
Chapter 12

Introduction to Robotics-Mathematical
Issues

S.M. Raafat and F.A. Raheem

Abstract Robotic systems play a crucial role in the world and sustainability.

Robots presence and our dependencies on them are progressively growing. This

chapter brings together mathematical developments in the important fields of

robotics, kinematics, dynamics, path planning, control, and vision. Introduction is

made on development of robotics in different areas of application (types of robots

and applications). The kinematics of a robot manipulator is briefly described. The

formulation of dynamics for the manipulator has been obtained based on

Lagrange’s energy function. Linear Segments with Parabolic Blends and Third-

Order Polynomial Trajectory Planning have been described in detail. Different

classical control strategies are presented. Finally, basic concepts of Robot Vision

are presented.

Keywords Robot kinematic • Robotic dynamics • Path and trajectory planning

• Robot control • Robot vision

12.1 Introduction on Robotics; Robot Types
and Applications

Through good design practices and thorough consideration of detail, engineers have

succeeded in applying robotic systems to a wide variety of industrial, manufactur-

ing, space, domestic or household, social, and medical situations where the envi-

ronment is structured or predictable. On a practical level, robots are distinguished

from other electromechanical motion equipment by their dexterous manipulation

capability in that robots can work, position, and move tools and other objects with

far greater dexterity than other machines found in the factory. Process robot

systems are functional components with grippers, end-effectors, sensors, and pro-

cess equipment organized to perform a controlled sequence of tasks to execute a

process—they require sophisticated control systems. The combined effects of
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kinematic structure, axis drive mechanism design, and real-time motion control

determine the major manipulation performance characteristics such as reach and

dexterity, payload, quickness, and precision. For Cartesian robots, the range of

motion of the first three axes describes the reachable workspace. Some robots will

have unusable spaces such as dead zones, singular poses, and wrist-wrap poses

inside of the boundaries of their reach. Usually motion test, simulations, or other

analyses are used to verify reach and dexterity for each application (Lewis et al.

1999).

All common commercial industrial robots are serial link manipulators with no

more than six kinematically coupled axes of motion. By convention, the axes of

motion are numbered in sequence as they are encountered from the base on out to

the wrist. The first three axes account for the spatial positioning motion of the robot;

their configuration determines the shape of the space through which the robot can

be positioned. Any subsequent axes in the kinematic chain provide rotational

motions to orient the end of the robot arm and are referred to as wrist axes. There

are, in principle, two primary types of motion that a robot axis can produce in its

robot arm: either revolute (rotational) or prismatic (translational). It is often useful

to classify robots according to the orientation and type of their first three axes. As

the robot arm has only three degrees of freedom, there exist a limited number of

possible combinations resulting all together in 36 different structures of robot arms.

There are very common commercial robot configurations: Articulated robots

(robotic arms), spherical, Selective Compliance Assembly Robot Arm (SCARA),

cylindrical, Cartesian/gantry (as shown in Fig. 12.1), and parallel robots. Cartesian

coordinate robots use orthogonal prismatic axes, usually referred to as X, Y, and Z,

Fig. 12.1 Different types of Robot arms: (RRR) all three joints of the rotational type; (RRT) two

joints are rotational and one is translational; (RTT) one rotational and two translational degrees of

freedom (Bajd et al. 2010)
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to translate their end-effector or payload through their rectangular workspace. One,

two, or three revolute wrist axes may be added for orientation. Gantry robots are the

most common Cartesian style. Commercial models of spherical and cylindrical

robots were originally very common and popular in machine tending and material

handling applications (Lewis et al. 1999; Bajd et al. 2010).

Robots are also characterized by the type of actuators employed. Typically

manipulators have hydraulic or electric actuation. In some cases, pneumatic actu-

ators are used. A number of successful manipulator designs have emerged, each

with a different arrangement of joints and links. Some “elbow” designs, such as the

PUMA robots and the SPAR Remote Manipulator System, have a fairly anthropo-

morphic structure, with revolute joints arranged into “shoulder,” “elbow,” and

“wrist” sections. A mix of revolute and prismatic joints has been adopted in the

Stanford Manipulator and the SCARA types of arms. Other arms, such as those

produced by IBM, feature prismatic joints for the “shoulder,” with a spherical wrist

attached. In this case, the prismatic joints are essentially used as positioning

devices, with the wrist used for fine motions (Lewis et al. 1999).

The largest number of industrial robot manipulators is found in the car industry

(Bajd et al. 2010). They are mainly used for welding. Other important applications

of industrial robots are to move objects from point to point. Such examples are

found in the process of palletizing. Industrial robots are frequently used in aggres-

sive or dangerous environments, such as spray painting. The request for robot

manipulators in the area of industrial assembly of component parts into a functional

system is progressively increasing. The interest in robot manipulators in medicine is

rapidly increasing as well. They can be found in surgical applications (Boonvisut

and Cavusoglu 2013; Keung et al. 2013), drug delivery (Zhou et al. 2013), or in

rehabilitation for training of a paralyzed extremity after stroke (Freeman et al.

2012). Exceptional cases of robot manipulators are tele-manipulators. These robots

are controlled by a human operator. They are used in dangerous environments or

distant places (Bolopion and Régnier 2013).

Wheeled mobile robots can be used on smooth ground. They can effectively be

used for vision and other sensors assessing distance or contact with objects in the

environment. The biologically inspired leggedmobile robots usually have six legs and

are used on uneven terrain, as in the forestry robot, which is also capable of cutting

trees. Another important class is service robotics where robots are used to help people

(predominantly aging populations) in daily activities. The most innovative examples

are humanoid robots capable of biped locomotion (Lewis et al. 1999). Tripedal robots,

quadrupedal robots, and hexapod robots are other increasingly important legged

robots. Flying robots (Nonami et al. 2010) and underwater robots (Javier et al.

2013) are broadly used for observation of distant terrains or for ocean studies.

Finally, humans have sought to establish new dimension of human robot com-

munication, interaction, and collaboration. Sophisticated robotic toys are appreci-

ated by children. Interesting experiments can be found in the art where robots are

dancing (Augugliaro et al. 2013), playing musical instruments (Cicconet et al.

2013), and even painting (Lewis et al. 1999). Developing Strategies for Robot

soccer competitions has achieved highly advanced stages (Wang et al. 2013).
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12.2 Robot Kinematic Modelling

Robot arm kinematics is the science that deals with the analytical study of the

motion geometry of the robot manipulator with respect to a fixed and reference

coordinate system without regard to the forces or the moments causing the move-

ments. In case of Forward Kinematics (FK) the inputs are the joint angle vectors

and the link parameters. The output of the forward kinematics is the orientation and

the position of the tool or the gripper. When the joint angles that represent the

different robot configuration are computed from the position and orientation of the

end-effector, the scheme called as Inverse Kinematics (IK) (Hegde 2008). The

representation of FK and IK is shown in Fig. 12.2.

In a serial open loop type of robot manipulators, the links connected to no more

than two others via joints at the most. Each pair of a link and a joint gives a single

degree of freedom (DOF). Every serial manipulator provides “n” degrees of

freedom “n DOF.” In general, every link ‘k’ gets connected at the two ends with

the previous link (k� 1) and the next link (kþ 1), forming two joints at the ends of

connections (as shown in Fig. 12.3), where On is the joint center. However, the

kinematic analysis of an n-link manipulator can be solved using Denavit–

Hartenberg convention for finding the link parameters (Hegde 2008; Spong et al.

2006):

1. The distance (di)
2. The angle (θi)
3. The length (ai)
4. The twist angle (αk)

After coordinate frames assignment to all robot links, according to Denavit–

Hartenberg convention, it is possible to establish the relation between the current

frames (i) and the next frame (iþ 1) by the following transformations in sequence:

• Rotation about Zi by an angle θi
• Translate along Zi by a distance di
• Translate along rotated Xi ¼ Xiþ1 through length ai
• Rotation about Xi by twist angle αi

This may result in a product of four homogeneous transformations relating

coordinate frames (the current frames (i) and the next frame (iþ 1)) of the serially

connected two links. The resulted matrix is known as Armmatrix (A) (Hegde 2008).

Forward 
Kinematics

Position and 
Orientation of 
End-Effector

Robot 
Manipulator 

Joint 
Angles

Inverse Kinematics
Robot 

Manipulator 
Joint Angles

Link 
Parameters

Link 
Parameters

Fig. 12.2 Forward and inverse kinematics representation
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Ai
iþ1 ¼ T z, θð ÞTtrans 0, 0, dð ÞTtrans a, 0, 0ð ÞT x; αð Þ ð12:1Þ

¼ T z, θð ÞTtrans α, 0, dð ÞT x, αð Þ: ð12:2Þ

From Equations (12.1) and (12.2) the following matrix may be obtained:

Ai
iþ1 ¼

cos θ � sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

2664
3775

1 0 0 a
0 1 0 0

0 0 1 d
0 0 0 1

2664
3775

1 0 0 0

0 cos α � sin α 0

0 sin α cos α 0

0 0 0 1

2664
3775

¼
cos θ
sin θ
0

0

� sin θ cos α
cos θ cos α

sin α
0

sin θ sin α
� cos θ sin α

cos α
0

a cos θ
a sin θ

d
1

2664
3775:

ð12:3Þ

The coordinate frame at the end-effector of the manipulator is related to the base

reference frame by the ‘T” matrix in terms of (A) matrices for a six degrees of

freedom (6 DOF) robot as example, as follows:

T0
6 ¼ A0

1 A
1
2 A

2
3 A

3
4 A

4
5 A

5
6: ð12:4Þ

O0

O1

O2

On-1

On

frame i -1

frame i

frame i +1

Fig. 12.3 Serial manipulator end-effector frame transformation to base frame
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12.3 Robotic Dynamics: Modelling and Formulations

Dynamics is the science of describing the motion of massive bodies upon applica-

tion of forces and moments. The motion can be considered as an evolution of the

position, orientation, and time derivatives. In robotics, the dynamic equation of

motion for manipulators is utilized to set up the fundamental equations for control

(Jazar 2007). The dynamic motion of the manipulator arm in a robotic system is

produced by the torques generated by the actuators. The relationship between the

input torques and the time rates of change of the robot arm components configura-

tions represents the dynamic modelling of the robotic system which is concerned

with the derivation of the equations of motion of the manipulator as a function of the

forces and moments acting on it. So, the dynamic modelling of a robot manipulator

consists of finding the mapping between the forces exerted on the structures and

the joint positions, velocities, and accelerations (Canudas et al. 1996).

Beni and Hackwood (1985) note that a dynamic analysis of a manipulator is

useful for the following purposes:

1. It determines the joint forces and torques required to produce specified

end-effector motions (the direct dynamic problem).

2. It produces a mathematical model which simulates the motion of the manipula-

tor under various loading conditions (the inverse dynamic problem) and/or

control schemes.

3. It provides a dynamic model for use in the control of the actual manipulator.

Equations of motion for the manipulator can be obtained by forming Euler–

Lagrange’s equation on the basis of Lagrange’s energy function. The resulting

differential equations describe the motion in terms of the joint variables and

parameters of the manipulator.

Let K and V be the total kinetic energy and potential energy stored in the

dynamic system. The Lagrangian is defined by (Spong et al. 2006; Min et al.

1992) and (Yamamoto 1992):

L q; _qð Þ ¼ K q; _qð Þ � V qð Þ: ð12:5Þ

Using the Lagrangian equations of motion as obtained by Yamamoto (1992):

d

dt

∂L
∂ _q

� ∂L
∂q

¼ Qi, i ¼ 1, . . . , n; ð12:6Þ

where Qi is the generalized force corresponding to the generalized coordinate qi.
The kinetic energy and potential energy for the link i are given (Spong et al. 2006):

Ki ¼ 1

2
trace

Xi

j¼1

Xi

k¼1

∂T
∂qi

Ji
∂T
∂qk

_q j _q k

" #
; ð12:7Þ
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Vi ¼ �mig
TTir

� ið Þ: ð12:8Þ

The Lagrangian motion equations for the nth link manipulators can be represented

as a second-order nonlinear differential equation (Spong et al. 2006):

Xn
j¼1

Bij€qj þ
Xn
j¼1

Xn
k¼1

Cijk _q j _q j þ gi ¼ Qi, i ¼ 1, . . . , n; ð12:9Þ

where

Bij ¼
Xn

k¼max i;jð Þ
trace

∂Tk

∂qi
Jk

∂T T
k

∂qi

� �
; ð12:10Þ

Cijk ¼
Xn

h¼max i;j;kð Þ
trace

∂Th

∂qi
Jn

∂2
T T
h

∂qi∂qk

" #
; ð12:11Þ

gi ¼
Xn
k¼i

mkg
T ∂Tk

∂qki
r� ið Þ: ð12:12Þ

Equation (12.9) can be written as a set of second-order vector differential equations:

B qð Þ€qþ C q; _qð Þ þ g qð Þ ¼ Qi; ð12:13Þ

where B(q) is the symmetric inertia matrix C q; _q:ð Þ, the matrix of Coriolis and

centrifugal effects, the vector g(q) denotes the gravity terms, and Qi is the gener-

alized force vector.

12.4 Path and Trajectory Planning in Robotics

The definition of the path is the sequence of robot configurations in a particular

order without regard to the timing of these configurations. The path planning as a

process is the planning of the whole way from the start point to the goal point,

including stopping in defined path points. While the trajectory is, the path specified

by the time law requirement to move the robot from the starting point to the goal

point. In the methodologies of trajectory planning, the task is to attain a specific

target from an initial starting point, avoid obstacles, and stay within robot capabil-

ities. Trajectories can be planned either in joint space where the time evolution of

the joint angles is specified directly or in Cartesian space specifying the position

and orientation of the end-effector frame. In joint space trajectory planning, the

joint values that satisfy these robot configurations can be calculated and used by the

controller for driving the joints to the desired and new positions. Joint space

planning approach is more simple and faster than Cartesian space planning
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approach because of the inverse kinematics calculations avoidance. Obstacle

avoidance is difficult in joint space because of the end-effector pose is not directly

controlled, while planning in Cartesian space allows directly satisfying the geo-

metric constraints of the robot work space, but then inverse kinematics must be

solved (Niku 2001).

12.4.1 Third-Order Polynomial Trajectory Planning

In this planning method, the problem is to find a trajectory that connects the initial

and final configuration. We find the final joint angles for the desired position and

orientation using the inverse kinematic equations. Considering one of the joints,

which at the beginning of the motion segment at time ti is at θi and has to move to a

new value of θf at time tf. Third-order polynomials can be used to plan the

trajectory, such that the velocities at the beginning and the end of the motion are

zero or other known values (Niku 2001; Spong et al. 2006).

θ tð Þ ¼ c0 þ c1tþ c2t
2 þ c3t

3;

where the initial and final conditions are as follows:

θ tið Þ ¼ θi; θ tfð Þ ¼ θf ; _θ tið Þ ¼ 0; _θ tfð Þ ¼ 0:

Taking the first derivative of the polynomial equation:

θ tið Þ ¼ c0 ¼ θi; θ tfð Þ ¼ c0 þ c1tf þ c2t
2
f þ c3t

3
f ;

_θ tið Þ ¼ c1 ¼ 0; _θ tfð Þ
¼ c1 þ 2c2tf þ 3c3t

2
f ¼ 0:

Solving these four equations simultaneously, we get the necessary values for the

constants as follows (Niku 2001):

θ tð Þ ¼ c0 þ c1tþ c2t
2 þ c3t

3;

_θ tð Þ ¼ c1 þ 2c2tþ 3c3t
2:

At t ¼ 0 t ¼ ti ¼ Zeroð Þ ! θ 0ð Þ ¼ c0 ¼ θi; _θ 0ð Þ ¼ c1
¼ 0: initial velocity ¼ Zeroð Þ:

At t ¼ tf : ! θ tfð Þ ¼ θf ¼ θi þ c2t
2
f þ c3t

3
f ! c2t

2
f þ c3t

3
f

¼ θf � θi: ð12:14Þ
_θ tfð Þ ¼ 2c2tf þ 3c3t

2
f ¼ 0 Zerovelocityat the final time tfð Þ
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! 2c2tf þ 3c3t
2
f ¼ 0: ð12:15Þ

Solving Eqs. (12.14) and (12.15) gives:

c3 ¼ �2 θf � θið Þ
t3f

; c2 ¼ 3 θf � θið Þ
t2f

:

As an example, Fig. 12.4 shows the joint positions, velocities, and accelerations

using third-order polynomial equation.

12.4.2 Linear Segments with Parabolic Blends

This method is a joint space trajectory planning with a trapezoidal velocity profile

in which to run the joints at constant speed between the initial and final configura-

tions. Achieving this method in order to create a smooth path, we design the desired

trajectory in three parts. Starting with the linear segment and adding a parabolic

blend region (quadratic polynomial parts) at the beginning and the end of the

Fig. 12.4 Joint positions, velocities, and accelerations using third-order polynomial equation
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motion segment for creating continuous position and velocity, as shown in

Fig. 12.5. The linear segment is the trajectory segment between points A and

B. Assuming that the initial and the final positions are θi and θf at time ti ¼ 0 and

tf and that the parabolic segments are symmetrically blended with the linear section

at blending times tb and tf � tb, we can write (Niku 2001; Spong et al. 2006):

θi ¼ θ t ¼ 0ð Þ ¼ θ 0ð Þ ¼ initialposition, θf ¼ θ t ¼ tfð Þ ¼ θ tfð Þ ¼ finalposition:

ti ¼ 0 startingpositionð Þ, tf ¼ final time ending timeð Þ:

For the first parabolic segment:

θ tð Þ ¼ c0 þ c1tþ 1

2
c2t

2;

_θ tð Þ ¼ c1 þ c2t;

€θ tð Þ ¼ c2:

0
0

0

-2

0

2
x 10-3

0.01

0.02

0.03

0.5

1

5 10 15

A
B

20

Position (rad)

velocity (rad/s)

Acceleration (rad/s2)

25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

Fig. 12.5 Joint positions, velocities, and accelerations using linear segments with parabolic

blends
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The acceleration is constant for the parabolic sections, yielding a continuous

velocity at the common points (called knot points) A and B. Substituting the

boundary conditions into the parabolic equation segment yields (Niku 2001):

At t ¼ 0 ! θ 0ð Þ ¼ c0 ! c0 ¼ θi;

_θ 0ð Þ ¼ c1 ¼ 0 starting velocity ¼ 0ð Þ;
€θ 0ð Þ ¼ c2 ! c2 ¼ €θ:

Substituting the initial conditions gives parabolic segments in the form:

θ tð Þ ¼ θi þ 1

2
c2t

2;

_θ tð Þ ¼ c2t;

€θ tð Þ ¼ c2:

For the linear segment the velocity will be constant and can be chosen based on the

physical capabilities of the actuators. Substituting zero initial velocity, a constant

known joint velocity ω in the linear portion, and zero final velocity, the joint

positions and velocities for points A, B and the final point as follows (Niku 2001):

The general linear equation is,

y

x
¼ y2 � y1

x2 � x1
! θ

t
¼ θB � θA

tf � tb � tb
;

θ

t
¼ ω ! ω ¼ θB � θA

tf � 2tb

! θB ¼ θA þ ω tf � 2tbð Þ:
At t ¼ tb:

Because of point A¼ the end of the first parabolic segment¼ the start of the linear

segment, then the value of θA can be found from the end point of the first parabolic

segment, so that:

θA ¼ θi þ 1

2
c2t

2
b;

_θ A ¼ c2tb ¼ ω constant velocityat the linear segmentð Þ:

The necessary blending time tb can be found as follows:

θf ¼ θB þ θA � θið Þ;
θf ¼ θA þ ω tf � 2tbð Þ þ θA � θi; ð12:16Þ
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θA ¼ θi þ 1

2
c2t

2
b; ð12:17Þ

θf ¼ 2 θi þ 1

2
c2t

2
b

� �
� θi þ ω tf � 2tbð Þ;

θf ¼ θi þ c2t
2
b þ ω tf � 2tbð Þ;

c2 ¼ ω

tb
ð12:18Þ

! θf ¼ θi þ ω

tb

� �
t2b þ ω tf � 2tbð Þ;

θf ¼ θi þ ωtb þ ωtf � 2ωtb:

Then calculating the blending time as:

tb ¼ θi � θf þ ωtf
ω

:

The time tb cannot be bigger than half of the total time tf which results in a parabolic
speedup and a parabolic slowdown. With no linear segment, a corresponding

maximum velocity (Niku 2001):

ωmax ¼ 2 θf � θið Þ=tf :

The final parabolic segment is symmetrical with the initial parabola, but with a

negative acceleration, and thus can be expressed as follows (Niku 2001):

θ tð Þ ¼ θf � 1

2
c2 tf � tð Þ2, where c2 ¼ ω

tb
;

!

θ tð Þ ¼ θf � ω

2tb
tf � tð Þ2,

_θ tð Þ ¼ ω

tb
tf � tð Þ,

€θ tð Þ ¼ �ω

tb
:

8>>>><>>>>:

12.5 Classical Control Synthesis and Design

The problem of robot control can be described as a computation of the forces or

torques that must be generated by the actuators in order to successfully accomplish

the robot task. The robot task can be presented either as the accomplishment of the

motions in a free space, where position control is performed, or in contact with the

environment, where control of the contact force is required (Bajd et al. 2010).
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Control is used to move the robot with respect to the environment as well as to

articulate sensor heads, arms, grippers, tools, and implements. Several techniques

can be employed for controlling a robot, as in Samad (2001). The choice of the

control method depends on the robot task.

A general robot control system consists of the following components: path

planning, inverse kinematics, and a closed loop system that contains the controller,

actuator, the robot mechanism, and the sensor, as shown in Fig. 12.6. The input to

the control system is the desired pose of the robot end-effector, which can be

obtained by using trajectory interpolation methods. The variable xr represents the

reference pose of the robot end-effector. The x vector, describes the actual pose of

the robot end-effector, in general this comprises six variables. Three of them

define the position of the robot end point, while the other three determine the

orientation of the robot end-effector. Accordingly,

x ¼ x y z φ ϑ ψ½ �T:

The orientation is determined by the angle φ around the z axis (Roll), the angle ϑ
around the y axis (Pitch), and the angle ψ around the x axis (Yaw). The internal

coordinates qr represent the desired end-effector position, i.e., the angle ϑ for the

rotational joint and the distance d for the translational joint. The desired internal

coordinates are compared to the actual internal coordinates in the robot control

system. Based on the positional error eq, the control system output u is calculated.

The actuators ensure the forces or torques necessary for the required robot motion.

The robot motion is measured by the sensors.

12.5.1 PD Position Control

For position control of a robot, a Proportional Derivative (PD) is commonly

designed. For robot control this closed loop is separate for each particular degree

of freedom. The control method is based on calculation of the positional error and

determination of control parameters, which enable reduction or suppression of the

error. The positional error is reduced for each joint separately, which means that as

Trajectory 
Planning

Sensor

Inverse 
Kinematics

Control
Robot 

Mechanism
Actuator

xr qr q~ u τ x

q

+
-

Fig. 12.6 A common robot control system (Bajd et al. 2010)
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many controllers are to be developed as there are degrees of freedom. A robot

manipulator has several degrees of freedom, therefore the error eq ¼ qr � q can be

stated as a vector, whereas Kp is a diagonal matrix of the gains of all joint

controllers. The calculated control input incites robot motion toward reduction of

the positional error. The positional error is characterized by the position error eq
multiplied by Kp (whereas Kp is a diagonal matrix of the gains of all joint

controllers). In addition, to confirm safe and stable robot actions, velocity in closed

loop mode is presented with a negative sign. The velocity in closed loop mode

brings damping into the system. It is characterized by the actual joint velocities _q:

multiplied by a diagonal matrix of velocity gains Kd. The overall control law can be

obtained by combining the positional error and the velocity error as given in the

following form:

u ¼ Kp qr � qð Þ þ Kd qr
̇ � _q

� �
; ð12:19Þ

where qr
̇ � _q: is the velocity error ~q

̇
. In Eq. (12.19), the reference velocity signal is

included in the PD signal in order to avoid unnecessary high damping at fastest part

of the trajectory. The synthesis of the PD position controller involves the determi-

nation of the matrices Kp and Kd. The Kp gains must be high for faster response. On

the other hand by proper choice of theKd gains, fast response without overshoot for

the robot systems is gained. Figure 12.7 illustrates the PD position control

configuration.

12.5.2 PD Control of Position with Gravity Compensation

The robot mechanism is usually known to be under the influence of inertial,

Coriolis, centripetal, and gravitational forces. For a simplified model, viscous

Kd

Kp Robot
qr

q
q

q
+

+

+

-

+

-

u
.

qr
.

.

∼

q∼

Fig 12.7 PD position control (Bajd et al. 2010)
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friction, which is proportional to the joint velocity, will be considered here.

Consequently, robot dynamics of Eq. (12.13) can be rewritten as follows:

B qð Þ€qþ C q; _qð Þ _q þ Fv _q þ g qð Þ ¼ τ; ð12:20Þ

where τ is the torques in the robot joints. B,C, and g are defined in Sect. 11.2, Fv is a

diagonal matrix of the joint friction coefficients (Bajd et al. 2010).

In quasi-static conditions, when the robot is moving slowly, it can be assumed

that zero accelerations €q � 0 and velocities _q � 0. Accordingly, the robot dynamic

model is simplified as

τ � g qð Þ: ð12:21Þ

The model of gravitational effectsbg qð Þ (the circumflex denotes the robot model),

which is an acceptable approximation of the actual gravitational forces g(q). The

control algorithm shown in Fig. 12.8 can be written as follows:

u ¼ Kp qr � qð Þ � Kd _q þ bg qð Þ: ð12:22Þ

By introducing gravity compensation, the errors in trajectory tracking are signifi-

cantly reduced. In addition, this control method can be extended to consider the

effect of motion of the robot end-effector; starting from the positional error of the

robot end-effector which is calculated as:

~x ¼ xr � x ¼ xr � k qð Þ; ð12:23Þ

where xr is the reference pose of the robot end-effector and k(.) represents the

equations of direct kinematics.

The velocity of the robot end point is calculated with the help of the Jacobian

matrix from the joint velocities. The equation describing the PD controller is:

Fig. 12.8 PD control with gravity compensation (Bajd et al. 2010)
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f ¼ Kp~x �Kd _x : ð12:24Þ

The negative sign of the velocity error introduces damping into the system. The

joint torques are calculated from the force f, acting at the tip of the robot, with the

help of the transposed Jacobian matrix and by adding the component compensating

gravity. The control algorithm is written as follows:

u ¼ JT qð Þf þ bg qð Þ: ð12:25Þ

The complete control scheme is shown in Fig. 12.9.

12.5.3 Control of the Robot Based on Inverse Dynamics

This control scheme can be derived from the robot dynamic model described by

Eq. (12.20). Assume that the torques τ, generated by the motors, are equal to the

control outputs u. Rewrite Eq. (12.20) in order to determine the direct robot

dynamic model, which describes robot motions under the influence of the given

joint torques. Accordingly, the acceleration €q can be expressed in short as follows

(Bajd et al. 2010):

€q ¼ B�1 qð Þ u� n q; _qð Þð Þ; ð12:26Þ

where n q; _q:ð Þ comprising all dynamic components except the inertial component,

i.e.

n q; _qð Þ ¼ C q; _qð Þ _q þ Fv _q þ g qð Þ: ð12:27Þ

Fig. 12.9 PD control with gravity compensation in external coordinates (Bajd et al. 2010)

276 S.M. Raafat and F.A. Raheem



Assume that the robot dynamic model is known. The inertial matrix
d
B qð Þ is an

approximation of the real values B(q), while dn q; _q:ð Þ represents an approximation

of n q; _q:ð Þ as follows:

bn q; _qð Þ ¼ bC q; _qð Þ _q þ bFv _q þ bg qð Þ: ð12:28Þ

The controller output u is based on inverse dynamics as in the following equation:

u ¼ bB qð Þyþ bn q; _qð Þ; ð12:29Þ

where the approximate inverse dynamic model of the robot was used. The system,

combining Eqs. (12.26) and (12.29), is shown in Fig. 12.10.

By simple substitutions we can write the vector y, having the acceleration

characteristics:

y ¼ €qr þKp qr � qð Þ þKd _q r � _qð Þ: ð12:30Þ

It consists of the reference acceleration €qr and two contributing signals which

depend on the errors of position and velocity. These two signals suppress the error

arising because of the imperfectly modelled dynamics. The complete control

scheme is shown in Fig. 12.11. By considering Eq. (12.30) and the equality

y ¼ €q, the differential equation describing the robot dynamics can be written as

follows:

€eq þ Kd~q ̇ þ Kp~q ¼ 0; ð12:31Þ

Fig. 12.10 Linearization of the control system by implementing the inverse dynamic model (Bajd

et al. 2010)
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where the acceleration error €eq ¼ €qr � €q was introduced. The differential equation

(12.31) describes the time dependence of the control error as it approaches zero.

The dynamics of the response is determined by the gains Kp and Kd.

Similar to internal coordinates, the derivation of equation that describe the

dynamics of the control error, an analogous equation can be written for the error

of the end-effector pose. Accordingly, the acceleration €x of the robot end-effector

can be expressed as follows:

€ex þKd
_ex þKpex ¼ 0 ) €x ¼ €xr þKd

_ex þKpex: ð12:32Þ

Taking into account the equality y ¼ €q

y ¼ J�1 qð Þ €x� _J q; _qð Þ _q� 	
: ð12:33Þ

Substituting€x in Eq. (12.33) with expression (12.32), the control algorithm based on

inverse dynamics in the external coordinates is obtained as follows:

y ¼ J�1 qð Þ €xr þ Kd
_ex þKpex � _J q; _qð Þ _q

� �
: ð12:34Þ

The control scheme encompassing the linearization of the system based on inverse

dynamics (12.29) and the closed-loop control (12.34) is shown in Fig. 12.12.

Fig. 12.11 Control of the robot based on inverse dynamics (Bajd et al. 2010)
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12.5.4 Control Based on the Transposed Jacobian Matrix

This control method is based on the relation connecting the forces acting at the

robot end-effector with the joint torques. The relation is defined by the use of the

transposed Jacobian matrix:

τ ¼ JT qð Þf; ð12:35Þ

where the vector τ represents the joint torques and f is the force at the robot

endpoint. The aim is to control the pose of the robot end-effector, where its desired

pose is defined by the vector xr and the actual pose is given by the vector x. Robots
are usually provided with sensors that measure the joint variables. The pose of the

robot end-effector must be therefore determined by using the direct kinematic

model x¼ k(q), where q indicates the vector of joint variables, x indicates the

vector of task variables; usually, three position coordinates and three Euler angles

The positional error of the robot end-effector ~x ¼ xr � xð Þmust be reduced to zero.

A simple proportional control system with the gain matrix Kp (Bajd et al. 2010) is

introduced:

f ¼ Kp~x : ð12:36Þ

As the robot displacement can only be produced by the motors in the joints, the

variables controlling the motors must be calculated from the force f. This calcula-
tion is performed using the transposed Jacobian matrix in Eq. (12.35).

Fig. 12.12 Robot control based on inverse dynamics in external coordinates (Bajd et al. 2010)
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u ¼ JT qð Þf: ð12:37Þ

The vector u represents the desired joint torques. The control method based on the

transposed Jacobian matrix is shown in Fig. 12.13.

12.5.5 Control Based on the Inverse Jacobian Matrix

In this method, the control is based on the relation between the joint velocities and

the velocities of the robot end point, which is known as the Jacobian matrix (Bajd

et al. 2010).

_x ¼ J qð Þ _q : ð12:38Þ

For small displacements, the relation between changes of the internal coordinates

and changes of the pose of the robot end point can be expressed as follows:

dx ¼ J qð Þdq: ð12:39Þ

For small error in the pose, we can calculate the positional error in the internal

coordinates by the inverse relation (Eq. 12.39).

~q ¼ J�1 qð Þ~x : ð12:40Þ

In this way, the control method is translated to the known method of robot control in

the internal coordinates. The control method, based on the inverse Jacobian matrix,

is shown in Fig. 12.14.

Fig. 12.13 Control based on the transposed Jacobian matrix (Bajd et al. 2010)
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12.5.6 Control of the Contact Force

The robot force control method is based on control of the robot using inverse

dynamics. A contact force f appears in the inverse dynamic model due to the

interaction of the robot with the environment. As the forces acting at the robot

end-effector are transformed into the joint torques by the use of the transposed

Jacobian matrix, we can write the robot dynamic model in the following form (Bajd

et al. 2010)

B qð Þ€qþ C q; _qð Þ _q þ Fv _q þ g qð Þ ¼ τ� JT qð Þf: ð12:41Þ

It can be seen that the force f acts through the transposed Jacobian matrix in a

similar way as the joint torques, i.e., it tries to produce robot motion.

12.5.6.1 Linearization of a Robot System Through Inverse Dynamics

Let us denote the control output, representing the desired actuation torques in the

robot joints, by the vector u. The direct dynamic model was described by Bajd et al.

(2010)

€q ¼ B�1 qð Þ u� n q; _qð Þ � JT qð Þf� 	
: ð12:42Þ

Equation (12.24) describes the response of the robot system to the control input u.
Taking into account the initial velocity value, the actual velocity of the robot

motion is obtained by integrating the acceleration. While taking into the account

the initial position, the actual positions in the robot joints are calculated by

integrating the velocity. The described model is represented by the block Robot
in Fig. 12.15. The system is linearized by including the inverse dynamic model into

the closed loop:

u ¼ bB qð Þyþ bn q; _qð Þ þ JT qð Þf: ð12:43Þ

The use of circumflex denotes the estimated parameters of the robot system.

Fig. 12.14 Control based on the inverse Jacobian matrix (Bajd et al. 2010)
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12.5.6.2 Force Control

Based on linearized model of the control system, the force control is translated to

control the pose of the end-effector. If it is required from the robot to increase the

force exerted on the environment, the robot end-effector must be displaced in the

direction of the action of the force. The following control system by Bajd et al.

(2010) can be used:

y ¼ J�1 qð Þ €xr þ Kd~x ̇ þ KP~x � _J q; _qð Þ _q� 	
: ð12:44Þ

Accordingly, the control of the robot end-effector (including the linearization)

while taking into account the contact force can be determined. This is summarized

in Fig. 12.16.

Generally, for appropriate handling of interactions between robot and environ-

ment, it is necessary to consider force control strategies, either in an indirect way by

means of a suitable use of position control laws or in a direct way by means of true

force control laws (Samad 2001).
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Fig. 12.15 Linearization of the control system by implementing the inverse dynamic model and

the measured contact force (Bajd et al. 2010)
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12.6 Robot Vision and Visual Servoing

Vision technology gives robots intelligent eyes. Using these eyes, robots can

recognize the position of objects in space and adjust their working steps accord-

ingly. The benefits of sophisticated vision technology include savings, improved

quality, reliability, safety, and productivity. Robot vision is used for part identifi-

cation and navigation. Vision applications generally deal with finding a part and

orienting it for robotic handling or inspection before an application is performed.

Sometimes vision-guided robots can replace multiple mechanical tools with a

single robot station.

12.6.1 Robot Vision

Recognizing the geometry of the robot workspace from a digital image (Fig. 12.17)

is the main task of robot vision which is solved by finding the relation between the

coordinates of a point in the two-dimensional (2D) image and the coordinates of the

point in the real three-dimensional (3D) robot environment. The basic equations of

optics determine the position of a point in the image plane with respect to the

corresponding point in 3D space. We will therefore find the geometrical relation

between the coordinates of the point P(xc,yc,zc) in space and the coordinates of the

point p(u,v) in the image.

Studying the robot geometry and kinematics by attaching the coordinate frame

to each rigid robot segments or to objects manipulated by the robot where, the

camera itself represents a rigid body and a coordinate frame should be assigned to

it. A corresponding coordinate frame will describe the pose of the camera. The zc
axis of the camera frame is directed along the optical axis, while the origin of the

frame is positioned at the center of projection. Using a right-handed frame where

the xc axis is parallel to the rows of the imaging sensor and the yc axis is parallel
with its columns. The image plane is in the camera, which is placed behind the

center of projection. The focal length is the distance ( fc) between the image and the

Fig. 12.16 Robot control based on inverse dynamics in external coordinates including the contact

force (Bajd et al. 2010)
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center of projection and has a negative value, as the image plane intercepts the

negative zc axis. The equivalent image plane placed at a positive zc value

(Fig. 12.18). Both the equivalent image plane and the real image plane are sym-

metrical with respect to the origin of the camera frame. The origin of this frame is

placed in the intersection of the optical axis with the image plane. The x and y axes
are parallel to the xc and yc axes of the camera frame. The camera has two

coordinate frames, the camera frame and the image frame. The point P be expressed

in the camera frame, while the point p represents its projection onto the image

plane. The point P is located in the yc, zc plane of the camera frame (Bajd et al.

2010).

Fig. 12.17 Perspective projection (Bajd et al. 2010)

Fig. 12.18 Equivalent image plane (Bajd et al. 2010)
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A famous case study for using vision technology with robotics is the flying robots

such as quadcopters (Carloni et al. 2013). These robots have gained increased

interest in research. To navigate safely, flying robots need the ability to localize

themselves autonomously using their onboard sensors. Potential applications of

such systems include the usage as a flying camera, for example to record sport

movies or to inspect bridges from the air, as well as surveillance tasks and

applications in agriculture. The main idea of the developed flying robot system is

described in Fig. 12.19.

12.6.2 Robot Control Using Visual Servoing Technique

The task is to control the pose of the robot’s end-effector using visual information,

features, extracted from the image. The Pose is represented by a six element vector

encoding position and orientation in 3D space. The camera may be fixed or

mounted on the robot’s end-effector in which case there exists a constant relation-

ship, between the pose of the camera and the pose of the end-effector. The image of

the target is a function of the relative pose between the camera and the target. The

relationship between these poses is shown in Fig. 12.17. The distance between the

camera and target is frequently referred to as depth or range. The relevant frames

required are shown in Fig. 12.20.

The camera contains a lens, which forms a 2D projection of the scene on the

image plane where the sensor is located. This projection causes direct depth

information to be lost, and each point on the image plane corresponds to a ray in

Fig. 12.19 Flying robot system with vision technology (Carloni et al. 2013)
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3D space. Some additional information is needed to determine the 3D coordinate

corresponding to an image plane point. This information may come from multiple

views or knowledge of the geometric relationship between several feature points on

the target (Corke 1994).

Robots typically have six degrees of freedom (DOF), allowing the end-effector

to achieve, within limits, any pose in 3D space. Visual servoing systems may

control six or fewer DOF. Motion so as to keep one point in the scene, the interest

point, at the same location in the image plane is referred to as fixation. Animals use

fixation to direct the high-resolution fovea of the eye toward regions of interest in

the scene. In humans, this low-level, unconscious, fixation motion is controlled by

the brain’s medulla region using visual feedback from the retina. Fixation may be

achieved by controlling the pan/tilt angles of the camera like a human eye or by

moving the camera in a plane normal to the optical axis. High performance fixation

control is an important component of many active vision strategies. Keeping the

target centered in the field of view has a number of advantages that include:

• Eliminating motion blur since the target is not moving with respect to the camera

• Reducing the effect of geometric distortion in the lens by keeping the optical

axis pointed at the target

Visual servoing can be classified into position-based visual servoing (Fig. 12.21)

and image-based visual servoing. In position-based control (PBVS), the geometric

model of the target object is used in conjunction with visual features extracted from

the image to estimate the pose with respect to the camera frame, computing the

control law by reducing the error in pose space. In this way (Fig. 12.8), the

estimation problem involved in computing the object location can be studied

separately from the problem of calculate the feedback signal required by the control

algorithm (Corke 1994; Miura 2004).

In image-based servoing (IBVS), the last step is omitted, and servoing is done on

the basis of image features directly. The structures referred to as dynamic look and

move make use of joint feedback, whereas the PBVS and IBVS structures use no

joint position information at all. The image-based approach (as shown in

Fig. 12.20 Relevant coordinate frames; world, end-effector, camera, and target
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Fig. 12.22) may reduce computational delay, eliminate the necessity for image

interpretation, and eliminate errors in sensor modelling and camera calibration.

However, it does present a significant challenge to controller design since the plant

is nonlinear and highly coupled.

12.7 Conclusion

This chapter sheds light on the essentials of a robotic system. First, we exhibited

types and applications of robots emphasizing the modelling of the kinematic of a

robot manipulator. Then, we formulate the dynamics of a robot manipulator.

A third-order polynomial trajectory planning was illustrated as well as linear

Segments with Parabolic Blends. Suggestions of some practical control structures

have been given; PD position control in different configurations can be realized.

Control that based on inverse dynamics is widely used for robots. In order to

consider the relation between the joint velocities and the velocities of the robot

end point, control based on the (or inverse) Jacobian matrix can be applied. Force

Fig. 12.21 Position-based visual servo (PBVS) structure

Fig. 12.22 Image-based visual servo (IBVS) structure
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control method can find many areas of applications as well. Finally, vision tech-

nology for robotic system has been illustrated. The study of robotics and its

mathematics has great application in sustainability for the future.
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