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Abstract. Segmentation is a crucial part of the signal processing as it
has a significant influence on further analysis quality. Adaptive segmen-
tation based on sliding windows is relatively simple, works quite good
and can work online. It has however many tunable parameters whose
proper values depend on the task and signal type. The paper proposes a
method of defining optimal parameters for detection of sleep spindles in
electroencephalogram. Segmentation algorithm based on Varri method
was utilized. Fitness function was proposed for estimation of agreement
between the segmentation result and borders of the target classification.
Particle swarm optimization was used to find optimal parameters. On the
data of 11 insomniac subjects the method reached 28 % improvement in
comparison to the baseline method using default parameters.

Keywords: Sleep EEG · Adaptive segmentation · Optimization · Sleep
spindles · Particle swarm optimization

1 Introduction

Signal segmentation is an important step of many signal processing applications.
The task of signal segmentation consists of splitting a non-stationary signal into
quasi-stationary epochs. This is particularly important and frequently used for
long-term electroencephalogram (EEG) analysis. One of the typical problems in
EEG analysis is detection of important EEG patterns like epileptic seizures or
sleep spindles. Typically, pattern classification is applied on features extracted
from short segments [1,13,18,21]. Therefore, the segmentation directly affects
the quality of further signal analysis. Segment borders should correspond to the
borders of the EEG patterns detected by expert as much as possible, otherwise
it would be difficult for the classifier to detect that pattern.

There are two types of segmentation: constant and adaptive. Constant seg-
mentation divides the signal into pieces with the same length, whereas adaptive
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one adjusts the segment size to the signal change points. The paper focuses on
methods of adaptive segmentation. Adaptive segmentation approaches divide
the signal into segments within which the statistics do not change too much.
There is a huge family of algorithms based on calculating metrics using sliding
window technique. The most popular algorithm is named after its author Alpo
Värri [19] and it is based on computing frequency and amplitude measures in
two successive sliding windows. A more complex algorithm uses a fractal dimen-
sion of the signal in a sliding window as a feature for segmentation [3,5]. Other
methods utilize non-linear energy operator [2,10]. These methods have linear
complexity, can work online and are very suitable for long-term signal analysis.
Other approaches are based on the signal prediction. If a mismatch between
the prediction and the original signal is higher than a defined threshold then it
suggests a potential segment boundary. Adaptive approaches have many advan-
tages to the constant ones, however the constant segmentation is usually used
in patterns detection because of its easy implementation [9].

The sleep spindle can be characterized as sinusoidal wave with 9–16 Hz fre-
quency and 0.5–3 s duration [7]. Sleep spindles play a significant role in modern
neuroscience. Along with K-complex they hallmark the second non-rapid eye
movement (NREM) sleep stage [7], but can occur in 3rd or 4th NREM sleep stage
(according to Rechtschaffen-Kales staging methodology [17]). Moreover, they are
connected with cognitive capabilities such a memory consolidation [7,20]. Also
the density of sleep spindles (number of events per minute) is an important index
in studies of brain and psychological disorders like schizophrenia [6,20], epilepsy
[16], and autism [15].

In the most real bio-medical signals it is not an easy task to define clearly
the borders between patterns, sometimes they are just unknown. Therefore the
majority of studies uses the simulated signals such as [4,14] for segmentation
results evaluation. There are two possibilities to measure goodness of segmenta-
tion: evaluation based on segments [2] and evaluation based on segment bound-
aries positions [8]. The sleep spindles are defined by their boundaries and the
latter type of evaluation is more natural. It has an intuitively clear way of calcu-
lation of goodness of fit using statistical measures of the performance of a binary
classification test such as F1 score and Matthews correlation coefficient.

This paper is devoted to developing a method of optimization of adaptive
segmentation in sleep spindle detection task. For that purpose a suitable fitness
function was proposed, it takes into consideration requirements on the segmen-
tation results. The method is tested on the real EEG data of insomniac subjects.
An analysis of parameters optimized on subsets of those data is provided.

2 Materials and Methods

2.1 Dataset

To evaluate the method sufficiently, whole night polysomnography data of 11
patients with main diagnosis of non-organic insomnia (5 women and 6 men)
were measured. The age of subjects is between 29 and 53, average age is 41.5.
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Data was recorded in National Institute of Mental Health, Prague. Sleep stages
were evaluated by trained clinician. EEG was recorded with C3 and C4 against
Cz electrodes, the sampling rate is 250 Hz. For future analysis the mean value
of channel C3-Cz and C4-Cz was utilized.

In this way, a dataset was obtained, which is large enough for the our partic-
ular task of evaluation of segmentation results. Concretely, total analyzed time
was 26 h and 4 min, which included 3167 sleep spindles corresponding to 6334
segment borders. Spindles were found manually for these segments by expert. It
should be noted, that only parts of the signal with NREM 2 sleep stage were
used in the paper.

2.2 Method Overview

The method scheme is introduced on Fig. 1. In the first step the raw signal was
filtered using band-pass filter in range 9–16 Hz. Further, the entire dataset was
divided into training and validation subsets. Optimization was performed on the
training set using particle swarm optimization (PSO). In order to compute the
fitness value, the candidate parameters are used in the segmentation described
in the Sect. 2.3 and the results are evaluated based on agreement with manu-
ally labeled spindles boundaries. The fitness function measures how close the
obtained segmentation and the expert signal labels are (see Sect. 2.5).

Fig. 1. Method overview.

2.3 Segmentation

Prior to the segmentation itself, appropriate preprocessing was applied to the
signal. It was filtered in frequency range associated with sleep spindles (9–16 Hz).
Further, segment boundaries are detected by detecting changes in the signal
using a sliding window method [14]. In this step two successive windows are
sliding along the signal and for each window a metric is computed. The Varri’s
method [14,19] is used to compute such metric.
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Let [x1, x2, x3, . . . , xN−1, xN ] be the signal of length N and let Wi = [xi, xi

+ 1, xi + 2, . . . , xi+L−1] be a window of length L starting at each sample of the
signal. The frequency measure for window Wi is defined as

F (Wi) =
L−1∑

j=1

|xi+j − xi+j−1| (1)

and the amplitude measure is

A(Wi) =
L∑

j=1

|xi+j−1|. (2)

A function M evaluates a window Wi using a combination of the frequency
and amplitude measures:

M(Wi) = k1F (Wi) + k2A(Wi), (3)

where k1 and k2 are coefficients weighting the amplitude and frequency compo-
nents. Those coefficient are parameters of the segmentation that are optimized
in our experiments. Further, one window is evaluated by M every K steps so
that one obtains J + 1 values

[M(W1),M(W1+K),M(W1+2K), . . . ,M(W1+JK)]. (4)

The step K between two windows is another parameter of the adaptive seg-
mentation to be optimized. The segment border detection is based on evaluation
of the absolute difference between two successive windows j and j + 1:

Gj = |M(W1+jK) − M(W1+(j−1)K)|, (5)

where j ∈ {1, . . . , J}. Thus, a sequence of J values for all J + 1 windows is
obtained:

G = [G1, G2, ..GJ ], (6)

which reflects the change of statistical properties of the signal. G is further
normalized by division of each Gj by maxj Gj . The border detection is performed
by thresholding the G, detecting local maxima, and simultaneously satisfying two
other constraints. The distance between the peaks must be higher th the window
size L and the amplitude of the peak must be higher than standard deviation
of the thresholded signal. Adaptive threshold is used, which is obtained as a
moving average value of the G sequence multiplied by threshold coefficient c.
The size of the moving average window and the threshold coefficient are also
parameters to be optimized. In Fig. 2 one can see an example of the raw and the
filtered signals, G sequence and corresponding segmentation.

The window length parameter L is important. It should be large enough
to detect difference in the two windows at all, but it should not be too large,
which could avoid to detect some borders by capturing lot of real segments
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Fig. 2. Segmentation process. From top to bottom: (a) original raw EEG data; (b)
signal filtered in range 9–16 Hz; (c) G function based on Varri metric of filtered signal
with labeled as red circles maximum of the function. Red lines show the segmentation
obtained using G function. (Color figure online)

in one window. The proper window length can be chosen using energy of the
G sequence. Ideally, G function with the proper window size should be highly
above zero close to segment boundaries and almost zero elsewhere. This property
can be evaluated using energy value. For an improper window length, G function
has more energy compared to a proper window length. Thus, for an analyzing
window with length L, the energy of the G sequence can be calculated as its
mean squared value:

E =

∑J
j=1 Gj

2

J
, (7)

where J is the length of the G sequence. A proper window length should cor-
respond to the minimum of the energy curve. In the paper energy of the corre-
sponding G function was calculated for optimal segmentation and segmentation
with default parameters.

2.4 Optimization Using Particle Swarms

The six parameters of the adaptive segmentation defined above were optimized
by the particle swarm optimization (PSO) method. It is one of optimization
methods developed for finding a global optimum of some nonlinear function [11].
It has been inspired by social behavior of birds and fish. The method applies
the approach of problem solving in groups. Each solution consists of a set of
parameters and represents a position in multidimensional space. In continuous
PSO, the solutions move in the search space in a swarm-like group. In the binary
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PSO, the solutions are binary vectors and the optimization process has rather a
socio-psychological metaphor [12].

The main entity of the algorithm is a particle. Each particle consists of
si,vi, sPi , sGi , where si is a candidate solution consisting of the six parameters
of the adaptive segmentation, sPi is the best so far solution found by ith par-
ticle and represents individual experience. sGi is the best solution so far found
by a predefined neighborhood of ith particle (subset of the whole swarm) and
represents the social knowledge.

Although the ring lattice sociometry is often used, we use another common
setting called gBest topology, in which the neighborhood is the whole swarm for
all particles. The solution vectors are usually called position, because of analogy
between position in the search space and position of social animals. The velocity
vector vi represents the difference between new and actual position of a particle
i and is used for the position update.

First, values of si and vi are initialized randomly. At each iteration, the
memories sPi and sGi are updated according to the cost values and new velocities
are computed. Finally, the position update is performed. In the original version
of the PSO, the velocity update is accomplished by the following equation:

vi(t+1) = ωvi(t) + ϕ1R1(sPi (t) − si(t)) + ϕ2R2(sGi (t) − si(t)), (8)

where the symbols R1 and R2 represent the diagonal matrices with random
diagonal elements drawn from a uniform distribution between 0 and 1. The
parameters ϕ1 and ϕ2 are scalar constants that weight influence of particles’
own experience and the social knowledge. The parameter ω is called inertia
weight and its behavior determines the character of the search. Further, new
candidate solutions (new positions) are updated. For continuous optimization,
the position update is simple:

si(t+1) = si(t) + vi(t+1). (9)

At each step, the PSO algorithm modifies the distance that each particle
moves on each dimension. Changes in the velocity are stochastic, and it can cause
an undesirable expansion of particles trajectory into wider and wider cycles [12].
One solution is to implement boundaries for the velocity. If any component of vi,
va
i is lower than −va

max or greater than +va
max, its value is replaced by −va

max or
+va

max, respectively. Note that there is different maximum velocities for different
components of the velocity vectors. The maximum velocity was set as the range
of the search space in the particular component.

Finally, a constraint handling technique was used to keep the parameter val-
ues within their feasible range. If any component of the position vector gets out
of the range, it is re-initiated on the border of the range and the corresponding
component of the velocity is inverted. Thus, the particles are repelled from the
constraint barrier.

Within the experiments, we used the following setting for PSO parameters.
The weight parameters ϕ1 = ϕ2 = 2.1, the inertia was linearly decreasing from
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0.6 to 0.3, swarm size was 25 and the number of iterations was 100. Those
parameters were not tuned as they correspond to typical and most common
setting in literature.

2.5 Fitness Function

In the paper the real EEG data with manually labeled sleep spindles were used.
It could be taken as the target segmentation, but the segment boundaries are
not always so unambiguous. For this reason instead of real borders as a gold
standard segmentation we used set of ranges where spindle border could occur
like it was in [8]. Each range is neighborhood of the real spindle border of size
0.125 s, the size of the neighborhood was chosen empirically. The minimal length
of spindle is 0.5 s, so the ranges do not overlap.

Since the target segmentation is determined, the true positives (TP ) could
be defined as number of ranges where there is at least one of found segmenta-
tion borders and false negatives (FN) as number of ranges where there is no
segmentation borders. Sum of TP and FN equals the number of ranges in the
target segmentation.

Moreover, spindles are not distributed equally in the whole signal. So, it can
happen that segmentation algorithm finds additional borders, but it could be
connected with signal change because of other processes. Those false positive
however do not matter if non-spindle segments are long enough. Assuming that
segment is a signal part between two successive borders and minimal length of
the segment equals the minimal spindle length (0.5 s), penalty value (PV ) has
been introduced and it equals the number of segments shorter than the minimal
length. TP, FN and PV examples are presented on Fig. 3.
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Fig. 3. Examples of TP, FN and PV. The red rectangles represent the ranges where the
real spindle borders occur, the blue lines are the result of segmentation. Line number
3 represents TP and absence of any found borders in the second range points on FN .
Distance between lines 1 and 2 is less than 0.5 s which increases PV by 1 point. And
line number 4 stands further than 0.5 s from other borders, it does not change PV
value. (Color figure online)
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Aggregating all those requirements on the result of segmentation, fitness
function (FF ) is defined as:

FF =
2TP

2TP + FN + PV
. (10)

The FF aggregates TP , FN and PV by analogy with f-measure in statistical
analysis of binary classification and measures an agreement with expert segmen-
tation on spindles and non-spindles segments. It varies from 0 when there is
empty TP set to 1 where there are no FN and PV .

3 Empirical Results

3.1 Experimental Settings

For the experimental results data of 11 subjects was used. The data was divided
into 5 folds, each fold corresponds to the data of 2 or 3 subjects. Optimization
of parameters described in Table 1 was tested by leave-one-out cross validation
scheme. This means that the optimization procedure was repeated for each fold
as a validation set and all the remaining folds as a training data. The optimal
parameters and their performance values were obtained 5 times, i.e. one for each
fold.

3.2 Results

The default and optimized parameter values and their feasible ranges are sum-
marized in Table 1. The FF values averaged over the cross-validation folds are
summarized in Table 2. In experiment 1, the segmentation using the default
parameters described in the second column of Table 1 was applied to the entire
dataset and mean value of FF function was 0.51. On the other hand, the mean
FF value of optimized solutions (obtained using cross validation) was 0.79. The
FF value is increased by 28%. The mean optimized values and their standard
deviations computed over cross-validation results can be found in the 4th col-
umn of the Table 1. Some parameters have quite wide standard deviation of their
optimized values caused by multiple optima. For an easy examination of this,
one can see the scatter plot of the optimized values of parameters on Fig. 4,
where each dot corresponds to one run in one cross-validation fold.

Some other interesting interpretation of the optimization results can be made.
At first, the optimized value of the window size is around 0.48 s. This value is
very close to a minimal expected length of the spindle.

An obvious question is, if it would be sufficient to optimize only the window
size and let all the other parameters default. The comparison is made in Table 2.
In experiment 3, adaptive segmentation with the window size L = 0.48 s, but all
the other parameters default, was used. The average fitness value equals to 0.72,
which is outperformed by the fully optimized adaptive segmentation and thus it
makes sense to optimize all the parameters.
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Table 1. Summary of parameters of the adaptive segmentation, their default values,
range and optimized value

Parameter Default Range Optimized

Window length (seconds) 1 〈0.25,3〉 0.48 ± 0.01

Step K (signal samples) 24 〈5, 56〉 5.1 ± 0.1

Threshold window (G sequence samples) 5 〈2, 20〉 5.16 ± 3.67

Threshold coefficient 1 〈0, 1〉 0.52 ± 0.56

k1 1 〈−100, 100〉 −13.52 ± 17.27

k2 7 〈−100, 100〉 −21.8 ± 84.96

Table 2. Summary of experiments and average fitness function values

Experiment Approach FF value

1 Adaptive, default 0.51

2 Adaptive optimized 0.79

3 Adaptive, L=0.48, other parameters default 0.72

4 Constant, L=1 0.41

5 Constant, L=0.48 0.67

A similar setting, but for constant segmentation, was performed in experi-
ments 4 and 5, where a constant segmentation with L = 1 obviously leads to the
worst result (FF = 0.41) and increases significantly to FF = 0.67 if the opti-
mized window size L = 0.48 s is used. Nevertheless, the adaptive segmentation
with all parameters optimized simultaneously is still much better choice. This
conclusion correspond to the difference of energy of G sequence defined in Eq. 7.
While in experiment 1, the energy is 0.056, in experiment 2 it is 0.037, which
confirms that the window size 0.48 s is better choice for the segmentation.

Since adaptive threshold was used in the presented method, there are two
parameters representing it. The threshold window size is a parameter of moving
average filter of the G function and the threshold coefficient which scales the
threshold relatively to standard deviation of the G sequence. In Fig. 4, one can
see a strong interaction between threshold coefficient and the threshold window
causing two different local optima. First one is that the coefficient is very close
to 0 and the window size is wider than 5 s. It gives no threshold and local peaks
are looking in the function G. The second optimum is very close to 1 but the
threshold window is quite narrow (about 2.17±0.15 s). In this case, the adaptive
threshold looks like the G function and only the highest peaks are above the
threshold.

Concerning the parameters k1 and k2, there is a tendency that absolute
value of k2 should be greater than absolute value of k1 in average on 62.17 ± 24.
This can be partly caused by the fact that the band-pass filtering was used for
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Fig. 4. Optimal parameters obtained in cross validation. Each figure represented dis-
tribution of one parameter against the other.

preprocessing, which reduces the relative importance of the frequency measure
term.

The optimized value of the window step K was about 5 samples, which is its
minimal admissible value. That means that the point of the signal is tested for
being a segment border every 5 steps.

It should be noticed that the other important segmentation is an execution
time and space complexity, which are directly influenced by the window size
and the step. The smaller values of these parameters lead to the higher execu-
tion duration and the biggest memory allocation. This aspect is however not
considered in our experiments and the optimization does not take the temporal
and space complexity into account. Since the swarm size was set to 20 and the
number of iterations was 150, FF evaluation (segmentation and evaluation of
the results) is performed 20*150 times in one run of PSO, which can make the
method time consuming and it could be worth to use some additional penaliza-
tion of candidate solutions with high complexity of FF evaluation.

4 Conclusion and Discussion

The method to optimize adaptive segmentation for the sleep spindle detection
task was presented in the paper. The method is based on the PSO optimization
algorithm and maximizes agreement measure between the results of segmenta-
tion and manually labeled spindles in the real EEG data. By the cross-validation
technique it was shown that using optimized parameters give 28% higher agree-
ment value than default ones. Obtained optimal parameters were analyzed and
the optimal size of a sliding window was found and equals to 0.48. An energy
of G sequence was compared for the segmentation with different window size
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and a reduction of the energy for optimized value against the default one was
observed. This points out the proper window size for the spindle segmentation
task. It turns out that using that window might not require the threshold and
that it leads to increase of the execution time. In the Varri metric it was proved
that impact of amplitude measure should be greater than impact of frequency
measure.

Future work will be dedicated to the research of the parameters: stability
investigation, looking for other minimums of the function and connected para-
meter clusters, patterns in data. The question about optimal parameters which
do not lead to the time and space consuming segmentation process is still open
and extended parameters analysis could help with that issue.

In future, the impact of the method for classification of the sleep spindles
and its impact on the classification performance will be focused. In fact, it is
possible to optimize segmentation using the misclassification rate. Besides the
sleep spindles there are another interesting EEG patterns such as K-complexes
and proposed method could be applied for the automatic identification of others
EEG patterns.
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