Future Study

This study may be extended by working on more number of speakers and for larger set
of data to further validate the research findings. The study also needs to be extrapolated
for trisyllabic and polysyllabic words.
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Abstract. The paper investigates how the annotators personality
affects the result of their segmentation of unscripted speech into sen-
tences. This task is inherently ambiguous and the disagreement between
the annotators may result from a variety of factors – from speech disflu-
encies and linguistic properties of the text to social characteristics and
the individuality of a speaker. While some boundaries are marked by the
majority of annotators, there is also a substantial number of boundaries
marked only by one or several experts.

In this paper we focus on sentence boundaries that are only marked
by a small number of annotators. We test the hypothesis that such
“uncommon” boundaries are more likely to be identified by experts with
particular personality traits. We found significant relationship between
uncommon boundaries and two psychological traits of annotators mea-
sured by the Big Five personality inventory: emotionality and extraver-
sion.

Keywords: Sentence boundary detection · Segmentation · Personality ·
Annotation · Spontaneous speech · Unscripted speech · Russian

1 Introduction

In this paper we investigate how the annotators personality affects the result of
their segmentation of unscripted speech into sentences.

The main challenge of syntactic analysis of unscripted speech is that speech
does not have obvious sentence boundaries. While expert manual annotation
is the common way of obtaining sentence boundaries in unscripted speech, a
number of studies show that experts rarely reach unambiguous segmentation
[1–6]. Previous studies revealed that there is a range of sources of annotators
disagreement in segmentation – from speech disfluencies and language-specific
features to social characteristics and the individuality of a speaker [2,6–8]. Other
reasons for inconsistencies in boundary detection between annotators may be
misinterpretation of annotation guidelines [9], different interpretation of the same
text or complexity of the task leading to labellers mistakes [10].
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As we earlier showed for Russian, annotated sentence boundaries may have
different status depending on the extent of expert agreement [7]. While some
boundaries are marked by the majority of annotators, there is also a substantial
number of boundaries marked only by one or several experts.

Furthermore, in [8] we explored potential factors contributing to such vari-
ability between the annotators. We showed that the differences between the
annotators may be related to their personality traits. Thus we found that two
traits measured by the Five Factor Personality Questionnaire,“unemotionality
vs. emotionality” and “practicality vs. playfulness” accounted for about 20 % of
variability in sentence length as marked by the annotators.

In this paper we further investigate the connection between the annotators
personality and the sentence boundaries. We focus on boundaries that are only
marked by a small number of annotators (we will call them “uncommon bound-
aries”). We test the hypothesis that such uncommon sentence boundaries are
more likely to be identified by experts with particular personality traits – for
example, neuroticism, extraversion, etc. The study has practical implications: if
our hypothesis is correct, it might be reasonable to select experts according to
certain criteria before they start working with speech.

We used the corpus described in [8] which contains boundary annotations
and the personality scores for the annotators. The scores were collected using
two questionnaires to evaluate personality traits: the Eysenck Personality Inven-
tory (EPI) [11] adopted and validated for Russian by [12] and the Five Factor
Personality Questionnaire, or the Big Five (FFPQ) [13] adopted and validated
for Russian by [14].

We use linear regression to evaluate whether sentence boundaries with low
inter-annotator agreement are related to certain personality traits as measured
by the two personality questionnaires.

2 Experimental Design and Data Collection

2.1 Data

The study is based on expert manual annotation of spontaneous monologues.
We used three texts taken from the corpus of transcribed spontaneous Russian
monologues described in [6,7]. This corpus contains manual transcriptions of
different types of monologues recorded by 32 native speakers of Russian.

This paper is based on 3 monologues from this corpus produced by the same
male speaker. This speaker had a higher education and was 40 years old at the
time of the recording. Since expert manual annotation depends on text genre [7]
we included the monologues which covered three different tasks: “Description”
(162 words), “Story” (225 words) and “Free comment” (312 words).

2.2 Participants

Fifty native speakers of Russian (9 male and 41 female) took part in the
experiment. All participants were students or professors in linguistics and/or
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modern languages with a background in linguistics. The age of participants var-
ied between 18 and 68 with a median age of 24.

2.3 Personality Questionnaires

The first task for the participants was the completion of two personality ques-
tionnaires. Both questionnaires were administered on paper.

Eysenck Personality Inventory. (EPI) consists of 57 yes/no questions and
the results are interpreted along two scales: introversion vs. extraversion and
stability vs. neuroticism. Each scale ranges from 0 to 24. There is also a separate
lie-scale designed to identify participants who are being insincere and exclude
them from the data.

Five Factor Personality Questionnaire. (FFPQ) includes 75 items with
five-level Likert scale (from -2 to 2 including 0). Each item has two opposite
statements, and a respondent has to choose the closest score on the scale to
one or another statement. The results of FFPQ are interpreted along five scales
corresponding to five super-trait factors to describe personality: (1) introversion
vs. extraversion, (2) separateness vs. attachment, (3) naturality vs. controlling,
(4) unemotionality vs. emotionality, and (5) practicality vs. playfulness.1 Each
scale ranges from 15 to 75. Both questionnaires were administered on paper.

2.4 Sentence Boundary Annotation

After completing the questionnaires, the participants were given orthographic
transcriptions of the 3 recordings described in Sect. 2.1 and asked to mark the
sentence boundaries using conventional full stops or any other symbol of their
choice (e.g. a slash). The participants did not have access to actual recordings
and were asked to provide annotations based on text only. In addition, the
transcriptions did not contain any punctuation or any other information that
could directly indicate presence of a pause such as graphic symbols of hesitation
(like eh, uhm) or other comments (e.g. [sigh], [laughter]). Thus, we tried to
focus on semantic and syntactic factors in boundary detection. The experts were
presumed to have a native intuition of what a sentence is and, thus, it was left
undefined. There were no time-constraints.

3 Data Analysis and Results

We computed scores for each scale of the two personality inventories giving us
7 personality scores per each participant.

1 We follow [13] for factor names since this version of FFPQ was used as the basis for
the Russian version.
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3.1 Inter-Annotator Agreement

We identified all places where at least one annotator marked a sentence bound-
ary. There were a total of 167 such possible boundaries across the three texts
considered in this study. For each location, we assigned 1 to each annotator
who marked a boundary at this location, and 0 to those annotators who did not
mark the boundary. We then used these labels to compute inter-annotator agree-
ment. We found moderate agreement between the annotators: Fleiss κ = 0.46
(p < 0.00001). We binned the boundaries into the following categories according
to the number of annotators who marked each boundary:

– boundaries marked by half (25 subjects) of all experts and more (“common”);
– boundaries marked by less than half of all experts (“somewhat rare”);
– boundaries marked by less than 10 experts (“rare boundaries”);
– boundaries marked by less than 5 experts (“very rare boundaries”);
– boundaries marked by a single expert (“unique boundaries”).

The distribution of different types of boundaries is shown in Table 1.

Table 1. The frequency of different types of boundaries.

Boundary Marked by Number %

Unique 1 42 25 %

Very rare 2–4 34 20 %

Rare 5–9 21 13 %

Somewhat rare 10–24 21 13 %

Common 25–50 49 30 %

As one can see from Table 1, about one third of all boundaries were marked
by the majority of the annotators. At the same time almost half of the bound-
aries were marked by less than 5 annotators (out of 50) with a quarter of the
boundaries marked by just one annotator.

3.2 Unique Boundaries and Annotator Personality

We next performed regression analysis to find whether the number of rare and
unique boundaries is associated with personality scores as measured by EPI and
FFPQ.

We first used multilevel logistic regression to model the probability of sen-
tence boundary after each word for each annotator. We used position in the text
and annotator as random variables and the annotator personality score as the
fixed variable.

In agreement with the results for sentence boundary length reported in [8],
the personality scores measured by EPI had no significant effect on sentence
boundaries (p = 0.993 for both scales).
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For FFPQ the presence of sentence boundary in the annotation depended on
unemotionality vs. emotionality (UE) (p = 0.02) and practicality vs. playfulness
(PP) (p = 0.04) scores of the annotators.

We next focused on the main question of this paper: are annotators with
particular personality traits more likely to mark unique boundaries?

For each boundary we computed the average personality score of all annota-
tors who marked that boundary. We then used linear regression to test whether
the type of the boundary (“unique”, “very rare”, “rare”, “somewhat rare”, “com-
mon”) had any effect on the average personality score for that boundary.

We found that for unique boundaries the personality score along UE scale was
significantly higher than for other types of boundaries (R2 = 0.05, p = 0.001).
While average UE score for all boundaries was 53.3, the average score for unique
boundaries was 57.3, four points above the average. The distribution of scores
for different boundary types is shown in Fig. 1.
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Fig. 1. Annotator emotionality scores for different types of boundaries.

There also was significant relationship between the boundary type and the
annotator score on “introversion vs. extraversion” (IE) scale: the average IE
score of annotators who marked unique boundaries was 2–3 points higher than
for other boundaries (R2 = 0.06, p = 0.4). This is shown in Fig. 2.

We saw no significant relationship between the unique boundaries and other
scores.
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Fig. 2. Annotator extraversion scores for different types of boundaries.

4 Conclusion

In this paper we tested the hypothesis that low inter-annotator agreement in
a number of boundaries detected by experts in the process of manual annota-
tion may be related to particular personality traits of annotators. Our attention
was focused on unique boundaries (marked by only one person) and very rare
boundaries (marked by 2–4 persons, or 4 %–8 % of the annotators who took part
in the experiment).

We found that, in general, the presence of sentence boundaries in the anno-
tated texts is related to two personality traits described by Five-Factor Per-
sonality Questionnaire as unemotionality vs. emotionality and practicality vs.
playfulness.

As for the uncommon boundaries, the analysis revealed the connection
between the placement of unique boundaries and two personality traits – emo-
tionality and extraversion. We found that highly emotional and highly extravert
people are more likely to mark unique boundaries. Therefore in a situation where
the quality of annotation is judged by the inter-annotator agreement, it may be
useful to obtain emotionality and extraversion scores of prospective annotators
and consider those when creating the gold standard annotation.
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We note that it is of course also possible that annotators with particular
personality traits are more likely to identify the boundaries missed by other
annotators. Testing this hypothesis would require an external validity criterion.

It is worth mentioning that, since the five factor model of personality is
not universal and cannot encompass all individual traits, there may be other
personal characteristics which are related to uncommon segmentation and merely
await their identification. Besides, very low inter-annotator agreement in some
positions may have another source. We assume, for example, that it might reflect
the disfluent character of spontaneous speech which, in its turn, in some cases
provokes disfluent annotation.
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Abstract. The language models (LMs) used in speech recognition to
predict the next word (given the context) often rely on too short con-
text, which leads to recognition errors. In theory, using recurrent neural
networks (RNN) should solve this problem, but in practice the RNNs do
not fully utilize the potential of the long context. The RNN-based lan-
guage models with long short-term memory (LSTM) units take better
advantage of the long context and demonstrate good results in terms of
perplexity for many datasets. We used LSTM-LMs trained with regular-
ization to rescore the recognition word lattices and obtained much lower
WER as compared to the n-gram and conventional RNN-based LMs for
the Russian and English languages.

Keywords: Recurrent neural networks · Long shorm-term memory ·
Language models · Automatic speech recognition

1 Introduction

Many speech recognition errors are due to the fact that the language model
used relies on too short word context to predict the next word. For example,
the modern n-gram models [1] usually operate with a context of 2–5 words. The
feedforward neural network language models [2,3] always rely on a context of a
fixed length, but this is not always sufficient for good prediction. In theory, this
could be resolved with the help of the RNN-based language model (RNNLM)
[4–6] which takes into account all preceding words. They significantly outperform
the n-gram models in various ASR tasks [4,5]. But RNNs are very difficult to
train because of the vanishing gradient problem; in practice, RNNs do not fully
utilize the potential of the long context [7]. To overcome these difficulties, it has
been proposed to apply RNNs with LSTM units [8–13]. But, like the RNNLM,
they are prone to overfitting. The regularization techniques commonly used for
the feedforward neural networks perform rather poorly on RNN and LSTM
networks [14,15]. The RNN regularization technique proposed in [16] successfully
solves this problem.

In this research, we apply LSTM language models trained with dropout reg-
ularization to rescore the recognition hypotheses. We obtained a significant word
c© Springer International Publishing Switzerland 2016
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error rate (WER) reduction as compared to the n-gram and conventional RNN
language models for Russian and English languages.

The rest of the paper is organized as follows. In Sect. 2, we describe the
LSTM and RNN regularization. In Sect. 3, we give the results of experiments
on recognition of Russian and English spontaneous speech, and discuss them in
Sect. 4.

2 Description of LSTM Units

In order to overcome the vanishing gradient problem for RNNs, Sepp Hochreiter
and Jürgen Schmidhuber proposed RNN architecture elements called long short-
term memory units [8]. A rather complex structure of LSTM (see Fig. 1) makes
it possible to store long-term information effectively.

Fig. 1. Structure of LSTM

The long-term memory is implemented with the use of the memory cell vec-
tor. LSTM allows to store, change, or delete the information placed in the mem-
ory cell. This is controlled by three gates which are presented in every LSTM
block. They consist of the sigmoid layer followed by the element-wise multipli-
cation operation. The sigmoid layer outputs take values from zero to one, which
indicate what fraction of a component should pass through the gate. For exam-
ple, zero value means a full forbiddance to pass, while the unit value means
the opposite. So, the input gate determines which information from the input
is allowed to enter inside the LSTM block, the forget gate determines which
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information should be removed from the memory cell. Finally, the output is
determined by the cell state and the output gate values.

The LSTM is described by the equations

LSTM : ht−1, ct−1, xt �→ ht, ct,⎛

⎜⎜⎝

it
ft
ot
gt

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

sigm
sigm
sigm
tanh

⎞

⎟⎟⎠ T2n,4n

(
xt

ht−1

)
, (1)

ct = ft � ct−1 + it � gt,

ht = ot � tanh(ct).

Here xt, ht, ct, it, ft, ot, gt ∈ R
n denote the input vector, output vector, memory

cell state and the activations of input gate, forget gate, output gate and input
modulation gate at time t; T2n,4n : R2n → R

4n is a linear transform with a bias;
� symbol denotes element-wise multiplication; logistic (sigm) and hyperbolic
tangent (tanh) activation functions are applied element-wise.

A more detailed description and an algorithm to train the LSTM can be
found in [9].

2.1 Regularization with Dropout

The standard regularization techniques that exist for feedforward neural net-
works [14,15] perform rather poorly on RNN and LSTM networks, which com-
monly leads to model overfitting. The use of dropout regularization for RNN
and LSTM networks is proposed in [16]. The key idea of this technique consists
of applying the dropout to non-recurrent connections only. The formulas below
describe this method in more detail:

LSTM : ht−1, ct−1, xt �→ ht, ct,⎛

⎜⎜⎝

it
ft
ot
gt

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

sigm
sigm
sigm
tanh

⎞

⎟⎟⎠ T2n,4n

(
D(xt)
ht−1

)
, (2)

ct = ft � ct−1 + it � gt,

ht = ot � tanh(ct),

where D stands for the dropout operator which sets a random subset of its
argument to zero. Its detailed description can be found in [16].

3 Experiments

3.1 Experiments on English Spontaneous Speech

For our experiments, we chose a training set consisted of transcriptions from the
Switchboard-1 Release 2 and Fisher English corpora. The 3-gram LM for the first
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recognition pass was trained with modified Kneser-Ney (MKN) smoothing [1] on
the transcriptions of the Switchboard corpus with 30 K words vocabulary. The
baseline 4-gram model was built following the swbd(s5c) recipe. The vocabulary
was around 30 k words and the model was produced by interpolation of two
4-gram models built with MKN smoothing (Switchboard and Fisher).

In order to train neural language models, we mixed all sentences and par-
titioned them into two parts: cross-validation(cv) (20 K sentences) and train
(the remaining ones, about 2.5 M sentences). All words which were not found
in the vocabulary of the 4-gram model were replaced by the 〈UNK〉 token. As
the test set we chose the transcriptions of the HUB5 2000 evaluation set. We
trained RNNLM [4] and LSTM-LM on the train part, and then evaluated the
perplexity on the cv and test parts.

For the training of RNNLM we used Tomas Mikolov’s utility rnnlm-0.4b
from the http://www.rnnlm.org site. The RNNLM topology was the following:
256 neurons in the hidden layer, 200 direct connections, 4 direct order. In order
to speed up the training process, we factorized the output layer into 200 classes.

To train LSTM-LM we used the TensorFlow toolkit [17]. We trained two
neural networks in the “medium” and “large” configurations given in [16].
LSTMs had two layers and were unrolled for 35 steps. We initialized the hidden
states with zeros. Then we used the final hidden states of the current minibatch
as the initial hidden state of the subsequent minibatch (successive minibatches
sequentially traverse the training set). The size of each minibatch was 100. The
“medium” LSTM-LM had 650 units per layer. We applied 50 % dropout to the
non-recurrent connections. The “large” LSTM-LM had 1500 units per layer.
We applied 65 % dropout to the non-recurrent connections. In addition, for the
“large” model forget gate biases were initialized with value of 1.0.

Table 1. Experiment results on English spontaneous speech

Language model PPL WER, %

Train CV Test SW Full

4-gram 66.366 62.946 87.039 11.7 17.1

RNNLM 57.982 78.578 76.123 10.8 16.1

LSTM-LM (medium) 51.104 58.964 56.822 10.4 15.4

LSTM-LM (large) 46.033 54.821 52.892 10.1 15.2

The speech recognition experiments performed on the HUB5 2000 evaluation
set were carried out with the use of the Kaldi speech recognition toolkit [18]. As
the baseline we chose the DNN-HMM acoustic model trained with the state-level
Minimum Bayes Risk (sMBR) sequence-discriminative criterion using the nnet1
setup in the Kaldi swbd (s5c) recipe [19]. The recognition was performed with
the trigram LM, and then the word lattices were rescored with the use of the
4-gram model. Next, we carried out the rescoring of the 100-best list with the
use of neural network language models; in doing so, we calculated the language
score by the formula

http://www.rnnlm.org
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lmrescore = λlmrnn + (1 − λ)lm4gr, (3)

where lmrnn were calculated with the use of RNNLM, LSTM-LM (medium),
LSTM-LM (large). Experiment results in terms of perplexity and WER are
shown in Table 1. Note that valid PPL of the baseline 4-gram model is low
due to the presence of valid texts in the training data for this LM.

3.2 Experiments on Russian Spontaneous Speech

The experiments on Russian spontaneous speech were performed in a simi-
lar way. We chose the DNN-HMM acoustic-model trained on 390 h of Russian
spontaneous speech (telephone conversations). The model was trained on 120-
dimensional speaker-dependent bottleneck features [20,21] extracted from the
DNN trained in a speaker adaptive manner using i-vectors. We used 50-
dimensional i-vectors constructed with our toolset [22]. The acoustic model
training was carried out with the use of the sMBR sequence-discriminative crite-
rion. The experiments were conducted on the same test dataset as in [20] which
contained about one hour of Russian telephone conversations.

We chose two datasets to train language models. The first one consisted
of the transcriptions of the AM training dataset. The second one contained a
large amount (about 200 M words) of texts from Internet forum discussions,
books and subtitles from the http://www.opensubtitles.org site. The baseline
3-gram language model with a vocabulary of 214 K words was built in the SRILM
toolkit [23]. It was obtained by interpolation of 3-gram LMs trained on the
first and second datasets using Modified Kneser-Ney smoothing. The size of
this model was reduced to 4.16 M bigrams and 2.49 M trigrams with the use of
pruning.

RNNLM and LSTM-LM were trained only on mixed sentences from the train-
ing dataset 1 divided into cv (15 K sentences), test (4 K sentences) and train
(the remaining ones, 243 K sentences) parts. In order to speed up the training
we utilized the vocabulary of 45 K most frequent words; all other words were
replaced by the 〈UNK〉 token. During RNNLM training we used 256 neurons in
the hidden layer and 200 classes in the output layer. LSTM-LMs were trained
in the “medium” and “large” configurations described in the paper [16].

The experiments were carried out with the use of the Kaldi toolkit. The word
lattices generated during the recognition phase with the 3-gram LM were used to
extract the 100-best hypotheses list. The list was then rescored with the neural
network language model. Since the 3-gram and the neural network language
models contained different vocabularies we had to use unigram weights from the
3-gram LM for words that were absent in the 45 K vocabulary of RNN-based
model. The results in terms of perplexity and WER are presented in Table 2.
It should be noted that the 3-gram LM was trained using both dataset 1 and
dataset 2 with a full vocabulary of 214 K words, while RNN-based models were
trained using dataset 1 only with a reduced vocabulary of 45 K words. So, the
3-gram LM perplexity results can not be directly compared with the results of
RNN-based models and reported only for reference.

http://www.opensubtitles.org


474 I. Medennikov and A. Bulusheva

Table 2. Experiment results on Russian spontaneous speech

Language model PPL WER, %

Train CV Test

3-gram 134.26 134.921 228.015 19.5

RNNLM 134.136 164.147 186.757 18.8

LSTM-LM (medium) 110.689 127.358 148.627 17.9

LSTM-LM (large) 105.918 124.618 146.812 17.8

4 Discussion and Conclusion

In this study we used LSTM-LM with regularization to rescore the n-best lists
produced by English and Russian spontaneous speech recognition systems. This
technique takes into account a longer context to predict the next word as com-
pared with the n-gram and even with the RNN-based models. The LSTM-LMs
do not suffer from the vanishing gradient problem while training.

Our experiments demonstrate that LSTM-LM gives much better results
than the n-gram model and RNNLM. As compared with the n-gram model,
we obtained relative WER reduction by 11.1–13.7 % for the English language
and by 8.4 % for the Russian language. As compared with RNNLM, relative
WER reduction is 5.6–6.5 % for the English language and 5.3 % for the Russian
language.

We plan to apply LSTM-LM to other ASR tasks and study other promising
language model architectures, such as character-aware neural language models
[13] and end-to-end memory networks [24] in the future.
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Abstract. In a large number of studies, it has been observed that conversational
partners tend to adapt each other’s speech over the course of the interaction. This
phenomenon, variously named as entrainment, coordination, alignment or adap‐
tation, is widely believed to be crucial to mutual understanding and successful
communication in human interaction. Modelling human adaptation in speech
behaviour would also be very important for improving naturalness in voiced-
based human-machine interaction systems. Recently, a body of research in this
field has been devoted to find evidence of prosodic entrainment by measuring a
number of acoustic-prosodic parameters in some languages, yet not in Italian. Our
study offers a contribution to this research line.   We analysed game-based collab‐
orative dialogues between Italian speakers, by measuring their articulation rate,
pitch range, pitch level and loudness. Results show some evidence of overall
speech coordination (convergence and synchrony) between conversational part‐
ners, wherein the combination of specific prosodic parameters involved may vary
across dialogues. Our results are in line with those obtained in previous studies
on other languages, thus contributing to providing a useful basis for modelling
prosodic adaptation in multilingual spoken dialogue systems.

Keywords: Entrainment · Prosody · Collaborative dialogues · Human-machine
interaction · Italian

1 Introduction

In a large number of studies, it has been observed that conversational partners show the
tendency to adapt their speech over the course of the interaction. This phenomenon,
termed in different ways such as convergence (e.g. [1]), entrainment (e.g. [2]), alignment
(e.g. [3]), accomodation (e.g. [4]), adaptation (e.g. [5]), or coordination (e.g. [2]), is
widely believed to be crucial to mutual understanding and successful communication.
The Communication Accomodation Theory [6] motivates this phenomenon in terms of
its social function, as it modulates social distance among interactants. The possibility of
modelling mutual speech adaptation also in relation to human-machine interaction
would be crucial for improving naturalness of communication with spoken dialogue
systems, thus allowing users to perceive the system as a more natural and socially
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competent conversational partner (for a comprehensive overview and discussion on this
topic see [7]). Currently, instead, entrainment tends to be unidirectional, in that humans
are the ones who normally and unconsciously tend to entrain the machine – for example,
by adapting their speaking rate to that of the system [5].

Recent research lines on speech entrainment modelling have being focussed on
prosodic aspects, attempting to find evidence of prosodic adaptation between conver‐
sational partners in spoken interactions both locally (typically, at turn-exchanges) and
globally (over the entire dialogue) by measuring a number of prosodic-acoustic features.
These studies include a variety of diverse languages, thus highlighting the importance
of investigating the cross-linguistic and cross-cultural aspects involved in prosodic
adaptation, as much crucial for modelling speech entrainment in multilingual spoken
dialogue systems. Languages investigated so far include Swedish [8], varieties of
English [2, 9–11], German ([12], in this case articulation rate is the only parameter
considered), Japanese [13], Slovak [14] and recently Slovak, English, Spanish, and
Chinese in a cross-linguistic direct comparison [15], but not Italian. The present paper
represents a preliminary contribution to filling this gap.

We collected and analysed a corpus of cooperative game-based dialogues between
pairs of Italian participants and measured a number of prosodic parameters looking for
evidence of overall speech coordination at the global level of dialogue session.

2 Materials and Method

2.1 Elicited Dialogues

The interaction paradigm adopted for eliciting our Italian data is the one developed
within the PAGE project [16]. It consists of an adapted version of the Tangram Game,
a communicative task where participants play with sets of figures from the old Chinese
Tangram game, as developed by [17].

In our recording sessions, pairs of participants in a game round were given Tangram
figures according to their role in that game round, i.e. Director or Matcher. The Director
was provided with a set of four Tangram figures, one of which was marked by an arrow,
and the Matcher was given one of the figures belonging to the Director’s set. Each of
the participants could not see the partner’s figure(s), and goal of the game in each round
was to establish whether the figure given to the Matcher was the one marked by the
arrow in the Director’s set or not, by exchanging information about how figures looked
like, and so on. The players were explicitely instructed to come to that decision on the
basis of a common agreement. In order to encourage a cooperative behaviour, they were
told they both gained a score every time they chose well, and they both lost a score when
they did not. Even though normally games involve competition between players (thus
always implying a winner and a loser), we opted for a cooperative paradigm basing on
the assumption that speakers would more likely to entrain each other in a collaborative
rather than in a competitive context. The use of a cooperative interaction paradigm makes
also possible a more direct comparison with most of previous studies on prosodic adap‐
tation involving other languages, in which a similar paradigm was adopted.
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A complete Tangram Game session consists in 22 game rounds. In each round,
participants alternate their role as Director or Matcher, i.e., in the whole game dialogue
each speaker played 11 times the role of Director, and 11 times that of Matcher in total.

In our experimental setting, participants in a pair sat at desk in front of each other,
each of them wearing head-mounted professional microphones (AKG C520) connected
to a Marantz PMD 661 digital recorder. A Panasonic HC-V700 camcorder was placed
in front of each of the two participants for high quality video-recording (this was done
for planned future studies on multimodal aspects of entrainment). The parallel audio-
recording via professional microphones and digital recorder was carried out in order to
ensure high quality of acquired speech signal and a better dealing with overlapped speech
during analysis. A cardboard was inserted between the participants’ desks at a suitable
height in order to prevent seeing each other’s Tangram figures, but preserving eye
contact between players. Each recording session lasted approximately 30 min.

2.2 Speakers

Twelve informants participated in the recording sessions. They were selected according
to a number of parameters which could influence adaptation, namely age, gender, and
familiarity. Accordingly, selected subjects were all young adult females (aged 21–25),
and MA student classmates, i.e. they were familiar with each other as they had met
before participating in the game session. Also, they all came from the same geolinguistic
area (Bari district in Apulia, a southeastern region of Italy). They obtained a course credit
as reward for participating, and were all naïve to the research goal of the study.

2.3 Annotation Levels and Prosodic Parameters

All game dialogues were orthographically transcribed, basing on the coding scheme for
enriched orthographic transcription developed within the AVIP national corpus of
spoken varieties of Italian [18]. Beginning and end of each game round were also
reported in the orthographic transcriptions.

Speech signal of the twelve speakers was manually annotated along the following
levels:

• Tangram Game rounds
• InterPausal Units (where each IPU corresponds to speaker’s speech bounded by

silence longer than 100 ms)
• Words
• Syllables (trascribed in SAMPA)

All annotations were carried out manually by using Praat software tool for speech anal‐
ysis [19]. In a post-processing step, consistency of annotations was checked by means
of specifically designed and developed home-made tools, and errors were manually
corrected. In measuring prosodic entrainment, the following parameters were taken into
account and automatically extracted via Praat scripts implementation (taking IPU as
speech unit of analysis): pitch range (F0max-F0 min, Hz), pitch level (F0 median, Hz),
loudness (intensity, dB) and articulation rate (number of syll/sec).
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2.4 Measuring Overall Speech Coordination: Convergence and Synchrony

Speech entrainment can be basically defined as a phenomenon where speakers increase
similarity in their speech features over the course of their interaction. Even though such
a definition would imply that speech adaptation is a linear process, recent research has
proposed frameworks of analysis describing it as a quite complex phenomenon which
can imply a number of strategies (proximity, convergence, synchrony), and can occur
both globally (over the entire dialogue) and locally (typically, at turn-exchanges) [2,
15]. Given the preliminary nature of our study, in this paper we will focus on global
aspects of speech coordination, i.e. those referring to similarity process undergoing at
the level of the whole dialogue. In particular, we basically follow the approach proposed
by [8] and substantially drawn on by [10] in defining similarity as underlined by two
phenomena: convergence and synchrony. In particular:

Convergence is the process by which conversational partners’ speech features
become more similar over time (i.e. over the course of the interaction) until they
converge;

Synchrony implies that speakers’ speech happen to have similar patterns over time
(in [8] terms, when they “happen at the same time or work at the same speed”).

Note that since convergence and synchrony are two possible modalities of entrain‐
ment manifestation, they could but do not have to necessarily co-occur in the same
dialogue. Moreover, both convergence and synchrony can be realised on the opposite
direction as complementary manifestation of entrainment. According to Communication
Adaptation Theory [6], intra-speaker coordination dynamics can also imply divergence,
i.e. that speakers can sound more dissimilar over the course of the interaction, in this
way marking their social distance (complementary convergence or divergence [20]).
For the same reason, also anti-synchrony (or negative synchrony) can be considered as
a possible manifestation of overall speech coordination (see also [10]).

Moreover, coordination process at the global level cannot exclude that speakers can
converge by some speech features yet diverge by some others in the same interaction
(see, for example, in [8]).

As to measurements, we looked for evidence of convergence at the overall game
session level by identifying cases in which speakers mean values were more similar (or,
in case of divergence, more distant) to each other later in the dialogue. Accordingly, we
splitted each game session into two halves, i.e. a window consisting of game rounds 1–
11 vs another window including game rounds 12–22. Within each of the two windows,
we compared (paired t-tests) mean values of speaker1 vs speaker2. Mean values found
as significantly different in the first half but not significantly different in the second half
were considered as evidence for convergent entrainment (i.e. speakers becoming more
similar to each other later in the dialogue). Mean values found as not significantly
different in the first half but significantly different in the second half were considered as
evidence of complementary convergence or divergence (i.e. speakers increasing mutual
distance later in the dialogue). Cases other from these two (mean values either signifi‐
cantly different or not different in both first and second halves of the sessions) were not
taken as evidence for convergence or divergence.
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In measuring synchrony, we followed [8] in using Pearson’s correlation for capturing
the dynamicity involved in the overall coordination process. We correlated speaker1
with speaker2 mean values, at the game round level, over the whole dialogue session.
We assumed positive correlation as evidence of synchrony, and negative correlation as
evidence of anti-synchrony, in the terms described above in this section.

3 Results

Table 1 shows results of speaker1-speaker2 mean values comparison, for each prosodic
parameter, within the first vs second halves of each game-based dialogue session.
According to the criterion described above, (two-tailed) t-tests show statistical evidence
of convergence/divergence in four out of our six dialogues. In particular, speakers in
dialogue CD show to use F0 voice features for manifesting entrainment: they converge
in pitch range and diverge in pitch level. Speakers in dialogue PZ become more similar
in their voice loudness in the second part of the dialogue (convergence), whereas
speakers in dialogue RC show complementary entrainment by significantly diverging
in their articulation rate in the second half of the game session. Finally, speakers in
dialogue DS converge in their articulation rate, and diverge in the loudness of their
voices. As to participant pairs in the two game sessions PP and BV, instead, our meas‐
urements do not provide statistical evidence of prosodic convergence (or divergence).

As to synchrony, results in Table 2 show that significant positive correlations
between speaker pairs in game sessions were found in five out of our six dialogues, each
for a variable number of prosodic parameters. In particular, pitch range appears the most
widely used prosodic cue across dialogue partners for manifesting synchrony (dialogues
RC, PP, and DS), followed by articulation rate (dialogues PZ and DS) and loudness
(only dialogue PP). Among these, we registered one case of anti-synchrony, that for
pitch level in dialogue DS.

Participants in the game session BV – one of the two dialogues for which no statistical
evidence of convergence has been recorded on the basis of our measurements – do not
appear to manifest overall coordination by synchronising their speech either, for any of
the prosodic parameters considered.

By combining results on convergence with those on synchrony, it can be noted that
speakers in each dialogue use different strategies for cueing prosodic entrainment. For
example, in dialogues PZ, RC and DS conversational partners both converge (or diverge)
and synchronise their speech through a variable number of prosodic parameters, whereas
in dialogue CD conversational partners converge without synchronising, and in dialogue
PP they synchronise without converging. As to the prosodic parameters involved, only
in dialogue DS speech coordination is consistently realised between speakers via both
synchronising and converging by the same prosodic feature – in this case, articulation
rate. In all the remaining dialogues where both similarity processes are combined,
prosodic parameters involved are diverse.

Finally, conversational partners in game session BV do not appear to display overall
speech coordination by any of the two modalities investigated in this study, namely
convergence and synchrony. This result does not necessarily imply that speakers in this
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case did not entrain at all, but that they possibly coordinated their speech at a local level
(for example, at turn-exchanges), and/or that they used speech (or other linguistic)
parameters different from those measured in this study.

Table 1. Comparison of speaker1 vs speaker2 mean values in the first vs second halves of each
dialogue (two-tailed t-test, t values only when significant (*=p<.05, **=p<.01, ***=p<.001).
Light gray shaded boxes indicate convergence, dark gray shaded ones indicate divergence.
Dialogue sessions are identified by participants’ initial names (e.g. CD = game session run by
participants C and D)

D
ia

lo
gu

e

Convergence/divergence
speaker1-speaker2 mean values comparison, 1 half vs 2 half of dialogue

Art. rate Pitch range Pitch level Loudness

1st half 2nd half 1st half 2nd half 1st half 2nd half 1st half 2nd half

CD n.s. n.s 2.18* n.s. n.s. 4.18*** 2.29* 2.58*
PZ n.s. n.s. n.s. n.s. -10.46*** -6.71*** -3.52** n.s.
RC n.s. -2.69* n.s. n.s. n.s. n.s. 4.88*** 4.89***
PP n.s. n.s. n.s. n.s. -8.27*** -4.94*** 4.66*** 7.10***
DS 3.21** n.s. 2.14* 2.16* n.s. n.s. n.s. 2.16*
BV -3.73** -3.97*** -2.33* -2.34* -6.42*** -9.35*** 6.63*** 8.75***

Table 2. Pearson’s correlation (r values) of speaker1 with speaker2 mean values (at the game
round level) in the whole dialogue session (*=p<.10, **=p<.05)

Dialogue Synchrony
Art. rate Pitch range Pitch level Loudness

CD .034 .185 −.120 −.295
PZ .465** −.204 .177 −.053
RC −.098 −.078 .401* .047
PP −.097 −.217 .452** .425**
DS .523** .191 −.381* −.071
BV .053 −.346 .048 .219

4 Discussion and Conclusions

Results of this explorative study on prosodic entrainment between Italian speakers
involved in a collaborative game-based dialogue indicate that, at the global level of the
entire dialogue session, conversational partners tend to coordinate their speech through
a variable number of prosodic parameters. Modalities and direction of the overall speech
coordination process may also vary, i.e. convergence and synchrony can or cannot co-
occur (yet in our data they do in most of the cases), and complementary convergence
(divergence) and anti-synchrony can also characterise the process (as accounted for by
social-oriented theories of adaptation like Communication Accomodation Theory [6]).
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Strategies and manifestation of prosodic entrainment vary from dialogue to dialogue
in our data, and this result simply confirms widely-acknowledged accounts of adaptation
phenomena as being very complex since they include a number of interpersonal and
social factors (for a review, see for example [21]), which we have planned to take into
account in our future research. Such a complex picture of different strategies and
prosodic parameters involved in speech entrainment as derived by our preliminary study
is consistent with that offered by the literature on prosodic adaptation as briefly sketched
in the introduction.

As to prosodic parameters involved in speech entrainment, our results on Italian data
indicate that vocal pitch features, articulation rate and loudness can be all involved in
the overall speech coordination process between native speakers of that language. These
outcomes are also generally in line with those obtained in the other languages investi‐
gated so far (e.g. in [2, 11, 14, 15]). With this respect, this preliminary work contributes
to providing a common basis not only for accounting for cross-linguistic and cross-
cultural aspects of speech coordination, but also for modelling prosodic entrainment in
multilingual spoken dialogue systems.
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Abstract. This paper presents a new method of improving microphone array
directivity in the low-frequency band. The method is based on a sub-band
processing technique. We also evaluate the parameters and characteristics of the
method and consider some of its practical implementations.

Keywords: Microphone array � Sub-band processing � Directivity pattern �
Directivity index

1 Introduction

It is well known that conventional microphone arrays (MA) for speech processing have
poor directivity in the low-frequency band (lower than 1000 Hz) [1–4]. At the same
time, it is known that this frequency band is important for speech processing systems,
since a large part of both speech signal and noise is concentrated in this band. There are
two basic ways to solve this problem: (1) applying different superdirectivity algorithms
[2–4] and (2) increasing the size of the MA by using the harmonically nested micro-
phone subarrays technique with sub-band processing [3, 5].

However, superdirectivity algorithms perform badly in non-stationary noise envi-
ronments, are very sensitive to noise (or signal + noise) covariance matrix estimation
errors [6], as well as to microphone gain mismatch [7], etc., which limits their use in
speech signal processing.

On the other hand, non-adaptive nested microphone subarrays with sub-band
processing show good results, as noted in [3, 5]. A typical scheme of microphone
layout for a MA with 9 microphones and 3 subarrays is described in detail in [5]. Here
we note that in such schemes all subarrays have the same numbers of microphones but
different distances between microphones, and improvement of directivity in the
low-frequency (LF) band is achieved by increasing the length of the MA while keeping
the total number of microphones constant. In the present paper we propose a different
approach.
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2 The Proposed Method

2.1 The Basic Idea

Typically, the distance d between microphones in a discrete MA is chosen based on the
absence of side lobes with a large amplitude [1]:

d\
c

2fmax
; ð1Þ

where: c is speed of sound in the air (343.1 m/s for 20 oC) and fmax is the maximum
frequency of the operating range of the MA in Hz. Let us denote the total number of
microphones in the MA as N, and the aperture length of the MA as L: L ¼ dðN � 1Þ.

It is known that if (1) is satisfied, further increasing N with a fixed L (i.e. decreasing d)
does not lead to directivity improvement. On the other hand, (1) shows that for the low
frequency range it is not necessarily to use all MA microphones. We can take, for
example, only the edge microphones (the 0-th and N � 1). It turns out that for the
low-frequency range, we obtain improved directivity even in comparison with the case
where all MA microphones are used.

Let us consider a standard equidistant linear MA with the number of microphones
N ¼ 9 and the distance between microphones d ¼ 0:05 m. Consequently, the aperture
length L of the MA is equal to: L ¼ dðN � 1Þ ¼ 0:4 m. The normalized horizontal
amplitude directivity pattern D f ;ud ;uð Þ of such an MA (for far-field assumption) can
be obtained as [1]:

Dðf ;ud;uÞ ¼
1
N

XN�1

n¼0
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where: f is the signal frequency in Hz; u is the direction of arrival; ud is the desired
look direction and ‘ �j j’ denotes the “magnitude of complex value” operator.

The directivity pattern (DP), calculated using (2), for MA with N ¼ 9, d ¼ 0:05,
ud ¼ 0 and f ¼ 428:87 Hz is shown in Fig. 1, solid line.

It is clear that the MA has poor directivity for the given f . At the same time, if we
take only the edge microphones (0-th and 8-th, d0;8 ¼ L ¼ 0:4) and calculate the DP
for the same f for this 2-microphone sub-array, we get the dashed curve shown in
Fig. 1, i.e. we get better DP.

It seems strange, but when signal frequency is lower than some threshold level, it is
better to use the edge microphones rather than all microphones in the MA.

2.2 Detailed Study of the Method

In fact there is nothing strange about the above mentioned result. It is known that for a
dual-microphone array with a 0.4 m distance between microphones, the first zeroes in
the DP for u ¼ �90 can be calculated as: k=2 ¼ 0:4 (where k is the wavelength);
which implies that f ¼ c=0:8 ¼ 343:1=0:8 ¼ 428:875 Hz. At the same time, for an
MA with a continuous aperture (and the same length) we will have the condition of first
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zeroes at u ¼ �90 as: k ¼ 0:4 [1] i.e. the frequency in this case is two times higher.
Frequency for a discrete MA with N ¼ 9 occupies an intermediate position.

Now consider the directivity index (DI), Gðf ;udÞ of a linear MA. Gðf ;udÞ char-
acterizes the directivity of the MA: the greater G f ;udð Þ, the better the directivity.
Without loss of generality we can calculate it in Cartesian coordinates, using a
single-dimensional horizontal DP (as in Fig. 1) and �90�u� 90 in degrees. In this
case Gðf ;udÞ can be obtained as:

Gðf ;udÞ ¼
180

R 90
�90 Dðf ;ud ;uÞj j2cosðuÞdu

ð3Þ

Figure 2 demonstrates the directivity index Gðf ;udÞ for ud ¼ 0 and for the initial
MA (N ¼ 9, d ¼ 0:05 m); for the MA created using two microphones on the edges

Fig. 1. Directivity patterns, calculated using all 9 (solid line) and 2 edge (dashed line)
microphones of the MA for f ¼ 428:87 Hz.

Fig. 2. Directivity index as function of signal frequency for three MA’s with the same length
and different number of microphones.
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(N ¼ 2, d ¼ 0:4 m) and for the MA created using three (the central and the edges)
microphones, i.e. N ¼ 3, d ¼ 0:2 m.

It can be seen that up to 600 Hz the MA with N ¼ 2 has the best directivity.
The MA with N ¼ 3 has the best directivity in the interval 600–1300 Hz. The MA with
N ¼ 9 works best only when f [ 1300 Hz. It should also be noted that the difference in
Gðf ;/dÞ for N ¼ 3 and N ¼ 9 is not so large, so we will further focus only on the MA
with N ¼ 2.

Maximizing (3) for N ¼ 2, d ¼ 0:4 and ud ¼ 0 we find that Gðf ;udÞ has a
maximum when f ¼ 523 Hz. The corresponding DP as well as the DP of the initial
MA with N ¼ 9 are shown in Fig. 3.

Fig. 3. Directivity patterns, calculated using all 9 (solid line) and 2 edge (dashed line)
microphones of the MA for /d ¼ 0, f ¼ 523 Hz.

Fig. 4. Directivity patterns, calculated using all 9 (solid line) and 2 edge (dashed line)
microphones of the MA for /d ¼ 0, f ¼ 654:54 Hz.
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Figure 3 demonstrates the advantages of using the two microphone scheme instead
of the total number of microphones in the LF band. Further increase of signal frequency
leads to the point of intersection of Gðf ;udÞ for N ¼ 2 and N ¼ 9: f ¼ 654:54 Hz. The
corresponding DPs are shown in Fig. 4.

In our opinion, Fig. 4. shows performance deterioration for N ¼ 2, as the side-lobe
level of the DP increases rapidly. Figures 3 and 4 suggest that the boundary frequency
between using 2 and 9 microphones should be chosen in the interval [523, 654] Hz.

2.3 Dependence on the Look Direction

The above suggestions were obtained when the look direction was perpendicular to the
line of the microphones, i.e. for ud ¼ 0. In real life we often have ud 6¼ 0 and it is clear
that directivity patterns, directivity indexes and, consequently, boundary frequencies
depend on the ud . These dependences for the MA with L ¼ 0:4 m are shown in Fig. 5.

Fig. 5. Three basic frequencies as functions of the look direction /d .

Fig. 6. Flow-chart of the MA with the proposed method.
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It can be seen that all frequencies decrease when ud increases. So the boundary
frequency of the filters should be controlled depending on the ud . We suggest choosing
Max DI frequency (solid curve on Fig. 5) or the arithmetical mean between Max DI
frequency and the frequency at which the 2 and 9 mics DI cross.

The structure of the MA with the proposed method is shown in Fig. 6.
The first two blocks of the chart are well-known: they are the short time Fourier

transform (Block 1) that transforms input signals xiðtÞ; i ¼ 0;N � 1 into the frequency
domain, and the frequency-domain delay (Block 2) where all signals are delayed by
multiplication by the complex steering vector Dmðf ;udÞ [9] to move the MA beam to
the look direction. After the delay, all signals Xiðf ;udÞ, i ¼ 0;N � 1 are summed and
normalized to 1=N in Block 3. At the same time the two signals X0ðf ;udÞ and
XN�1ðf ;udÞ are summed and normalized to 1=2 in Block 4. Then both sums are
filtered in Block 5 where the cut-off frequency is calculated according to the look
direction ud (Fig. 5). Finally, both filtered sums are added together, after which inverse
Fourier transform is performed for the resulting signal.

As a result, we have the following: high-frequency components of the input signal
are passed to the MA output through Block 3 and the high-pass filter (all MA
microphones work); at the same time, the LF components of the input signal are passed
to the MA input through Block 4 and the low-pass filter, i.e. only X0ðf ;udÞ and
XN�1ðf ;udÞ are used, which gives us better MA directivity in the LF band.

3 Conclusion

In this paper we describe a new method for improving MA directivity in the
low-frequency band. This method can be useful for speech processing in MAs in
different areas, for example in speaker verification [8], in multimodal systems [9], etc.

Note that it is easy to implement a 3-microphones scheme (two microphones on the
edges and the central one) in the flowchart in Fig. 6. In order to do this, it is necessary
to add the third sum block and the third band-pass filter to Block 5. However, the
improvement will not be significant (see Fig. 2).

It is clear that the proposed method can be used for LF direction improvement not
only in equidistant MAs but in all MAs that include a set of microphones, even for
nested microphone subarrays described in [5].

The method can also be used in planar MAs. For circular planar MAs, for example,
the microphone ring with the highest diameter is the analog of two microphones on the
edges for linear MAs. The proposed scheme may be improved by using adaptive
superdirectivity algorithms, for example, those presented in [10]. This will further
strengthen the MA directivity in the LF band, but will cause a shift in boundary
frequency. This modification of the method remains to be studied in future work.
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Federation, Grant 074-U01.
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Abstract. The study is aimed at detecting stable wording patterns of the
utterances with directive function in Russian, and based on the material of
speech corpus containing long-term audio recordings of everyday spoken
communication. The lemmatized and morphologically annotated mini-corpus in
question includes 2030 utterances with 2nd person Sg and Pl verb forms in
imperative mood and consists of 11075 word forms. The research involves the
data on frequencies of (co-)occurrences of word forms, lemmas, parts of speech
within the mini-corpus.
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1 Introduction

This paper presents some results of the description of imperative utterances in the
corpus of Russian everyday communication «One day of speech» (ORD). By now the
ORD includes transcripts and multi-level linguistic annotation for audio recordings
representing daily speech by 127 informants and their numerous interlocutors. Creation
principles of the corpus are described in detail in [1].

The main goal of the ORD corpus creation is to fix Russian spontaneous speech in
natural communicative situations, and to get authentic data from everyday speech and
spontaneous interaction. Face-to-face dialogues are the main part of the corpus. The
linguistic material of such type is especially well suited for the studies in real linguistic
behavior, in particular, for the analysis of the ways of “doing things with words” in
Austin’s sense [2].

2 Illocutionary Force Indicating Devices or Dialogue
Act Cues

One of the central challenges of the corpus pragmatics is the dialogue acts annota-
tion. «Dialogue act» (DA) loosely means a «speech act used in dialogue» [3]. The
important question is: what kind of search approaches can be used in a corpus for
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identification of given linguistic expressions as utterances with certain pragmatic
meaning?

There are the features for marking the illocutionary force of utterances, the so called
«illocutionary force indicating devices», IFIDs. According to [4] IFID is «any element
of a natural language which can be literally used to indicate that an utterance of a
sentence containing that element has a certain illocutionary force or range of illocu-
tionary forces». We can use standard IFIDs as search strings. There are lexical, mor-
phosyntactic and prosodic IFIDs, such as lexemes, word order, intonation [5].
However, there are speech acts, which ostensibly «do not appear in routinized forms or
in reliable combination with IFIDs», and directive speech acts in English fall into this
category [6].

As reported by D. Jurafsky, there are lexical, syntactic, prosodic, and discourse
cues for dialogue act identification, including in particular lexical cues, so called ‘cue
phrases’ [7]. The inventory of cross-linguistically common lexical or syntactic cues for
imperatives (commands) includes particles, verbal clitics, special verb morphology,
subject omitting etc. [7, 8]. In Russian we can distinguish several types of devices
which serve to indicate the type of dialogue act, first of all, it is a grammatical mood.

3 Types of Form/Function Correspondence in Russian Verb
Utterances

As A. Aikhenvald explains, «imperative mood is the commonest way of expressing
commands in languages of the world» [9]. In terms of theory of speech acts, commands
belong to the group of directives [10]. Using directive, the speaker tries to cause the
hearer to do or not to do something. Russian has a special morphological imperative
forms, and the imperative occurs in its prototypical directive function above all.

Imperative forms also can occur in ‘transposed’ uses, «which are not directive
in the prototypical sense but only express directivity in a very weakened form» [11].
E. Fortuin in [12] speaks about

(1) necessitive use: Bce yшли, a я cиди дoмa [13, §1948]
all gone but I-Nom sit-Imp.2Sg at home
‘Everybody has gone, but I have to stay at home’

(2) narrative use: Mы вoзьми и нaпиши нa caйт пpeзидeнтy [14]
we-Nom take-Imp.2Sg and write-Imp.2Sg to the website to the president
‘We suddenly wrote to the website to the president’

(3) optative use: Haгpaди вac гocпoдь зa вaшy дoбpoдeтeль [12, 162]
reward-Imp.2Sg you-Acc god-Nom for your goodness
‘May God reward you for your goodness’

(4) conditional use: Бyдь я пoмoлoжe, и пoзвoлилa бы кoмплeкция, caм бы пoлeз
[12, 177]

be-Imp.2Sg I-Nom younger and allowed Irr bodily constitution, self Irr climb
‘Had I been younger, and had my bodily constitution allowed it, I would have
climbed myself’

(5) concessive use: B кaкyю cтopoнy ни гляди, выxoдa нeт [12, 216]
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in which side not look-Imp.2Sg escape not
‘No matter in which direction you look, there is no way out’.

There are semantic-syntactic features, which can provide identification of directive
versus non-directive uses of imperative. Some relevant features are: aspect, possibility
of expressing subject, occurrence of the suffix -тe, presence of particle -кa, presence of
particle бы, word order [12]. Thus, we can involve the information about
co-occurrences of imperative forms for the semantic qualification of the imperative
utterances.

In Russian, commands also can be regularly expressed by the non-imperative
verb forms, by using: (1) present tense forms B эти игpы ты бoльшe нe игpaeшь
‘Don’t play these games any more’, (2) future tense forms Пoйдёшь co мнoй ‘Go with
me’, (3) past tense forms Пoшёл oтcюдa ‘Get off’, (4) infinitive Cтoять ‘Stay put’,
‘Freeze!’, (5) irrealis Cxoдил бы ты в мaгaзин ‘Maybe you should go to the shop’.1

N. Stojnova in the paper devoted to imperative uses of indicative present and future
forms in Russian [16] indicates, that there are some formal features, which can mark
pragmatic similarity of the non-imperative utterance to prototypical directive use of the
imperative. So, there are certain patterns of non-imperative commands formation. The
features she mentions are as follows: presence of the subjective pronouns ты, вы etc.,
occurrence with particles of the type нy-кa, aspect.

Thus, the three possibilities of form/function correspondence for the verb utter-
ances have been identified: directive imperatives, non-directive imperatives, and non-
imperative directives. Certain morphological, morpho-syntactic and lexical features can
indicate pragmatic meaning of the utterance created on the basis of imperative or
non-imperative verb form.

4 Study Design, Material and Method

The actual study is aimed at detecting stable wording patterns of the utterances with
directive function, and detection of formal markers, which can indicate pragmatic
meaning of a directive.

The subcorpus used for this research encompasses mainly face-to-face dialogues
between 42 informants and their interlocutors which include 240000 word forms. The
paper concentrates on utterances in the imperative mood with the verb in the second
person Sg or Pl. All utterances of this kind were extracted from a subcorpus. The
lemmatized and morphologically annotated mini-corpus includes 2030 imperative
utterances and consists of 11075 word forms. So, the mini-corpus here under analysis is
composed of the imperative utterances only. The mini-corpus in question is small, but
highly homogeneous: it consists of the utterances with prototypical imperative forms
mainly in prototypical directive function.

As D. Jurafsky indicates, the simplest way to build a probabilistic model for
detection of lexical and phrasal cues (resp. lexical and morphosyntactic IFIDs)

1 For details, see [15]. In the listing the so called «whimperatives» and other indirect ways
of expressing commands, as well as verbless directives are not taken into account.
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«is simply to look at which words and phrases occur more often in one dialogue act
than another» [7, 597]. N-gram model is used successfully in practical implementations
of dialogue act detection, e.g. yes-no-questions in English often have bigram sequences
of the type do you, are you, was he (or trigram sequences of the type <start> do you)
[7, 17].2

The actual research is based on the information about occurrences of word forms,
lemmas, parts of speech, inflectional forms, and about co-occurrences of word forms,
parts of speech, inflectional forms within the exploratory subcorpus of directives. Thus,
frequency-ordered lists of the unigrams, lemmas, POSs, some forms of inflection, as
well as lists of most common bigrams with an imperative component are considered.

An utterance in the actual research usually is a fragment of the text transcript
between two marks of phrasal division ‘//’, ‘?’ et al. However, in the mini-corpus there
are many single-word utterances of the type cлyшaй, пocлyшaй ‘listen’, cмoтpи
‘look’, пoдoжди ‘wait’. E.g., the following phrase is divided by two parts – the part
consisting of the attention getting device, the imperative cлyшaй, and subsequent
statement: Cлyшaй в бyфeтe я нe бepy cocиcки // ‘Listen at the lunchroom I don’t take
the sausages’.

5 Results and Discussion

Firstly, the data on frequency distribution of POS classes was obtained.3 The most
frequent parts of speech in the mini-corpus are: the verb, the particle, the noun, the
pronoun. It is worth noting the high position of the particle in the list (Table 1).

Secondly, the list of most commonly used colligations (including colligations with
verbs in the imperative mood in the second person Sg or Pl) was created. The list is
based on bigram co-occurrence data of tags of POS classes. Table 2 lists top ten
colligations. The data demonstrate in particular a high degree of co-occurrence between
imperative forms and particles (which use in front of the verb), another imperative
forms, and nouns (which usually use in front of the verb).

Thirdly, the lists of most frequent unigrams and most frequent lemmas were cre-
ated. The stopword list at present includes prepositions only, and does not include
particles, conjunctions, pronouns etc. The stop words are в, нa, y, c, к, пo etc.

The list of top thirty most frequent unigrams includes: PART нy ‘well’ (#332),
NEG PART нe (#278), PART вoт (#269), imperative which usually functions as an
attention-getting device cлyшaй ‘listen-Imp.2Sg’(#228), SPRO ты ‘you-Nom.Sg’

2 See [18] for a detailed overview of the approaches to dialogue act recognition, based on
intra-utterance features or on inter-utterance context.

3 Morphological annotation is carried out using the analyzer MyStem, developed for Russian by
I. Segalovich and V. Titov at «Yandex». The list of POS-tags includes: S = noun, A = adjective,
NUM = numeral, ANUM = numeral adjective, V = verb, ADV = adverb, PRAEDIC = predicative,
SPRO = pronoun, APRO = adjectival pronoun, ADVPRO = adverbial pronoun, PR = preposition,
CONJ = conjunction, PART = particle, INTJ = interjection, СOM = part of compound word;
«foreign» means a word of a foreign language. The abbreviations NEG = negative (negation),
IRR = irrealis are used in the glosses above.
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(#200), CONJ и ‘and’ (#195), SPRO я ‘I-Nom’ (#185), CONJ, INTJ or PART a (#164),
PART or CONJ дa (#148), SPRO or CONJ чтo (#144), PART, APRO or CONJ тaк
(#130), SPRO, PART or APRO этo (#124), SPRO or APRO вce (#115), PART or
ADVPRO тaм (#114), V cмoтpи ‘look-Imp.2Sg’ (#105), SPRO мнe, ‘I-Dat’, ‘to me’
(#103), V пoдoжди ‘wait-Imp.2Sg’ (#103), PART or V дaвaй ‘let’s’, ‘give-Imp.2Sg’
(#95), INTJ э (#94), SPRO вы ‘you-Nom.Pl’ (#94), PART пoжaлyйcтa ‘please’ (#87),
ADVPRO, PART or CONJ кaк (#70), ADV ceйчac ‘now’(#69), SPRO мeня ‘I-Gen
(Acc)’ (#57), PART, SPRO or CONJ тo (#56), V иди ‘go- Imp.2Sg’(#55), V cмoт-
pитe ‘look-Imp.2Pl’ (#49), PART нeт (#47), PART or ADV eщe (#44), oн ‘he-Nom’
(#44).

The data obtained show a predominant use of a range of particles including нy,
вoт, тaк, дaвaй. The presence of most common polite formula please should be noted
and the absence of the post verbal particle -ka in the list of top 30 unigrams. The
subject pronoun я ‘I’ appears in the occurrences of the type я и гoвopю, я тeбe
гoвopю, я жe гoвopю ‘I’m saying’, я cкaзaлa ‘I said’ et al., see the following example:
нe лeзь к дeвoчкe/я тeбe/дecять paз yжe cкaзaлa // ‘Do not bother the girl/I told you
ten times already’.

As it was expected, the frequency list of verb forms shows a predominance of
imperative. However, among frequently occurring verb forms there are two indicative

Table 1. Frequency distribution of POS classes

POS Count Percent POS Count Percent

V 3142 28,37 APRO 308 2,78
PART 1752 15,82 A 239 2,16
S 1574 14,21 INTJ 209 1,89
SPRO 1418 12,80 NUM 120 1,08
PR 650 5,87 ANUM 45 0,40
ADV 641 5,79 Foreign 2 0,02
CONJ 603 5,45 COM 2 0,02
ADVPRO 370 3,34 Total 11075 100

Table 2. Commonly used colligations

Colligation Count Illustration Translation

PART + V-Imp-2 589 нy cмoтpи Well look
V-Imp-2 + V-Imp-2 443 иди иди Go go
S + V-Imp-2 408 Maш бepи Masha-Voc take
V-Imp-2 + PART 405 cлyшaй нy Listen well
PART + PART 328 нy вoт Well
V-Imp-2 + SPRO 313 пoдoжди ты Wait you-Sg
V-Imp-2 + S 311 дaй лoжкy Give a spoon
PR + S 300 в xoлoдильник In the fridge
S + PART 268 Кoля нy Kolya well
SPRO + V 266 я гoвopю I say
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forms: the one mentioned above гoвopю ‘I’m saying’, and xoчeшь, which usually
occurs in the form, as in the utterance xoчeшь нoчyй/xoчeшь yeзжaй// ‘You can stay if
you want or leave if you want’.

The most frequent lemmas that have inflected forms are represented in Table 3
below.

The lemma я ‘I’ has the leading position due to the large amount of entries of the
type дaй мнe ‘give it to me’, пoзвoни мнe ‘call me’, cкaжи мнe ‘tell me’, пocлyшaй
мeня ‘listen to me’ etc. Lemmas ты, вы represent subjective pronouns (those that
serve as non-omitted subjects) above all.

Fourthly, the list of bigram sequences on word forms was created. Table 4 lists 20
most frequent bigrams with verbs in the second person Sg or Pl in the data. As it can be
seen, sequences with particles predominate, while sequences with content words
encompass only insignificant part of the list.4

Whereas the most frequent bigrams may be considered as collocation candidates,
the values of t-score for the most frequent two-word sequences were counted. Some
sequences with relatively high t-score are not fully compositional, indeed. Thus,
гoвopить with negation (t-score 3,99) is used in the utterances of the type и нe гoвopи
‘don’t even say this’ that usually express agreement with the other communicant: aгa//
вoт имeннo//нe гoвopи ‘yes//sure//don’t even say this’.

Table 3. Top-thirty most frequent lemmas

Rank Lemma Count Rank Lemma Count

1 я ‘I’ 337 15 идти ‘go’ 64
2 ты ‘you-Sg’ 267 16 извинить ‘excuse’ 62
3 cлyшaть ‘listen’ 252 17 мы ‘we’ 57
4 cмoтpeть ‘look’ 155 17 дaвaй ‘let’s’ 57
5 вы ‘you-Pl’ 151 18 oни ‘they’ 50
6 этo ‘it’ 133 18 гoвopить ‘say’ 50
7 быть ‘be’ 127 19 дaвaть ‘give’ 49
8 пoдoждaть ‘wait’ 118 20 взять ‘take’ 37
9 oн ‘he’ 106 21 дeлaть ‘do’ 36
10 вce ‘everyone’ 103 22 тaкoй ‘such’ 33
11 cкaзaть ‘say’ 99 23 знaть ‘know’ 30
12 oнa ‘she’ 82 23 дepжaть ‘hold’ 30
13 пocмoтpeть ‘look’ 67 23 xoтeть ‘want’ 30
14 дaть ‘give’ 65 24 мoчь ‘can’ 29
14 этoт ‘this’ 65 25 нaпиcaть ‘write’ 28

4 The sequences слушай слушай ‘listen listen’(#148), подожди подожди ‘wait wait’(#33) and
слушайте слушайте ‘listen-Pl listen-Pl’(#17) are not under consideration, as their presence in the
data is caused by the multiplicity of single-word utterances слушай, слушайте, подожди.

496 O. Blinova



6 Conclusion

The results of the study confirm the significant role of «small words» in wording of the
utterances with imperatives in directive function. Thus, most frequent parts of speech in
the mini-corpus of directives are the verb and the particle; the most frequent unigrams
are the particles нy, нe, вoт; the sequences with particles predominate in the list of
most frequent bigram sequences. By now it is clear that the features, which can indicate
pragmatic meaning of a directive in Russian, are the colligations of the type нy +
V-Imp-2, вoт + V-Imp-2, пoжaлyйcтa + V-Imp-2.

Imperative forms in ‘transposed’ uses can hardly demonstrate such sequential
patterns. Thus, the incorporation of пoжaлyйcтa ‘please’ in all types of ‘transposed’
uses looks equally unacceptable, cf.: *Bce yшли a я дoмa пoжaлyйcтa cиди, *Mы
пoжaлyйcтa вoзьми и нaпиши <…> etc.5 Combinations with most common particles
нy and вoт ‘well’ seem to be acceptable to varying degrees, cf.: *Bce yшли, a я нy
cиди дoмa, but Bce yшли a я вoт cиди дoмa. However, these findings need to be
verified with the use of corpus material. It is also worth noting that we do not know,
whether the ‘transposed’ uses occur in the colloquial speech, or in the fiction texts and
academic grammars only. Consequently, the directions of further study are: the
improvement of using n-gram model due to addition of the position numbering, and the
corpus study of ‘transposed’ uses of imperative forms.

Acknowledgement. The research is supported by the Russian Science Foundation (RSF),
project #14-18-02070 «Everyday Russian Language in Different Social Groups».

Table 4. Most frequent bigram sequences on word forms

2-gram Count 2-gram Count

нe гoвopи ‘don’t say’ 16 нy cлyшaй ‘well listen-Sg’ 6
нy cмoтpи ‘well look-Sg’ 15 нy cмoтpитe ‘well look-Pl’ 6
вoт cмoтpи ‘here look-Sg’ 15 дaй eй ‘give-Sg it to her’ 6
ceйчac пoдoжди ‘now, wait-Sg (just a
minute)’

11 иди иди ‘go-Sg go-Sg’ 6

cлyшaй нy ‘listen-Sg well’ 11 извини мeня ‘excuse-Sg me’ 6
вoт cмoтpитe ‘here look-Pl’ 9 нe лeзь‘don’t meddle’ 5
иди cюдa ‘come-Sg here’ 9 нy пocмoтpи ‘well look-Sg’ 5
cкaжитe пoжaлyйcтa ‘tell-Pl
please’

9 нy пoпpoбyй ‘well try-Sg’ 5

cкaжитe a ‘tell-Pl me’ 8 нy paccкaжи ‘well tell-Sg’ 5
нy пoдoжди ‘well wait-Sg’ 7 вы пocмoтpитe ‘have-Pl a

look at it’
5

5 The asterisk marks unacceptable sentences.
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Abstract. The paper proposes the results of the comparative auditory-
perceptual and visual-perceptual analyses of Russian, English, Spanish
and Tatar experimental samples representing the emotional-modal com-
plex aggression. It describes statistically valid differences between audi-
tory and visual types of perception of aggressive (physical and verbal)
behavior, influenced by such factors as emotional-modal state of a recip-
ient and language of communication.
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1 Introduction

Methodology of the present research bases on the works in pragmaphonetics
and forensic linguistics on the material of German and Russian texts/discourses
[7,9–13]. The researchers substantiate the necessity of complex analysis of verbal
and non-linguistic (extra- and paralinguistic) speech communication parameters,
affirming that auditory and visual image processing in perception of speech com-
munication realizes in a complimentary regime [13, p. 607]. Similar methodology
we find, e.g. in the investigation of visual and verbal perception (not evaluating
emotional state of a recipient) by Kharkwal and Stromswold [4].

At the same time, the same emotional-modal state of a communicant or the
emotional background of communication can be perceived differently depending
on the situation and the current emotional-modal state of a recipient (see, e.g.
[1,2,15]). Possible implementation of the methodology based on evaluation of
visual and acoustic types of perception in correlation with the emotion estimation
in real-life situations are described in [14].

2 Method and Procedure

The aim of the research is to reveal relations between auditory and visual types
of perception in assessment of the emotional-modal state of an exterior com-
municant. We try to clarify, how the changes in the emotional-modal state of

c© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 499–506, 2016.
DOI: 10.1007/978-3-319-43958-7 60



500 R. Potapova and L. Komalova

a recipient correlate with the changes in the perception of communicants nega-
tive emotional-modal states, classified by the recipient as aggressive behavior, in
native language (Russian), foreign language the recipient studies (English) and
in unknown language (Spanish, Tatar). We also intend to specify the correlation
between auditory and visual perception in the system of multimodal perception
of emotional-modal states of a speaker.

Hypothesis 1: Current emotional-modal state of a recipient has an influ-
ence upon the assessment of the current emotional-modal state of another
communicant.

Hypothesis 2: In conditions of one-channel perception, in spite of the language
of communication, a recipient tends to rely more on the visual type of perception
than on the auditory one.

27 native Russian speakers studying English, but unacquainted with Spanish
and Tatar languages (22 female and 5 male; 19–22 years old), participated in
the research. They analyzed 48 samples (identical 24 speech utterances and 24
sound-tracks representing the scenes of physical and verbal aggressive behavior)
in Russian, English, Spanish and Tatar languages (time duration of the samples
being from 25 s to 2 min., performed by male and female informants).

Before the analysis all the subjects went through a psychological test (by
A. Uesman and D. Ricks method) [3, p. 39–40] determining their current
emotional-modal state (EMS). A total point of three scales (composure - anxiety;
exultant mood - depression; self-confidence - feeling of helplessness) constitutes
current EMS index. According to the test results, the subjects were divided in
three groups:

– with low current EMS (dominant indices: anxiety, tiredness, depression, feeling
of helplessness);

– with higher current EMS (calmness, vitality, vigor, exultant mood, self-
confidence);

– with neutral current EMS (average points in all scales).

The research was carried out in two stages.1 At the first stage the subjects
analyzed video samples; at the second audio samples. A special questionnaire
included the following tasks:

– to determine the quality of the dominant emotional background of communi-
cation: (a) neutral background, (b) positive (friendly, joyful, cheerful commu-
nication), (c) negative (aggressive, angry, malicious communication);

– to point out the name of the dominant emotional/emotional-modal state of
the communicant(s);

– to indicate the intensity of communication emotionality according to the scale
from 0 to 10 points, where 0–3 points corresponds with the low emotionality
of communication, 4–6 means medium intensity of emotionality, 7–10 means
high emotionality;

– to determine, what means the communicants use mostly to create the domi-
nant emotional background of communication:

1 Detailed results of one channel auditory-perceptual recognition of aggressive speech
behavior see in [5,8].
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• at the first stage of the experiment one should choose one of the following
parameters: (a) mimics, (b) gestures, (c) body movement, (d) distance
between the communicants (proxemics), (e) all the mentioned parameters
together in relatively equal extend;

• at the second stage the subjects should choose one of the following para-
meters: (a) intonation (speech melodic contours, rhythm, tempo, pauses),
(b) verbal means (semantics, vocabulary, grammar, syntax, stylistics),
(c) all the mentioned parameters together in relatively equal extend.

Statistical validity of the experimental data was verified by means of such
nonparametric methods as T-criterion by Wilcoxon, tendency L-criterion by
Page and Spearman’s rank correlation coefficient [16].

3 Results

According to the experimental results (Table 1), there’re less differences between
visual and auditory types of perception in assessment of the dominant emotional
background of communication within the subjects with neutral current EMS
(n = 9). The tendency extends to all the languages under investigation and
three types of the dominant emotional background of the communication:
(a) neutral, (b) positive, (c) negative.2

The most differences between visual and auditory perception are registered
within the evaluations of the subjects with low current EMS (n = 9) when the
perception of emotionally marked communication bases mostly on the visual
channel.

The subjects with higher current EMS (n = 9) mostly rely on the auditory
channel of perception, while assessing the dominant emotional background.

In one-channel perception three groups of the subjects equally determine the
experimental material as the communication with predominance of the negative
emotional and emotional-modal states (for all the languages under investigation)
(ρ ≤ 0, 001). Meanwhile, we didn’t register any statistically valid differences
between visual and auditory types of perception of the samples, while assessing
the dominant emotional communication background quality.

The majority of the subjects recognized the dominant EMS of the commu-
nicant(s) as related to the emotional-modal complex aggression. In one channel
perception Russian samples are evaluated more clearly in comparison with the
samples in other languages (ρ ≤ 0, 001). The tendency is that the more unknown
the language of communication is the more difficult it becomes to recognize the
dominant EMS of a communicant. It’s interesting, that only for the Russian
samples statistically valid differences between visual and auditory types of per-
ception were registered (Table 2).
2 Symbolic notation: “0” means no statistically valid differences between visual and

auditory perception; “+” − there’s statistically valid difference. “+ auditory” means
that auditory perception parameters statistically exceed visual perception para-
meters. “+ visual” − visual perception parameters statistically exceed auditory
perception parameters.
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Table 1. Relevance of the dominant emotional background of communication
(ρ ≤ 0, 05).

Groups of
the subjects

Quality of the
dominant
emotional
background of
communication

Language of communication

Russian English Spanish Tatar

Differences between visual and auditory perception

with higher
current
EMS

negative 0 0 0 0

positive + auditory + auditory + auditory + auditory

neutral 0 0 0 0

with low
current
EMS

negative 0 + visual + visual + visual

positive + visual + visual 0 0

neutral 0 0 0 0

with
neutral
current
EMS

negative 0 0 0 0

positive 0 0 0 + auditory

neutral 0 0 0 0

Table 2. Name relevance of the dominant EMS of the communicant(s) (ρ ≤ 0, 05).

Name of the dominant
EMS of the communi-
cant(s)

Language of communication

Russian English Spanish Tatar

Differences between visual and auditory perception

emotional complex aggression + visual 0 0 0

anger + visual 0 0 0

rage + auditory 0 0 0

malice + visual 0 0 0

hatred + auditory 0 0 0

insult + auditory 0 0 0

irritation + visual 0 0 0

outrage + visual 0 0 0

tension + auditory 0 0 0

sadness + auditory 0 0 0

fear + visual 0 0 0

Groups of the subjects with higher/low current EMS marking the intensity
of communication emotionality as high mostly rely on the auditory perception;
meanwhile the same groups rely more on visual perception marking the intensity
of communication emotionality as low (Table 3).
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In evaluations of the dominant emotional-modal state of an exterior commu-
nicant we found no statistically valid differences connected with the parameter
“language of communication” in one channel perception. At the same time, there
are still statistically valid differences related with the parameter “emotional-
modal state of a recipient” (mostly ρ ≤ 0, 01, and ρ ≤ 0, 05 for the subjects with
low current EMS in visual perception). The tendency is that in one channel per-
ception the subjects with high EMS are more likely to overestimate the intensity
of the communication emotionality; the subjects with low and neutral EMS have
a tendency to overage out the intensity of the communication emotionality.

Table 3. Relevance of communication emotional intensity (ρ ≤ 0, 05).

Groups of
the subjects

Intensity of
communication
emotionality

Language of communication

Russian English Spanish Tatar

Differences between visual and auditory perception

with higher
current
EMS

high + auditory + auditory + auditory + auditory

medium 0 0 0 0

low + visual + visual + visual + visual

with low
current
EMS

high 0 + visual + visual + visual

medium + auditory + auditory + auditory + auditory

low + visual 0 + visual + visual

with neutral
current
EMS

high 0 0 0 0

medium + visual + auditory + visual 0

low 0 + visual + visual + visual

In one channel visual perception for the three groups of the subjects the
main supporting means to recognize the dominant emotional background of com-
munication are mimics and gestures, no matter what linguaculture an exterior
communicant belongs to (Table 4).

In one channel auditory perception the subjects of the three groups in most
cases rely on the intonation features in the process of recognition of the dominant
emotional background of communication (Table 5). The subjects with higher/low
EMS (ρ ≤ 0, 05) tend to rely more on the intonation features the more unac-
quainted the language of communication is. The experimental data is statistically
relevant (ρ ≤ 0, 01) for the subjects with neutral EMS.

Comparing visual and auditory perception categories, we can see that the
majority of the correlations are tight or of the middle tightness (Table 6). The
predominant type of correlation is positive; which means that with the growth of
the visual perception significance the significance of the auditory perception also
raises. Statistically relevant correlations are marked by gray color filling; bold
type shows the data statistically relevant at ρ ≤ 0, 01 and italic type ρ ≤ 0, 05;
the rest correlations are statistically invalid.



504 R. Potapova and L. Komalova

Table 4. Supporting means in the recognition of the dominant emotional background
of communication, visual channel of perception (ρ ≤ 0, 01).

Groups of the

subjects

Features of visual perception Language of communication/frequency

Russian English Spanish Tatar

with higher

current EMS

mimics 4,5 5,6 5 5

gestures 5 2, 2 5 1, 8

body movement 3, 5 2, 9 2 4, 6

distance between the communicants 1 1, 3 1, 2 2

all the mentioned parameters together in

relatively equal extend

0, 5 1, 5 2 0, 4

with low current

EMS

mimics 5 6,1 4,5 5

gestures 3 2, 4 4, 2 1, 8

body movement 1 2, 6 1, 7 3, 6

distance between the communicants 1 0, 8 0, 8 0, 2

all the mentioned parameters together in

relatively equal extend

1, 5 1, 5 2, 8 1, 4

with neutral

current EMS

mimics 8,5 6,5 5,2 6,4

gestures 2, 5 2, 5 5,8 2, 4

body movement 2, 5 2, 5 2, 7 3, 2

distance between the communicants 0, 5 0, 7 0, 3 0, 6

all the mentioned parameters together in

relatively equal extend

0, 5 1, 3 2 0, 8

Table 5. Supporting means in the recognition of the dominant emotional background
of communication, auditory channel of perception.

Groups of the

subjects

Auditory perception features Language of communication/frequency

Russian English Spanish Tatar

with higher

current

EMS

intonation 2 2, 8 6,7 5,6

verbal means 3 2, 3 0,2 1,2

all the mentioned parameters

together in relatively equal extend

4 3,9 2,2 2,2

with low

current

EMS

intonation 1, 5 3,5 6,3 4,6

verbal means 4,5 3, 3 2,2 3,4

all the mentioned parameters

together in relatively equal extend

3 2, 6 0,2 1,2

with neutral

current

EMS

intonation 2 3 3,5 3,8

verbal means 2 3,2 4,2 3,4

all the mentioned parameters

together in relatively equal extend

3,5 2, 4 0,7 1,6
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Table 6. Rank correlations between visual and auditory types of perception.

Category of the evaluation
Language of communication

Russian English Spanish Tatar

Quality of the dominant emotional back-
ground of communication

+.94 +.93 +.91 +.86

Name of the dominant emotional /
emotional-modal state of communicant(s)

+.49 +.87 +.74 +.37

Intensity of the communication emotional-
ity

+.54 +.58 +.92 +.60

Means marking the dominant emotional
background of communication

.69 +.15 +.53 +.64

4 Conclusion

The results of the experimental research give the possibility to formulate the
following conclusions:

– current emotional-modal state of a recipient has an impact on the estimation
of the emotional-modal state of another (exterior) communicant;

– in conditions of one channel perception of negative emotional-modal states of
an exterior communicant the significance of visual/auditory perception fluc-
tuates in dependence with the current EMS of a recipient;

– there’re more evident differences in the evaluations of the communication emo-
tionality made by the subjects with higher/low current EMS;

– the subjects with higher current EMS tend to rely more on the results of the
auditory perception, and the subjects with low current EMS are more likely
to rely on the visual type of perception;

– presumably, in the system of multimodal perception of the negative emotional-
modal states of an exterior communicant visual and auditory types of percep-
tion correlate according to the rule of direct proportionality.

5 Prospects of Investigation

Further investigation can be related with the gender factor influence on the
(one-channel/multimodal) perception of EMS of an exterior communicant.

Acknowledgements. The research is being carried out with the support of Russian
Science Foundation (RSF) in the framework of the project N14-18-01059. Methodolog-
ical concepts of the project are described in [6].
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Abstract. This paper considers the role of the auditive recognition of
speakers regarding the attribution of speech and voice individual fea-
tures. Our study investigates how well listeners can attribute a set of
individual features of speakers: verbal, paraverbal, extraverbal, physio-
logical, anthropometric, physical, emotional, social, etc. The main task
of this investigation was to indicate which attributes of a speaker should
be auditive recognized: universal, group or idiosyncratic ones. For audi-
tive analysis special questionnaires were used. Two types of speech and
voice were analysed: interindividual, intraindividual ones.

Keywords: Speaker · Listener · Auditive analysis · Interindividual ·
Intraindividual · Speaker’s profile · Speech and voice attribution

1 Introduction

Subjective (auditive) and objective (acoustic) events of speech behavior are of
great interest for several professional groups. In the science of forensic phonetics
investigations in the field of acoustic and auditory features of voice and spoken
language of subjects under the intoxication by drugs are very important. The
aim of the present study is to obtain new auditive data in order to expand the
knowledge of a variety of personal characteristics of speech of Russian native
speakers. The term personal characteristics of speech expresses the well-known
fact that speakers can be distinguished and recognized by their voices and speech.
Personal characteristics of speech may be described as a complex of those sound
qualities which enable us to identify the speaker. Our research is focused on the
problem of auditive definition of speech qualities resulting from the psychic or
psychosomatic conditions of Russian-speaking individuals. It should be noted
that in our investigations we use scientific principles of auditory analysis in the
field of forensic phonetics [6,7], [10, pp. 81–138], [14,18]. Perceptual analysis
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aimed at the determination of a set of perceptual cues relevant to the descrip-
tion of the peculiarities of voice, segmental and suprasegmental characteristics
of speech of native Russian speaker introduced by the alterations of emotional,
psychic, psychosomatic and physiological state [1–5]. Voice-based evidence is an
important part of many criminal investigations and has commonly included such
things as threats left on an answering machine, a robbery caught on videotape,
or a confession recorded during a police interrogation. In the technological age
of mobile telephones, voicemail, and voice-recognition software applications, the
potential for voice-based evidence continues to increase, on the domain of per-
sonality identification and attribution in the communication by means of Skype,
You Tube, com. and in the case of telephone terrorism, Internet pranker com-
munication, etc.

2 Method, Experiment, Results

The speech signal therefore contains at least two kinds of information. As a
linguistic signal, it conveys the communicative content of the utterance. The
speech signal also conveys information about certain features of the speaker,
such as his sex, age, regional origin, etc. An important distinction may be drawn
here between whether these kinds of information are intentionally introduced
or not. Laver [8,9,12] proposes a classification of the different kinds of index-
ical information present in speech: biological information (size, physique, sex,
age and medical state); psychological information (personality); social informa-
tion (mainly accent information of regional origin, social status, etc.). The main
reason for the specifics of the speech signal may be neurophysiological and psy-
chological features of the phonation and articulation process, the implementation
of which is controlled by the speakers central and autonomic nervous systems
[14,17]. It is important to distinguish between two types of speech signal vari-
ability: interindividual variability due to individual anatomical and physio-
logical, psychological and social characteristics of speakers which is the basis of
individually-significant attributes; intraindividual variability caused by a num-
ber of non-semantic factors and expressed in spontaneous variation of voice and
speech, even within an unchanged speech segment according to various uncon-
trollable factors related to multi-component vocal apparatus functioning. Speech
is both a mechanism of intellectual activity, which allows to perform operations
of abstraction and generalization that provides the basis of categorical think-
ing, and a mechanism of semantic programming enabling the transition from
the semantic level to the syntactic level with the help of psycho-physiological
mechanism called internal (implicit) speech [12].

Human speech is characterized by an operating component, the first element
of which is physical or sound matter, the analysis of which allows to deter-
mine the relationship between individual voice production with an invariant
and variants of sound and intonation patterns on the basis of a specific lan-
guage. The next link of the operating component of the speech process is a
lexical-semantic organization of verbal material including implementation of the
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lexical-morphological code of the language that converts images and concepts
to their verbal forms. The above determines the conceptual basis of the suc-
cessful development of attributes and identification of the speaker in forensic
phonetics [11,12,15–17,19]. Based on the basic premise that human speech is
individually organized on the basis of individual phonational and articulatory
gestures in close connection with the social phonological representation of an
utterance and its lexical and semantic features, it seems reasonable to build
an acoustic-linguistic algorithm of the speaker identification analysis taking into
account the following factors: acoustic (hardware and software) processing of the
speech signal; anatomical and physiological-based decoding of the speech signal;
social- and psychological-based decoding of the speech signal; intellectual and
meaningful decoding of the speech signal; tiered global linguistic decoding.

In this regard, all solvable problems can be roughly described as tasks of
drawing up an individual portrait of the speaker, which includes phonational
(voice), articulatory (segmental) and prosodic (suprasegmental) correlates of
his/her speech. The basis of the acoustic-linguistic analysis are iterative speech
wave processing procedures. It seems reasonable to divide acoustic and linguistic
features of the speech signal into primary and secondary ones. The primary ones
include: phonational features (typology of voice mimics, such as forced or gentle
phonation/with correlation of the speech signal analyzed to one of the phonation
types; articulatory features (articulatory typology of generating speech signal
(e.g., tense or relaxed articulation) with correlation of the speech signal to one
of the articulation types).

Primary features are directly dependent on the specific anatomical and phys-
iological nature. Secondary (prosodic) features are of conditionally superstruc-
tural character with respect to the primary ones and are implemented on their
basis. Suprasegment implementation of secondary features of the speech signal
leads to formation of a kind of structurally-organized speech figures and their
concatenation of strictly individual character. According to recent data, voice
features that characterize the speaker as well as the specificity of his/her indi-
vidual character formation (i.e. idiosyncrasy) contain two types of information:
communicative and individual one. As a linguistic (verbal) signal, speech
includes communicative content of a message, and as an extralinguistic (non-
verbal) signal, it correlates with the information about such speakers features as
gender, age, region of origin, etc.

In portrait attributes of the speaker by voice and speech there are three types
of norms: universal, group and idiosyncratic ones. A special role belongs to
speech and voice information decoded at the level of auditory perception [18].
The purpose of our experiment was to identify key features of the perceptual-
auditory perception of speech necessary and sufficient to answer the question:
what individual features of the speaker may be used by an expert making up
a portrait of the speaker. In addition, it was necessary to answer the ques-
tion whether the information content of features was identical to establish the
speakers profile. Special questionnaires [13,14,18–20] were used for the experi-
ment. Listeners were asked to listen to some phonograms and then record their
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answers in a special questionnaire. The material (phonograms for each speaker)
was played repeatedly. There were no restrictions in time and number of plays.

The listeners were to note those features in their questionnaires, which, in
their view, matched the profile of the speaker. The listeners of the experiment
were represented by 4 groups of listeners: 2 groups of experts who were people
from various business dimensions and had fundamental knowledge in the field of
speaker identification by voice and speech (n = 21); and non-experts students of
Moscow State Linguistic University (n = 45). The subjects belonged to various
age, gender, social and territorial groups. One of the hypotheses put forward to
test the empirical data, was the assumption according to which the subjects (in
this case, the listeners) possess different levels of language competence and skills
of listening, which affects the final results of the perceptual-auditory analysis.
Along with listening to the phonograms presented, the listeners were to perform
special questionnaires giving their opinion on speakers profile characteristics.
Speakers were presented by: males and females (the subjects also had an option
transvestite in their questionnaires); people of various social groups (high school
students, teachers, politicians, etc.); representatives of various age groups; rep-
resentatives of regional groups (residents of various regions in Russia).

Speakers speech was recorded under various conditions: physical (various
rooms with varying degrees of noise insulation) and communication (radio inter-
views, spontaneous speech, lectures, reports, phrases from polylogues, dialogues,
etc.). According to the experiment procedure, the listeners had no information
on speakers in advance. The listeners were to fill in the questionnaire while lis-
tening, focusing solely on their auditory impressions. The listeners had a task
to analyze the acoustic part of the sounding material (expression plan) rather
than specific semantic content of speech fragments (content plan). Data obtained
as a result of the perceptual-auditory experiment were analyzed and statisti-
cally processed. For each of the 4 groups of speakers personal characteristics,
namely speakers phonetic characteristics, language characteristics; physiological
and anthropometric characteristics of the speakers appearance, his/her physical
and emotional state, tables were drawn containing the results of the perceptual-
auditory analysis. Thus, for each group 2 tables were drawn showing the number
of listeners reactions to the presence/absence of a characteristic proposed in the
questionnaire (as well as the parameter of this characteristic, for example, voice
pitch medium) in absolute and relative units (%).

Further evaluation of the results obtained was carried out by two vectors:
vertical vector for perceptual-auditory definition of interspeaker features (and
parameters) essential for each speaker separately; horizontal vector for classifi-
cation of parameters singled out for each speaker (intraspeaker section) on the
basis of the statistical weight of each parameter. The horizontal vector gives
an insight into the intraspeaker mechanism of perception by speech. Classifica-
tion of parameters within each feature is based on statistical weights (W, %)
attributable to each parameter according to the following formula:

W =
a ∗ 100

A
, (1)
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where a is the number of positive responses of the subjects received for a specific
parameter for all speakers (i.e. how many times the listeners noted this parameter
during the experiment); A is the total number of positive responses regarding
specific features for the entire group of speakers. Next, each parameter was
assigned a rank value (it takes with respect to the appropriate feature).

The parameters that are well perceived by the subjects by ear (most lis-
teners noted their presence) have, respectively, a greater statistical weight (W)
and, as a consequence, a higher rank. The empirical evidence also showed that
the features do have various weights and various significance for the completion
of the task, that is drawing up the speaker’s portrait. In each of the 4 groups
under consideration, the characteristics were assigned ranks according to their
statistical weights in the group. This ranking of the features can be interpreted
as follows: the higher rank is assigned to a particular feature of any group of
characteristics (phonetic, linguistic, physiological and anthropometric or phys-
ical and emotional characteristics), the more accessible and more important it
is for the expert studying speaker’s characteristics. This classification can be
perceived as a kind of guide for an audio expert indicating which attributes of
the speaker should be considered and analyzed in the first place, what indicators
are reliable and meaningful to perform such a task as drawing up the speakers
portrait. It is seen from the obtained data that the listeners best perceived the
following characteristics: generation in the process of speech breathing, strength
of voice and specific features of pronunciation; temporal peculiarities, melodic
patterns, distinguishing stressed and unstressed syllables, speech rhythm; lan-
guage (native/foreign), language (standard vs. dialect) and a communicative act
specificity (group of verbal features); gender, age and size of the speaker’s head
(physiological and anthropometric features); physical state of a speaker (group
of features that describe the speaker’s physical and emotional state). The fol-
lowing features were most difficult for auditive speaker attribution: voice timpre
and strength (group of phonetic features); type of speech activity, functional
style and language (in opposition to the standard vernacular; group of linguistic
features); speaker’s height, weight, age and hair color, width of his/her chest
(physiological and anthropometric attributes); defects in speech and pronuncia-
tion; emotional and emotional-modal state (group of features that describe the
speaker’s emotional state).

3 Conclusion

Conclusions regarding the speakers attributes, which can be made in an
intraspeaker (horizontal) analysis, have the greatest practical value. The result-
ing information can be used particularly in forensic purposes in solving diagnostic
tasks. The purpose of this type of analysis is to identify a common mechanism
of formation of listeners’ interpretation of the speaker (author of a spoken text)
image. The statistical analysis is used to determine which speaker’s attributes are
perceived by the listeners, what personality characteristics are difficult to deter-
mine by ear, and what parameters are perceived by the listeners equally, etc.
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With the vertical vector of data obtained in the course of the experiment, inter-
speaker identification features are determined. Statistics show that it is possible
to single out key features for each speaker who took part in the experiment. For
classification of parameters, the ranking method was used again. To this end,
each parameter was assigned a numerical index, which reflects the number of
positive responses to the presence of this parameter for each speaker (in %).
Dominating parameters build the speaker’s profile.

Next, to assess the relevant parameters in the speakers personality profile, a
sample of the maximum values (the highest values of the parameters) has been
split into three intervals: (a) [0 – 50] parameters with values within this range,
may be declared as those least perceived by the listeners. A small value of the
parameter means that either the listeners are not able to auditive define what
value of a speech parameter may be attributed to the speaker, or these charac-
teristics are not strongly marked, which prevents the listeners from determining
whether the speaker has this feature; (b) [50 – 75] parameters with values within
this range are more perceptually significant. However, features of this interval
cannot be considered as basic points in a forensic expertise; (c) [75 – 100] para-
meters with values within this range are most perceptible. Considering the fact
that most of the most listeners answers are identical on this particular subject,
the speaker will likely be attributed these values of features. Moreover, high
values of the parameter indices of this interval indicate that the respective fea-
tures may be included in a palette of an expert creating the speaker’s portrait.
Next, values were considered from the upper range [75–100] including features
whose values are both statistically and perceptually marked. It can be assumed
that the parameters within of this interval, provide specific information about
the speaker’s identity, and therefore they should be taken into account when
drawing up his/her portrait.

Fig. 1. Speaker’s phonetic features
perceived by the listeners

Fig. 2. Speaker’s language features
perceived by the listeners

Bar charts were built for these features (Figs. 1, 2, 3 and 4). Features that
are included in the top interval are distributed along the X-axis; and the number
of speakers whose portrait has this particular feature is shown on the Y-axis.
Thus, according to Figs. 1, 2, 3 and 4 the features attributed to most speak-
ers (n = 15) include pauses, speech rhythm, speech breathing and distinguishing
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Fig. 3. Speaker’s physiological and
anthropometric features perceived by
the listeners

Fig. 4. Features of the speaker’s phys-
ical and emotional state perceived by
the listeners

stressed/unstressed syllables (phonetic features); language (native vs. foreign),
communicative act, language (standard vs. dialect), education and economic
status (linguistic features); speakers gender and size of his/her head (physi-
ological and anthropometric features), speakers overall condition (features of
speaker’s physical and emotional state). Features that are assigned by the sub-
jects to a minority of speakers (n = 1–6) are either purely individual and make
the speaker’s voice and speech exclusive (these characteristics distinguish the
speaker’s voice from all the others), or are difficult to determine by listeners. To
answer these questions it is necessary to conduct an additional series of experi-
ments to increase speakers’ and listeners’ samples.
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Abstract. Internet security is an important issue that concerns every-
one who uses it without exception. Over the past few years, there has
been a significant improvement in internet security but little attention
has been paid to protect careless users. This paper introduces a user-
based security application that could replace the classic login frame on
websites in order to offer an extra security level that allows a biometric
identification of the user that prevents unauthorized login to his personal
page.

Keywords: Face recognition · Biometric identification · Online safety ·
User-based security

1 Introduction

More and more people every day choose internet as a tool to communicate with
others, shop products from all over the world, disclose sensitive information like
personal photos and videos, make money transactions from their bank account
etc. The most common problem that seems to exist is the difficulty in using a vari-
ety of strong passwords. For example, older users are less concerned about choos-
ing a secure password because it is harder to remember and they rarely change
it or use the same one on every web application they use. On the other hand,
even though younger people are more diligent in choosing a secure password,
they are more careless with the personal information they upload. Researches
have shown that heavy web users have an average of 21 passwords, 81 % of users
select a common password and 30 % write their passwords down or store them in
a file [1]. Security system engineers aim to make websites safer by using secure
protocols (https, sftp), encryptions and other security techniques. A common
technique that hackers use, even those who do not have much experience, is
the brute force that is easy to apply and most of the time brings the desirable
results. They use a set of common passwords and iteratively try to login. No
secure system can prevent them and the results depend only on the strength
of user’s password. Therefore, it is obvious that there is a need for more secure
systems to protect individuals when logging in.

c© Springer International Publishing Switzerland 2016
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1.1 Related Works

In recent years, there has been a remarkable improvement in face detection and
recognition. Most of the techniques are very robust, fast and operate satisfacto-
rily under any circumstances. Principal component analysis (PCA) has demon-
strated its success in face recognition, detection, and tracking at [12]. At [7] a
study is conducted to optimize the time complexity of PCA (eigenfaces). One
extension of PCA, known as multilinear principal components analysis (MPCA)
is described at [6]. Linear Discriminant Analysis aims to maximum between class
(across users) variance and minimum within class (within user) variance [8]. At
[2] is presented ICA which is a generalization of PCA in that it tries to identify
high-order statistical relationships between pixels to form a better set of basis
vectors. The use of neural networks for face recognition is shown at [3]. At [5]
a new method is introduced, SIFT, according to which features are extracted
from images for matching between different poses of the same subject. A lot of
applications, which use face information for security reasons, have been created
and some examples of these are being presented at Table 1.

Table 1. Examples of applications which use face recognition [10]

Area Examples

Security access control to buildings, airports/seaports, ATM
machines, email authentication on multimedia
workstations

Surveillance a large number of CCTVs can be monitored to look for
known criminals, drug offenders, thieves

identity verification electoral registration, banking, electronic commerce,
identifying newborns, national IDs, passports, drivers’
licenses, employee IDs

Criminal justice systems mug-shot/booking systems, post-event analysis, forensics

Image database
investigations

searching image databases of licensed drivers benefit
recipients, missing children, immigrants and police
bookings

Smart Card SIM Card

1.2 Originality of This Work

In this paper we present an application which uses face recognition at websites for
security purposes. Until now no technique or application has ever given empha-
sis on user-based security. The main originality of this work is that it aims to
protect careless users who are inattentive considering the safety of their personal
password. Additionally, the identification becomes very fast because it takes into
account only the stored images of the user and not all the images of the database
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which is ideal for real time procedures. We use robust and reliable algorithms
for face detection and user’s identification with a combination of the latest web
technologies. The paper is organized as follows: In Sect. 2 we present the main
steps of the proposed login with the extra security level. In Sect. 3 we discuss
the techniques we use in order to achieve the user’s identification. In Sect. 4 we
show a presentation of the application and some basic steps of image processing.
In Sect. 5 we mention the limitations of this work and future extensions as well.

2 Proposed Login Procedure

The interaction between user and application starts with a login frame which has
no difference with the other login frames that the user is already familiar with.
When the user fills the gaps of username and password, two possible scenarios
could happen (Fig. 1).

Fig. 1. Schematic algorithm of the login procedure

1. If it is the first time that the user visits the website then he should create
an account. In this case, the new user needs to sign up like he would do on
any website, but he has to upload additionally some images of his face. At
least three images are required but it is recommended to upload as much as
possible in order to achieve better processing results.

2. If a user is already subscribed then only one new image is required to be
uploaded. Image processing techniques are being applied in order to verify
users identification.
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* * *

Fig. 2. (a) example of a login form (b) interface for taking images (c) face detection
using Viola–Jones algorithm

Finally, if the new image is identified as the user’s image, he can have access
to his account; otherwise the image is being stored and marked as “a potential
threat”. Next, an email is being sent to the user, with the ip address of the
computer that was used to login with the marked image as attachment (Fig. 2).

3 Online Face Recognition and Image Processing

3.1 Viola and Jones

For face detection we use the Viola–Jones algorithm which is a robust and fast
technique ideal for real time applications. The algorithm has four stages that
are described below [11]:

Haar Feature Selection. Each feature results in a single value which is cal-
culated by subtracting the sum of the white rectangle(s) from the sum of the
black rectangle(s) (Fig. 3).

Fig. 3. The different types of features

Creating an Integral Image. The integral image at location x, y contains
the sum of the pixels above and to the left of x, y, inclusive:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′),

where ii(x, y) is the integral image and i(x, y) is the original image (Fig. 4).
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Fig. 4. The sum of the pixels within rectangle D can be computed with four array
references.

Adaboost Training. Each feature is considered to be a potential weak classi-
fier. A weak classifier is mathematically described as:

h(x, f, p, θ) =
{

1 if pf(x) < pθ
0 otherwise

,

where f feature, θ threshold and p polarity that indicate the direction of the
inequality.

Cascading Classifiers. The cascaded classifier is composed of stages each
containing a strong classifier. The job of each stage is to determine whether a
given sub-window is definitely not a face or maybe a face. When a sub-window is
classified to be a non-face by a given stage it is immediately discarded. Conversely
a sub-window classified as a maybe-face is passed on to the next stage in the
cascade. It follows that the more stages a given sub-window passes, the higher
the chance the sub-window actually contains a face. The concept is illustrated
with two stages in Fig. 5 [4].

Fig. 5. The cascaded classifier.

3.2 PCA for Recognition

We use PCA [9] for user identification. Firstly we assume that we have N nor-
malized images n x n that are stored at user’s file system. These N images make
up our training set {I1 I2 ... IN}. The next step is to reshape them and create
image vectors that are represented by Φ:
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Ii =

⎡

⎢⎢⎢⎣

p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n
...

...
. . .

...
pn,1 pn,2 · · · pn,n

⎤

⎥⎥⎥⎦

nxn

⇒

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,1
· · ·
p1,n
· · ·
p2,n
· · ·
pn,n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

n2x1

= Φi.

All N images of the training set are taken into account to determine the mean
image vector:

M =
1
N

N∑

i=1

Φi.

We remove the common information Li = Φi−M , and we find the covariance
matrix C = XXT where X = [L1 L2 ... LN ] Next, we select the best K
Eigenvectors. Each face in the training set, Φi can be represented as a linear
combination of these Eigenvectors ui:

Li =
K∑

j=1

wjuj .

The weights are calculated as follows, wj = uT
j Li. Each normalized training

image is represented in this basis as a vector W =
[
w1 w2 w3 · · · wk

]T . The
vector is stored and subsequently is compared with a new vector W ′ when a new
image is received. The same procedure is followed for the calculation of W ′ as
well, with the difference that now N+1 images exist:

er = min
∥∥W − W ′∥∥ .

If er < Θ the image is deemed to belong to the user. If er > Θ the image is
deemed that it does not belong to the user.

3.3 Auto-Learning and Image Database Update

In order to create a strongly autocorrelated database, a function that finds the
ideal combination of images is executed every time that a new image is verified
that actually belongs to the user. Images with low correlation factor are removed.
More recent images have higher weights because they represent the current sit-
uation. Considering the fact that physical characteristics change with time, the
latest images represent better the current features of the user and make more
efficient a future recognition process. The new mean image is determined by the
following formula taking into account the weighted average:

M ′ =
1

N ′

N∑

i=1

aiΦi where N ′ > N and N ′ =
N∑

i=1

ai.
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4 Assumptions - Presentation of the Application

In this section we will explain some basic steps of the processing procedure.
Firstly, it is important to make sure that the face is located inside the frame, as
shown Fig. 6, in order to eliminate the limitation of different poses.

* * *

Fig. 6. (a) wrong face placement without frame (b) correct face placement with frame
(c) wrong face placement with frame

When the face is detected, the background of the image is removed and is
kept only the face as shown at Fig. 2(c). After that, the new image is converted
into gray scale and is normalized so that there are only images with the same
number of pixels 250× 250 (it is likely that the user has logged in from different
computers with different web camera resolution). Next, a query is made in the
database to find the path of the file system where the user’s images are located.
The PCA method is applied and vector W ′ is calculated. This vector is being
compared with the value of vector W that is stored in the database. The length
of the vectors is 5 equal to the number of eigenvectors that we have decided to
keep. If the euclidean distance between two vectors is lower than the threshold: Θ
= 0.03 twe assume that the new image is located in the subspace of user’s images
and it is considered as the correct image, otherwise it is marked as unacceptable
as it may belong to someone else.

Tools That We Used: Contemporary internet technologies (html, php,
Javascript, css), Database (msql), Python for image processing and machine
learning techniques.

5 Limitations and Extensions at Future Work

There are some limitations that are possible to affect the identification result such
as (a) the variations in lighting conditions, (b) the differences in pose or head
orientation, (c) Image quality, CCTV, Web-cams (d) expressions and partial
occlusion (hats, glasses, different haircut, beards etc.). To overcome some of these
problems one could take into account other biometric or distinctive features of
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the users, like the sound of voice (e.g. a specific phrase) or a short duration video
with a distinctive motion or gesture of the user. This will be the direction of our
future work.

6 Conclusion

In this paper we present a way to create a more secure login environment to
websites. This extra safety level protects mainly the more careless users who use
weak passwords. The proposed method uses face detection and recognition in
order to identify the user. The algorithms that are used are robust and trust-
worthy and additionally, real time processing is very fast and ideal for online
usage.
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Abstract. This paper describes a new optimized method for calculating
Zelinski post-filter transfer function for a microphone array. Optimized algo-
rithm requires less memory and fewer arithmetical multiplications. We
demonstrate that for the known algorithm computational complexity increases
quadratically as a function of the number of microphones. In contrast, the
computational complexity of the proposed algorithm increases linearly. This
provides a considerable acceleration in the calculation of the post-filter transfer
function.

Keywords: Zelinski � Post-filtering � Microphone array

1 Introduction

Zelinski post-filtering is one of the widely used method for digital speech signal
processing in microphone array [1–5]. Zelinski post-filter (ZPF) is good for spatially
uncorrelated noise suppression [6–8]. A generalized block diagram of a microphone
array (MA) with post-filtering (for an array with 4 microphones and frame-based
frequency domain processing) is shown in Fig. 1.

The input signals xnðtÞ of each n-th microphone (n; n ¼ 0;N � 1) are transformed
into spectra Xnðf ; kÞ using short-time Fourier transform (STFT), where N is total
number of microphones; f is the frequency bin index and k is the frame index (block 1).
Then each signal Xnðf ; kÞ is delayed by multiplication by the complex steering vector
Dnðf ; hÞ (block 2):

Ynðf ; kÞ ¼ Dnðf ; hÞXnðf ; kÞ; ð1Þ

where h is the desired source direction. At the third step (block 3) the
frequency-domain output signal is calculated:

Zðf ; kÞ ¼ 1
N

XN�1

n¼0
Ynðf ; kÞ: ð2Þ

Block 4 estimates the post-filter transfer function Wðf ; kÞ using the signals Ynðf ; kÞ
and Zðf ; kÞ. Then the post-filter (block 5) calculates the frequency-domain output:
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Zoutðf ; kÞ ¼ Zðf ; kÞWðf ; kÞ. Finally, the time-domain output signal zðtÞ is calculated as
the inverse Fourier transform (IFT) of Zoutðf ; kÞ.

The main question in this kind of processing is how to calculate the post-filter
transfer function Wðf ; kÞ.

2 Zelinski Post-filter Transfer Function

In this paper for ZPF calculation we used “classical” equation equivalent to the one
given in [7, 8]:

Wðf ; kÞ ¼ HR
CNRe

PN�2

n¼0

PN�1

m¼nþ 1
UYnYmðf ; kÞh i

� �

1
N

PN�1

n¼0
UYnYnðf ; kÞh i

8
>>><

>>>:

9
>>>=

>>>;
; ð3Þ

where the operator �h i is the exponential smoothing over frames; Re½�� marks the real
part; HRfxg ¼ maxfx; 0g is the rectification operator; and CN ¼ 2

�ðN2 � NÞ is the
normalization factor. The difference between formula (3) and the formula presented in
[7] is that we used different symbols for smoothing, frequency and frame indices and
changed the limits of microphones indices to n ¼ 0;N � 1. The smoothed over frames
cross-spectra UYnYmðf ; kÞh i are calculated as follows [7]:

UYnYmðf ; kÞh i ¼ a UYnYmðf ; k � 1Þh iþ ð1� aÞYnðf ; kÞY�
mðf ; kÞ; ð4Þ

where 0� a\1 is smoothing factor.

Fig. 1. Block diagram of a microphone array processing with post-filtering
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3 Drawbacks of the Classical Implementation

There are two disadvantages in the calculation of (3): required memory (minor) and
required number of complex multiplications (major). Let us denote the number of
frequency bins in signals Ynðf ; kÞ as F, so f ¼ 0;F � 1. In that case the calculation of a
single smoothed cross-spectrum (4) for the frame index k and some specific indices n
and m requires:

• Complex array with the size F (to store smoothed cross-spectrum).
• Fþ 2 complex multiplications.

In the numerator in (3) there are two nested loops where indices n and m vary as
follows: n ¼ 0; N � 2 and m ¼ nþ 1; N � 1. It is clear that the total number of cal-
culation steps is equal to ðN2 � NÞ�2 (see normalization factor CN in (3)). Hence, the
calculation of the numerator in (3) takes ðN2 � NÞ�2 complex arrays of size F and
ðFþ 2ÞðN2 � NÞ�2 complex multiplications: the computational complexity of (3) is
OðN2Þ. The main problem, of course, is multiplications, as (3) has to be calculated for
every input signal frame in real time applications.

4 Accelerated Algorithm Derivation

First we note that it is easy to show that arithmetic summation and exponential
smoothing in the nominator of (3) may be reversed. This statement is also true for the
exponential smoothing and the Re½�� operator. Hence (3) may be rewritten as:

Wðf ; kÞ ¼ HR
CN Re

PN�2

n¼0

PN�1

m¼nþ 1
UYnYmðf ; kÞ

� �� �

1
N

PN�1

n¼0
UYnYnðf ; kÞ

� �

8
>>><

>>>:

9
>>>=

>>>;
: ð5Þ

It is clear that (5) and (3) are mathematically equivalent, but to store the nominator
of (5) we need only a single complex array of size F.

Second, let us take a closer look at the cross-spectrum matrix Uðf ; kÞ. This is the
matrix of the following form (for our example when N ¼ 4):

UY0Y0ðf Þ UY1Y0ðf Þ UY2Y0ðf Þ UY3Y0ðf Þ
UY0Y1ðf Þ UY1Y1ðf Þ UY2Y1ðf Þ UY3Y1ðf Þ
UY0Y2ðf Þ UY1Y2ðf Þ UY2Y2ðf Þ UY3Y2ðf Þ
UY0Y3ðf Þ UY1Y3ðf Þ UY2Y3ðf Þ UY3Y3ðf Þ

2
664

3
775: ð6Þ

Here we omit the frame index k for the sake of simplicity. Then the sum in the
numerator of (5) is the sum of the elements of a strictly lower triangular matrix:
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0 0 0 0
UY0Y1ðf Þ 0 0 0
UY0Y2ðf Þ UY1Y2ðf Þ 0 0
UY0Y3ðf Þ UY1Y3ðf Þ UY2Y3ðf Þ 0

2

664

3

775: ð7Þ

Since (6) is a Hermitian matrix (i.e. UYnYmðf Þ ¼ U�
YmYnðf Þ and, correspondingly,

Re½UYnYmðf Þ� ¼ Re½UYmYnðf Þ�) we can write the sum of the real part of all elements of
(6) as:

Re
XN�1

n¼0

XN�1

m¼0

UYnYmðf ; kÞ
" #

¼ 2Re
XN�2

n¼0

XN�1

m¼nþ 1

UYnYmðf ; kÞ
" #

þ
XN�1

k¼0

UYkYk ðf ; kÞ; ð8Þ

from which it follows that the expression under the operator �h i in the numerator of
(5) is:

Re
XN�2

n¼0

XN�1

m¼nþ 1

UYnYmðf ; kÞ
" #

¼ 1
2

Re
XN�1

n¼0

XN�1

m¼0

UYnYmðf ; kÞ
" #

�
XN�1

k¼0

UYkYk ðf ; kÞ
 !

: ð9Þ

Hence (5) can be rewritten as:

Wðf ; kÞ ¼ 1
2
NCNHR

Re
PN�1

n¼0

PN�1

m¼0
UYnYmðf ; kÞ

� �
� PN�1

k¼0
UYkYk ðf ; kÞ

� �

PN�1

n¼0
UYnYnðf ; kÞ

� �

8
>>><

>>>:

9
>>>=

>>>;
: ð10Þ

Note that we moved factors 1
2 ; CN and 1

N to the beginning of (10).
Note also that we already have the output sum Zðf ; kÞ calculated using (2). Con-

sider the cross-spectra of the signals Ynðf ; kÞ and Zðf ; kÞ :

UYnZðf ; kÞ ¼ Ynðf ; kÞ � Zðf ; kÞ� ¼ 1
N
Ynðf ; kÞ

XN�1

m¼0

Ymðf ; kÞ
 !�

¼ 1
N

XN�1

m¼0

Ynðf ; kÞ Ymðf ; kÞð Þ� ¼ 1
N

XN�1

m¼0

UYnYmðf ; kÞ;
ð11Þ

i.e.:

XN�1

m¼0

UYnYmðf ; kÞ ¼ NUYnZðf ; kÞ: ð12Þ

526 S. Aleinik



Putting (12) into (10) we get:

Wðf ; kÞ ¼ DNHR
NRe

PN�1

n¼0
UYnZðf ; kÞ

� �
� PN�1

k¼0
UYkYkðf ; kÞ

� �

PN�1

n¼0
UYnYnðf ; kÞ

� �

8
>>><

>>>:

9
>>>=

>>>;
; ð13Þ

where DN ¼ 1=ðN � 1Þ: Hence

Wðf ; kÞ ¼ DNHR
NRe

PN�1

n¼0
UYnZðf ; kÞ

� �� �

PN�1

n¼0
UYnYnðf ; kÞ

� � � 1

8
>>><

>>>:

9
>>>=

>>>;
: ð14Þ

Simplifying the numerator of (14) we finally get the equation for the accelerated
Zelinski post-filter transfer function:

Wðf ; kÞ ¼ DNHR
N2UZZðf ; kÞ
� �

PN�1

n¼0
UYnYnðf ; kÞ

� �� 1

8
>>><

>>>:

9
>>>=

>>>;
: ð15Þ

5 Analysis of the Accelerated Algorithm Equation

First, note that the classical Eqs. (3) and (15) are mathematically equivalent and gives
the same results. At the same time, we avoid nested loops in the numerator, so the
computational complexity of (15) is OðNÞ instead of OðN2Þ for (3). Thus, we have a
significant gain in computational speed, especially for MAs with a large number of
microphones.

Second, (15) requires less memory: the numerator requires a single real array of
size F and the numerator of (3) requires ðN2 � NÞ�2 complex arrays of size F.

Third, in real-life applications a small “regularization constant” d is usually used in
the denominator of (3) (to avoid a “zero divide” error for zero signal):

Wðf ; kÞ ¼ HR
CNRe

PN�2

n¼0

PN�1

m¼nþ 1
UYnYmðf ; kÞh i

� �

1
N

PN�1

n¼0
UYnYnðf ; kÞh i þ d

8
>>><

>>>:

9
>>>=

>>>;
: ð16Þ

If we simply add d to the denominator of (15) the new equation gives us a result
similar, but not equivalent to (15) (although the differences are small). Simplifying (13)
with d in the denominator, it is easy to show that the right equation is:
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Wðf ; kÞ ¼ VNHR
NUZZðf ; kÞh iþ d

N

PN�1

n¼0
UYnYnðf ; kÞ

� �
þ d

� 1
N

8
>>><

>>>:

9
>>>=

>>>;
; ð17Þ

where VN ¼ N=ðN � 1Þ: Eqs. (16) and (17) are also mathematically equivalent.

6 Experiments and Results

In our experiments we used an equally spaced MA with the well-known OLA (Overlap
and Add) technique and parameters fully described in [9, 10]. Parallel calculation of
Wðf ; kÞ using (3) and (15) yielded absolutely identical transfer functions. The same was
true for (16) and (17). Computational speed testing was conducted using a real pro-
cessing scheme (Fig. 1) for Eqs. (16) and (17) for different numbers of microphones in
the MA. A computer with Intel(R) Core (TM) i5-4670 CPU 3.4 GHz was used. The
test signal was a real human speech WAV-file with 16 kHz sampling frequency, 200 s
in duration. The number of trials for the estimation of the computational time for every
number of microphones in the MA was 64. The result (processing time: mean values
and 95 % confidence intervals) is shown in Fig. 2.

We can see that for a small number of microphones ðN\32Þ processing times for
both (16) and (17) equation are almost equal. As the number of microphones increases,

Fig. 2. Processing time and Real time factor as a function on the number of microphones in the
MA
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the processing time for (16) also increases in quadratic dependence on the number of
microphones. On the other hand, the processing time for (17) is smaller and increases
linearly. When the number of microphones reaches 176, the processing time for
Eq. (16) becomes equal to signal time (correspondingly, the real time factor is 1).
Hence, when N[ 176 it is not possible to provide real-time processing for the MA on
the given computer using (16). On the other hand, processing time for (17) when
N ¼ 176 is 63.2 s (the real time factor is 0.316). Even for N ¼ 288 real time pro-
cessing is possible for Eq. (17).

7 Conclusions

In this paper we presented a novel algorithm for calculating the transfer function of the
Zelinski post-filter. The proposed algorithm has the computational complexity OðNÞ
and therefore it is much faster than the classical algorithm (which has the complexity of
OðN2Þ). The proposed algorithm also requires significantly less memory. These
properties are particularly useful for MAs with a large number of microphones. The
proposed algorithm can be applied in various MA applications, for example in speech
recognition [2], in speaker verification [11] and multimodal systems [12], etc.
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Abstract. The paper is concerned with the phonetic aspects of speech
synthesis of Russian vowels with the use of a voice source signal. An orig-
inal method of recording the glottal wave synchronously with an output
speech signal was employed to obtain the experimental material. Several
types of perceptual experiments were carried out. The comparison of the
recorded signals allowed us to analyze the structure of the speech signal
at different stages of its generation. The source-filter interaction is ana-
lyzed by speech signal filtering. The transfer functions of the articulation
for the Russian vowels were obtained. The transfer functions and voice
source signals of different vowels were used to generate new signals. The
resulted signals were analyzed. We examined the way the fundamental
frequency, voice quality and a type of phoneme influence the source-filter
interaction. In the paper the perceptual experiments, acoustic analysis
and signal generation results are presented.

Keywords: Phonetics · Voice source · Source-filter interaction ·
Formants · Formant synthesis

1 Introduction

For the last 50 years four basic approaches to modeling and synthesis of speech
have been developed at many research centers. These are articulatory, formant,
concatenative and parametric ones [1]. The most flexible models for speech syn-
thesis are the articulatory and the formant. However, the synthesized speech
tends to be of bad quality in terms of intelligibility and naturalness. The con-
catenative synthesis for a long time (since 80s of the 20th century) has provided
the best compromise between price and quality of the synthesized speech. How-
ever, its main drawback is low naturalness of sound caused by a large number
of joints between the basic elements in the compilation process and a need to
modify the acoustic parameters (primarily, pitch, duration and spectral compo-
nents). As a result, HMM-based Unit-Selection synthesis has been focused on.
Recently this model has been of great interest for research and speech applica-
tions [2–5]. However, those systems require large speech corpora (up to 100 h of
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speech). The annotated large speech corpora make it possible to concatenate any
speech phrase using available sound units and sequences with proper acoustic
characteristics and correct intonation (Unit-Selection). Besides, it is possible to
generate speech signal employing method of parametric synthesis. The advantage
of this model is high naturalness of speech signal. The acoustic modification of
speech sounds is significantly reduced. However, on the other hand, this model is
cost and effort consuming as it requires large speech annotated corpora. Besides,
this system cannot be adapted to a new speaker without recording a new cor-
pus. Moreover, the systems of automatic speech synthesis are usually limited in
intonation modelling.

Traditionally, the process of speech production is described as having several
successive stages which are initialization, phonation, articulation and radiance of
speech signal [6–10].The observed interaction between the two parts of the vocal
tract does not make the classic linear source-filter theory completely consistent.
It is important to obtain the voice source signal and analyze its nature for
different fields of speech science and speech technology. There exist different voice
source models that are applied to the majority of linguistic research and speech
applications. Apart from LF-model [11–13] there are biomechanical models of
the voice source and the vocal folds [14–17]. The source-filter interactions that
involve changes in vocal fold vibration have been demonstrated by investigators
[9,16,18–20].

Our research is aimed at analyzing the signal of the voice source and the
output speech signal to consider the non-linearity of the vocal tract system.
The main task was to produce synthesized vowels of high naturalness which
can be obtained without recording a large speech corpus for a new speaker. The
coprocessing of these signals allowed us to construct the transfer functions of the
articulatory component for vowels, the frequency constituents of different kinds
of vowels and their variations. We used the transfer functions of certain vowels
and the voice source signals of others to synthesize vowel sounds (Sect. 4). A
group of expert phoneticians were involved into the auditory tests of the obtained
speech signals.

This paper is organized as follows. In Sect. 2, we introduce the equipment
and subjects. Section 3 presents the perceptual analysis. Section 4 describes the
acoustic analysis and the procedure of generating new signals. In Sect. 5 we
discuss the results. In Sect. 6 we formulate our conclusions.

2 Equipment and Subjects

The recordings were made in the recording studio. Multichannel recording system
Motu Traveler and WaveLab program were used. The recordings had a sample
rate of 44100 Hz and a bitrate of 16 bits. Two types of microphones were used.
The capacitor microphone AKG HSC200 was placed in the output of the speak-
ers mouth (Microphone External - ME). The miniature microphone QueAudio
(d = 2.3 mm, waterproof) was located in the proximity of the speaker’s vocal
folds (Microphone Internal - MI) with the use of special medical equipment.
This procedure was performed by a phoniatrician [21–24].
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The subjects of the experiment were 3 male and 3 female speakers. Each
speaker pronounced each of the 6 Russian vowels: /a/, /e/, /i/, /1/, /o/ and /u/
in different pitch modes: comfort, high, low, rising and falling. Apart from the
isolated vowels the speakers were asked to read a set of words.

3 Perceptual Analysis

The aim of the experiment was to find out if a voice source signal could be
identified as a speech sound and which Russian vowel it could be associated
with. A group of informants (23 individuals) were involved into perceptual tests.
The samples were organized on a random basis. The informants were asked to
assign each stimulus to one of the six Russian vowel phonemes. The questionnaire
had also no decision option.

The tests results showed that the vowel [a] stayed most intelligible and were
identified correctly in most cases. The vowels [e], [o] and [u] were second intelligi-
ble (Table 1). However, there were strong confusions of [i] and [u], [i] and [1] and
[u] and [1]. Besides, some informants reported that all vowel types were perceived
as labialized.

Table 1. Confusion matrix of vowel identification (in percentage)

decisions (%)

a e i -i o u no decision

a 75 16 0 1 4 1 2

e 18 52 0 2 18 4 6

i 1 2 25 30 2 33 5

-i 0 5 6 38 7 40 5

o 2 12 0 7 57 18 5

u 1 1 5 25 9 51 8

Table 1 above shows the identification strategy. Each row contains percentage
of answers of recognition for an input vowel indicated in the first column.

4 Acoustic Analysis and New Speech Signals Generation

The analysis of the vowel spectra shows that the signal from MI contains the
frequency constituents of the vowel formants (resonance frequencies of the set
of pharynx, nasal and oral cavities) However, the frequency constituents are
weakened in amplitude. It can be assumed that it is caused by the reflection of
the acoustic energy from the articulation system upstream [22,25]. As well as
this the plots show that the signals can be very different for the two microphones.
For example, see the plot for the vowel [1] (Fig. 1).
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/a/ /e/ /i/

/ / /o/ /u/

Fig. 1. Spectral densities for Russian vowels [a], [e], [i], [1], [o], [u]. The solid line shows
the spectral density of ME signal and the dashed line shows the spectral density of MI
signal.

The comparison of the recorded signals and the simulated ones including the
source-filter interaction was performed in previous work [26]. Thus, the reflected
energy in the nonlinear acoustic system of the vocal tract affects the work of
the voice source and the glottal wave characteristics. This energy is reflected
again to the articulation system and its frequency constituents are changed. The
next step was the discrimination and modelling of the transfer functions of the
articulation. The transfer functions and the formant positions were estimated
using the algorithm described in the research by Evdokimova [22,24,27].

The transfer functions were estimated as the Fourier transform of the pulse
response. The pulse response of the length of 216 = 65536 samples was estimated
by the LS approach. The superfast Schur algorithm for Toeplitz matrix inversion
was implemented. The resulting transfer function was then smoothed to prevent
a jitter between support frequencies where the estimates are reliable. The pro-
gram uses the synchronized signals from both microphones and calculates the
transfer functions of the vowels.

5 Results of Vowel Synthesis

The obtained transfer functions of the vowels were used to generate new signals.
The voice source signals of different vowels with different fundamental frequency
characteristics were the input for these transfer functions. Our aim was to find
out which of the following would influence the resulted signal more: the char-
acteristics of the voice source signal or the transfer function of the articulation
system.
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Fig. 2. Spectral densities for ME signal of the input vowel [a] (the dashed line in all
six figures) and the resulted output vowels with added transfer function of articulation
system for the vowels [a], [e], [i], [1], [o], [u] (solid line). Female speaker.

– The first experiment was the generation of the vowels using their own voice
source input signal. The results showed that the produced sound had a good
quality.

– The next step was the filtering of the voice source signals of higher or lower
fundamental frequency. The results showed that the synthesized vowels and
the input signals had similar pitch.

– The third step was to mix the transfer functions of vowel type with voice
source signals of the other vowel types for the same speaker. In Figs. 2 and 3
the results for two vowels are presented.
The MI signal of the [a] realization was used as an input signal for the transfer
functions of another [a], [e], [i], [1], [o], [u], realizations. The same procedure
was performed with voice source signal of the vowel [1]. The choice of the input
signals was influenced by the results of the perceptual analysis which showed
that [a] MI signal was identified as [a] in most cases. Also the auditory analysis
showed [1] MI signal as the most unintelligible.

– The final step in the filtering procedure was to mix the voice source signals and
the transfer functions of the same vowel phonemes for different speakers. The
MI signal of the one [a] realization was used as an input signal for the transfer
function of the [a] of another speaker. The mixing of the male voices showed
that the resulted vowel had the same formants as the transfer function had.
However, the perceived voice quality had the characteristics of the speaker
whose input voice source signal was used.
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Fig. 3. Spectral densities for ME signal of the input vowel [1] (the dashed line in all
six figures) and the resulted output vowels with added transfer function of articulation
system for the vowels [a], [e], [i], [1], [o], [u] (solid line). Female speaker.

6 Conclusions

1. The acoustic analysis and perception experiments allowed us to specify and
improve the source-filter model. The results confirmed the fact of the inter-
action between the two parts of the vocal tract.

2. The used approach allowed reliable automatic discrimination of the vowel
formant structure by processing the speech signal.

3. In experiments with mixing voice source signals and articulatory component
of different vowels and speakers the resulted signal had the voice quality of
the input signal.

4. The reflected signal of the feedback section was sometimes stronger and influ-
enced the resulting signal more in the experiments of using voice source signal
of one phoneme realisation with the transfer function of other vowel phoneme.
Therefore we can conclude that the speech synthesis system should have the
voice source signals for different phoneme types.

5. The constructed model of the filter part of the vocal tract completely corre-
sponds to the basic phonetic laws. It adds the accuracy to the existing mod-
els of the speech production and can be used for solving specific problems of
speech technologies.

Acknowledgement. The authors would like to thank the Saint Petersburg State
University. This work has been carried out in the framework of SPbSU projects n.
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Abstract. Nowadays a number of studies have demonstrated the great
interest in discourse differences on the domain of monologue, dialogue
and polylogue communication on the Internet. This paper describes the
results of our investigation regarding relations between some types of
deprivation, on the one hand, and, on the other hand, its verbal, paraver-
bal and non-verbal determinants from emotional and emotional-modal
point of view, on the basis of spoken Russian communication by means
of YouTube.com, Skype and ok.ru videohostings. The research is aimed
at developing a knowledge database for the decision-making system and
the computer-aided analysis of Russian spoken and written discourses in
social network communication on Internet.

Keywords: Deprivation · Social network discourse · Verbal · Paraver-
bal and non-verbal information · Monologues · Dialogues · Polylogues ·
Emotional and emotional-modal states

1 Introduction

The fundamental model of human emotional and emotional-modal behaviour
regarding interpersonal, socioeconomic, interethnic, interconfessional, political,
geopolitical and other types of deprivation should include such variables as
value expectations (expectations, hopes, prospects of future etc.) and value
opportunities of certain individuals and communities [7,9]. The discrepancy
between these values can be defined as a measure of relative deprivation (RD)
[3,7], which is the principal cause of individual and mass frustration that can lead
to realization of conflicts, individual and mass destructive behaviour, all types
of aggression, and finally, to terror actions. The research is aimed at handling
a major scientific problem of detecting the verbal, paraverbal and non-verbal
characteristics of the formation and functioning of a new communication type
(electronic social network discourse (SND)) in the global electronic media envi-
ronment [11–13,23]. The final result of this new type of communication is the
social network communication (as a material product) which reflects interper-
sonal, interethnic, interconfessional, political, geopolitical and socioeconomic
c© Springer International Publishing Switzerland 2016
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relations. This is expressed in the specifics of verbal, paraverbal and non-verbal
correlates of written and spoken utterances. The original assumption of the
current research would be that spoken and written language is a product of
complex polyfunctional human activity, the system which includes all com-
ponents of psychophysical, functional-motoric and mental-cognitive-intellectual
subsystems regarding the scientific aspects of biology, psychology, physiology,
biomechanics, anthropophonics, semiotics, cognitology, cogitology, and sociopsy-
chology [1,8,14–16,21]. At the same time the additional multitude of various
components of human speech activity constitutes a qualitatively new integral
product, whose features do not make the sum of the features of its components,
being realized both in spoken and written form. The functioning of the emotional
and emotional-modal mechanism is regarded as a special feature of the speech
product and has a direct cause-and-effect relationship with all its components,
which has been thoroughly studied regarding the functioning of psychological
and value-oriented mechanisms of human life activities.

2 Research, Method, Results

The special issue of this research is to establish the relationship between peculiar-
ities of human speech activity and various manifestations of deprivation (Fig. 1).
It is known that the verbal, paraverbal and non-verbal mechanism of deprivation
manifestation concerning the emotional and emotional-modal level with refer-
ence to specific features of speech production and speech perception of written
and spoken language at the initial stage has been examined [7–16,22,24].

Fig. 1. Mechanism of influence of deprivation factors on the discourse production
system

Addressing the abovementioned problem (regarding social networks; video
hosting service YouTube.com and Skype VoIP technology) in order to define ver-
bal, paraverbal and non-verbal determinants of emotional and emotional-modal
human behaviour under conditions of multifactor deprivation will allow one to
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establish the system of semantic content determinants used for manipulating
the recipients consciousness with destructive intentions. This refers first of all to
pronunciation correlates of the means, used to communicate various types
of deprivation, and to establishment of the forms of dependence between
the auditory-perceptual and acoustic determinants of human emotional and
emotional-modal behaviour under conditions of the presence of various types
of deprivation on the basis of communication and social media tools. Revealing
of verbal, paraverbal and non-verbal specificity of SND formation and func-
tioning in the global electronic media environment is based on the definition
of the SND as a special electronic macropolylogue, considering the relevant
categories of its form, content and functional weight [17]: SND form types of
electronic macropolylogue: distant, indirect, real-time (on-line) and put off-time
(off-line), single-vector polyvector, monochronous polychronous; SND content
types of electronic macropolylogue: monothematic polythematic, high contex-
tual low contextual, provoking debates, actions, deeds not provoking debates,
actions, deeds; SND function types of electronic macropolylogue: informative
with the senders point of view, influencing, containing certain verbal, paraverbal
and non-verbal means which can produce influence on recipient of the message,
provoking with a certain aim to commit specific actions (particularly destructive,
realized according to the “stimulus → pragmatic reaction in a form of specific
destructive action” scheme), recipients consciousness manipulation, aimed at a
limited target group of users aimed at an infinite number of users; types of fac-
tors of electronic macropolylogue SND that influence upon the specificity of com-
munication: psycho-physiological (e.g., age-specific, gender-related, pathological,
emotional, etc.), ethnic, socio-economic, political and geopolitical, confessional,
cultural [4,5], pragmatic, moral and ethical.

Thus, the SND in the global network is characterized by irreversibility,
contextuality, dynamism, social relations hierarchy violation (democratic char-
acter/pseudodemocratic character), the combination of monochronism and poly-
chronism considering the high speed (tempo) of information dissemination, the
combination of statements of low- and high-context culture representatives, the
increase in interpersonal space, an infinite number of themes, causal condition-
ality, recipients conscience manipulation, emotional and emotional-modal rich-
ness. It is obvious that all the above mentioned SND characteristics contribute
to the formation of a cognitive, cogitive/verbal and emotional and emotional-
modal portrait of the electronic personality [7,9]. Problem domain analysis as
well as the study of earlier researches of emotionally coloured speech together
with speech correlates of various emotional states made it possible to form an
approximate list of emotions and emotional-modal states which provided the
basis for a single-purpose survey intended for conducting perceptual-auditory
experiments in order to assess and describe the emotional content of speech in
target phonograms as well as to model the range of identifiable emotions on the
basis of clusterization of characteristic values with a view to creating a multi-
media based atlas of emotional and emotional-modal states in real conditions.
Experimental studies aimed at finding possible sources of target phonograms and
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videograms determined the following ways of collecting speech material: hidden
audio or video recording of people in real-world situations which involve emo-
tionally coloured utterances (primarily in conflicts or emergencies); the analysis
of audio and video recordings of one of the abovementioned types on the Internet
in the public domain.

Within the framework of the present research a primary analysis of verbal,
paraverbal and non-verbal features of informants communicative behavior was
performed, enabling to correlate these features with manifestation of various
types of deprivations associated with political, geopolitical, socio-economic and
confessional issues. The material of the research is based on videos posted on
the most visited video hosting YouTube.com, as well as those posted in social
network ok.ru/video and Skype. The purpose of the research is identification
of the main explicit features of informants verbal behavior, correlation of these
features with demonstrated emotional and emotional-modal state and degree
of deprivation, as well as an analysis of videos as SND elements. The research
objectives at this stage of project are as follows: to create a database of video frag-
ments posted on YouTube.com, ok.ru/video and Skype sites; to classify selected
video contents by types of deprivation; to conduct a perceptual-auditory and
visual analysis for subsequent identification of verbal, paravererbal and non-
verbal markers of emotional and emotional-modal states and to correlate the
obtained data with types of deprivation; to formalize the obtained data by con-
structing tables including SND parameters regarding its form, content, func-
tion, types of influence, emotional and emotional-modal coloring (SND forms
are: distant, mediated, real-time (on-line) and postponed (off-line), single vector
polyvector, monochronous polychronous; SND content types are: monothematic
polythematic, informationally rich (highly contextual) informationally poor (low
contextual), provoking debates, actions, deeds not provoking debates, actions,
deeds; SND functions are: informing, containing the message senders point of
view; influencing, containing special linguistic means of influencing the recipi-
ent; rousing a specific action or deed (in particular, destructive ones implemented
by the scheme stimulus → pragmatic response in the form of a specific destruc-
tive action), manipulating the recipients consciousness; aimed at limited group
of users aimed at an unlimited number of users; factors influencing the specifics
of SND communication: psycho-physiological (e.g., age, gender, pathological,
emotional, etc.); ethnic; socio-economic; political and geopolitical; confessional;
cultural; pragmatic; moral and ethical) [7,9].

The objects of this research are spoken statements within the SND (mono-
logues, dialogues [2], macropolylogues). At this stage of the study 287 videos
were selected for a database that had been posted during the period from
02.04.2011 to 29.10.2015. The main focus was on the videos of 2014–2015 (80 %
of the total number of records) as the most relevant and suitable ones in the
current situation in the Russian Federation. The material subjects regarding
deprivation were as follows: internal Russian politics (government; legal systems,
opposition, etc.); geopolitical relations (Ukraine, Ukrainian immigrants/refugees;
Syria, etc.); socio-economic relations (crisis, ruble fall/price increases; sanctions;
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pensions, wages, living conditions; stores; ecology; migrants/guest workers);
interpersonal relationships (family and children, disabled people); confessional
issues (Christianity, Islam). The share of video records for each thematic group in
the database is shown in the diagram (Fig. 2). Thematically, the analyzed mate-
rial shows a significant prevalence of Russias internal policy and socio-economic
relations as subjects of the SND.

At the preliminary stage 45 video records (105 subjects) were analyzed on
political, geo-political and socio-economic issues. For each subject, a perceptual-
auditory analysis (according to the instructions developed for perceptual-
auditory and visual analysis) were performed [12]. The number of listeners and
visual recipients was N = 60. Thus, for each subjects speech a description was
drawn up, which included such parameters as: nonverbal behavior: gestures, e.g.
hands crossed on his/her chest; hand movements in time with speech; facial
motions, etc.; speech style: e.g. strained; prosodic means of conveying the emo-
tional and emotional-modal state: melodic register; melodic range; predominance
of melodic finalization forms; tempo; loudness; presence of certain segments of
maximum loud singled out within an utterance; pausation; duration of pauses;
predominance of unfilled pauses; timbre (mellow, harsh, etc.); rhythm patterns
[6]; lexis used in the SND; emotion/emotional-modal state shown: e.g. preten-
tiousness, dissatisfaction; SND parameters by its form: e.g. not mediated, in real
time; polyvector; monochronous (Fig. 3); SND parameters by its content: e.g.
monothematic, informationally poor, not provoking debates; SND parameters
by its functions: e.g. containing the message senders point of view, aimed at an
unlimited number of users; SND parameters by factors influencing the specifics
of communication: e.g. geopolitical factors. Thus, for each subject, verbal, par-
averbal and non-verbal markers of emotional and emotional-modal state were
obtained, and these markers were correlated with some types of deprivation.
The following results were obtained (Figs. 3, 4 and 5).

Regarding SND forms, the following results were obtained: for off-line dis-
courses: monochronous polyvector types are predominant; for on-line discourses:
single-vector types prevail. SND content types are distributed as follows (Fig. 4).
As can be seen, the following SND content types dominate: monothematic, infor-
mationally unsaturated, not provoking debates. As for polythematic types, those
discourses that are informationally rich and provoking debates form the vast
majority. Thus, there are less polythematic discourses than monothematic ones,
but they are richer in information and provoke debates. Speech activity types in
the SND is represented as follows (Fig. 5). The SND is characterized by the pre-
dominance of males in all types of speech activity - monologues, dialogues and
polylogues. The monological form is the primary one. The negative emotional-
modal states anxiety, depression, sorrow and sadness form the dominant group of
analysed states of SND-communicants. And all negative emotional-modal states
in the SND were evaluated as strong and weak ones. Our results on the domain
of emotional-modal state recognition show that the analyzed SND states were
evaluated first of all as strong and weak negative ones. Main determinants of all
types of deprivation are depression, anxiety, sorrow, sadness.
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Fig. 2. Thematic distribution of mate-
rial on YouTube.com video hosting, as
well as in social network Odnoklassniki
(ok.ru) and in Skype for 2014–2015

Fig. 3. SND forms compared (in %)

Fig. 4. SND content types (in %) Fig. 5. SND by speech activity types
(participation of males/females in var-
ious types in %)

3 Conclusion

The SND can be regarded as a special lingua-technological phenomenon with
its own form, content and functions. The SND is intended for a wide range
of audience like a macropolylogue, which comprises an open set of dialogues,
whose communicants can be both in non-antagonistic dialogical and in antago-
nistic antidialogical relations to each other. Special mention should go to pseudo-
dialogues, i.e. absurd conversations, chatter, gossip, demagogy etc. [2]. A huge
number of pseudo-dialogues have recently been recorded. They form pseudo-
polylogues which include “likes”, “reposts”, “fakes”, thus increasing the index of
“self-worth” of social network users, the so called “electronic personality” in the
world of information technology. In view of the SND global dimension, its main
features, taking into account its categories, forms and functions, can be charac-
terized by the presence of the combinatorial set of simultaneity and non-
simultaneity as well as the one of monochronism and polychronism.
The combinatorial set of high contextuality and low contextuality is
characteristic of the SND semantic aspect [4,5,7,9]. The essential features
of culture as well as its distinctiveness for ethnic models are supposed to diffuse
for the objective reasons of informational globalization. As a consequence, they
form a new multiple-purpose combination, which manifests itself as the
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SND, which, in its turn, is charged with communicative, informing, influ-
encing and provocative functions. In consideration of the foregoing the aim
of our research in the future is as follows: to determine the role of verbal, par-
averbal and non-verbal means in defining peoples vision of extremism as well as
hatred, enmity and discord incitement on the basis of deprivation phenomenon;
to determine verbal, paraverbal and non-verbal means used to manipulate the
recipients conscience; to systematize lexical and prosodic means, used to form
conceptual categories, concepts criteria and frame knowledge structures for the
semantic field of deprivation; to classify verbal, paraverbal and non-verbal means,
used to represent and form conceptual metaphors in the SND; to develop major
criteria of the destructively oriented SND expertise considering deprivation forms
reconstruction with the aim of forecasting.

As a result, to the fore comes the problem of various interpretations of the
range of implicit meanings of discourse fragments based on the verbal, paraverbal
and non-verbal communication [17–20], inclusive of presupposition, implication,
connotation, metamessage and background knowledge, on the one hand, and the
written and spoken language segment/suprasegment information, on the other.
This will directly serve as a conceptual tool for solving problems related to SND
nature and functions.
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Abstract. The high frequency part of the voiced speech signal beyond
4 kHz is very difficult to study and to decompose into harmonics. In
the HNM this spectrum part is assumed to be noise. In this paper it
is shown that the main problem is numerical. Faster harmonics have
faster trends. It is necessary to implement precise estimation technique
to estimate a high frequency complex amplitude on a short time interval.
An illustrative example is supplied. In the second part of the paper a
new modification technique is proposed for interpolation of the complex
amplitudes in the case of intonation modification. Reliable estimates of
harmonic complex amplitudes are necessary as inputs. Then a nonlinear
rule is formulated that incorporates specific features of formants and
their slopes.

Keywords: Harmonic speech model · Parameter estimation · Speech
modification

1 Introduction

The parametric model analysis and synthesis is a powerful tool for speech signal
description with various applications. The Harmonic-plus-Noise Model (HNM)
and its modifications was the base of the parametric approach [1,2]. The high
frequency spectrum can be studied in more detail and the noise model is replaced
by harmonic trends. Another approach is based on instantaneous harmonic para-
meters and wavelet packets [3,4].

At the stage of analysis, a speech signal is divided in a sequence of overlapping
frames. A signal in a frame is to be approximated by a parametric formula,
that is, a full set of parameters is estimated. The obtained model can be used
for various purposes including synthesis, modification, recognition. The most
popular models are stationary and linear. The stationary harmonic model in the
frame is given by the following equation:

ŝt =
M∑

m=−M

ame2πimft
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where t is the time instant, f is the fundamental, M is the number of harmonics,
am is the complex amplitude. It holds a−m = ām because the value of ŝt is real.
The full set of parameters consists of a single value of f and of a set of amplitudes
A = (am)M

m=−M .
Each term in the sum can be considered as an independent harmonic that

changes from frame to frame. This is clearly seen for the low frequency part
of spectrum. A low frequency harmonic has a couple of periods and is nearly
stationary in the frame. That is enough to estimate the harmonic parameters.

High frequency harmonic signals can be recognised by the ear on a short time
interval because it contains many periods. This time interval can be shorter than
the interval of analysis. Therefore, a transient may occur in the high frequency
part of spectrum inside the time interval of analysis. This can be a reason to
declare the high frequency spectrum of the voiced speech signal as a noise and
to apply the harmonic model to the low frequency spectrum only.

The another problem is a contradiction between the time and frequency
resolution. Any pair of neighbouring harmonics in the sum of the harmonic
model has the frequency difference f . An interference of the harmonics occurs
on short time intervals or under nonstationary conditions. It is very difficult to
estimate model parameters if there are a couple of interfered pairs of harmonics.

In this paper, a precise implementation of the LS algorithm is presented that
finds a minimum of the mean square error:

E(A, f) =
∑

t∈Δ

|wt(st − ŝt)|2,

where w = (wt)t∈Δ is an appropriate window.

2 High Frequency Spines Separation

The speech signal in Fig. 1 is examined as an illustrative example. It contains a
syllable .

A spectrogram of the central part containing the allophone is shown in
Fig. 2.
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Fig. 1. The speech signal
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Fig. 2. The spectrogram of the allophone . The energy is concentrated around 5 kHz

Notice that there are several spines in the high frequency part of the spec-
trogram that are located closely. Nevertheless, the precise technique of harmonic
separtion in the LS estimation identifies the spines that are the trends of har-
monic signals constituting the high frequency consonant . This precise esti-
mation is necessary for the accurate modification of intonation.

Frequencies of harmonics in the high frequency part of the spectrum are very
sensitive to the Pitch value. Estimation error of a harmonic frequency of a voiced
signal leads to complete failure in amplitude and phase estimation. Therefore,
accuracy of the Pitch estimation is especially important for high frequency con-
sonants.

The central part of the signal contains the allophone . Spectra of two
frames of this signal of the length of 50 ms are shown in Figs. 3 and 4.

There are two basic approaches to modelling of this type of the spectrum.
In the HNM approach this part is assumed to be not structured and therefore
its model is a noise. The later modifications of HNM incorporate some regu-
lar structure of the high frequency spectrum. In this paper, we consider the
pure harmonic model of the full frequency spectrum and try to estimate all the
parameters of the harmonic trends.

The Pitch, amplitude and phase parameters were estimated by algorithms
described in [5], and the decoder algorithm was described in [6]. The result
of the signal resynthesis is shown in Fig. 4. The high frequency harmonics are
successively estimated and reproduced (Fig. 5).

The low frequency harmonics change their amplitudes as a rule together with
the full sound energy or in transients between allophones. If the high frequency
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Fig. 3. Spectra of two frames of the allophone , the estimated signal by the harmonic
model, and the estimation error

band of the speech signal is relatively wide then it contains much more harmonics
than the low frequency band. A distribution of amplitudes and phases of the high
frequency harmonics is perceived by the ear. This distribution may change faster
than intonation or energy of the full signal. Accuracy of estimation of the model
parameters depends on the frame length.

Trends of high frequency harmonics with big amplitudes are shown in Fig. 6.

3 Nonlinear Interpolation of Complex Amplitudes

The main problem of the intonation modification of the speech given by the
parametric model consists of phase interpolation. Both the initial model and the
modified model are represented by the harmonic models that are decomposed
into sums of harmonics with multiple frequencies [6].

The necessary condition for successful implementation of this harmonic-by-
harmonic modification is a precise estimation of both frequency and complex
amplitude of all the harmonics of the voiced speech signal that was discussed
above. In this section, two nonlinear approaches are presented for calculation of
complex amplitudes after modification of the Pitch period.

3.1 Direct Complex Smoothing

Let a pair of harmonics with known complex amplitudes have neighbouring
frequencies and it is required to estimate a complex amplitude of a harmonic
with frequency between them. If the amplitudes of the known harmonics are
equal or close then the interpolated harmonic has the same amplitude and its
phase is a convex combination of the phases. If one of the known harmonics
dominates the other in amplitude then the convex combination can be applied
to the complex amplitudes. This idea is implemented in the following rule.
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Fig. 4. Spectrum of the another frame of the allophone . The distance between
neighbouring peaks of the model is exactly the same (Fundamental) for all harmonics

Consider a harmonic model of a signal. Assume the modified signal is also
a sum of harmonics with fixed frequencies. Take one of them with frequency f .
The closest left frequency of the harmonics from the initial model and the closest
right frequency of the harmonics from the initial model will be denoted by fl

and fr, respectively. The complex amplitudes are denoted, respectively, by A,
Al and Ar. It is required to estimate A given all other parameters.

It was noticed in experiments that linear interpolation

A = Al
fr − f

fr − fl
+ Ar

f − fl

fr − fl

is admissible basically at the slope condition, where |Al| � |Ar| or |Al| � |Ar|.
The opposite case takes place when both harmonics belong to a formant and

they are relatively big. Then the amplitudes |Al| and |Ar| should be interpolated
smoothly and the phases can be interpolated linearly.

The aggregated rule is nonlinear. Denote

Al = ale
iφl , Ar = are

iφr .

Then
A = γrAle

iδγl(φr−φl) + γlAre
iδγr(φl−φr),

where
γl =

f − fl

fr − fl
, γr =

fr − f

fr − fl

and

δ =
2min{al, ar}

al + ar
.

The tests have shown that the smoothing procedure works correctly and does
not produce clicks. But it can weaken spectrum peaks in the second formant
band. This leads sometimes to a vague sound.
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Fig. 6. Frequency trend (left) and amplitude trend (right) of the main harmonics of
the allophone from Fig. 1

3.2 Linear Phase Correction

The local formant structure of a sound in a short time analysis is very sensitive
to a small deviation of the spectral envelope. The formants do not necessarily
correspond to the local maxima of the envelope. Sometimes the second formant
is recognised as a small amount of extra energy in the slope of the big first
formant. Therefore, smoothing of the spectral envelope by a rough interpolation
as in the previous Section is not accurate enough.

The spline interpolation of the real spectral amplitudes has proved to be a
stable approach for correct speech signal modification that preserves the formant
structure.

Consider the phase interpolation problem. It was studied for a long time [1].
Assume the voiced signal under consideration is locally close to periodic. Then
its Fourier transform of the fixed length nearly does not depend on the window
position. More precisely, the signal st can be expand as:



Precise Estimation of Harmonic Parameter Trend 553

st =
M∑

m=0

am cos
(

2π

P
mt + φm

)
, t − t0 = 1, 2, . . . , T,

where T is the length of the interval of the analysis, t0 is the beginning time
instant, P is the Pitch period, M is the number of harmonics, am is the (real)
amplitude, φm is the (initial) phase of the m-th harmonic.

The signal st contains a constant term and M harmonics with the angle
frequencies fm = mF , F = 2π/P , 1 ≤ m ≤ M . After modification the new
period R generates harmonics with the frequencies gk = 2πk/R, 1 ≤ k ≤ N .
Assume g is a frequency of a new harmonic and hm < g < hm+1. If φm and φm+1

are close then interpolation can be reduced to a simple convex combination. But
if the distance between φm and φm+1 is close to π then it is not obvious should
we add or subtract this value of π.

The initial phases (φm)M
m=0 for a periodic signal st are defined up to an

arbitrary linear function. Indeed, consider a translated time interval with tc =
t0 − c. Then

st =
M∑

m=0

am cos
(

2π

P
mt +

(
φm +

2πc

P
m

))
, t − tc = 1, 2, . . . , T.

We see that the phases changed by the linear function

φc
m = φm + �(mF ), �(f) = cf, 0 ≤ m ≤ M.

The phases are defined up to the terms 2πk. We want to find a linear function
such that deviation of the initial phases from this linear function is minimal. This
leads to the following minimization problem:

J(�, (km)) =
M∑

m=0

wφ
m|φm − 2πkm − �(mF )|2 → min

�(·),(km)
,

where �(f) = kf + b is a linear function of the frequency f and the weights
wφ

m = A2
m are the squared harmonic amplitudes.

The weights wφ
m = A2

m determine which phases are more important for inter-
polation. Numerical minimization of the function J is not easy because it consists
of linear quadratic part in c and k and of integer part in (km)M

m=1. A numerical
algorithm was implemented and tested.

4 Conclusion

The consonant has the main energy between 3 kHz and 5 kHz. The spec-
trum of this signal looks like a noise even on short frames. Nevertheless, It can
be successfully described by the harmonic model with a very accurate estima-
tion procedure of amplitudes and frequencies. It was recognised that a rate of
the trend of the high frequency harmonics is much faster than that of the low
frequency harmonics.
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Two new approaches for synthesis of the speech signal after modification of
intonation are presented. The first method is based on the nonlinear interpola-
tion between neighbouring complex amplitudes of the source signal spectrum.
The second method contains spline interpolation of real amplitudes and a new
approach to the linear phase correction. The correction is reduced to the global
minimization of the appropriate cost function.
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Abstract. Authorship profiling, i.e. revealing information about an unknown
author by analyzing their text, is a task of growing importance. Researchers are
currently attempting to identify certain psychological characteristics of a text’s
author (extraversion, openness, etc.). However, it is well-known that a lot of
psychological traits mutually correlate making up what is known as a person-
ality psychological profile. The aim of the study is to assess the probability of
self-destructive behaviour of an individual as a set of particular traits via formal
parameters of their texts. Here we have used corpus RusPersonality, which
consists of Russian-language texts labeled with information on their authors.
A set of correlations between scores on the Freiburg Personality Inventory scales
that are known to be indicative of self-destructive behaviour and text variables
has been calculated. A mathematical model which predicts the probability of
self-destructive behaviour has been obtained.

Keywords: Authorship profiling � Russian language � Corpus linguistics �
Predicting personality from text � Regression

1 Introduction

Authorship profiling (also referred to as AP), which is the process of revealing con-
jectural information about an unknown author (demographics, personality, education,
mental health, etc.), just by computer analysis of a given text (on lexical, morphological,
syntactical etc. levels), is a task of growing importance – for national security, criminal
investigations, and market research. Scientists trying to address this task generally
assume, as a given, the sociolinguistic observation that different groups of people
speaking or writing in a particular genre and in a particular language use that language
differently. To solve authorship profiling problem, text corpora are used for which
author details (gender, age, psychological testing results, etc.) are known, and numerical
values of particular text parameters (content-based parameters – e.g., proportions of
certain vocabulary groups; and style-based parameters – e.g., proportions of preposi-
tions, conjunctions and other function words) are calculated. Correlations between text
and personality parameters are identified; based on these, mathematical models are
designed by means of mathematical statistical methods (regression methods, computer
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learning methods) with the input data being numerical text parameters and the output
data being personality parameters. This is now a common approach. For example, in [2]
the researchers show that the right combination of linguistic features and statistical
methods enable an automated system to effectively determine the gender, age, native
language, and level of neuroticism of an anonymous author.

There has been a growing interest of late in the Author Profiling (AP) task [2, 4, 9, 10].
This is mostly due to a rapid increase in volumes of internet communications, and thus a
growing demand for methods which enable the identification of internet communicators.
For example, in [2] the authors studied the problem of automatically determining an
author’s gender by the use of combinations of simple lexical and syntactic features; they
achieved an accuracy of about 80 % via this means. Schler et al. [15] studied the effect of
age and gender on the writing-style exhibited in blogs; the authors gathered over 71.000
blogs and determined from them a set of relevant stylistic features (e.g. use of
non-dictionary words, parts-of-speech, function words and hyper-links), and content
features (such as word unigrams with the highest information gain). Analysing the texts
using these features, they obtained an accuracy of about 80 % for gender identification and
about 75 % for age identification.

There are international competitions which have been instituted in order to reveal the
most accurate methods of authorship profiling using numerical parameters of texts [13].
However there remains a great deal which needs to be addressed. One of the major issues
facing researchers dealing with text-based personality detection is that of which text
parameters are to be analysed. Most studies provide no explanation of the correlations
between quantitative text parameters and personality traits; there is thus no theory sup-
porting the choice of any particular parameter (see [9] for review). Furthermore
researchers are attempting to identify degrees of certain characteristics (extraversion,
friendliness, etc.) based on texts by individuals as a personality’s characteristics are
known to correlate making up what is known as a personality’s psychological profile. For
instance, self-destructive behaviour (suicidal behaviour being an extreme form of this) is
known to be not just one particular personality trait but a complex personality feature
functioning and manifesting itself on different levels. Self-destruction behaviour is
associated with spontaneous aggressiveness, high levels of anxiety, and depressiveness
[1, 3]. Therefore an important issue is profiling not certain individual characteristics but
their combinations. This paper looks at ways of identifying the correlations between the
formal parameters of Russian-language texts and personality traits which are determi-
nants of self-destructive behaviour (spontaneous aggressiveness, depressiveness, emo-
tional lability, composedness) and designing a mathematical model which is able to
identify proneness to self-destructive behaviour in authors of written texts.

2 Materials and Methods

2.1 Participants

For this study, we used the “Personality Corpus”, which consists of Russian-language
texts of different genres which are samples of natural written speech (e.g. description of
a picture, essays on different topics, etc.) labelled with information on their authors
(gender, age, results of psychological tests, and so on) [7, 8].
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For the purpose of the current study, each respondent (N = 721, 422 female,mean age
19.8, SD = 3.3, students of Russian universities, all native Russian speakers) was tested
using the Freiburg Personality Inventory (FPI) adapted by A.A. Krylov and T.I. Ron-
ginskaya [2]. This questionnaire was chosen as being capable of accurate measurement of
determinants of self-destructive behaviour [1].According to a current view, high scores on
“Spontaneous Aggressiveness”, “Depressiveness”, “Emotional Lability” and low scores
on “Composedness”wereusedasbeing indicativeof self-destructivebehaviour [16]. For a
further study respondents with severe and low risk of self-destructive behaviour were
chosen (Table 1).

2.2 Procedure

Each respondent (N = 80) was asked to produce two texts which were then processed as
one text: a letter to a friend about things happening lately, and one to an imaginary
employer explaining why they (the respondents) were good for a particular job.
Respondents were instructed to write as much as possible: whatever first came into their
minds. There was a time limit of 40 min. An average text was 176 words long, SD = 54
words. Texts were divided on experimental set (i.e. used for regression model building)
(60 texts) and test set (20 texts). For the analysis, onlyquantifiable parameterswhich canbe
automatically retrieved from texts were selected. The following were on the list:

1. Indices of the readability of the texts:
1:1. Flesch readability index. For the Russian language, this is calculated according

to the formula [10]:

Flesch index ¼ 206:835� 1:3
total of wordsð Þ

total of sentencesð Þ
� 60:1

total of syllablesð Þ
total of wordsð Þ ; ð1Þ

Table 1. Characteristics of the respondents

Respondents with severe risk of
self-destructive behaviour

Respondents with low risk of
self-destructive behaviour

Testing score high (7–9) on 3 of 12 scales of FPI:
“Spontaneous Aggressiveness”,
“Depressiveness” (individuals
scoring high on psycho
pathological depressive
syndrome), “Emotional Lability”
(high scores are indicative of an
unstable emotional condition with
affective reactions), and low (1–3)
on “Composedness” (low scores
are indicative of low stress
resistance),

low (1–3) on 3 scales of FPI:
“Spontaneous Aggressiveness”,
“Depressiveness”, “Emotional
Lability”, and high (7–9) on
“Composedness”,

Demographics N = 43 (26 females, 17 males,
average age is 20, SD = 2.3)

N = 37 (23 females, 14 males,
average age is 19.5, SD = 2.2)
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the calculation was performed using an online service http://audit.te-st.ru/tests/
readability/.
In the texts under consideration this index was in the range from 55 to 88.

1:2. Hanning Index (or Fog Index). For the Russian language, this was calculated
using the formula [11]:

Hanning index ¼ 0:4 0:78
total of wordsð Þ

total of sentencesð Þ
� ��

þ 100
total of complex wordsð Þ

total of wordsð Þ
� ��

; ð2Þ

where the total of complex words is a number of words with more than 4
syllables; 0.78 is a correction coefficient for Russian. The index was
automatically calculated using the service http://audit.te-st.ru/tests/readability/
In the texts under consideration the index was in the range from 2 to 7.

1:3. Average sentence length in words. This was calculated as the ratio of the total of
words to the total of sentences.

2. Index of lexical diversity in the text, i.e. the ratio of the number of different word
forms to the total of word forms abstracted to the range 0 to 100. This index was
automatically calculated using special software Novel Score (http://sourceforge.net/
projects/novelscore/).

3. Frequencies of different parts of speech: frequencies of function words (calculated as
a ratio of the total of function words to the total number of words in a text Here and
further on, the calculation of the frequencies of different parts of speech was made
automatic using the designed Python script and morphological analyzer polymor-
phy2); frequencies of prepositions; frequencies of conjunctions; frequencies of
particles; coefficient of coherence (calculated using the formula (particles + con-
junctions + prepositions)/3 N∙ sentence [5]); frequencies of pronouns; frequencies
of personal pronouns; pronominalization index (calculated as a ratio of the total
number of pronouns to the total number of nouns); coefficient indicating the ratio of
the total number of verbs and pronouns to the total number of nouns and adjectives
(calculated using the formula (verbs + personal pronouns)/(nouns + adjectives)).

3 Results

The data on numerical values of text parameters and scores on certain scales of FPI was
exported into IBM SPSS Statistics 22 [6]and a correlation analysis was performed of
numerical values of the selected text parameters and scores of the test scales (for each scale:
“Spontaneous Aggressiveness”, “Depressiveness”, “Emotional Lability”, “Composed-
ness”), p < 0.05. The correlation analysis revealed that a lot of text variables correlatewith
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several psychological personality traits at a time. Spontaneous aggressiveness correlated
with average sentence length (r = 0.339, p = 0.0105), lexical diversity (r = −0.503,
p = 0.000122), frequencies of prepositions (r = −0.328, p = 0.0137). Depressiveness
correlated with average sentence length (r = 0.317, p = 0.0164), lexical diversity
(r = −0.493, p = 0.000133), coefficient of coherence (r = 0.283, p = 0.0366). Com-
posedness correlated with lexical diversity (r = 0.422, p = 0.0164), frequencies of
prepositions (r = 0.263, p = 0.0481), frequencies of personal pronouns (r = −0.308,
p = 0.02). Emotional lability correlated with average sentence length (r = 0.307,
p = 0.0201), lexical diversity (r = −0.491, p = 0.000164), frequencies of prepositions
and conjunctions (r = 0.303, p = 0.0220), coefficient of coherence (r = 0.281,
p = 0.0376).

In order to detect self-destructive tendencies (as noted above, a set of personality
traits) by means of the obtained correlation coefficients considering multicollinearity, a
regression model, which was a system of linear equations (for each personality trait
associated with self-destructive behaviour), was designed. Generally the system of
linear Eqs. (3) looked like the following:

c1 ¼ a1b11 þ a2b21 þ a3b31 þ a4b41 þ a5b51
c2 ¼ a1b12 þ a2b22 þ a3b32 þ a4b42 þ a5b52
c3 ¼ a1b13 þ a2b23 þ a3b33 þ a4b43 þ a5b53 ;

c4 ¼ a1b14 þ a2b24 þ a3b34 þ a4b44 þ a5b54

ð3Þ

where a1 is the average sentence length; a2 is the index of lexical diversity; a3 are
frequencies of prepositions; a4 are frequencies of conjunctions; a5 are frequencies of
personal pronouns; c1 is spontaneous aggressiveness; c2 is depressiveness; c3 is
composedness; c4 is emotional lability.

The obtained equation system can be handily represented as a matrix (4) with text
parameters as the input parameters (row vector A) and personality traits as the output
parameters (column vector C), B is a matrix model:

A x B ¼ C;

a1a2a3a4a5ð Þ

b11b12b13b14

b21b22b23b24

b31b32b33b34

b41b42b43b44

b51b52b53b54

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

c1

c2

c3

c4

0

B

B

B

B

B

@

1

C

C

C

C

C

A

;
ð4Þ

where a1 is the average sentence length; a2 is the index of lexical diversity; a3 are
frequencies of prepositions; a4 are frequencies of conjunctions; a5 are frequencies of
personal pronouns; c1 is spontaneous aggressiveness; c2 is depressiveness; c3 is
composedness; c4 is emotional lability.
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The solution for these model can be easily found using a Mathematica software by
finding a global minimum of the function f(B) = |AB−C|. The matrix elements at
which the above system reaches its minimum were identified based on the numerical
values of all the text parameters that are included in the study corpus and personality
traits of authors. The matrix model (5) identified using minimization for calculating the
personality traits based on the selected text parameters is as follows:

B ¼

0:501 0:475 0 0:267
1:527 0:396 7:772 �1:38

�12:744 0 9:643 0
0 0 0 45:163
0 0 �19:473 0

2

6

6

6

6

4

3

7

7

7

7

5

: ð5Þ

The minimization model was proved to be highly efficient. The average deviation
from the test results was 2 points (on a 10 scale) for each personality trait (spontaneous
aggressiveness; depressiveness; composedness; emotional lability). The accuracy of the
model for predicting self-destructive behaviour is about 80 %.

4 Discussion

As correlation-regression analysis show, texts produced by individuals with a greater
likelihood of self-destructive behaviour (i.e. those who scored high on spontaneous
aggressiveness; depressiveness; emotional lability and low on composedness according
to FPI) typically show less lexical diversity, fewer prepositions, more pronouns overall
(and particularly personal ones), a higher coefficient of coherence (due to more con-
junctions and deictic particles), and a higher average sentence lengths in as compared
to texts produced by people with less likelihood of self-destructive behaviour (i.e. those
who scored low on spontaneous aggressiveness; depressiveness; emotional lability and
high on composedness according to FPI).

Let us try to give a tentative explanation of the established correlations. Using the
available data on the neurobiology underlying self-destructive behaviour, we suggested
that texts by individuals with high risk of self-destructive behaviour could contain more
text elements controlled by the right hemisphere and fewer those for which the left
hemisphere is responsible than texts by individuals displaying no such behaviour [14].
Indeed, a lower coefficient of lexical diversity in individuals with a greater likelihood of
self-destructive behaviour is consistent with the data indicating less vocabulary in
individuals with the activated right hemisphere. A lower percentage of prepositions in
the above individuals is accounted for by insufficient activation of the left hemisphere
areas known to be responsible for producing more abstract lexical units. A higher
pronominalization index, which is characteristics of written speech of people with
greater likelihood of self-destructive behaviour, “is commonly observed in weaker
paradigmatic language links relying on the cerebellum” [5, p. 82]. It is completely
consistent with the neurobiological and neuropsychology data indicating that insufficient
activation of the cerebellum is associated with aggressive and suicidal behaviour [14].
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We identified correlations between text parameters and personality traits (repre-
sented by personality test scores) and designed a mathematical statistical model, which
proved to be 80 % accurate. Unlike most studies on AP, this study was concerned with
language parameters which were selected on the basis of theoretical findings, i.e.
neuroscience data.

5 Conclusions

A worldwide and rapidly developing approach to detecting the personality of authors
from their texts, involving the design of predictive models based on the correlations
between quantifiable text parameters and individual psychological traits, is not without
flaws due to the fact that particular traits are analyzed instead of a set of traits.

We argue that this current research can significantly inform further studies in
authorship profiling as: (1) it suggests that it is not a particular personality trait that
needs to be analyzed but a whole set of traits, as the neurobiology of personality
indicates that self-destructive behaviour is based on a large number of personality traits
which share neurobiological foundations and are mutually correlating; (2) a mathe-
matical solution for profiling a set of personality traits using texts is set forth; (3) the
problem is addressed using Russian language materials. This has not previously been
extensively researched in relation to authorship profiling; (4) a model which predicts
the risk of self-destructive behaviour based on formal text parameters is proposed –

although we are aware of certain limitations of the study due to the relatively small
sample size, as well as the relatively few language parameters which were used for the
analysis. Of course, further research is necessary for a more comprehensive assessment
of these results. This would involve more respondents and more text parameters.
Employing automatic language processing, statistical methods, and neurobiology data
in investigating texts produced by individuals who committed suicide [12] is seen as
crucial to studying the language correlates of self-destructive behaviour and so
designing prognostic models.

Acknowledgments. Funding of the project “Predicting the probability of suicide behavior based
on speech analysis” from RF President’s grants for young scientists (grant agreement N°
MК-4633.2016.6) for T. L. and from the Russian Foundation for Humanities (grant N
15-34-01221 “Lie Detection in a Written Text: A Corpus Study”) for O.L. and P.S. is gratefully
acknowledged.

References

1. Angst, J., Clayton, P.: Premorbid personality of depressive, bipolar, and schizophrenic
patients with special reference to suicidal issues. Compr. Psychiatry 27(6), 511–532 (1986)

2. Argamon, S., Koppel, M., Pennebaker, J., Schler, J.: Automatically profiling the author of an
anonymous text. Commun. ACM 52(2), 119–123 (2009)

3. Batarshev, A.V.: Temperament and Character: Psychological Diagnostics. VLADOS-Press,
Moscow (2001). (in Russian)

Profiling a Set of Personality Traits of a Text’s Author 561



4. Chung, C.K., Pennebaker, J.W.: The psychological functions of function words. In: Fiedler,
K. (ed.) Social Communication, pp. 343–359. Psychology Press, New York (2009)

5. Fotekova, T.A., Akhutina, T.V.: Detecting Speech Impediments in School Children Using
Neuropsychological Methods. ARKTI, Moscow (2002). (in Russian)

6. IBM SPSS Statistics 22 Documentation. http://www-01.ibm.com/support/docview.wss?uid=
swg27038407#ru

7. Litvinova, T.A., Seredin, P.V., Litvinova, O.A.: Using part-of-speech sequences frequencies
in a text to predict author personality: a corpus study. Indian J. Sci. Technol. 8(9), 93–97
(2015). [S.1.]

8. Litvinova, T.A.: Profiling the author of a written text in Russian. J. Lang. Lit. 5(4), 210–216
(2014)

9. Nini, A.: Authorship profiling in a forensic context. Ph.D. thesis. Aston University (2014)
10. Noecker Jr., J.W., Ryan, M., Juola, P.: Psychological profiling through textual analysis. Lit

Linguist Comput. 28(3), 382–387 (2013)
11. Oborneva, I.V.: Automatisation of the assessment of perception of a text. Her. J. Mosc. State

Pedagogical Univ. 2(5), 86–92 (2005). (in Russian)
12. Pennebaker, J.W., Stone, L.D.: What was she trying to say? a linguistic analysis of Katie’s

diaries. In: Lester, D. (ed.) Katie’s Diary: Unlocking the Mystery of a Suicide, pp. 55–80.
Brunner-Routledge, New York (2004)

13. Rangel, F., Celli, F. Rosso, P.: Overview of the 3rd author profiling task at PAN 2015. In:
CEUR Workshop Proceedings (2015). http://www.sensei-conversation.eu/wp-content/
uploads/2015/09/15-pan@clef.pdf

14. Rozanov, V.A.: Neurobiuological foundations of suicidal behaviour. Her. J. Biol. Psychiatry
6 (2004) .(in Russian) http://scorcher.ru/neuro/science/data/mem102.php

15. Schler, J., Koppel, M., Argamon, S., Pennebaker, J.: Effects of age and gender on blogging.
In: Proceedings of AAAI Spring Symposium on Computational Approaches for Analyzing
Weblogs, vol. 6, pp. 199–205 (2006)

16. Yegorov, A.Y.: Coordination of the Activities of the Right Hemisphere of the Human Brain.
Abstract of thesis for Ph.D. in Medicine. Saint Petersburg (1999). (in Russian)

562 T. Litvinova et al.

http://www-01.ibm.com/support/docview.wss%3fuid%3dswg27038407%23ru
http://www-01.ibm.com/support/docview.wss%3fuid%3dswg27038407%23ru
http://www.sensei-conversation.eu/wp-content/uploads/2015/09/15-pan%40clef.pdf
http://www.sensei-conversation.eu/wp-content/uploads/2015/09/15-pan%40clef.pdf
http://scorcher.ru/neuro/science/data/mem102.php


Prosody Analysis of Malay Language
Storytelling Corpus

Izzad Ramli1, Noraini Seman1, Norizah Ardi2,
and Nursuriati Jamil1(&)

1 Digital Image, Audio and Speech Technology Research Group,
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA,

40450 Shah Alam, Malaysia
zadzed89@gmail.com, norizah@salam.uitm.edu.my,

liza@tmsk.uitm.edu.my
2 Academy of Language Studies, Universiti Teknologi MARA, 40450 Shah

Alam, Malaysia
aini@tmsk.uitm.edu.my

Abstract. In this paper, the prosody of the storytelling speech corpus is ana-
lyzed. The main objective of the analysis is to develop prosody rules to convert
neutral speech to storytelling speech. The speech corpus (neutral and storytelling
speech) contains 464 speech sentences, 4,656 words, and 10,928 syllables. It
was recorded by three female storytellers, one male professional speaker, two
female speakers and two male speakers. The prosodic features considered for
analysis are tempo, pause (sentence and phrase-level), duration, intensity, and
pitch. Further analysis of the word categories exist in storytelling speech such as
verb, adverb, adjective, noun, conjunction and amplifier are also conducted. The
global prosody analysis showed that mean prosodic of storytelling is higher than
neutral speech, especially intensity and pitch. Investigation on the word cate-
gories showed that words categorized as adverb, adjective, amplifier and con-
junctions have significant number of prominent syllables. Meanwhile, nouns and
verbs do not have significant difference between neutral and storytelling speech.
Positions of the words (i.e. initial, middle, last) in a phrase for different word
categories also proved to have different increasing factor in duration, pitch and
intensity.

Keywords: Neutral speech � Storytelling speech � Prosodic parameters �
Expressive speech � Prosody rule-set � Text-To-Speech (TTS)

1 Introduction

Speech synthesis is widely used in various applications. However, it produces neutral
speech sound like news reading speech [1]. Therefore, there is a growing need for an
expressive speech synthesis to vary the speaking style speech especially for digital
communication and humanoid robotic [2]. Converting neutral speech to storytelling
speech requires manipulation of speech prosody. The efforts of varying prosody can be
controlled using rule-based methods [3, 4] or data-driven methods [5]. Data-driven
methods are preferred these years. However, it requires a significant amount of training
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data, high cost, and difficulty in recording a large amount of speech with the same
quality. The rule-based method, on the other hand, does not require extensive recording
data. Therefore, maintaining speech quality is non-existent. Nevertheless, a rule-based
method needs a thorough prosody analysis to understand the linguistic nature and
describe the prosody characteristics comprehensively by rules [6]. In literature, the
development of storytelling speech synthesis was done using the rule-based method
with various prosody analysis and rule-set [3, 4, 7].

In general, the prosody analysis in storytelling is based on tempo, pause, duration,
intensity and pitch [3]. Theune (2006) in [3] analyzed these prosodic features globally
and developed the global rules of storytelling application. The same prosodic features
are also analyzed in Hindi storytelling at phrase and sentence level [7]. The prosodic
analysis was also done locally at syllable level in adjectives and adverbs [3]. The extra
emphasis in adjective and adverb indicates a prominent syllable. This prominent syl-
lable has an extra-long duration, a higher pitch means and rising pitch movement from
their local environment [8]. Based on Roekhaut et al. (2010) in [8], the prominent
syllable is categorized at initial accents (first syllable of a word or phrase) and final
accents (last syllable of a word or phrase). The prominent syllable for final accent is
usually detected at noun, adjective, verb or adverbs; and also encountered as initial at
several word categories.

Words positioned at initial, middle and final location in a phrase are further ana-
lyzed [4]. It is because the storytellers produced a unique intonation at initial, middle
and final words of a phrase [4]. As an example, the word at the final phrase has an
increased duration compared to a word located at initial and middle of a phrase [4].
These word locations played important roles for manipulating the types of the speaking
style [8]. The prosody based on word location (initial, middle, final) are varied by [7] to
develop storytelling speech with various emotion.

In this work, we analyzed the prosody of storytelling corpus in the Malay language.
The criteria that are considered are tempo, pauses (phrase and sentence level); the last
syllable in the adjective, adverb, noun and verb; an initial syllable in potential word
categories, and word location (initial, middle, last) in a phrase. Our contribution is the
identified modification factors of the prominent syllable in word categories located in
different positions in a phrase. This paper is structured as follows. In Sect. 2, the speech
corpus is presented. The global prosody analysis of storytelling is elaborated in Sect. 3.
Then, local prosody analysis at syllable level is described in Sect. 4. The summary of
the results is described in Sect. 5.

2 Storytelling Corpus

In this section, the storytelling corpus used for analysis is discussed. It explains the
selection of text corpus, quantitative description of text corpus, storyteller description,
the condition of audio recording and audio labeling.

564 I. Ramli et al.



2.1 Text Corpus

The corpus size depends on the language resources and purpose of the collection. Thus,
the variations in corpus size existed for different work and languages (i.e. Bengali [4],
Hindi [7], Dutch [3], English [2, 9], French [10], Slovak [11] and Spanish [12]) as can
be seen in Table 1.

In this research, three narrative children short stories from a classic Malaysia’s
collections of short stories entitled ‘200 kisah teladan haiwan’ (200 animal folklores)
[11] are selected for analysis. The number of sentences, words and syllables are
depicted in Table 2.

The script of three stories made up a total of 29 sentences, 291 words, and 598
syllables. The scripts do not contain any dialogue and description as our scope is the
narrative discourse mode. The language used in the stories fulfills the formal Malay
language, with simple words easily understood by the children.

2.2 Audio Corpus Recording

The corpus is recorded by three female storytellers, one male professional speaker, two
female and two male speakers. The female storytellers are school kindergarten teachers
who have the proper training and experience in delivering storytelling. Their ages range
from 30 to 45 years old. A 58-year old professional speaker who has more than 30
years delivering lectures and public speeches is also employed as our storyteller. The

Table 1. Summary of storytelling speech corpus

Authors/Year Language Corpus size

Alm&Sproat, 2005 English 2 children stories
Gelin et al., 2010 English 89 short stories
Sarkar et al., 2014 Bengali, Telugu 125 children stories
Theune et al., 2006 Dutch 5 fairy tales
Verma, 2015 Hindi 25 children stories
Přibi&Přibilová, 2008 Slovak 10 children stories
Montano et al., 2013 Spanish 1 story
Doukhan et al., 2011 French 89 children tales

Table 2. Total sentences, words, and syllable in each story

Story No. of sentences No. of words No. of syllables

Si angsa yang berteluremas 12 113 276
Anjing dengan bayang-bayang 9 80 175
Semut dan merpati 8 98 232
Total 29 291 683
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four speakers are degree college students who are eloquent speakers and have 3 to 5
years experiences giving public speeches. The speech recorded is in two speaking style
(neutral and storytelling). The recorded neutral speech is free of all possible stress or
emphasis such as news reading. Therefore, the storyteller must maintain their vocal
qualities in term of intelligibility, timbre, diction and pronunciation. For storytelling,
storyteller needs to narrate the story script with their storytelling style without influence
by another storyteller. They can move slightly (e.g., hand movement) to get the mood
and inspiration during recorded storytelling speech. Recordings are made in an isolated
room in Digital Image, Audio and Speech Technology Group (DIAST) laboratory. The
quiet room is equipped with a centralized air conditioner with one door entrance.
Background noise of the audio storytelling data was analyzed at 18 dB due to the
constant humming of the centralized air-conditioning system. In the end, the speech
corpus consists of 48 (8 storyteller � 2 speaking styles � 3 stories) audio. WAV files
and down-sampled at 16 kHz with a 16 bits sample size. A total of 464 speech
sentences, 4,656 words, and 10,928 syllables are collected from all speakers.

2.3 Corpus Labeling

The corpus was annotated using speech analysis tool known as Praat [13] at the
sentence, word, and syllable level producing 48 transcriptions of textgrid files. The
speech and non-speech regions are automatically labeled as speech and silence,
respectively. The label is used as guidance for manually labeling end point of the
sentence-, word-, and syllable-level. The syllables are labeled based on the Malay
language syllable structure [1]. The empty labels at word-and syllable- levels are the
silence areas which are not annotated and left as blanks.

3 Global Prosody Analysis of Storytelling Speech

For global prosody analysis, 232 neutral sentences and 232 storytelling sentences from
eight storytellers are considered. Prosody features such as tempo, pause (phrase and
sentence), average syllable duration, average syllable intensity and average syllable
pitch are extracted and analyzed as shown in Table 3.

Tempo is also known as the speaking rate of a person and is calculated based on
syllable per second (SPS). Previous research showed that the tempo of storytelling is

Table 3. Prosodic comparison between neutral and storytelling speaking style

Prosodic parameter Neutral Storytelling

Mean tempo 4.2 4.48
Mean pause (sentence level) 0.81 0.77
Mean pause (phrase level) 0.29 0.37
Mean syllable duration 0.22 0.2
Mean intensity (dB) 66.18 67.89
Mean pitch (Hz) 191.83 210.04
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slower than neutral speech [3]. However, our observation showed that storytelling
speech tempo is faster than neutral speech. Our speech data showed that six out of eight
storytellers have higher tempo than neutral speech. This phenomenon occurs because
while recording the neutral speech, the storyteller always puts their attention on each
word pronunciations in an utterance which is time-consuming. The similar phe-
nomenon also occurred in [7].

The pause feature is analyzed at phrase and sentence level in second (s). In our
work, a phrase is defined as a collection of words and determined by the symbol
comma (,) that exists in a sentence. Based on Table 3, the neutral speech has a longer
average pause at sentence level compared to storytelling speech. The total average
pause at sentence level for neutral speech is longer than storytelling at 0.81 s and
0.77 s, respectively. However, at phrase level, pause for storytelling is longer than
neutral speech with the total average of 0.37 s and 0.29 s, respectively. It shows that, at
phrase level, storytelling speeches pause longer before continuing to the next phrase.

The syllable’s duration determines the tempo of the overall speech. The analysis of
the duration is to determine the average syllable’s duration for a certain style and
storyteller. The average duration for neutral speech is longer than storytelling speech. It
is proved by the total average of the syllable’s duration of the neutral is 0.22 s, and
storytelling speech is 0.20 s. The average of the syllable duration of storytelling is
further considered for developing a rule for storytelling speech synthesis.

The intensity of the prosody, calculated in decibels (dB), is a measure of loudness
in the utterance [14]. The analysis of the mean intensity of neutral and storytelling
speech is 66.18 dB and 67.89 dB. We discover that five storytellers have higher
intensity or speech energy compared to neutral speech. It means that a storyteller tends
to speak louder when delivering a tale as compared to his/her normal reading style. The
analysis based on gender also signifies that male speaks louder than female storyteller
for both neutral and storytelling speech.

The analysis of mean pitch between neutral and storytelling speech showed
increasing of the pitch from neutral to storytelling from 191.83 Hz to 210.04 Hz. It is
because five storytellers have a higher average pitch as compared to their neutral
speech. It indicated that storyteller increases their pitch in storytelling speaking style.
The analysis on the gender showed that female has a high frequency rather that male
storyteller and can manipulate their pitch with ease.

4 Local Prosody Analysis

The literature mentioned that word categories such as noun, verb, adjectives, and
adverbs emphasized the last syllable (i.e. final accent) of a particular word during
pronunciations. In this research, we also analyzed prominent syllables within con-
junction and amplifier (kata penguat). Our analysis showed that prominent syllables
also existed in both word categories. However, prominent syllable of the amplifier is
located at the initial syllable (i.e. initial accent) of a word. The total selected words used
in local prosody analysis based on word categories are shown in Fig. 1.

The analysis of each word categories is done by comparing words in neutral speech
with the storytelling speech. The prosody parameters compared are duration, intensity
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and pitch. Figure 2 shows the percentage number of words that the storytellers tend to
increase their duration, intensity, and pitch.

Figure 2 shows that less than 20 % of verbs and nouns are increased in duration,
intensity and pitch at the last syllable from neutral speech to storytelling speaking style.
It indicates that only a small percentage of the verb and nouns contain prominent
syllables. On the other hand, amplifier words have the highest prominent syllables at
more than 65 % compared to other word categories. The overall observation concludes
that only certain words in each word category have prominent syllables and these
words are used as the basis of the rules.

The words are further examined based on their positions (i.e. initial, middle and
last) in a phrase or sentence. Table 4 shows the percentage of increased prosody for
prominent syllables in words positioned at the initial, middle or last location in a
phrase. The comparison is done between neutral speech and storytelling speech. For an
adjective, the prominent syllable at the last word has higher pitch increased that is 40 %
as compared to the middle word at 18 %. As an example, the last word berat in the
sentence telur itu sangat berat has a final accent at the last syllable rat. The syllable rat
in storytelling speech has an increased pitch by a factor of 1.4 times from syllable rat in

Fig. 1. Number of selected word categories in story for one storyteller

Fig. 2. Percentage of word categories with increased prosody
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the neutral speech. However, the duration of the prominent syllable in the middle word
is longer than the prominent syllable of the last word.

For adverb word category, there is no significant difference (less than 10 %) of
intensity and pitch between initial, middle and last words. However, duration of the
prominent syllable in the last word is longer than initial and middle words. As for
amplifier word category, there are no changes in duration, intensity and pitch of the
initial and last words.

Analysis on the amplifier in the middle position for our speech data is described. It
is interesting to note that duration of the amplifier is increased by 99 % for the middle
word, which is the highest increment compared to others. A 40 % increase in pitch of
the last word and 54 % increase of duration in the middle word of adjectives are
observed. No changes (NC) are noted for the initial words. Conjunction words have a
slightly higher increase in duration at the initial word compared to middle word. Since
there is no occurrence of conjunction at the last word, we described it as no change
(NC) for this research.

Even though only 20 % nouns and verbs have prominent syllables, the analysis
revealed that noun positioned as the last word showed an increased duration of 45 %
that is higher than noun located at the initial and middle word. Intensity and pitch do
not show significant difference of less than 5 %. Verbs, however, showed an increase
of 103 % duration at the initial word. Nevertheless, it has the lowest intensity increased
compared to all the other word categories.

5 Conclusion

In this paper, we have analyzed the prosody of the storytelling as compared to the
neutral speech. The corpus has been presented, and the analysis of the corpus has been
described. The result discussed the difference in the global prosody of the storytelling
and the neutral speech. The analysis in local prosody showed that only certain words in

Table 4. Comparison of prominent syllables based on the word position in a phrase

Adjective Adverb
Position Duration Intensity Pitch Duration Intensity Pitch

Initial word NC NC NC +52 % +4 % +21 %
Middle word +54 % +6 % +18 % +40 % +6 % +29 %
Last word +26 % +6 % +40 % +62 % +9 % +24 %

Amplifier Conjunction
Initial word NC NC NC +49 % +6 % +21 %
Middle word +99 % +9 % +31 % +35 % +6 % +20 %
Last word NC NC NC NC NC NC

Noun Verb
Initial word +36 % +6 % +22 % +103 % +3 % +15 %
Middle word +39 % +7 % +26 % +36 % +7 % +28 %
Last word +45 % +6 % +25 % +31 % +6 % +28 %
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word categories have prominent syllables. The results will be used for modeling
rule-based storytelling, which applied the prosodic modification of the neutral
Malay TTS to become storytelling TTS. Our future work is to develop the prosody
rules of the storytelling based on the data analysis especially on percentage increased of
prosody in word categories at different word position which is our contribution in this
research.
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Abstract. Recent audio codecs enable high quality signals up to full-
band (20 kHz) which is usually associated with the maximal audible
bandwidth. Following previous studies on speech coding assessment, we
survey in this novel study the music coding ability of two real-time codecs
with fullband capability – the IETF standardized Opus codec as well as
the 3GPP specified EVS codec. We tested both codecs with vocal, instru-
mental and mixed music signals. For evaluation, we predicted human
assessments using the instrumental POLQA method which has been pri-
marily designed for speech assessment. Additionally, we performed two
listening tests as a reference with a total of 21 young adults. Opus and
EVS show a similar music coding performance. The quality assessment
mainly depends on the specific music characteristics and on the tested
bitrates from 16.4 to 64 kbit/s. The POLQA measure and the listening
results are correlating, whereas the absolute ratings of the young listeners
achieve much lower MOS values.

Keywords: Opus · EVS · Music coding · POLQA · Listening test

1 Introduction

In the current IP-based real-time communication, two predominant fullband
(FB) audio codecs are used – the Internet-driven Opus codec [14] and the
telecommunication carrier-patronized codec Enhanced Voice Service (EVS) [1].
In the last years, the widely spread Opus codec has been pre-installed in popu-
lar web-browsers such as Google Chrome or Firefox and supports their so called
Web-based Real-Time Communication (WebRTC) functionality [5]. Nearly at
the same time, the EVS coder standardization was conducted by telecommuni-
cation industry – aiming at a flexible and sustainable FB audio codec which is
backward compatible to already existing wideband speech codecs in public cellu-
lar networks, e.g. Adaptive Multirate-Wideband (AMR-WB). Despite of diverse
motivation in the codec developments, both Opus and EVS support several audio
bandwidths as shown in Table 1. Both codecs are intended and specified to sup-
port different needs – FB audio speech coding as well as high-quality music

c© Springer International Publishing Switzerland 2016
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Table 1. Audio bandwidths and corresponding quality expectations.

Acronym Audio bandwidth Passband [Hz] Quality expectation

NB narrowband 300 . . . 3,400 conventional phone voice

WB wideband 50 . . . 7,000 AM radio/ HD voice

SWB super-wideband 50 . . . 14,000 FM radio / full HD voice &music

FB fullband 20 . . . 20,000 CD quality / full HD voice &music

communication applications like live music streaming or web-radio broadcast-
ing [1,14]. Therefore, it is reasonable to assess the codec quality of such “all-
rounders”, most notably for different music characteristics. This contribution
focuses on the comparison of the fullband music performance provided by Opus
versus EVS and follows our previous reviews on the speech coding performance
including some cues on singing voice [10–12].

To create diverging coding challenges, we tested samples in following music
categories to detect the audible differences:

– Vocals (a-capella music),
– Musical instruments,
– Mixed music (instrumental and vocal parts).

The test design targeted on bitrate conditions that are adequate for both
codecs, Opus and EVS, exclusively in FB mode. We used Perceptual Objec-
tive Listening Quality Assessment (POLQA) [8] as an instrumental assessment
method, and it should be noted here that the perceptual model of POLQA has
not been adapted yet for music assessment which motivated us to test the limits
of this method, for the first time. Furthermore, we performed a listening test
with human listeners. The widely-used audio quality rating score Mean Opinion
Score (MOS) was utilized. Following an overview about previous research related
to Opus and EVS in Sect. 2, we introduce the experimental design in Sect. 3. In
Sect. 4, we discuss the instrumental and perceptual assessments for Opus and
EVS, followed by some conclusions.

Moreover, there are other fullband codecs in the Advanced Audio Coding-
Enhanced Low Delay (AAC-ELD) family [4] and also within G.719 [7]. For prac-
tical reasons, they are less-spread and missing in the WebRTC environment or
public cellular networks.

2 Previous Studies on Opus and EVS

Standardized in RFC 6716 [14] by the Internet Engineering Task Force (IETF),
Opus was designed as an all-purpose interactive speech and audio codec. Applica-
ble in multiple use cases, Opus is suitable for scenarios like voice over IP,
videoconferencing, online-gaming or audio on demand and comprises low bitrate
speech coding as well as high quality stereo music coding. To realize both, high
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quality and dynamic characteristics, Opus combines the linear prediction-based
SILK codec and the Modified Discrete Cosine Transform (MDCT)-based Con-
strained Energy Lapped Transform (CELT) codec. For a flexible use, the Opus
codec supports the frequency band types NB, WB, SWB and FB. Consequently,
Opus encodes speech and music (alternatively mono or stereo) within a bitrate
range from 6 kbit/s to 510 kbit/s with a low delay from 2.5 ms to 60 ms for all
relevant sample rates – from 8 kHz up to 48 kHz. Opus supports variable bitrate
(VBR as default) and constant bitrate (CBR) modes. After its first appearance
in 2011, the Opus codec passed several listening tests – supplemented by compar-
ison to other speech and audio codecs (Speex NB/WB, iLBC, G.722.1/G.722.1C,
AMR NB/WB, HE-AAC, Vorbis). The results are summarized in a study of
Hoene et al. [6] in which Opus outperformed all codecs – in particular in wider
bands if applicable.

EVS was standardized by the 3rd Generation Partnership Project (3 GPP) in
2014 succeeding the AMR-WB codec and designed for packet-switched networks
as well as for mobile communication like in Voice over LTE (VoLTE) [1]. It is
comparable to Opus as being an all-purpose codec. For achieving high quality
and dynamic characteristics, EVS also combines several working modes. It can
seamlessly switch between Linear Prediction (LP)-based, frequency domain and
inactive signal (Comfort Noise Generation (CNG)) coding. For the applicability
in multiple-switched network use cases, EVS provides a higher resilience against
packet losses and errors. Furthermore, EVS contains an interactive mode for
interoperating with AMR-WB. It supports all frequency band types whereby
FB is optional. Similar to Opus, EVS can handle speech and music at a bitrate
range from 7.2 kbit/s to 128 kbit/s with low delays from 30.9 ms to 32 ms for all
relevant sample rates (8 kHz up to 48 kHz). At the current stage, EVS does not
provide stereo music coding.

So far, there are three relevant studies on comparing Opus and EVS under
several test conditions. The first contribution by Anssi Rämö et al. (Nokia Net-
works) [13] focuses on a listening test using a discrete nine-point MOS scale
and comparing samples of clean speech and mixed content in a bitrate range
from 4.7 kbit/s to 128 kbit/s. The second survey provided by the ITU-T study
group 12 includes a P.800 ACR-based listening test to evaluate the prediction
performance of the instrumental POLQA assessment method [9] in which the
EVS codec has been tested with bitrates from 7.2 kbit/s to 24.4 kbit/s. Based on
the MOS values, the prediction performance of POLQA SWB mode has been
validated. The third study was provided by 3 GPP itself [2] and consists of an
ITU-T P.800 listening test using the five-point MOS scale. These EVS perfor-
mance experiments were conducted under laboratory conditions including all
frequency bands (NB . . . FB) with bitrates from 4.7 kbit/s to 24.4 kbit/s.

According to our best knowledge there is no direct comparison between Opus
and EVS coded music samples in fullband mode evaluated by listening tests using
the five-point MOS scale. A further novelty is our FB assessment by POLQA
assistance (whose perceptual model is not including music assessment yet).
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3 Test Design and Experiments

3.1 Fullband Testing Concept for Opus and EVS

Both codecs require different minimal bitrates in the FB operating mode –
20 kbit/s (VBR mode of Opus) respectively 16.4 kbit/s (EVS). Additionally, we
tested the codecs with bitrates of 32 kbit/s and 64 kbit/s and provided the orig-
inal music signals at PCM 16 bit, 48 kHz (768 kbit/s) as reference. We solely
experimented on mono signals because EVS does not support stereo coding yet.
At bitrates higher than 64 kbit/s one can not expect a rising quality since the
codecs reach their saturation curve in mono mode – as demonstrated in [13].

The European Broadcasting Union (EBU) [3] provides their Sound Quality
Assessment Material (SQAM) for listening tests. These EBU SQAM lossless
sound samples are available free of charge for research and development use. To
achieve some balanced variety of music types, we selected six sound examples
from this database (two vocal pieces, two musical instruments and two mixed-
music pieces).

3.2 Evaluation by POLQA Method and Listening Test

The ITU-T recommendation P.863 (POLQA) describes an objective method for
predicting overall listening speech quality from NB up to SWB telecommunica-
tion scenarios as perceived by the user in an ITU-T P.800 Absolute Category
Rating (ACR) listening-only test. POLQA supports two operational modes, one
for narrowband and one for super-wideband.

Due to the internal frequency limitation of 14 kHz, the current POLQA ver-
sion in SWB mode is not able to differentiate between clean, unprocessed audio
14 kHz SWB and 20 kHz FB test signals. Nonetheless, we used the POLQA tool
for our survey to evaluate the general suitability of this method for FB music
testing. In order to validate the POLQA (SWB mode) prediction, we conducted
an ACR listening only test for exactly the same samples.

Figure 1 shows the audio quality measurement in terms of MOS Listening
Quality Objective (LQO) for the POLQA method and MOS ACR for the lis-
tening test. For instrumental assessment, we used the software SQuadAnalyzer

Fig. 1. Experimental setup involving POLQA method and listening assessment.
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(version 2.4.0.4) utilizing POLQA in SWB operating mode. The selected stereo
sounds from SQAM database were converted into mono reference samples and
then coded with FB-adequate bitrates, resulting in the degraded samples.

3.3 Test Conditions

To evaluate the appropriate listening environment, we conducted two experi-
ments under different acoustic room conditions. The first listening test with eight
probands took place in a sound insulating cabinet according to P.800 require-
ments to minimize background noises. The second experiment – providing the
same samples to 13 further probands – was performed in a regular lecture room.
Both experimental results differ over all music categories in a range of less than
0.2 on the MOS scale while showing slightly higher values in the lecture room.
By summarizing both experiments, following testing conditions were obtained:

– Six different SQAM pieces (violin, glockenspiel, quartet, soprano, two pop
music examples incl. vocals vs. w/o vocals),

– Overall 42 audio samples (both codecs Opus/EVS in three different bitrates
plus FB reference),

– 21 naive listeners, ICT students in the age range 20 . . . 28,
– Frequent music listeners1,
– Listening assessment on five point MOS scale,
– Three training samples at the beginning but no further instruction.

According to our test design (group of young probands, frequent music lis-
teners, no training instructions etc.) we intended critical listening decisions to
challenge the ‘objective’ instrumental assessment method and to obtain cues for
the further development and optimization of codecs and their assessment.

4 Results and Discussion

4.1 Influence of the Coding Bitrate

The Fig. 2 compares the POLQA and listening test results for both codecs (Opus
and EVS) by summarizing the samples of all music categories for the accord-
ing bitrate. As reference, the average assessments of all ‘uncoded’ samples at
768 kbit/s (PCM 48 kHz, 16 bit, mono) by POLQA and listeners are shown.

The overall quality degradation between reference and 64 kbit/s samples is
obviously low as expected before. The POLQA predictions average out at 4.66 in
reference signals versus 4.59 (Opus) or 4.60 (EVS) in 64 kbit/s coding signals.
The MOS listening assessment scores to 3.71 (reference) versus 3.72 (Opus)
and 3.65 (EVS) at 64 kbit/s. Towards lower bitrates, POLQA and listening test
results show a similar tendency for both codecs. The additional degradation at 32
kbit/s amounts to about 0.5 points in the MOS scale but the average assessments
1 Listening to music several hours a day, using different playing techniques – high

quality sound system, HD stereo headset etc.
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Fig. 2. Overall assessments by POLQA and 21 listeners (in total 42 samples).

stay considerably above 3.00. For the lowest FB bitrate (16.4/20 kbit/s), our
assessments suggest an unacceptable audio quality – with the worst MOS = 1.94
(Opus listening test) which is not mirrored by the averaged POLQA predictions
of 2.72.

In all tested categories, the absolute POLQA values are significantly too high
which probably reflects our challenging listening test – the young target group,
unfamiliar mono sounds and no instructions. Age-related assessment differences
of about 0.4 in the MOS scale were already observed in our previous studies [10,
11]. The diversified assessments are also manifested in the standard deviations
which range from 0.19 for the POLQA measurement of references or Opus/EVS
samples at 64 kbit/s to maximal 1.25 for POLQA predictions of Opus samples
at 20 kbit/s. The deviations of the listening assessments average out to about
0.7 in all bitrates.

4.2 Effect of the Music Characteristics

To explain the varying coding performance and the assessment deviations in
Sect. 4.1, we shortly discuss the music characteristics in the following. Figure 3
illustrates the influence of diverging music pieces if using the Opus codec. Consid-
ering the perceptual assessment as a ground truth, we only present the listening
results here.

In contrast to the Opus results (Fig. 3), Fig. 4 summarizes the EVS perfor-
mance on the same music pieces.
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Fig. 3. Music coding by Opus – listening assessments only.

Fig. 4. Music coding by EVS – listening assessments only.

The expected degradation towards lower bitrates can be observed for both
codecs and in all music categories. The Opus coding shows more consistent
assessments over all music pieces and bitrates than EVS, except for the category
“glockenspiel” whose mean assessment is surprisingly improved from original
reference to 64 kbit/s and radically reduced at the bitrates of 20 and 32 kbit/s.
It can be assumed that the active coding mode in Opus ‘harmonizes’ some skirl
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sounds (higher frequency components) of the original glockenspiel signal for lis-
teners at 64 kbit/s but reduces the typical harmonics variety at the lower bitrates
of 32 and 20 kbit/s too much.

In general, EVS is performing slightly better, except for the categories “vio-
lin” and “glockenspiel” but the scatter band of the assessments is higher than for
Opus. For quartet and both categories of pop music, the mean assessment turns
out to be higher at 64 kbit/s compared to the original reference. Furthermore,
the alternating violin assessments towards lower bitrates are not plausible and
require further studies. The explanation may correspond to the hybrid coding
characteristics with switching operation modes and potentially different coding
principles.

Comparing the performance on mixed characteristics with regard to vocal
and music parts, the EVS coding shows a higher assessment tendency towards
vocal samples respectively categories including vocals, whereas Opus handles
music-only parts slightly better and more consistent to vocal-based assessments.
These results are supported by the development history of the Internet-driven
Opus derivation versus telecommunication carrier-patronized Enhanced Voice
Service, as already illustrated in Sects. 1 and 2.

5 Conclusions and Future Research

We compared the fullband music coding ability of two real-time codecs, Opus and
EVS – based on instrumental measures using POLQA and listening assessments
as a ground truth. The POLQA predictions are widely plausible and correlating
to the listening assessments, although the perceptual model is not adapted for
music assessment yet. We will dedicate more experiments into this direction,
and we are corresponding with the POLQA developers to support their opti-
mizations for advanced versions. As expected, Opus and EVS showed a similar
music coding performance over all bitrates, apparently depending on the music
and vocal components in specific music pieces. We need to increase the amount
of test data to consolidate the experimental results but we do not expect high
improvement potential in the area of “all-rounder” codecs. Another important
finding concerns the critical absolute assessments of our probands, in particular
the gap to the instrumental assessment. We will run further (e.g. age-related)
experiments to survey challenging test cond itions more precisely and to empha-
size more research on the interrelations between perceptual and instrumental
assessments in the community.
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Abstract. This paper proposes a robust speech analysis method based
on source-filter model using multivariate empirical mode decomposition
(MEMD) under noisy conditions. The proposed method has two stages.
At the first stage, magnitude spectrum of noisy speech signal is decom-
posed by MEMD into intrinsic mode functions (IMFs), and then IMFs
corresponded to noise part are removed from them. At the second stage,
log-magnitude spectrum of noise-reduced signals are decomposed into
IMFs. Then, these are divided into two groups: the first group character-
ized by spectral fine structure for fundamental frequency estimation and
the second group characterized by frequency response of vocal-tract filter
for formant frequencies estimation. As opposed to the conventional lin-
ear prediction (LP) and cepstrum methods, the proposed method decom-
poses noise automatically in magnitude spectral domain and makes noise
mixture become sparse in log-magnitude spectral domain. The results
show that the proposed method outperforms LP and cepstrum methods
under noisy conditions.

Keywords: Multivariate empirical mode decomposition · Speech analy-
sis · Fundamental frequency · Formant frequency · Source-filter model

1 Introduction

Speech analysis is an important core technique normally used in voice activ-
ity detection (VAD), automatic speech recognition (ASR), hearing aids, speaker
identification, etc. Still, existing speech analysis techniques yield low perfor-
mance in noisy environments. It is therefore important to improve robustness of
speech analysis so that the above applications can work well in noisy conditions.

As a speech signal originates from a glottal-source waveform passing through
a vocal-tract filter. The source-filter (SF) model [1] states that the speech signal
is resulted from convolution between the glottal-source signal and the impulse
c© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 580–587, 2016.
DOI: 10.1007/978-3-319-43958-7 70
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response of the vocal-tract filter. Most of the speech analysis techniques employ
this model. The classical techniques commonly used for speech analysis are the
linear prediction (LP) and the cepstrum [1]. LP estimates the vocal-tract filter
by assuming that it is an all-pole filter model the coefficients of which are calcu-
lated by autocorrelation function (ACF) and covariance methods [1]. Cepstrum
is the result of applying the inverse Fourier transform to log-magnitude spec-
trum of the speech signal. Cepstrum of spectral fine structure corresponding to
periodic feature of harmonics (harmonicity) of the glottal-source along frequency
axis are peaks in high quefrency range whereas cepstrum of spectral envelope
corresponding to the frequency response of vocal-tract filter lies in the low que-
frency range [1]. The lifter with proper cut-off quefrency can be applied in order
to separate them. The spectral envelope is obtained by keeping the cepstrum
of vocal-tract filter and then apply the Fourier transform. Cepstrum has sev-
eral attractive properties such as robustness in noisy environments. Nowadays,
besides LP and cepstrum, several speech analysis methods have been proposed
especially STRAIGHT [2] and Praat [3]. STRAIGHT convolves the harmonics of
the speech spectrum by the spectral representation of the analysis window and
uses that window to interpolate the harmonic peaks of the speech spectrum by
means of the summation of the main lobes of the window. Praat is a famous and
reliable speech analysis tool which can be used for both glottal-source and vocal-
tract filter analysis using analysis techniques proposed within last decade. It was
frequently used to define the ground-truth for comparison in several studies.

Most speech analysis methods are required to be able to separately analyze
the information of both glottal-source and vocal-tract filter. The majority of the
above methods have been used to estimate (i) the fundamental frequency, F0,
of glottal-source and (ii) formants (resonant frequencies) and spectral envelope
of the vocal-tract filter. However, the main problem of the above techniques
is their robustness in noisy environments because they cannot reduce effects of
noise by themselves. Due to this fact, multivariate empirical mode decomposition
(MEMD) is thus proposed for speech analysis in noisy conditions based on an
idea that MEMD can automatically decompose noise component out from the
speech. In previous work [4], MEMD-based method was proposed for clean speech
analysis by automatically decomposing glottal-source, and vocal-tract filter. In
this paper, we cooperate the previous work with the idea of noise decomposition
by MEMD to have a robust speech analysis in noisy conditions.

2 Principles

2.1 Source Filter Model

As stated earlier, speech signal s(t) is resulted from convolution between a
glottal-source (excitation) signal e(t) with an impulse response of a vocal-tract
filter v(t). In frequency domain, they become multiplication or addition as
follows:

s(t) = e(t) ∗ v(t), (1)
S(ω) = E(ω)V (ω) = |E(ω)|ej∠E(ω)|V (ω)|ej∠V (ω), (2)

log S(ω) = log |E(ω)| + log |V (ω)| + j(∠E(ω) + ∠V (ω)), (3)
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where ω is normalized frequency in radians/sample. The Fourier spectra of s(t),
e(t), and v(t) are S(ω), E(ω), and V (ω). Log of S(ω) has real and imaginary
parts. The real part has log-magnitude spectrum of glottal-source, log |E(ω)|,
and vocal-tract filter, log |V (ω)|. The imaginary part is the summation of their
phases, (∠E(ω)+∠V (ω)). This research focuses on the log-magnitude spectrum
whereas the phase spectrum is untouched.

2.2 Multivariate Empirical Mode Decomposition

MEMD is an adaptive and data-driven signal processing technique for decom-
posing any non-stationary multivariate signal with n sub-signals, i.e. x(t) =
{x1(t), x2(t), . . . , xn(t)}, simultaneously into band-limited oscillating compo-
nents called intrinsic mode functions (IMFs). So that each sub-signal can be
expressed as

xn(t) =
K∑

i=1

ci(t) + r(t), (4)

where ci(t) is the i-th IMF, r(t) is the residue or monotonic function, and K is the
number of IMFs. An important property of MEMD is that the common mode
(frequency components) would align in the same order of IMF [5]. Consider
vθq = {vq

1, v
q
2, . . . , v

q
n} denoting a set of direction vectors along the directions

given by angles θq = {θ1, θ2, . . . , θQ} on (n–1) sphere where Q is the number of
sampling points on the sphere. The following is the algorithm for obtaining the
IMFs from x(t) using MEMD. At the beginning of the algorithm, set h(t) = x(t),
r(t) = x(t), and i = 1.

1. Choose a pointset for sampling on an (n–1) sphere.
2. Calculate a projection, denoted by pθq (t) of the input h(t) along the direction

vector vθq for all q (the whole set of direction vector), giving pθq (t)}Q
q=1 as

the set of projections.
3. Find the time instants {t

θq

i } corresponding to the maxima and minima of the
set of projected signals pθq (t)}Q

q=1.

4. Interpolate [tθq

i ,h(tθq

i )] to obtain envelopes eθq
max(t)}Q

q=1 and eθq

min(t)}Q
q=1.

5. For a set of Q direction vectors, the mean m(t) of the envelope curves is
m(t) = 1

2Q

∑Q
q=1 e

θq
max(t) + eθq

min(t).
6. Extract d(t) using d(t) = h(t) − m(t). If d(t) fulfills the properties of IMF

or the stopping criterion [5] go to the next step. Otherwise h(t) = d(t) and
repeat steps 2 to 6.

7. Assign an IMF, zi(t) = d(t), and i = i+1. Subtract the IMF from the residual
r(t) = r(t) − zi(t).

8. Stop if r(t) is monotonic. Otherwise, assign h(t) = r(t) and go to step 2 for
extracting other IMF.
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Fig. 1. Decomposition noise speech using MEMD. The flat shape of noise spectrum is
separated into the last IMFs, c7. Removing these IMFs results in speech enhancement.

3 Proposed Method

Generally, a noisy speech signal is described as y(t) = s(t) + w(t), where w(t) is
background noise. Its magnitude spectrum can be expressed as

|Y (ω)| = |S(ω)| + |W (ω)| =
N∑

k=1

ck(ω)

︸ ︷︷ ︸
Speech

+
K∑

k=N+1

ck(ω)

︸ ︷︷ ︸
Noise

, (5)

where |W (ω)| is the magnitude spectrum of w(t), ck(ω) is the k-th IMF,
N is the number that separate IMFs into two groups which are of speech and
noise, and K is the total number of IMFs. The value of N is determined using
the characteristic of noise. Theoretically, |W (ω)| is flat over the entire frequency
range when w(t) is white noise. After |Y (ω)| is decomposed by MEMD into IMFs,
the flat shape of |W (ω)| can be decomposed into the monotonic residue as shown
in Fig. 1. This flat shape is identified using the common mode alignment property
of MEMD and similarity between IMFs. Let |Si(ω)|, |Wi(ω)|, and |Yi(ω)| are the
magnitude spectrum of clean speech, white noise, and noisy speech of the i-th
frame. Based on an assumption that white noise is stationary but clean speech
is non-stationary. Therefore, |Wi(ω)| = |W (ω)| which means that |Wi(ω)|s are
mutually dependent but |Si(ω)|s are mutually independent. This assumption can
be met by setting a short analysis window and each frame is far away to each
others. Decomposing |Yi(ω)| using MEMD results in IMFs as shown in Fig. 1.
According to the common mode alignment property of MEMD, the common
component would align in the same order of IMF. Since only noise is common to
all frames, its flat shape of spectrum aligns in the same order of IMF, say c7(ω),
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in Fig. 1. These flat shape of noise can be detected by similarity measurement
such as correlation coefficient across the column. As a result, the value of N of
Eq. (5) is 6 in this case.

After removing noise component by omitting the second term of Eq. (5), the
enhanced speech is assumed to be equivalent to clean speech. According to Eq.
(3), the log-magnitude spectrum of a voiced speech contains two terms. After it is
decomposed into IMFs, the IMFs can be divided into two groups corresponding
to the glottal-source and vocal-tract filter. That is

log |S(ω)| = log |E(ω)| + log |V (ω)| =
M∑

k=1

ck(ω)

︸ ︷︷ ︸
Source

+
L∑

k=M+1

ck(ω)

︸ ︷︷ ︸
Filter

, (6)

where M is a variable dividing IMFs into two groups and L is the number of
IMFs. To determine the value of M , we also use the common mode alignment
property of MEMD. The proposed method takes three adjacent frames of speech
signal with overlap so that there is a common mode which is harmonicity of
glottal-source. Three log-magnitude spectra are decomposed into three sets of
IMFs as shown in the first three column of Fig. 2. A the beginning, we roughly
divides the IMFs into two groups by autocorrelation function (ACF) of IMF. Let
denote the location of the second peak of ACF of the k-th IMF as Fpk. If Fpk is
in the normal range of F0 of human voice (85–400 Hz), the k -th IMF is considered
as the first group. Otherwise that IMF is belonged to the second group. The
IMFs having common harmonicity are noticeable at c3 in Fig. 2. These IMFs of
common harmonicity would have high correlation coefficient across columns. The
value of M is consequently 3 in this case. The result of source-filter separation is
shown in the most right column in Fig. 2 where the spectral envelope obtained
by the proposed method is shown in blue compared with those obtained by LP
(red) and cepstrum (green) based methods.

After source-filter separation, we can estimate important features of glottal-
source and vocal-tract from summation of the first and second groups respec-
tively. The peaks of ACF of the summation of the first group is used for F0

estimation and the peak picking technique is used for formant estimation. The
results of F0, formants estimation, and comparison of spectral envelope before
and after noise removal are illustrated in Figs. 3(a)–(c). In the experiment, we
will test the robustness of speech analysis before and after noise reduction using
MEMD under variation of signal to noise ratios (SNR)s.

4 Experiments and Evaluations

The experiments were carried out before and after noise reduction. The estima-
tion of F0, formants, and spectral envelope were done because these are impor-
tant speech features, which most of speech analysis methods can estimate. The
F0 estimation was evaluated using correct rate (CR) which is defined as
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Fig. 2. The result of source-filter separation of a clean speech in log magnitude spec-
trum domain. IMFs are shown in blue and their ACF are plotted in red. log |V (ω)|
obtained by the proposed method is shown in blue compared with LP (red) and cep-
strum (green) based methods. (Color figure online)

CR =
NF0,Est(Err)

NF0,Ref

× 100, (7)

where F0,Est is the estimated F0, F0,Ref is referenced value obtained from clean
speech using TEMPO [6]. NF0,Est is the number of correct estimation that satis-
fies |F0,Ref −F0,Est|/F0,Ref ≤ Err(%), NF0,Ref is the total number of estimations,
and Err is an tolerable error margin which is 10%.

The formants estimation was evaluated by comparison with formants
obtained by LP, cepstrum, and Praat (ground-truth). The shape of spectral
envelope was evaluated by correlation coefficient and Euclidean spectral distance
measurement. The LP-based spectral envelope was obtained from LP with lp-
order of 22 (sampling rate in kHz plus few values) and cepstrum-based spectral
envelope was calculated using cut-off quefrency lower than the minimum que-
frency of the glottal-source corresponding to the maximum F0 of human voice,
400 Hz. The referenced spectral envelope for comparison was obtained from clean
speech. In noise analysis and reduction, the window length was 10 msec with
Hanning window, two adjacent frames were 500 msec apart. In speech analysis,
the analysis window was 30 msec length, Hanning, and 50 % frame overlap. The
number of frequency sampling was 1024 points. The testing data were from vowel
/ey/ of words of /CV/ where C is consonant and V is vowel. The testing data
were from randomly selected 5 males and 5 females of TIMIT database [7].

5 Results and Discussion

The results of F0 and formants estimation are shown in Figs. 3(d)–(f). The cor-
rect rate of the proposed method before noise removal and formants estimation
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Fig. 3. Results: (a) noisy speech (b) estimated F0 (red), referenced F0 (blue), and
tolerable error margin (green), (c) magnitude spectrum of vocal-tract filter before and
after noise reduction, (d) correct rates using the proposed method before and after
noise reduction, (e)–(f) are formant estimation before and after noise reduction, and
(g) average spectral distance and correlation coefficient before and after noise reduction.
(Color figure online)

after noise removal (SNRs are 0 and −10 dB) outperforms LP and cepstrum
based methods. Nevertheless, the correct rate reduces after the noise reduction.
The spectral envelope improvement is illustrated in Fig. 3(g) in which average
spectral distance and correlation coefficient between spectral envelopes before
and after noise removal are summarized. Notice that correlation coefficients are
always increased after noise removal but the spectral distance is reduced only
when SNRs are 0 and −10 dB.

According to the results, the speech analysis stage is robust against noise for
F0 estimation compared with LP and cepstrum based methods. The robustness
come from the fact that decomposition log magnitude spectrum into IMFs makes
mixing noise become sparse. The effects from noise are consequently alleviated.
The good results obtained after noise removal are more accurate formants esti-
mation and improved shape of spectral envelope. Nevertheless, the correct rate
reduces after noise removal and the spectral distance increases when SNRs =
20 and 10 dB. These may be caused by speech distortion after noise reduction.
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In sum, the accurate speech features can be obtained by combining these two
stages. Therefore, the proposed method is a robust speech analysis in noisy envi-
ronments.

6 Conclusion

The robust speech analysis method based on source-filter model using MEMD in
noisy environments was proposed. The evaluation results showed that it outper-
forms the linear prediction and cepstrum based methods under noisy conditions.
The proposed method could also automatically decomposed noise component
which was identified using common mode alignment property of MEMD and
mutual dependency of white noise across frames. After noise reduction, the for-
mant estimation and the shape of spectral envelope were improved. In addition,
the estimated formants were better than those obtained by LP and cepstrum
based method. It was consequently reconfirmed that the proposed method is
robust against noisy conditions and can correctly estimate speech features.
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tion. This was also under a grant in the SIIT-JAIST-NECTEC Dual Doctoral Degree
Program.

References

1. Quatieri, T.F.: Discrete-Time Speech Signal Processing: Principles and Practice.
Prentice Hall, New Jersey (2001)

2. Kawahara, H., Morise, M., Takahashi, T., Nisimura, R., Irino, T., Banno, H.:
Tandem-STRAIGHT: a temporally stable power spectral representation for peri-
odic signals and applications to interference-free spectrum, F0, and aperiodicity
estimation. In: IEEE International Conference on Acoustics, Speech, and Signal
Processing, Las Vegas, pp. 3933–3936 (2008)

3. Boersma, P., Weenink, D.: Praat: doing Phonetics by computer [Computer Pro-
gram]. Version 6.0.06 from (2016). http://www.praat.org/

4. Boonkla, S., Unoki, M., Makhanov, S.S., Wutiwiwatchai, C.: Speech analysis method
based on source-filter model using multivariate empirical mode decomposition in
log-spectrum domain. In: 9th IEEE International Symposium on Chinese Spoken
Language Processing, Singapore, pp. 555–559 (2014)

5. Mandic, D.P., Rehman, N.U., Zhaohua, W., Huang, N.E.: Empirical mode
decomposition-based time-frequency analysis of multivariate signals: the power of
adaptive data analysis. IEEE Sig. Process. Mag. 30(6), 74–86 (2013)

6. Kawahara, H., Katayose, H., de Cheveigne, A., Patterson, R.D.: Fixed point analy-
sis of frequency to instantaneous frequency mapping for accurate estimation of F0
and periodicity. In: 6th European Conference on Speech Communication and Tech-
nology, Hungary, vol. 6, pp. 2781–2784 (1999)

7. Garofolo, J., et al.: TIMIT Acoustic-Phonetic continuous speech corpus. LDC93S1.
Web Download. Linguistic Data Consortium, Philadelphia (1993)

http://www.praat.org/


Scenarios of Multimodal Information Navigation Services
for Users in Cyberphysical Environment

Irina Vatamaniuk, Dmitriy Levonevskiy, Anton Saveliev(✉), and Alexander Denisov

St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences,
39, 14th Line, St. Petersburg 199178, Russian Federation

{vatamaniuk,saveliev}@iias.spb.su, dlewonewski.8781@gmail.com,
sdenisov93@mail.ru

Abstract. Cyberphysical systems (CPS) provide a broad range of possibilities in
many fields of human activity such as multimodal human-computer interaction
(HCI). The paper discusses the architecture of developing multimodal information
navigation system of SPIIRAS, considering an approach of building a corporate
information subsystem for tracking events, scheduling and displaying information
on a distributed set of stationary monitors. The subsystem architecture was
described in detail. The suggested algorithm for generating schedules showed high
performance. The subsystem uses standard network technologies, is not tied to any
software or hardware platforms, matches extensibility and portability criteria and
may be used as a component of the cyberphysical environment in various organi‐
zations. Scenarios of user handling depending on user status are presented.

Keywords: Cyberphysical systems · Multimodal interfaces · Information
navigation services

1 Introduction

Nowadays cyberphysical systems become widespread due to their possibilities, flexi‐
bility and effective interaction with environment [1]. They combine computation,
communication and physical dynamics [2]. The CPS is a common expression, which
unites developments in many fields such as medicine [3] (health monitoring [4], tele‐
surgery [5, 6], assistance to elderly and people with disabilities [6]), robotic manufac‐
turing systems [7, 8], robot multi agent control [9], autonomous automotive systems [10,
11], electric power generation and distribution (smart grid) [12, 13], smart spaces [14,
15], Internet of things [16], game and entertainment industry, etc. [2]. A broad overview
of the modern CPS is presented in [17].

One of the high demanded fields of CPS application is related to human-computer
interaction (HCI) within the smart spaces. The CPS sensors’ data fusion allows
performing HCI via various modalities (speech, gestures, facial articulation, gaze direc‐
tion, etc.) The multimodal HCI prevents errors due to redundancy of information and
provides the most natural and comfortable way of controlling environment [18, 19].
Smart spaces allow unifying different levels of services, supporting self-organization of
services in each level, and providing rules from upper to lower level [20].
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2 Developed Architecture of Multimedia Display Subsystem

The considered approach of distribution of sensory, network, computing and service tasks
between components of cyberphysical systems (mobile robots, embedded devices,
mobile client devices, stationary equipment, cloud resources) implies that the mobile
components perform only those tasks that cannot be solved by stationary devices (for
example, guiding a person through the building by a robot) [21–23]. Among the
stationary components of the cyberphysical environment there is a corporate information
system responsible for tracking events (for example, coming and leaving of employees
and guests), visitor registering and recognition, storing their profiles, interacting with them
by means of touchscreens, broadcasting information on stationary displays  [24–26].

Consider more closely the architecture of the subsystem responsible for tracking
events, scheduling and displaying information. Digital signage systems are often used
for this purpose. As there are high demands on flexibility, dynamism and extensibility
of cyberphysical environment components, the existing open source solutions (Xibo,
Concerto v2, Vodigi, etc.) should be carefully examined. It was discovered that those
systems have some disadvantages: lack of means of creating templates, i.e. no possibility
of automatic building sets of media files from a template using an external data source
(for example, employees database); high persistence even correspondingly configured,
which is critical if an instant message should be displayed (for example, greeting, alarm,
etc.). Client software has implementation issues (for example, Xibo generates high
browser load if a large number of objects is present in the schedule), and the ways of
defining event activation conditions are not flexible enough. The platform dependency
of the software should also be noted.

As a result it was decided to develop a multimedia display subsystem meeting the
considered requirements. The implemented subsystem is based on the client-server
architecture and consists of the server, monitors and administrator consoles connected
via TCP/IP. The central component is the server, its architecture is shown in Fig. 1.

NetworkWeb server Database

Application server

Presentation 
layer

Application 
logic layer

Object 
management layer

Database 
access layer

Fig. 1. Server architecture

It stores information about monitors and their groups, users, tracks events, stores
media content, forms the media schedule for each monitor, forms and transfers
commands, provides the control interface to administrators and operators. Its main
components are database server (MySQL) storing data on the subsystem objects, appli‐
cation server (PHP) responsible for the application logic, and web server (Apache)
providing access to clients (administrators, operators, monitors).
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The algorithms underlying the server functioning are based on the object-oriented
data model. On the database layer a single object usually corresponds to a table record.
The classes defining objects are arranged into the following structure (Fig. 2). All classes
inherit from the base abstract class TGeneric, so it is possible to refer to general prop‐
erties through a unified interface. The generic operations on objects are: id (getting object
identifier, i.e. its unique number); title (getting object name); getAttr, setAttr (getting
and setting object properties); create (creating object); delete (removing object); trig‐
gerAfterLoad, triggerAfterCreate, etc. (functions invoked on particular operations on
object).

Fig. 2. Class diagram

The principal task of the server is to build and update the media schedule for monitors
dynamically. The schedule is an ordered list (a queue). New media files are added to the
end of the queue as the files from the beginning are played and removed from the queue.
The algorithm of schedule updating (i.e. adding N next media files to it) for the monitor
M consists in following steps:

1. Determine the set of active events by testing their activation rules.
2. Determine the set of active events {EM} for the monitor M.
3. Determine the set of active events {EGi} for the monitor groups G1, G2, …, Gn, to

which the monitor M belongs.
4. Determine the full set of active events related to this monitor:
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5. Exclude from the schedule all media files that are not associated with events from
the set {E}.

6. Determine the set of media files {F} that are associated with {E}.
7. Sort the set {F} by the last activation time (ascending).
8. Add the first N files from {F} to the end of the schedule.
9. Update the last activation time for these files.

10. Wait for the next update request.

The algorithm includes carrying out a lot of searching and sorting operations. Such
operations are effectively performed by the database server. Transferring the operations
with high computational costs to the server allows performing these operations for an
acceptable time amount. For instance, steps 1–7 of the algorithm can be fulfilled by a
single query. Figure 3 shows the time of executing the query returning 10 media files
for a monitor depending on number of files in the database.
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Fig. 3. Query time for different number of media files in the database

Stationary monitors are located in various places of the building. Monitor is a
stationary hardware-software complex designed to broadcast media content according
to the schedule. It consists of a display and a nettop connected to the server. A web
browser with HTML5 support is installed on the nettop to play media files. The web
application downloads and displays files from the server. The action sequence diagram
describing interaction between server and viewer is shown in Fig. 4.

The design of the monitor web interface is shown in Fig. 5. It consists of viewer and
controller. The controller connects to the server, obtains schedule and media and passes
it to the viewer. The viewer preloads media, displays them and gives the controller signals
about its state. The administrator consoles provide access to manage monitors, events,
users and media files via HTTP. Main features of the Web interface include event, file,
monitor, group and schedule management, user accounting and viewing log data.

The implemented subsystem is integrated in the corporate cyberphysical environ‐
ment. It uses standard network technologies, is not tied to any software or hardware
platforms and matches extensibility and portability criteria. It may be used as a compo‐
nent of the cyberphysical environment in various organizations.
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Fig. 4. Diagram of interactions between server and viewer
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Fig. 5. Web interface of monitor

3 Usage Scenarios of Multimodal Information and Navigation
Services

All users of cyberphysical intelligent environment of St. Petersburg Institute for Infor‐
matics and Automation of the Russian Academy of Sciences (SPIIRAS) fall into the
following categories: employees; students; delegation representatives; single guests;
sightseers of museum of K. May school and SPIIRAS museum; other (laborers, couriers,
etc.). The main distinction between employees and other categories of users is the fact
that they have ID cards and can enter the SPIIRAS at their own discretion. Students have
to get on the phone with the professor to enter the SPIIRAS, as well as single guests and
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laborers. Delegation representatives as well as sightseers are met at the checkpoint by
administrative employees by prior arrangement.

The implementation of the cyberphysical intelligent environment allows simplifying
this procedure by usage of videoconferencing application at the informational
touchscreen at the SPIIRAS checkpoint. The employees pass the turngate after automatic
authentication based on face recognition. Other users are suggested to select appropriate
menu option in the touchscreen according to the purpose of their visit and follow the
further instructions. Scenarios of multimodal informational and navigational services
are presented on Fig. 6a, b. The menu proposed to students is shown on Fig. 6c. Dele‐
gation representatives, single guests and sightseers are given the menu on Fig. 6d. The
system also registers the arrival and leaving time.
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Register the 
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Fig. 6. Scenarios of user registration: a – employees, b – students; visitor menus: c – students,
d – other visitors

Other users are suggested to select appropriate menu option in the touchscreen
according to the purpose of their visit and follow the further instructions. Scenarios of
multimodal informational and navigational services are presented on Fig. 6a, b. The
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menu proposed to students is shown on Fig. 6c. Delegation representatives, single guests
and sightseers are given the menu on Fig. 6d. The system also registers the arrival and
leaving time.

4 Conclusion

The informational and navigational services in cyberphysical intelligent environment
of SPIIRAS are under implementation. The ensemble of webcams will be involved for
processes of registration, authentication and recognition of users. It allows automating
work of checkpoint and reception. The developed multimedia display subsystem will
help users to get required information quickly and efficiently via monitors and infor‐
mational touchscreens.
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Abstract. It is well known that variability of speech signal quality
affects the performance of speaker recognition systems. Difference in
speech quality between enrollment and test utterances leads to shifting
of scores and performance degradation. In order to improve the effec-
tiveness of speaker recognition in these circumstances the scores cali-
bration is required. Speech signal parameters that have a strong impact
on speaker recognition performance are total speech duration, signal to
noise ratio and reverberation time. Their variability leads to scores shift-
ing and unreliable accept/reject decisions. In this paper we investigate
the effects of speech duration variability on the calibration when enroll
and test speech utterances originate from the same channel. An effective
method of scores stabilization is also presented.

Keywords: Speaker recognition · Calibration scores · Tuning speaker
recognition system

1 Introduction

Speaker recognition is an advanced biometric technology that is widely used
in different areas, such as government, forensic, and industry [3,10], contact
center fraud detection [2], solutions for secure financial transactions [1]. Conven-
tional speaker recognition systems provide the ability to compare voice models
of known persons with those of speakers that should be verified or identified.
A scalar value, usually called score, is used to express speaker similarity and
to make decisions based on some threshold value. This score threshold controls
the boundary between two types of errors that a speaker recognition system
produces [17]. The score calibration procedure is a speaker recognition system
tuning technique that allows to choose a threshold value so as to minimize the
recognition error and make the scores more reliable [14].

In recent years, the problem of calibration of automatic speaker recognition
systems has received more attention, and a number of papers were published that
deal with this problem [5,7]. This increased attention is explained by the need to
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get more stable score distributions when the environmental conditions of speech
recording are changed. The effect of different factors [5] such as transmission
type, vocal effort, noise level, speech duration, etc. is the reason of scores shifting
and so it has to be compensated.

The solution to the calibration problem is to determine parameters of score
mapping to log likelihood ratios that depend on quality characteristics of speech
utterances. The main criteria of the calibration performance of the recogni-
tion system is given by the value of the detection cost function at the specified
application-independent threshold [4,16,17]. In order to improve calibration per-
formance it is necessary to determine the parameters of the score transformation
minimizing the cost function value [9,17]. In [5,13] the investigation of differ-
ent types of score calibration is presented. Application of generative modeling is
proposed in [5] for unsupervised score calibration when supervised data cannot
be obtained. A new way of computing scaling parameters for linear calibration
by using constrained maximum likelihood Gaussian is reported in [13]. There is
an investigation of different calibration approaches in [11].

Other works deal with the scores calibration function where speech duration
of enrollment and test speech segments is used as a measure of quality [15,18].
A problem arises if test and enrollment speech segments within the same channel
type have high speech duration variability which is larger than variability of other
quality measures such as signal to noise ratio, reverberation time and etc.

This paper investigates the effect of speech duration in trial recordings on the
scores distribution. The estimation of the distribution parameters with respect to
the duration of speech segments is carried out. We propose a method to approx-
imate these parameters, as well as a corresponding approximation function, and
compare our results with a similar solution presented in [15]. The state-of-the-
art PLDA speaker recognition system was used in our investigations. To train
speaker recognition system and to model test conditions we used speech utter-
ances from NIST SRE database recorded only in telephone channel.

2 Speaker Recognition System

In our experiments we used a text independent speaker recognition system that
represents speaker voice models as i-vectors in a low dimension space. Modeling
of i-vectors distribution was performed by using probabilistic linear discrimi-
nant analysis (PLDA). To extract features from speech signal we used 20 ms
analysis windows with 10 ms shifting by calculating 13 MFCC parameters. Then
we combined the parameters with their first and second derivatives to form a
39-dimensional feature vector.

Voice activity detection is performed by using speech energy based algorithm
as described in [12]. Finally, a gender-dependent UBM of 2048 components was
applied. The UBM was trained on the NIST SRE-2004, 2005, 2006, Switchboard
II and Switchboard Cellular 1, 2 databases. In this paper, we used a gender-
dependent 600-dimensional i-vector space which was trained on the same data
as the UBM. I-vector length normalization and covariance normalization [8] were
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applied prior for optimal performance of our system. In PLDA model only the
400 speaker factors were taken into account. Subspace speaker factor matrix in
PLDA was trained using the same databases for i-vector space training with
speaker labeling.

3 Evaluation Databases

We experimented with speech databases provided by National Institute of Stan-
dard and Technology (NIST). All speech data in our experiments were from
telephone conversations in English. We used NIST SRE 2008 subset as a devel-
opment set to train calibration parameters of our system.

Evaluation of calibration performance was carried out on the NIST SRE
2012 (C2 protocol) speech data named as a test set. We applied all possible
trials to train calibration parameters by using development speech database. In
the telephone speech evaluation protocol we used 2826 target / 161564 imposter
trials to evaluate calibration performance. Speech segments from the evaluation
set vary in duration from 4 s to 150 s.

4 Calibration

Generally calibration is applied to rescale and shift raw scores minimizing the
expectation error at the specified application-independent threshold. After that
the calibration scores may be considered as log likelihood ratios and they have
a direct probabilistic interpretation.

It can be shown that if the scores are normally distributed with equal vari-
ances then calibration mapping is a linear transformation. So calibrated score s̄
can be calculated as:

s̄ = as + b, (1)

where s is a raw score. The offset b and scaling a parameters are obtained by
solving an optimization problem on a development set.

Accuracy of the speaker recognition system is estimated by the detection cost
function that is applied in the NIST speaker recognition evaluations:

DCF (θ) = CfrPfr(θ)π + CfaPfa(θ)(1 − π), (2)

where Cfr and Cfa are the conditional risk parameters and denote costs of a
false-reject and of a false-alarm respectively. Parameter π is a prior probability
of target hypothesis. Pfr(θ) and Pfa(θ) are false reject and false acceptance errors
for the decision threshold θ. In order to evaluate the calibration performance of
the speaker recognition system it is necessary to compute the minimal value of
the cost function DCFmin and the value at the application independent thresh-
old DCFact = DCF (η). If scores are well calibrated then values DCFmin and
DCFact should be close.
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In our research we investigated different ways to take into account the dura-
tion of speech segments in the calibration transformation and proposed our deci-
sion for the problem. There is a general score transformation for calibration
approaches in [15]:

s̄ = w0 + w1s + Q (dm, dt, w2, . . . ) , (3)

where calibration parameters are w0, w1, w2 . . . , Q (dm, dt, w2, . . . ) is the quality
measure function (QMF) and dm, dt are speech durations of model and test seg-
ments respectively. We carried out the experiments with Q1−3 QMFs proposed
in [15]. To train calibration parameters of the QMFs on the development set we
used the BOSARIS fusion toolkit [6]. Results of the estimation of the calibration
performance are obtained by using Q1−3 approaches and are discussed in Sect. 5.

When we were investigating the problem of calibration scores we tried to find
an approximation model of statistical parameters of target and imposter score
distributions on the speech segment durations. We assumed the distributions
to be Gaussian. We also assumed that variances of the distributions are the
same and are independent of dm and dt so only the expectations have to be
approximated. To initialize the common variance we used average value σ =
0.5(σt + σi), where σt and σi are variances of target and imposter distributions
that were estimated on the development set. So based on the assumptions we
can apply the linear form transformation (6) described above for calibration
mapping:

s̄ = y0 + y1s, (4)

it is implied that y0 and y1 depend on the pair of speech durations dm, dt and
are defined as:

y0 = − 1
2σ2

(μ2
tar − μ2

imp), y1 =
1
σ2

(μtar − μimp), (5)

where σ is the common variance and μtar , μimp are expectations of score distri-
butions. In our research we defined approximation models for the expectations
that depend on the durations of speech segments. The general form of the most
suitable approximation models that we discovered is defined as follows:

μ(dm, dt) = C0 + C ′
1(dm)

√
log dt, C ′

1(dm) = C1 + C2

√
log dm. (6)

Finally symmetrizing is needed:

μ(dm, dt) = 1/2 [μ(dm, dt) + μ(dt, dm)] . (7)

To estimate parameters of this approach it is first required to define depen-
dencies of μ expectations on dt test speech duration at each dm fixed value of
enrollment model speech segments duration from specified set. Then we per-
formed the next approximation step to define function C ′

1(dm). Finally it is
required to achieve a symmetrical presentation of μ(dm, dt) relatively to the
test and enroll speech segment durations. So the approximation model of the
expectations of target and impostor score distributions that we propose is:
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μ(dm, dt) = C0 + C1

(√
log dt +

√
log dm

)
+ C2

√
log dt log dm. (8)

It should be noted that this result is obtained in the context of the PLDA
approach that allows to assume that the scores are normally distributed. The
score representation that we used is explained in [8].

5 Experimental Results

In this section we present the analysis of calibration experiment results. We use
a set of trials obtained from the development set to train parameters of the
calibration mapping. The trials were performed on all combinations of speech
segments durations. Then trial scores were taken into account to define para-
meters of different QMFs (Table 1) and our approximation model by using the
BOSARIS toolkit.

Table 1. Quality measure functions

Name QMF Parameters

Q1 w1| log( dm
dt

)| w1

Q2 w1 log2( dm
dt

) w1

Q3 w1 log( dm
dc

) log( dt
dc

) w1, dc

To develop our calibration system we prepared speech segments of different
durations by truncating the development utterances to 3, 7, 8, 10, 11 s. These
subsets allowed us to generate trials and scores for proposed calibration model
training. We estimated the means of the target/imposter score distributions with
respect to test and enroll speech segment durations. Then we applied optimiza-
tion procedure to find approximation parameters by minimizing mean square
error (MSE) of the approximation. The results of the parameters approximation
of the target/imposter score distributions are demonstrated in Fig. 1. It should
be noted that Eqs. eqrefeqn:1 provide an appropriate approximation model that
is confirmed by diagrams (Fig. 1).

As mentioned before in our work we used NIST 2012 C2 (only males) evalu-
ation protocol to investigate score stabilization procedures in the speaker recog-
nition systems. We applied different multisession enrollment modes (different
session number from 1 to 5) to perform evaluation experiments. In this case the
duration of the enrollment model was represented as a sum of speech segments
duration of all sessions. In our investigations we focused on several important
performance measures which are used in speaker recognition: equal error rate
(EER), minimum decision cost function (minDCF ) with Cmiss = Cfa = 1 and
Ptar = 0.01 and corresponding actual DCF (actDCF ) metric.

The main results of the investigation of different score stabilization methods
are shown in Table 2. According to those results one can conclude: first, scores
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Table 2. Evaluation results

Enroll sessions number EER [%] minDCF actDCF

Non calibrated system

1 4.58 0.42 0.42

3 3.19 0.31 0.32

5 3.18 0.28 0.28

Q1 function

1 4.11 0.43 0.43

3 2.90 0.29 0.31

5 2.89 0.25 0.28

Q2 function

1 4.26 0.41 0.42

3 2.93 0.29 0.30

5 2.91 0.25 0.26

Q3 function

1 4.59 0.42 0.42

3 3.21 0.31 0.32

5 3.18 0.28 0.29

Proposed calibration

1 4.13 0.41 0.41

3 2.97 0.29 0.30

5 3.02 0.25 0.26

(a) Approximation of the µtar (b) Approximation of the µimp

Fig. 1. Approximations of the expectations of score distributions
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stabilization procedures help to improve speaker detection system performance;
second, Q2-function was found to be the best among all quality measure func-
tions under consideration. The proposed score stabilization method proved to
be effective in terms of actDCF for evaluating different types of multisession
enroll models. This calibration demonstrates stable leading positions among all
QMFs.

6 Conclusion

In this paper we presented the score stabilization method for the state-of-the-
art speaker recognition systems. It is based on approximations of the means of
target and impostors score distributions that depend on test and enroll speech
segment durations. Experiments performed on NIST SRE 2012 C2 evaluation
protocol demonstrate the effectiveness of the method in comparison with differ-
ent heuristic quality measure functions.
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ment of the Russian Federation, Grant 074-U01.
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5. Brümmer, N., Garcia-Romero, D.: Generative modelling for unsupervised score
calibration. arXiv preprint (2013). arxiv:1311.0707
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Abstract. In this paper, we compare the performance of image key-
points detectors and descriptors on well known Oxford dataset. We use
evaluation criteria which were presented by Mikolajczyk et al. [12], [13].
We created most of the possible combinations of keypoint detector and
descriptor, but in this paper, we present only selected pairs. The best
performing detector and descriptor pair are selected for future research,
mainly with the focus on augmented reality.

Keywords: Keypoint detector · Keypoint descriptor · Feature
extraction · Augmented reality

1 Introduction

Augmented Reality (AR) as a scientific field has been growing dynamically
recently. AR has an extraordinary potential which hasn’t been still exhausted.

Visualization of 3D human body parts in medical books, badly damaged or
ruined historical buildings in cities or addition of an objects in games to the real
environment, all of that is just a fragment of using AR.

Extension of real world information is AR and it’s realized by feature extrac-
tion methods which are able to find and describe visual keypoints. For example,
it’s important to select the best combination of robust methods and choose the
appropriate one for the placing of an virtual object into the augmented space.
It is advisable to choose conditions such as real–time capability, stability, etc.
which should be fulfilled.

In an application of AR is desirable to choose the best keypoint detector
and descriptor combination. Detected keypoints are used for placing augmented
objects in the real world. For the best illusion of AR is needed to ensure that
objects don’t shake on the target position. This depends on stability and robust-
ness of selected keypoints methods.

2 Methods

In this section, we mention detector and descriptor methods. We use these meth-
ods for our experiments in Sect. 3.
c© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 604–612, 2016.
DOI: 10.1007/978-3-319-43958-7 73
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2.1 Methods with Detector and Descriptor

Several visual feature extraction algorithms have recently appeared in the lit-
erature. Here we mention a group of methods that have feature detector and
descriptor.

Scale-invariant feature transform (SIFT) was presented in 2004 by Lowe in
paper [10]. Algorithm in the stage of keypoints detecting tries to detect extrema
of the result of a difference of Gaussians function applied in scale space to a series
of smoothed and resampled images. Then the image of gradient magnitudes and
orientations is sampled around keypoint location. Description stage produces
descriptor based on orientation and data that was obtained in a small window
around the detected keypoint.

Speeded–up robust features (SURF) was proposed by Bay et al. in 2008 [5].
SURF can be considered as a performance extension of SIFT method. SURF
uses Haar wavelets and is faster feature detector and descriptor than SIFT.

Another detector and descriptor is oriented FAST and rotated BRIEF (ORB)
by Rublee [16] introduced in 2011. It is based on the FAST keypoint detector (see
Sect. 2.2) and the visual descriptor BRIEF (see Sect. 2.3). Its aim is to provide
a fast and efficient alternative to SIFT.

Binary robust invariant scalable keypoints (BRISK) was proposed by
Leutenegger et al. [8]. It provides both scale and rotation invariance. In order
to compute the feature locations, it uses the AGAST corner detector [11] which
improves FAST by increasing speed while maintaining the same detection perfor-
mance. For scale invariance, BRISK detects keypoints in a scale–space pyramid,
performing non–maximum suppression and interpolation across all scales.

Alcantarilla et al. in 2012 presented KAZE [4] detector and descriptor. This
feature extraction method is completely calculated in non–linear scale space.
Previously proposed methods like SIFT and SURF find features in the Gaussian
scale space, but Gaussian blurring does not respect the natural boundaries of
objects. Non–linear scale spaces can be detected and described by non–linear
diffusion features keeping important image details and removing noise as long as
the image evolves in the scale space. KAZE uses variable conductance diffusion
that is one of the simplest non–linear diffusions. The non–linear scale space is
built efficiently by means of additive operator splitting.

Accelerated KAZE (AKAZE) was proposed by Alcantarilla et al. in 2013
[3]. AKAZE features use mathematically fast explicit diffusion embedded in a
pyramidal framework to speed–up the non–linear scale space computation. It
computes a robust modified–local difference binary (M–LDB) descriptor that
exploits gradient information from the non–linear scale space. AKAZE is faster
than KAZE and the results are comparable.

2.2 Only Detector Methods

We shortly mention a few detector methods which we have tested in our exper-
iments in Sect. 4.
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Features from accelerated segment test (FAST) [14,15] are keypoint detector
that was originally developed by Rosten and Drummond, and published in 2006.
The advantage of FAST keypoint detector is its computational efficiency. FAST is
built on machine learning methods and it’s fast and indeed, it’s faster than many
other well–known feature extraction methods, such as difference of Gaussians
(DoG) used by SIFT. The FAST detector is very suitable for real–time video
processing application because of high–speed performance, that is in any case of
augmented reality very critical.

Adaptive and generic accelerated segment test (AGAST) [11] is a highly
efficient corner detector based on the same corner test as FAST. It computes a
binary decision tree (corner detector) which is generic and does not have to be
adapted to new environments. The tree is optimal for a certain probability of
similar pixels in the accelerated segment test mask.

Star feature detector is derived from center surrounded extrema (CenSurE)
detector [1]. CenSurE uses polygons such as Square, Hexagon, and Octagons
as a more computable alternative to circle. Star mimics the circle with two
overlapping squares, first one upright and second one 45 degrees rotated. These
polygons are bi–level and can be seen as polygons with thick borders. The borders
and the enclosed area have weights of opposing signs.

2.3 Only Descriptor Methods

In this last subsection we describe tested descriptor methods very briefly.
Binary Robust Independent Elementary Features (BRIEF) was proposed by

Calonder et al. [6]. It uses a sampling pattern consisting of 128, 256, or 512
comparisons (equating to 128, 256, or 512 bits), with sample points selected ran-
domly from an isotropic Gaussian distribution centered at the feature location.
Calonder et al. [6] suggests using BRIEF with the efficient CenSurE detector [1].

An efficient dense descriptor applied to wide–baseline stereo (DAISY) was
presented by Tola et al. in 2010 [17]. DAISY is a local image descriptor which
is robust against many photometric and geometric transformations. It is very
efficient to compute densely. DAISY can be used for computing dense depth and
occlusion maps from wide–baseline image pairs. This descriptor is inspired from
earlier ones such as SIFT but can be computed faster.

Fast Retina Keypoint (FREAK) [2] is a binary descriptor encoding simple
image intensity comparisons on a specific pattern at large scale and small scale.
This feature descriptor was developed in human–like manner of capturing visual
information (coarse in peripheral regions of the retina and fine in the central
region). Its main practical interest stems from extremely fast extraction and
matching which was long awaited in embedded devices or in large–scale appli-
cations.

Locally uniform comparison image descriptor (LUCID) [18] is a simple descrip-
tion method based on linear time permutation distances between the ordering of
RGB values of two image patches. It is computable in linear time with respect to
the number of pixels and does not require floating point computation.
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Learned arrangements of three patch codes (LATCH) [9] is one of current
state–of–the–art binary descriptors. It is based on comparing triplets of pixel
patches.

3 Experiments

In this section, we describe datasets that we used in our tests and briefly describe
them. In Subsect. 3.2 we show criteria that we used for evaluation.

3.1 Datasets

We evaluate the detectors and descriptors on Oxford dataset images which con-
tain different geometric and photometric transformations. This set was originally
described in [12,13]. The dataset has since become the standard for evaluating
descriptor design capabilities. Example of the dataset1 is shown in Fig. 1. We eval-
uate eight different sets which each consist of six images. Each set contains one
referential image and five transformed images. The homography matrices of refer-
ential to the analyzed image are present, too. In these sets zoom+rotation, view-
point change, image blur, JPEG compression, light change transformations are
present.

Fig. 1. The example of the datasets (from top left): boat: zoom+rotation, bark:
zoom+rotation, graffiti: viewpoint change, wall: viewpoint change, bikes: image blur,
trees: image blur, ubc: JPEG compression, leuven: light change.

3.2 Evaluation Criterion

A few performance metrics were presented: Mikolajczyk et al. [12,13] proposed
to use the metrics of recall, repeatability, and 1–precision. They describe useful
characteristics of a feature’s performance, which were used as standard measures.
1 The dataset is available at http://www.robots.ox.ac.uk/∼vgg/research/affine.

http://www.robots.ox.ac.uk/~vgg/research/affine
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Next metrics was summarized in [7,19]. We selected the following evaluation
criteria in our experiments:

The Putative Match Ratio

PutativeMatchRatio =
#PutativeMatches

#Features
, (1)

is the selectivity of the descriptor and describes what fraction of the detected
features will be initially identified as a match. These matches can be potentially
incorrect. The putative match is a single pair of keypoints, where a keypoint
cannot be matched to more than one other keypoint. The keypoints that are
outside of the bounds of the second image are not counted. This is ensured by
transforming keypoint from the first image through ground truth homography
matrix to the second image.

The Precision
Precision =

#CorrectMatches

#PutativeMatches
, (2)

quantifies the number of correct matches out of the set of putative matches (the
inlier ratio). In Eq. 2, the number of correct matches are those putative matches
that are geometrically verified. Verification is based on the known camera posi-
tions. Precision is also influenced by many of the same factors like in the case of
the putative match ratio, but the consequences are different. For instance, while
a less restrictive matching criteria increase the putative match ratio, it will also
decrease the precision as a higher number of incorrect matches will be generated.

The Matching Score

Matching Score =
#CorrectMatches

#Features
, (3)

is the multiplication of the putative match ratio and precision. It describes the
number of initial features that will result in correct matches. The matching
score describes how well the descriptor is performing and is influenced by the
descriptor’s robustness to transformations of the data. The matching score can
be influenced by indistinct descriptors and the matching criteria.

The Recall
Recall =

#CorrectMatches

#Correspondences
, (4)

defines how many of the possible correct matches were actually found. The cor-
respondences are the matches that should have been identified by given the key-
point locations in both images. Recall shares the same influences as the matching
score and it is dependent on the detector’s ability to generate correspondences.
For example, when the matching criterion is too strict, the data is too complex
or the descriptors are indistinct that could mean low recall value.
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4 Experimental Results

In our experiments, we created the most of the possible combinations of key-
point detector and descriptor. In tables below, we show only selected results.
All implementation of methods was used from OpenCV 3.12. All detectors and
descriptors input parameters were set to default values. For feature matching
was used brute–force matcher. Best performing values are shown in bold.

Table 1. Average putative match ratio (from Eq. 1) calculated from full set (consisting
of 5 corresponding pairs) of boat, bark, graffiti, wall, bikes, trees, ubc and leuven sets
(image dataset order is same as at Fig. 1).

Detector Descriptor Average putative match ratio

sift sift 0.112 0.127 0.116 0.204 0.128 0.050 0.262 0.294

surf surf 0.077 0.050 0.053 0.092 0.197 0.061 0.325 0.262

brisk brisk 0.036 0.037 0.030 0.035 0.067 0.020 0.193 0.131

kaze kaze 0.172 0.074 0.099 0.234 0.364 0.164 0.696 0.297

akaze akaze 0.060 0.030 0.029 0.083 0.390 0.096 0.573 0.281

orb orb 0.052 0.021 0.022 0.026 0.136 0.040 0.446 0.098

star surf 0.044 0.039 0.061 0.022 0.116 0.019 0.307 0.130

star freak 0.019 0.021 0.018 0.017 0.101 0.017 0.340 0.096

agast latch 0.000 0.000 0.001 0.009 0.044 0.009 0.137 0.153

Table 2. Average precision (from Eq. 2) calculated from full set.

Detector Descriptor Average precision

sift sift 0.851 0.940 0.405 0.737 0.774 0.698 0.942 0.929

surf surf 0.678 0.879 0.288 0.675 0.798 0.633 0.908 0.874

brisk brisk 0.894 0.931 0.583 0.648 0.754 0.708 0.955 0.950

kaze kaze 0.858 0.923 0.518 0.796 0.838 0.685 0.964 0.905

akaze akaze 0.503 0.726 0.276 0.514 0.884 0.586 0.948 0.910

orb orb 0.719 0.600 0.329 0.726 0.850 0.660 0.978 0.920

star surf 0.486 0.656 0.226 0.466 0.669 0.433 0.908 0.726

star freak 0.003 0.683 0.000 0.461 0.009 0.007 0.186 0.021

agast latch 0.000 0.000 0.000 0.001 0.000 0.000 0.007 0.002

Each table is divided into two sections. In the first section, there are methods
which have detector and descriptor. In the second section, there are the mixed
detector and descriptor methods.
2 OpenCV is available at http://opencv.org/.

http://opencv.org/
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Table 3. Average matching score (from Eq. 3) calculated from full set.

Detector Descriptor Average matching score

sift sift 0.106 0.119 0.089 0.194 0.107 0.042 0.255 0.276

surf surf 0.062 0.043 0.031 0.082 0.169 0.047 0.309 0.233

brisk brisk 0.034 0.034 0.026 0.033 0.056 0.017 0.190 0.126

kaze kaze 0.161 0.066 0.082 0.218 0.323 0.125 0.677 0.272

akaze akaze 0.041 0.025 0.020 0.068 0.356 0.065 0.555 0.261

orb orb 0.048 0.014 0.018 0.024 0.123 0.033 0.442 0.091

star surf 0.029 0.027 0.024 0.016 0.087 0.011 0.293 0.101

star freak 0.000 0.017 0.000 0.014 0.002 0.000 0.084 0.002

agast latch 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

Table 4. Average recall (from Eq. 4) calculated from full set.

Detector Descriptor Average recall

sift sift 0.226 0.358 0.189 0.310 0.580 0.106 0.423 0.652

surf surf 0.142 0.136 0.070 0.148 0.373 0.101 0.436 0.437

brisk brisk 0.043 0.073 0.038 0.045 0.259 0.029 0.241 0.225

kaze kaze 0.237 0.220 0.133 0.316 0.583 0.255 0.764 0.527

akaze akaze 0.060 0.069 0.027 0.088 0.559 0.125 0.608 0.532

orb orb 0.062 0.049 0.022 0.040 0.168 0.073 0.482 0.155

star surf 0.072 0.127 0.055 0.028 0.307 0.031 0.369 0.336

star freak 0.000 0.075 0.000 0.024 0.004 0.001 0.101 0.007

agast latch 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001

Table 1 shows results of average putative match ratio for each dataset calcu-
lated by averaging values from Eq. 1 (Tables 2, 3 and 4).

5 Conclusion

The KAZE detector and descriptor performed the best in our experiments.
Our experiments also showed that when detector and descriptor combination
is selected badly, the results will be very poor. This is the case of LATCH
descriptor.

In future work, we will focus on speed performance experiments for selecting
the best detector descriptor and combination for real–time augmented reality
application. We will extend our performance experiments, too.
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Abstract. Modern speaker verification systems take advantage of a
number of complementary base classifiers by fusing them to get reliable
verification decisions. The paper presents a semi-automatic speaker ver-
ification system based on fusion of formant frequencies, phone durations
and pitch characteristics. Experimental results demonstrate that combi-
nation of these characteristics improves speaker verification performance.
For improved and cost-effective performance of the pitch subsystem
further we selected the most informative pitch characteristics.

Keywords: Formant frequencies · Phone durations · Pitch characteris-
tics · Speaker verification · Feature selection

1 Introduction

Speech signals carry different information including individual voice character-
istics which allows to recognize people by their voice, and therefore to solve
a speaker recognition task. This task involves speaker verification in case it is
necessary to make a binary (yes or no) decision regarding speaker identity, and
speaker identification in case it is necessary to determine which speaker voice is
presented on a test recording. In this study we focus on a speaker verification
problem. Nowadays human-assisted methods are widely used in forensic speaker
recognition [1]. However, the application of these methods is limited by the need
of engagement of highly qualified experts. Moreover, human-assisted methods
are time consuming that generally complicates their use under time constraints.
Furthermore, the final decision is largely subjective since it depends on the per-
sonal opinion of the expert [2]. In this paper we continue our research started
in [3] and propose a semi-automatic speaker verification system which makes it
possible to get over above-mentioned shortcomings. This system includes com-
paring different voice characteristics: formant frequencies, phone durations and
pitch characteristics as well. The final decision concerning identity or difference
of speaker voices is made automatically as a result of fusion of the used sub-
systems. The results of our experiments show that additional use of the pitch
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subsystem proposed in [4] leads to better performance compared with the results
of our previous research [3]. For the purpose of increasing verification accuracy
and time reduction of comparing speech samples, we found the most distinctive
pitch characteristics.

The rest of the paper is organized as follows. Section 2 includes the system
description. The experimental results and database descriptions are presented
in Sect. 3. Conclusions are considered in Sect. 4.

2 System Description

The proposed speaker verification system consists of three subsystems based
on pitch characteristics, formant frequencies and phone durations described in
Sects. 2.1, 2.2 and 2.3. Figure 1 shows main modules of the system. The first
module in each subsystem extracts speech features from the input speech signal.
The second module aggregates these features to represent an entire utterance as
a vector of fixed dimension. Given a trial each subsystem outputs a matching
score measuring similarity between two utterances. At the fusion stage matching
scores are combined into a single score to increase accuracy of the system. The
decision module compares the final matched score to a pre-defined threshold.
If similarity is above the threshold, the trial is classified as target, otherwise
non-target.

Fig. 1. Block diagram of the speaker verification system

2.1 Pitch Subsystem and Pitch Characteristics

The pitch subsystem compares the characteristics of intonation structures pre-
sented in speech samples [4]. The following characteristics were used and
described in [4]: initial, final, minimal, maximum and average frequencies of
intonation fragments, F0 range, pitch change speed, irregularity coefficient,
skewness and kurtosis of distribution of pitch frequencies, duration of intona-
tion fragments, coordinate of minimal, average and maximum frequency values
(in percentage of whole duration of chosen fragments). Data analysis includes
calculating and correcting pitch curves, segmentation of speech material into
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comparable intonation structures (fragments) of the utterances (prosodic phrase,
head, pre-head, nuclear tone, nucleus + tail) and automatic comparison of pitch
characteristics obtained as a result of segmentation. Because of the high labour
intensity of this method we conducted segmentation of speech material based on
prosodic phrases of 10–15 s duration in an automatic mode without preliminary
pitch correction.

2.2 Formant Subsystem and Formant Frequencies

It is well-known that positions of the main spectral peaks in the spectrum of
the speech signal depend on the anatomical structure of the vocal tract and
the sizes of the resonant cavities. For this reason such spectral characteristics
may be applicable to speaker recognition. Since formant frequencies are usu-
ally not independent, we use a GMM-UBM framework [5] which is a common
tool in speaker verification to approximate complex statistical relationships in
multivariate data. It is based on the notion of the universal background model
(UBM) which models statistical distribution of features for a large population
of speakers [6].

It should be noticed that hand-correcting formant tracks was not carried
out. For our experiments we detected the first four formant tracks of six Russian
vowels (/i/, /e/, /a/, /u/, /o/, /y/).

2.3 Phone Subsystem and Phone Durations

The phone duration subsystem was presented in [3]. This subsystem includes
automatic phonetic segmentation on the basis of recordings and text contents
of these files, calculation of average durations for each phone in the phonetic
segmentation and calculation of the matching score of speaker voices. Unlike
the formant subsystem based on the GMM-UBM framework which enjoys large
speech datasets, training the phone subsystem requires transcriptions (typically
limited) in addition to speech recordings. Thus smaller amounts of data may lead
to over-fitting because of a large number of model parameters. Due to the lack
of text contents of speech recordings, we define a simple matching score which
has much smaller parameters to tune and hence more robust to over-fitting:

s(x1,x2) = −
T∑

t=1

wi(xt
1 − xt

2)
2, (1)

where x1,x2 is a pair of feature vectors representing a trial, T is the feature
space dimension and wi are non-negative weights. This formula can be seen as
negative Mahalanobis distance. Intuitively greater weights should correspond to
more important features (i.e. features with higher discriminative ability). We
give details how to estimate these weights in the next Section. To the aim of
time reduction we did not correct phone boundaries.
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3 Experiments

3.1 Experiment – Speaker Verification

Here we describe the experiment on speaker verification. For the experiment
presented in this Section we used the database described below. For training we
formed the database including Russian quasi-spontaneous speech of 124 male
speakers and 70 female speakers recorded over the telephone channel. Each
speaker participates in five recording sessions of 3–5 min duration and there
is one week gap between sessions. During the recording session every speaker
answers questionnaire questions. For training we used the database of 1–3 min
natural spontaneous telephone dialogues in Russian. The evaluation set consists
of 1037 target and 9397 non-target trials for males and 507 target and 2233
non-target trials for females. To increase reliability of speaker verification the
final decision can be made based on decisions of independent subsystems. Such
procedure is called a decision fusion at the score-level [7]. For a set of matching
scores si fusion was done using a convex combination of scores:

s = p1s1 + p2s2 + p3s3,

where si is a matching score of the i-th sub-system, pi are weight parameters
such that

∑
i pi = 1. The values pi were tuned by hand on a subset of the

training set.
The important aspect of fusion is statistical independence of matching scores

of combined subsystems. Otherwise the final decision hardly results in a sharp
gain in speaker verification performance.

We report speaker verification performance in the form of equal error rate
(EER, %) [8]. Table 1 presents the performance evaluation of the considered
subsystems.

Table 1. Speaker verification results for two different genders (EER, %)

Subsystem Male Female

Pitch characteristics 23.28 27.33

Phone durations 27.57 36.98

Formant frequencies 2.93 4.63

Formant frequencies + Phone durations 2.02 4.49

Formant frequencies + Phone durations + Pitch characteristics 1.41 3.83

As appears from Table 1, the formant subsystem is the most accurate. Pitch
characteristics demonstrate the noticeable degradation. Phone durations con-
cede in performance to other characteristics. In our previous research fusion of
subsystems based on phone durations and formant frequencies was performed
[3]. In this experiment we conducted fusion of all above-described subsystems.
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(a) (b)

Fig. 2. DET (detection error trade-off)-curves for male (a) and female speakers (b).
DET-curve (1) demonstrates the performance of the phone durations subsystem,
(2) – pitch subsystem, (3) – formant subsystem, DET-curve (4) shows the whole system
performance. FNR (False Negative Rate), FPR (False Positive Rate).

The results presented in Table 1 and Fig. 2 demonstrate that fusion of subsystems
based on poorly correlated features (pitch characteristics, formant frequencies
and phone durations) leads to a decrease of EER and improves speaker verifica-
tion performance.

3.2 Experiment – Informative Pitch Characteristics

Feature selection is the crucial step in design semi-automatic speaker recognition
systems. It can considerably reduce time of comparing speech samples and even
improve speaker verification performance.

We ranked features according to weights calculated as follows:

wi =
σ2
b

σ2
w

, (2)

where σ2
b is between-speaker variance and σ2

w is within-speaker variance for the
i-th feature. Higher values correspond to features with a higher class separa-
bility. To assess selected subsets of features we evaluated speaker verification
performance as the function of a number of selected features. We used a dataset
consisting of 5102 speech cuts from 195 speakers. Each speaker takes part in 2–5
recording sessions of 3–5 min duration. The database includes male and female
spontaneous speech of speakers recorded over a microphone channel in Russian,
Tajik, Azerbaijani and Talysh. It should be noticed that prosodic segmenta-
tion into intonation fragments was done fully manually. To evaluate verifica-
tion performance we averaged EERs over 100 random splits of the dataset into
equally-sized training and testing parts. First, we estimated system accuracy
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in terms of EER using subsets of the most informative features. Starting from
the top ranked feature we gradually added other features according to the order
defined by weights (2). We used the same weights to compute the matching score
defined by (1). Then we estimated EERs for each feature separately. Figure 3
demonstrates the results.
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Fig. 3. Speaker verification performance (a) with a subset of the top-k most informative
pitch characteristics and (b) for each characteristic separately (sorted in the same
order).

Figure 3(a) shows individual speaker verification performance for all pitch
characteristics ordered according to (2): (1) average, (2) final, (3) minimal,
(4) initial, (5) maximum pitch frequencies, (6) F0 range measured in Hertz,
(7) irregularity coefficient, (8) pitch change speed, (9) F0 range measured in
semitones, (10) kurtosis and (11) skewness of distribution of pitch frequencies,
coordinate of (12) minimal, (13) maximum and (14) average frequency values
(in percentage of whole duration of chosen fragments), (15) duration of into-
nation fragments. Thus the first five most informative features are (1–5), while
(12–15) are the least distinctive features. However, as can be observed, there
is a strong correlation between some features. For this reason the joint use of
such characteristics as (1–5) does not improve speaker verification performance
that Fig. 3(b) shows. While adding (7) and (8) leads to a noticeable decrease
of EER. Interestingly, including the rest of less informative pitch characteristics
even slightly decreases accuracy of the pitch subsystem. The results of the addi-
tional experiments demonstrate that the joint use of (1), (7) and (8) leads to the
best speaker verification performance having the lowest EER of 13 %. Therefore,
EER obtained on the reduced feature set is lower than that on the full feature set
(14,79 %). It was also experimentally established that the threshold for absolute
difference of average pitch frequencies corresponding to equal misses and false
alarms equals to 12 Hz. This finding can be useful for rapid comparison of speech
samples carried out by experts.
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4 Conclusion

In this paper we proposed a semi-automatic speaker verification system based on
fusion of formant frequencies, phone durations and pitch characteristics. Experi-
mental results show that including of pitch characteristics improves speaker ver-
ification performance compared with an earlier developed system [3]. We found
out that use of the reduced set of pitch characteristics (average F0, irregular-
ity coefficient and pitch change speed) leads to increased speaker verification
accuracy.
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References

1. Rose, P.: Forensic Speaker Identification. Taylor and Francis, London (2002)
2. Tanner, D.C., Tanner, M.E.: Forensic Aspects of Speech Patterns: Voice Prints,

Speaker Profiling, Lie and Intoxication Detection. Lawyers and Judges Publishing,
Tucson (2004)

3. Bulgakova, E., Sholohov, A., Tomashenko, N., Matveev, Y.: Speaker verification
using spectral and durational segmental characteristics. In: Ronzhin, A., Potapova,
R., Fakotakis, N. (eds.) SPECOM 2015. LNCS, vol. 9319, pp. 397–404. Springer,
Heidelberg (2015)

4. Smirnova, N., et al.: Using parameters of identical pitch contour elements for speaker
discrimination. In: Proceedings of the 12th International Conference on Speech and
Computer, pp. 361–366 (2007)

5. Becker, T., Jessen, M., Grigoras, C.: Forensic speaker verification using formant
features and Gaussian mixture models. In: Proceedings of Interspeech, pp. 1505–
1508 (2008)

6. Reynolds, D., Quatieri, T., Dunn, R.: Speaker verification using adapted Gaussian
mixture models. Digit. Signal Proc. 10, 19–41 (2000)

7. Jain, A.K., Flynn, P., Ross, A.A. (eds.): Handbook of Biometrics. Springer-Verlag
New York, Inc., New York (2008)

8. The NIST year 2010 Speaker Recognition Evaluation plan. http://www.itl.nist.gov/
iad/mig/tests/sre/2010/NISTSRE10evalplan.r6.pdf

http://www.itl.nist.gov/iad/mig/tests/sre/2010/NISTSRE10evalplan.r6.pdf
http://www.itl.nist.gov/iad/mig/tests/sre/2010/NISTSRE10evalplan.r6.pdf


Speaker-Dependent Bottleneck Features for Egyptian
Arabic Speech Recognition

Aleksei Romanenko1,2(✉) and Valentin Mendelev1,2

1 ITMO University, Saint-Petersburg, Russia
anromanenko@corp.ifmo.ru, mendelev@speechpro.com

2 Speech Technology Center Ltd, Saint-Petersburg, Russia

Abstract. In this paper, several ways to improve a speech recognition system
for the Egyptian dialect of Arabic language are presented. The research is based
on the CALLHOME Egyptian Arabic corpus. We demonstrate the contribution
of speaker-dependent bottleneck features trained on other languages and verify
the possibility of application of a small Modern Standard Arabic (MSA) corpus
to derive phonetic transcriptions.   The systems obtained demonstrate good results
as compared to those published before.

Keywords: Arabic language · Keyword search · Low resources

1 Introduction

The Arabic language is one of the most widely used in the world [1]. It has multiple
variants, including Modern Standard Arabic (MSA) which is predominantly used in
written communication, in broadcasting, for religious and official purposes. In everyday
life native Arab speakers use various dialects of Arabic language (DA) depending on
their origins and place of living.

There are a few studies devoted to automatic speech recognition for dialects. Dealing
with natural language processing (NLP) problems for DA is associated with substantial
difficulties:

– DA differ significantly from MSA in morphological, phonological, and lexical
aspects [2]:
• High inflectedness of both MSA and DA results in presence of a great amount of

words and word forms derived from one root. This greatly increases the out of
vocabulary (OOV) rate and makes the estimation of probabilities for language
models quite difficult;

• The numbers of phonemes in MSA and DA often differ. In addition, some
phonemes of MSA may be absent in DA or be replaced by other ones. Due to
differences in pronunciation of the same words in MSA and DA, it is impossible
to specify reliably a pronunciation lexicon;

• One and the same word in MSA and DA can represent distinct parts of speech [3],
which greatly complicates the lexical analysis that would help to find a correct
phoneme transcription;

© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 620–626, 2016.
DOI: 10.1007/978-3-319-43958-7_75



• Texts in DA often lack diacritics corresponding to short vowels, consonant redu‐
plication, etc. Presence of diacritics would make the process of obtaining the
phoneme transcription more easy, but their allocation is a separate complex
problem;

– There is a low amount of training data. While the problem of lack of data to construct
a language model can be solved with the help of Internet sources [4], the question of
obtaining speech corpora for various dialects remains open. The speech recognition
for DA is a low resource problem;

– Most of existing tools for analyzing Arabic language are designed specifically for
MSA [5], so their application to dialects is very difficult or sometimes impossible.

In recent years, acoustic and language models based on various types of neural
networks have demonstrated their efficiency in many fields of NLP.

DNNs with sequence training were used in [6] to build speech recognition systems
for various dialects of Arabic language. The reported word error rate (WER) is much
lower as compared to HMM-GMM systems. In [7], the combination of an ensemble of
DNNs with CNN together with a larger set of training data (about 100 h of speech) and
neural network language model (NNLM) shows impressive results in recognition of
colloquial Egyptian Arabic. Attempts have also been made to increase the recognition
accuracy by taking due account of the above-mentioned peculiarities of DA. In [5], the
use of NN morpheme-based feature-rich language model decreases WER by absolute
0.6–0.7 %. The phonemic cross-lingual acoustic modeling [3] is an attempt to obtain
correct phonetic transcription for colloquial Egyptian Arabic with the aid of MSA data.
This approach yields 41.8 % relative WER reduction.

The automatic continuous speech recognition task is often accompanied by the
keyword spotting task. The OpenKWS contest held by National Institute of Standards
and Technology (NIST) is focused on rapid development of speech to text (STT) and
spoken term detection (STD) systems for new languages under low resource condi‐
tions [8].

We present several modifications of a speech recognition system for the Egyptian
dialect of Arabic language based on the CALLHOME Egyptian Arabic corpus and
demonstrate the contribution of speaker-dependent bottleneck features trained on
Russian, English and Levantine Arabic speech corpora. In addition, we try to use a small
MSA corpus to derive the phonetic transcriptions.

The remaining part of the paper is organized as follows. In the next section,
we describe the datasets. Section 3 describes our automatic speech recognition system.
The results of recognition experiments are given in Sect. 4. Conclusion and discussions
are presented in Sect. 5.

2 Datasets

In order to train and test the models, we utilize the CALLHOME Arabic dataset
(LDC97S45 for the audio and LDC97T19 for the text). This corpus consists of phone
conversations between native Egyptian Arabic speakers. There are 120 recordings of up
to thirty minutes each. In each recording, a fragment of five or ten minutes length is
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chosen in an arbitrary way and then transcribed. The whole set is divided into three parts,
training, development, and testing. The training set consists of 80 recordings containing
14 h of speech and 130000 words; 20 recordings are used to form the development set
of length 3.5 h containing around 32000 words. The remaining 20 recordings constitute
the test dataset of roughly 14000 words. In addition, we use LDC2002S37 which
contains two hours of audio and LDC2002T38 with almost 16000 words. These data
augment the training sets both for the acoustic and language models.

We also make use of the Egyptian Colloquial Arabic Lexicon LDC99L22 as the
pronunciation reference. It is worth noticing that the original sets of transcriptions are
represented in two versions, namely the romanized transcriptions and Arabic script. The
initial lexicon contains almost 52000 romanized word representations and can contain
multiple transcriptions. In our study we use the set of 34 phonemes differing from that
of the original lexicon. We establish a one-to-one correspondence between the initial
phonemes and the phonemes of our set and re-label the lexicon. We thus arrive at a
lexicon of roughly 57000 unique entries (romanized representation, Arabic script,
phoneme transcription).

To train the bottleneck features extractor, we utilize the Levantine Arabic QT
Training Data Set 5 (LDC2006S29 is the audio set, and LDC2006T07 contains the
corresponding transcriptions). There are 1660 phone conversations between Levantine
Arabic speakers in the corpus (250 h of speech in total). No pronunciation lexicon is
provided with this set, so we make use of the G2P model trained on the NEMLAR Speech
Synthesis corpus containing about 10 h of speech. The corpus consists of 2032 sentences
with roughly 42000 words. Each recording is accompanied with the SAMPA phoneme
transcription, so we can compile a training set to train the G2P model. The resulting set
contains around 12000 sentences, both with and without diacritics.

3 Experimental Setup

To construct the ASR system we make use of bottleneck features extracted from
networks trained on Russian, English (Switchboard-1) and Levantine Arabic (Levantine
Arabic QT Training Data Set 5) phone conversations.

As the input features for the extractors we use filter banks with deltas and
50-dimensional i-vectors. The extractor takes as input 11 successive frames (1
central frame and 5 frames from the left and from the right) for each time step. The
output features are 80-dimensional bottleneck ones.

To obtain the alignment, we train HMM-GMM models with the use of feature space
maximum likelihood linear regression(fMLLR) and speaker adapted training(SAT). The
initial acoustic features for the HMM-GMM systems are MFCC with deltas and CMN.

We train a separate DNN for each bottleneck extractor taking features corresponding
to 11 successive frames (1 central frame and 5 frames from the left and from the right)
as the input, so the input layer size is 80 × 11 = 880. Every DNN model has 4 layers,
1536 sigmoidal neurons each. All DNN are trained with the cross-entropy criterion. To
obtain the final models, we perform two iterations of sequence training with state-level
minimum Bayes risk(sMBR) criterion.
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To study the applicability of the pronunciation lexicon obtained with the use of the
G2P model trained on MSA dataset, we carry out a complete cycle of training of acoustic
models from HMM-GMM to final DNN.

To prepare a 3-gram language model we use the LDC97T19-train and the texts from
the supplementary dataset LDC2002T38.

We used Kaldi [9] to perform keyword spotting with the trained models.

4 Results

To carry out the experiment, we make use of two datasets:

– Evaluation set: the length is equal to 1.5 h, the number of words is roughly 15500,
13800 of them belong to the lexicon, and 1700 do not;

– Development set: the length is equal to 3.5 h, the number of words is roughly 33000,
29100 of them belong to the lexicon, and 3900 do not.

The recognition accuracy for some acoustic models is given in Table 1.

Table 1. WER(%) for some acoustic models

Model Features Lexicon WER
dev eval

HMM-GMM fMLLR SAT 39MFCC + deltas + CMN ECA 59.24 57.64
HMM-GMM fMLLR SAT 39MFCC + deltas + CMN MSA 63.03 61.83
DNN 4 × 1536 RUS BN ECA 52.27 52.91

ENG BN 52.52 52.86
ARA BN 54.02 54.48

DNN 4 × 1536 sMBR RUS BN ECA 49.20 49.84
ENG BN 51.49 51.33
ARA BN 51.77 52.26

DNN 4 × 1536 RUS BN MSA 56.86 56.55
DNN 4 × 1536 sMBR 54.57 54.39

It is obvious that the application of neural network acoustic models significantly
increases the recognition accuracy as compared with the classical HMM-GMM. In
addition, the sequence-training successively decreases WER. The use of the lexicon
constructed by the MSA data lowers the recognition accuracy significantly, but the result
remains acceptable.

We perform the keyword search at both the development and evaluation datasets.
For each of these sets, we formulate the following search queries:

– 100uni: includes 100 most frequent unigrams in the corpus;
– 50uni35bi15tri: includes 50 most frequent unigrams in the corpus, 35 bigrams, and

15 trigrams.

The results of keyword search are given in Table 2.
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Table 2. KWS results

KWS request Features Lexicon dev eval
ATWV MTWV ATWV MTWV

100uni RUS BN MSA 0.401 0.6691 0.335 0.3528
ECA 0.5741 0.8204 0.5413 0.5728

ENG BN 0.5687 0.8065 0.5211 0.5476
ARA BN 0.5605 0.7979 0.5177 0.5431

50uni35bi15tri RUS BN MSA 0.4424 0.5951 0.4556 0.492
ECA 0.6558 0.7802 0.5871 0.685

ENG BN 0.5824 0.7214 0.631 0.7092
ARA BN 0.6419 0.7634 0.6073 0.6571

The best results obtained with the use of Russian bottleneck features and Egyptian
Colloquial Arabic Lexicon are given in Figs. 1 and 2.

Fig. 1. DET-curve for KWS on evaluation set
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Fig. 2. DET-curve for KWS on development set

5 Conclusions

In this research, we construct an innovative ASR + KWS system for a low-resource
language.

The system trained on the Russian bottleneck features shows the best result, which
is better than the results of [5] by absolute 6.16 %. It is worth noticing that the Kaldi
toolbox includes the callhome egyptian recipe where the final TDNN + iVector system
performs worse than the presented system by absolute 2.26 %.

We compare the application of transcriptions of Egyptian Colloquial Arabic Lexicon
with those obtained using the grapheme-to-phoneme model trained on the small MSA
dataset. The accuracy decrease of 4.5 % is significant but allows us to obviate the need
for the Egyptian lexicon and work with the MSA data, which are more readily available.

From our experiments it follows that the Arabic bottleneck features demonstrate the
same accuracy as the English bottlenecks, whereas the Russian bottlenecks outperform
them by absolute 2 %. We can’t yet explain that difference.

The characteristics of keyword search quality given in Table 2 prove that the system
built produces meaningful results and can for some cases used in practice.
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the Russian Federation, Grant 074-U01.
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Abstract. The paper describes annotation principles developed for tagging of
speech acts in the “One Day of Speech” (ORD) corpus of Russian everyday
speech, with special attention being paid to categories and subcategories of speech
acts distinguished in the ORD. Annotation of speech acts is a part of pragmatic
annotation of the corpus, which includes as well the tagging of macro- and micro‐
episodes of verbal communication. Speech acts are annotated on four levels:
(1) the orthographic transcript with information on syntagmatic and phrasal
boundaries, (2) the speakerʼs code, (3) the main category of a speech act, and
(4) its subcategory. Practical approbation of the proposed annotation scheme has
been made on the material of 6 macroepisodes of everyday communication, in
which 2250 speech acts have been discerned. Pragmatic annotation of the ORD
corpus provides an opportunity to study everyday discourse in terms of speech
acts and to study linguistic properties and patterns of speech acts of different types.

Keywords: Corpus linguistics · Speech corpus · Pragmatics · Spoken Russian ·
Everyday dialogues · Speech acts · Discourse · Annotation

1 Introduction

The ORD corpus is one of the most representative linguistic resources of everyday
spoken Russian which contains 1200 h of speech recordings made in real-life settings.
The recordings were made by 127 respondents-volunteers (66 men and 61 women) who
gave their consent to record their verbal communication during a whole day. The
recordings were made at different places – at home, in the office, in educational insti‐
tutions, in fitness clubs, shops, service centers, restaurants, outdoors, etc. – and refer to
various communication situations, both informal and professional [1]. During the day
of recording, each respondent had different interlocutors, whose social roles also consid‐
erably differed (family members, friends, colleagues, acquaintances, etc.). Such diverse
linguistic material provides a wide range of possibilities for linguistic and pragmatic
studies of Russian spoken discourse, for “data-driven” research on face-to-face inter‐
action, spoken communication, conversation analysis, everyday speech variation, etc.
Besides, these data may be used for defining and testing statistical models for diverse
applied linguistic tasks and speech technologies.

Pragmatic annotation of the corpus data has been introduced in order to facilitate
data retrieval from the corpus and its further linguistic, sociolinguistic and pragmatic
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analysis. From the very beginning of the ORD creation, the corpus developers have
encountered the necessity to annotate large fragments of respondents’ recordings refer‐
ring to large communication episodes united by setting/scene of communication, social
roles of participants and their general activity, which are called macroepisodes and may
be compared with stages within acts in theatrical plot structure [2].

Each macroepisode gets standardized description in three aspects: (1) Where does
the situation take place? (2) What are the participants doing? and (3) Who is (are) the
main interlocutor(s)? In the result, annotation of communication situations includes
information on scene and type of communication, social roles of participants, and a few
other factors [ibid]. Now, more than 2450 macroepisodes have been already annotated.
Those episodes, which are to be transcribed are divided into microepisodes, united by
the topic of communication or its main pragmatic task [3].

The next important step towards pragmatic annotation of the ORD corpus is the
development of scheme of speech acts annotation, which is presented in this paper.
Taking into consideration communicative diversity of everyday conversations and high
dependency of pragmatic issues on the context [4] which is not always evident to
researchers, this is a rather challenging task. However, we consider any attempts to
speech acts annotating of real-life spontaneous conversations to be extremely important,
as they can improve our understanding of the spoken discourse structure and its inner
regularities, as well as to reevaluate the existing theoretical conceptions. Moreover,
speech act annotation of real-life conversations could be useful for many applications
in applied linguistics and speech technologies (e.g., by providing possibility to study
linguistic properties and patterns of speech acts of different types, which may be used
in elaboration of human-computer spoken dialogue systems, for speech synthesis and
recognition systems, etc.) [5].

2 Speech Acts and Approaches to Their Annotation

The idea of “speech acts” was initially suggested by Austin [6], and developed further
by Searle [7] and many of their followers. According to the speech act theory, any speech
act should have a particular illocutionary force. However, the real data shows that in
many cases real-life utterances could not be referred to “speech acts” in traditional terms
(cf., for example, one conclusion of the research made on the base of Searleʼs classifi‐
cation: “over 70 % of the sentences in our data set have no speech act at all” [8]).

Having a practical task of pragmatic annotation of everyday discourse, we are more
inclined to expect that each utterance should have some pragmatic meaning, and this
meaning may be classified. In this perspective, we share the views of Mikhail Bakhtin
who wrote that “each rejoinder, regardless of how brief and abrupt, has a specific quality
of completion that expresses a particular position of the speaker, to which one may
respond or may assume, with respect to it, a responsive position” [9, p. 72]. Because of
that, for the ORD annotating, we prefer to understand “speech acts” in a broader
meaning, distinct from their traditional interpretation, like many other endeavors in this
field.
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There are different classifications of speech acts proposed for practical annotation
of speech used in corpus linguistics. Thus, Jurafsky considers the interpretation and
generation of speech acts to be one of four core inferential problems in pragmatics that
have received the most attention in the computational linguistics [10].

The most known approaches towards speech act annotation are the following:
(1) Dialogue Act Markup in Several Layers (DAMSL) [11], (2) the tagging scheme in
the Speech Act Annotated Corpus (SPAAC) [12, 13], MapTask Coding [14], the Inter‐
national project on Cross-Cultural Study of Speech Act Realization Patterns (CCSARP)
[15], the VRM (Verbal Response Modes) system by W. B. Stiles [16].

The empiric work on everyday dialogues which are extremely diverse in terms of
topics, intentions, general structure, context and participants, led us to conclusion that
the most suitable classification for our task would be a rather detailed classification of
utterances proposed by I. N. Borisova [17]. Therefore, it has been used as the basis for
the ORD speech act classification. However, this scheme also did not perfectly fit into
the real data, so we had to adapt it by introducing several additional categories and
uniting subcategories, having much in common.

3 Categories and Subcategories of Speech Acts Distinguished
in the ORD Corpus

The main categories of speech acts are determined in the following way. Although the
names of some types coincide with that of traditional speech act theory, their meaning in
some cases differs from it. Following [17] we distinguish 6 main categories of speech acts:
(1) representatives (INF), (2) directives (DIR), (3) commissives (COM), (4) expressives,
which include two subcategories — emotives (EMO) and etiquette expressives (ETI),
(5) verdictives, containing valuatives (VAL) and suppositives (SUP), and (6) discourse
regulatory acts (REG).

Further, the real-life material presented in our data made us to introduce two more
auxiliary “categories”, which do not allow to determine their pragmatic meaning: (7) an
interrupted speech fragment (FRA), which does not have any cues revealing its intended
category; and (8) an unintelligible utterance (NER), which could neither be transcribed
nor understood by researchers because of some technical gaps in recoding or because
of some special circumstances of communication (e.g., when the interlocutor was far
from the recorder, or when a high level of ambient noise exists, etc.). Finally, (9) we use
the tag (PAR) to label meaningful paralinguistic phenomena (e.g., a sigh or laughter)
that may have pragmatic meaning, too.

We are also mindful about such category as “declaration” in terms of Searle classi‐
fication (e.g., statement declaring war or the utterance like “I hereby pronounce you man
and wife”), however like some other linguists (cf., [8]) we didnʼt find such type of speech
acts in our everyday speech data until now.

The list of speech acts subcategories, which form the content of main categories has
been initially borrowed from [17]. However, it was subject to a certain revision. Thus, the
original list of subcategories exceeded 200 items [3], many of which being hardly discern‐
ible for expert attribution, so we decided to unite them into larger classes. We have also
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united the subcategories of speech acts which have much in common but are preferably
used in different communication settings, like “command” and “order” (the latter being
used primarily in the army or in security forces). In order not to inflate the classification,
we omit in its current version those speech act subcategories which seem to us to be
extremely rare to occur in everyday dialogues (e.g., “oath” or “confession”). However, in
case we discover the necessity for additional labels when annotating the real data, we shall
extend the classification scheme.

Below is a list of speech act categories proposed for the ORD annotation with exam‐
ples of their most frequently used subcategories.

1. Regulative Speech Acts (REG) are used to regulate the process of communication
itself. They are peculiar to spoken communication, and it is hardly possible to find them
in written language. The following subcategories are the most common here: (1) “back‐
channel” utterances (RPO), (2) introduction of new topic (INI), (3) hesitation fillers
(HES); (4) attracting interlocutorʼs attention (ATT); (5) capture the communicative
initiative (CAP); (6) (self-)motivation, marker of the beginning (TAK), (7) end-marker
(END); (8) request for repetition, echo-question (ECH); (9) expressing readiness for
communication (RED); (10) repetition (REP), etc.

These tags allow the formal structure of communication to be traced. For example:
“Well?” (TAK), “Yeah.” (RPO), “Letʼs talk about tomorrow!” (INI), “What do you call
it…” (HES).

2. Representative speech acts (INF) are used to perform tasks concerning information
exchange. Representatives include the following subcategories: (1) descriptives
(descripting objects/persons/phenomena) (DES); (2) commentives or comment
(commenting/accompanying message) (CMM); (3) constatives, stating existence or
presence of some fact/phenomenon (STA); (4) correctives, correcting or improving the
previous utterance(s) (COR); (5) announcement (ANN); (6) rogatives: question, request
for information, clarifying question (QUE); (7) response to a question (RES); (8) expli‐
catives, including explanation, argumentation, conclusion, illustration, motivation,
justification, etc. (EXP); (9) reproductives – retelling, citation, telling an anecdote, etc.
(CIT) and some others.

For example: “How old is your son?” (QUE), “They could not afford this house
(STA), because it was very expensive (EXP).”

3. Directive Speech Acts (DIR) “are the attempts <… > by the speaker to get the hearer
to do something” [7]. Directives motivate the addressee for action (or try to prevent him
from some action) or intend to influence on his worldview, emotions or life patterns. As
distinct from Searleʼs idea, we do not include questions in this group, because to our
mind they better fit into the second category dealing with information exchange.

Directives include the following subcategories: (1) request, the act of asking for
something to be given or done (ASK); (2) imploration (IMP); (3) instruction (INS);
(4) command, the act of commanding or ordering, demand (KOM); (5) offer, proposal
(OFF); (6) advice (ADV), an opinion or recommendation offered as a guide to action,
conduct, etc.; (7) permission to do something (PER); (8) forbiddance, prohibiting the
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action of a person (PRH); (9) convincing by argument (or evidence) to belief, agreement,
consent, or a course of action (CNV); (10) directions (DRC); (11) warning (WAR), etc.

For example: “Call me tomorrow!” (ASK), “Never touch my papers on the desk!”
(PRH), “You should better forget him!” (ADV).

4. Commissive Speech Acts (COM) are commitments of a speaker to some future
action. It includes a wide range of acts, including the following: (1) promise (PRO),
(2) guaranteeing (GAR), (3) “declaration of intent”, revealing the speakerʼs plans
(DEC); (4) obligation (OLB), (5) consent to comply with the request (CON),
(6) disclaimer (DIS), (7) threat (TRE), etc. The confession of some action in the past
also fits in this category (CNF).

For example: “I promise you that!” (PRO), “I guarantee your security.” (GAR), “It
was a joke.” (CNF).

5. Expressive Speech Acts are used to express speakerʼs attitude or emotions. We
distinguish two classes of expressives: emotives and etiquette speech acts.

5.1. Emotive Speech Acts (EMO) convey emotions or feelings of a speaker: (1) positive
emotions (EPO), such as joy, pleasure, satisfaction, sympathy, etc.; (2) negative
emotions (ENE) – outrage, resentment, anger, disappointment, antipathy, sadness,
anxiety, restlessness, etc.; (3) surprise, astonishment (SUR); (4) emotional response to
some external source (REA); (5) apathy, indifference (IND), etc.

For example: “Oh!”, “Gosh!”, “Oops!”. Such utterances may refer to different sub-
types depending on context. The emotional speech is often accompanied by evaluations
of different kind (see below Evaluatives).

5.2. Etiquette Speech Acts (ETI) are used to regulate communication in typical and
ritualized situations: (1) greeting (GRE); (2) farewell (BYE); (3) self-representation or
introducing other people (ITR); (4) apology (ESC); (5) thanking, gratitude, appreciation
(THA); (6) polite addition to requests or commands like “please”, “be so kind” (PLS);
(7) vocative (VOC); (8) congratulation (CGT); (9) wishes (WIS); (10) giving a toast
(TOS); (11) expressing sympathy, condolence, affection, etc. (EPR); (12) making a joke
(JOK); etc.

6. Verdictive Speech Acts are related with speakerʼs personal opinion.

6.1. Evaluative Speech Acts (VAL) are used to express the personal opinion of a
speaker or his/her value judgments. The most common evaluatives in everyday language
seem to be the following subtypes: (1) agreement with interlocutorʼs opinion or deeds
(AGR); (2) objection, disagreement with the interlocutorʼs opinion, contestation,
admonition, denial, disputing (OBJ); (3) appraisal or judgment, estimating or judging
the nature or value of something or someone, including reprobation, accusing, exoner‐
ation, acquittal, complaint, etc. (JUD); (4) approval, compliment (APP), (5) invective,
an insulting or abusive word or expression, a swearing utterance (INV), (6) ironic exag‐
geration (IRO); (7) mockery of something or someone; causticity; teasing or jeering
utterance, etc. (MOC); (8) imitation of otherʼs speech (IMI), etc.
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For example: “This is very bad!” (JUD), “No, you are not right!” (OBJ), “How
nice!” (IRO).

6.2. Suppositive Speech Acts (SUP) indicate speakerʼs supposition, consideration of a
possibility, suggestion or proposing an idea or plan: (1) supposition (SUP); (2) doubt
(DOT); (3) the expressions of speakerʼs personal opinion, which is not evaluative, such
as guess, belief, etc. (OPI).

For example: “I suppose he is gone” (SUP); “I doubt he will come” (DOT); “I think
itʼs worth doing!” (OPI).

4 Speech Acts Annotation

As may be seen from the list of categories listed in previous section, it is not always
possible to identify speech acts based on written utterance taken out of context. It is
relevant here to cite Martin Weisser asserting that the complexity inherent in pragmatic
annotation “is mainly due to the fact that this type of annotation, unlike, for example,
POS (part-of-speech) or semantic tagging/annotation, almost always needs to take into
account levels above the individual word and may even need to refer to contextual
information beyond those textual units that are commonly referred to as a ‘sentence’ or
‘utterance’” [4].

Another, particularly important factor is prosody. Because of that it is extremely
important to make annotation manually with a possibility to listen to each utterance and
its broader context. Such opportunity is provided by the multimedia annotation tool
ELAN [18], in workspace of which the recordings of the ORD corpus are transcribed
and annotated [1].

Since each spoken utterance (or a turn, in terms of conversational analysis) consists
of one or several speech acts, it should be segmented into correspondent fragments
before annotation. Speech acts may be associated (1) with a whole utterance, which may
be syntactically and phonetically well-framed, or incomplete, as well as interrupted or
unfinished, (2) with a prosodically framed part of an utterance, and (3) with some para‐
linguistic phenomena. Speech segmentation is made in ELAN.

Speech acts are manually annotated by specially trained linguists on four levels:

1. RAct (speech act): an orthographic transcript with information on syntagmatic and
phrasal boundaries. The rules for speech act spelling are the same as for ORD annotation
transcripts (see [1] for the details).

2. RActSp (speaker): the unique speakerʼs code in the corpus.

3. RAGenT (general type): the main speech act category is one of the following (see
above): REG, INF, DIR, COM, EMO, ETI, VAL, SUP, FRA, NER, and PAR. When
choosing between these categories, the expert should indicate the type which fits the
data the most, or is dominating (e.g., making choice between “emotive” and “evaluative”
speech act, the decision should be based on what is dominating – emotion or evaluation).
When speech acts could not be identified by a single tag, they are marked with two or
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more labels that are equally appropriate, as all relevant tags should be indicated in
annotation.

4. RADetT (detailed type): speech act subcategory. This is also a three-letter code like
PRO, INI, HES, CON, etc., the main of which are listed under the corresponding cate‐
gory in the previous section. Double tags are possible here, too.

These “detailed” categories are of special interest because they allow the data
between different annotation schemes (as most of them have such tags like “greeting”,
“question”, “answer”, etc.) to be compared.

5 Preliminary Results

The pilot speech act annotation has been made on the material of 6 macroepisodes of
everyday communication. The manual tagging was made by 6 independent researches
(one linguist annotated one macroepisode) and then checked by an expert. In the result,
2250 speech acts have been discerned. 86 % of all speech acts have been unequivocally
identified. 4 % of speech acts could not be identified at all being interrupted or unintel‐
ligible fragments. Remaining 10 % of speech acts received double tags.

As expected, the most frequent type of speech acts on the given sample turned out
to be representative speech acts taking 39.36 % of all data. The discourse regulatory acts
numbers 12.37 % and evaluatives – 11.17 %. Directives account for 6.80 %, etiquette
speech acts make 4.14 %, and emotives – 3.51 %. Commissive and suppositive speech
acts are used less often having 2.89 % and 2.53 % correspondently. Paralinguistic “acts”
appeared in 3.55 % of all cases.

As for the subcategories, the most frequent types of speech acts turned out to be the
following: (1) questions/“rogatives” speech acts (11.26 %), (2) constatives and state‐
ments (8.34 %), and (3) explicative speech acts (7.08 %). All these types are represen‐
tatives, dealing with information exchange. Among the regulatory speech acts the most
frequent are (self-)motivation acts, which usually initiate a conversation (2.45 %) and
“backchannel” utterances (1.82 %). The other most “popular” speech acts are the
following: agreement with interlocutorʼs opinion (3.07 %), supposition (2.00 %), and
offer (1.78 %).

It is worth noting that practical approbation of the proposed annotation scheme
revealed some drawbacks in speech act classification, which became visible in the
process of evaluation. Thus, a number of categories are still difficult to distinguish from
each other. For example, the agreement speech acts like “Yes! (You are right!)” in many
cases remind “backchannel” speech acts like “Aha”, however in other contexts they may
be quite different. Speech acts introducing new topic are often confused by those marking
conversation boundaries. Besides, there were some difficulties in attribution indirect
speech acts, and this list may be continued.

Because of that the classification of speech acts presented here could not be consid‐
ered as an ideal and finite scheme and should be partially reconsidered to become an
effective tool for pragmatic annotation of such heterogeneous data as everyday
discourse. However, the presented version of the annotation scheme does provide an
opportunity to observe and analyze main tendencies in speech act distribution in
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everyday Russian discourse, as well as to study speakerʼs preferences in different
communication settings.
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Abstract. This paper presents a new speech enhancement method with
microphone array for the joint suppression of coherent and diffuse noise. The
proposed method is based on combined technique: target and noise steering
beamforming and adaptive noise suppression. The microphone array forms two
beams steered in the directions of target speaker and of noise source. The signal
of reference beam is used to suppress the noise in primary channel. The pro-
posed algorithm of Adaptive Noise Suppressor (ANS) is based on the trans-
formation of the signal spectrum of the reference channel into the noise
spectrum of the main channel using noise equalizer and algorithm of dual
channel spectral subtraction. The effectiveness of the proposed technique is
confirmed in varying real life coherent and diffuse noise conditions. The
experimental results show that proposed method is an efficient procedure for
speech quality improvement in real life noisy and reverberant conditions with
SNRs down to −5 dB and reverberation time up to 0.88 s.

Keywords: Speech enhancement � Adaptive interference canceller/suppressor

1 Introduction

Microphone arrays (MA) are widely used technique for speech capturing in noisy
environments in all areas of speech processing. In general, the acoustic noise is a
combination of diffuse and spatially coherent noise. Coherent direct path noises are
produced by point acoustic sources in free space (with unhindered wave propagation).
Incoherent diffuse noises are produced by remote or spatially distributed acoustic
sources under conditions of reverberation and multipath wave propagation [1, 2].

The basic algorithm of MA is fixed beamforming (FBF). However, this FBF
algorithm is not very efficient because part of the environment noise comes to MA
output through both main lobe and sidelobes. The problem of speech enhancement is
important in a high noise level conditions (sounds of audio devices indoor, art work
and traffic sounds outdoor). In these cases, the signal/noise ratio (SNR) of the output
signal of MA is low.

A large number of methods for suppression of coherent and diffuse noises are
proposed [1–5]. For non-stationary noise environment methods of adaptive noise
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reduction based on extraction of reference noise signal and algorithm of it suppression
in noisy target signal are used. Three groups of methods are used for extraction of
reference noise signal. (1): null steering beamforming (NSB) in the direction of the
noise source [5]. (2): using the reference microphone placed close to the source of
interference [6]. (3): forming beams (one or various) in the direction of noise sources
[7–9] using the same microphone array or by an auxiliary array [10].

The disadvantage of the first group of methods is the sensitivity to steering errors
(misadjustment) of the primary channel and multipath propagation of target signal [1].
The target signal leakage in reference channel results in cancellation of target signal.

A disadvantage of the second group of methods is that the placement of a micro-
phone close to the noise source is not always possible.

The third group of forming beams (one or various) in the direction of noise sources
is more robust to steering errors. Our proposed method is based on the formation of
beams steered in the directions of target speaker and of noise source.

The second element of the methods of adaptive noise reduction is a signal pro-
cessing algorithm. The algorithms are divided into two main classes: adaptive noise
cancelling (ANC) and adaptive noise suppression (ANS) algorithms.

ANC algorithms better save the target speech signal, but their limitation is that they
only suppress the coherent part of the noise. In the case of a diffuse sound field much of
noise may be incoherent in main and reference channels, which weakens the effec-
tiveness of noise suppression. ANS algorithms distort the useful signal, but they allow
suppress a coherent and diffuse noise.

The main purpose of this research is to improve the microphone array algorithm of
both coherent and diffuse noise reduction for speech enhancement.

2 The Proposed Method

The proposed method is based on combined technique: target and noise steering
beamforming and adaptive noise suppression. The basis of beamforming is
frequency-domain FBF [3]. A general block diagram for an adaptive noise
cancellation/suppression (ANC/ANS) system is presented in Fig. 1. The signals of the
microphones are segmented into overlapping frames with 50 % overlap. Then Hann
window is applied on each segment and a set of Fourier coefficients Xn x; kð Þ using
short-time fast Fourier transform (STFT) is generated.

The signals of main and reference beams are calculated as follows:

X x; kð Þ ¼ DT hM ;xð ÞX x; kð Þ R x; kð Þ ¼ DT hR;xð ÞX x; kð Þ; ð1Þ

where x – is the frequency, k – is the frame time index, hM ,hR – are the angles of the
directions to the target speaker and to the noise source respectively, N – is the number
of microphones, D h;xð Þ ¼ ½d1 h;xð Þ; d2 h;xð Þ; . . .; dN h;xð Þ�T is the steering vector of
the microphone array in the direction h, X x; kð Þ ¼ ½X1 x; kð Þ;X2 x; kð Þ; . . .;XN x; kð Þ�T
is the signal vector received by the microphone array.
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Consider the formation of the main signal and reference signal for the case of the
target speaker and the noise source. The sound propagation model for each beam can
be described as follows:

X x; kð Þ ¼ S x; kð ÞþHv x; kð ÞV x; kð Þ ¼ S x; kð ÞþNx x; kð Þ; ð2Þ

R x; kð Þ ¼ Hr x; kð ÞV x; kð ÞþHs x; kð ÞS x; kð Þ; ð3Þ

where S x; kð Þ – is the signal of the target speaker, V x; kð Þ – is the signal of the noise
source arriving to microphone array from the direction hv, Hv x; kð Þ – is the transfer
function from noise source to main beam of FBF, Hr x; kð Þ - is the transfer function
from noise source to reference beam of FBF, Hs x; kð Þ - is the transfer function from
target speaker to main beam of FBF.

Adaptive noise suppression algorithm is as follows. ANS algorithm based on an
assessment of the amplitude spectrum interference fNx x; kð Þ in the main channel, which
is calculated from the spectrum of the reference channel signal using the noise
equalizer:

~Nx x; kð Þ ¼ W x; k � 1ð Þ Rðx; kÞj j; ð4Þ

where W x; kð Þ – is the transfer function of equalizer, k – is the time frame index.
Estimation of the transfer function is calculated as follows:

W x; kð Þ ¼ ð1þ bÞ �W x; k � 1ð Þ; X x; kð Þj j[ ~Nxðx; kÞ
ð1� aÞ �W x; k � 1ð Þ; X x; kð Þj j � ~Nxðx; kÞ

(

; ð5Þ

where a is the release rate, b is the attack rate.
The algorithm in the absence of a speech signal |S(x, k)| � 0 aligns the noise

amplitude spectrum of the reference channel to the noise spectrum in the main channel:

Fig. 1. The structure of the system
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Hvðx; kÞVðx; kÞj j � W x; kð Þ Hr x; kð ÞV x; kð Þj j: ð6Þ

Since the spectrum of noise in the reference channel is usually much greater than
the noise spectrum in the main channel: Hrðx; kÞVðx; kÞj j � Hvðx; kÞVðx; kÞj j, than
W x; kð Þ 	 1. Therefore it is necessary to constrain the maximum values of the transfer
function of the equalizer:

~W x; kð Þ ¼ Min Wmax xð Þ;Wðx; kÞf g; ð7Þ

where Wmax xð Þ is the maximum values of the transfer function of the equalizer.
Constraint of the transfer equalizer function prevents unwanted amplification of the

target spectral signal components belonging to a reference channel.
The estimation of the noise spectrum of the main channel is used in the algorithm of

dual channel spectral subtraction to estimate spectrum of the target signal:

~S x; kð Þ�

�

�

� ¼ X x; kð Þj j � ~Nx x; kð Þ ¼ g x; kð Þ � X x; kð Þj j; ð8Þ

where gðx; kÞ is the gain function of spectral subtraction:

g x; kð Þ ¼ j~Sðx; kÞj= X x; kð Þj j ¼ SNRðx; kÞ=ð1þ SNRðx; kÞÞ; ð9Þ

where SNR x; kð Þ ¼ ~S x; kð Þ�

�

�

�=~Nx x; kð Þ are the spectral SNRs. To reduce the residual
musical noise we made the following modification of gain function:

g x; kð Þ ¼ C � SNRðx; kÞ½ �2; ð10Þ

where C ¼ 1. . .5 is the slope of gain function.
In its final form, taking into account constraints of minimum and maximum values

the spectral gain is as follows:

G x; kð Þ ¼ Min 1;Max G0 x; kð Þ;C � SNR x; kð Þ½ �2
n on o

; ð11Þ

where G0 x; kð Þ�suppression spectral floor: Estimation of target signal after noise
reduction is as follows:

~S x; kð Þ ¼ X x; kð Þ � G x; kð Þ: ð12Þ

The enhanced signal ŝ(t) is calculated, using Invers Fourier Transform (IFT) and
overlap and add (OLA) technique.
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3 Simulation Results

The proposed ANS method is compared with the following methods: Fixed
Beam-forming (FBF), constrained frequency domain GSC [1], frequency domain
Null-Steering Beamformer (NSB) [5] and Adaptive Noise Canceller in time and fre-
quency domain (ANC-T, ANC-F) [11]. The comparison has been done for linear
microphone array with 11 microphones with a inter microphone spacing 3.5 cm.

To test the noise reduction performance of these methods, a computer program has
been developed. The comparison has done using Noise Reduction (NR) и Speech
Distortion (SD) and SNR improvement measure (SNRI).

Noise Reduction. To estimate NR the coherent broadband interference (white Gaus-
sian noise) arriving to the microphone array from the angle þ 45
 was used. It has been
set no useful signal S x; kð Þ ¼ 0. Main channel beam was steered in the look direction
hM ¼ 0
, the beam of the reference channel is steered in the direction hR ¼ þ 45
:

X x; kð Þ ¼ Hv x; kð ÞV x; kð Þ; R x; kð Þ ¼ Hr x; kð ÞV x; kð Þ: ð13Þ

The NR was calculated using the residual interference signal power with interfer-
ence power in a separate microphone:

NRdB ¼ 10 log Pmic=Pout½ �: ð14Þ

In this case, NRmic on a separate microphone is equal to 0 dB [3].

Speech Distortion. To estimate SD the coherent speech signal arriving to the
microphone array from the angle 0° was used. It has been set no interference signal
V x; kð Þ ¼ 0. Main channel beam was steered in the look direction hM ¼ 0
, the beam
from the reference channel is steered in the direction hR ¼ þ 45
:

X x; kð Þ ¼ S x; kð Þ; R x; kð Þ ¼ Hs x; kð ÞS x; kð Þ: ð15Þ

In this case, the output of microphone array FBF is undistorted speech signal:

YFBF x; kð Þ ¼ S x; kð Þ: ð16Þ

The speech signal is distorted if other methods are used. The ratio of the power of
the distorted and undistorted signals y(t) and s(t) is defined as speech distortion:

SD dB ¼ 10 log PS=PY½ � ¼ 10 log PFBF=Pout½ � ð16Þ

SNR Improvement. To estimate SNRI coherent speech signal arriving to the
microphone array from the angle of 0
 and coherent broadband interference (white
Gaussian noise) arriving from the angle of þ 45
 were used. Main channel beam was
steered in the look direction hM ¼ 0
, the beam from the reference channel is steered in
the direction hR ¼ þ 45
. The input SNR has been set equal to −5 dB. SNRI evalu-
ation was carried out in accordance with the procedure laid down in [4].
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The desired signal s(t) and interference n(t) are superposed with given SNR. The
noisy signal x(t) is processed with the noise reduction algorithm. Afterwards the
desired and interfering signals are separately processed with the resulting filter coef-
ficients. SNRI was estimated by comparing outputs to inputs of the fixed filters.

The estimations of NR, SD, SNRI with different methods are shown in Table 1.
The proposed ANS method is superior to other methods according to the criterion

of NR and close to NSB method for SD, SNRI criteria. Another advantage of the ANS
is the ability to suppress diffuse noise. At the same time it is much inferior to GSC
method for SD criteria. However, GSC loses its advantage under steering misadjust-
ment, non-ideal microphones and reverberation multipath propagation.

4 Experimental Results in Real Conditions

4.1 Suppression of Partially Ccoherent Noise

We solved the problem of extracting speech speaker on the background of loud music
using linear 8-microphone array with inter microphone spacing 5 cm.

Table 1. NR, SD, SNRI after processing with different methods

Method NR dB SD dB SNRI dB

FBF 10.98 0 5.65
NSB 30.16 7.97 16.86
GSC 14.80 0.11 10.03
ANC-T 45.43 11.78 9.85
ANS 48.51 8.81 14.03

(a)  (b)

(c)  (d) 

Fig. 2. Spectrograms for (a) Microphone signal, (b) FBF steered to target speaker, (c) FBF with
ANC-T processing, (d) FBF with ANS processing.
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Acoustic scenario: Office room size 6 � 13 � 3.2 m, reverberation time T60 � 0:66 s
distance to the target speaker 3 m, hS � þ 10
, distance to the loudspeaker 4.5 m,
hV � �60
, SNR � −5.3 dB. Background music was a partially coherent, partially
diffuse sound field. Background music is present throughout the range the target
speaker’s speech is present at 17–30 s interval.

The examples of the enhancement of speech with different methods are shown in
Fig. 2.

The results of experiment are as follows. ANS gave the highest noise reduction
comparing to the others: FBF (8 dB), FBF + ANC-T (11 dB), FBF + ANS (22 …
24 dB). ANS method showed the robustness to errors of microphone array steering on
the target speaker and on the source of noise. ANS results reduction of both coherent
and diffuse noise components.

4.2 Suppression of Diffuse Speech Interference

We solved the problem of the separation of two remote speakers speech in reverberant
room using linear 6 � 8 microphone array with inter microphone spacing 5 cm. The

(a)     (b)

(c)    (d)

(e)     (f)

Fig. 3. Spectrograms for (a) microphone signal, (b) FBF steered to speaker 1, (c) FBF steered to
speaker 2, (d) FBF with ANS enhancement of speaker 1, (e) FBF with ANS enhancement of
speaker 2, (f) FBF with ANC-T enhancement of speaker 1.
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low-pass filtering (6 kHz) for elimination of sidelobes was applied when processing
signals in the microphone array.

Acoustic scenario: Office room size 6 � 6.5 � 3.2 m, reverberation time T60 �
0:88 s, distance to the speaker_1 d1 = 6 m, h1 � þ 40
, distance to the speaker_2
d2 = 5 m, h2 � 0
. The speech was diffuse sound field. The speech of 1-st speaker is
present on the time interval 0–15 s, the speech of 2-d speaker is present on the time
interval 15–30 s. The examples of the enhancement of speech with different methods
are shown in Fig. 3.

The results of experiment are as follows. ANS method allowed separate the remote
speakers in reverberant room. Maximum suppression of the target speaker in using
ANS is in the frequency range of 0–500 Hz, where the main lobe of array beampattern
is broad and leakage of the target signal in the reference channel is the maximum. ANS
method suppresses speech of interfering speaker significantly more effectively than the
FBF, ANC-T, ANC-F methods.

5 Conclusion

A new speech enhancement method with MA for the joint suppression of coherent and
diffuse noise is presented. The method is based on combined target and noise steering
beamforming and algorithm of ANS. The ANS is based on the algorithm of dual
channel spectral subtraction. The spectral subtraction results in the reduction of
coherent and diffuse noise in the target beam signal. The proposed ANS yields better
SNR improvement than conventional FBF and GSC algorithms and the best noise
reduction comparing FBF, GSC, NSB algorithms and microphone alignment technique
[12]. The experimental results show that ANS is an efficient procedure for speech
enhancement in real life noisy and reverberant conditions with SNRs down to −5.3 dB
and reverberation time up to T60 � 0.88 s. The additional advantages of ANS are its
low computational cost that allows real-time speech processing and robustness to errors
MA steering on the target speaker and source of noise.

Acknowledgements. This work was partially financially supported by the Government of the
Russian Federation, Grant 074-U01.
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Abstract. This paper overviews the application sphere of speaker verification
systems and illustrates the use of the Gaussian mixture model and the universal
background model (GMM-UBM) in an automatic text-independent speaker veri‐
fication task. The experimental evaluation of the GMM-UBM system using
different speech features is conducted on a 50 speaker set and a result is presented.
Equal error rate (EER) using 256 component Gaussian mixture model and feature
vector containing 14 mel frequency cepstral coefficients (MFCC) and the voicing
probability is 0,76 %. Comparing to standard 14 MFCC vector 23,7 % of EER
improvement was acquired.

Keywords: Speaker recognition · Speaker verification · Gaussian mixture model ·
GMM-UBM system · Mel frequency cepstral coefficients · Speech features · Small
speaker set · Speech processing

1 Introduction

Automatic speaker recognition task is one of the most challenging problems in speech
processing field. Methods that are used in modern speaker recognition systems are not
perfect. There are models that work effectively in acoustically clean environment but
losing their effectiveness in low signal-noise ratio environment. Requirements for
speaker verification systems accuracy are constantly increasing because of the growing
spreading of biometric multi-factor authentication systems. These systems include
remote voice authentication banking account management systems, access control
systems and others. All these systems require high accuracy of speaker recognition in
order to satisfy customers’ needs.

The application field of currently developed voice authentication systems includes
multi-factor (biometric) authentication and access restriction systems, banking account
management systems using voice biometrics in order to give speaker access to his
banking account, national security and anti-terrorism issues. The use of speaker recog‐
nition systems that have even small possibility of mistake in such a sensitive application
areas could be very dangerous.

Equal error rate value (EER) is one of the most common speaker verification accu‐
racy measures used nowadays. EER is used both for text-dependent and text-inde‐
pendent automatic voice authentication systems. By now the best speaker recognition
systems are characterized by 3–5 % EER values [1]. This accuracy is insufficient for
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modern speaker verification systems because even small probability of false acceptance
is critical. If there are many speakers working with such systems, then mistakes will
occur definitely, and such mistakes are unacceptable in systems granting access rights
to confidential data or banking accounts.

Speaker recognition includes verification and identification. Automatic speaker
verification (ASV) is a verification of a person’s claimed identity from his voice. In
automatic speaker identification (ASI), there is no a priori identity claim, and the system
decides who the person is, what group the person is a member of, or (in the open-set
case) that the person is unknown [2]. Automatic text-independent speaker verification
system that is presented in this paper works with the closed-set verification problem,
deciding whether or not claimed speaker was presented on the speech signal. Existence
of speakers that are not registered in the system is not taken into consideration.

2 Features Extraction

Mel frequency cepstral coefficients (MFCC), their deltas and double deltas are used very
commonly as feature vectors in many scientific works dedicated to speaker recognition.
But in case of using ASV system working on a small speaker set this decision should
be reconsidered in order to achieve better verification accuracy. Thus, more attention
should be devoted to another speech features such as line spectral pair frequencies,
perceptual linear predictive cepstral coefficients, short-term energy, formant frequen‐
cies, fundamental frequency, voicing probability, zero crossing rate, jitter and shimmer.

Basic feature set used in the presented system is mel frequency cepstral coefficients
set. Mel frequency cepstral spectrum transform method was first introduced in [3].
MFCC are used for speaker recognition, speech recognition and other speech related
applications. 12 MFCC is most frequently used count of coefficients. In some systems
a delta and a double delta features related to the change in cepstral features over time
are added. Other features are added to basic mel frequency feature vector.

Feature vectors extraction process is shown in Fig. 1. First step of feature vector
extraction is windowing – taking a small part of speech signal instead of the whole signal.
Hamming windows were used for MFCC calculation. Window length is 20 ms, window
shift is 10 ms. Discrete Fourier Transform (DFT) is performed after windowing.

Next step of feature vector extraction is warping frequencies outputted by DFT to
the mel scale defined as:

(1)

The mapping between frequency in hertz and the mel scale is linear below 1000 Hz
and logarithmic above 1000 Hz [4]. A bank of triangular filters is created for imple‐
menting this scaling and the log energy is collected from each of these frequency bands
[3]. The final step of MFCC extraction is the inverse Discrete Fourier Transform (IDFT).

Besides MFCC, jitter, shimmer, zero crossing rate (ZCR), perceptual linear predictive
cepstral coefficients(PLP CC), short-term energy, voicing probability (Vp), fundamental
frequency (F0), formants, line spectral pair frequencies are added to feature vector (Fig. 1).
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Voicing probability is computed as a maximum of the autocorrelation function of the
spectrum. Features extraction was done using openSMILE tool [5].

Fig. 1. Features extraction process diagram.

Despite the fact that there are no features in spectrum and cepstrum that could help
distinguish speakers, nevertheless it could be effectively used in automatic speaker
recognition (ASR) task [6]. This is possible due to the fact that the spectrum reflects the
structure of the human vocal tract, which is the main physiological factor that allows us
to distinguish voices.

3 GMM-UBM System

The choice of decision rules composition method is very important in ASR task. The
most common methods are Gaussian Mixture Model (GMM), Support Vector Machines
(SVM), Hidden Markov Models (HMM), neural networks and factor analysis modifi‐
cations. GMM is used in ASM system presented in this paper.

A Gaussian Mixture Model (GMM) is a parametric probability density function
represented as a weighted sum of Gaussian component densities [7]. A GMM with M
component Gaussian densities can be presented by the equation

(2)
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where x is a D-dimensional continuous-valued data vector (i.e. measurement or
features), wi, i = 1,…,M, are the mixture weights, and g(x|μi, Σi), i = 1,…,M, are the
component Gaussian densities with mean vector μi and covariance matrix Σi. The
complete GMM is parameterized by the mean vectors, covariance matrices and mixture
weights from all component densities. It could be represented by the equation:

(3)

Each speaker is represented by his Gaussian mixture λ for speaker identification task.
There are two reasons for using Gaussian mixture densities as a representation of

speaker identity [8]. The first reason is the intuitive notion that the individual component
densities of the GMM may model some underlying set of acoustic classes, reflecting
some general speaker-dependent vocal tract configurations. The second reason is the
empirical observation that a linear combination of Gaussian basis functions is capable
of representing a large class of sample distributions. A GMM can form smooth approx‐
imations to arbitrarily-shaped densities.

Universal Background Model (UBM) is a GMM trained on large set of speech
samples that was taken from big population of speakers expected during recognition.
As in [9], parameters for the UBM are trained using the EM algorithm, and a form of
Bayesian adaptation is used for training speaker models. Number of mixtures used is
256, as EER is not decreasing for small speaker set when larger mixture numbers are
used. Speaker models are derived by MAP adaptation, where only means are adapted
with relevance factor r = 10. GMM-UBM system described in this section is based on
MSR Identity Toolbox [10].

4 Experimental Evaluation

The experiments were conducted using speech database containing collection of speech
from 25 male and 25 female speakers. This speech database includes speech samples of
sentences from science fiction stories. The total length of speech for each speaker is at
least 6 min consisting of 50 speech segments of various lengths. Each speaker was
recorded using medium-quality microphone, 8000 Hz sampling rate, 16 Bit sample size.

All 50 speaker set was divided equally for male and female speakers on the UBM
training set consisting of 30 speakers and speakers’ training set consisting of 20 speakers.
For MAP adaptation of speakers’ models 40 speech segments was taken. Remaining 10
utterances of each speaker was used for testing verification system. Overall, 4000 tests
were done for each feature set, having 10 positive (true speaker) and 190 negative
(imposter) tests for each speaker.

After training phase, that consists of UBM training and speakers’ models adapting,
starts test phase. For each test speech segment verification scores (log-likelihood ratios)
are calculated using speaker GMM and UBM models (Eq. 4). Using different decision
thresholds hypothesized speaker model was accepted or rejected:

(4)

648 I. Rakhmanenko and R. Meshcheryakov



Two different verification metrics was used for evaluating speaker verification
system: EER and minimum detection cost function with SRE 2008 parameters
(minDCF). Best results of the experimental evaluation are given in Table 1.

Table 1. Different feature sets verification trials results.

Feature set %EER minDCF*100
MFCC + Vp 0,763 0,805
MFCC + Δ+Vp 1,000 0,699
MFCC + Δ +ΔΔ + Vp 1,000 0,803
MFCC 1,000 0,925
MFCC + Shimmer 1,000 1,007
MFCC + Δ 1,052 0,825
MFCC + JitterDDP 1,131 1,003
MFCC + Zcr 1,131 1,031
MFCC + F0 1,157 1,161

As the Table 1 shows, best verification results were obtained using feature vector
consisting of 14 mel frequency cepstral coefficients and the voicing probability with
EER = 0,763 %. Minimum DCF was obtained using 14 mel frequency cepstral

Fig. 2. Detection error trade-off (DET) curve for MFCC and MFCC + voicing probability feature sets
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coefficients, their deltas and the voicing probability. Figure 2 shows MFCC and MFCC
plus voicing probability feature vectors detection error trade-off (DET) curves. Adding
other features to standard MFCC vector had given worse verification results unlike using
only MFCC vector. Furthermore, it is noticeable that adding the voicing probability to
MFCC vector increases EER or decreasing minDCF. So we could conclude that the
voicing probability could increase effectiveness of the GMM-UBM speaker verification
system.

5 Conclusion

Speaker verification system based on Gaussian mixture model and universal background
model was created. Best verification results were obtained using feature vector
consisting of 14 MFCC and the voicing probability giving EER = 0,763 %. Comparing
to standard 14 MFCC vector 23,7 % of EER improvement was acquired using this feature
vector. It is planned to evaluate presented system on bigger speaker set in order to
compare obtained results with small speaker set problem.

This work was supported by the Ministry of Education and Science of the Russian
Federation within 1.3 federal program «Research and development in priority areas of
scientific-technological complex of Russia for 2014-2020» (grant agreement
№ 14.577.21.0172 on October 27, 2015; identifier RFMEFI57715X0172).
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Abstract. Automatic speech recognition (ASR) task constitutes a well-known
issue among fields like Natural Language Processing (NLP), Digital Signal
Processing (DSP) and Machine Learning (ML). In this work, a robust supervised
classification model is presented (MFCCs + autocor + SVM) for feature extrac‐
tion of solo speech signals.    Mel Frequency Cepstral Coefficients (MFCCs) are
exploited combined with Content Based Image Retrieval (CBIR) features
extracted from spectrogram produced by each frame of the speech signal.
Improvement of classification accuracy using such extended feature vectors is
examined against using only MFCCs with several classifiers for three scenarios
of different number of speakers.

Keywords: ASR · MFCCs · Supervised model · Feature extraction · CBIR
features

1 Introduction

Recognizing speech signals under either plain or more complicated environments is an
important task of Automatic Speech Recognition (ASR) and Automatic Classification
field, especially when such tasks are applied on large databases. Albeit speech recog‐
nition task is being examined by researchers many decades since now, it still remains
an open issue. The main activity of a speech classification system is the procedure of
extracting the appropriate features or removing the useless, for reducing both overfitting
phenomena and computational resources needed. Besides the simple mathematic attrib‐
utes that are computed exclusively from one domain, such as auto-correlation or
temporal centroid and spectral centroid, skewness or kurtosis from time and frequency
domain respectively, several other measures have been proposed for exploiting the
enriched content of audio signals. Energy descriptors, harmonic and perceptual features
are the most important categories of them [1]. The most well-known groups of attributes
used for similar issues are Mel-Frequency Cepstral Coefficients (MFCCs), Linear
Predictive Codes (LPCs), Perceptual Linear Prediction (PLP) and PLP-Relative Spectra
(PLP-RASTA). MFCCs seem to have met the wider acceptance from researchers,
judging by the large amount of works that have been used, either alone or combined
with other attributes [2–4]. Theirs high performance is reasonable, since they are
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computed by a well-sophisticated model. Without spending more time on analyzing the
mathematical background of this theory, its main ambition is the description of the
spectral envelope that is formatted by the phonemes of vocal tract with a few coefficients.
All these parameters can also be applied to speech signals. Little modifications are
usually needed respecting some generic properties of them. For example, there is neces‐
sity for adjusting both the window’s length during processing stages and the frequency
bands that are examined, since the maximum frequency component of speech signals
are usually located below 4 kHz.

However, all these features are collected being mainly focused on the audio nature
of signals. Another strategy for exploiting useful information is the mining of images
produced by such signals, either examining the full length signal or its frames separately.
The most common visualization technique is spectrogram, which represents the intensity
of the existing frquencies over time and is computed by rising to the square the magnitude
of a windowed Short-Term Fourier Transform (STFT). According to the literature, there
are three distinct families of methods in image processing: Content, Feature and Appear‐
ance-Based. In this work, extension of feature set by using both MFCCs and image
features that are obtained through the Autocorrelogram filter [5] along with large enough
window length for recognizing speech signals inside restricted time framework is
proposed. A number of comparisons with some specific Content-Based Image Retrieval
(CBIR) features, which are described in [6, 7] along with a Java library, are implemented
and compared for recognizing speech signals at solo mode that come from 8, 16 and 36
different speakers. Ten different options, together with the proposed, were examined for
the CBIR features, which are based on the pixel contents of the tested images. For
classification task, three classifiers were used to compare the accuracy of using only
MFCCs against MFCCs + CBIR scenario. The enhanced behavior achieved by this
strategy in the majority of the examined cases proves the need for exploiting different
views of the same dataset. The proposed method is the combination of
MFCCs + autocor + SVM that achieved the best accuracy for all the tested scenarios
without lacking in needed training time against the other choices.

2 Related Works

CBIR procedures have been highly exploited for obtaining additional information from
sound and/or speech signals, either for composing new recognition techniques or for
improving existing methods by extending their feature sets [8, 9]. Extraction of low-
level features from whole an image or from its sub-regions are been examined. The basic
query is to determine the similarity between two different images by measuring the
distance between their feature vectors. The most common kind of data that are used is
the color content and the texture information, such as color histogram and directionality
of the image pixel, respectively.

Local gradient features [10] on two-dimensional matrices that represent time-
frequency attributes of speech signals were compared against MFCC + Delta MFCC,
using PCA technique for dimension reduction and HMMs for speech recognition
[2]. Ten speakers (5 male/5 female) were used in this work with 25-ms frame length

652 S. Karlos et al.



and 10-ms frame sift. The improvement of the proposed technique
(HOG + MFCC + Delta MFCC) against MFCC + Delta MFCC and HOG + MFCC
as it concerns the word recognition rate (WER) was equal to 0.5 % and 1.5 % for
clean speech. Extended experiments have been demonstrated in [11] over a male
telephone speaker recognition framework. This dataset consists of 500 speakers. 2D
Gabor features were used for this large-scale experiment producing 1357 initial
feature dimensions. Reduction procedures are applied so as to reduce the computa‐
tional time, since Multilayer Perceptron (MLP) classifier was used for training. The
results showed that combining MFCC + Gabor features gives an 8 % relative EER
improvement over the MFCCs alone. FFNN [12] has been proved as an effective
solution when large number of parameters are demanded [13, 14].

Discrimination between music and speech signals is also another familiar task.
Wavelet package transform on gray-scale spectrograms and application of Multiple
Kernel Learning for subband selection had achieved very good results [15]. Dennis J.
has also made in-depth search for sound event recognition in various environments using
Spectrogram Image (SI) processing methods [16]. The main process consists of
computing higher order central moments from block based partitions applied on SIs.
Linear kernel of Support Vector Machine (SVM) classifier performed robust results for
the tested mismatched conditions. A method that extracts SI based co-occurrence attrib‐
utes – using frame width of 256 samples and 50 % overlap factor – along with RANSAC
algorithm for discriminating music signal with voice or without voice has also been
implemented [17]. Other algorithms for distinguishing music signals or environmental
sounds through behaving to SI like texture images have been proposed, either combined
with MFCCs [3, 18] or without [9]. The choice of frequency bands also may affect the
performance of such algorithms. A work based on speech spectrograms for recognizing
stress and emotion using log-Gabor Filter performed better using equivalent rectangular
bandwidth (ERB) scale bands against CB and Bark scales [19].

3 Proposed Technique

Integration of attributes from two different views is presented here for increasing clas‐
sification accuracy rate and the robustness of the final classification model. The first
view of the examined speech signals should be the MFCCs, which are being collected
according to right chain of Fig. 1. A short-term spectral analysis method is applied on
the speech signals, after having been segmented with a large Hamming window – its
time duration equals with half a second — and 50 % overlap factor. The highest band
edge of Mel filters has been set to 4 kHz. In the sequel, Fast Fourier Transform (FFT)
is applied to each segment and its magnitude spectrum is logarithmically scaled in both
magnitude and frequency domain. At the end, the appropriate coefficients are obtained
by computing the Discrete Cosine Transformation (DCT). In order to integrate infor‐
mation from SIs, we used a WEKA [20, 21] implementation of Lucence Image Retrieval
(LIRe), which constitutes an extensible java library for CBIR tasks. The method that
seems to fit with the extraction of informative enough features from Sis for classification
tasks is the AutoColorCorrelogramFilter (autocor). According to this approach, the
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spatial correlation of colors from each image is distilled. Since it is not based on purely
local properties, it is not too sensitive to big shape changes. It is really effective in
recognizing large changes of shape and is really efficient in being computed [5]. Further‐
more, this asset to capture the spatial correlation of the tested images outperforms the
classical methods that are mainly based on histograms, and this property is harmonized
with the manner that SIs are produced.

Fig. 1. Flowchart of the proposed scheme

The final stage of this chain contains the right choice of classifier. SVM with poly‐
nomial kernel for achieving both accurate and fast enough decisions was chosen, like
in other related works [22]. The intermediate stage between extracting CBIR features
and joining them with MFCCs is a post-processing procedure for removing useless
attributes. The criterion for such a choice is the maximum accepted variance of a feature.
Each one that exceeds a predefined threshold is omitted. In our implementation, this
threshold value (M) was not differentiated from the default value of WEKA’s corre‐
sponding filter (M = 99 %). The produced features from autocor filter were equal to 1024
but only 57 of them were finally used for describing the SI set. Figure 1 depicts the whole
procedure.
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4 Experiments

The experiments are based on datasets extracted from the CHAINS Corpus [23]. The
selected scenario for our experiments is the ‘solo speech’, according which the texts are
been read at a natural rate. This dataset consists of 36 speakers – 28 of them are from
Eastern part of Ireland and the rest 8 are from UK and USA – who read 33 different
sentences. All the three different scenarios – 8, 16 and 36 speakers – that have been
formatted by the author of this work are examined here. In each task, the number of male
and female speakers is equal. The training and the testing subsets consist of 10 and 9
specific wav files, respectively. Since the 10-cross-validation technique has been chosen
for performing the experiments, these subsets have been joined to one. The number of
the rows of our datasets was reduced to 1298, 2577 and 5818 for the tested cases, because
of the selected large window. Having rejected the 0th coefficient, only the next 25 coef‐
ficients were used. Consequently, each row consists of 25 MFCCs, the number of
features that each filter uses and the class label. Besides the autocor filter, all the rest
nine filters that come from LIRe were used and combined with MFCCs for checking
their total performance. A short description of them is following: BinaryPatternPyramid
(binpyr) [24], ColorLayout (clay) [25], EdgeHistogram (edhist) [7], FCTH (fcth) [26],
FuzzyOpponentHistogram (fuzzy) [7], Gabor (gabor) [7], JpegCoef (jpeg) [7], PHOG
(phog) [27], SimpleColorHistogram (simlpehist) [7].

Three different classifiers were used in all the cases for evaluating the different
approaches. Following the strategies of many similar works [22, 28] SVMs and Neural
Networks were used along with LogisticRegression (LogReg), a well-known classifier
for a wide variety of tasks. As it concerns SVM classifier, it was used the polynomial
kernel with degree equal to 3 via the implementation of LibSVM [29]. The default values
of MLP and LogReg were used [20]. Table 1 shows the results of exploiting only MFCCs
for fulfilling the identification task compared with the proposed. The required time for
building the classification models, measured in seconds, also accompanies the accuracy
values. All the experiments were executed on Intel i3 64-bit system with 8 GB ram.
Regarding the scenario of combining MFCCs with CBIR features, performance of SVM
classifier was increased in all the cases for all the examined scenarios of 8, 16 and 36
speakers. However, the autocor filter managed to boost its accuracy up to 11.5 %, 7.8 %
and 9.9 % demanding only half a second, less than a second and about 4 s more than the
simplified scenario of using only MFCCs.

Another interesting point is the large deterioration of predictions accuracy that
appears in MFCCs + FCTH combination for the 16 speakers experiment. Furthermore,
the algorithms that mainly depend on local attributes did not manage to score high
accuracy improvement against more simplified and less specified approaches, following
our tactic to obtain more generalized visualizations of speech signals. The total results
could be found in the following link: http://ml.math.upatras.gr/wp-content/uploads/
2016/04/results1.xlsx due to lack of space. Moreover, the number of features that were
produced for each filter and how many of them were kept after the pre-process stage is
referred. For further examining the behavior of all the tested CBIR filters, a statistical
comparison was executed [30]. The post-hoc test of Nemenyi was selected for obtaining
both a ranking of the methods and the information about which of them are significantly
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different. These results are shown in Fig. 2 and have been plotted with the help of
scmamp library [30]. The length of CD parameter in this figure depicts the minimum
distance that must mediate between two participants for being theorized as significantly
different. Thus, all the methods that are connected with a horizontal bold line are not
obsessed by this property. The combination of MFCCs + autocor and MFCCs + binpyr
achieved the best two performances. Their behaviors were similar enough, but the first
one required less computational time than the else in all the tested scenarios.

Table 1. Comparison of MFCCs vs MFCCs + autocor

Classifiers 8 speakers 16 speakers 36 speakers
MFCCs MFCCs + auto

cor
MFCCs MFCCs + auto

cor
MFCCs MFCCs + auto

cor
SVM 79.89 87.44 75.90 83.70 66.74 76.64
Time (sec) 0.45 0.88 1.29 2.09 5.93 9.62
MLP 69.49 82.42 69.03 80.36 60.1581 66.33
Time (sec) 10.71 60.80 35.43 121.04 179.89 452.50
LogReg 66.41 76.96 73.38 79.74 60.89 67.13
Time (sec) 0.26 1.08 1.71 4.06 5.46 27.98

Fig. 2. Critical difference plot of CBIR filters + MFCC against MFCCs

5 Conclusion

A new strategy for increasing speech recognition accuracy based on Mel-frequency
cepstral coefficients (MFCCs) exploiting both MFCCs and CBIR features is proposed.
The whole procedure is performed by using some well-known algorithms of ML field
and the best results – with efficient computation time – were given by SVMs with poly‐
nomial kernel and degree equal with three. The results show that by using extended
feature sets through image filters over spectrogram visualization can boost the perform‐
ance up to 10 % for 16 and 36 speakers’ task and 11.5 % at most for 8 speakers’. Instead
of using small windows for computing the necessary features, long values of windows
were used, reducing dramatically the number of frames needed for building the final
datasets.

Although this strategy may lack in recording fast transient phenomena though spec‐
trogram representation, rendering the image dataset inefficient to lead to good
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identification results, their combination with MFCCs enhances the total accuracy rates
for speech recognition tasks being recorded on clean conditions. Moreover, the poor
accuracy of mining only SI features with large window length for ASR experiments
justifies the cardinal role that is possessed by the sound features. This means that more
specialized image extraction algorithms could be combined under similar schemes
(MFCCs + SI features) instead of exploiting just MFCCs, so as to achieve more robust
and more accurate behaviors. Parallel implementation of this approach could also accel‐
erate the whole procedure, especially for larger corpus.

The combination of magnitude with phase related features may also increase the accu‐
racy of such algorithms, as in the case of Hartley Phase Spectrum, where enhanced results
obtained for specific speech and audio classes [31]. Finally, semi-supervised techniques
that respect multi-view theory, such as co-training, could perform well enough in
combining sound/speech features along with image attributes on such experiments [32].
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Abstract. The ORD corpus is one of the largest resources of contemporary
spoken Russian. By 2014, its collection numbered about 400 h of recordings made
by a group of 40 respondents (20 men and 20 women, of different ages and
professions), who volunteered to spend a whole day with a switched-on voice
recorder, recording all their verbal communication. The corpus presents the
unique linguistic material recorded in natural communicative situations, allowing
spoken Russian and the everyday discourse to be studied in many aspects.
However, the original sample of respondents was not sufficient enough to study
a sociolinguistic variation of speech. Thus, it was decided to launch a large project
aiming at the ORD sociolinguistic extension, which was supported by the Russian
Science Foundation. The paper describes the general principles for the sociolin‐
guistic extension of the corpus. It defines social groups which should be presented
in the corpus in adequate numbers, sets criteria for selecting participants,
describes the “recorder’s kit” for the respondents and involves the adaptation
principles of the ORD annotation and structure. Now, the ORD collection exceeds
1200 h of recordings, presenting speech of 127 respondents and hundreds of their
interlocutors. 2450 macro episodes of everyday spoken communication have been
already annotated, and the speech transcripts add up to 1 mln words.

Keywords: Speech corpus · Everyday spoken Russian · Oral communication ·
Sociolinguistics · Social groupings · Sociolects · Speech variation

1 Introduction

In sociolinguistic studies of the last decade one may observe the increasing use of
corpora and it is expected that variational linguistics “will increasingly interact with
corpus-based approaches to linguistics from other areas” [1]. Some examples of socio‐
linguistic research performed on the base of linguistic corpora are reviewed in [2, 3].
However, “texts found within most corpora do not contain the kind of material of greatest
interest to most sociolinguists, namely, casual everyday speech, often from non-standard
language varieties. Large corpora of spontaneously occurring spoken data are still
expensive and time-consuming to compile due to problems of transcription and
input” [3].

© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 659–666, 2016.
DOI: 10.1007/978-3-319-43958-7_80



Current situation with Russian sociolinguistic studies is much alike, as there are not
enough linguistic resources of Russian spontaneous speech recordings suitable for
research on sociolinguistic variation. For example, the Spoken speech subcorpus in
Russian National Corpus does not contain any audio data at all, consisting just of tran‐
scripts [4]. The other well-known Night Dream Stories corpus contains both texts and
speech recordings which are thoroughly annotated. However, this corpus is rather small
(about 2 h of recordings, 14000 words in transcripts) and contains only speech of children
and adolescents [5].

The largest resource of contemporary spoken Russian is the ORD corpus [6]. By
2014, its collection numbered about 400 h of recordings made by a group of 40 respond‐
ents (20 men and 20 women, of different ages and professions), who volunteered to
spend a whole day with a switched-on voice recorder, recording all their oral commu‐
nication in natural communicative situations [ibid.]. The similar methodology of the
long-term recordings had been earlier used for collecting data for the British National
Corpus [7] and the JST ESP corpus in Japan [8].

ORD recordings were made at home, in offices, in stores, in bars and restaurants, at
the university and in a military college, in parks and outdoors, etc. and contain diverse
genres and styles of speech — everyday domestic conversations, professional conver‐
sations with colleagues, communications with friends, telephone calls, lectures, work‐
shops, etc. The topics in these conversations have a great range from discussions of teeth
problems with a dentist to conversations about family, business, football, politics, reli‐
gion, etc. [6]. Two professional multimedia annotation tools – ELAN [9] and Praat [10]
– are used to annotate the ORD corpus.

The corpus presents the unique linguistic material, allowing spoken Russian and
everyday discourse to be studied in many aspects. A number of interdisciplinary studies
have been held on its data, among which we can mention several sociolinguistic
endeavors (e.g., [11]).

However, the original sample of respondents was not sufficient enough to study
sociolinguistic variation of speech. Therefore, it was decided to launch a large project
aiming at the ORD sociolinguistic extension, which received the support of the Russian
Science Foundation. The paper describes the general principles for the sociolinguistic
extension of the corpus. It defines social groups which should be presented in the corpus
in adequate numbers, sets criteria for selecting participants, describes the “recorder’s
kit” for the respondents and involves the adaptation principles of the ORD annotation
and structure. It also concerns the preliminary results of the corpus extension and reports
its current statistics.

2 Social Groups and Their Categories

First of all, it was essential to define basic social groupings of the contemporary Russian
society which the corpus would represent. For this purpose, the sociolinguistic principles
that were used in some of the well-known speech corpora such as the British National
Corpus, the Australian Database of Spoken Language, the speech subcorpus of the
National Corpus of the Russian Language, Perm corpus of spoken Russian in Perm
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Region, and the SAT corpus were reviewed [12] and compared to those used by the
developers of the ORD corpus.

As a result, a list of social groups to be represented in the corpus was drawn up as
follows:

1. Gender Groups. We distinguish two gender categories: (1) men, and (2) women.
2. Age Groups. The age distributions of the modern society are rapidly changing,

thereby altering the ratio between age groups. It was decided to adhere the following
distribution of the age groups:
(1) from 18 to 24 (young adults, junior group): this is a stage of studying and

beginning to work, when a person usually leaves home and finds his or her place
in social life;

(2) from 25 to 34 (young adults, senior group): this period of life is frequently
characterized by extensive work, career movements, and starting a family;

(3) from 35 to 44 (mature adults, group I): this is the period of extensive work and
— usually — the peak of a person’s social maturity;

(4) from 45 to 59 (mature adults, group II): this period is generally characterized
by a high social maturity until retirement;

(5) 60+ are senior citizens, who generally take less part in social life. One cannot
deny that there are people who remain socially and professionally active even
after retirement; however, the general activity tends to decrease.

These groups can be later combined into bigger categories, for instance, in
order to compare the speech of “the youth” with that of the “middle-aged and
seniors”.

3. Education Level Groups. Here, we consider it appropriate to differentiate five
educational categories: (1) secondary school, (2) secondary professional school,
(3) incomplete higher education, (4) higher education, (5) academic degree (PhD).

4. Professional Groups or Generalized Types of Occupation. As for the social factor
of professional activities, it became obvious that in the framework of an individual
research project it is impossible to describe in detail the linguistic diversity of speech
of all statistically relevant professional groupings. Moreover, “the number of writers
have critiqued the idea that homogenized professional groupings have ever existed.
They have argued that the idea of a single professional identity is problematic
because people have complex personalities and professional histories” [13].
However, our recent studies have shown that some differences in speech between
certain professional groups do exist at least on lexical and syntactic levels [14], and
some phonetic distinctions can be traced, too.

As a compromise, it was decided to analyze speech of several generalized profes‐
sional groups. For example, the “worker” group would comprise plumbers, builders,
mechanics, and other “handyman” professions that demand physical labor, whereas
“service sector employee” group would comprise shop assistants, delivery men,
waiters, librarians, social services, etc.

Having reviewed the data of the Federal Statistics Department of St. Petersburg
[15], we have chosen ten following generalized professional groups:

(1) people working in manufacturing and building, doing manual labor (builders,
mechanic, plumbers, carpenters, etc.);
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(2) service sector employees (shop assistants, cashiers, merchandisers, delivery
couriers, waiters, hairdressers, etc.);

(3) people working in education (practicing teachers and lecturers);
(4) people working in military and defense (army officers, police officers, military

cadets, security guides);
(5) people of creative professions (photographers, designers, artists, architects,

musicians, stage directors, etc.);
(6) office or “white-collar” workers engaged in economy (economists, account‐

ants, logistics managers, finance analysts), advertising business or public rela‐
tions (market researchers, advertising managers, PR managers, etc.);

(7) IT professionals (IT engineers, programmers);
(8) engineers of different fields;
(9) people engaged in humanities (linguists, archeologists, historians, philoso‐

phers, psychologists);
(10) people engaged in natural science (biologists, chemists, astronomers, etc.).

We are aware that the proposed categories may intersect with each other,
as one and the same person may be engaged simultaneously in more than one
group (e.g., a lecturer in chemistry would be assigned to two professional
groups — natural science and education). Thus, it is planned to compare
speech features between opposite groups: for instance, “workmen” vs.
“scholars”, “humanities” vs. “natural sciences”, “white-collar workers” vs.
“creative professionals”, and so on.

5. Social Status or Job Position Groups. Here, we distinguish four categories asso‐
ciated with social status and job position: (1) executive managers and employers
(directors, deputy directors, heads of departments or private companies, etc.),
(2) employees and civil servants, (3) students, including those who combine studies
with work, (4) currently unemployed, including those who are retired.

If we compare social groups proposed for this study with the categories by
T. Zaslavskaya, which are widely used in Russian sociological research, the
proposed sociolinguistic approach is focused in describing everyday Russian
language for two major strata of modern Russian society: the “middle layer” and the
“base layer” [16].

3 Methodology of Data Collection

3.1 Criteria for Selection of Participants

By the summer of 2014, the ORD corpus consisted of about 400 h of recordings gathered
from 40 volunteers, balanced by gender and representing various age groups. The
professional categories, however, lacked a proper balance, as those parameters had not
been taken into account at the first stage of data collecting. Namely, the corpus lacked
speech recordings from workers, creative professionals, IT specialists, and some other
professional groups. In the social status category, the data obtained from executive
managers, businessmen, and retired persons were insufficient as well.
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Taking into consideration that transcribing and processing of speech data is time-
consuming, it was decided that the minimum sample size for each professional or status
group should be 10 people.

The next task was to determine the list of people for new recordings so that we could
close all gaps in the ORD data in terms of particular social groups (see Sect. 2). The list
consisting of 60 “vacancies” — which would become representatives of the described
above social groups — was compiled. In other words, to make the corpus representative
of major socially stratified groupings, its volume of recordings required its extension up
to 1000 h.

Additional criteria for selecting participants were defined. The list of compulsory
requirements was set as follows: (1) age factor: no people under 18 could become a
respondent for ORD recordings, (2) native language factor: in this project, only Russian
native speakers could participate, and (3) residence factor: the prospective candidate
must be residing in the urban area.

A significant factor in selecting volunteers was their desire and readiness to “live a
whole day with a recorder around their neck” and to fill in all the necessary forms and
questionnaires.

3.2 Main Principles of Speech Recordings

The methodological background for speech recording remained mostly the same as it
was proposed for the first recordings of the ORD which had aim to record everyday
Russian speech in natural communicative situations [6]. It was required that nothing
should interfere with the usual habits of speakers’ communicative behavior when they
made recordings. Also, every respondent should speak as he or she normally speaks,
e.g. not changing the subjects of topics during the recording [ibid.].

It was settled that the recording would be made by professional voice recorders
Roland R09-HR, enhanced with external condenser microphones. In the result of pilot
series of long-term recordings, using a variety of recording settings, the optimal recorder
settings were proposed which should provide the best possible sound quality in different
communicative situations.

3.3 The “Recorder’s Kit”

Though participation in ORD recordings is anonymous, all respondents have to fill in
several questionnaires, including a sociological one. For this purpose, the “recorder’s
kit” was compiled, consisting of the following elements:

(1) Sociological questionnaire for the volunteers and their main interlocutors. It was
developed based on the data of the Federal Statistics Department of St. Petersburg
after having taking into account traditional sociolinguistic issues. This question‐
naire contains traditional questions about gender, age, place of birth, professions
(both past and current), education, the native language and other languages spoken
by the informant. In addition, it includes the information about the respondent’s
parents, their social background, and place of birth. Sociological information
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concerning main interlocutors is replenished by indicating their social role in rela‐
tion to the volunteer respondent.

(2) “A speech diary” is a template where the participant has to note down the details
of her/his major communicative speech episodes during the recording day,
including the place of communication, main activities, and interlocutors.

(3) “The recorder’s guide” was written to provide respondents with principal technical
and organizational requirements for the recording. Besides, it contains the legal
Agreement to be signed by each respondent for participating in the project.

In addition, every participant is required to take three psychological tests offline
(Hans Eysenck test, FPI test and Cattell’s test). As it is well-known that there is a corre‐
lation between the psychological type of the person and some features of his/her speech,
the information obtained from these tests is very important for further speech analysis.
Later on, these data may be used for advanced psycholinguistic studies.

4 Adaptation of the ORD Annotation and Structure

The ORD speech corpus consists of three major components: (1) audio files, (2) corre‐
spondent annotation files, and (3) information system [17]. Sociolinguistic extension of
the corpus implied development and adaptation of all three components, as well as the
data processing software.

The major alteration in principles of annotation lies in levels of speech transcripts.
It is well-known that natural conversations inevitably have periods when one or more
participants talk simultaneously. As usual, the more the number of interlocutors, the
greater is the part of overlapping speech. Originally, the ORD annotation was based on
linear representation of overlapping fragments, as all speech transcripts had to be written
on the single Phrase-tier. This approach for speech transcribing was suitable for earlier
ORD tasks.

However, if we have to compare speech between different social groups, it becomes
necessary to distinguish more accurately — who is saying what, and when. Here, we
need a multilevel transcribing of speech that is similar to that used in conversation anal‐
ysis. For that purpose, we have elaborated alternative multilevel speech transcription
system and developed software tools which should simplify conversion between two
types of speech transcribing.

Further, we introduced a number of new annotation symbols referring to paralin‐
guistic phenomena, such as sigh, clattering tongue, yawning, moaning, etc., which is a
novelty in the ORD corpus annotation. To perform a multilevel linguistic analysis of
speech, particular means of linguistic annotation are developed.

The ORD information system was extended, too. For example, the tables Informants
(Participants) and Interlocutors have been expanded by adding extra sociolinguistic
fields, including that for normalized codes for each sociolinguistic category (as described
above in Sect. 2), and several new tables were introduced: Microepisodes (subdivision
of macroepisode), Paralinguistics, and Extralinguistics.
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5 Current Statistics of the ORD Corpus

New recordings for ORD started in July, 2014. Since then, we have gathered recordings
from 66 new participants (service workers, white-collars, IT-specialists, artists, musi‐
cians, businessmen, pensioners, etc.), with the total duration of 842 h. Nowadays, the
extended ORD corpus contains more than 1200 h of speech gathered from 127 major
participants (66 men and 61 women). The age of participants rangers from 18 to 77
years, with the average value of 39 years. Each professional or social status group intro‐
duced in Sect. 2 is presented at least by 10 respondents.

As expected, it turned out to be challenging to find “pure” representatives for indi‐
vidual professional groups. In particular, it may be explained by the fact that in post-
perestroika decades many Russian citizens had to change their professional activities or
were forced to combine different occupations, frequently from different professional
areas. Moreover, representatives from particular professional and status groupings often
refused to take part in the recordings. For example, not working pensioners usually
argued that they “do not speak much during the day” or that they “are afraid to break a
voice recorder”.

All recorded data are being segmented into macroepisodes [18], 2450 macroepisodes
have been already described, and the speech transcripts add up to 1 mln words. The work
on multilevel linguistic annotation of the corpus continues.

Given that the ORD corpus contains everyday private recordings of respondents, an
open access to its content is impossible for ethical reasons. However, it is planned to
create a website of this resource which should have expanded functions for scientific
research for authorized users.

Acknowledgement. The research is supported by the Russian Science Foundation, project
# 14-18-02070 “Everyday Russian Language in Different Social Groups”.
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Abstract. The goal of this research is to answer the question: is it necessary to
build a completely different system in order to automatically recognize func-
tional dysphonia (FD) in children’s cases or is it possible to train the system with
healthy and pathological voices of adults? For this reason preliminary statistical
analyses were carried out between healthy and functional dysphonia voices of
children and healthy children voices with healthy adults’. The statistical anal-
yses draw the conclusion that variations of Jitter and Shimmer values with
Harmonics-to-Noise Ratio (HNR) and the first component of the mel-frequency
cepstral coefficients (MFCC1) are good indicators to separate Healthy and FD
voices in case of children as well. Healthy samples of children and adult voices
were compared giving the clear conclusion that differences exist in the examined
acoustical parameters even between healthy child and healthy adult groups. It is
necessary to carry out the investigations separately on children’s voices as well,
we cannot use adult voices to make any conclusions to children’s voices. Lastly
the differences between adult female and male samples were examined. The
study results confirmed our assumptions that in order to build an automatic
decision making system that recognizes FD it is advisable to build separate
systems for adult males, adult females and children.

Keywords: Speech recognition � Voice disorder � Statistical analysis �
Acoustic parameters � Juvenile dysphonia

1 Introduction

Articulation disorder can be explained by the neuromuscular dysfunction of the vocal
organs. The dysfunction can manifest as either an overdrive in voice performance or its
powerlessness. The starting point of the greater part of the functional voice disorder is
the repetitive strain of the voice. The unnatural increased activity is asymptomatic for a
while, but if the increased activity is maintained the muscle gets tired and operational
failure occurs. Voice disorder, present for a long time generated only on a functional
basis, causes organic changes such as vocal nodes.
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Dysphonia is the disorder of the articulation as a complex function. It is a patho-
logical condition showing varied based symptoms due to several etiologic factors and
pathogenesis diversity [1].

The frequency of dysphonia according to Schulze [2] among the 3-10-year-old
population can be put between 20–30 %, according to the literature review of Fuchs, 6–
25 % appears to be well founded. The data therefore suggest that almost every fourth or
fifth child produces a pathological voice. The studies agree that dysphonia is more
often found among boys than girls, the ratio being 70–30 %. Symptoms that can cause
discomfort associated with dysphonia are: pressure on the neck, forced coughing,
shortness of breath. 45–65 % of children suffering from dysphonia have similar
complaints [3]. There are several questions regarding whether sustained voice or
continuous speech is more effective in distinguishing Healthy from pathological voice
[4–9]. Our previous research has confirmed that acoustic parameters like Jitter,
Shimmer, HNR (Harmonics-to-Noise Ratio) in the automatic classification of results
from the Healthy and pathological voices are improved in a big extent using continuous
speech [10].

The differences and the similarities between pathological and healthy speech was
also analyzed in adult speech by statistical tests. It was found that in case of the
Hungarian vowels marked with SAMPA characters [E] and [o], variations of acoustic
parameters like Jitter, Shimmer, HNR show significant differences [15]. In the present
study the differences and the similarities between adult and children’s voice was
analyzed using continuous speech. Different approaches were carried out: acoustic
parameters from vowels [E], [o], [O], [A:], [u] were extracted from adult and children’s
speech samples and compared by statistical analyses. The acoustic parameters were
also compared with two sample T-tests in the case of children, between Healthy and
pathological group. Furthermore, the differences and similarities of healthy voice
samples between the adult and child group was examined. At the beginning of our
research male and female samples were treated together, seeing the difference we
arrived at the conclusion that it is better to treat them separately.

2 Participants and Methods

2.1 Pathological and Healthy Adults Speech Database

The databases’ recordings were made during patient consultations of Dr. Krisztina
Mészáros in a consulting room at the Outpatients’ Department of the Head and Neck
Surgery Department of the National Institute of Oncology. Over the past years several
types of diseases occurred. Recordings from healthy people were collected as well.
These recordings are used as comparison, and the recordings were collected from
people who had attended for unrelated check-ups. Speech samples were recorded by
near field microphone (Monacor ECM-100), with Creative Soundblaster Audigy 2 NX:
an outer USB sound card with 44,100 Hz sampling rate, at a 16-bit linear coding. The
microphone was placed 10 cm from the patient’s mouth. The duration of the recordings
are about one minute each. Every patient had to read out aloud one of Aesop’s Fables,
“The North Wind and the Sun”. This folktale is frequently used in phoniatrics as an
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illustration of spoken language. It has been translated into several languages,
Hungarian included. A more detailed description of the database is found in [13]. In
this work a total of 136 recordings were used from this database: 84 recordings from
Healthy people (42 female and 42 male) and 52 recordings from patients suffering from
functional dysphonia (FD) (38 female and 14 male).

2.2 Juvenile Dysphonia and Healthy Child Speech Database

For our research it was essential to create a well-structured speech database containing
children’s speech samples. The database contains samples of children suffering from
dysphonia, Healthy and healed children’s voices as well. The recordings of children
suffering from dysphonia were collected at the Budapest University of Technology
Laboratory of Speech Acoustics audiological cab. The audiological cab provides an
environment isolated from noise and vibrations by eliminating external sources of
interference and suitable to make noise-free recordings. The recordings of Healthy
children were made at Albertfalva Don Bosco kindergarten. All the recordings were
made in the presence of the children’s parents.

During the recordings the children told the poem from Erika Bartos entitled “The
Squirrel”. The poem was chosen for therapeutic reasons, and because children in the 5–
10 year old age group are very fond of the poem and it is easy to learn. All the children
from the database are aged 5 to 6.

The recordings were made using a near field microphone (Monacor ECM-100),
Creative Soundblaster Audigy 2 NX outer USB sound card, with 44,100 Hz sampling
rate and 16-bit linear coding. The duration of the recordings are about 20 s each.

A clinician classified all the recorded speech samples according to the RBH scale,
voices where H was given the score 0 were considered Healthy [10]. The database
contains 20 Healthy and 12 (1 female and 11 male) recordings from children diagnosed
with juvenile dysphonia (furthermore referred as FD children). These records were
used in our research.

Note the distribution of the genres of the two databases: where as in the adult
database the number of females with functional dysphonia is much higher than the
number of males, in the child database the number of males diagnosed with dysphonia
is higher. This ratio corresponds to the clinicians’ experience.

Both databases were annotated and segmented on phoneme level, using the
SAMPA phonetic alphabet [11]. The segmentation was made with the help of an
automatic phoneme segmentator, which was developed in our Laboratory, followed by
manual corrections.

2.3 Pre-processing Methods

When examining the voice of adults, the middle of vowels were selected, and the
typical acoustic parameters were measured there. The vowels were marked with the
SAMPA characters during the phoneme levelled segmentation, thus we used this
nomination in this article too. Among the 14 Hungarian vowels, [E] and [o] are usually
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analyzed in case of adults. One of the reasons that justifies this choice is that in the
Hungarian language the [E] vowel is the most frequent one and there are approximately
50 [E] vowels in the tale that was read. The [o] vowel is usually used during both
sustained and continuous speech based speech therapies by Hungarian professionals. In
the case of the children, the vowel [o] is the poem’s most frequent one, with 16 pieces,
and there are only 9 pieces of the vowel [E]. The statistical analyses were made
extracting the vowels [E], [o], [O], [A:], [u] from each database. During the extraction
of the vowels, samples shorter than 62 ms were discarded, in order to eliminate sounds
containing less than 5 periods. The limit is established based on the sampling frequency
44.1 kHz, and the minimum male fundamental frequency set to 80 Hz. Both in adult
and children speech the extracted vowels appeared in different words and contexts.

For the extraction of the acoustic parameters Praat software was used [12]. At the
middle of each examined vowel, the following acoustic parameters were measured:
Jitter_ddp (the average absolute difference between consecutive differences between
consecutive periods, divided by the average period), Shimmer_ddp (the average
absolute difference between consecutive differences between the amplitudes of con-
secutive periods), mean HNR and the first component of the mel-frequency cepstral
coefficients (MFCC1). The parameters were selected taking into account the results of
our previous research [13].

2.4 Statistical Analyses of Acoustic Parameters

All parameters obtained were disposed by using SPSS20.0 software. Two sample
T-tests were used for statistical significance testing for the mean values of the acous-tic
parameters between healthy voices and those with functional dysphonia [14]. Where F
tests showed significant variances of an acoustic parameter within the groups (with
significance level 95 % (a = 0.05)), Welch’s T-test was used. Welch’s T-test is
insensitive to equality of the variances regardless of whether the sample sizes are
similar. Our assumption is that the distributions are normal, but T tests are relatively
robust to moderate violations of the normality assumption.

3 Results

3.1 Comparison of Healthy and FD Children

Acoustic parameters presented in 2.3 were extracted from vowels [E], [o], [O], [A:], [u]
from Healthy children and FD children voice samples and were used for statistical
analyses. Every sound has been evaluated separately. The results of the two sample
T-tests are shown in Table 1. Where the entries are marked with *, the mean difference
is significant at the 90 % (p < 0.1) level, where entries are marked with **, the mean
difference is significant at the 95 % (p < 0.05) level, where entries are marked with
***, the mean difference is significant at the 99 % (p < 0.001) level, otherwise, there
was no significant difference in means (p > 0.05) and represents that we accept the null
hypothesis, that the means are equal.
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The vowels [O] and [o] presents the difference the best, possibly because these
vowels occurred most often in the poem. The poem contains 15 instances of [O]
sounds, 5 instances of [A:] sounds, 9 instances of [E], 16 instances of [o] and 7
in-stances of [u] sounds. When examining vowel [O] tests revealed significant differ-
ences in Jitter_ddp (p < 0.001), Shimmer_ddp (p < 0.001), mean_HNR (p < 0.001)
and MFCC1 (p < 0.001). When examining vowel [o] the results were only slightly
different: Jitter_ddp (p < 0.001), Shimmer_ddp (p < 0.001), mean HNR (p < 0.005),
MFCC1 (p < 0.001). This means that all acoustic parameters showed significant dif-
ferences in means. Table 1 also suggests that choosing another threshold, like a = 0.01
(99 % significance level), would give no difference in Jitter_ddp between the groups at
vowel [E] and mean_HNR in case of vowel [A:]. Uncertainty in case of different
vowels is due to the small amount of data; in addition, the number of occurrences of
different vowels is different as well.

Our results show that variations of Jitter and Shimmer values with HNR and
MFCC1 are good indicators to separate Healthy and FD voices in case of children as
well.

3.2 Comparison of Healthy Adults and Children

We wanted to know if there is a difference in the means of the examined acoustic
parameters in the healthy adult and children group, by two of the five vowels. The adult
group was divided to healthy females and healthy males. The thought behind this is that
our prediction was that female and child samples show more similarity. The reason for
this may be that in case of children there is no mutation yet and the child pitch (300–
500 Hz) is much closer to the female pitch value (150–300 Hz) as to average male
pitch (100–200 Hz). Vowels [o] and [E] were used because vowel [o] has the most
number of occurrences in the poem and vowel [E] is the vowel with the most number of
occurrences in the tale. Acoustic parameters from the two vowels were extracted from
adult and children’s speech samples and compared by two2 sample T-tests. Every
sound has been evaluated separately. Results of the T-tests revealed significant dif-
ferences mostly between adult males and children. The null hypothesis is that the
means are equal. The detailed results of the statistical analysis between healthy child
and healthy adult male groups are given in Table 2.

Table 1. p – values of T-tests between Healthy and FD children by five vowels, (* p < 0.1; **
p < 0.05; *** p < 0.001)

Vowels

[O] [A:] [E] [o] [u]

p - values

Jitter_ddp 0.000*** 0.009** 0.018** 0.000*** 0.025**
Shimmer_ddp 0.000*** 0.001** 0.000*** 0.000*** 0.883
mean_HNR 0.000*** 0.023** 0.072* 0.003** 0.173
MFCC1 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
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The detailed results of the statistical analysis between healthy child and healthy
adult female groups are given in Table 3.

When examining the differences between health child and healthy male groups at
vowel [O], tests revealed significant differences in Jitter_ddp (p < 0.05), mean_HNR
(p < 0.001) and MFCC1 (p < 0.001). When the vowel [E] was taken into account
significant differences were found at all acoustical parameters. When examining the
differences between healthy child and healthy female groups significant differences
were only found in Jitter_ddp (p < 0.05) and Shimmer_ddp (p < 0.001). Parameter
mean_HNR and MFCC1 showed no significant difference.

From this result it is clear that differences exist in the examined acoustical
parameters even between healthy child and healthy adult groups. A decision system
that inquiries child’s voice trained with adult voice samples would likely detract
erroneous conclusions.

Table 2. Summary statistics for all measures in between healthy child and healthy male groups
by two vowels (* p < 0.1; ** p < 0.05; *** p < 0.001)

Vowel

[o] [E]

Child Male Child Male

Mean Std.
Dev.

Mean Std.
Dev.

p-value Mean Std.
Dev.

Mean Std.
Dev.

p-value

Jitter_ddp 1.095 0.740 1.448 1.533 0.020** 1.414 1.084 1.986 1.791 0.000***

Shimmer_ddp 7.514 3.698 8.654 6.962 0.109 9.669 5.268 12.125 10.070 0.003**

mean_HNR 17.982 4.232 12.872 4.776 0.000*** 13.262 3.914 8.337 4.068 0.000***

MFCC1 245.977 45.554 265.013 54.779 0.000*** 175.224 32.372 208.357 51.887 0.000***

Table 3. Summary statistics for all measures in between healthy child and healthy female
groups by two vowels (* p < 0.1; ** p < 0.05; *** p < 0.001)

Vowel

[o] [E]

Child Female Child Female

Mean Std.
Dev.

Mean Std.
Dev.

p-value Mean Std.
Dev.

Mean Std.
Dev.

p-value

Jitter_ddp 1.095 0.740 0.904 1.026 0.013** 1.414 1.084 1.173 1.155 0.011**

Shimmer_ddp 7.514 3.698 5.813 4.653 0.000*** 9.669 5.268 7.755 5.717 0.000***

mean_HNR 17.982 4.232 17.109 5.223 0.370 13.262 3.914 12.764 4.408 0.128

MFCC1 245.977 45.554 249.780 47.506 0.347 175.224 32.372 177.965 43.429 0.320
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3.3 Comparison of Healthy Males and Females

Because the child voice samples showed various differences with adult female and
male samples, the differences between adult female and male samples were examined.
Results of the T-tests are shown in Table 4.

All examined acoustic parameters showed differences in means. Because the
p-value is very small in each case, it indicates strong evidence against the null
hypothesis, so the null hypothesis is rejected, the means are not equal.

It follows that when examining adult voice samples, it is reasonable to separate
male and female samples. A separate decision system is needed to be built for adult
women, adult men, and children in order to obtain a more precise result.

4 Conclusions

The present study first of all investigated the relationship between healthy and FD
voices of children. For this experiment, it was essential to create a well-structured
speech database containing children’s speech samples, the Juvenile dysphonia and
Healthy Child Speech Database was built. The database contains 20 Healthy and 12
child samples with juvenile dysphonia. Acoustic parameters from vowels were
extracted from adult and children’s speech samples and compared by statistical anal-
yses. The statistical analyses draw the conclusion that variations of Jitter and Shimmer
values with HNR and MFCC1 are good indicators to separate Healthy and FD voices in
case of children as well. Healthy samples of children and adult voices were compared
giving the clear conclusion that differences exist in the examined acoustical parameters
even between healthy child and healthy adult groups. It is necessary to carry out the
investigations separately on children’s voices as well, we cannot use adult voices to
make any conclusions to children’s voices. Lastly the differences between adult female
and male samples were examined. The study results confirmed our assumptions that in
order to build an automatic decision making system that recognizes FD it is advisable
to build separate systems for adult males, adult females and children. Of course much

Table 4. Summary statistics for all measures in between healthy male and healthy female
groups by two vowels (* p < 0.1; ** p < 0.05; *** p < 0.001)

Vowel

[o] [E]

Female Male Female Male

Mean Std.
Dev.

Mean Std.
Dev.

p-value Mean Std.
Dev.

Mean Std.
Dev.

p-value

Jitter_ddp 0.904 1.026 1.448 1.533 0.000*** 1.173 1.155 1.986 1.791 0.000***

Shimmer_ddp 5.813 4.653 8.654 6.962 0.000*** 7.755 5.717 12.125 10.070 0.000***

mean_HNR 17.109 5.223 12.872 4.776 0.000*** 12.764 4.408 8.337 4.068 0.000***

MFCC1 249.780 47.506 265.013 54.779 0.007** 177.965 43.429 208.357 51.887 0.000***
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more data is needed to obtain better results, and further investigations are necessary to
decide which acoustical parameters are the best for distinguishing healthy from
pathological voice in case of children.
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Abstract. This paper reports on initial experiments with the creation of a suitable
database for training and testing systems for stress detection in speech and first
experimental results. Based on the psychological understanding of the concepts
of stress and emotion, we operationalized stress as a level of arousal, which can
be detected in speech. We describe here a speech database with three levels of
“acted stress” and three levels of soothing. For the very first experiment performed
on the database we detect different levels of stress using Gaussian mixture models.
The accuracy of detecting three levels of stress was 89 % for speakers included
in the training database and 73 % for speakers whose recordings were not used
during the adaptation of the GMM models.

Keywords: Stress · Emotions · Stress detection · Tense arousal · Universal
background model · Gaussian mixture model

1 Introduction

After the speech processing technologies have achieved good results using linguistic
and phonetic features, more and more researchers focus their attention to paralinguistic
aspects of speech with the emphasis on the practical application in automatic speech
processing tasks, such as affective speech synthesis, recognition, speaker verification,
and others. A number of research works examine the presence of emotions or stress in
speech [1–3]. Other studies specify characteristics of speech under stress and emotions
[4–6]. In all these papers the choice of research material, methodology, and even the
definitions were determined by the intended use of the results and the domain of their
future application. In this article we focus on the definition of stress, which is reflected
in changes of arousal and therefore also to the measurable speech characteristics.

2 The Concept of Stress in Psychology

Despite an intensive research interest in stress, there is still some inconsistency regarding
its definition. For the purpose of this study we will explain some important concepts in the
theory of stress and emotions, which affects the procedure used in our research. In general,
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stress can be understood as a real or implied threat to the psychological or physiological
integrity of an individual [7]. For understanding the concept, it is important to distinguish
the concepts of stress, stressor, and adaptive stress response. Stress represents the state of
threatened homeostasis, the dynamic internal equilibrium of an organism [8]. Stressors, on
the other hand, are external or internal adverse forces that serve as threatening stimuli.
Stressors vary from physical (e.g. low temperature), chemical, or biological (e.g. infec‐
tion) to psychological and social stressors (e.g. work demands or problems in relation‐
ships). In reaction to a stressor, the individual makes adaptive behavioral and physiolog‐
ical responses, which aim at coping with the threat and preventing bodily or psychological
damage. Stress response of an individual is largely determined by the appraisal of the
stressful event. Such appraisal, as understood by Lazarus [9], is a universal process evalu‐
ating whether the external stimulus is significant to the individual’s well-being. The
appraisal of threat and safety thus plays an important role in stress response.

Two basic behavioral stress responses recognized by Cannon [10] are: fighting the
threat or fleeing from the situation. The “fight or flight” response is associated with
emotional and physiological changes. The preparatory activation of stress systems, such
as the sympathetic nervous system and the HPA axis [8], help to mobilize resources and
prepare an organism for behavioral response. The “Fight or flight” response is also
accompanied with a corresponding emotional experience, consisting mainly of emotions
such as anger or fear. The terms stress and emotions are closely related and according
to some theorists stress can be included in the concept of emotions [9].

Emotions can be conceptualized by dimensional models based on their position in a
two or more dimensional space. Two prevalent dimensions of affect are overall activa‐
tion or arousal, and valence ranging from pleasurable to non-pleasurable emotions [11].
Emotions associated with the “fight or flight” reaction (e.g. anger or fear) are mostly
characterized by high arousal and negative emotional valence. The dimension of arousal
also corresponds to the preparatory physiological excitation, which is a part of adaptive
stress response [12]. Thayer [13] distinguishes energetic arousal, associated with read‐
iness to vigorous muscular and skeletal activation, and tense arousal or the emergency
preparation that is activated by real or imagined danger that prepares the person for
“fight or flight.”

We presume that the concept of tense arousal in relation to stress and emotions best
describes the affective and physiological phenomenon that we want to study in the
context of speech. For the purposes of this study we will narrow down the characteristics
of stress induced changes in speech to the level of tense arousal. Tense arousal in speech
will be addressed as different levels of imperativeness in a crisis related message.

3 Speech Database of “Acted Stress”

The effects of stress on the speech signal have been extensively studied in the last
decades. Some of the acoustic characteristics of speech, such as the fundamental
frequency, the intensity, the articulation rate, the vocal tract spectral characteristics, and
others, are known to be influenced by stress [14]. The notion of stress covers a very wide
range of phenomena and their effects on the speech signal are highly non-specific, for
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example the Lombard speech [15]. In order to be able to observe the specific effect of
stress on the speech signal we decided to narrow the definition of stress situations (the
choice of stress stimuli) to those that are reflected to the changes of tense arousal in
emotional space. Moreover, we needed to be able to control the stress/arousal level in
a repeatable way and keep the particular levels consistent in the records of the speech
database. As this cannot be achieved in the spontaneous speech under stress, we decided
to create an acted database. The different levels of tense arousal were obtained using the
same methodology as in [16]. The use of the acted emotional speech is a prevalent
research method in the emotional speech research [17].

3.1 Text Resources

All the texts used in this study were in Slovak, recorded by Slovak native speakers. The
texts were selected to evoke specific crisis situations in speakers (such as an urgent need
to inform people about a threat to human health and life). Crisis situations associated
with threats in real life are known to elicit strong stress responses and carry high
emotional load.

The texts of 150 warning messages were used for higher tense arousal databases
(levels 1, 2, 3) and 150 sentences for lower tense arousal (levels −1, −2, −3) included
soothing texts.

3.2 Database Recording

The databases were recorded in an acoustically treated recording studio using a RODE
K2 microphone, 48 kHz sampling frequency and 16 bit resolution.

One of the biggest problems with recording acted emotional/stressed speech data‐
bases is that the actor is often unable to keep the level of portrayed emotion consistent
for a longer time interval. After a while, the expressive load in his/her speech changes.
The authors of [16] have designed a three step method of recording an expressive data‐
base. In this method the speaker does not try to maintain the same level of expressivity
during the entire recording, but s/he rather varies the emotional load in three steps with
every sentence. Hence, the speaker produces triplets of lexically identical utterances
while trying to keep same steps in tense arousal levels. The authors of [16] think that
this leads back to the neutral, natural setting of the speaker’s voice functions like a “reset”
and gives the speaker a robust reference for further changes in his/her voice in the other
two depicted levels of arousal.

The speaker was therefore instructed to utter the message once in a neutral manner
(referred to as level 1 of tense arousal), then with higher imperativeness, representing a
serious command or a directive (level 2), and finally acting out an extremely urgent
command or statement being declared in a situation when human lives are directly in
danger (level 3). After recording the message in the third level, the speaker relaxes for
several seconds and then s/he starts with a new prompted sentence.

When recording the “lower tense arousal” triplet of databases the speaker was
instructed to utter the prompted message once in a natural way, comfortable for him or
her. We again assume that this level reflects the neutral state of the speaker at that
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particular recording session. This first, neutral, reference level of tense arousal is denoted
“level −1” to distinguish it from the “level 0” related to the “big” neutral database and
“level 1” which is the label of the neutral database from the triplet with increasing
arousal. The same sentence is then uttered in the second (decreased) level of expressivity
with lower activation (level −2). The speaker is instructed to imagine that s/he has to
announce to a group of adult people that the emergency situation has passed, that the
alarm was called off and they can calm down and stay at ease.

Finally, the same sentence is uttered with extremely low tense arousal (level −3).
The speaker should imagine that s/he is speaking to scared small children, or to a seri‐
ously ill or wounded person. His/her speech should not be mimic motherese or whispered
speech, but has to be very peaceful. After recording the message in the third level, the
speaker relaxes for several seconds and then s/he starts with a new prompted sentence.

At the very beginning of recording, the speaker first tries to act all three levels of
arousal. Only when s/he is satisfied with the realization of the sentences s/he starts the
recording. This approach helps speakers to set up or “calibrate” the three levels of
arousal. The actual recording was realized without the presence of an experimenter so
that the less-experienced speaker does not feel ashamed in the presence of another
person.

At the moment of writing this article the speech database contains 15 speakers (10
males, 5 females), and the recording of additional speakers continues. Each speaker has
recorded approximately 20 min of speech, approx. 7 min of speech in each level
(excluding pauses between utterances). Speech samples for each of the six levels of
arousal can be found at [18].

To illustrate the differences of the speech signal at different levels of arousal we
present in Fig. 1 the long-term average spectrum (LTAS) differences of the speech at
all six levels of arousal with respect to neutral speech LTAS (in one speaker (MR)). The
areas of biggest differences among the LTAS correspond to the spectral areas that are
influenced by the change in the arousal level most significantly.

Fig. 1. LTAS differences in the spectra of speech signal stress levels (adopted from [19])
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In order to verify the correctness of our methodology, we decided to create a system
for speaker independent automatic measurement of stress/arousal level from speech. In
the first version, we only consider three levels of arousal - neutral, increased, and high
(levels 1, 2, 3).

4 Stress Detection Using Adapted GMM

The method of Gaussian Mixture Model (GMM) adaptation was already widely used in
several different fields, such as gender recognition of a speaker [20]. It consists of
training a single GMM from a large number of diverse recordings and using it as a
Universal Background Model (UBM). The trained UBM is then adapted to only a
specific type of recordings t, resulting in a model Mt representing this class. For example,
in the case of gender recognition, two separate models Mmale and Mfemale are created. The
process of adaptation may be carried out by applying several iterations of the Expecta‐
tion–Maximization algorithm, starting from the UBM and using only the data belonging
to one class.

During the phase of recognition of an unknown recording x, for each class t the
probability P(x|t) is calculated as the probability of the recording being from the class
t. The result of the classification can then be made as a maximum a posteriori (MAP)
estimate

(1)

We have decided to employ this approach also to the problem of stress detection
using our database of recordings mentioned above, in which each level of stress corre‐
sponds to a different class.

5 Experimental Results

In our experiments, we represented the recordings with a set of 19-dimensional features
of mel frequency cepstral coefficients (MFCC) with appended delta and delta-delta
coefficients. As a background model, we used a gender-independent UBM containing
1024 Gaussians that was trained on the recordings from the LibriSpeech database [21],
consisting of recordings of approx. 2500 speakers. This model was then used for the
adaptation to three different levels of stress and three GMMs were trained. For each
speaker in our database (consisting of 15 speakers), we excluded 30 recordings for each
level; and these recordings were not used during the adaptation, but were only used for
testing.

In this experiment of classifying a speech utterance as level 1, 2 or 3 we achieved
an accuracy of 89.19 %. A more detailed description of the results is shown in Table 1.
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Table 1. Test results of identification of three levels of stress on the Crisis acted stress database

Level 1 Level 2 Level 3
Recall 97.78 % 75.11 % 95.67 %
Precision 86.96 % 91.35 % 89.87 %

As the results show, only 2.22 % of neutral recordings of level 1 were misclassified
as containing stress. However, all of these misclassifications were caused by their incor‐
rect classification as level 2. Similarly good performance was also achieved on detecting
level 3 recordings, where most of the errors here were also caused by classifying them
as level 2. Even though significantly worse results were achieved while detecting
recordings of level 2, where almost 25 % of these recordings were incorrectly classified,
the classification of level 2 resulted in the best precision. These observations could be
the result of a relatively high variance of expressed stress in this level, and thus the
adaptation of the corresponding GMM was difficult to achieve.

Based on these observations, we also investigated the ability to differentiate only
between neutral speech and speech containing stress. In order to achieve this, we created
a new GMM by adapting the UBM to a mixed set of recordings of level 2 and 3. This
resulted in a model representing a non-neutral speech, thus speech of any level of stress.
In this task of classifying a test speech utterance as being neutral or containing any level
of stress, we achieved an overall classification accuracy of 94.74 %.

We have also evaluated the quality of stress detection on speakers whose speech was
not used during the process of adaptation. We have tested the system on 553 recordings
for each level from 7 new speakers and evaluated the performance. In this scenario we
achieved an accuracy of 73.18 %, while more detailed results are shown in Table 2.

Table 2. Test results of identification of three levels of stress on 553 recordings for each level
from 7 different speakers

Level 1 Level 2 Level 3
Recall 92.77 % 51.18 % 75.59 %
Precision 72.97 % 64.46 % 80.85 %

Since the recordings from these speakers were not used during the training process,
we see an expected drop in the performance. Additionally, as measured also in the
previous experiment, we have detected a significantly lower recall on recordings of level
2, confirming our assumption of higher variance in recordings of this level of stress. As
done before, we have also tested the ability to discriminate just between the neutral
speech and speech containing stress. This resulted in 85.96 % of accuracy.

6 Conclusions and Future Work

In this paper, we have discussed the possibility of creating a suitable database for training
and testing systems for stress detection in speech. Based on the psychological under‐
standing of concepts of stress, emotion and arousal, we decided to operationalize stress
induced changes in speech as changes in arousal. To be able to control the stress level
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(i.e. the level of the tense arousal) we have created a speech database of acted stress.
We have recorded 15 speakers (10 male, 5 female) who were instructed to imagine that
they were in a crisis situation and they should communicate the warning message to the
people being at the risk of life and health. The speaker should read each sentence with
three levels of stress/arousal (neutral, raised, high).

In order to verify the correctness of our methodology, we decided to create a system
for speaker independent automatic measurement of stress/arousal level from speech. In
the first version, we only consider three levels of arousal - neutral, increased, and high
(levels 1, 2, 3). The models of speech with different levels of arousal were created by
adapting a universal GMM to the specific levels of acted stress. In our first experiment,
we tried to detect a specific level of stress in recordings of speakers, whose recordings
were also used during the adaptation process. The results have shown that by using this
approach, we were able to reliably detect level 1 recordings with recall above 97 % and
precision above 86 %, as well as recordings of level 3 with recall above 95 % and preci‐
sion above 89 %. The accuracy of identifying level 2 recordings was significantly worse
(recall of 75 %), which might have been caused by higher variance of expressed stress
in this level. The ability to discriminate just between the neutral and any aroused speech
was also tested with a resulting accuracy of 94.74 %.

We have also tested the performance on the recordings of 7 other speakers whose
data were not used during the adaptation. Similarly to the findings in the previous
experiment, this resulted in higher accuracy of recordings of level 1 (recall 93 %, preci‐
sion 73 %) and level 3 (recall 76 %, precision 81 %), but lower for the problematic level
2 (recall 51 %, precision 64 %). Additionally, we achieved an accuracy of 85.96 %, when
differentiating between neutral and aroused speech of speakers whose recordings were
not used during the process of adaptation.

As soon as the entire database is finished (at least 20 speakers), we will use the whole
database to create a system for stress detection for all six levels with more robust models.
The detector will be used and validated in the prototype in the frame of the GAMMA -
Global ATM Security Management project.

Acknowledgement. The research leading to the results presented in this paper has received
funding from the European Union FP7 under grant agreement no. 312382 (GAMMA - Global
ATM Security Management project [22]).
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Abstract. In general, aging is progressing in developed countries. Elderly people
have difficulty controlling their articulation accurately due to aging. We need to
improve the quality of elderly speech for smooth communication. In this paper,
we analyzed the 1st formant frequency (F1) and 2nd formant frequency (F2)
between the more intelligible speech and less intelligible speech of Japanese
elderly people. In addition, we improved the intelligibility of less intelligible
elderly speech by using the formant frequency shift method. This method is the
correcting by shift value of formant frequency based on LPC. The shift value is
the magnification such as expanding the F1-F2 size of less intelligible speech.

Keywords: Elderly speech · Intelligibility · Formant frequency shift ·
Improvement speech quality

1 Introduction

Speech is very important for us to communicate with others in our daily lives. However,
because of aging, some people’s ways of speaking change. Owing to this, they cannot
have conversation smoothly. For an aging society worldwide, this problem is very
serious. For smoothing communication, it is necessary to improve the speech of the
elderly.

The previous research reported about analyzing Japanese elderly speech, that elderly
speech is less intelligible compared with non-elderly speech by listening test [1]. And,
there is a correlation between the intelligibility and the difference of transition
distance [2].

We study the relationship between intelligibility of auditory impression and acoustic
feature, and we study a method of improving speech intelligibility [3].

In this study, we improved the speech of elderly people based on the analysis. As
analysis, we investigated the relationship between difference of transition distance and
position of articulation in terms of the level of intelligibility. As the method for
improving, we used the shift method based on formant frequency. Specifically, the first
formant frequency (F1) and the second formant frequency (F2) shift method, which
closes intelligible speech to less intelligible speech.

© Springer International Publishing Switzerland 2016
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2 Analysis of Japanese Elderly Speech

This chapter describes the database of elderly speech and the method for selecting
subjects.

2.1 Database Elderly Speech

We recorded the speeches of 36 male elderly persons over the age of 60 in order to
improve the intelligibility of elderly speech. The recorded words were 543 isolated
words which have phoneme balance. The elderly speech was recorded on 16-bit, 24 k
sampling. Table 1 shows the recorded number of elderly people by age. For analyzing
the influence of aging on intelligibility, we selected the speakers who gave conspicuous
impression based on people’s feeling impression of subjective characteristics of elderly
speech and analyzing the physical features of the speaker’s voice.

We conducted a listening test to determine the degree of subjective characteristics
of elderly speech that include “rough”, “slow speaking”, and “less intelligibility” [4].
The subjects were 10 adult males and 10 adult females. The subjects listened to 50
connected words, which were prepared from a phonetically balanced 543-word data‐
base, spoken individually by 36 elderly male speakers. Each speaker was labeled by the
subjects with the degree of the characteristics based on a five-point scale. Each figure
of the degree of characteristics of elderly speech in “less intelligibility” is shown in
Fig. 1. The vertical axis expresses the evaluation degree in each impression of charac‐
teristics of elderly speech, and the horizontal axis rearranges each evaluation speaker’s
value according to the degree of an evaluation. In order to analyze elderly speech, we
selected six more intelligible speakers and six less intelligible speakers.

Fig. 1. Preference scores of characteristics of elderly speech on intelligibility. The higher six are
the more intelligible group. The lower six are the less intelligible group
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2.2 F1-F2 Size of Vowels of Japanese Elderly Speech

We analyzed less intelligible speech by linear predictive coding (LPC) focusing on F1
and F2, and compared more intelligible speech and less intelligible speech. LPC is a
tool used mostly in audio signal processing and speech processing to represent the spec‐
tral envelope and peak of a digital signal of speech in compressed form.

We calculated mean values of F1 and F2 from the 6 intelligible person’s speeches
and a less intelligible speech. Figure 2 shows the results of calculating F1 and F2.
Figure 2(a) shows the results of initiate phonemes. Figure 2(b) shows the results of
medial phonemes. According to Fig. 2, the less intelligible vowels except /u/converge
to /u/regardless of the initiate phoneme and medial phoneme. We estimated that due to
a decrease in muscle strength with age, the movement of the tongue and mouth become
dull, thus the vowels become closer to /u/.

(a) Initiate phoneme (b) Medial phoneme

Fig. 2. F1 and F2 mean value of more intelligible and less intelligible speech on F1-F2 size. The
solid line is the mean value of F1 and F2 of the less intelligible group. The dotted line is the mean
value of F1 and F2 of the more intelligible group.

3 Improvement of Speech Intelligibility Based on Formant
Frequency Shift

This section describes our proposed method to improve speech intelligibility. To shift
F1 and F2, we separated speech in two, vocal cord and vocal tract. We process separated
vocal cord to improve speech intelligibility. Finally, we create speech to synthesis vocal
cord and processed vocal tract.
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3.1 Whole Block Diagram

Figure 3 is the entire process of the shift of F1 and F2. This method of shift F1 and F2
consist of the five key parts:

(1) Time frequency transformation (DCT (Discrete Cosine Transformation)),
(2) Flattening of DCT value by the LPC (Linear Predictive Coding) envelope,
(3) Flattening of DCT value by the spectral of bark scale,
(4) Correcting envelope multiplied by the LPC envelope and DCT envelope trans‐

formed bark scale,
(5) Multiplying Flattening DCT value and shifted envelope.

To separate input signal in vocal cord and vocal tract, the input signal x(t) is trans‐
formed LPC spectrum envelope F(ω) by LPC block. x(t) is flattered by calculated LPC
spectral envelope. However, only LPC envelope cannot be flattered x(t) perfectly. In
this paper, we attempt to complete flattering by dividing the flattered signal using the
LPC envelope that are converted to the bark scale (G(ω)) on their own.

The shifted envelope is made by shifting the spectral envelope from a value multi‐
plied by the LPC envelope and spectrum converted to bark scale by DCT using shift
value. Finally, the shifted signal is made by multiplying the flattened DCT spectrum and
the shifted envelope.

Fig. 3. Whole block diagram
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In this paper, we connect vowels to increase the shift value gradually using the 0.03 s
before and after in order to smooth the shifted spectral envelope.

3.2 Method of Formant Frequency Shift

Figure 4 shows the process of formant frequency shift block. First, block of peak detec‐
tion and bottom detection find the peaks and the LPC of the spectral envelope. Up-
sampling block up-samples the LPC spectral envelope to expand and contract it. Finally,
the shift envelope is made from an up-sampled LPC spectral envelope by the block of
data expansion and contraction based on shift value.

The method of expansion and contraction is that the LPC spectral envelope is
expanded and contracted as a point of the peak shift while fixing the before and after
points of the bottom. Figure 5 is the process image of data expansion and contraction.

Fig. 4. Block diagram of formant frequency Fig. 5. Process image of data expansion and
contraction

3.3 Decision Shift Value

For improving the intelligibility of less intelligible speech, F1 and F2 must shift close
to the F1 and F2 of more intelligible speech. We consider that intelligibility is improved
by expanding the size of F1-F2. We improved less intelligible speech by subtracting the
mean value of the F1 or F2 of the less intelligible speech from the F1 or F2 of more
intelligible speech [5]. In this paper, the shift value is a constant magnification, as F1
and F2 of /u/ is fixed and F1 and F2 of the other vowels move in relation to /u/.
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Table 1 is the shift magnification that was used in this study. We defined this magni‐
fication from preliminary experiments.

Table 1. Shift magnification as expansion F1-F2 size

F1 F2
/a/ 1.1 1.1
/o/ 1.2 0.95
/u/ 1.0 1.0
/i/ 0.9 1.3
/e/ 1.2 1.2

4 Verification of the Effect of Shift Method by Listening Test

In this section, we verify the effect of our proposed method by a listening test using 2
typical elderly speech with less intelligibility.

4.1 Listening Test

In order to verify the effect of improving intelligibility by our shift method, we made an
“original speech,” “shift speech,” and “non-shift speech” for a listening test. The “non-
shift speech” is a speech which was synthesized only processing window without shift
to the F1 and F2. “Non-shift speech” was prepared as a dummy. We performed a listening
test using the three types of speech. The method of comparison is based on the paired
comparison called Scheffe (Nakaya’s Variation, not considering stimulus order effect).
The evaluation words were 4 and contained a few vowels from the database of 543
words. The subjects of corrected by our shift method were two less intelligible speakers.
The subjects of listening test are ten male adults.

4.2 Evaluation Method

First, subjects of listening test listened to two speeches at random from “original speech”
and “shift speech” and “non-shift speech”. Second, the subjects evaluated two speeches
at five grades about the degree of intelligibility. The evaluation word was intelligibility
without distortion. The number of trials was 5. Figure 6 show example of listening test.

Fig. 6. Example of five grades of evaluation about intelligibility

688 Y. Tanaka et al.



If the subjects feel “A is intelligibility”, speech of A have-2 point. We verify effective
of our proposed method to calculate mean value of this preference score.

4.3 Results of Listening Test

We calculated the mean value of preference score and the 95 % confidence interval using
the method of paired comparison of Scheffe. Figure 7 shows the result of comparing
“original speech” and “shift speech” by listening test in the case of the two subjects. The
top side indicates that “shift speech” is good. The bottom side indicates that “original
speech” is good. The line is the 95 % confidence interval. The results of the listening
test have significance unless the line crosses the zero.

From Fig. 7, in the case of speaker A, the words of /UIUISII/ and /OIOI/ are improved
intelligibility by our shift method. However, the words of /AOAO/ and /IMEEJI/ are not
improved intelligibility. In the case of speaker B, the all words are improved intelligi‐
bility by our shift method. It is assumed that our method is effective in a typical speaker
with less intelligibility. In a speech which differ from the trends described in Sect. 2,
our method is not effective by processing to expand the area in uniform. From the ques‐
tionnaire by the subjects of listening test, we found that the distortion due to shift affect
the intelligibility because the original speech is not low intelligibility.

Fig. 7. Preference score of each speeches by the listening test in two less intelligible speakers

5 Conclusion

In this study, we analyzed elderly speeches for intelligibility based on acoustic features.
And we improved less intelligible speech by our proposed method. Analysis of the F1
and F2 of more intelligible speech and less intelligible speech showed that the less
intelligible vowels except /u/ converge to /u/ when compared to vowels of more
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intelligible speech. We proposed an envelope shift method to expand the area of the F1-
F2 in uniform each vowels. As verification of this shift method, a listening test based
on Scheffe’s method of paired comparisons was carried out, and the method was effective
for less intelligible speech in two elderly speakers with typical less intelligible.

In future works, we will compare to various correction methods, and we will inves‐
tigate analysis and how to improve of acoustic features of consonants in the elderly
speech.
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Abstract. This article describes the method of document classification
on the basis of a vector space model with regard to the domain of Applied
Linguistics for Russian. This method makes it possible to classify input
text data in two different categories: applied linguistics texts (AL) and
non-applied linguistics texts (nonAL). The proposed method is imple-
mented using the statistical measure of TF-IDF and the evaluation mea-
sure of cosine similarity. The study gives promising results and opens up
further prospects for the application of this approach to text classifica-
tion in other languages.

Keywords: Machine translation (MT) · Automatic pre-editing ·
Domain adaptation · Document classification · TF-IDF term weighting ·
Vector space model · Cosine similarity

1 Introduction

Present-day machine translation systems are far from being perfect as they pro-
vide unsatisfactory results while translating scientific and technical texts. As a
rule, the reason for that is the lack of adjustment to a domain (in particular, this
article deals with the domain of applied linguistics). It is possible to demonstrate
the necessity to improve the semantic component of modern MT systems on the
example of translation of a few sentences from the book in applied linguistics [8]
performed by the Google translate system [5] (Fig. 1). The highlighted words
are the ones which have not been translated by the system correctly, namely
(in order of appearance): prosody, prosodeme, prosodics, prosodemics, semiolog-
ically, spoken speech, main stress, intonational invariants (II), marked, stressed,
post-tonic.

One of the means to acquire the appropriate system settings in a domain and
to produce high quality relevant translation is to embed modules of pre- and post-
editing and to use a context-based multilingual terminological dictionary [9].

This article presents a domain determination algorithm, as part of the pre-
editing module, which reveals whether an input text belongs to the domain of
applied linguistics or not (Fig. 2).
c© Springer International Publishing Switzerland 2016
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This algorithm was first described in [3] and has already proved its effective-
ness, for instance, in [12] where, however, cosine similarity was substituted by
the Näıve Bayes classifier. Similar TF-IDF term weighting approaches have been
also used in [1,6,13].

Fig. 1. Example of sentences translation in the domain of applied linguistics

The algorithm, which has been implemented for the domain of applied lin-
guistics, can be equally well adapted for any other highly specialized domain
either in order to improve machine translation or for the purposes of informa-
tion retrieval.

Fig. 2. Pre-editing module for a machine translation system adapted to the domain of
applied linguistics

2 Algorithm Implementation

The study has been carried out in 4 steps. The general flowchart is shown in
Fig. 3.
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Fig. 3. Unknown text classification flowchart

Step 1. Preparatory Work. At the beginning a list of lemmas and wordforms
in the domain of applied linguistics was composed in order to carry out the proce-
dure of lemmatization. This list was formed on the basis of the list of wordforms
of the Russian language, taken from [2]. After that by using the script written in
Perl [11] a list of terms (which were absent from the list of Russian wordforms)
has been retrieved from the book of R.K. Potapova “Speech: communication,
information, cybernetics” [8]. These terms have been combined with the above-
mentioned list and the resulting list totaled 2,390,327 wordforms. Thus, a list of
wordforms from the domain of applied linguistics has been obtained, on the basis
of which a list of lemmas and wordforms in the domain of AL has been formed
(totaled 1.181 lemmas) and combined with the list of lemmas and wordforms of
the Russian language (86.336 lemmas). The overall number of the resulting list
made up 87.517 lemmas.

Step 2. The Formation of the Training Sample. On the next step a train-
ing sample was formed. It comprised 100 articles, half of which referred to the
subject domain of applied linguistics (AL), the other half did not refer to it
respectively (nonAL). The articles in the domain of applied linguistics have been
taken from journals “Speech technology” [10] and “Computational Linguistics
and Intellectual Technologies” [4] of the years 2014–2015. The overall volume
of the articles totaled 147.408 tokens (the average volume of an article equaled
2.948 words). Similarly to the AL corpus, the corpus of out-of-domain articles
was formed from articles from [7] of the year 2015 and totaled 151.186 tokens
(the average volume of an article made up 550 words). The training sample
included not only news articles, but also texts on such topics as information
technology, economics and a few others in order to create a most representative
original sample.

Common stop words, which included prepositions and conjunctions, were
removed. After that every article has been processed by the script in Perl:
tokenization has been carried out, total amount of terms in every article has
been estimated, the procedure of lemmatization has been conducted and the
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number of uses of every term has been calculated as well. Thus, the obtained
data appeared as follows (Fig. 4).

Then TF-IDF has been calculated for every term [3]. TF-IDF is a
statistical measure which determines the weight of each element of the formed
term-document matrix. A term is selected from every document; its weight is
calculated on the basis of the frequency of its occurrence in the document (i.e.
its incidence). This statistical measure makes it possible to reduce the weight of
terms which occur too often and to increase the weight of less common words.

Fig. 4. Result of processing an article in applied linguistics

First, TF for each term in every document is calculated separately. TF (term
frequency) is the ratio of the number of occurrences of a word to the total number
of words in a document. TF is calculated as follows:

tf(t, d) =
ni∑
k nk

, (1)

where t is a term; d is a document; ni is a number of occurrences of a term in a
document;

∑
k nk is the total number of terms in a document.

TF estimates the importance of the term ti within a single document. The
first ten words for the AL and nonAL corpora are presented in Table 1.

The high TF values for the words “nut” and “fancy” obtained during this
study can be preconditioned by the fact that one of the texts in the AL corpus
was dedicated to the study of the semantic field of “nut”, while another one
concerned the concept of “fancy” words. As a result, the program has revealed
the high frequency of these terms within a single document and, therefore, it was
concluded that these terms belonged to the field of applied linguistics. However,
since these words do not reflect the sense of applied linguistics, an expert decided
to remove them from the resulting list.

Further on IDF was calculated for every term which made it possible to
reduce the number of common words. IDF (inverse document frequency) is the
inversion of frequency, with which some word can occur in the document collec-
tion. IDF was calculated using the following equation:

idf(t,D) = log
|D|

|di ⊃ ti| , (2)
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where |D| is the number of documents in the corpus; |(di ⊃ ti)| is the number of
documents where ti occurs (when ni �= 0). The selection of the logarithm base in
the equation is of no importance, since the change in the base leads to a change in
the weight of each word by a constant multiplier that does not affect the balance
ratio. Unlike TF, IDF is calculated not for one particular document, but for the
corpus in total. The lowest IDF was obtained for words which occurred in every
article of the corpus: be, whole, which, can, he, such, result (IDF equalled 0).

Table 1. TF highest value for AL and nonAL corpora

TF (AL) TF (nonAL)

verb 0,0692607 he 0,0573770

come 0,0559297 be 0,0402298

sentence 0,0535117 year 0,0370370

nut 0,0467047 vulnerability 0,0355329

word 0,0435075 first 0,0350877

validity 0,0429216 city 0,0344827

fancy 0,0404721 saint 0,0324675

vector 0,0384615 loan 0,0310880

Thus, the measure of TF-IDF is the multiplication of two multipliers:

tf−idf(t, d,D) = tf(t, d) × idf(t,D). (3)

The largest TF-IDF weight will be obtained by words with high frequency
within a particular document and with low frequency of use in other documents.
TF-IDF values are deducted for each term in every document separately. Then
the obtained values are being normalized (mathematical expectation is counted
for the TF-IDF value for every term) for both AL and nonAL validation sets.
Table 2 shows 8 most frequently used terms considering TF-IDF weighting.

During the second step two term-document matrices were obtained, in other
words two one-dimension arrays, from which two resulting vectors were formed:
vector A for the AL corpus (volume = 7561 terms) and vector B for the nonAL
corpus (volume = 10488 terms). These values are the reference, on the basis of
which the program will make a decision on text classification.

Step 3. The Formation of the Test Sample. In order to form a test sample,
a corpus of 200 articles has been collected. 100 articles belonged to the domain
of applied linguistics, totaling 388.728 tokens, and the other 100 articles were
not on applied linguistics, their total volume made up 128.375 tokens. Articles
on applied linguistics have also been collected from “Speech Technology” and
“Computational linguistics and intellectual technologies” journals. The nonAL
validation set has been collected from [7] as well.
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Table 2. 8 most frequently used terms for AL and nonAL corpora

TF-IDF (AL) TF-IDF (nonAL)

validity 0,0729226 vulnerability 0,0603694

tongue-twister 0,0548995 saint 0,0551613

invalidity 0,0524531 loan 0,0528177

soundlet (n) 0,0524079 fighter 0,0447097

graph (adj) 0,0512747 flag 0,0447097

recurrent 0,0309804 wolf 0,0434043

introduction 0,0298186 refugee 0,0409390

annotation 0,0294429 hemp 0,0399757

Step 4. Application Development for Test Sample Estimation. During
the research an application in Visual Studio 2013 in C++ programming language
was developed targeted at unknown text classification. The input to the program
is text x. With the help of a Perl script the lemmatization procedure is carried
out during which the program determines terms and calculates their number.
Then TF-IDF is counted for every term. Upon that the IDF parameter is taken
from the classifying samples.

Thus, during the processing of the unknown text two vectors are being
obtained: vector C (with the IDF parameter calculated for AL) and vector D
(with the IDF parameter calculated for nonAL). After that the cosine similar-
ity between the two resulting vectors and the AL-nonAL vectors is calculated
respectively. Cosine similarity is a measure of similarity between two vectors
of a pre-Hilbertian space which is used for measuring the cosine of the angle
between the two vectors [3]. Actually, cosine similarity reflects the correlation
coefficient between the two vectors. If one has two feature vectors (A and B),
then cosine similarity cos θ can be represented using the scalar product and the
norm function:

similarity = cos θ =
A × B

||A|| ||B|| =
∑n

i=1 Ai × Bi√∑n
i=1(Ai)2 × √∑n

i=1(Bi)2
. (4)

Next, the obtained vectors C and D are compared to the two reference vectors
A and B, which have been pre-determined statistically. Then the cosine similarity
between the vectors A and C and B and D is counted. Finally, the decision is
taken depending on which vector (A or B) the derived one is closer to. Cosine
similarity of two documents varies from 0 to 1 because the frequency of a term (or
TF-IDF weight) cannot be negative. Thus, the decision about the classification
of the unknown text to this or that category (domain) is made up for the vector,
whose cosine similarity turned out to be closer to value 1. An example of AL
text classification can be seen in Table 3.
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Table 3. Example of text classification in the domain of applied linguistics

processing grapho-dynamic homonymic semantic investigation ... cos θ
AL 0,001475 0,012818 0,000986 0,000911 0,000153 ...

0.66
article 0,002927 0,013976 0,000776 0,004433 0,000138 ...

processing grapho-dynamic homonymic semantic investigation ... cos θ
nonAL 0 0 0 0 0,005661 ...

0.33
article 0 0 0 0 0,001827 ...

3 Results and Research Perspectives

The percentage of correctly classified texts equals 90 % (it should be noted that
the difference between the cosine similarity values is not very large: for one
text, for example, the cosine similarity for AL made up 0.62074 and for nonAL
0.606344; for another AL text the cosine similarity equaled 0.625622, for nonAL
0.587069). The cause for the errors in the classification of texts in applied linguis-
tics was an excessive amount of words with negative connotation which related to
the semantic fields of war, aggression, and threats, the analysis of which turned
out to be the aim of a few articles in the AL validation set. Anyway, the expert
opinion corresponds to the results of the program output which indicates the
effectiveness of the latter.

Initially the nonAL validation sample was used, the volume of which totaled
16.681 tokens. Further research showed that such a sample was insufficient for
obtaining relevant results for the determination of IDF-values. As a consequence,
IDF values for such words as, for instance, august, actual, analysis, base, run,
input, book, key, kilometer, etc. equaled 1,69897, which led eventually to an error
of 24 % in classifying an unknown text. After the validation sample was multi-
plied by 10 (up to 151 thousand tokens), it enabled one to significantly improve
the results (10 % of errors). Moreover, the correlation between the training and
the validation sample was marked, that is why, in order for the algorithm to be
effective articles with a large number of tokens should be used. The nature of
the correlation is planned to be identified in further researches.

This article describes the method of document classification trained on the
sample of 100 texts which correctly classifies an input text in the domain of
applied linguistics. The method is implemented by Perl and C++ programming
languages.

TF-IDF gives good results in terms of weight determination. At the same
time it should be borne in mind that texts in applied linguistics may contain
different kind of study on semantic fields, whose lexical structure is not typical
for the area of applied linguistics in general. Due to the fact that a term may
have a high frequency value for one text only, it received an unduly large weight
which can skew the results. Therefore, an expert analysis is needed for at least
first 20 terms, which have the highest TF values in the training sample.
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The above-described approach makes it possible to determine whether a text
belongs to the domain of applied linguistics or not. The created application can
be integrated as an external module into an MT system and be used as a starting
point in determining if a text belongs to some highly specialized domain, which
can be further processed by using a list of semantic and grammatical rules typical
for any particular domain. These rules can be applied to optimize translation of
texts in a given domain.
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Abstract. The paper deals with tonal characteristics of perceptually
prominent prosodic words in the pre-nuclear part of the intonational
phrase. The research is based on a 20 h part of the annotated Russian
speech corpus CORPRES. Non-nuclear prominent words are grouped
according to the direction of pitch movement on the stressed syllable. It
is shown that the pitch accent shape on these words is highly correlated
with the type of pitch movement on the nucleus. Most often, falling
pre-nuclear accents occur with the rising nucleus, and rising—with the
falling nucleus. Emotional or highly individual speech may contain more
complex pitch movements in the pre-nuclear part (e.g. fall-rise), or a
sequence of prominent words with the same pattern.

Keywords: Intonation · Russian · Non-nuclear pitch accent · Pitch
accent shape · Prominence

1 Introduction

In Russian the accented syllable in a phrase is normally a stressed syllable, but
it is not exclusively the nuclear stressed syllable. Pitch accents normally coincide
with lexically stressed syllables, and their particular pitch shape depends on the
utterance type—declarative or interrogative, and on the degree of its expressivity.

In neutral final declaratives accents form a series of H*L accent shapes super-
imposed on the declination line. In non-final units (grammatically dependent
phrases or clauses) both pitch accents and declination are much less prominent
and often absent; in the latter case, which is also observed in interrogatives
(yes-no questions), F0 declination may be absent, which imposes certain limita-
tions on the use of declination reset as a means for gaining prominence, and lex-
ically stressed syllables are made prominent by other prosodic means—intensity
and vowel duration, rather than pitch: they are stressed, but unaccented [1].

Nuclear pitch accent is the principal accent of the intonational phrase which
performs delimitative, sentence-forming and distinctive function. Other accents
do not have such properties: an additional pitch accent on a particular word may
convey emphasis or contrast, and it may be present in the intonational phrase
along with the nuclear accent [2]. At the same time, in expressive speech every
c© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 699–705, 2016.
DOI: 10.1007/978-3-319-43958-7 85
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word in the intonational phrase may be accented, and this prominence “cannot
be described as the contrast between the word carrying the principal (nuclear)
pitch accent and the rest, equally accented words” [3].

Since tonal patterns of the accented words vary, they require specification
and adequate description, particularly when they add to the expressivity of the
utterance and speech in general. Intonation descriptions based on nuclear pitch
accents only are not sufficient and adequate.

Thus, in the focus of this study are those prosodic words which are per-
ceptually prominent but do not carry nuclear accent. In order to obtain a tonal
specification of such words, we investigate the direction of pitch movement within
their stressed syllables.

2 Material

This study is based on the Corpus of Professionally Read Speech (CORPRES) [4]
for Russian, containing texts of different speaking styles recorded from 4 male
and 4 female speakers. Its total size is 60 h of recorded speech, 50 % of which has
been manually segmented into phrases, words and sounds, and fully annotated
on the phonetic and prosodic levels. For our analysis we have chosen a 20 h part
of this corpus—the recordings from 4 speakers, 2 males (A, M) and 2 females
(C, K).

Prosodic information includes pitch movement type in the intonation center,
type of pauses, and additional prominence. Each utterance is segmented into
intonational phrases (IPs). For each IP, the lexical word carrying a nuclear pitch
accent is marked, and the melodic type is assigned based on perceptual and
acoustical data, according to the system proposed by Volskaya in [5]. The system
is a revision and extension of the well-known Bryzgunova system of intonation
constructions (ICs) [6], [7, pp. 90–92].

If the IP contained more than one perceptually prominent word, such addi-
tional prominence was marked using the special symbol, [+], before the lexical
word. E.g.1:

–
([+]any of these [11]people /pause/ could have a saving [01a]opportunity

/pause/)
– (but

somehow [+]my [11b]husband /pause/ I love [01a]more /pause/)
–

(this does not [10]bother me /pause/ since I am living a [+]creative
[01c]life /pause/)

During the annotation of the corpus, we used the following criteria in defining
a perceptually prominent word in the IP: (1) it should “stand out” from the tonal
1 In these examples, model 11 has a rise-fall nuclear accent used in non-final IPs,

11b—its intensified version; 01a is a low fall used utterance-finally, 10 is a non-low
fall used in non-utterance-final IPs, and 01c—a fall from a high to mid or low level
often used to establish contact with the listener.
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environment; (2) it should be perceived as “prominent” for there must be reasons
either subjective (speaker’s decision) or objective, semantic (following from the
context or situation) with consequences for general communicative meaning of
the utterance [8, p. 5].

The corpus also has a pitch tier in two versions: a manually corrected pitch
tier with labels on the voiced segments only; a pitch tier with F0 values on
voiceless segments as well, calculated by means of linear approximation, and
with microprosody automatically removed.

3 Method

Based on the information about stress on the segmental tier, each utterance was
automatically segmented into prosodic words (PW).2 Then the boundaries of
perceptually prominent pre-nuclear prosodic words and their stressed syllables
were retrieved automatically using specially written Python scripts.

For each prominent prosodic word, F0 values were extracted from the pitch
tier within the boundaries of its stressed syllable; the pitch tier used here has
labels on both voiced and voiceless segments (see Material). The array of F0

values was split into rising, falling and level intervals. Within this procedure, the
following principles were used: (a) an interval was considered level if the pitch
range did not exceed 1 semitone; (b) intervals shorter than 50 ms and smaller
than 1 semitone were joined to an adjacent interval; (c) two or more successive
intervals with the same direction of pitch movement were joined together.

Thus, for each prosodic word’s stressed syllable a stylization of its pitch
contour was obtained, e.g. “R” (rising), “RF” (rising-falling), “FRL” (falling-
rising-level) etc. For the purposes of this study, level parts were ignored, and the
stylization was further simplified, e.g.: “FRL” → “FR”.

Prosodic words beginning the intonational phrases were excluded from the
analysis due to the phenomenon of initial rise (declination reset) observed fre-
quently in Russian.

Perceptually prominent pre-nuclear prosodic words were grouped according
to the melodic type on the nucleus: rising vs. falling. The rising nuclei included
melodic types which correspond to IC-3, IC-4 and IC-6 in Bryzgunova system [6],
and their variants. The falling nuclei included melodic types corresponding to
IC-1 and IC-2 in Bryzgunova system, and their variants. (For a detailed descrip-
tion of the prosodic system used in the corpus, see [5].)

4 Results

Tables 1 and 2 show the frequency of falling, rising, falling-rising and rising-
falling pitch accent shapes within the stressed syllables of perceptually promi-
nent non-nuclear prosodic words. Table 1 pertains to intonational phrases with
2 We use the term “a prosodic word” in its traditional sense for a content word and

its clitics, which include all items that in a particular intonation unit, a phrase or an
utterance, lose their lexical stress and thus form one rhythmic unit with a “properly”
stressed word.
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rising nuclei, Table 2—to intonational phrases with falling nuclei. For simple, uni-
directional shapes (rising or falling) mean pitch range of the pitch movement in
semitones is provided.

Pitch accent shapes other than those specified in these tables also occurred in
the material, but with lower frequencies. They are level tone and falling-rising-
falling shape. The presence of level tone on a prominent word implies that tonal
changes on the stressed syllable is not the only way of conveying prominence.
The cases of falling-rising-falling contours may be further classified according to
the prevailing movement, but this requires larger datasets; so far this is still to
be investigated.

4.1 Prominence in IPs with Rising vs. Falling Nuclei

Our data reveals the following differences between the pitch contours of promi-
nent prosodic words in IPs with rising and falling nuclei.

For most speakers, a rise on the prominent prosodic word occurs mostly in
IPs with a falling nucleus. A fall, on the other hand, is more typical for IPs with
a rising nucleus. However, the mean intervals (in semitones) of these falls and
rises do not differ between the two types of IPs (see Tables 1 and 2).

Rising-falling shapes are observed on prominent prosodic words in IPs with
both rising and falling nuclei, being more frequent in the former group. Data
on the median difference between the rising and the falling parts of this contour
are presented in Table 3. If the value is positive, the rising part prevails, mean-
ing the contour often resembles IC-3 in Bryzgunova notation; a negative value
means that the falling part is prevalent, resembling the shape of IC-2 in Bryz-
gunova notation. As it follows from Table 3, (1) in IPs with a rising nucleus the
falling part predominates, while (2) in IPs with a falling nucleus the rising part
outweighs. However, this seems to be speaker-specific—see data for speaker C
(Table 3).

Falling-rising shapes occur mostly in IPs with a falling nucleus. In both types
of IPs, the rising part is much larger in range (see Table 4), meaning that these
shapes resemble IC-4 in Bryzgunova notation—a model which is often associated
with negative connotations.

5 Discussion

Speech expressivity adds to the variety of pitch accent shapes. Previous obser-
vations over realizations of perceptually prominent syllables in CORPRESS in
terms of their deviations from the declination line, revealed several principal
tonal patterns for gaining prominence for syllables other than the one carrying
the nuclear pitch accent [9]:

1. upstep from the declination line;
2. downstep from the declination line.
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Table 1. Frequency of pitch accent shapes on the stressed syllables of perceptually
prominent non-nuclear prosodic words in IPs with rising nucleus. Mean pitch range
is given in semitones, and for simple contours only. For each speaker, sample size is
provided.

Pitch movement

Fall Fall-rise Rise Rise-fall

Speaker C, n = 163 Frequency 47 % 4% 9 % 33%

Mean pitch range 7.8 5.2

Speaker K, n = 143 Frequency 46 % 2% 17 % 28%

Mean pitch range 7.1 6.5

Speaker A, n = 230 Frequency 38 % 4% 11 % 35%

Mean pitch range 7.0 5.4

Speaker M, n = 121 Frequency 23 % 2% 36 % 31%

Mean pitch range 4.0 4.5

Table 2. Frequency of pitch accent shapes on the stressed syllables of perceptually
prominent non-nuclear prosodic words in IPs with falling nucleus. Mean pitch range
is given in semitones, and for simple contours only. For each speaker, sample size is
provided.

Pitch movement

Fall Fall-rise Rise Rise-fall

Speaker C, n = 163 Frequency 39 % 12% 28 % 18%

Mean pitch range 7.9 5.9

Speaker K, n = 199 Frequency 21 % 13% 44 % 18%

Mean pitch range 7.5 7.0

Speaker A, n = 368 Frequency 27 % 11% 27 % 24%

Mean pitch range 6.9 6.4

Speaker M, n = 268 Frequency 10 % 7% 50 % 25%

Mean pitch range 4.3 4.5

Table 3. Median difference between the rising and falling parts of rising-falling pitch
accent shapes on perceptually prominent non-nuclear prosodic words (in semitones).

Speaker C Speaker K Speaker A Speaker M

Type of nucleus in the IP Rising –2.48 –0.46 –1.31 0.48

Falling –2.8 1.12 0.58 1.78
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Table 4. Median difference between the rising and falling parts of falling-rising pitch
accent shapes on perceptually prominent non-nuclear prosodic words (in semitones).

Speaker C Speaker K Speaker A Speaker M

Type of nucleus in the IP Rising 5.09 4.09 3.76 3.22

Falling 2.69 4.73 3.22 2.76

The results of the present study add more data to the types of pitch shapes
of perceptually prominent words. When a word in the pre-nuclear part receives
prominence, its tonal pattern can take several forms:

1. falling tone;
2. rising tone;
3. rising-falling tone;
4. falling-rising tone.

All of these kinetic tones are copies of the most frequent nuclear accents: the
(high) fall is normally used for logical and emphatic nuclear accent, the rising
tone is one of the nuclear tones for non-finality along with most frequent rising-
falling tone which is used in general questions as well, the falling-rising tone
is observed in non-final intonational phrases and often used to convey negative
attitude.

The rising accent type is correlated with the falling nuclear tone, while the
second, falling accent regularly appears when the intonational phrase ends in the
rising nuclear tone. The rise-fall is observed more often in intonational phrases
with the falling nuclear tone.

There are examples of less frequent combination of the pitch accent shapes
with the type of the nucleus. Falling-rising shape is used mostly in intonational
phrases with the falling nucleus. Level tone, although rather rare, is observed in
cases where other parameters must be working to convey prominence.

In general, the localization of these pitch accents is predictable, since a num-
ber of words in Russian, like lexical intensifiers for example, are known to attract
prominence. In expressive speech the situation changes. At the speaker’s will,
any word and even all words in the phrase can receive prominence. This is why a
detailed specification of pitch accent shapes for perceptually prominent prosodic
words is needed for the purposes of both automatic speech recognition and speech
synthesis—in order to process and generate speech signal with a high degree of
naturalness.
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Abstract. The article deals with a recording procedure for motion
dataset building mainly for sign language synthesis systems. Data gloves
and two types of optical motion capture techniques are considered such
as one source of sign language speech data for advanced training of more
natural and acceptable body movements of signing avatars. A summary
of the state-of-the-art technologies provides an overview of possibilities,
and even limiting factors in relation to the sign language recording. The
combination of the motion capture technologies overcomes the existing
difficulties of such a complex task of recording both manual and non-
manual component of the sign language. A result is the recording proce-
dure for simultaneous motion capture of signing subject towards further
research yet unexplored phenomenon of sign language production by a
human.

Keywords: Corpus building · Sign language · Motion capture

1 Introduction

In these days sign language (SL) translation or TV broadcast is provided by
humans. SL synthesis is considered as supplementary communication means of
the deaf individuals. One perspective technique is virtual 3D character animation
in the form of the signing avatar [5]. However, there is still poor realism of
the character animation compared to the standard video of the signing subject
causing overall rejection of the signing avatars by the deaf community.

One reason for the rejection is that artificial signing avatars are not able
to sign fluently and naturally and, therefore, it is difficult or uncomfortable to
understand them. Integration of high-quality motion capture data is essential
for any further research and gives certain assumptions to provide accessible SL
synthesis [4]. The full body motion capture (mocap) including hand, finger, facial
expression, and eye gaze movements may provide spatial-temporally synchronous
records of all the channels [2].

c© Springer International Publishing Switzerland 2016
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There are different approaches using different technology for body mocap [3].
These approaches are optical, gyroscopic, mechanical, etc. and designed for
mocap of different body parts. There are more specialized techniques based on
markers fixed on speaker’s face or marker-less techniques tracing the face by
image processing gray, color and/or depth data1. The optical mocap systems are
based on special cameras to track active or passive markers in 3D space (e.g.
VICON, VICON Cara2, Qualisys, OptiTrack, Optotrak). Whilst data processing
provided by the VICON and VICON Cara systems are very beneficial for SL
corpora building, there is a limited functionality of tools for CyberGlove33 data
glove [6] using for precise finger mocap. The both facial and body capturing by
one mocap system may result in noisy positions of the facial markers. Moreover,
simultaneous capturing of the body, fingers, and facial data at high-frequency
rates cause technical difficulties.

In the paper, we present SL recording procedure allowing the simultaneous
body, finger, and facial mocap; flexible setting of the data parameter; spatial-
temporally synchronous record; the data glove calibration; and mocap data inter-
pretation by the 3D character model.

2 Combined SL Motion Capturing Method

We consider three mocap systems for the SL data acquisition task: VICON,
VICON Cara, and CyberGlove3. The VICON and VICON Cara systems are a
marker-based optical system. The optical capture principle was chosen because
the signing subject is not wearing any special suit that limits his or her nat-
ural movement and the marker-based principle was chosen for its higher preci-
sion compared to non-marker approaches. Two CyberGlove3 data gloves provide
robust finger mocap using bent sensor principle.

2.1 Body Motion Capturing

In our case, the VICON motion capture system consists of eight T-series cameras
measuring a motion of passive spherical retroreflective markers in the infrared
spectrum. The T-20 is a high-frequency camera with 2 Mpx resolution and is
capable of frame rate 1200 fps (690 fps in full resolution). The system includes
also VICON Blade software used for a camera set-up, calibration, and motion
capturing itself. There are some limiting factors in consequence of the capturing
principles and recording of complex body movement.

The main limiting factor is the tracking of the finger movements. Since the
finger markers are close to each other, there is a significant number of overlapping
situations (frames with marker swaps), especially the hand contacts have to be
resolved during data post-processing. Moreover, such mocap setup requires at
least 30 additional finger markers. We observed also negative effects of fixation
1 www.faceshift.com.
2 https://www.vicon.com/products/camera-systems/cara.
3 http://www.cyberglovesystems.com/cyberglove-iii/.

www.faceshift.com
https://www.vicon.com/products/camera-systems/cara
http://www.cyberglovesystems.com/cyberglove-iii/
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Fig. 1. The marker setups for the optical mocap systems. On the left: body mocap
consisting of 53 14mm retroreflective markers for the VICON system, on the right:
54 black passive markers for the VICON Cara system.

of the finger markers when they were not rigid to the particular finger segment
during its bending. It causes an inaccuracy in the identification of the skeleton
model internally used by the VICON system. On the other hand, there are
unwanted losses of the finger markers attached directly to the skin caused by
frequent touches of the hands during the signing. We have observed also the
higher motion speed of the finger markers mainly for fingertips, which requires
higher camera frame rate compared to capturing remaining body parts.

According to our experience, a standard set of 53 passive 14 mm markers fixed
on the body of the signing subject is optimal to capture a head, shoulders, arms
and wrist including hand/body contacts. The consider marker setup contains
10 markers on each arm and 15 markers on the torso and head providing mocap
of any general movement of the whole upper body, see Fig. 1 on the left.

2.2 Hand Motion Capturing

The CyberGlove3 data glove is based on the resistive sensors of finger bending
that provide robust measurements of hand shape especially during finger con-
tacts on one or mutually between hands, see Fig. 2. In addition, the data glove
measures also palm flex and wrist rotation like pitch and yaw. On the other
hand, the reading of one sensor is relative to the preceding finger segment or the
wrist and thus does not capture absolute 3D position.

The calibration is needed to found the conversion relationship between the
sensor raw data and the actual finger bending. The manual calibration con-
trolled by a protocol is a preferred option for SL mocap corpus building [8].
However, once identified calibration parameters does not provide precise conver-
sion of hand shapes after re-dressing of the gloves by the same subject. This data
inconsistency must be taking into account while creating of the SL mocap cor-
pora. The standard CyberGlove3 tool enables the calibration only for common
simple hand shapes. The very laborious and time-consuming process is calibra-
tion of the thumb touch with the rest of fingers. But the thumb-pinky finger
touch was not achieved anyway. There are, moreover, also reported problems of
glove sensor cross-coupling [9].
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2.3 Facial Motion Capturing

The VICON Cara is a motion capture system considered for the marker-based
facial motion capturing. The system consists of a headgear (HeadRig) with four
cameras, a processing unit, a storage device, and a battery pack, see Fig. 1 on
the right. An integral part is the operating and the post-processing software
tool enabling calibration, triggering the Cara device and 3D reconstruction. The
HeadRig is equipped with four 720p HD high-speed cameras with the framerate
up to 60 fps. It is possible to natively synchronize time-code with the VICON
system. Constant light conditions are provided by a custom designed controllable
rig of four lights. The cameras have 3 mm F2.0 IR filtered lens. Noise caused by
the T-series camera strobes is reduced by the IR filtered lens. The storage device
has a recording capacity of 64 GB and two hours battery time.

The markers can be placed on the subject’s face in the form of glued circles,
drawn by an ink marker, or drawn by a make-up. White or black passive facial
markers can be used. The certain positions of the marker are not required and
there is also no default SL facial marker set. For example, the MPEG4 standard
defines 53 markers as the set of Facial Feature Points, in the SignCom project,
there were 41 markers used for mocap of the French SL [1] and the set of 60
markers was used in the Sign3D project [7]. The software tool detects these
markers in the record as circular blobs and then finds it’s centroids. After that,
the 3-D position of each centroid is computed and the set of (x, y and z) positions
over time forms the facial mocap data.

2.4 Combining Optical and Data Glove Recording

It is necessary to determine which body parts will be included in the motion
capture data. There is a defined connection of the body mocap and the hand
mocap and a connection of the body mocap and the facial mocap. The first
option for the hand and body mocap connection is to use a mapping of the wrist
pitch and jaw sensor to the target model and the VICON system determines
only the wrist position and the forearm twist. The preferred option is tracking a
full/global wrist rotation by the VICON system and only fingers and palm flex
by the data glove. In this case, at least two optical markers on the back of the
hand have to be added to the two markers placed on the wrist joint, see Fig. 2.
The connection body part of the body mocap and the facial mocap is subjects
head. The global position of the head is tracked by the VICON system through
the HeadRig of the Cara system and the facial mocap data are relative to the
transformation.

2.5 Character Model

The objective of the mocap data for SL synthesis is its proper interpretation by
the 3D model. We assume 3D character model created by Autodesk character
generator4, see Fig. 3 on the right. The model overcomes a limitation of the
4 Available at https://charactergenerator.autodesk.com/.

https://charactergenerator.autodesk.com/
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built-in hand model internally used by the CyberGlove3 tool. In addition, the
model is appropriate also for the body and the facial mocap data.

The model includes the standard three bones per finger, moreover, index
and pinky metacarpal bone, and 21 auxiliary bones of the facial rig. There is a
support for the characterization of the body mocap data and it also allows the
animation retargeting to the different body proportions (SL speaker/model).
The standard skinning method is based on a weighted transformation of each
bone and affects vertices of the surface mesh.

The bone-ends of the facial rig are fixed to predefined 3D positions in the
model mesh surface. In general, the positions differ from the positions of chosen
facial marker set. We consider manual retargeting of the facial mocap data to
the character’s face. For this purpose position constraints were defined by the
professional 3D character animation software Autodesk MotionBuilder (MB).
One constraint defines the affected bone-end as a constrained object and one or
more of the facial markers as source objects. As a result, all the facial markers
are transformed by weighting interpolation to the facial rig of the model.

3 SL Recording Procedure

The sign language recording procedure determines suitable steps for feasible and
functional simultaneous recording of SL mocap data. The procedure divides the
data acquisition to a capturing session and data post-processing.

3.1 Capturing Session

Facial Mocap. First of all, it is necessary to prepare and adjust the VICON
Cara system for capturing a particular subject. The position of each camera
has to be adjusted and focused on a target part of the subject’s face. The next
step is a standard calibration of the system. Markers are placed on the subject’s
face according to the desired model while the HeadRig is removed. After that,
the HeadRig is returned on the subject and recording of the range of movement
follows.

Hand Mocap. We consider capturing of a raw glove motion data without pre-
defined glove calibration. We assume recently developed tools for the control
and the communication with the CyberGlove3 gloves [6]. The tools provide an
interface for recording with one or two (left and right) gloves at the time and
also enables necessary time synchronization between the gloves and the VICON
system.

The glove recording session starts by a launching of the above-mentioned tool
for the simultaneous recording of both gloves. First, the time-synchronization
stamp from the VICON system is set to the gloves. The particular commands for
the time set are sent to the gloves at the same time. However, it can be executed
by each glove with a slightly different delay depending on the processing unit of
each glove. To time-synchronize the data recording we set the same internal time
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Fig. 2. Calibration take hand shapes.

for both gloves by one command and then start the recording simultaneously
with another one command. This procedure allows us to reach the time difference
between gloves in a range of a one data frame, i.e. 33.3 ms because there are 30
frames per second. The time difference can be greater and it is recommended to
keep the internal time setting until the difference is acceptable. As soon as it is
acceptable, we can start the recording.

The first step (and it is beneficial to be the last one too) of the glove recording
session is capturing of a calibration take which is essential for the successful glove
raw data interpretation. The calibration take consists of five hand shapes: a flat
hand, a stretching of all fingers, a fist and two “o” hand shapes, the one with
thumb – index touch and the second with thumb – pinky touch respectively, see
Fig. 2. The most important feature of the calibration take is to cover the full
range of all finger movements. But a researcher can define its own calibration
take which better suits his needs. Next, we can launch the standard recording.

Body Mocap. The T-20 cameras are situated and aimed at the captured sub-
ject. The camera layout depends on the subject’s body proportion and on the
complexity (range) of the SL recording material. The next step is the calibra-
tion of the system. The markers are placed on the subject according to the body
model. Each capturing session starts with the standard recording of the range
of movements (ROM).

3.2 Data Post-processing

The data acquired during the session have to be post-processed to get the stan-
dard motion capture data. The VICON Cara Post is a software tool used for
post-processing data acquired by VICON Cara. The centroids of the markers
placed on the subject’s face are identified and cleared from an incidental noise.
The 3-D reconstruction and the labeling of the final motion capture data are
made after that.

The data from T-20 cameras are post-processed in the VICON Blade software
tool. The reconstruction of 3-D data is made and necessary manual denoising is
needed. The noise can be caused e.g. by body marker occlusions. The labeling
of the data and export as the final mocap data follows.
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Fig. 3. On the left: right hand manual calibration interface, on the right: the 3D
character model.

The glove data post-processing phase allowing interpretation of the raw data
and include the glove data calibration. The post-processing starts by the down-
loading of the recorded data files from the glove internal memory cards (calibra-
tion and data takes). The time-corresponding records for the left and right hand
are then converted to the XMLTRC format (newly designed XML version of
the TRC (Track Row Column5) format) and merged to the one corresponding
XMLTRC file. An arbitrary XMLTRC file can be anytime later converted to
the standard TRC format which is suitable for the processing of the 3D motion
data by a standard animation software. The glove data calibration can be done
in automatic and/or manual manner. For this purpose, we used the MB with a
calibration template integrating the graphical user interface, see Fig. 3. This tem-
plate allows a manual adjusting of all necessary calibration parameters (all scale
and offset linear equation parameters). The TRC file of the merged calibration
take is loaded into the MB with the active calibration template. The researcher
can then adjust the template parameters until the finger motions of the given
3D model appropriately match the calibration take finger motions. The provided
automatic calibration method can be optionally used as a starting point for the
manual calibration. To be able to use the automatic calibration tool, the user
only needs to identify calibration gesture keyframes in the calibration take by
the supplied tool.

4 Conclusion

The recording procedure for motion dataset building is a crucial step to research
new methods for the sign language synthesis systems. We combine the data
gloves and optical motion capture techniques to collect source data of the sign
language. The state-of-the-art technologies VICON, VICON Cara, and Cyber-
Glove3 are discussed to summary advantage and also limiting factors in relation
to motion capturing of the sign languages. The time-consuming and laborious

5 http://simtk-confluence.stanford.edu:8080/display/OpenSim/Marker+(.trc)+Files.

http://simtk-confluence.stanford.edu:8080/display/OpenSim/
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calibration of the two gloves is moved from a recording session to the phase of
an off-line data post-processing when the presence of the signer is not required.
The combination of the motion capture technologies overcomes the existing diffi-
culties of such a complex task. The recording procedure provides instruction for
researchers dealing with simultaneous recording both the manual and the non-
manual component of the sign language. In this context, further research will be
aimed to uncover naturalness of movements provided by the signing human.
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Abstract. New version of NVM algorithm [3] in case of stationary voice
model for precise estimation of the Fundamental frequency on a short
time interval is proposed. Its computational complexity is proportional
to that of FFT on the same time interval. A precise trade-off between
approximation error and numerical speed is established.

Keywords: Frequency estimation · Fast algorithms · Harmonic model

1 Introduction

Precise estimation of the Fundamental frequency is necessary for correct calcu-
lation of harmonic amplitudes especially for the high frequency formants. An
estimation error causes a multiple error for the high frequency harmonics. Pitch
estimation error of 1 sample can completely reject harmonics in the estimated
model at the frequency band near 2 kHz.

Such effect can be seen at Fig. 1 that shows a part of spectrum (from 3 to
6.5 kHz) of some voice signal. This signal is first coded and then restored signal
is obtained. Here are two cases: the first one corresponds to a precise estimation
of Pitch and the second one shows the same computation with 1 Hz error.

The Least Squares approach is successfully implemented for estimation of
the complex amplitudes of the harmonic polynomial model of a voiced signal
[1,4]. But the Pitch estimation problem remains highly nonlinear with several
local minima that can cause a standard multiple frequency error.

A general complexity of the estimation algorithms is proportional to N2

where N is the window length. Such exhaustive search of admissible Pitch values
is too expensive.

The “unbiased criterion” for Pitch estimation was proposed in [2]. Its com-
plexity is proportional to N log2 N where N is the frame window length. This
criterion is also independent of the additive white noise.

In our previous work [3] the unbiased criterion from [2] for Pitch estima-
tion was generalized to short time intervals. We proposed fast algorithm called
Noise Variance Minimization (NVM) for precise estimation of the Fundamental
c© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 714–721, 2016.
DOI: 10.1007/978-3-319-43958-7 87
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frequency, kHz

original signal spectrum
accurate pitch estimation
inaccurate pitch estimation

3 4.53.5 4 5 5.5 6 6.5

Fig. 1. Effect of pitch determination error

frequency on a short time interval. The new algorithm gives an approximate
solution with a complexity of N log2 N operations.

In this paper a new generation of the NVM algorithm is proposed. Precise
formulation of the trade-off between approximation error and numerical calcu-
lation speed is presented.

2 Stationary Model and Cost Function

Let s = (st)
N/2−1
t=−N/2 be a voiced signal of the length N . The stationary model of

the signal is

ŝt =
M∑

k=−M

ake
2πi
N Fkt + vt, −N/2 ≤ t ≤ N/2 − 1,

where P is the Pitch period of the model, M = [(P−1)/2] is the number of
harmonics, ak are the complex amplitudes and ak = ā−k for all k. vt — white
noise with σ2 variance. The Pitch period P corresponds to the Fundamental
frequency F = N/P calculated in periods per frame.

The full set of the model parameter contains the value of P and the vector
A = (ak)M

k=−M . All these values can be arbitrary. Accuracy of the model can be
measured by the squared norm of the windowed estimation error

J(A,P ) =
1
N

N/2−1∑

t=−N/2

|wt(st − ŝt)|2,

where wt = [1 + cos(2πt/N)]/2 is the Hanning window. The estimation problem
is then reduced to minimization of the function J by all variables.

It is numerically effective to make a successive minimization:

Jmin(P ) = min
A

J(A,P ), Jmin(P ) → min
P

.
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The first minimization problem is to be solved for all P , and the last minimization
in one variable P is made by a constrained search.

As shown in [3] the function Jmin(F ) can be presented in explicit form (i.e.
for the class of stationary models):

Jmin(F ) =
1
N

⎛

⎝
N/2−1∑

t=−N/2

w2
t s2

t −
P−1∑

m=0

|ym|2
Cm

⎞

⎠ ,

where

ym(P ) =
[

N/2−1−m
P ]−∑

n=[
−N/2−m

P ]+

s̃m+nP , 0 ≤ m ≤ P − 1,

Cm(P ) =
[

N/2−1−m
P ]−∑

n=[
−N/2−m

P ]+

w2
m+nP , 0 ≤ m ≤ P − 1,

s̃t = w2
t st, [·]+ means round up and [·]− — round down.

The minimal admissible value of P in this case corresponds to F = 1.6. If
the number of signal periods in the frame window is less than 1.6 then a signal
cannot be distinguished from the white noise.

The expectation of the minimal cost function is equal to

EJmin(P ) =
3
8

σ2

(
1 − h∞(F )

F

)
.

On interval F ∈ [1.6, 3.0] function h∞(F ) can be approximate by

hs
∞(F ) ≈ −1.2635 + 3.0399 · F − 0.9621 · F 2 + 0.1018 · F 3, 1.6 ≤ F ≤ 3.

If F ≥ 3 a good approximation is hs
∞(F ) = 1.9444.

The function Jmin(P ) cannot be taken for the final decision of the Pitch
estimate. The unbiased criterion EUB(P ) derived in [3] corrects the two standard
errors: the multiple frequency error and influence of the white noise.

The unbiased criterion in this problem coincides with the Maximum Likeli-
hood criterion: to minimize the unbiased estimate of the noise variance σ2:

EUB(P ) =
Jmin(P )

1 − h∞(F )
F

.

Next section describes a method of fast computation of cost function.

3 Computation of the Cost Function

Due to high nonlinearity of EUB(P ) with many local minima, it is necessary to
perform exhaustive search of global minimum. Search process is divided into two
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stages. In the first stage, integer pitch candidates are obtained from EUB(P ) for
all pitch candidates from desired range. Next, integer pitch candidate is refined
over all continuous values.

Thus, at the first stage, it is required to calculate the function (right part for
the Jmin(P ) formulation).

φ(P ) =
P−1∑

m=0

|ym(P )|2
Cm(P )

for all integer P from the admissible interval [Pmin, Pmax] where Pmin is a fixed
small integer and Pmax ≈ 5N/8.

Theorem 1. Let F ≥ 1.6. With relative error less than 0.01

1
Cm(P )

≈ 8
3F |KF |2 |gP (zm

P )|2, gP (z) =
∞∑

k=0

αk
F zk,

where

KF =
1
2

(√
1 + 2η̂0(F ) +

√
1 − 2η̂0(F )

)
, αF = − η̂0(F )

K2
F

, zP = e− 2πi
P ,

η̂0(x) =
4 sin(πx)

πx(x2 − 1)(x2 − 4)
, x �= 0, x �= ±1, x �= ±2,

η̂0(0) = 1, η̂0(±1) =
2
3
, η̂0(±2) =

1
6
.

proof is algebraic and omitted here.
According to Theorem 1 it is possible to replace the original function φ(P )

with approximation:

φ(P ) ≈ 8
3F |KF |2 φ0(P ), φ0(P ) =

P−1∑

m=0

|gP (zm
P )ym|2.

Now let
vP (t) = stw

2
t gP (zt

P ), −N

2
≤ t ≤ N

2
− 1.

The following lemma gives the expression of the φ0(P ) in terms of correlation
function of the signal vP (t):

Lemma 1. Let P — integer, 1 ≤ P < N/2. Function φ0 may be computed by

φ0(P ) = rP (0) + 2
[N/P ]∑

k=1

rP (kP ),

where rP (t)—correlation function of the signal vP (t), filled with zeros at |t| ≥
N/2.

proof is omitted here.
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4 Complexity vs. Accuracy

According to Theorem 1 and Lemma 1, the problem of computation of EUB(P )
with integer values of P is reduced to the computation of correlation function
rP of the signal vP (t).

In this section an approximation method for rP is presented. Let us introduce
the following notation for signals

s̃t = stw
2
t , ht = s̃t|gP (t)|2 = stw

2
t |gP (t)|2,

and for corresponding DFT’s

S̃n =
N/2−1∑

t=−N/2

s̃te
− 2πi

2N tn, Hn =
N/2−1∑

t=−N/2

hte
− 2πi

2N tn, −N ≤ n ≤ N − 1.

Introduce two DFT’s parametrized by indexes � and j:

Fn,j =
N/2−1∑

t=−N/2

s̃t

(
2t

N

)j

e− 2πi
2N tn, −N ≤ n ≤ N − 1, j ≥ 0,

ρ�,j(τ) =
1

2N

N−1∑

n=−N

S̃∗
nFn+�,je

2πi
2N τn, j ≥ 0, � ≥ 0.

Approximation of the correlation function rP is based on the selection of a
set of pairs of non-negative indices M = {(�, j)} for ρ�,j(τ) calculation:

Theorem 2.

r̂P,M (τ) =
1

1 − α2
F

⎡

⎣ρ0,0(τ) + 2�
∑

(k,j):(�2F k,j)∈M

αk
F

(−πix2Fk/2)j

j!
ρ�2F k,j(τ)

⎤

⎦ .

where F — frequency with relation to N : F = N/P ,

2Fk = �2Fk + x2Fk, |x2Fk| ≤ 1/2.

and the total number of Fourier transformations required for computation of the
approximation is equal to

Nfft = |M | + Jmax + 1,

proof is omitted.
To improve the quality of approximation, it makes sense to include in the set

M all pairs (�, j) with 0 ≤ j ≤ J(�) − 1 for fixed first component �. We assume
that this condition is satisfied.
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The initial task of searching pitch period P has been reduced by Lemma 1
to calculation of the φ0(P ) for correlation function rP (τ).

The maximum number of � for which (�, 0) ∈ M is denoted by L. Let P —
integer and F = N/P . Maximum integer k, for which 2Fk ≤ L + 0.5, denoted
by K(P ). Obviously,

K(P ) =
⌊

P (2L + 1)
4N

⌋
.

the next result gives an estimation of error for approximation from Theorem 2:

Theorem 3. Approximation accuracy for φ0 is:

|φ0(P ) − φ̂0(P )| ≤
N/2−1∑

t=−N/2

γP (t)|s̃t|
⎛

⎝|s̃t| + 2
� t

P + F
2 �∑

q=1

|s̃t−qP |
⎞

⎠,

where

γP (t) =
2

1 − α2
F

⎡
⎣K(P )∑

k=1

|αF |k 1

J(�2Fk)!

∣∣∣∣πt

N
x2Fk

∣∣∣∣
J(�2F k)

+ |αF |K(P )+1 1 + |αF |
|1 + αF zt

P |2

⎤
⎦,

proof is omitted.
Finally, it is possible to obtain an accuracy estimation depending only on

signal energy:

Theorem 4. For all P ∈ [Pmin, Pmax]

|φ0(P ) − φ̂0(P )| ≤ λ‖sw‖2,

where

λ = max
0≤k≤P−1

λk, λk = ‖A‖, ai,j = cicjdmax{i,j}, 0 ≤ i, j ≤ Nk − 1,

cn = wt0k+nP , dn = γP (t0k + nP ).

proof is omitted.
Result from Theorem 4 gives ability for fast computation of error estimation.

5 Pitch Determination Algorithm Description

Results from previous section let us introduce iterative schema for the pitch
determination algorithm. One can select initial approximation accuracy and find
local minimum and accuracy bounds. If accuracy is not sufficient, the next step
of more precise approximation is used.
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A rough description of the algorithm scheme is described below:
Data: original signal s
Result: Pitch period Ppitch
fix set M , fix search interval Prange = [Pmin; Pmax] ;
while error estimation result do not allow select global minimum do

calculate φ0(F ), Jmin(F ), EUB(P );
add local minimums with acceptable accuracy to Pcandidate ;
reduce search area Prange and update set M ;

end
refinement of Pcandidate via continuous values and get Ppitch;

Algorithm 1. Pitch determination

F

approximation of Jmin

real value of Jmin

accuracy estimation (theorem 4)
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(a) Approximation result for Jmin(F )
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(b) Approximation result for EUB(P )

Fig. 2. Approximation results

The first step of the algorithm calculates an approximation of φ0(F ). Next,
calculation of Jmin(F ) and EUB(P ) is performed. Figure 2 shows approximation
results and errors estimations. It is clear that the approximation is enough to
select the global minimum of EUB(P ).

Comparison of NVM algorithm with other pitch determination methods
(SWIPE, YIN, RAPT, YAAPT, PEFAC) can be found in our previous work [3].

6 Unbiased Criterion Examples

Unbiased criterion plays a central role in NVM algorithm. In this section several
examples of criterion importance are shown. Figure 3 demonstrates cases where
the minimum (asterisk mark) of the Jmin(F ) gives a wrong Pitch candidate, and
EUB(P ) corrects this error:
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Fig. 3. Jmin(F ) and EUB(P ) comparison

7 Conclusion

In this paper a new formulation of the NVM algorithm is proposed. Previous
work [3] describes a less effective method without accurate error estimation
statements. Error estimation by Theorem 4 allows to determine actual global
minimum of EUB(P ) only by fast approximation results.

A general complexity of the algorithm is proportional to N log2 N where N
is the window length.
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Abstract. The article describes the way of automatic segmentation of
natural language text into fragments with different functional semantics.
The proposed solution is based on the analysis of how the various parts
of speech are distributed through the text. The amount and variety of
nouns, verbs and adjectives is calculated for a set of sliding windows with
the same length. The text is divided into fragments using clustering of
windows set. We considered two clustering methods: ISODATA and a
method based on the minimum spanning tree. The results of comparison
of the methods with each other and with the manually text markup are
shown.

Keywords: Automatic text segmentation · Description of the context ·
Discourse parsing · Clustering methods comparison · Text mining

1 Introduction

Functional discourse parsing is an automatic separation or selection of text frag-
ments which have different functional semantics [11]. The clearest example is
the extraction of methods, results, conclusions, etc. from scientific articles. Most
of current researchers in this area study this kind of texts. As a rule, special
sets of patterns and dictionaries [3,4] and supervised learning are used for this
task. Unsupervised techniques apply to short and very formal texts like scientific
abstracts [7].

The structure of a long text is heterogeneous and contains large and complex
elements of meaning, for which description more and more words should be con-
sidered. Supervised training algorithms require annotated samples. Binding to
the meanings of certain words increases training samples, which are expensive to
develop [5]. In addition to widespread functional elements of a discourse a text
can include unique elements, which may be absent in existing corpora, but which
should be extracted too. This is especially important if we want to extend the
application area of functional discourse parsing algorithms from strictly struc-
tured articles of scientific journals to less formal scientific web-articles and blog
posts, scientific books and learning materials which use a much wider vocabulary
and aless strict structure. Discourse parsing is the traditional task of machine
translation [11], but the rapid development of e-learning opens a new challenge
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-43958-7 88
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for the use of these technologies, and in particular, of the functional parsing in
the scaffolding of e-learning materials. Let’s consider, for example, the task of
generating a draft of a presentation. We want to visualize everything that is
possible. Figure 1 shows an example of the visualization of individual sentences
with the word (TO DIVIDE). In case A we see the description
of a process, in case B – the description of a certain classification. The seman-
tic nuances of the word “ ” are very important for visualization in
this example, and require rather specific knowledge about surrounding nouns.
Besides, it is easy to imagine a context in which picture from case A is suitable
for sentence from case B.

Fig. 1. The meaning nuance of the word “ ”

Thus, it makes sense to look for approaches that, firstly, would allow to pro-
duce a functional fragmentation without extensive knowledge of the semantics
of some individual words, and secondly, that would not require marked text
corpora for training.

It has been shown previously that the problem can be solved using the cluster
analysis. However, the suggested method does not provide sufficient accuracy
and does not determine the number of clusters automatically [6]. In this paper
we compare two methods of clustering for this task, namely ISODATA and
Minimum Spanning Tree.

2 Text Model

We assume that the part-of-speech tagging is solved with sufficient quality. Let
SP be a set of parts of speech which the parser recognizes. R is a set of syntactic
relations, which the parser detects. Text t = 〈si〉 is a sequence of sentences si.
Each sentence is a pair s = 〈Ls, Rs〉, where Ls = 〈wj〉 is the list of words in
order of their appearance in the sentence, Rs = {〈w, u, r〉|w, u ∈ Ls, r ∈ R} is
the list of syntactic relations between the words. The word w is attributed by
the part of speech SPw in the sentence.
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Window Wi,j = 〈pi, ..., pj〉 is a continuous sequence of sentences in text t,
where i – the number of the first sentence, j – the number of the last sentence,
l = j − i + 1 – the window size.

In the analysis, we use the following six parameters of window Wi,j .

(1) Total number of nouns PNoun.
(2) Number of different nouns PDiffNoun.
(3) Total number of verbs PV erb.
(4) Number of different verbs PDiffV erb.
(5) Total number of adjectives PAdj .
(6) Number of different adjectives PDiffAdj .

It is known that these parameters are different for various functional styles [1]
of texts and allow to define the authorship [9]. If we use this model of text, we can
apply methods which are used for image segmentation to the text segmentation
task. As it is shown below, the variation of these parameters over the text allows
to receive information not only about the text in general, but also about its
internal structure.

Sentences in a scientific text consist not only of natural language phrases.
The text can contain expressions in formal languages, such as mathematical or
chemical formulas. Besides sentences have various length and various purpose
in the text. These factors cause great noise in the behaviour of parameters (1)–
(6) throughout the text. For most texts the lower bound of value l is between
40 and 60 sentences. With very large values of l clustering loses its sensitivity.
The object of analysis is the set of all the windows {Wi,j} with length l. Let’s
designate such set as {W l

i }, where i is the number of the first sentence in the
window. Let nt = |t| be the amount of sentences in the text. Then nl

w = |t|−l+1
is the amount of windows with length l.

We considered two methods of clustering: ISODATA [8] and clustering with
a minimum spanning tree [2] (we will call this method a tree clustering).

3 Estimation Method

To estimate the resilience and quality of the results of the algorithms we use the
following approach.

Let Cluster(W l
i ) be the cluster calculated for window W l

i . Let B = {bk} ⊂
{W l

i } be the set of windows, which are the boundaries of clusters, i.e. bk =
W l

i and Cluster(W l
i ) �= Cluster(W l

i+1). Let n experiments be made and sets
B1, . . . , Bn be received. We assume that the boundary is found in the experiment
e1 and in the experiment e2, if ∃ bk1 , bk2 : |bk1 ∈ Be1 , bk2 ∈ Be2 and |bk1 − bk2 | <
l/2, where |bk1 − bk2 | is the number of sentences between the beginning of the
windows bk1 and bk2 . We will estimate the detection accuracy of boundary bk at
experiment e1 and e2 as ε = mink2(|bk − bk2 |)/l.

The experiments were conducted on long scientific and educational texts
(more than 20 pages) of natural science and medicine domains from Single Win-
dow Access to Educational Resources1. To conduct the experiment, we have
1 http://window.edu.ru/.

http://window.edu.ru/
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developed a software system that includes an external parser, an object model
of the text, a module for manually labeling of the text and a cluster analysis
module.

We use Seman2 and MyStem3 for a part-of-speech tagging. Both parsers
provide enough quality results for our task and give similar results, but the first
one is sensitive to spelling mistakes and syntax errors, and the second one is not
open source, so the developed software provides the possibility to replace the
parsing module.

We extracted the texts from pdf-files, so they kept extra line breaks, page
numbers, as well as fragments of a destructed text: formulas, labels on figures,
etc. To prepare the text for parsing, we have created a module which removes
fragments that do not contain Russian letters, decodes common abbreviations,
restores the sentences integrity and divides the text into sentences.

4 Description of Clustering Methods

ISODATA method is a classical method of a cluster analysis which automatic
detects the number of clusters. This method has a list of parameters, and we
experimentally choose them as a linear function of standard derivation and vari-
ance of distances between windows in space of parameters (1)–(6). The initial
positions of cluster centers are chosen randomly from the set of clustered objects.
The number of clusters is chosen excessively large in order to ensure coverage
of the whole text and to increase the stability of the results. The task structure
and method properties assume that the cluster boundaries may vary slightly
depending on the initial positions of the centers. The experiments show that the
algorithm converges. The accuracy ε of determining of fragments boundaries is
less than 0.06 of the window size.

Let’s consider in more details the tree clustering algorithm applied to our
task. The set of windows {Wi,j} with length l can be represented as a complete
graph, where the length of each edge is Euclidean distance in the space of para-
meters (1)–(6). Let Tree = 〈W,V, dest〉 be the minimum spanning tree of the
windows graph, where W,V ∈ {Wi,j}, dest – Euclidean distance between W and
V in the space of parameters (1)–(6). The tree is constructed using the following
algorithm.

1. Choose a tree root from the set of windows Root0 ∈ {Wi,j} randomly.
2. Add the selected window to the tree.
3. From all the windows Wi,j /∈ Tree, which have not been added to the tree

yet, look for the nearest one to the tree. The distance to the tree for window
Wi,j is calculated as the minimum distance for all the windows included into
the tree.

4. Add the found window to the tree.
5. Repeat steps 3 and 4 until all the windows are in the tree.
2 http://sourceforge.net/projects/seman/.
3 https://tech.yandex.ru/mystem/.

http://sourceforge.net/projects/seman/
https://tech.yandex.ru/mystem/
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Then we calculate the mean Mdest and the standard deviation σdest of the
edge length in the tree. Then all the edges which length is less than Mdest +
2σdest are removed from the tree. The tree splits into some subtrees which are
considered as clusters. If after edges removing the subtrees with only one vertex
are formed, these subtrees merge with the nearest subtree.

The results of the tree clustering depend on the window size, but don’t depend
on the choosing of the root in step 1.

Depending on the text the ISODATA method can select up to 30 % more
boundaries than Tree Clustering. There are differences of not more than 7 %
of the window size for the boundaries which have been found using the both
methods. It confirms the accuracy of the detected boundaries.

5 Results

The applicability of the developed methods for selecting semantically related
fragments was verified as follows. We could not find a corpus with functional
annotated discourse like BioDRB [10] for the Russian language. Therefore we
have created a small corpus in which we manually allocated fragments contain-
ing descriptions of specific processes, procedures, and other sequences of actions
or events. Let’s call such fragments scenarios. Scenarios are located irregularlly
in the text, they may be adjacent to each other, and contain a destructed text
within themselves (for example, labels on figures). For manually marking, sce-
nario is considered to be a text fragment which satisfies the following conditions.

– Scenario is a fragment of a text containing all the sentences, which describe a
certain process.

– Scenario is a continuous fragment, that is, between two sentences of the sce-
nario untagged sentences or sentences from the other scenarios can not exist.

– Scenarios do not overlap, that is, one sentence can not belong to several
scenarios.

We apply a conversion formula to translate the sentence number into the win-
dow number for comparing the clusters boundaries with the boundaries of scenar-
ios. The numbering of the windows and sentences begins with 0. Let Window(si)
be the number of the window for sentence si:

Window(si) =

⎧
⎨

⎩

0, i < l/2
i − l/2, l/2 ≤ i ≤ nt − l/2
nl
w − 1, i > nt − l/2

.

If the window length l is odd, l/2 is rounded down.
Scenarios may contain a destructed text which is usually released into sepa-

rate fragments during clustering. In addition, a fragment obtained by clustering,
can contain several scenarios. The automatic detection of whether a cluster con-
tains a scenario is not a trivial task and requires an additional study that goes
beyond the scope of the article. Therefore, we apply the following approach to
test the quality of clustering.
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Let’s divide all the clusters into two groups: clusters which identify the sce-
nario and clusters which identify the absence of a scenario (for example, frag-
ments of other types). We assess the quality of clustering according to the follow-
ing criteria. Let C be a set of clusters, and c ∈ C be some cluster. Scenario(c)
is a set of sentences which are included both in cluster c and in scenarios;
c\Scenario(c) is a set of sentences in cluster c, which are not included in sce-
narios. If |Scenario(c)| > |c\Scenario(c)|, we assume that cluster c identifies a
scenario. Otherwise we assume that a cluster identifies the absence of a scenario.
Then the number of correct determined sentences for cluster c is calculated by
the formula:

Pcorrect =
max(|Scenario(c)|, |c\Scenario(c)|)

|c| .

The number of incorrect determined sentences is calculated by the formula:

Pincorrect =
min(|Scenario(c)|, |c\Scenario(c)|)

|c| .

The evaluation results of clustering methods are shown in the Table 1. As we
see, clustering allocates the boundaries of fragments of a certain type, such as
scenarios, accurately enough. It is necessary to explore further the ratio between
the distributions of parameters (1)–(6) for the cluster and for the text to deter-
mine the type of fragments allocated to a cluster.

Table 1. Estimation of clustering quality for scenarios detection task

Clustering method Correct sentences Pcorrect Incorrect sentencesPincorrect

ISODATA 87 % 13 %

Tree clustering 93 % 7 %

6 Conclusion and Future Work

The experiments show that the suggested methods provide results sufficient for
practical application. The dependence between ISODATA algorithm operating
time and the amount of windows expressed as o(Inl

w), where I is the number
of iterations. The time complexity of the Tree Clustering algorithm is o((nl

w)3),
that is, much more slowly than ISODATA. However, this is compensated by
greater stability and better quality of results.

Low quality of ISODATA results are determined by the fact that the algo-
rithm finds hyperspheres in six-dimensional parameters space, while the clusters
observed by visualization using principal component method are significantly
elongated in one of the directions. To resolve this contradiction it is necessary to
select another measure of distances or to use advanced heuristics. Tree Clustering
gives good results.
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The suggested algorithms will be used for generating of interactive e-learning
materials and illustrations using books from Altai State Technical University e-
library. We are going to expand the annotated text corpus and to share it in the
Internet. We also develop the algorithm for automatic detection of a fragment
type based on the used verbs. We reckon that the verbs is the best way to
describe functional semantics.
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