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Abstract. We present a probabilistic model for classification of micro-
EEG signals, recorded during deep brain stimulation surgery for Parkin-
son’s disease. The model uses parametric representation of neuronal
background activity, estimated using normalized root-mean-square of the
signal. Contrary to existing solutions using Bayes classifiers or Hidden
Markov Models, our model uses smooth state-transitions represented by
sigmoid functions, which ensures flexible model structure in combina-
tion with general optimizers for parameter estimation and model fitting.
The presented model can easily be extended with additional parameters
and constraints and is intended for fitting of a 3D anatomical model to
micro-EEG data in further perspective. In an evaluation on 260 trajec-
tories from 61 patients, the model showed classification accuracy 90.0 %,
which was comparable to existing solutions. The evaluation proved the
model successful in target identification and we conclude that its use for
more complex tasks in the area of DBS planning and modeling is feasible.

Keywords: Deep brain stimulation · Microelectrode recordings ·
Probabilistic model

1 Introduction

The Deep Brain Stimulation (DBS), which consists of permanent electrical stim-
ulation of the basal ganglia, has been used for treatment of Parkinson’s disease
(PD) and other movement disorders since the pioneering work by Benabid et al.
in the early 1990s [4]. Since then, it has become a standard therapy for drug-
resistant late-stage Parkinson’s disease and is applied in hundreds of centers
worldwide. In order to achieve a good clinical outcome, accurate positioning of
the stimulation electrode is necessary. As the target structures are small — the
most common target for PD, the subthalamic nucleus (STN) measures less than
10 mm along its largest dimension — and precision of imaging methods available
prior to operation is relatively low (∼ 1mm voxel size in pre-operative magnetic
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resonance imaging scans), precise placement based solely on pre-operative imag-
ing is hard.

To obtain a more accurate location information, a method called microrecord-
ing is employed in a vast majority of DBS centers [1]. In microrecording, a set
of microelectrodes (tip diameter around 5 μm) is shifted through the brain and
microelectrode EEG (also μEEG or MER) is recorded. The recorded signals
are evaluated concurrently by a trained neurologist, who then identifies opti-
mal position for the stimulation contacts. The evaluation is typically based on
visual and auditory inspection of the signals, the main markers being neuronal
firing pattern and especially amplitude of the neuronal background, which are
higher in areas with higher neuron density — such as the STN. The accumula-
tion of neurons in the STN is very high compared to the neighboring structure,
which projects into the recorded signals as a sudden increase in the neuronal
background activity as the electrode approaches the STN boundary, as well as
appearance of rapidly spiking neurons once the electrode entered the nucleus.
The former can be estimated by the root mean square (RMS) of the original
signal [9,14], some authors also suggested signal with removed spikes or RMS of
a band-pass filtered signal [10,11].

For a long time, efforts have been made to use machine learning models in
place of the manual evaluation. This paper presents a probabilistic model of
neuronal background activity along a microrecording trajectory, characterized
by a normalized root-mean-square measure (NRMS). The suggested model is a
logical extension of already existing models, which are summarized in the next
section.

1.1 Existing Models

Early models used the neuronal background level, estimated using the normal-
ized root-mean-square of the signal as an input to Bayesian classifier [9] or
discrete hidden Markov model (HMM) [14]. These models included also the
expected distance to target as an input, which utilizes the fact that the pre-
surgical planning places the target (i.e. “depth 0”) to a specific part of the STN.
These models also used manual quantization or thresholding of the input para-
meters in order to achieve reasonably-sized discrete parametric space, that can
be estimated from commonly-sized training datasets.

Extension to semi-markov models, including state duration (i.e. the length
of nuclei pass) with continuous probability density function has been done
by Taghva et al. [13], but has been evaluated only on simulated data. Other
researchers investigated features such as high-frequency component of the neu-
ronal background [10] or multiple features including power spectral density, firing
rate and noise level coupled with a rule-based classifier composed of cascaded
thresholds [5]. Support vector machine classifier on multiple signal features
(RMS, nonlinear energy, curve length, zero crossings, standard deviation and
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number of peaks) has been also implemented by Guillen et al. [7] with almost
100 % accuracy.1

The authors of [12] investigated the impact of recording length and density on
performance of an HMM and concluded that precision of a previously published
HMM model [14] was approximately half of the between-position distance.

1.2 Proposed Model

In this paper, we present a model based on the neuronal background level,
which can be used as a basis for fitting anatomical 3D model directly to the
recorded μEEG activity along parallel trajectories. The presented variant is
a one-dimensional proof of concept, intended to verify the idea and compare its
properties to existing well-performing models.

Similarly to the hidden semi-markov models used in [13], our model uses
parametric representation of input feature space – the NRMS values computed
according to [9] but without quantization. Contrary to HMM, our model uses
smooth state to state transitions, motivated by properties of electrical field of
the STN, observed on the training data.

A derived model, based on the proposed approach, can be used to introduce
other requirements such as the expected length of STN pass for given trajec-
tory, based on a-priori information from surgical planning. Owing to the smooth
state transitions, the model has also a smooth likelihood function (and gradient)
and can be fitted using general purpose optimization algorithms. Thanks to this
property, the structure of the model is very flexible and can be easily modi-
fied and extended. Moreover, the model theoretically allows classification with
accuracy beyond the resolution of the measured data. However, this may not be
the case practically due to noise in the μEEG signal and other measurement
inaccuracies.

2 Methods

The probabilistic model, presented in this paper, is based on the assumption
of different distribution of neuronal background before, within and beyond the
STN. Each of these distributions is represented parametrically and transitions
between the consecutive distributions are modeled by the logistic sigmoid func-
tion (see Sect. 2.2 below). In this section, we give overview of the proposed model,
as well as of the data collection and pre-processing.

2.1 Data Collection, Annotation and Pre-processing

The experimental dataset was collected during the standard surgical procedure
of DBS implantation using a set of one to five tungsten microelectrodes, spaced
1 The dataset in [7] consisted of 52 signals from four patients only and it is not clear

whether the validation sample was completely independent in terms of similarity of
neighbor segments — see e.g. [8] for description of a similar problem.
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2 mm apart in a cross; the so-called Ben-gun configuration [6]. The microelec-
trode signals were recorded at each 5 mm along the trajectory using the Lead-
point recording system (Medtronic, MN), sampled at 24 kHz, band-pass filtered
in the range 500–5000 Hz and stored for offline processing. Annotation of nucleus
at each position was done manually by an expert neurologist [R.J.], based on
visual and auditory inspection of the recorded signal.

To reduce the effect of motion-induced artifacts, we divided each signal into
1/3 s windows and selected the longest stationary component using the method
presented in [3], which is an extension of method previously presented in [2].
Parameters of the method (detection threshold and window length) were selected
in order to achieve best accuracy on a training database. This method was
chosen in order to obtain at least some segment of each signal, even though it
may contain electromagnetic and other interference, which would be marked as
signal artifact by the stricter spectral method, presented in [3].

2.2 Electric Field of the STN

To obtain estimate of the neuronal background activity level, we calculated the
root-mean-square (RMS) of the stationary portion of the signal. In accordance
with [9], we computed the normalized RMS of the signal (NRMS) by dividing
feature values of the whole trajectory by mean RMS values of the first 5 posi-
tions (which are assumed non-STN in a majority of recordings). Additionally,
we normalized the 90th percentile of each NRMS trajectory to 3 in order to limit
NRMS variability in the STN.

Observations of NRMS values before, within and after the STN confirmed
different distribution in each part. After comparing likelihood of normal and
log-normal distribution, we chose to model the NRMS values in each part by the
best-fitting log-normal distribution.

Further explorative analysis was aimed at the shape of NRMS transition.
Figure 1 presents NRMS training data, aligned around STN entry and exit, mean
value for each distance to the transition and the sigmoid logistic function we
chose to model the transition as a result.

2.3 Parametric Model of STN Background Activity

Model Structure. The proposed model of background activity along the DBS
trajectory consists of probability density of the NRMS measure in the three
different regions. These can be seen as continuous emission probabilities in three
hidden states of an HMM. Contrary to an HMM, the proposed model uses no
discrete state transitions that could be represented by a transition matrix, but
uses smooth state transitions, represented by sigmoid (or logistic) functions.
Due to that, standard evaluation methods used for HMM, such as the Viterbi
algorithm, can not be used and are replaced by general constrained optimization.

The general idea of the proposed model is based on the following reason-
ing: one of the most obvious features, distinguishing DBS target structure in
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Fig. 1. NRMS values around STN entry and exit points (depth 0 on the x axis) from
a set of training trajectories. The blue line represents mean NRMS value for each
distance, the red dashed line shows fitted sigmoid functions S′

en and S′
ex, used to

model STN entry and exit transitions, with parameters corresponding to the inlaid
formula. (Color figure online)

the μEEG — in particular the STN — is signal power, represented here by sig-
nal NRMS. Based on our observations on training trajectories (see Sect. 2.2), as
well as previous works (e.g. [10,11]), we assume different probability distribution
of NRMS values in the areas before, within and beyond the STN and use the
log-normal distribution as a model for the NRMS values in each area. Parame-
ters of the log-normal model are estimated from labeled training data during the
training phase.

In common settings, the μEEG signals are recorded at discrete depth steps
(in our case every 0.5 mm). The task is therefore to classify signals, recorded
at each position, to a correct class (i.e. identify the STN). We assume that the
electrode can pass through the STN at most once and the trajectory can thus
be divided into three consistent segments by two boundary points: STN entry
and STN exit. In the evaluation phase we find optimal STN entry and exit
points by maximizing the joint likelihood of the observed NRMS values along
the trajectory with respect to the previously identified probability distributions.
Simply put, the values before the assumed STN entry should be close to the
expected value of the distribution before the STN, the values within the assumed
STN should be close to the expected value of the distribution within STN and
accordingly for the area beyond STN.

In order to increase theoretical precision of the model, as well as to improve its
algebraic properties2, we add smooth state transitions, modeled using logistic sig-
moid functions. This approach also seems to be well in alignment with the observed
statistical properties of NRMS values around STN boundary points — as can be

2 Smooth state transitions using logistic sigmoid functions lead to smooth gradient and
the resulting model is therefore easier to optimize.
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seen in Fig. 1. The result of this addition is that rather than belonging to one partic-
ular state, each data point along the trajectory is assumed to be a partial member
of all three states. Membership coefficients cpre, cSTN and cpost of this combination
are given by the sigmoid functions and depend on distance of given point from STN
entry and exit. Illustration of the weighting can be found in Fig. 2.
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Fig. 2. Illustration of sigmoid transition functions Sen and Sex and their application
to the joint likelihood function from Eq. 8: each observed data point is assumed to be
a partial member of all three hidden states. Probability density functions correspond-
ing to each state are weighted using the membership probabilities ppre(i) = p(di ∈
pre|a, b,Θ), pSTN (i) = p(di ∈ STN |a, b,Θ) and ppost(i) = p(di ∈ post|a, b,Θ) which
are dependent on distance from the hypothetical STN entry and exit points a and b.
The z(i) = zi is normalization coefficient - see Eqs. 10 and 13 for details.

In this paper, we present two variants of the model: (i) the basic flex1, based
solely on the NRMS measure and (ii) extended model flex2, which adds a-priori
distribution of expected STN entry and exit depths. The following sections
provide formal definition of the model, as well as the training and evaluation
procedure.

Training Phase. Supervised model training is performed on NRMS feature
values xi ∈ {x1, x2, ..., xN}, extracted from MER data recorded at N recording
positions at depths di ∈ {d1, d2, ..., dN}. Manual expert annotation is provided
for each recording position, labeling the signal as either stn or other. STN entry
position ien and exit depth iex is defined as index of the first and last occurence
of stn label from the start of the trajectory. Trajectory is then divided into three
parts; (i) before the STN with indices Ipre = 〈1, ien − 1〉, (ii) within the STN
Istn = 〈ien, iex〉 and (iii) after the STN Ipost = 〈iex + 1, N〉. Two groups of
parameters are fitted during the training phase:

(i) Parameters of the log-normal probability distribution of NRMS feature val-
ues before the STN (θpre = {σ̂pre, μ̂pre}), within the STN (θstn) and after
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the STN (θpost), where μ̂ and σ̂ are maximum-likelihood estimates of loca-
tion and scale parameters of the respective log-normal distribution, com-
puted in standard way according to

μ̂pre =

∑
i∈Ipre

ln(xi)

npre
(1)

σ̂pre =

√
√
√
√

∑
i∈Ipre

(ln(xi) − μ̂pre)
2

npre
(2)

where npre = |Ipre|, i.e. the number of positions with given label. Parameters
for stn and post labels are computed accordingly on samples from the Istn

and Ipost sets.
(ii) Parameters defining the shape of the sigmoid transition functions at STN

entry (β0
en and β1

en) and exit (β0
ex and β1

ex). Here, the parameter β0 rep-
resents shift and β1 steepness of the respective logistic sigmoid function,
defined as

S′
en(di) = α0

en + α1
en · (

1 + exp−(β0
en + β1

en(di − den))
)−1

(3)

for STN entry and

S′
ex(di) = α0

ex + α1
ex · (

1 + exp−(β0
ex + β1

ex(di − dex))
)−1

(4)

for STN exit, where den is STN entry depth and dex STN exit depth. The
additional parameters α0 (shift along the y axis) and α1 (scaling factor) serve
to provide sufficient degrees of freedom to achieve appropriate fit. However,
these parameters are not part of the model and are not stored as both
are replaced by the log-normal probability density functions modeling the
NRMS values in the respective area. Note that contrary to shifted and scaled
functions S′

en and S′
ex fitted during the training phase, standard logistic

functions Sen and Sex from Eqs. 11 and 12 are used during evaluation.
Fitting can be done using general purpose optimization function minimizing
mean square error on all training data at once, according to:

arg min
α0

en,α1
en,β0

en,β1
en

∑

i∈Ipre,Istn

(
S′

en(di, α
0
en, α1

en, β0
en, β1

en) − xi

)2
(5)

and similarly for S′
ex. Only data labeled as pre and stn are used to fit parame-

ters of S′
en and data labeled as stn and post are used to fit S′

ex. Initial para-
meters are set to

[
α0

en, α1
en, β0

en, β1
en

]
= [1, 1, 0, 1] and

[
α0

ex, α1
ex, β0

ex, β1
ex

]
=

[1, 1, 0,−1]

The trained model is then completely characterized by parameter vector
Θ = {θpre,θstn,θpost, β

0
en, β1

en, β0
ex, β1

ex}, encompassing both log-normal emis-
sion probabilities and steepness and shift parameters of the sigmoid transition
functions. If more trajectories are available for training, both parameter groups
are estimated using all training data at once, given that appropriate labels and
STN entry and exit depths are applied for each trajectory separately.
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Extended Model. The presented model structure uses no prior information
about expected STN entry and exit depths. It is possible to modify the model
by adding empirical distribution of entry and exit depths, modeled using the
normal distribution pa = N(μa, σa) and pb = N(μb, σb). The parameters can
be estimated using the standard maximum likelihood estimates of mean and
standard deviation. This will lead to addition of four parameters. We will denote
the extended parameter vector Θ′, the extended model is then nicknamed flex2
in the results section.

Model Evaluation. In the evaluation step, the model with parameters Θ is
fitted to a trajectory formed by a sequence of feature values xi measured at
corresponding depths di. Optimal posterior STN entry and exit points a and b
are identified by minimizing the negative log-likelihood function

{a, b} = arg min
a,b

N∑

i=1

− ln(L({xi, di}|a, b,Θ)) (6)

The joint likelihood for position i at fixed values of STN entry and exit depths
a and b and all three possible states (pre, STN and post) is given by:

L({xi, di}|a, b,Θ) = p({xi, di}|a, b,Θ)
= p(xi, di ∈ pre|a, b,Θ)

+ p(xi, di ∈ STN |a, b,Θ)
+ p(xi, di ∈ post|a, b,Θ)

(7)

By expanding the probabilities in Eq. 7 using the Bayes’ theorem, we get

L({xi, di}|a, b,Θ) = p(xi|di ∈ pre,Θ) · p(di ∈ pre|a, b,Θ)
+ p(xi|di ∈ STN, Θ) · p(di ∈ STN |a, b,Θ)
+ p(xi|di ∈ post,Θ) · p(di ∈ post|a, b,Θ)

(8)

where the probability p(xi|di ∈ pre,Θ) represents the emission probability in
state pre and is computed using the standard probability density function of the
log-normal distribution in the area before STN:

p(xi, pre|Θ) =
1

xiσ̂pre

√
2π

exp− (ln(xi) − μ̂pre)
2

2σ̂2
pre

, (9)

using parameters of the log-normal distribution μ̂pre and σ̂pre, obtained in
the training phase according to Eqs. 1 and 2 respectively. The probabilities
p(xi|STN, Θ) and p(xi|post,Θ) for NRMS distribution inside and beyond the
STN are computed accordingly. The class membership probabilities p(pre|a, b,Θ)
from Eq. 8 (similarly for states STN and post) depend on the distance between
depth di and currently assumed STN borders a and b and are computed from the
sigmoid transition functions as follows:
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p(di ∈ pre|a, b,Θ) = (1 − Sen(di, a|Θ))/zi

p(di ∈ STN |a, b,Θ) = Sen(di, a|Θ) · Sex(di, b|Θ)/zi

p(di ∈ post|a, b,Θ) = (1 − Sex(di, b|Θ))/zi

(10)

using the sigmoid transition functions Sen and Sex:

Sen(di) =
(
1 + exp −(β0

en + β1
en(a − di))

)−1
(11)

for STN entry and equivalently

Sex(di) =
(
1 + exp−(β0

ex + β1
ex(b − di))

)−1
(12)

for STN exit. The zi in Eq. 10 is a normalization coefficient ensuring that the
class membership probabilities add to one under all circumstances3:

zi = (1 − Sen(di, a|Θ)) + Sen(di, a|Θ) · Sex(di, b|Θ) + (1 − Sex(di, b|Θ)). (13)

In case of the extended model flex2, the minimization will take the following
form:

{a, b} = arg min
a,b

[
N∑

i=1

(− ln(L(di, a, b|Θ)) − λln(pa(a|Θ′) · pb(b|Θ′)))

]

(14)

where the summation L(xi, a, b|Θ) is the same as in Eq. (6) and the new pa(a|Θ′)
and pb(b|Θ′) are probabilities of STN entry at depth a and exit at depth b,
computed from the normal probability density function

pa(a|Θ′) =
1

σa

√
2π

exp − (a − μa)2

2σ2
a

(15)

and represent the probability of STN entry at depth a and exit at depth b. The
parameter λ can be used to assign more/less importance to the a-priori depth
distribution, compared to the observation-based likelihood element. In case of
the presented results, we set the value of λ = 1.75 which optimized train-set
accuracy.

As this process can be vectorized and the parametric space is only two-
dimensional and bounded, standard optimization algorithms with empirical gra-
dient can be used to search for optimal parameters. In our case, we used con-
strained optimization with conditions requiring that a ≤ b (the entry depth a is
lower or equal to exit depth b), a ≥ d1 and b ≤ dN (entry and exit depths must
be in the range of the data).

The parametric space may contain local optima (depending on the shape of
NRMS values along given trajectory) and it is therefore very useful to provide

3 Value of this normalization coefficient will however be close to one in most cir-
cumstances and reaches around 1.2 in the extreme case when a = b using sigmoid
parameters from Fig. 1.
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reasonable initialization of a and b. In our implementation, the initialization was
set as the mean entry and exit depths from the training data: μa and μb

4. Note
that both a and b are real numbers and are not restricted to the set of actually
measured depths.

2.4 Crossvalidation

To evaluate the proposed model on real data and compare its classification ability
against existing models, we evaluated the model in a 20-fold crossvalidation: in
each fold, 5 % of available trajectories were left out for validation, while the
remaining data were used for estimation of model parameters. This lead to 20
sets of error measures for each classifier which were than averaged to obtain final
estimates. Larger number of crossvalidation folds was chosen in order to obtain
better estimate of error variability on different validation datasets.

The models compared were (i) Bayes classifier from [9] based on discrete joint
probability distribution of NRMS and depth and an (ii) HMM model, based on
the same discrete probability distribution (used as emission probabilities), with
transition probabilities estimated from the training data in a standard way and
two variants of the proposed model: (iii) flex1, based solely on NRMS and (iv)
flex2 with distribution of entry and exit depths.

3 Experimental Results

3.1 Data Summary

In total, we collected 6576 signals from 260 electrode passes in 117 DBS trajec-
tories in 61 patients. Length of recorded signals was 10 s. After discarding non-
stationary signal segments, the mean length of raw signal segment that entered
the NRMS calculation was 8.76 s (median 9.67 s). In each crossvalidation fold,
13 electrode passes were used for validation, while the remaining 247 were used
for training.

3.2 Classification Results and Discussion

Mean values of classification sensitivity, specificity and accuracy are presented
in Table 1, while distribution of these error measures on the 20 validation sets
can be found in Fig. 3. Even though the results of all methods were very similar
(as can be seen especially in Fig. 3), the highest mean test accuracy was achieved
by the hmm model – 90.2 %, closely followed by the flex2 model with 90.0 %.
Both models were also best in terms of specificity, while the best validation set
sensitivity was achieved by the hmm and bayes classifiers.

Comparing two variants of the proposed method, the flex2 model with entry
depth distribution achieved better results than the NRMS-only variant flex1.
The latter model tended to converge to local optima on trajectories with high
noise level or non-standard NRMS shape.
4 In the case with no entry/exit depth distribution, the initial parameters were set as

the middle of the trajectory for a and the 3/4 of the trajectory for b.
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Table 1. Classification results (error measures from the 20-fold crossvalidation) com-
paring the results of Bayes classifier [9] (bayes), Hidden Markov model (hmm), sug-
gested model based solely on the NRMS (flex1 ) and extended model with distribution
of STN entry and exit depth (flex2 ). See also Fig. 3.

Train Test

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

bayes 90.4 84.1 94.1 89.0 82.5 92.8

hmm 91.3 83.8 95.7 90.2 83.1 94.3

flex1 88.5 80.9 92.9 88.0 80.6 92.2

flex2 90.1 83.2 94.1 90.0 83.1 94.1
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1

Accuracy Sensitivity

Crossvalidation results (20−fold)

bayes

Fig. 3. Classification results on the 20 validation sets: bayes classifier [9], Hidden
Markov model (hmm), suggested model, based exclusively on NRMS (flex1 ) and
extended model with added a-priori entry and exit depth distribution (flex2 ).

3.3 Fitting of Individual Trajectories and Log-Likelihood Function
Shape

Apart from the overall results, we also evaluated results on individual trajecto-
ries. The bayes model, which from definition put no constraints on the resulting
label vector, was capable of classifying non-consecutive trajectories (interrupted
STN labels) — this may have lead to the rather high sensitivity on the training
data. As for the proposed models, the flex1 NRMS-only variant tended to fit
zero-length STN near the end of the trajectory in cases of non-standard STN
passes where the NRMS did not exhibit the standard low–high–low profile or
contained strong local peaks. The addition of entry and exit depth distribution in
the flex2 model variant reduced this problem and lead to improved classification
accuracy.
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An example of a successful STN classification on a typical trajectory using
the flex1 model can be seen in Fig. 4, while the corresponding negative log-
likelihood function from Eq. 8 can be seen in Fig. 5. Note that the log-likelihood
function is defined only for a ≤ b. In the case of the flex2 model, the values of the
likelihood function around the a-priori expected entry and exit depth are further
reduced by the additional component in Eq. 14, which increases the performance
especially in cases with high noise in NRMS values.
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Fig. 4. Example of flex1 model fit (red vertical lines — estimated position, red curve
— sigmoid weighting function) to a NRMS recorded along a trajectory (grey). The
expert-labeled STN position is shown in blue. (Color figure online)

4 Discussion and Further Work

The presented model achieved comparable accuracy to existing approaches, rep-
resented by bayesian classifiers [9] and HMM [14]. The results of HMM and
hidden semi-markov models, presented by Taghva et al. [13] were much supe-
rior, but were evaluated on simulated data only. In summary, the presented
extended model (flex2 ) achieved mean classification accuracy 90.0 %, sensitivity
83.1 % and specificity 94.1 % on the test set. As seen from the heavy overlap
of different method’s results, clearly visible in Fig. 3, we can conclude that it is
rather robustness of the NRMS feature itself than the model structure, that has
major impact on the results.

The main aim of this paper was to prove feasibility and efficacy of a prob-
abilistic model which is variable in structure and can potentially be used for
fitting of an anatomical 3D model to μEEG signals in multi-electrode setting.
In such case, the inside and outside volume of the anatomical model would yield
different emission probability distribution and further constraints or penalization
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Fig. 5. Negative log-likelihood function of the flex1 model shown as a function of
hypothetical STN entry (a) and exit (b) depth. The vertical lines show initialization
(magenta), model fit (red) and expert labels (blue). (Color figure online)

on model shift, scaling or rotation could be added easily into the minimization
function. We have shown, that such addition of further constituents — such as
the entry and exit depth in case of the flex2 model — can be done and can
contribute to improved classification accuracy.

The key part of the presented model is the use of smooth state transition func-
tions, which ensure smooth shape of the resulting likelihood function and enable
the use of general-purpose optimization techniques for model fitting. Another
consequence of the use of sigmoid transition functions is that the detected tran-
sition point does not have to be truncated to a position of available measure-
ment, but can be at an arbitrary position between states (i.e. the detected entry
and exit depths are real numbers, not constrained by the depths where μEEG
recordings are available).

The drawbacks of the presented model are that contrary to Bayes classifier or
an HMM it is not straightforward to convert the presented method to an online
algorithm, used e.g. during the surgery. Another weak point is the lack of closed-
form solution to model evaluation and the necessity to use general optimization.
Thanks to the low dimension5 and small size of the parametric space, this does
not pose a real problem in the presented settings, as the parameter estimation

5 Dimension of the parametric space searched during the evaluation phase is two, due
to two optimized parameters: STN entry a and exit b, both in the range of recorded
depths. The search space is further reduced by the conditions defined at the end of
Model Evaluation section, especially a ≤ b.
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took on average 0.9 s on the 247 training trajectories and model evaluation on
all 260 trajectories took on average 4.5 s on a standard laptop PC.

Overall, the model provided good classification accuracy. In our further work,
the model concept will be extended to fitting a 3D model to the μEEG trajecto-
ries, which may bring benefits to both surgical planning and modeling of neuronal
activity within and around the STN.
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