
Evaluating Top-K Approximate Patterns
via Text Clustering

Claudio Lucchese1(B), Salvatore Orlando1,2, and Raffaele Perego1

1 ISTI-CNR, Pisa, Italy
claudio.lucchese@isti.cnr.it

2 DAIS - Università Ca’ Foscari Venezia, Venice, Italy

Abstract. This work investigates how approximate binary patterns can
be objectively evaluated by using as a proxy measure the quality achieved
by a text clustering algorithm, where the document features are derived
from such patterns. Specifically, we exploit approximate patterns within
the well-known FIHC (Frequent Itemset-based Hierarchical Clustering)
algorithm, which was originally designed to employ exact frequent item-
sets to achieve a concise and informative representation of text data.
We analyze different state-of-the-art algorithms for approximate pattern
mining, in particular we measure their ability in extracting patterns that
well characterize the document topics in terms of the quality of clustering
obtained by FIHC. Extensive and reproducible experiments, conducted
on publicly available text corpora, show that approximate itemsets pro-
vide a better representation than exact ones.

1 Introduction

Clustering is one of the most studied fields in text mining. Text data are char-
acterized by high dimensionality, and this greatly influences the scalability and
the effectiveness of clustering algorithms. One of the most common approaches
to reduce dimensionality is to exploit stemming and removal of stop words, and,
finally, use a vector representation of documents, where the presence of each term
in a vector is weighted by using, for example, TF-IDF. However, stemming and
removal of stop words only alleviate the curse of dimensionality, due to the large
vocabulary of terms mentioned in a typical document corpus. A technique pur-
sued by seminal papers (see [1,12]) is to exploit an algorithm for mining Frequent
Itemset Mining (FIM) to extract a reduced set of more meaningful features, with
the aim of shrinking the vectorial representation of documents. In particular, in
this paper we focus on the FIHC algorithm (Frequent Itemset-based Hierarchical
Clustering), proposed by Fung et al. in their influential paper [3].

The idea of FIHC is to first mine the frequent itemsets, namely word-sets,
that co-occur in the corpus with a frequency not less than a pre-determined min-
imum support threshold, thus leading to a set of top-k most frequent word-sets.
FIHC exploits the extracted frequent word-set to determine an initial clustering
of documents, based on the documents that contain or overlap those patterns.
The collection of mined word-sets naturally identifies a vocabulary of frequent
c© Springer International Publishing Switzerland 2016
S. Madria and T. Hara (Eds.): DaWaK 2016, LNCS 9829, pp. 114–127, 2016.
DOI: 10.1007/978-3-319-43946-4 8

Evaluating Top-K Approximate Patterns via Text Clustering 115

terms, which determines the dimensionality of the vectors used to represent each
document. This representation is then used to recursively merge the initial clus-
ters until the desired number of clusters is obtained.

The quality of the top-k word-sets exploited by FIHC impacts on the quality
of the resulting clustering. For instance, changing the minimum support thresh-
old has the effect of changing the set of top-k most frequent word-sets, and thus
impacts on the feature space into which documents are mapped, as well as on
the seed clusters initially identified by each word-sets. Specifically, the smaller
the minimum support, the larger the set of the word-sets extracted. In fact, a
large support threshold may result in a reduced set of word-sets that occur in
many documents and thus having a loose discriminative power. On the other
hand, a small threshold may result in too many patterns and, consequently, a
large vocabulary of words used in the vectorial representation of documents,
again suffering from the curse of dimensionality during clustering.

We propose to use the clustering quality as a proxy measure to quantita-
tively evaluate the quality of different kinds of patterns that are used to feed
the FIHC algorithm. In particular, we study approximate patterns that identify
itemsets that are approximately included in the corresponding sets of trans-
actions [7,9,13]. This means that, given an approximate pattern, some false
positives are allowed, i.e., some of the items included in the patterns may not
occur in a few transactions supporting the pattern. While the exact patterns
are commonly ranked according to the popular concept of frequency in the col-
lection, the alternative approximate patterns we study in this paper are ranked
according to different definitions of importance.

To limit the number of patterns used to model documents and identity the
initial clusters, for both the exact and approximate cases we select the top-k one.
Whereas for frequent ones these top-k patterns are simply the most frequent ones,
an approximate pattern algorithm aims at discovering the set of k patterns that
best describes/models, the input dataset. State-of-the-art algorithms differ in the
formalization of the above concept of dataset description. For instance, in [9] the
goodness of the description is given by the number of occurrences in the dataset
incorrectly modeled by the extracted patterns, while shorter and concise patterns
are promoted in [7,13]. The goodness of a description is measured with some cost
function, and the top-k mining task is casted into an optimization of such cost.
In most of such formulations, the problem is proved to be NP-hard, and greedy
strategies are therefore adopted. At each iteration, the pattern that best optimizes
the given cost function is added to the solution. This is repeated until k patterns
have been found or until it is not possible to improve the cost function.

In this paper we study the quality of document clustering achieved by exploit-
ing the approximate top-k patterns extracted by three state-of-the-art algorithms:
Asso [9], Hyper+ [13] and PaNDa+ [8], where the cost functions adopted by
Asso [9] and Hyper+ [13] share important aspects that can be generalized into
a unique formulation. The PaNDa+ framework can be plugged with such gen-
eralized formulation, which makes it possible to greedily mine approximate pat-
terns according to several cost functions, including the ones proposed in [7,10].
PaNDa+ also allows to include maximum noise constraints [2].

116 C. Lucchese et al.

Concerning the evaluation methodology of these patterns, we adopt the qual-
ity of the clustering obtained by FIHC as a proxy of the quality of the patterns
extracted by the various algorithms. Specifically, we use the aforementioned min-
ing algorithms to extract top-k approximate patterns sets, which are then used
to fed FIHC in order to cluster the input documents. Several commonly used
“external” measures are used to evaluate the goodness of the pattern-based
clusters with respect to the true classes of the documents. Moreover, we also
compared such methods with a couple of baselines, i.e., K-Means and a version
of FIHC exploiting classical frequent word-sets (exact patterns).

The main contribution of this paper is an extensive evaluation of approximate
patterns. Our investigation shows that approximate patterns provide a better
representation of the given dataset than exact patterns, and that PaNDa+ gen-
erates patterns of better quality than other state-of-the-art algorithms. In other
words, our experiments shows that PaNDa+ seems to be able to better capture
the patterns/features characterizing the most salient topics being discussed in
the given corpus of documents.

The rest of the paper is organized as follows. Section 2 discusses exact and
approximate pattern mining, and briefly introduces some algorithms for top-k
approximate pattern miming. Section 3 discusses the clustering algorithm FIHC,
and the possible exploitation within FIHC of either frequent or approximate
patterns. In Sect. 4 we describe the experimental setting and the quality of doc-
ument clustering identified by the various versions of FIHC and the baselines.
Finally, Sect. 5 draws some concluding remarks.

2 Approximate and Exact Patterns

The binary representation of a transactional dataset, indeed a multi-set of item-
set where each itemset is a subset of a given collection of items I, is convenient
to introduce pattern mining extracted from textual datasets. A transactional
dataset of N transactions and M items – which is analogous to representing a
corpus of N documents with a vocabulary of M terms as a collections of “sets
of words”, thus ignoring the positions and the number of occurrences of each
term in a document – can be represented by a binary matrix D ∈ {0, 1}N×M ,
where D(i, j) = 1 if the jth item occurs in the ith transaction, and D(i, j) = 0
otherwise.

An pattern P is thus identified by a set of items, along with the set of trans-
actions where the items occur. In terms of text documents, P is a word-set
occurring in a given set of documents. We represent these two sets as binary
vectors P = 〈PI , PT 〉, where PI ∈ {0, 1}M and PT ∈ {0, 1}N are the indicator
vectors of two subsets of items and transactions, respectively. The outer product
PT ·PT

I ∈ {0, 1}N×M identifies a sub-matrix of D. These patterns are also called
hyper-rectangles [13]: each pattern can be visualized as a rectangle if we properly
reorder rows (transactions) and columns (items) to make them contiguous.

If a pattern is exact, the sub-matrix only covers 1-bits in D, where ‖PI‖ is
the length of the pattern and ‖PT ‖ is its support, with ‖·‖ being the L1-norm (or

Evaluating Top-K Approximate Patterns via Text Clustering 117

Hamming norm) that simply counts the number of 1 bits in each binary vector.
Conversely, in case a pattern is approximate, it only approximately covers 1-bits
in D (true positives), but it may also cover a few 0-bits too (false positives).
Still we have that ‖PI‖ is the length of the patten, and ‖PT ‖ is its approximate
support.

2.1 Exact Closed Patterns

Let Πσ =
{
P1, . . . , P|Πσ|

}
be a set of exact frequent patterns, where σ is the

minimum support ratio. These patterns may overlap, since they may share items
or transactions. Therefore, ∀P ∈ Πσ, P = 〈PI , PT 〉, we have that ‖PT ‖

N ≥ σ,
where N is the number of documents in the corpus, represented as D.

In this paper, we exploit the popular concept of closed frequent patterns,
by removing from Πσ some redundant patterns, since this also prevents the
creation of redundant initial seed clusters used by FIHC. Specifically, a pattern
Pi ∈ Πσ, Pi = 〈P i

I , P
i
T 〉, is said closed iff �Pj ∈ Πσ, Pj = 〈P j

I , P j
T 〉, such that

set(P j
I) ⊂ set(P i

I)
1 and P i

T = P j
T . In other words, we maintain in Πσ only the

frequent itemsets such that there is no other super-itemset occurring in exactly
the same set of transactions.

The number of frequent closed item sets may be orders of magnitudes smaller
than all the frequent ones, still providing the same information: frequent itemsets
can be in fact derived from closed ones. We denote by Π̂σ, where Π̂σ ⊆ Πσ,
the set of closed patterns given a minimum support σ. Several frequent closed
itemsets mining algorithm [5,14] can be used to mine D.

Since we need to limit the set of (closed) patterns to the top-k most frequent
ones, we first select the largest σk such that:

σk = argmax
σ

|Π̂σ| ≥ k (1)

and then select the top-k in Π̂σk , denoted by Π̂σk

k , where the patterns in Π̂σk

are first sorted in decreasing order of support (and then of pattern length). This
minimum support σk used to identify Π̂σk

k , is then employed by FIHC within
specific similarity measures.

In this work, we thus exploit such top-k closed frequent itemsets as a baseline
of the possible pattern-based features used to model the text documents that
feed the FIHC algorithm.

2.2 Approximate Patterns

Let Π =
{
P1, . . . , P|Π|

}
be a set of approximate overlapping patterns that aim at

best describing/modelling the input dataset D. This means that Π approximately
cover the 1’s in dataset D, except for some noisy item occurrences, identified by
matrix N ∈ {0, 1}N×M :

1 set(·) takes an indicator vector and returns the corresponding subset.

118 C. Lucchese et al.

N =
∨

P∈Π

(PT · PT
I) � D. (2)

where ∨ and � are respectively the element-wise logical or and xor operators.
Note that some 1-bits in D may not be covered by any pattern in Π (false
negatives).

Indeed, our formulation of noise (matrix N) models both false positives and
false negatives. If an occurrence D(i, j) corresponds to either a false positive or
a false negative, we have that N (i, j) = 1.

We define the top-k approximate pattern discovery problem as an optimiza-
tion one, where the goal is to minimize a given cost function J(Πk,D):

Πk = argmin
Πk

J(Πk,D) (3)

A general formulation of the cost function J is the following:

J(Πk,D) = γN (N) + ρ ·
∑

P∈Πk

γP (P) (4)

where N is the noise matrix defined by Eq. 2, γN and γP are user defined func-
tions measuring the cost of encoding noise and pattern descriptions, respectively.
Constant ρ ≥ 0 works as a regularization factor weighting the relative importance
of the patterns cost. It is worth noting that such cost J is directly proportional
to the complexity of the pattern set and the amount of noise, respectively.

The various algorithms for top-k patterns greedily optimize a specialization
of the function of Eq. 4. In addition, they exploit some specific parameters, whose
purpose is to make the pattern set Πk subject to particular constraints, with the
aim of (1) reducing the algorithm search space, or (2) possibly avoiding that
the greedy generation of patterns brings to local minima. As an example of the
former type of parameters, we mention the frequency of the pattern. Whereas,
for the latter type of parameters, an example is the amount of false positives
we can tolerate in each pattern. Table 1 summarizes the specialization of the
generalized cost function.

In the following, we briefly discuss some state-of-the-art algorithms for top-k
approximate pattern mining, in turn used to select a significant set of features
modelling documents to be clustered by FIHC.

Asso [9] is a greedy algorithm that minimizes function JA in Table 1, which
only measures the amount of noise in describing the input data matrix D. Note
that this noise, namely γN (N) = ‖N‖, is measured as the L1-norm ‖N‖ (or
Hamming norm), which simply counts the number of 1 bits in matrix N . Indeed,
Asso aims at finding a solution for the Boolean matrix decomposition problem,
thus identifying two low-dimensional factor binary matrices of rank k, such that
their Boolean product approximates D. The authors of Asso called this matrix
decomposition problem the Discrete Basis Problem (DBP). It can be shown that
the DBP problem is equivalent to the approximate top-k pattern mining problem
when optimizing JA. Asso works as follows. First, it creates a set of candidate
item sets by extending each item with every other item having correlation grater

Evaluating Top-K Approximate Patterns via Text Clustering 119

Table 1. Objective functions for Top-k Pattern Discovery Problem.

Cost function Specialization Description

JA(Πk, D) γN (N) = ‖N‖ Minimize noise [9]

γP (P) = 0

ρ = 0

JH(Πk, D) γN (N) = 0 Minimize pattern set complexity [13]

γP (P) = ‖PT ‖ + ‖PI‖
ρ = 1

JP (Πk, D) γN (N) = ‖N‖ Minimize noise and pattern set complexity
[6,7]

γP = ‖PT ‖ + ‖PI‖
ρ = 1

Jρ
P (Πk, D) γN (N) = ‖N‖ Extend JP to leverage the trade-off between

noise and pattern set complexity

γP (P) = ‖PT ‖ + ‖PI‖
ρ = ρ

JE(Π, D) γN (N) = enc(N) Minimize the encoding length [11] of the
pattern model according to [10]

γP (P) = enc(P)

ρ = 1

than a given parameter τ . Then Asso iteratively selects a pattern from the
candidate set by greedily minimizing the JA.

Hyper+ [13] is a two-phase algorithm aiming at minimizing function JH

in Table 1, which only considers the pattern set complexity. Specifically, the
complexity of each pattern in P ∈ Πk is measured by γP (P) = ‖PT ‖ + ‖PI‖.
In the first phase, the algorithm aims to cover in the best way all the items
occurring in D, with neither false negatives nor positives, and thus without any
noise. The rationale is to promote the simplest description of the whole input
data D, without any constraint on the amount k of patterns. For this first phase
Hyper+ uses a collection of frequent item sets, for a given minimum support
parameter σ. In the second phase, pairs of patterns previously extracted are
recursively merged as long as a new collection of approximate patters can be
obtained without generating an amount of false positive occurrences larger than
a given budget β. Finally, since the pattern set produced by Hyper+ is ordered
(from most to least important), we can simply select Πk as the top-listed k
patterns, as done by the algorithm authors in Sect. 7.4 of [13]. Note that this
also introduces false negatives, corresponding to all the occurrences D(i, j) = 1
in the dataset that remain uncovered after selecting only the top-k patterns.

Finally, we considered PaNDa+, a pattern mining framework [8] that can
be plugged in with all the cost functions in Table 1, including the last three
functions JP , Jρ

P , and JE , which can fully leverage the trade-off between patterns

120 C. Lucchese et al.

description cost and noise cost. In particular, JE , originally proposed in [10],
realizes the MDL principle [11]. The regularities in D, corresponding to the
discovered approximate patterns Πk, are used to lossless compress the whole D,
expressed as pattern model and noise, as in Eq. 2. Hence, the best pattern set Πk

is the one that induces the smallest encoding of D, namely JE . PaNDa+ adopts
a greedy strategy by exploiting a two-stage heuristics to iteratively select each
pattern: (a) discover a noise-less pattern that covers the yet uncovered 1-bits of
D, and (b) extend it to form a good approximate pattern, thus allowing some
false positives to occur within the pattern. Finally, in order to avoid the greedy
search strategy accepting too noisy patterns, PaNDa+ supports two maximum
noise thresholds εr, εc ∈ [0, 1], inspired by [2], aimed at bounding the maximum
amount of noise along the rows and columns of each pattern.

3 Frequent Itemset-Based Hierarchical Clustering

In this section we discuss the FIHC framework [3] for document clustering.
FIHC implements 3 steps:

1. frequent item sets are mined and transformed in a set of initial grouping of
transactions;

2. these groups are refined to produce a partitional clustering;
3. these clusters are recursively merged until the desired number of clusters is

obtained.

In the first step, FIHC transforms the input corpus of documents in a binary
representation suitable for frequent pattern mining algorithms, where the vector
dimensions state the presence/absence of a vocabulary term in a document.
According to the framework of Sect. 2, each mined frequent (closed) pattern
P ∈ Π̂σk

k , P = 〈PI , PT 〉, trivially identifies a group of documents – i.e., the
dataset documents corresponding to PT that support the word-set identified by
PI . Since a transaction may support several frequent itemsets, by construction
these document groups may overlap. We focus on closed frequent itemsets [5,
14] as they are a succinct representation of all the frequent itemsets, avoid
redundancies by definition: this is because they are maximal with respect to the
set of supporting transactions, and therefore there are no two closed itemsets
supported by the same set of transactions.

We call candidate seed clusters the resulting groups of transactions support-
ing the the various frequent (closed) itemsets extracted, used in the subsequent
step of FIHC.

In the second step, FIHC enforces a partitional clustering, where each trans-
action is assigned to only one of the candidate clusters. To this end, FIHC uses
a function Score(·), which measures how well a given transaction fits within a
candidate cluster. Each transaction is then assigned to the best fitting cluster.
The Score(·) function is defined in terms of the items’ global frequency and local
frequency.

Evaluating Top-K Approximate Patterns via Text Clustering 121

Given an item x ∈ I, the global frequent φD(x) is the ratio suppD(x)/|D|
that considers all the transactions in the input dataset D supporting item x,
while the local frequency φC(x) is the ratio suppC(x)/|C| limited to transactions
associated with a given cluster C under consideration.

On the basis of the extracted pattern set Π̂σk

k , we first prune from I the
infrequent items, thus obtaining I ′ = {x ∈ I | φD(x) ≥ σk}.

Besides the minimum global frequency threshold σk, the same used to extract
the top-k frequent (closed) patterns, FIHC also defines a minimum local fre-
quency threshold σloc, used to identify the set of locally frequency items of cluster
C, defined by LFC = {x ∈ I ′ | φC(x) ≥ σloc}.

It is worth recalling that in order to compute φC(x) and φD(x), in this phase
we ignore possible multiple occurrences of term x in each transaction/document.
Indeed, FIHC combines this concept of global/local frequency with a typical
word weighting scheme, where the term frequency is instead taken into account.
Given a transaction t, which simply represents the presence/absence of the vari-
ous words in a document, the algorithms builds an associated vector −→ω t, where
ωt(x) weights the importance of term x in the original document, measured by
the usual TF · IDF statistics. The matching of a transaction t to a cluster C is
thus defined as a function of such weight vector, that only consider the items in
the pruned set I ′:

Score(C ← −→ω t) =
∑

x∈I′,x∈t,x∈LFC

ωt(x) ·φC(x)−
∑

x∈I′,x∈t,x�∈LF C

ωt(x) ·φD(x) (5)

where the first term of the function rewards cluster C if word x is locally frequent
in C, whereas the second term penalizes the same cluster for all the items of t
that not locally frequent. The last term encapsulates the concept of dissimilarity
into the score.

Intuitively, a cluster C is good for t if there are relatively many items in t that
appear in many other transactions assigned to C, and this happens when t is
similar to these transactions because they share many common frequent items.
Finally, terms with larger TF · IDF values have a larger impact.

According to such scoring function, each transaction in the dataset is asso-
ciated with one and only one of the candidate clusters identified in the previous
step. At the end of this second stage, a partitional clustering is thus attained,
where only a few of the original candidate clusters survived by attracting other
transactions.

During the third and last phase, FIHC merges similar pairs of clusters, using
an ad-hoc similarity measure. Merging is performed recursively until the desired
number of final clusters is reached. Indeed, the inter-cluster similarity is defined
on top of the above Score(·) function. Given two clusters Ci and Cj , all the
transactions in the latter are combined and matched to the former. Let ωCj

be this combined weight vector, obtained by summing up the weight vectors
of all the transactions in Cj , i.e. −→ω Cj

=
∑

t∈Cj

−→ω t. Thus, the following cluster
similarity is defined:

122 C. Lucchese et al.

Sim(Ci ← Cj) =
Score

(Ci ← −→ω Cj

)

Ω
+ 1 (6)

where Ω in a normalization factor. The whole similarity computed in Eq. 6 is
asymmetric and normalized between 0 and 2. It is finally made symmetric by
taking the geometric mean of Sim(Ci ← Cj) and Sim(Cj ← Ci):

Inter Sim(Ci ↔ Cj) =
√

Sim(Ci ← Cj) · Sim(Cj ← Ci) (7)

At each step of the recursive merging, the two most similar clusters Ci and Cj

are replaced by a new cluster Cij = Ci ∪ Cj .

3.1 Exploiting Approximate Patterns in FIHC

The FIHC framework can be easily adapted to produce a clustering starting from
the approximate patterns extracted by algorithms such as Asso, Hyper+, and
PaNDa+. Indeed, they return patterns of the form P = 〈PI , PT 〉, where each
pattern identifies not only a set of items (namely vector PI), but also a set of
related transactions (namely vector PT). Therefore, these patterns are analogous
to those returned by a frequent (or frequent closed) itemset mining algorithm.
The only difference is that, due to noise, the item set identified by PI may be
only approximatively supported by the set of transactions corresponding to PT .

In order to apply the score function in Eq. 5, we need to redefine the concept of
globally frequent item, since both PaNDa+ and Asso do not use any frequency
threshold to extract the patterns.

The original FIHC uses the minimum support threshold σk, which works as
a sort of a priori filter, by limiting the selected features to only the frequent
items and disregarding the infrequent ones. Conversely, the patterns returned
by PaNDa+ or Asso are not derived on the basis of any frequency threshold,
even if both the algorithms extract significant patterns, even if the single items
occurring in each approximate pattern are likely to be well supported in the
dataset.

In analogy with frequent itemsets, where the single items that occur in any
patterns are globally frequent by definition, we consider all the items occurring
in the various approximate patterns P ∈ Πk as the ones to be included in the
pruned set of items I ′, I ′ ⊆ I. Thus, in order to permit FIHC to exploit an
approximate pattern set, we need to replace the concept of global frequency of
an item by the concept of occurrence of the same items in the pattern set.

We argue that a high quality pattern set should boost the quality of the
generated clustering by FIHC. This is confirmed by our experimental results,
where the clustering quality obtained by using top-k approximate patterns are
better than using exact frequent (closed) ones.

4 Experimental Evaluation of Approximate Patterns

We compared the quality of the approximate patterns extracted by PaNDa+,
Asso, and Hyper+ by using as a proxy the quality of the clustering obtained

Evaluating Top-K Approximate Patterns via Text Clustering 123

by FIHC, which in turn uses such top-k patterns as described in Sect. 3. We
run our experiments on four categorized text collections (R52 and R8 of Reuters
21578, WebKB 2, and Classic-4 3). The main characteristics of the datasets used
are reported in Table 2. As expected, these datasets have a very large vocabu-
lary with up to 19,241 distinct terms/items. The binary representation of those
datasets, after class labels removal, was used to extract patterns. The number
L of the class labels varies from 4 to 52.

Table 2. Datasets.

Dataset L M N avg. doc. len

Classic-4 4 5896 7094 34.8

R8 8 17387 7674 40.1

R52 52 19241 9100 42.1

WebKB 4 7770 4199 77.2

During the cluster generation step, the usual TF · IDF scoring was adopted
to instantiate −→ω t, and σloc = 0.25 was used. We forced FIHC to produce a
number of clusters equal to L. Even if the goal of this work is to evaluate dif-
ferent solutions for pattern-based clustering, we also reported as a reference the
results obtained with the K-Means clustering algorithm, by still setting para-
meter K of K-Means equal to the number L of classes in the datasets. Finally,
cosine similarity was used to compare documents. This baseline is used only to
make sure that the generated clustering is of good quality. All the pattern-based
algorithms evaluated perform better than K-Means.

The quality of the clusters generated by each algorithm was evaluated with 5
different measures: Jaccard index, Rand index, Fowlkes and Mallows index (F-
M), Conditional Entropy (the conditional entropy HK of the class variable given
the cluster variable), and average F -measure (denoted F1) [4]. For each measure
the higher the better, but for the conditional entropy HK where the opposite
holds. The quality measures reflect the matching of the generated clusters with
respect to the true documents’ classification.

Tables 3,4 report the results of the experiments conducted on the four text
categorization collections.

In order to evaluate the benefit of approximate patterns over exact frequent
patterns, we also investigated the clustering quality obtained by FIHC with the
50 and 100 most frequent closed item sets. As shown in Table 3, closed patterns
provide a good improvement over K-Means. The best F1 is achieved when
100 patterns are extracted, with an improvement of 13% over K-Means, and
similarly for all other measures. This validates the hypothesis of pattern-based
text clustering algorithms, according to which frequent patterns provide a better
feature space than raw terms.

2 http://www.cs.umb.edu/∼smimarog/textmining/datasets/index.html.
3 http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-

datasets/.

http://www.cs.umb.edu/~smimarog/textmining/datasets/index.html
http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/
http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/

124 C. Lucchese et al.

Table 3. Pattern-based clustering evaluation. Best results are highlighted in boldface.

Algorithm # Patt. Dataset F1 ↑ Rand↑ Jaccard↑ F-M↑ HK ↓ Avg.Len. Avg.Supp.

K-Means L Classic-4 0.397 0.525 0.214 0.358 1.668 – –

R52 0.394 0.687 0.271 0.428 2.630 – –

R8 0.523 0.464 0.377 0.596 1.843 – –

WebKB 0.508 0.617 0.287 0.453 1.364 – –

avg. 0.455 0.573 0.288 0.459 1.876 – –

Closed 50 Classic-4 0.470 0.633 0.250 0.400 1.461 1.000 852.220

R52 0.407 0.769 0.177 0.360 1.894 1.860 2977.580

R8 0.624 0.671 0.384 0.555 1.404 1.940 2675.980

WebKB 0.432 0.331 0.277 0.506 1.880 2.020 1828.500

avg. 0.483 0.601 0.272 0.455 1.660 1.705 2083.570

Closed 100 Classic-4 0.472 0.585 0.249 0.401 1.539 1.100 660.890

R52 0.495 0.819 0.355 0.557 1.888 2.240 2442.170

R8 0.648 0.692 0.423 0.596 1.364 2.360 2215.390

WebKB 0.435 0.318 0.281 0.516 1.879 2.400 1534.810

avg. 0.512 0.603 0.327 0.517 1.668 2.025 1713.315

Asso L Classic-4 0.452 0.628 0.217 0.357 1.537 1.000 1456.250

R52 0.300 0.761 0.098 0.272 1.574 4.692 976.385

R8 0.446 0.680 0.222 0.401 1.258 6.500 1656.875

WebKB 0.436 0.627 0.200 0.333 1.700 9.000 1142.750

avg. 0.409 0.674 0.184 0.341 1.517 5.298 1308.065

Asso 50 Classic-4 0.519 0.633 0.256 0.407 1.406 1.040 844.300

R52 0.287 0.762 0.106 0.283 1.669 4.640 995.920

R8 0.693 0.762 0.454 0.630 1.116 5.040 800.980

WebKB – – – – – – –

avg. – – – – – – –

Hyper+ L Classic-4 0.452 0.628 0.217 0.357 1.537 1.000 1456.250

R52 0.352 0.749 0.117 0.264 1.953 4.558 132.404

R8 0.368 0.599 0.156 0.283 1.667 6.375 236.000

WebKB 0.410 0.422 0.248 0.433 1.831 7.500 185.500

avg. 0.396 0.599 0.185 0.335 1.747 4.858 502.538

Hyper+ 50 Classic-4 0.480 0.596 0.255 0.409 1.509 1.040 854.700

R52 0.357 0.749 0.118 0.265 1.962 4.580 136.660

R8 0.668 0.733 0.404 0.581 1.191 4.840 116.940

WebKB 0.436 0.313 0.283 0.520 1.883 5.940 70.100

avg. 0.485 0.598 0.265 0.444 1.636 4.100 294.600

Hyper+ 100 Classic-4 0.511 0.675 0.271 0.427 1.345 1.010 656.930

R52 0.480 0.803 0.313 0.511 1.955 3.930 86.190

R8 0.639 0.665 0.376 0.547 1.315 4.180 75.160

WebKB 0.437 0.305 0.284 0.525 1.884 5.460 48.960

avg. 0.517 0.612 0.311 0.503 1.625 3.645 216.810

For all the approximate pattern mining algorithms, we evaluated the clusters
generated by feeding FIHC with L, 50, or 100 patterns.

The Asso algorithm has a minimum correlation parameter τ which deter-
mines the initial patterns candidate set. We reported results of τ = 0.6, for which

Evaluating Top-K Approximate Patterns via Text Clustering 125

Table 4. Pattern-based clustering evaluation. Best results are highlighted in boldface.

Algorithm # Patt. Dataset F1 ↑ Rand↑ Jaccard↑ F-M↑ HK ↓ Avg.Len. Avg.Supp.

PaNDa+ (ε = 0.75) L Classic-4 0.439 0.621 0.215 0.354 1.637 3.250 401.000

R52 0.347 0.771 0.133 0.334 1.653 6.712 578.692

R8 0.479 0.658 0.214 0.377 1.354 6.250 1468.250

WebKB 0.361 0.557 0.192 0.324 1.886 14.500 1261.500

avg. 0.406 0.652 0.188 0.347 1.632 7.678 927.361

PaNDa+ (ε = 1.00) L Classic-4 0.471 0.639 0.228 0.373 1.528 3.750 356.500

R52 0.314 0.765 0.115 0.299 1.730 5.962 558.942

R8 0.529 0.697 0.266 0.452 1.297 5.250 1676.000

WebKB 0.351 0.576 0.179 0.305 1.885 22.750 1111.000

avg. 0.416 0.669 0.197 0.357 1.610 9.428 925.611

PaNDa+ (ε = 0.75) 50 Classic-4 0.498 0.633 0.238 0.384 1.436 2.560 193.120

R52 0.352 0.769 0.126 0.320 1.624 7.380 566.920

R8 0.672 0.756 0.435 0.614 1.172 8.220 457.320

WebKB 0.433 0.331 0.279 0.509 1.886 33.100 325.940

avg. 0.489 0.622 0.269 0.457 1.530 12.815 385.825

PaNDa+ (ε = 1.00) 50 Classic-4 0.468 0.573 0.242 0.393 1.525 2.320 209.020

R52 0.320 0.768 0.125 0.316 1.746 12.120 561.400

R8 0.643 0.698 0.421 0.593 1.277 9.700 486.200

WebKB 0.426 0.372 0.268 0.479 1.885 11.120 362.580

avg. 0.464 0.603 0.264 0.445 1.608 8.815 404.800

PaNDa+ (ε = 0.75) 100 Classic-4 0.510 0.647 0.251 0.402 1.444 2.710 158.645

R52 0.554 0.827 0.376 0.581 1.642 5.700 372.340

R8 0.704 0.769 0.467 0.642 1.055 6.140 326.360

WebKB 0.435 0.320 0.282 0.517 1.886 14.190 252.520

avg. 0.551 0.641 0.344 0.535 1.507 7.185 277.466

PaNDa+ (ε = 1.00) 100 Classic-4 0.490 0.644 0.239 0.387 1.420 3.910 151.110

R52 0.564 0.826 0.378 0.580 1.649 5.000 374.710

R8 0.645 0.702 0.420 0.592 1.280 6.790 320.990

WebKB 0.432 0.337 0.277 0.504 1.885 21.180 229.990

avg. 0.533 0.627 0.329 0.516 1.558 9.220 269.200

we observed the best average results after fine-tuning in the range [0.5, 1.0].
We always tested the best performing variant of the algorithm which is named
Asso + iter in the original paper. Unfortunately, we were not able to include
all Asso results, since this algorithm was not able to process the four datasets
(we stopped the execution after 15 h). We highlight that Asso is however able
to provide good performance on the datasets with a limited number of classes.
The results on the other datasets are not as high quality as those obtained by
PaNDa+.

To get the best performance of Hyper+, we used a minimum support thresh-
old of σ = 10% and we fine-tuned its β parameter on every single dataset by
choosing the best β in the set {1%, 10%}. The results obtained with only L pat-
terns are poorer than the K-Means baseline, and 50 Hyper+ patterns do not
improve over the most frequent 50 closed item sets. However, some improvement
is visible with 100 Hyper+ patterns. Both F1 and Rand index exhibit some
improvement over closed item sets, and an improvement over K-Means of 14%
and 26% respectively.

126 C. Lucchese et al.

Finally, we report quality of PaNDa+ patternsin Table 4. We tested several
settings for PaNDa+, and we achieved the best results with the JP cost function
and varying the noise tolerance, namely ε = εr = εc. For the sake of space, we
report only results for ε ∈ {0.75, 1.0}. Even in this case, L patterns are insufficient
to achieve results at least as good as K-Means, and 50 patterns provide similar
results as the other algorithms tested. The best results are observed with the top-
100 patterns extracted. In this case, PaNDa+ patterns are significantly better,
achieving an improvement over the K-Means baseline in terms of F1 and Rand
index of 21% and 41% respectively. In fact, PaNDa+ patterns with ε = 0.75
provide a better clustering with all of the measures adopted. We thus highlight,
that imposing noise constraints ε < 1 generally provides better patterns.

Tables 3,4 also report the average length and support of the patterns
extracted by the various algorithms (see the last two columns). As expected,
the most frequent closed itemsets are also very short, with at most 2.4 items on
average. Hyper+ is better able to group together related items, mining slightly
longer patterns up to an average length of 5.4 for the WebKB dataset. Unlike all
other algorithms, PaNDa+ provides much larger patterns, e.g., of length 14.19
for WebKB in the best setting. We conclude that PaNDa+ is more effective in
detecting items correlations, even in presence of noise, thus providing longer and
more relevant patterns which are successfully exploited in the clustering step.

5 Conclusion

This paper analyzes the performance of approximate binary patterns for support-
ing the clustering of high-dimensionality text data within the FIHC framework.
The result of reproducible experiments conducted on publicly available datasets,
show that the FIHC algorithm fed with approximate patterns outperforms the
same algorithm using exact closed frequent patterns. Moreover, we show that
the approximate patterns extracted by PaNDa+ performs better than other
state-of-the-art algorithms in detecting, even in presence of noise, correlations
among items/words, thus providing more relevant knowledge to exploit in the
subsequent FIHC clustering phase. From our tests, one of the motivation is the
higher quality of the patterns extracted by PaNDa+, which are longer than the
ones mined by the other methods. These patterns are fundamental for FIHC,
which exploits them for the initial document clustering which is then refined in
the following steps of the algorithm.

Acknowledgments. This work was partially supported by the EC H2020 Program
INFRAIA-1-2014-2015 SoBigData: Social Mining & Big Data Ecosystem (654024).

References

1. Beil, F., Ester, M., Xiaowei, X.: Frequent term-based text clustering. In: Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 436–442. ACM (2002)

Evaluating Top-K Approximate Patterns via Text Clustering 127

2. Cheng, H., Yu, P.S., Han, J.: Ac-close: Efficiently mining approximate closed item-
sets by core pattern recovery. In: Sixth International Conference on Data Mining,
2006, ICDM 2006, pp. 839–844. IEEE (2006)

3. Fung, Benjamin C. M Wang, K., Ester, M.: Hierarchical document clustering using
frequent itemsets. In: Proceedings of SIAM International Conference on Data Min-
ing (SDM), pp. 59–70 (2003)

4. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Dubes
(1988)

5. Lucchese, C., Orlando, S., Perego, R.: Fast and memory efficient mining of frequent
closed itemsets. IEEE Trans. Knowl. Data Eng. 18, 21–36 (2006)

6. Lucchese, C., Orlando, S., Perego, R.: A generative pattern model for mining binary
datasets. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp.
1109–1110. ACM (2010)

7. Lucchese, C., Orlando, S., Perego, R.: Mining top-k patterns from binary datasets
in presence of noise. In: Proceedings of SIAM International Conference on Data
Mining (SDM), pp. 165–176. SIAM (2010)

8. Lucchese, C., Orlando, S., Perego, R.: A unifying framework for mining approxi-
mate top-k binary patterns. IEEE Trans. Knowl. Data Eng. 26, 2900–2913 (2014)

9. Miettinen, P., Mielikainen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. IEEE Trans. Knowl. Data Eng. 20(10), 1348–1362 (2008)

10. Miettinen, P., Vreeken, J.: Model order selection for boolean matrix factorization.
In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 51–59 (2011)

11. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471
(1978)

12. Wang, K., Chu, X., Liu, B.: Clustering transactions using large items. In: Inter-
national Conference on Information and Knowledge Management, CIKM-99, pp.
483–490 (1999)

13. Xiang, Y., Jin, R., Fuhry, D., Dragan, F.F.: Summarizing transactional databases
with overlapped hyperrectangles. Data Min. Knowl. Discov. 23(2), 215–251 (2011)

14. Zaki, M.J., Hsiao, C.J.: Efficient algorithms for mining closed itemsets and their
lattice structure. IEEE Trans. Knowl. Data Eng. 17(4), 462–478 (2005)

	Evaluating Top-K Approximate Patterns via Text Clustering
	1 Introduction
	2 Approximate and Exact Patterns
	2.1 Exact Closed Patterns
	2.2 Approximate Patterns

	3 Frequent Itemset-Based Hierarchical Clustering
	3.1 Exploiting Approximate Patterns in FIHC

	4 Experimental Evaluation of Approximate Patterns
	5 Conclusion
	References

