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Abstract. With the widely use of smart meters in the energy sector,
anomaly detection becomes a crucial mean to study the unusual con-
sumption behaviors of customers, and to discover unexpected events of
using energy promptly. Detecting consumption anomalies is, essentially,
a real-time big data analytics problem, which does data mining on a
large amount of parallel data streams from smart meters. In this paper,
we propose a supervised learning and statistical-based anomaly detection
method, and implement a Lambda system using the in-memory distrib-
uted computing framework, Spark and its extension Spark Streaming.
The system supports not only iterative refreshing the detection models
from scalable data sets, but also real-time anomaly detection on scal-
able live data streams. This paper empirically evaluates the system and
the detection algorithm, and the results show the effectiveness and the
scalability of the lambda detection system.

Keywords: Anomaly detection · Real-time · Lambda architecture ·
Data mining

1 Introduction

Anomaly detection, also known as outlier detection, is the process of discover-
ing patterns in a given data set that do not conform to expected behavior [2].
Anomaly detection is to find the events that happen relatively infrequently,
which has been extensively used in a wide variety of applications, including
fraud detection for credit cards, insurance, health care, intrusion detection for
cyber-security, fault detection in safety critical systems, and many others [2].
In this paper, we will show how anomaly detection can be applied to analyze
live energy consumption, aiming at identifying unusual behaviors for consumers
(e.g., forgetting to turn off stoves after cooking), or detecting extraordinary
events for utilities (e.g., energy leakage and theft). Since abnormal consumption
may also be resulted from user activities, such as using inefficient appliances,
or over-lighting and working overtime in office buildings, anomalous feedback
can warn energy consumers to minimize usage and help them identify inefficient
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appliances or over-lighting. Furthermore, anomaly detection can be used by util-
ities to establish the baseline of providing accurate demand-response programs
to their customers [35]. Abnormal consumption detection is related to finding
patterns in data where the statistical and data mining techniques are intensively
used, e.g., [8,9,18,35], and it can perform close to or better than domain experts.

Energy consumption time series are recorded by smart meters at the regular
interval of an hour or fewer [21,24]. Smart meters read the detailed energy con-
sumption in a real-time or near real-time fashion, which provides the opportunity
to monitor timely unusual events or consumption behaviors [22,23]. However,
the enabling detection technologies combining smart meters typically using data
mining technologies, which require large amounts of training data sets, and sig-
nificantly complex systems. In a typical application of data mining to anomaly
detection, the detection models are produced off-line because the learning algo-
rithms have to process tremendous amounts of data [17]. The produced models
are naturally used by off-line anomaly detections, i.e., analyzing consumption
data after being loaded into an energy management system (EMS). However,
we argue that effective anomaly detection should happen real-time in order to
minimize the compromises to the use of energy. The efficiency of updating the
detection model and the accuracy of the detection results are the important
consideration for constructing a real-time anomaly detection system.

In this paper, we propose a statistical anomaly detection algorithm to detect
the anomalous daily electricity consumption. The anomaly detection is based on
consumption patterns, which are usually quite similar for a customer, such as
in weekdays, or in weekends/holidays. We define the anomaly as the difference
from the expected consumption as illustrated in Fig. 1. The proposed detection
method is not limited to daily patterns, but can be easily adapted to the peri-
odicity of the underlying data set. It is also important to note that our methods
are applicable not only to electricity consumption, but other energy types of
consumption, such as gas, water, and heat. This is caused by the general nature
of time series data, and the generality of our detection methods presented in this
paper.

Fig. 1. Daily consumption pattern and anomalies
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To detect anomalies in time and obtain a better accuracy, we make use of the
so-called Lambda architecture [27], that can detect anomalies near real-time, and
can efficiently update detection models regularly according to a user-specified
time interval. A lambda architecture enables real-time updates through a three-
layer structure, including speed layer (or real-time layer), batch layer and serving
layer. It is a generic system architecture for obtaining near real-time capability,
and its three layers use different technologies to process data. It is well-suited
for constructing an anomaly detection system that requires real-time anomaly
detection and efficient model refreshment (we will detail it in the next section).
To support big data capability, we choose Spark Streaming as the speed layer
technology for detecting anomalies on a large amount of data streams, Spark
as the batch layer technology for computing anomaly detection models, and
PostgreSQL as the serving layer for saving the models and detected anomalies;
and sending feedbacks to customers. The proposed system can be integrated with
smart meters to detect anomalies directly. We make the following contributions
in this paper: (1) we propose the statistical-based anomaly detection algorithm
based on customers’ history consumption patterns; (2) we propose making use of
the lambda architecture for the efficiency of the model updating and real-time
anomaly detection; (3) we implement the system with a lambda architecture
using hybrid technologies; (4) we evaluate our system in a cluster environment
using realistic data sets, and show the efficiency and effectiveness of using the
lambda architecture in a real-time anomaly detection system.

The rest of this paper is organized as follows. Section 2 discusses the anomaly
detection algorithm used in the paper. Section 3 describes the implementation
of the lambda detection system. Section 4 evaluates the system. Section 5 sur-
veys the related works. Section 6 concludes the paper and provides the direction
for the future works.

2 Preliminaries

2.1 Anomaly Detection Model

The used anomaly detection model is a combination of a short-term energy
consumption prediction algorithm, called periodic auto-regression with eXoge-
nous variables (PARX) [3], and Gaussian statistical distribution. We now first
describe the PARX algorithm, which is used to predict the daily consumption.
Generally speaking, residential electricity consumption is highly correlated to
temperature. For example, in winter, electricity consumption increases since the
temperature decreases because of the heating needs. In summer, electricity con-
sumption increases when the temperature is higher because of cooling loads.
The daily consumption pattern of a customer typically demonstrates the peri-
odic characteristics, due to the living habit of the customer, e.g., the morning
peak appears between 7 and 8 o’clock if a customer usually gets up at 7 o’clock;
and evening peak appears between 17 and 20 o’clock (due to cooking and wash-
ing) if the customer gets home at 5 o’clock after work.
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The PARX model, thus, uses a daily period, taking 24 hours of the day as
the seasons, i.e., t = 0...23, and uses the previous p days’ consumptions at the
hour at t for auto-regression. The PARX model at the s-th season and at the
n-th period is formulated as

Ys,n =
p∑

i=1

αs,i Ys,n−i + βs,1 XT1 + βs,2 XT2 + βs,3 XT3 + εs, s ∈ t (1)

where Y is the data point in the consumption time-series; p is the number of
order in the auto-regression; XT1,XT2 and XT3 are the exogenous variables
accounting for the weather temperature, defined in the equations of (2); α and
β are the coefficients; and ε is the value of the white noise.

XT1 =

{
T − 20 if T > 20

0 otherwise
XT2 =

{
16− T if T < 16

0 otherwise
XT3 =

{
5− T if T < 5

0 otherwise
(2)

The variables represent the cooling (temperature above 20◦), heating (tem-
perature below 16◦), and overheating (temperature below 5◦), respectively. The
anomaly detection algorithm is of using unique variate Gaussian distribution,
described in the following. Given the training data set, X = {x1, x2, ..., xn}
whose data points obey the normal distribution with the mean µ and the vari-
ance δ

2, the detection function is defined as

p(x;µ, δ) =
1

δ
√

2π
e

− (x−μ)2

2 δ2 (3)

where µ = 1
n

∑n
i=1 xi and δ

2 = 1
n

∑n
i=1(xi − µ)2. For a new data point, x,

this function computes its probability density. If the probability is less than a
user-defined threshold, i.e., p(x) < ε, it is classified as an anomaly, otherwise,
it is a normal data point. In our model training process, we compute the L1
distance between the actual and predict consumptions, i.e., ||Yt − Ŷt||, where
Yt is the actual hourly consumption at the time t, and Ŷt is the predict hourly
consumption at the time t. The predict hourly consumption, Ŷt, is computed
using the PARX model in Eq. 1. We find that the L1 distances observe to a log-
normal distribution (see Sect. 4.2). Therefore, the x in the normal distribution
will be the log value of the distance, i.e., ln||Yt − Ŷt||.

2.2 Lambda Architecture

We now introduce the lambda architecture used in our anomaly detection sys-
tem. As mentioned in Sect. 1, the lambda architecture consists of three layers,
including speed layer, batch layer and serving layer, illustrated in Fig. 2. The
speed layer directly ingests data streams from data sources, processes them, and
continuously updates the results into the real-time views in the database in the
serving layer. The speed layer does not keep any history records, and typically
uses main memory based technologies to analyze the incoming data. In contrast,
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the batch layer runs iteratively and starts from the beginning of the data set
once a batch job has finished. When a batch job starts, all the available data
in the batch layer storage will be reprocessed. Therefore, the data arriving after
the job starts will be processed by the next job. Since all the data are analyzed
in each iteration, each of the new result views will replace its predecessor. As
the batch layer does not rely on incremental processing, it is robust to any sys-
tem failures, which the batch job simply processes all the available data sets in
each iteration. The speed and batch usually use different technologies because
of their distinct requirements regarding read and write operations. Any query
against the data is answered through the serving layer, i.e., the query processor
queries both the views from the speed and the batch layers, and merges them.

Fig. 2. Lambda architecture

The lambda architecture itself is only a paradigm. The technologies with
which the different layers are implemented are independent of the general idea.
The speed layer only deals with new data and compensates for the high latency
updates of the batch layer. It can typically leverage stream processing systems,
such as Storm, S4, and Spark Streaming, etc. The batch layer needs to be hori-
zontally scalable and supports random reads, where the technologies like Hadoop
with Cascading, Scalding, Pig, and Hive, are suitable. The serving layer requires
a system with the ability to perform fast random reads and writes. The sys-
tem can be a high-performance RDBMS (e.g., PostgreSQL), an in-memory data
store (e.g., Redis, or Memcache), or a high scalable NoSQL system (e.g., HBase,
Cassandra, ElephantDB, MongoDB, or DynamoDB).

3 Implementation

3.1 System Overview

We now describe the implementation of the anomaly detection system. We choose
Spark Streaming, Spark, and PostgreSQL as the speed layer, batch layer and
serving layer technology, respectively (see Fig. 3). The system employs Spark
to compute the models for anomaly detection, which reads the data from the
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Hadoop distributed file system (HDFS) in the batch layer. The batch job runs
at a regular time interval, computes, and updates the detection models to the
table in PostgreSQL database. Spark Streaming is used to process real-time
data streams, e.g., directly reads the readings from smart meters, and detects
abnormal consumption with the detection algorithm. The detection algorithm
always uses the latest models getting from the PostgreSQL database. Spark
Stream writes the detected anomalies back to the PostgreSQL database, which
will be used for the notification of customers.

Fig. 3. The anomaly detection system

3.2 Training Anomaly Detection Models

We employ Spark to train the detection models by running regular batch jobs.
All the consumption data from smart meters are written to the append-only
HDFS. In each iteration of the batch jobs, Spark uses all the available data in
HDFS to compute the detection models. The use of Spark and HDFS supports
the computation of the models based on scalable data sets. Since they both are
the distributed computing technology, the computation can be finished within
a certain time limit, meaning that the detection algorithm can always use the
latest models. Figure 4 illustrates the training process of generating PARX and
Gaussian models using energy consumption and weather temperature time series
at the season from 0 to 23. That is, for each season we create a new time series,
e.g., for s = 0, the time series is created using the readings at 0 o’clock of all
days. Then the Eq. 1 is used to compute the PARX model (or parameters), and
to compute the Gaussian model, i.e., N(µ, δ2). Therefore, there are 24 PARX
and 24 Gaussian models in total.

Algorithm 1 gives more details about the implementation. This algorithm
computes the anomaly detection models with the given training time series col-
lection T S, weather temperature time series ts′, and auto-regression order p.
Each time series in T S represents the hourly energy consumption of a customer.
To compute the detection models for each season s, we first need to create a new
consumption time series and a new temperature time series (see line 7), then
use the two new time series to compute the PARX model (see line 8). According
to our analysis in Sect. 4.2, the L1 distances between predict consumption and
actual consumption at season s for all days observes to a log-normal distribu-
tion. Therefore, we compute Gaussian statistical model based on the L1 distance
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Fig. 4. Process of training detection models

log values (see lines 12–18). The total number of PARX models for all the time
series is ||T S||×24, which is same as the number of the Gaussian models. In the
end, all the models are updated to the PostgreSQL database that will be used
for the online anomaly detection in the speed layer.

Algorithm 1. Training of the anomaly detection models
1: function Train(TimeSeriesCollection T S, TemperatureTimeSeries ts′ Order p)
2: M ← {} � Initialize the collection of PARX parameters
3: N ← {} � Initialize the collection of the statical model parameters
4: for all ts ∈ T S do
5: id ← Get the unique identity of ts
6: for all s ∈ 0...23 do
7: tsc, tst ← Construct a new consumption time series using ts, and a new temperature

time series tst using ts′ at the season of s
8: α1, ..., αp, β1, β2, β3 ← Compute PARX model using tsc and tst

9: Insert (id, s, α1, ..., αp, β1, β2, β3) into M
10: L ← {}
11: D ← Get the days of ts
12: for all d ∈ D do
13: v̂ ← Compute the predict reading of the season s using PARX
14: v ← Get the actual hourly reading from ts of the day d
15: l ← Compute the ln value of L1 distance of the day d, ln(||v̂ − v||)
16: Add l into L
17: μ, β ← Compute the mean and standard deviation using the normal distribution

statistical model on L
18: Insert (id, s, μ, δ) into N

return M, N

The implementation is a Spark program. The consumption time series, as well
as temperature time series, are read into the distributed memory as resilient dis-
tributed datasets (RDDs), which are fault-tolerant, immutable and partitioned
parallel data structures that can be operated in parallel, e.g., by using the opera-
tors, including map, reduce, groupByKey, filter, collect, etc. [33]. To generate the
new time series, we use the groupByKey operator to aggregate the consumption
series by the composite key of meter ID and season (or hours); while use only the
season as the key to the temperature time series. Then, we merge the generated
time series by the join operator on the key of the season. The PARX, in fact,
can be regarded as a multi-linear regression model, which simply takes the auto-
regressors and the exogenous variables as the independent variables. We, then,
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apply the multiple linear regression function from the Spark machine learning
library, MLib [28], to compute the coefficients. For all of these operations, the
transformation functions are directly applied on RDDs for data processing.

3.3 Real-Time Anomaly Detection

The real-time anomaly detection is carried out in the speed layer. Algorithm 2
describes the anomaly detection process, which is self-explanatory. First, the
detection algorithm reads meter readings from all the incoming data streams,
and reads the weather temperature and detection models from the PostgreSQL
database each hour. For each data stream, the algorithm predicts the reading
using the PARX algorithm, with the pre-computed parameters, the previous p
day’s readings at the current hour, i.e., the season s, and weather temperature
(see lines 4–7). Then, the algorithm calculates the log value of the L1 distance
between the predict and the actual readings, then uses it compute the probabil-
ity using the Gaussian model (see lines 8–10). In the end, the algorithm decides
whether the current reading is an anomaly or not based on the computed proba-
bility value, i.e., if its value is below the user-defined threshold, ε. If the current
reading is classified as an anomaly, it will be written into the database for the
customer notification (see lines 11–12).

Algorithm 2. Real-time anomaly detection
1: function Detect(CurrentReadingCollection V, Temperature t, PredictModel M, StaticalModel

N , Threshold ε )
2: R ← {} � Initialize the detection results
3: for all v ∈ V do
4: id ← Get the unique identity of v
5: s ← Get the season of v
6: α1, ..., αp, β1, β2, β3 ← Get the parameters from M by id
7: v̂ ← Compute the predict reading at s using PARX with the parameters, the p days’

readings at s, and temperature t
8: x ← ln||v̂ − v|| � Compute the ln value of L1 distance at the season s
9: μ, δ ← Get the statical model parameters from N by id and s

10: p ← Compute the probability using the normal distribution function, 1
δ

√
2π

e
− (x−μ)2

2 δ2

11: if p < ε then
12: Add (id, s, p, v, v̂) into R

return R

We implement the algorithm to process the real-time data on Spark Stream-
ing. Spark Streaming allows for continuous processing via short interval batches,
and its basic data abstraction is called discretized streams (D-Streams), a contin-
uous stream of data [34]. The data are received in each interval batch, hourly in
our case, and operations will run upon the data for doing transformations, such
as filter unnecessary attribute values, extracting the hour from the timestamp,
etc. (see Fig. 5). When using the PARX for prediction, we fetch the previous p
days’ readings of the current hour for auto-regression. For example, in Fig. 5 we
set the order, p = 3, therefore, the window size is set to 72 hours (i.e., 3 days) to
keep the past three days’ readings at the particular hour within the same window
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(e.g., the RDDs colored by green). This is done by using the window function,
reduceByKeyAndWindow(func, windowLength, slideInterval), to aggregate
the data with specified key, window length and slide interval (e.g., meter ID
and season as the composite key in this case, windowLength = 72 hours and
slideInterval = 1 hour). In the underlying, Spark uses the data checkpointing
mechanism to keep the past RDDs in HDFS. At the beginning of each interval
batch, the data models are read from the PostgreSQL database in the serving
layer, and broadcast to all DStreams. Therefore, the detection program always
uses the latest models to detect anomalies.

Fig. 5. Slide windows in the real-time anomaly detection (Color figure online)

4 Evaluation

4.1 Experimental Settings

In this section, we will evaluate the effectiveness and the scalability of our anom-
aly detection system. We conduct the experiments in a cluster with 17 servers.
Five servers are used for running the speed layer, while twelve servers are used
for the batch layer. We also exploit one of the servers in the speed layer as the
serving layer for managing the detection models and sending anomaly detection
messages. All the servers have the identical settings, configured with an Intel(R)
Core(TM) i7-4770 processor (3.40 GHz, 4 Cores, hyper-threading is enabled, two
hyper-threads per core), 16 GB RAM, and a Seagate Hard driver (1TB, 6 GB/s,
32 MB Cache and 7200 RPM), running Ubuntu 12.04 LTS with 64 bit Linux
3.11.0 kernel. The serving layer uses PostgreSQL 9.4 database with the set-
tings “shared buffers = 4096 MB, temp buffers= 512 MB, work mem = 1024 MB,
checkpoint segments = 64” and default values for the other configuration para-
meters.

We have a real-world residential electricity consumption data set (27,300 time
series), which will be used to evaluate anomaly detection accuracy. The time-
series has a two-year length and hourly resolution. To evaluate the scalability, we
use the synthetic data set generated by our data generator seeded by the real-
world data. The size of data tested in the cluster environment is scaled up to
one terabyte, corresponding to over twenty million time series.
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4.2 Anomaly Detection Accuracy

We start by evaluating the accuracy of our anomaly detection system using a
randomly-selected time series from the real-world data set.

To provide a basis for comparison, we perform the anomaly detection using
a standard boxplot analysis as well. Boxplot is a quick graphic approach for
examining data sets, and has been used for decades. A boxplot uses five parame-
ters to describe a numeric data set, including lower fence, lower quartile, media,
upper quartile and upper fence (see Fig. 6). According to Fig. 6, a boxplot is
constructed by drawing a rectangle between the upper and lower quartiles with
a solid line indicating the median. The length of the box is called interquartile
range, IQR. The sample data points lying outside the fences, 1.5 ∗ IQR, are
classified as the outliers, which has been indicated to be acceptable for most
situations [10].

To align boxplot with our detection method, we test the anomalies based on
the 24 seasons. There are 17,520 data points in total in the selected time series.
Figure 7 shows the boxplot result where the blue points located on the top of
the upper fence represent the anomalies, a total of 1,260 data points. Since the
boxplot approach is merely able to detect energy consumption lying unusually
far from the main body of the data, it is difficult to determine which ones are the
true anomalies, and to identify the potential reasons for these anomalies because
there are too many false positives.

Fig. 6. Box plot Fig. 7. Anomaly detection using box
plot (Color figure online)

We now use the proposed detection algorithm to analyze the same time series.
Figure 8 depicts the distribution of the L1 distances of a season by the histogram.
As shown, the distribution has the shape of a log-normal distribution. We have
checked the L1 distance distributions for all the 24 seasons, and found that they
all share a similar shape. This is the reason that we choose log-normal distrib-
ution in our statistical-based anomaly detection. Besides, we test the anomalies
by treating all the days the same, and differently, i.e., discriminating the days
into workdays, weekend & holidays. Moreover, we increase the threshold value,
ε, from 0.05 to 0.15, and do the evaluation. The results in Fig. 9 demonstrate
that the detection identifies more anomalies for treating all the days the same
than differently. The reason is that during weekends and holidays, people tend
to stay at home more time, thus use more energy. The consumptions are more
likely higher than the weekdays. For the threshold parameter, its value is for
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Fig. 8. Log-normal distri-
butions across the L1 dis-
tances

Fig. 9. Anomaly detec-
tion using PARX and sta-
tistical method

Fig. 10. Impact of detec-
tion model update fre-
quency

classifying a usual or unusual reading. According to the results, if the value
increases, the number of detected anomalies changes significantly. For the real-
world deployment of this system, the threshold value can be set by the residents
to decide when to receive anomaly alerting messages.

We now evaluate the impact of the model update frequency on the detection
accuracy. We use half-year’s time series as the initial data set to train the detec-
tion models. We design the following three scenarios for the model update: (1)
update per day; (2) update per 10 days behind the detection; and (3) without
update. We measure the detected anomalies of the three scenarios by treating all
days the same. According to the results in Fig. 10, the frequent updates of the
models help to decrease the detected anomalies. It is due to the improvement of
the prediction accuracy of the PARX model. Thus, less large L1 distances are
identified as the anomalies. However, although the update frequency does help
to determine the real anomalies, the results do not show a big difference if the
models are updated within a certain short-time interval, e.g., the results of the
scenario (1) and (2).

In the end, we compare our approach with the boxplot, and the result shows
that the number of the anomalies reported by the PARX prediction and statis-
tical method can be decreased notably. This increases the chance to determine
accurately real anomalies for an energy consumption time series.

4.3 System Scalability

We now evaluate the scalability of our anomaly detection system. As our system
can scale-out and to efficiently cope with large amounts of data, we vary both
the number of executors and the volume of the input data in the following
experiments.

Scale-Out Experiment. Parallel processing is a key feature of the proposed
system. To evaluate the scalability of our implementation, we conduct the exper-
iment by varying the number of executors in Spark. In this experiment, we use
a fix-sized synthetic data set with eight million time series of a one-year length
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(275 GB), which were generated by our data generator seeded the real-world
data. Since we are interested in the real-time and batch capability of our system,
we test the real-time anomaly detection and batch model training separately. We
first test the batch capability by running the training program with the number
of executors increased from 8 to 256. We run each test repeatedly for ten times,
and record its execution times. The results are depicted by the boxplot shown
in Fig. 11. According to the results, the execution time and the time variance
decrease when more executors are added. But, when the number reaches 64,
the increasing parallelism does not speed up the batch processing further, which
is due to the overhead of the Spark master when managing a large number of
executors. We conduct the real-time anomaly detection on Spark Streaming,
and likewise, we scale the number of executors from 8 to 256. Figure 12 shows
the results, which indicate that the variance of execution time is larger than
the batch model training. It might be due to the variability of real-time batch
executions on Spark Streaming when doing the anomaly detection for each hour.

Fig. 11. Batch model
training

Fig. 12. Real-time detec-
tion

Fig. 13. Size-up experiment

Increased Data Load Experiment. To evaluate the scalability of the algo-
rithms over large volumes of data, we compare different workloads. According
to the above experiments, the optimal number of parallel executors for model
training and anomaly detection are 64 and 128, respectively. We use the optimal
executor number (the memory of executor is configured to 4 GB) in our exper-
iments, but vary the number of time series from 8 to 24 million (corresponding
to the size from 275 GB to 825 GB). The processing times of varying data work-
loads are displayed in Fig. 13. We observe that both of the training and detection
processes can scale near linearly with the quantity of the time series. The time of
detection, in this case, is the total execution time of handling all the time series
of a one-year length, e.g., it takes less than two minutes to finish eight million
time series with the optimized settings. The average time of each real-time batch
only takes a few seconds (recall that a batch in Spark Streaming processes the
data of each hour). In the real-world deployment, the detection program can
be set to run every hour to inspect hourly smart meter readings. According to
the results, the anomaly detection system has a very good scalability which can
meet the fast-growth of smart meter data.
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Unlike the anomaly detection, the training process uses the full set of the data
to generate new models each time. Anomaly detection, instead, is performed for
each hour where Spark Streaming runs periodical batch (or impulse) to process
the data, which needs more time in overall. The training and detection programs
can be deployed either in different clusters or the same cluster. If deployed in the
same cluster, it is necessary to allocate computing resources in a reasonable way.
For example, since the batch job takes a much longer time, it can be scheduled to
run immediately after the anomaly detection job. A scheduling system is, thus,
necessary, and this will leave to our future work.

5 Related Works

Anomaly Energy Consumption Detection. Anomaly detection is an impor-
tant aspect in energy consumption time series management. Chandola et al.
present a survey of different anomaly detection techniques in various application
domains including energy [6]. Statistical and data mining are the commonly
used techniques for discovering abnormal consumption behaviors [14]. Statisti-
cal methods are based on modeling data using distributions, and see if the data
under test observes to the distributions. Accordingly, the approaches presented in
this paper combine PARX and log-normal distribution function to detect anom-
alies in energy consumption time series. Jakkula and Cook use statistics and
clustering to identify outliers in power datasets collected from smart environ-
ments [13], but they have not considered the impact of the exogenous variables,
e.g., weather temperature, on the electricity consumption. Linear regression can
extract time series features when the dependent variables are well-defined [25].
The early experience of identifying outliers in linear regression is through setting
a threshold limit, but this yields many false positives for large data sets [16].
Adnan et al. combine linear regression with clustering techniques for getting
better results [1]. Zhang et al. [35] further use piecewise linear regression to fit
the relation between energy consumption and weather temperature. The results
obtained are more favorable than entropy and clustering methods. But, their
approach does not take the changes of consumption pattern into account. Brown
et al. use K-nearest neighborhood (KNN) in fast kernel regression to predict elec-
tricity consumption [4], which requires large datasets. The resulting models are
static, thus it is not preferable for online anomaly detection and the situation
when consumption pattern is changed. Nadai et al. combine ARIMA and adap-
tive artificial neural network (ANN) to detect anomaly consumption [9] using a
relatively small data set that is from a few buildings. In comparison, we propose
the prediction and statistical anomaly models and combine with the lambda
architecture for supporting regular model refreshment, and real-time anomaly
detections. Besides, the proposed approach can handle scalable data sets, and
consumption pattern changing owing to its use of the PARX model.

Batch and Stream Processing on Big Data. Batch and realtime/stream
processings have attracted much research effort in recent year, with the popular-
ity of Internet of Things (IoT). Liu et al. make a survey of the existing stream
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processing systems, and discuss the potential technologies used for lambda archi-
tecture [20]. Cheng et al. propose a smart city data platform that supports both
batch and real-time data processings [7], and they suggest that anomaly detec-
tion should be implemented as the chief component of any platform for processing
sensor data. Different to proposing the generic lambda architecture [27], Preuve-
neers et al. [29] and Gao [11] present the big data architectures for processing
domain-specific big data, including health care, context-aware user authentica-
tion and social media. Schneider et al. study batch data and streaming data
anomaly detection, respectively [30]. The used detection model, however, is sta-
tic, and the use case is different to ours which employs the batch job to update
the models only while use the real-time job to detect the anomalies online in
data streams.

The Use of Lambda Architecture. Lambda architecture has attracted a
growing interest due to its mix capabilities to process both real-time and batch
data. Sequeira et al. use lambda architecture in an industrial EMS solution
with cloud computing capabilities [31]. Kroß et al. develop on-demand stream
processing within the lambda architecture to optimize computing resource usage
in a cluster [15]. Martnez-Prieto et al. adapts the lambda architecture in semantic
data processing [26]; Liu et al. applies it to smart grid complex event processing
(CEP) [19]; Villari et al. proposes AllJoyn Lambda, the platform for managing
embedded devices of smart homes [32]; and Hasani et al. use it for real-time big
data analytics [12]. Besides, the works [5,20] both give an extensive review of the
technologies of the lambda architecture. Although there are various use cases of
the lambda architecture, we focus on its use in the particular use case, anomalous
energy consumption detection. More specifically, we use it in the model update
and the real-time anomaly detection, which is significant to the large deployment
of smart meters and sensors of IoT today.

6 Conclusions and Future Work

Analyzing and detecting anomalies is an important task for live energy con-
sumption data while the improvement of detection accuracy and scalability is
challenging. In this paper, we applied the novel lambda architecture technique
to an anomaly detection system in order to support batch updates of the detec-
tion models, and real-time detection. We have proposed the detection algorithm
for finding the anomalies based on one’s history consumption pattern via the
supervised learning and statistical algorithms. Furthermore, the system sup-
ports personalized alerting service by setting a threshold value for suspicious
energy consumption. We have evaluated the accuracy of the anomaly detection
algorithm on a real-world data set, and the scalability of the system on a large
synthetic data set. The results have validated the effectiveness and the efficiency
of the proposed system with a lambda architecture.

For the future work, we will implement a scheduling system that can coor-
dinate the running of the batch and real-time jobs within the same cluster.
We intend to explore the ways to detect a greater range of anomalies, such as
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missing values, negative energy consumption and device errors. Besides, we plan
to support additional types of data, such as gas, heating and water data, and to
implement the corresponding detection algorithm.
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