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Abstract. In this study, a new spatio-spectral filtering method for
motor imagery signal analysis is introduced. Motor imagery is an impor-
tant research area in brain computer interfacing. EEG signals related
with motor imagery have characteristic frequencies originating from sen-
sorimotor cortex. Common spatial patterns (CSP) method is a very pop-
ular and successful spatial filtering algorithm in motor imagery classifi-
cation. However, CSP only optimizes spatial filters, subject specific fre-
quency selection should be done manually, which is a meticulous process.
Therefore, an automatic method for spectral filter optimization is needed.
Proposed filter bank common spatio-spectral patterns (FBCSSP) algo-
rithm optimizes spatial and spectral filters. FBCSSP method uses a net-
work of a filter bank and two consecutive CSP layers so that proposed
structure has a subject specific response in both spatial and spectral
domains. We inspected the proposed method in terms of classification
accuracy and physiological consistence of the created filters using pub-
licly available data set. FBCSSP method gave higher classification accu-
racy than other spatio-spectral pattern methods in the literature. Also,
obtained spatial and spectral filters were consistent with the spatial and
spectral properties of motor imagery signals.

Keywords: Brain computer interfaces (BCI) · Motor imagery (MI) ·
Electroencephalogram (EEG) · Common spatial patterns (CSP)

1 Introduction

Brain computer interface (BCI) is an assistive technology which helps disabled
people by setting up a direct communication link between the users brain and
an electronic device or software such as a wheel chair, a computer running a
word processing program or a quad-copter [10,18]. In a BCI system, the activity
of the brain is measured and then converted to the control commands for the
controlled device. There are many techniques for measuring the brain activity
such as functional magnetic resonance imaging (FMRI), magnetoencephalogra-
phy (MEG), positron emission tomography (PET), electrocorticogram (ECoG)
or electroencephalography (EEG). Among them, EEG is the preferred way of
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acquiring brain signals thanks to its practicality, being low cost, non-invasiveness
and portability [20].

Motor imagery (MI) is an independent BCI method which uses motor cor-
tex as a signal source. MI guesses motor intentions of the user without any
actual muscular movement. In this context, the user imagines moving a limb
while his/her EEG is analyzed continuously by a BCI system which finds out
the imagined movement. Then, a command to be sent to the controlled device
is generated according to the type of the imagined motor movement. Motor
imagery studies showed that, imagination of movement of a limb creates spe-
cial oscillations called event related synchronization (ERS) and event related
de-synchronization (ERD) at specific frequency bands [2,15].

The pioneer study of Penfield and Boldrey in 1937 revealed important infor-
mation about spatial organization of motor cortex. They reported that, any mus-
cle group in the body is presented at a specific area on the motor cortex. The sizes
of these areas are proportional with the usage skills of the corresponding limb
rather than the limbs real size. The popular figure named homunculus resizes
the limbs proportional to their areas occupied on the motor cortex. The spa-
tial organization on motor cortex yields identification of various motor imagery
tasks according to the location of event related synchronization (ERS) and de-
synchronization (ERD) rhythms. However, scalp EEG signal is seriously affected
by the volume conduction effect in which the EEG signals all over the scalp are
mixed up and this results in poor spatial resolution [5]. In order to remove the
volume conduction effect, some spatial filtering methods are proposed such as
common average reference (CAR) [12], Laplacian (LAP) [12], common spatial
filters (CSP) [16] and spatial filter network (SFN) [19]. Among these methods,
CSP is a well known method for motor imagery classification problem and it was
proven to be efficient in recent BCI competitions [3,4].

To focus on the event related synchronization and de-synchronization (ERD
and ERS) signals and to achieve a high classification performance, it is necessary
to filter the EEG signal with a band pass filter prior to CSP calculation. However,
one problem is that, the frequency bands of these signals vary from subject
to subject. Generally, the cut-off frequencies of the band pass filter are either
selected manually or unspecifically set to a broad band filter [7], which results
in poor classification performance. Manual searching of the best frequency band
through the training set is laborious and time consuming [13]. Thus, optimizing
a spectral filter along with the spatial filter is highly desirable [7].

Common spatio-spectral pattern (CSSP) algorithm [11] is the firstly pro-
posed method to address this problem. CSSP embeds time delayed channels
into the original EEG signal in order to create a first order FIR filter for each
channel. Obtained results showed an improvement of the CSSP algorithm over
CSP. However, a first order FIR filter is very limited to select a certain frequency
band from the EEG spectrum. After that, an improvement to CSSP, Common
sparse spectral spatial pattern (CSSSP) was proposed [7]. CSSSP designs a FIR
filter with any order and common to all channels. This method searches for
a set of spectral-spatial filter coefficients by gradient search method which is



Filter Bank Common Spatio-Spectral Patterns 71

computationally expensive with additional cost for sparsification and it needs
some parameter tunings.

Sub-band common spatial patterns (SBCSP) [13] and filter bank common
spatial patterns (FBCSP) [1] methods are based on optimizing spatial filters
for multiple spectral filters that have different pass-bands. As reported in BCI
Competition III and IV, FBCSP method achieved a high classification accuracy
[4]. In these methods, a filter bank is used in order to decompose EEG signal
into multiple frequency bands and a separate spatial filter is calculated for each
band by CSP method. Then, features belong to different frequency bands are
chosen by feature selection methods based on mutual information maximization.

Higashi et al. recently proposed a method for simultaneous design of spectral
and spatial filters [9] called discriminative filter bank CSP (DFBCSP). DFBCSP
algorithm optimizes the coefficients of FIR filter(s) and corresponding spatial
weights. DFBCSP proposes an iterative method to optimize the spatial and
spectral filter coefficients by converting the spatial and spectral optimization
problems into separate generalized eigen value problems. Since it is an iterative
method, reaching the optimum point should take many steps and optimization
speed of the DFBCSP method depends on the degree of the FIR filter to be
optimized.

In this paper, we present spatio-spectral filtering method which binds the
spatial and the spectral filters in a mixed architecture that we call filter bank
common spatio - spectral patterns (FBCSSP). FBCSSP finds out the required
filter parameters with simple CSP calculations in one pass, without any itera-
tion. The detailed description of FBCSSP is found in Materials and Methods
section. We then compare the proposed method with other spatio spectral fil-
tering methods in the literature and obtained results shows higher classification
accuracy over them.

This paper is organized as follows, in Sect. 2, CSP and the proposed FBC-
SSP method will be described in details. In Sect. 3 we give the evaluations of
the proposed method comparing with other methods. Section 4 investigates the
advantages and the disadvantages of the FBCSSP algorithm. Finally, the Con-
clusion section summarizes the study and concludes the paper.

2 Materials and Methods

2.1 Common Spatial Patterns

Let Xk to be the kth epoch with class c in a motor imagery experiment which
includes N EEG channels and T time samples that are filtered with a band bass
filter which is manually set at a fixed frequency band. Let w ∈ R

Nx1 to be an
N dimensional spatial filter. Spatial filtering is simply the linear combination of
the channels with the coefficients of w:

zk = w�Xk (1)

where zk ∈ R
1xT denotes the projection of epoch Xk and � is the transpose

operation. CSP method searches for the best filter which maximizes the average
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power of one class while minimizing the average power of the other class. Since
the epoch Xk is a zero average signal (μk = 0) as a result of band pass filtering,
power of zk is obtained by the variance calculation:

P�
k = σ2 (zk) =

1
T

T∑

t=1

∣∣w� (Xk(t) − μk)
∣∣2 = w�Rkw (2)

Where Rk ∈ R
NxN is the covariance matrix of epoch k . Let Rc ∈ R

NxN to
be the average covariance matrices of the epochs that belong to the class c:

R(c) =
1
nc

nc∑

k∈c

Rk (3)

CSP uses Rayleigh ratio as an optimization function, which is the ratio of
average powers after spatial filtering:

wcsp = arg max
w

w�R(1)w

w�R(2)w
(4)

This optimization problem is solved by converting it to a generalized eigen
value problem:

(R(2)−1
R(1))w = λw (5)

Since the covariance matrices are of dimension NxN , solution to the gen-
eralized eigen value problem above generates n eigen vector (w) - eigen value
(λn) pairs (n = 1, 2, ...N). Note that, for any solution wn, Rayleigh ratio in (4)
gives λn. Thus, eigen vector corresponding to the largest eigen value gives the
maximum power ratio for class 1 over class 2 and, eigen vector corresponding to
the smallest eigen value gives the maximum power ratio for class 2 over class 1.
So, CSP firstly sorts the eigen values in descending order:

λ1 > λ2 > · · · > λm > λm+1 > · · · · · · > λN−m > λN−m+1 > · · · λN (6)

and then gets the m upper and m lower eigen vectors in order to create a
spatial filter matrix W ∈ R

MxN , where M = 2m. To classify an input epoch
with unknown class label, CSP firstly creates feature vectors using epochs with
known class labels. Feature vector of an epoch is usually log-variance of the
spatially filtered signal:

f j = log

(
var(zj)

∑M
l=1 var(zl)

)
j = 1, 2, ...M (7)

where j represents the column number in feature vector f ∈ R
M . In the above

equation, logarithm function is used for approximating the feature distribution
to a normal distribution [8].
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2.2 Filter Bank Common Spatio - Spectral Patterns

The proposed method of this study called filter bank common spatio - spectral
patterns (FBCSSP) method consists of two CSP layers. At the first layer, EEG
signal is filtered with a couple of FIR band pass filters. Then, each band passed
EEG signal with N channels are spatially filtered in the CSP-1 layer so that,
best spatial patterns for each frequency bands are determined in this layer. At
this point, proposed method differs from FBCSP and SBCSP methods. These
methods finalize preprocessing and extract features at the end of the first layer.
However, FBCSSP method continues signal preprocessing operation. Obtained
CSP-1 outputs are directly given to a second CSP filter, CSP-2. The purpose of
CSP-2 is linearly combining the outputs of the first spatial filter layer so that
maximum divergence could be obtained.

Fig. 1. A flowchart regarding filter bank common spatio - spectral patterns method.

Let X ∈ R
NxT be an input EEG signal matrix with T samples and N

channels, called as epoch. Firstly, all epochs in the training set are filtered with
FIR band pass filters at desired frequencies with degree P ,

X̂f,n(t) =
P∑

p=0

hf,pXn(t − p) X̂f ∈ R
NxT f = (1, 2, · · · F ) (8)

Where, hf,p is the pth weight of f th FIR filter. For each FIR filter output, a
CSP filter is created. Let the average covariance matrices at the output of the
f th filter be Rc

f where, c is the class label,

Rc
f =

1
Kc

∑

k∈c

X̂k
f

(
X̂k

f

)�
(9)

Where Kc is the number of epochs which belong to the class c. For two
classes, classical CSP approach may be applied. However, in order to find the
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spatial filters in a multiclass BCI experiment, one versus rest (OVR) CSP method
may be applied [6]. Let m1 o denote the number of spatial filters for one class
at the first layer and M1 to denote the total number of spatial filters where
M1 = m1C and C is the total number of classes. Let the obtained spatial filter
to be denoted with Uf ∈ R

NxM1 . Then, the output of this spatial filter will be,

Yf = U�
f X̂f Yf ∈ R

M1xT (10)

For the next layer, all outputs of first spatial layer are concatenated row
by row and a new epoch is created. Let Y be the new epoch matrix which is
defined as,

Y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

Y2

...

YF

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y ∈ R
FM1xT (11)

The second CSP layer works as a frequency selection. Let the average covari-
ance matrices for this layer be Rc ∈ R

FM1xFM1 . Rc is calculated as,

Rc =
1

Kc

∑

k∈c

Y k
(
Y k

) � (12)

Again, classical CSP or OVR CSP methods may be used for calculation of
the spatial filter matrix. Let m2 to be the number of spatial filters for each class
at the second layer. Then, the total number of spatial filters in this layer will
be M2 = m2C. If we denote W ∈ R

FM1xM2 as the spatial filter matrix of the
second label, the output of this layer will be,

Z = W�Y Z ∈ R
M2xT (13)

In the feature extraction method, same equation is used with CSP method
that was given in (7). Note that, in this case there will be M2 features. Obtained
features is given to a linear classifier such as LDA.

2.3 Filter Bank Selection

The filter bank used in FBCSSP may be configured according to the requirements
and prior information related with the processed signal. For motor imagery sig-
nals, a filter bank covering 8 Hz to 36 Hz is reasonable. However, FBCSSP has
the capability to combine the output filters and finally generate an optimized
spectral filter. Therefore, it is better to choose a filter bank which covers a wide
frequency band in which the banks overlap.
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While creating the filter bank structure, having linear phase response is the
most important point because in the second CSP layer, a spectral combina-
tion operation is done. FIR filters are appropriate option for being linear phase
response.

Here, the effect of linear combining the filter bank outputs will be analyzed.
Embedding (8) into (10) gives the output of the first layer in terms of the input
and the spectral filter parameters,

Yf (t) = U�
f

P∑

p=0

hf,pX(t − p) (14)

By using (13), it is possible to write the overall filter within one equation,

Z(t) =
F∑

f=1

WT
f U�

f

P∑

p=0

hf,pX(t − p) (15)

where, Wf ∈ R
M1xM2 is the spatial filter matrix in the second layer, associ-

ated with the f th output of the first layer. By organizing this equation, we reach
the equation,

Z(t) =
P∑

p=0

δ�
p X(t − p) (16)

which is the characteristic equation of the proposed spatio - spectral filter.
δp ∈ R

NxD holds the spatial and spectral characteristics of the FBCSSP filter
and it is defined as the following equation.

δp =
F∑

f=1

UfWf (17)

Above result yields, linear combination of the outputs of FIR filters means
linear combination of the filter coefficients. So, the both CSP layers bring up
a FIR filter which is a combination of the banks in the filter bank. Therefore,
using overlapped and numerous filters should give more flexible FIR filters. An
example filter bank frequency response is given in Fig. 4. Here, there are 7 FIR
filters that cover the entire frequency band and their linear combination.

Normally, CSP filter extracts independent components while simultaneously
diagonalizing of two covariance matrices. So, applying the CSP method to the
output of another CSP filter will not improve the divergence of the signal since
the output of the first CSP filter is linearly independent. However in the proposed
method, when joined altogether, the outputs of the first layer will become a non-
independent multi channel signal thus, CSP of second layer should increase the
overall divergence of the incoming signal. In fact, second CSP makes a spectral
weighting while linearly combining the outputs of the first layer.

Since they are linear filters of the same type, instead of cascading CSP filters
one after another, a single CSP could be used. Indeed, this should give a higher
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Rayleigh ratio then the FBCSSP. However, this CSP matrix filter would have
NxF inputs and M2 outputs and classifying performance will not be higher as
expected.

Different to various spectral filter optimization methods reported in the lit-
erature, FBCSSP searches for the linear combinations of some predefined FIR
filters. FBCSSP method has some advantages over these methods. Firstly, com-
putational complexity of the algorithm will not increase with the degree of the
FIR filters. Because only the outputs of the filters are being used, algorithm
does not try to manipulate the filter weights. Whereas, those methods face with
increasing computational complexity with the increasing filter degree. Secondly,
FBCSSP method gives the flexibility of defining various FIR filters. This makes
the algorithm to embed the existing prior knowledge into the spectra-spatial fil-
ters. For example, one can design FIR filters especially at the spectral region of
μ and β waves and ignore the other frequencies. Third advantage of the FBCSSP
is its non-iterative structure. The methods in [7,9,17] use an alternating opti-
mization strategy which iteratively increases the fitness function by updating
spatial and spectral filter parameters, respectively. Different spatial locations at
different frequency bands may be activated in execution of motor imagery. This
leads to spatial patterns specific to frequency band. FBCSSP method does not
ignore this assumption and produces spatial filters for each defined frequency
bands. This enables us to investigate the obtained spatial-spectral filters at a
specific frequency band.

2.4 Data Description and Preprocessing

We used the data set from BCI competition III, which is data set IVA. Detailed
information about this BCI competition may be found in [4]. Data set IVA is a 2
class motor imagery data set which includes EEG records from 5 subjects labeled
AA, AL, AV, AW and AY. Actually there were three classes (‘right’, ‘left’ and
‘foot’) in the original experiment, only cues for the classes ‘right’ and ‘foot’ are
provided in the public dataset. The recording includes 118 EEG channels were
measured at positions of the extended international 10/20-system. Signals were
sampled at 1000 Hz digitized with 16 bit (0.1uV) accuracy and band-pass filtered
between 0.05 and 200 Hz. Classes were labeled as right hand and foot. For each
subject, there are 280 trials defined with starting and ending markers as well as
its class label.

In this study, we applied the same pre-processing steps to all subjects. (i) we
selected electrodes on the motor cortex area. Selected electrodes for the two data
sets are shown in Fig. 2. (ii) For CSP method, EEG is band pass filtered with
8–30 Hz 5th order Butterworth filter since this band covers the motor imagery
signal frequency range roughly. For spatio spectral filtering methods, we used a
5 th order Butterworth filter with a pass band of 1–49 Hz. (iii) For each trial, we
used EEG signals in time segment between 0.5 s–2.5 s after instruction cue. Also
trials marked with rejected trial were excluded. Preprocessing phase is given in
Fig. 3.
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Fig. 2. EEG channels used in BCI competition III Data Set IVa. EEG was captured
with 118 electrodes according to the extended international 10/20-system
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Fig. 3. Preprocessing progress used in the evaluation

2.5 Selected filters

In this study, we used a total of seven overlapping band pass FIR filters which
cover the frequency band 1 50 Hz. The degree of the filters (P) was set to 20. Note
that one can search for different filter bank configuration providing that only FIR
filters are used because of their linear phase response. Since the selected filters
overlap, their linear combination should produce new spectral filter specific to
the subject under test. Frequency response of the filters used in the study is
given in Fig. 4.

3 Results

3.1 Evaluated Methods and Selected Configurations

In the following paragraphs, the methods that were evaluated will be listed with
the configuration specific to the method itself. Presented classification algorithms
have at least one setting values that is called hyper-parameter. For each subjects
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Fig. 4. Frequency responses of the selected FIR filters used in the study

and each method, hyper parameters are selected from a list and the best combi-
nation of the parameter values that gives the highest average performance within
a K-fold cross validation is reported under the obtained classification accuracy.

CSP

CSP method uses m as a hyper parameter which stands for the number of
spatial filters per class used for constructing the spatial filter. Possible values
for m was selected from {1, 2, 3, 4, 5}. Then for each subject, those possible m
values were tried was tried one by one and the best m that gives the highest
average performance was selected.

FBCSP

For FBCSP method, the filter bank used was a FIR filter bank including 7
FIR filters with cut off frequencies [2,10; 8,16;14,22; 20,28;26,34;32,40;38,46].
The degree of the filters was set to 20. The frequency responses of the filters in
the filter bank configured for evaluation are given in Fig. 4. The parameter m
for FBCSP method was chosen out of {1, 2, 3, 4, 5} and the number of features
selected (d) was chosen out of {1, 2, 3 · · · 10}.

FBCSSP

In FBCSSP method, the hyper parameters that were tried for the best combi-
nation are {m1,m2} which are the number of spatial filters for the first and the
second CSP layers per class, respectively. the values of m1 and m2 are selected
from the list {1, 2, 3, 4, 5} so that there are 25 combinations for each subject.
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The FIR filter bank used for FBCSSP method includes 7 FIR filters with
cut off frequencies [2,10; 8,16;14,22; 20,28;26,34;32,40;38,46]. The degree of the
filters was set to 20. The frequency responses of the filters in the filter bank
configured for evaluation are given in Fig. 4.

3.2 Classification Results

The classification accuracies of the described methods for the two BCI competi-
tion data sets are listed in Table 1. The outputs of the methods listed here were
classified using standard LDA classifier. Ten fold cross validation classification
accuracy was calculated for all methods. It is obvious that FBCSSP performs
high classification accuracy. Short description and specific configurations for each
of the methods used were given in the previous sub section.

Table 1 reports classification accuracies of each method for each subject. The
formula of the percentage accuracy (ACC%) was given by the formula,

ACC% = 100
C∑

c=1

TPc

TPc + TNc + FPc + FNc
(18)

Where, C is the total number of classes in the data set. The table also lists
the standard deviation (std) of any method for any subject. Since 10-fold cross
validation was used for evaluating the classification accuracy, std. represents the
standard deviation of all folds for the given subject and method.

Table 1. Classification performances of the listed methods for the subjects in BCI
competition III Data Set IVa.

METHOD
SUBJECTS

Average
aa al av aw ay

CSP
ACC (%)

std.
(m)

83.57
±9.85

(2)

97.50
±3.39

(3)

72.85
±10.13

(5)

92.5
±7.23

(2)

94.28
±3.84

(4)

88.14
±9.99

FBCSP
ACC (%)

std.
(m,d)

90.46
±4.31
(2;4)

98.54
±2.23
(2;3)

67.43
±6.63
(5;10)

97.72
±2.47
(3;8)

96.07
±3.63
(1;4)

90.05
±13.03

FBCSSP
ACC (%)

std.
(m1,m2)

92.51
±3.12
(1;1)

98.93
±1.72
(1;1)

80.72
±9.55
(4;4)

97.51
±2.41
(5;3)

97.51
±2.41
(1;5)

93.43
±7.51

The last column lists the overall accuracy and standard deviation for any
method and all subjects which summarizes the corresponding method’s classifi-
cation performance.

The number(s) in parenthesizes in any cell notifies the selected values of
parameters for the corresponding subject and the method. Also, the names of
the parameters are given in the second column. Note that, the accuracy value in
each cell is the outcome of the given parameter configuration.
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Fig. 5. Boxplots displaying the disturbance of classification performances for the sub-
jects in dataset IVA. (Color figure online)

Since the supplied data is subjective, methods’ performances highly vary
along the subjects. Therefore, along with the quantitative performance sum-
mary supplied by the tables, graphical presentations of the performances which
benchmark the listed methods with box plots subject by subject are given in
Fig. 5. The figure shows the classification accuracies of the subjects belong to
the data set IVA. In this figure, the horizontal axis is the methods that were
evaluated and the vertical axis is the evaluated performance value. For any sub-
ject and any method, the box boundaries represent the upper and lower 25 %
quartiles of the input data which is the output of the 10 fold cross validation for
the selected configuration. The red horizontal lines inside or on the boundary
of the boxes represent the median values. The whiskers (dashed lines above and
below the boxes) extend to the most extreme data points the box plot algorithm
considers to be not outliers, and the outliers are plotted with red cross marks
individually.

3.3 Spatial and Spectral Filters

Spatial filters calculated by training CSP and FBCSSP are given in Fig. 6 for all of
the subjects in theBCI data set.Also, spectral filters of FBCSSPare given inFig. 7.
Frequency response of the trained FBCSSP network is calculated by scanning all
of the inputs with signal at a given frequency and measuring the average power at
the output. In the figures, the spectral filter response is normalized. Spatial filter
illustrations are prepared similarly, all network inputs are scanned by inputting an
impulse and measuring the power of the signal for each input at the output. Then,
the calculated power corresponding to any input is converted to a gray scale color
value and displayed on a head figure with electrodes located. The pass band of the
obtained spectral filters are located approximately within the band, which is asso-
ciated with the sensorimotor cortex [14]. Besides, most of the spatial filters suc-
cessfully focused on the area related with the corresponding motor action over the
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Fig. 6. Obtained spatial filters of CSP (Left) and FBCSSP (Right) methods for
subjects of BCI competition III, data set IVA
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Fig. 7. Obtained spectral filters of FBCSSP method for subjects of BCI competition
III, data set IVA

sensorimotor cortex. Thus, FBCSSP is a convenient method not only for acquir-
ing higher classification rates, but also for extracting the physiological information
successfully.

4 Conclusion

In a motor imagery classification problem, applying a band pass filter which
is suitable with the frequency band of the subjects sensoriomotor cortex helps
finding out better spatial filters that focus on the related area on the motor
cortex better. However, the frequency band of the filter is subjective. Thus,
searching for a method that automatically sets the required band pass filter



Filter Bank Common Spatio-Spectral Patterns 83

is an important issue. Proposed FBCSSP method is a spatio spectral filtering
algorithm which optimizes spatial and spectral filters specific to any subject.

FBCSSP method is formed with a filter bank and two consecutive CSP layers
in which the first CSP layer plays role on localizing spatial filters specific to a
given frequency band while second one weights frequency bands and designs the
spectral filter by linearly combining the output of the first layer. The proposed
algorithm uses CSP, which is a state of art method in motor imagery classifi-
cation. Proposed method was inspected in terms of classification performance
and physiological plausibility of the obtained spectral and spatial filters. For
evaluation, we used a publicly available data set which is very popular in motor
imagery classification studies. Classification performance table shows that FBC-
SSP algorithm is a successful method. Furthermore, we confirmed the physiolog-
ical plausibility of the filter by inspecting filters spectral and spatial responses.
Reported results show that the FBCSSP method is a successful spatio spectral
method for motor imagery signal classification.

Developed method will be adapted for multiple classes as a future work. Also,
proposed method’s performance will be inspected by testing with more datasets
and more spatio-spectral methods found in the literature.
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