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Abstract. In this work we analyze a novel queueing system to model
cooperative wireless networks with two relay nodes and simultaneous
packet reception. We consider a network of three saturated source users,
say a central and two background source users, two relay nodes and a
common destination node. Source users transmit packets to the desti-
nation node with the cooperation of relays, which assist them by re-
transmitting their blocked packets. We assume that the central source
user forwards its blocked packets to both relay nodes in order to exploit
both the spatial diversity they provide, and the broadcast nature of
wireless communication. Moreover, each relay node receives also blocked
packets from a dedicated background source user. We study a three-
dimensional Markov process, investigate its stability condition and show
that its steady-state performance is expressed in terms of the solution
of a Riemann-Hilbert boundary value problem. Performance metrics are
obtained, and numerical results show insights into the system behavior.
Some computational issues are also discussed.
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1 Introduction

Cooperative communication is an effective way to improve the quality of wireless
links since it is evidently proved that allows a flexible and robust exchange of
data. In a wireless network, each source user increases its quality of service via
cooperation with other users that “share” the antennas of their devices and assist
the source users to transmit their data to a destination node; e.g., [14,19,23–25].
This is so called cooperation with relaying, and the assistant users are called
relay nodes.

Such a system operates as follows: Consider a network of a finite number of
source users, a finite number of relay nodes, and a destination node. Source users
transmit packets to the destination node with the cooperation of the relay(s).
If a transmission of a user’s packet to the destination fails, the relays store the
blocked packet in their buffers and try to re-transmit it to the destination later.
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A mechanism must be employed to decide which of the relays will cooperate
with sources (i.e., cooperation strategy). This problem gives rise to the usage of a
cooperative space diversity protocol [26], under which, each user has a number of
“partners” (i.e., relays) that are responsible for transmitting its blocked packets.

The core ideas behind cooperative communications were introduced in [9]. An
overview of the rapidly expanding literature can be found in [22], where it was
proved that relaying leads to a substantial reduction both on the packet delay,
and on the energy consumption of the sources and relay nodes. Thus, further
investigation of such systems is of great interest for the research community.

In this work we analyze a novel queueing system to model the impact of using
two relay nodes in a network, to assist with relaying packets from a number
of users to a destination node, under a cooperative space diversity protocol.
We consider three saturated source users, say a central and two background
source users, that transmit packets to a destination node, with the cooperation
of two relays (i.e., network-level cooperation). Relay nodes have infinite capacity
buffers and re-transmit blocked packets of the source users. The cooperation
strategy is as follows: When the central source user fails to transmit a packet
to the destination node, forwards its blocked packet at both relays (i.e., both
relays overhear the transmission due to the wireless multicast advantage of the
medium; two “partners”). On the contrary, a background source user cooperates
only with a single relay node, and forwards its blocked packet only in that relay
node.

Note that the notion of “re-transmission” gives rise to the so-called retrial
queues [1–4,10] (not exhaustive list) that have been proved very useful for mod-
eling communication networks, where a “customer” meeting a busy server tries
its luck again after a random time. Our system is modeled as a three-dimensional
Markov process, and we prove that its steady-state performance can be expressed
in terms of the solution of a Riemann-Hilbert boundary value problem. The
study of queueing systems using the boundary value theory had been initiated
in [12,13], and a concrete methodological approach was presented in [5]. Impor-
tant generalizations were given in [2,6–8,17,28] (not exhaustive list).

Contribution of the paper. Besides its practical applicability, our work is also
theoretically oriented. We provide for the first time in the related literature, an
exact analysis of a model that unifies two fundamental queueing systems: the
retrial queue with two orbits and constant retrial policy, and the generalized two-
demand model (i.e., fork-join queue). The exact analysis of a typical fork-join
queue with c parallel servers is possible only when c = 2 (see [15,29]). Moreover,
there are also limited results on retrial queues with more than one orbits. In
the vast majority of these results, a mean value approach was massively applied
due to the complexity of the model [11,20,21]. In this work we present an exact
analysis of a very intricate queueing model, and prove that the powerful and
quite technical boundary value theory is an adequate technique to handle it.

The paper is organized as follows. In Sect. 2 we present the model in detail,
and we derive the balance equations that are used to form the fundamental
functional equation. In Sect. 3 we obtain some important results for the follow-
ing analysis, and investigate stability conditions by considering an associated
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random walk in the first quadrant. Section 4 is devoted to the formulation and
solution of a Riemann-Hilbert boundary value problem, which provides the gen-
erating function of the joint queue length distribution of the relays and destina-
tion node. Performance metrics are obtained in Sect. 5, and a simple numerical
example along with some computational issues are discussed in Sect. 6.

2 The Model

We consider a network with three saturated source users, say Si, i = 0, 1, 2, two
relay nodes with infinite capacity queues, say R1, R2, and a common destination
node D (see Fig. 1). The source users transmit packets towards the destination
node with the cooperation of the relay nodes.

Buffer 1

Buffer 2

Source-Destination channel
Source-Relay node channel
Relay node-Destination channel

Fig. 1. The model.

User Si generates packets towards the node D according to a Poisson process
with rate λi, i = 0, 1, 2. Node D can handle at most one packet that forwards
outside the network. The service time of a packet at the node D (i.e., the required
time to forward the packet outside the network) is exponentially distributed
with rate μ (we assume that the acknowledgments of successful or unsuccessful
transmissions are instantaneous and error free).

The relays do not generate packets of their own but only re-transmit the
packets they have received from the users. A relay node stores a packet in its
queue when the direct transmission from a source user to the node D has failed.
Specifically, the cooperation strategy to be applied between source users and
relay nodes is as follows: If a direct transmission of a user’s S0 packet to the
node D fails (i.e., node D is busy (transmitting)), both relay nodes store the
blocked packet in their queues and try independently to forward it to the node D
later. Moreover, if a direct transmission of a user’s Si, i = 1, 2, packet to the node
D fails, only node Ri stores it in its queue and is responsible to re-transmit it to
the node D later (i.e., user Si cooperates only with node Ri, i = 1, 2). The node
Ri tries to re-dispatch a blocked packet to the node D after an exponentially
distributed time period with rate μi, i = 1, 2.
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Under such a scheme, the user S0 exploits both the spatial diversity provided
by the relays, and the broadcast nature of wireless communication, where with a
single transmission, a number of cooperating relay nodes (i.e., “partners”) receive
and relay its data [18,23,26]. In another scenario, the user S0 splits its blocked
packet (or job) in two sub-packets (or sub-jobs) and store each sub-packet in
each relay node. Moreover, it can be assumed that the user S0 transmits within
the overlapping area created by the intersecting covering regions of both relay
nodes, and thus, its blocked packet is forwarded to both relays. On the contrary,
user Si transmits only within the covering region of the node Ri, i = 1, 2.

Let Qi(t) be the number of stored packets in the queue of the relay node Ri,
i = 1, 2, and C(t) be the number of packets under transmission at the destina-
tion node D at time t. Clearly, X(t) = {Q1(t), Q2(t), C(t); t ≥ 0} constitutes a
continuous time Markov chain with state space S = {0, 1, ...}×{0, 1, ...}×{0, 1}.
Define the stationary probabilities for m,n = 0, 1, 2, ..., k = 0, 1,

pm,n(k) = lim
t→∞ P (Q1(t)=m,Q2(t)=n,C(t) = k) = P (Q1 = m,Q2 = n,C = k).

Then, for Q2 = 0,

λp0,0(0) = μp0,0(1), m = 0, k = 0,

(λ + μ1)pm,0(0) = μpm,0(1), m ≥ 1, k = 0,

(λ + μ)p0,0(1) = λp0,0(0) + μ1p1,0(0) + μ2p0,1(0), m = 0, k = 1,

(λ + μ)pm,0(1) = λpm,0(0) + μ1pm+1,0(0) + μ2pm,1(0)

+λ1pm−1,0(1), m ≥ 1, k = 1,

(1)

where λ = λ0 + λ1 + λ2. For Q2 ≥ 1,

(λ + μ2)p0,n(0) = μp0,n(1), m = 0, k = 0,

(λ + μ1 + μ2)pm,n(0) = μpm,n(1), m ≥ 1, k = 0,

(λ + μ)p0,n(1) = λp0,n(0) + μ1p1,n(0) + μ2p0,n+1(0)

+λ2p0,n−1(1), m = 0, k = 1,

(λ + μ)pm,n(1) = λpm,n(0) + μ1pm+1,n(0) + μ2pm,n+1(0)
+λ1pm−1,n(1) + λ0pm−1,n−1(1)

+λ2pm,n−1(1), m ≥ 1, k = 1.

(2)

Define for |x| ≤ 1, |y| ≤ 1, k = 0, 1, H(k)(x, y) =
∑∞

m=0

∑∞
n=0 pm,nxmyn. Then,

using Eqs. (1) and (2) we obtain,

(λ + μ1 + μ2)H(0)(x, y) − μH(1)(x, y) = μ2H
(0)(x, 0) + μ1H

(0)(0, y), (3)

(λxy + μ1y + μ2x)H(0)(x, y) − xy[λ0(1 − xy) + λ1(1 − x)

+λ2(1 − y) + μ]H(1)(x, y) = μ2xH(0)(x, 0) + μ1yH(0)(0, y).
(4)
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Solving (3) with respect to H(1)(x, y) and substituting to (4), we obtain after
some algebra the following functional equation,

R(x, y)H(0)(x, y) = A(x, y)H(0)(x, 0) + B(x, y)H(0)(0, y), (5)

where, λ̂i = λiα, i = 0, 1, 2, μ̂i = μμi, i = 1, 2, α = λ + μ1 + μ2, λ̂ = λα,

R(x, y) = xy[λ̂0(1 − xy) + λ̂1(1 − x) + λ̂2(1 − y)] − μ̂1y(1 − x) − μ̂2x(1 − y), (6)

A(x, y) = μ2x[y(λ0(1 − xy) + λ1(1 − x)) + (λ2y − μ)(1 − y)],

B(x, y) = μ1y[x(λ0(1 − xy) + λ2(1 − y)) + (λ1x − μ)(1 − x)].

Remark 1: Our model can be generalized to incorporate a coordination mech-
anism between relays that decides, which of the two relays will keep the blocked
packet they both have received by the user S0; [23]. However, since wireless com-
munication is fragile, the coordination between relays may fails. In such a case,
both relay nodes will keep the blocked packet of the user S0 in their queues.

3 General Results

We proceed with the derivation of some general results. Denote for k = 0, 1,

pm,.(k) =
∑∞

n=0 pm,n(k),m = 0, 1, ..., p.,n(k) =
∑∞

m=0 pm,n(k), n = 0, 1, ....

Lemma 1. Let ρi = λi

μ < 1, i = 0, 1, 2, ρ = ρ0 + ρ1 + ρ2. Then,

H(1)(1, 1) = ρ
1−ρ0

, H(0)(1, 1) = 1−ρ1−ρ2−2ρ0
1−ρ0

,

H(0)(0, 1) = 1 − ρ
1−ρ0

(λ0+λ1+μ1
μ1

) = 1 − ρ̂1,

H(0)(1, 0) = 1 − ρ
1−ρ0

(λ0+λ2+μ2
μ2

) = 1 − ρ̂2.

(7)

Proof: For each m = 0, 1, ..., we consider the vertical cut between the states
{Q1 = m,C = 1} and {Q1 = m + 1, C = 0}. Then,

(λ0 + λ1)pm,.(1) = μ1pm+1,.(0). (8)

Summing for all m = 0, 1, ..., we derive

(λ0 + λ1)H(1)(1, 1) = μ1(H(0)(1, 1) − H(0)(0, 1)). (9)

Note that Eq. (9) is a “conservation of flow” relation, since it equates the flow
of jobs into the relay node R1, with the flow of jobs out of the relay node R1.
Similarly, by repeating the procedure we have

(λ0 + λ2)H(1)(1, 1) = μ2(H(0)(1, 1) − H(0)(1, 0)). (10)

Having in mind that H(1)(1, 1) + H(0)(1, 1) = 1 we conclude in

1 − H(0)(0, 1) = λ0+λ1+μ1
μ1

H(1)(1, 1), 1 − H(0)(1, 0) = λ0+λ2+μ2
μ2

H(1)(1, 1).

Substituting the above equation in (3), with (x, y) = (1, 1), we obtain after some
algebra Eq. (7). ��
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3.1 The Associated Random Walk in Quadrant
and Stability Condition

Our model can be seen as a random walk in quarter plane (RWQP) modulated
by a two-state Markov process (idle or busy node D). Using its special structure,
we convert it to a usual RWQP and investigate its stability condition. Without
loss of generality we assume that λ + μ + μ1 + μ2 = 1. Using the notation in
[12,27], the functional Eq. (5) is equivalent to:

−h(0)(x, y)π(0)(x, y) = h(1)(x, y)π(0)
1 (x) + h(2)(x, y)π(0)

2 (y) + h(3)(x, y)p0,0(0),
(11)

where for |x| ≤ 1, |y| ≤ 1, k = 0, 1,

π(k)(x, y) :=
∑∞

i=1

∑∞
j=1 pi,j(k)xi−1yj−1,

π
(k)
1 (x) :=π(k)(x, 0)=

∑∞
i=1 pi,0(k)xi−1, π

(k)
2 (y) :=π(k)(0, y)=

∑∞
j=1 p0,j(k)yj−1,

h(0)(x, y) = xy{λ̂0xy + λ̂1x + λ̂2y + μ̂1x
−1 + μ̂2y

−1 − (λ̂ + μ̂1 + μ̂2)},

h(1)(x, y) = x{λ0(λ + μ1)xy + λ1(λ + μ1)x + λ2(λ + μ1)y + μ̂1x
−1

−(λ(λ + μ1) + μ̂1)},

h(2)(x, y) = y{λ0(λ + μ2)xy + λ1(λ + μ2)x + λ2(λ + μ2)y + μ̂2y
−1

−(λ(λ + μ2) + μ̂2)},

h(3)(x, y) = λ0λxy + λ1λx + λ2λy − λ2.

Equation (11) is the fundamental form corresponding to a RWQP whose one-step
transition probabilities from state (m,n) to (m + i, n + j) are for −1 ≤ i, j ≤ 1:

p̂{(m,n);(m+i,n+j)} = p̂i,jδ{m,n>0} + p̂′
i,jδ{m>0,n=0}

+p̂′′
i,jδ{m=0,n>0} + p̂

(0)
i,j δ{m=0,n=0},

where δ{.} is Kronecker’s delta and:

p̂1,1 = λ̂0, p̂1,0 = λ̂1, p̂0,1 = λ̂2, p̂−1,0 = μ̂1, p̂0,−1 = μ̂2,

p̂0,0 = 1 − (λ̂ + μ̂1 + μ̂2),

p̂′
1,1 = λ0(λ + μ1), p̂′

1,0 = λ1(λ + μ1), p̂′
0,1 = λ2(λ + μ1), p̂′

−1,0 = μ̂1,

p̂′
0,0 = 1 − (λ(λ + μ1) + μ̂1),

p̂′′
1,1 = λ0(λ + μ2), p̂′′

1,0 = λ1(λ + μ2), p̂′′
0,1 = λ2(λ + μ2), p̂′′

0,−1 = μ̂2,

p̂′′
0,0 = 1 − (λ(λ + μ2) + μ̂2),

p̂
(0)
1,1 = λ0λ, p̂

(0)
1,0 = λ1λ, p̂

(0)
0,1 = λ2λ, p̂

(0)
0,0 = 1 − λ2.
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Following [12], set
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M = (Mx,My) = (
∑

j p̂1,j − ∑
j p̂−1,j ,

∑
i p̂i,1 − ∑

i p̂i,−1)
= (λ̂0 + λ̂1 − μ̂1, λ̂0 + λ̂2 − μ̂2),

M (1) = (M (1)
x ,M

(1)
y ) = (

∑
j p̂′

1,j − ∑
j p̂′

−1,j ,
∑

i p̂′
i,1)

= ((λ0 + λ1)(λ + μ1) − μ̂1, (λ0 + λ2)(λ + μ1)),
M (2) = (M (2)

x ,M
(2)
y ) = (

∑
j p̂′′

1,j ,
∑

i p̂′′
i,1 − ∑

i p̂′′
i,−1)

= ((λ0 + λ1)(λ + μ2), (λ0 + λ2)(λ + μ2) − μ̂2).

.

Theorem 1 gives necessary and sufficient conditions for the ergodicity of our
model.

Theorem 1 [12]. When M �= 0, a random walk is ergodic if, and only if, one
of the following conditions holds,

1.
⎧
⎪⎨

⎪⎩

Mx = λ̂0 + λ̂1 − μ̂1 < 0,My = λ̂0 + λ̂2 − μ̂2 < 0,

MxM
(1)
y − MyM

(1)
x < 0 ⇔ μ̂1μ̂2(1 − ρ0)(ρ̂1 − 1) < 0 ⇔ ρ̂1 < 1,

MyM
(2)
x − MxM

(2)
y < 0 ⇔ μ̂1μ̂2(1 − ρ0)(ρ̂2 − 1) < 0 ⇔ ρ̂2 < 1;

2. Mx < 0, My ≥ 0, MyM
(2)
x − MxM

(2)
y < 0;

3. Mx ≥ 0, My < 0, MxM
(1)
y − MyM

(1)
x < 0.

Remark 2: Note that under stability condition, Mx ≥ 0, My ≥ 0 cannot hold
simultaneously. Without loss of generality we assume here on that Mx < 0.

3.2 Analysis of the Kernel

We now provide detailed properties on the branch points, and the branches
defined by R(x, y) = 0. The kernel R(x, y) can be written as a quadratic poly-
nomial in x (resp. y) with coefficients that are polynomial in y (resp. x). Specif-
ically,

R(x, y) = a(x)y2 + b(x)y + c(x) = â(y)x2 + b̂(y)x + ĉ(y),

where

a(x) = −(λ̂0x
2 + λ̂2x), b(x) = x(λ̂ + μ̂1 + μ̂2) − μ̂1 − λ̂1x

2, c(x) = −μ̂2x,

â(y) = −(λ̂0y
2 + λ̂1y), b̂(y) = y(λ̂ + μ̂1 + μ̂2) − μ̂2 − λ̂2y

2, ĉ(y) = −μ̂1y.

The solutions of R(x, y) = 0 for each y, x respectively are given by,

X±(y) = −̂b(y)±
√

Dy(y)

2â(y) , Y±(x) = −b(x)±
√

Dx(x)

2a(x) ,

Dy(y) = b̂2(y) − 4â(y)ĉ(y), Dx(x) = b2(x) − 4a(x)c(x).
(12)
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We now focus on the branch points. Denote by xi, yi, i = 1, 2, 3, 4, the zeros of
Dx(x), Dy(y) respectively. Clearly, b(x) = 0 has two solutions given by: xb

± =
̂λ+μ̂1+μ̂2±

√
(̂λ+μ̂1+μ̂2)2−4̂λ1μ̂1

2̂λ1
, with xb

− < 1 < xb
+. Then, it is readily seen from,

Dx(−∞) = +∞, Dx(0) = μ̂2
1 > 0, Dx(1) = (λ̂0 + λ̂2 − μ̂2)2 > 0,

Dx(xb
−) ≤ 0, Dx(xb

+) ≤ 0, Dx(+∞) = +∞,

that xis are real, such that 0 < x1 ≤ xb
− ≤ x2 < 1 < x3 ≤ xb

+ < x4 < ∞.
Moreover, Dx(x) < 0, x ∈ (x1, x2)∪(x3, x4),Dx(x) > 0, x ∈ (−∞, x1)∪(x2, x3)∪
(x4,∞). Similarly, we can prove that yis are also real, and such that 0 < y1 <
y2 < 1 < y3 < y4 < ∞. Furthermore, Dy(y) < 0, y ∈ (y1, y2) ∪ (y3, y4),Dy(y) >
0, y ∈ (−∞, y1) ∪ (y2, y3) ∪ (y4,∞).

To ensure the continuity of the two valued function Y (x) (resp. X(y)), we
consider the following cut planes: C̃x = Cx − [x3, x4], C̃y = Cy − [y3, y4], Ĉx =
Cx − ([x1, x2]∪ [x3, x4]), Ĉy = Cy − ([y1, y2]∪ [y3, y4]), where Cx, Cy the complex
planes of x, y, respectively. For x ∈ Ĉx, the two branches of Y (x) are defined by

Y0(x) =
{

Y−(x) if |Y−(x)| ≤ |Y+(x)|,
Y+(x) if |Y−(x)| > |Y+(x)|; , Y1(x) =

{
Y+(x) if |Y−(x)| ≤ |Y+(x)|,
Y−(x) if |Y−(x)| > |Y+(x)|.

Similarly, we can define functions X0(y), X1(y), y ∈ Ĉy based on X±(y). We
proceed with some properties of Y0(x), Y1(x):

Lemma 2. The functions Yi(x), x ∈ Cx, i = 0, 1 are meromorphic. Moreover,

1. Y0(x) has one zero and no poles (i.e. it is analytic in Ĉx). Y1(x) has two poles
and no zeros.

2. |Y0(x)| ≤ |Y1(x)|, x ∈ Ĉx, and equality takes place only on the cuts.
3. When |x| = 1, |Y0(x)| ≤ 1. For x = 1, Y0(1) = 1.
4. Y ′

0(1) = − μ̂1−̂λ0−̂λ1

μ̂2−̂λ0−̂λ2
.

Similar results can be obtained for X0(y), X1(y).

Proof. The proof of 1. − 3. is based on Lemma 2.3.4, Theorem 5.3.3 in [12]. 4. is
proved by noticing that

Y0(x)Y1(x) = μ̂2
̂λ0x+̂λ2

, Y0(x) + Y1(x) = (̂λ+μ̂1+μ̂2)x−μ̂1−̂λ1x2

̂λ0x2+̂λ2x
. (13)

Using (13) and taking into account that Y0(1) = 1, we can obtain after some
basic algebra the desired result. �

Define the following image contours: L = Y0[−−−→x1, x2←−−−], Lext = Y0[−−−→x3, x4←−−−], M =

X0[−−−→y1, y2←−−−], Mext = X0[−−−→y3, y4←−−−], where [−→u, v←−] stands for the contour traversed from

u to v along the upper edge of the slit [u, v] and then back to u along the lower
edge of the slit. Then, we have the following lemma:
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Lemma 3. 1. For x ∈ [x1, x2], the algebraic function Y (x) lies on a closed
contour L, which is symmetric with respect to the real line and defined by

|y|2 = 2μ̂2(2̂λ0Re(y)+̂λ1)
̂λ0[̂λ+μ̂1+μ̂2−2̂λ2Re(y)−

√
Δy]+2̂λ2(2̂λ0Re(y)+̂λ1)

, |y|2 ≤ μ̂2
̂λ0x1+̂λ2

, (14)

where Δy = (λ̂ + μ̂1 + μ̂2 − 2λ̂2Re(y))2 − 4μ̂1(2λ̂0Re(y) + λ̂1). Moreover, set

ζ := |Y (x1)| =
√

μ̂2
̂λ0x1+̂λ2

, the point on L with the largest modulus. The point

Y0(x2) = −
√

μ̂2
̂λ0x2+̂λ2

is the extreme left point of L.
2. Similarly, for y ∈ [y1, y2], the algebraic function X(y) lies on a closed contour

M, which is symmetric with respect to the real line and defined by

|x|2 = 2μ̂1(2̂λ0Re(x)+̂λ2)
̂λ0[̂λ+μ̂1+μ̂2−2̂λ1Re(x)−√

Δx]+2̂λ1(2̂λ0Re(x)+̂λ2)
, |x|2 ≤ μ̂1

̂λ0y1+̂λ1
, (15)

where Δx = (λ̂ + μ̂1 + μ̂2 − 2λ̂1Re(x)))2 − 4μ̂2(2λ̂0Re(x) + λ̂2). Moreover,
set β := |X(y1)| =

√
μ̂1

̂λ0y1+̂λ1
> 1 (see Remark 2), the point on M with the

largest modulus. X0(y2) = −
√

μ̂1
̂λ0y2+̂λ1

is the extreme left point of M.

Proof: We prove the first part for Y (x) (the proof of 2. is similar). Clearly,
Dx(x) < 0, x ∈ (x1, x2) and Y0(x), Y1(x) are complex conjugates. Moreover,

Re(Y (x)) = x(̂λ+μ̂1+μ̂2)−μ̂1−̂λ1x2

2(̂λ0x2+̂λ2x)
. (16)

Since R(x, Y (x)) = 0 we have |Y (x)|2 = μ̂2
̂λ0x+̂λ2

⇔ |Y (x)| =
√

μ̂2
̂λ0x+̂λ2

. Clearly,

|Y (x)| is a decreasing function in x. Thus, |Y (x)| ≤ |Y (x1)| = ζ :=
√

μ̂2
̂λ0x1+̂λ2

,

which is the extreme right point of L. Solving (16) with respect to x and taking
the solution such that x ∈ [0, 1] yields,

x̃ =
̂λ+μ̂1+μ̂2−2̂λ2Re(y)−

√
(̂λ+μ̂1+μ̂2−2̂λ2Re(y))2−4μ̂1(2̂λ0Re(y)+̂λ1)

2((2̂λ0Re(y)+̂λ1))
. (17)

Substituting (17) into |y|2 = μ̂2/(λ̂0x + λ̂2) (i.e., for x = x̃) yields (14). �
Finally, for any simple closed contour U , denote by GU (resp. Gc

U ) the interior
(resp. exterior) domain bounded by U . The next result gives topological and
algebraic properties for the associated RWQP, summarized in Lemma 4 (see
also Theorem 5.3.2, Corrolary 5.3.5 in [12]). Define,

Δ =

∣
∣
∣
∣
∣
∣

p̂1,1 p̂1,0 p̂1,−1

p̂0,1 p̂0,0 − 1 p̂0,−1

p̂−1,1 p̂−1,0 p̂−1,−1

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

λ̂0 λ̂1 0
λ̂2 −(λ̂ + μ̂1 + μ̂2) μ̂2

0 μ̂1 0

∣
∣
∣
∣
∣
∣
= −μ̂1μ̂2λ̂0 < 0.

Lemma 4. (i) The curves L and Lext (resp. M and Mext) are quartic, sym-
metrical with respect to the real axis, closed and simple. Since Δ < 0, [y1, y2] ⊂
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GLext
⊂ GL and [y3, y4] ⊂ Gc

L. Similar results hold for M, Mext, [x1, x2],
[x3, x4].
(ii) Y0(x) : GM − [x1, x2] → GL − [y1, y2], X0(y) : GL − [y1, y2] → GM − [x1, x2]
are conformal mappings, and since Δ < 0, the values of Y0(x) (resp. X0(y))
are contained in GL (resp. GM), whereas the values of Y1(x) (resp. X1(y)) are
contained in Gc

Lext
(resp. Gc

Mext
).

3.3 Intersection Points of the Curves

The analytic continuation of H(0)(x, 0) (resp. H(0)(0, y)) outside the unit disc
is achieved by various methods (e.g., Lemma 2.2.1 and Theorem 3.2.3 in [12]).
Note that the common solutions of R(x, y) = 0, A(x, y) = 0 (resp. B(x, y)) are
potential singularities for the functions H(0)(x, 0), H(0)(0, y). Thus, the study of
the intersection points of the curves R(x, y) = 0, A(x, y) = 0 (resp. B(x, y) = 0)
is crucial for the analytic continuation of H(0)(x, 0), H(0)(0, y).
Intersection points of the curves R(x, y) = 0, A(x, y) = 0. Let x ∈ Ĉx and
R(x, y) = 0, y = Y±(x). Their intersection points (if any) are the roots of their
resultant. We can easily show that the resultant in y of the two polynomials
R(x, y) and A(x, y) is

Resy(R,A;x) = (λ0x + λ2)μ̂2
2x

2(x − 1)Ty(x),

where Ty(x) = (λ(λ0 + λ1) + λ0μ1)(λ + μ1)x2 + λμ1(λ − μ + μ1)x − μ1μ̂1. Note
that Ty(0) = −μ1μ̂1 < 0, Ty(1) = μ̂1(λ + μ1)(1 − ρ0)(ρ̂1 − 1) < 0 (due to the
stability condition), and limx→±∞ Ty(x) = +∞. Thus, Ty(x) = 0 has two roots
of opposite sign with x∗ < 0 < 1 < x∗.
Intersection points of the curves R(x, y) = 0, B(x, y) = 0. Let y ∈ Ĉy and
R(x, y) = 0, x = X±(y). It is easy to see that

R(x, y) = α
μ1

B(x, y) + λμy(1 − x) + μ̂2(y − x).

Thus, R(x, y) = 0, B(x, y) = 0, implies that,

λ0x(1 − xy) + λ2x(1 − y) + (λ1x − μ)(1 − x) = 0,
λμy(1 − x) + μ̂2(y − x) = 0. (18)

The second equation in (18) gives x = (λ + μ2)y/(λy + μ2), and substituting in
the first one yields,

L(y) = 1−y
(λy+μ2)2

Zx(y) = 0,

where Zx(y) = y2(λ0(λ + μ2) + λλ2)(λ + μ2) + yλμ2(λ + μ2 − μ) − μ2μ̂2. Note
that Zx(0) = −μ2μ̂2 < 0, Zx(1) = (λ + μ2)μ̂2(1 − ρ0)(ρ̂2 − 1) < 0 (due to the
stability condition), and limy→±∞ Zx(y) = +∞. Thus, Zx(y) has two zeros of
opposite sign y∗ < 0 < 1 < y∗, and Zx(y) < 0, y ∈ [0, 1]. Therefore, L(y) < 0,
y ∈ [0, 1), which in turn implies that B(X0(y), y) �= 0, y ∈ [y1, y2] ⊂ [0, 1), or
equivalently B(x, Y0(x)) �= 0, x ∈ M.
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4 Formulation and Solution of a Boundary Value
Problem

For zero pairs (x, y) of R(x, y) = 0, y ∈ Dy = {y ∈ Cy : |y| ≤ 1, |X0(y)| ≤ 1},

A(X0(y), y)H(0)(X0(y), 0) = −B(X0(y), y)H(0)(0, y). (19)

For y ∈ Dy − [y1, y2] the functions H(0)(0, y), H(0)(X0(y), 0) are both analytic.
This entails from (19) that A(X0(y), y), B(X0(y), y) must not vanish in Dy −
[y1, y2], otherwise H(0)(0, y), H(0)(x, 0) would have poles in |x| ≤ 1, |y| ≤ 1.
Then, the right hand side in (19) can be analytically continued up to the slit
[y1, y2] and thus,

A(X0(y), y)H(0)(X0(y), 0) + B(X0(y), y)H(0)(0, y) = 0, y ∈ [y1, y2], (20)

or equivalently

A(x, Y0(x))H(0)(x, 0) + B(x, Y0(x))H(0)(0, Y0(x)) = 0, x ∈ M. (21)

The function H(0)(x, 0) is holomorphic in Dx = {x ∈ Cx : |x| < 1} and contin-
uous in D̄x = {x ∈ Cx : |x| ≤ 1}, but might have poles in Sx := GM ∩ (D̄x)c.
We also know that (see also Corollary 5.3.5 in [12]) for x ∈ Sx, |Y0(x)| ≤ 1, as a
consequence of the maximum modulus principle. Hence, from (21) the possible
poles of H(0)(x, 0) in Sx are the zeros of A(x, Y0(x)) in this region. Specifically,
the only possible zero is obtained in Subsect. 3.3 and given by

x∗ = −λμ1(λ+μ1−μ)+
√

(λμ1(λ+μ1−μ))2+4μ1μ̂1(λ(λ0+λ1)+λ0μ1)(λ+μ1)

2(λ(λ0+λ1)+λ0μ1)(λ+μ1)
.

Remark 3: Note that the other zero, x∗(< 0) (see Subsect. 3.3), cannot belong
to the region Sx. Indeed, it can be easily shown that

A(x∗, Y0(x∗)) = 0 ⇔ λx∗(1 − Y0(x∗)) + μ1(x∗ − Y0(x∗)) = 0,

and since −1 ≤ Y0(x∗) ≤ 1, then, x∗(1 − Y0(x∗)) ≤ 0, x∗ − Y0(x∗) < 0, which
implies that x∗ /∈ Sx. Thus, we focus only on the positive zero x∗.

If x∗ > β, then A(x, Y0(x)) �= 0 for x ∈ Sx. If x∗ ∈ Sx, then x∗ is a zero
of A(x, Y0(x)) provided that |Y0(x∗)| ≤ 1. Therefore, set r = 1, if x∗ ≤ β and
|Y0(x∗)| ≤ 1, and r = 0 elsewhere. If r = 1, then A(x, Y0(x)) has a unique zero in
Sx given by x = x∗. Otherwise, A(x, Y0(x)) does not vanish in Sx. It is easy to
prove that when A(x, Y0(x)) vanishes at x = x∗, then, this zero has multiplicity
equal to one, since it can be shown that dA(x, Y0(x))/dx does not vanish at
x = x∗.

For y ∈ [y1, y2], letting X0(y) = x ∈ M and realizing that Y0(X0(y)) = y so
that y = Y0(x), we rewrite (20) as (B(x, Y0(x)) �= 0, x ∈ M; see Subsect. 3.3)

A(x,Y0(x))
B(x,Y0(x))

H(0)(x, 0) = −H(0)(0, Y0(x)), x ∈ M. (22)
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Taking into account the possible zero of A(x, Y0(x)) for x ∈ Sx, multiplying both
sides of (22) by the imaginary complex number i, and noticing that H(0)(0, Y0(x))
is real for x ∈ M, since Y0(x) ∈ [y1, y2], we have

Re[iU(x)G(x)] = 0, x ∈ M,

U(x) = A(x,Y0(x))
(x−x∗)rB(x,Y0(x))

, G(x) = (x − x∗)rH(0)(x, 0),
(23)

where, G(x) is regular for x ∈ GM, continuous for x ∈ M ∪ GM, and U(x) is a
non-vanishing function on M. In order to solve the Riemann-Hilbert boundary
value problem formulated in (23), we must conformally transform it to the unit
circle C. Define the conformal mapping and its inverse respectively by

z = f(x) : GM → GC , x = f0(z) : GC → GM.

Then, the Riemann-Hilbert problem formulated in (23) is reduced to the
following: Determine a function F (z) := G(f0(z)), regular in GC and continuous
in GC ∪ C satisfying

Re[iU(f0(z))F (z)] = 0, z ∈ C. (24)

Define χ = −1
π [arg{U(x)}]x∈M, i.e., the index of the Riemann-Hilbert prob-

lem, where [arg{U(x)}]x∈M, denotes the variation of the argument of the func-
tion U(x) as x moves along the closed contour M in the positive direction,
provided that U(x) �= 0, x ∈ M. As expected [2,13], under the stability condi-
tions given in Theorem 1, the index χ = 0. Following the lines in [13] (remind
from Remark 2 that Mx < 0):

Lemma 5. 1. If My < 0, then χ = 0 is equivalent to

dA(x,Y0(x))
dx |x=1 = μ̂2(ρ̂1−1)

μ̂2−̂λ0−̂λ2
< 0 ⇔ ρ̂1 < 1,

dB(X0(y),y)
dy |y=1 = μ̂1(ρ̂2−1)

μ̂1−̂λ0−̂λ1
< 0 ⇔ ρ̂2 < 1.

2. If My ≥ 0, χ = 0 is equivalent to dB(X0(y),y)
dy |y=1 < 0 ⇔ ρ̂2 < 1.

Thus, under stability conditions (see Theorem1) the homogeneous Riemann-
Hilbert problem (23) has a unique solution given by,

H(0)(x, 0) = W (x − x∗)−r exp[ 1
2iπ

∫
|t|=1

log{J(t)}
t−f(x) dt], x ∈ GM, (25)

where W is a constant, and J(t) = U(t)
U(t) , U(t) = U(f0(t)). Since 1 ∈ GM, W

is obtained by setting x = 1 in (25) and combining with the value of H(0)(1, 0)
found in (7). After some algebra we conclude, for x ∈ GM, in

H(0)(x, 0) = ( 1−x∗
x−x∗ )r(1 − ρ̂2) exp[ 1

2iπ

∫
|t|=1

log{J(t)}(f(x)−f(1))
(t−f(x))(t−f(1)) dt]. (26)

We now focus on the determination of the conformal mapping and its
inverse. For this purpose, we need a representation of M in polar coordinates,
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i.e., M = {x : x = ρ(φ) exp(iφ), φ ∈ [0, 2π]}. This representation can be obtained
as follows: Since 0 ∈ GM, for each x ∈ M, a relation between its absolute value
and its real part is given by |x|2 = m(Re(x)) (see (15)), where

m(δ) := 2μ̂1(2̂λ0δ+̂λ2)
̂λ0[̂λ+μ̂1+μ̂2−2̂λ1δ−

√
Δx(δ)]+2̂λ1(2̂λ0δ+̂λ2)

,

and Δx(δ) = (λ̂ + μ̂1 + μ̂2 − 2λ̂1δ)2 − 4μ̂2(2λ̂0δ + λ̂2). Given the angle φ of
some point on M, the real part of this point, say δ(φ), is the solution of
δ − cos(φ)

√
m(δ), φ ∈ [0, 2π]. Since M is a smooth, egg-shaped contour, the

solution is unique. Clearly, ρ(φ) = δ(φ)
cos(φ) , and the parametrization of M in polar

coordinates is fully specified. Then, the mapping from z ∈ GC to x ∈ GM, where
z = eiφ and x = ρ(ψ(φ))eiψ(φ), satisfying f0(0) = 0 and f0(z) = f0(z) is uniquely
determined by (see [5], Sect. 1.4.4),

f0(z) = z exp[ 1
2π

∫ 2π

0
log{ρ(ψ(ω))} eiω+z

eiω−z dω], |z| < 1. (27)

The angular deformation ψ(.) is uniquely determined as the solution of
Theodorsen integral equation

ψ(φ) = φ − ∫ 2π

0
log{ρ(ψ(ω))} cot(ω−φ

2 )dω, 0 ≤ φ ≤ 2π, (28)

with ψ(φ) = 2π − ψ(2π − φ). Due to the correspondence-boundaries theorem,
f0(z) is continuous in C ∪GC . Note that the non linear Eq. (28) cannot be solved
in closed form but numerically, although a unique solution can be proven to
exist. The numerical procedure will be discussed later.

Similarly, we can determine H(0)(0, y) by solving another Riemann-Hilbert
boundary value problem on the closed contour L. Then, using the fundamen-
tal functional Eq. (5) we obtain H(0)(x, y), and substituting back in (3), the
generating function H(1)(x, y) is also uniquely determined.

5 Performance Metrics

In the following we derive formulas for the probability of an empty system and
the expected number of packets at each relay node in steady state. Note that
since 0 ∈ GM, P (Q1 = 0, Q2 = 0, C = 0) = H(0)(0, 0). Clearly,

P (Q1 = 0, Q2 = 0, C = 0) = (1−ρ̂2)(x
∗−1)r

(x∗)r exp[−f(1)
2iπ

∫
|t|=1

log{J(t)}
t(t−f(1))dt],

E(Q1) =
∑∞

m=1 m
∑∞

n=0

∑1
k=0 pm,n(k) = d

dxH(0)(x, 1)|x=1 + d
dxH(1)(x, 1)|x=1,

E(Q2) =
∑∞

n=1 n
∑∞

m=0

∑1
k=0 pm,n(k) = d

dy H(0)(1, y)|y=1 + d
dy H(1)(1, y)|y=1.

Differentiating (5) and (3) with respect to x and setting (x, y) = (1, 1), we
obtain respectively after some algebra,

d
dxH(0)(x, 1)|x=1 = λ0+λ1

Mx
{ μ̂1[(α−μ1)H

(0)(0,1)−μ2H(0)(1,0)]
Mx

+ μ2
d
dxH(0)(x, 0)|x=1},

d
dxH(1)(x, 1)|x=1 = α

μ
d
dxH(0)(x, 1)|x=1 − μ2

μ
d
dxH(0)(x, 0)|x=1.
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From (26),

d
dxH(0)(x, 0)|x=1 = (1 − ρ̂2)[ −r

1−x∗ + 1
2πi

∫
|t|=1

log{J(t)}f ′(1)
(t−f(1))2 dt]. (29)

Then, using the last two equations, we can easily derive

E(Q1) = (λ0+λ1)μ̂1(μ+α)
μM2

x
[(α − μ1)H(0)(0, 1) − μ2H

(0)(1, 0)]

+ μ̂1
Mx

(λ0+λ1+μ1
μ ) d

dxH(0)(x, 0)|x=1.

Similarly,

E(Q2) = (λ0+λ2)μ̂2(μ+α)
μM2

y
[(α − μ2)H(0)(1, 0) − μ1H

(0)(0, 1)]

+ μ̂2
My

(λ0+λ2+μ2
μ ) d

dy H(0)(0, y)|y=1,

where by differentiating (19) with respect to y and setting y = 1, we obtain

d
dy H(0)(0, y)|y=1 = [(λ0+λ1)X

′
0(1)+λ2+λ0−μ]μ2

(X′
0(1)(μ−λ0−λ1)−λ2−λ0)μ1

d
dy H(0)(x, 0)|x=1

+
̂λ[X′′

0 (1)+2X′
0(1)(1−X′

0(1))]
2μ̂1μ̂2(1−ρ0)2(ρ̂2−1)2 H(0)(1, 0),

X ′
0(1) = − μ̂2−̂λ0−̂λ2

μ̂1−̂λ0−̂λ1
, X ′

1(1) = μ̂1[(̂λ0+̂λ1)(μ̂2−̂λ2)−̂λ0μ̂1]

(̂λ0+̂λ1)2(μ̂1−̂λ0−̂λ1)
,

X ′′
0 (1) = 2[X′

0(1)X
′
1(1)(

̂λ0+̂λ1)
2+̂λ0(̂λ0+̂λ2)−μ̂2(2̂λ0+̂λ1)]

(̂λ0+̂λ1)(̂λ0+̂λ1−μ̂1)
.

6 A Numerical Example

We proceed with a simple numerical example to illustrate the validity of the
expressions derived in the previous section. The calculation of P (Q1 = 0, Q2 =
0, C = 0), E(Qi), i = 1, 2, requires the evaluation of the integrals in (26), (29) as
well as the numerical determination of the mapping f0(z) (see [5,28]). We now
outline how these integrals can be computed: Firstly, we rewrite the integrals
(26) and (29), by substituting t = eiφ:

H(0)(x, 0) = ( 1−x∗
x−x∗ )r(1 − ρ̂2) exp[ 1

2π

∫ 2π

0
log{J(eiφ)}(f(x)−f(1))
(eiφ−f(x))(eiφ−f(1))

eiφdφ],

d
dxH(0)(x, 0)|x=1 = (1 − ρ̂2)[ −r

1−x∗ + 1
2π

∫ 2π

0
log{J(eiφ)}f ′(1)eiφ

(eiφ−f(1))2
dφ].

(30)

Then, we split the interval [0, 2π] into K parts of length 2π/K. For the
K points given by their angles {φ0, ..., φK−1}, we solve the Theodorsen inte-
gral Eq. (28) to obtain iteratively the corresponding points {ψ(φ1), ..., ψ(φK−1)}
from:

ψ0(φk) = φk, ψn+1(φk) = φk − 1
2π

∫ 2π

0
log

{
δ(ψn(ω))
cos(ψn(ω))

}
cot[12 (ω − φk)]dω,
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where δ(ψn(ω)) is determined by δ(ψn(ω)) − cos(ψn(ω))
√

m(δ(ψn(ω))) = 0,
using the Newton-Raphson method. For the iteration, we use the stopping cri-
terion: maxk∈{0,1,...,K−1} |ψn+1(φk) − ψn(φk)| < 10−6. Having obtained ψ(φk)
numerically, the values of the conformal mapping f0(z), |z| ≤ 1 are given by

f0(eiφk) = eiψ(φk) δ(ψ(φk))
cos(ψ(φk))

= δ(ψ(φk))[1 + i tan(ψ(φk))], k = 0, 1, ...,K − 1.

It remains to determine f(1), f ′(1). Clearly, f(1) = η means f0(η) = 1. Thus,
f(1) is the unique solution of f0(η) = 1 in [0, 1], and can be obtained using (27)
and the Newton-Raphson method. Furthermore,

f ′(1) = ( d
dz f0(z)|z=η)−1 = { 1

f(1) + 1
2π

∫ 2π

0
log{ρ(ψ(ω))}2eiω

(eiω−f(1))2 dω}−1,

is numerically determined using the trapezium rule.
We now use the above described procedure and set μ2 = 2, μ = 10, λ2 = 0.2,

K = 4000. The left hand side figure in Fig. 2 shows the impact of λ0 (i.e., the
packet generation rate of the user S0) on the probability of an empty system for
increasing values of λ1. As expected, P (Q1 = 0, Q2 = 0, C = 0) decreases as λ1

increases. However, we can observe that the values of P (Q1 = 0, Q2 = 0, C = 0)
deviate significantly for larger λ0 and especially for small values of λ1.

In the right hand side figure of Fig. 2 we can observe how the expected length
of the relay nodes, E(Q1), E(Q2), vary for increasing values of the retrial rate
μ1. Clearly, E(Q1) decreases for increasing values of μ1, while E(Q2) increases,
since packets in R1 retry faster than packets in R2. Moreover, the impact of λ0

remains significant, since by increasing its values, E(Q1), E(Q2) increase too.

Fig. 2. P (Q1 = 0, Q2 = 0, C = 0) for μ1 = 2 (left). E(Qi), i = 1, 2 for λ1 = 0.4 (right).
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