
123

Emanuel Grant · Dimitris Kotzinos
Dominique Laurent · Nicolas Spyratos
Yuzuru Tanaka (Eds.)

10th International Workshop, ISIP 2015
Grand Forks, ND, USA, October 1–2, 2015
Revised Selected Papers

Information Search,
Integration,
and Personalization

Communications in Computer and Information Science 622

Communications
in Computer and Information Science 622

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Emanuel Grant • Dimitris Kotzinos
Dominique Laurent • Nicolas Spyratos
Yuzuru Tanaka (Eds.)

Information Search,
Integration,
and Personalization
10th International Workshop, ISIP 2015
Grand Forks, ND, USA, October 1–2, 2015
Revised Selected Papers

123

Editors
Emanuel Grant
University of North Dakota
Grand Forks, ND
USA

Dimitris Kotzinos
Université de Cergy-Pontoise
Pontoise
France

Dominique Laurent
Université de Cergy-Pontoise
Pontoise
France

Nicolas Spyratos
LRI
University of Paris South LRI
Orsay
France

Yuzuru Tanaka
Information Science, Knowledge Media Lab
Hokkaido University
Sapporo, Hokkaido
Japan

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-43861-0 ISBN 978-3-319-43862-7 (eBook)
DOI 10.1007/978-3-319-43862-7

Library of Congress Control Number: 2016947512

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This book contains the selected research papers presented at ISIP 2015, the 10th
International Workshop on Information Search, Integration and Personalization. After
being organized in France, Japan, Thailand, and Malaysia, this year the workshop was
held in the USA, reflecting the goal of widening the audience. More precisely, the
workshop took place in 2015 at the Memorial Union, University of North Dakota,
Grand Forks, North Dakota (USA), during October 1–2.

Two keynote speeches were given during the workshop, one by Prof. Amy Apon —
Program Director in Computing Systems Research (CSR), Directorate for Computer
and Information Science and Engineering (CISE), National Science Foundation (NSF),
USA and one by Don Kearney — Sr. Security Engineering Manager, Rockwell Col-
lins, USA. There were 21 presentations of scientific papers, of which 10 were sub-
mitted for peer review. Additional invitations to contribute to the workshop
proceedings resulted in five more submissions. The international Program Committee
selected eight papers to be included in the proceedings.

The themes of the presented and/or submitted papers reflected today’s diversity of
research topics as well as the rapid development of interdisciplinary research. With
increasingly sophisticated research in science and technology, there is a growing need
for interdisciplinary and international availability, distribution, and exchange of the
latest research results, in organic forms, including not only research papers and mul-
timedia documents, but also various tools developed for measurement, analysis,
inference, design, planning, simulation, and production as well as the related large data
sets. Similar needs are also growing for the interdisciplinary and international avail-
ability, distribution, and exchange of ideas and works among artists, musicians,
designers, architects, directors, and producers. These contents, including multimedia
documents, application tools, and services are being accumulated on the Web, as well
as in local and global databases, at a remarkable speed that we have never experienced
with other kinds of publishing media. A great amount of content is now already on the
Web, waiting for its advanced personal and/or public reuse. We need new theories and
technologies for the advanced information search, integration through interoperation,
and personalization of Web content as well as database content.

The ISIP 2015 workshop was organized to offer a forum for presenting original
work and stimulating discussions and exchanges of ideas around these themes,
focusing on the following topics:

– Information search in large data sets (databases, digital libraries, data warehouses)
– Comparison of different information search technologies, approaches, and

algorithms
– Novel approaches to information search
– Personalized information retrieval and personalized Web search

– Data analytics (data mining, data warehousing)
– Integration of Web services, knowledge bases, digital libraries
– Federation of smart objects

ISIP started as a series of Franco-Japanese workshops in 2003, and its first edition was
placed under the auspices of the French embassy in Tokyo, which provided the
financial support along with JSPS (Japanese Society for the Promotion of Science). Up
until 2012, the workshops alternated between Japan and France, and attracted
increasing interest from both countries. Then, motivated by the success of the first
editions of the workshop, participants from countries other than France or Japan vol-
unteered to organize it in their home country. The following shows the history of past
ISIP workshops:

– 2003: First ISIP in Sapporo (June 30–July 2, Meme Media Lab, Hokkaido
University, Japan)

– 2005: Second ISIP in Lyon (May 9–11, University Claude Bernard Lyon 1, France)
– 2007: Third ISIP in Sapporo (June 27–30, Meme Media Laboratory, Hokkaido

University, Japan)
– 2008: 4th ISIP in Paris (October 6–8, Tour Montparnasse, Paris, France)
– 2009: 5th ISIP in Sapporo (July 6–8, Meme Media Laboratory, Hokkaido

University, Japan)
– 2010: 6th ISIP in Lyon (October 11–13, University Claude Bernard Lyon 1, France)
– 2012: 7th ISIP in Sapporo (October 11–13, Meme Media Lab, Hokkaido Univer-

sity, Japan)
– 2013: 8th ISIP in Bangkok (September 16–18, Centara Grand and Bangkok Con-

vention Centre CentralWorld Bangkok, Thailand).
– 2014: 9th ISIP in Kuala Lumpur (October 9–10, HELP University, Kuala Lumpur,

Malaysia).

Originally, the workshops were intended for a Franco-Japanese audience, with
the occasional invitation of researchers from other countries as keynote speakers. The
proceedings of each workshop were published informally, as a technical report of the
hosting institution. One exception was the 2005 workshop, selected papers of which
were published by the Journal of Intelligent Information Systems in its special issue for
ISIP 2005 (Vol. 31, Number 2, October 2008). The original goal of the ISIP workshop
series was to create close synergies between a selected group of researchers from the
two countries; and indeed, several collaborations, joint publications, joint student
supervisions, and research projects originated from participants of the workshop.

After the first six workshops, the organizers concluded that the workshop series had
reached a mature state with an increasing number of researchers participating every
year. As a result, the organizers decided to open up the workshop to a larger audience
by inviting speakers from over ten countries at ISIP 2012, ISIP 2013, ISIP 2014, as
well as at ISIP 2015. The effort to attract an even larger international audience led to
organizing the workshop in countries other than France and Japan. This will continue
in the years to come. Especially during the last three years, an extensive effort was
made to include in the Program Committee academics from around the globe, giving
the workshop an even more international character and disseminating its information

VI Preface

and results globally. We expect this to have an important effect on the participation
of the workshop in the years to come.

The selected papers contained in this book are grouped into three major topics,
namely, Modeling Querying and Updating of Information, Information Extraction, and
Information Visualization; they span major topics in information management research,
both modern and traditional.

We would like to express our appreciation to all the staff members of the organizing
institution for the help, kindness, and support before, during, and after the work-
shop. And of course we would like to cordially thank all speakers and participants of
ISIP 2015 for their intensive discussions and exchange of new ideas. This book is an
outcome of those discussions and exchanged ideas.

May 2016 Emanuel S. Grant
Nicolas Spyratos
Yuzuru Tanaka

Preface VII

Organization

ISIP 2015 was organized by the University of North Dakota, Grand Forks, North
Dakota, USA.

Executive Committee

Co-chairs

Emanuel S. Grant University of North Dakota, USA
Nicolas Spyratos Paris-Sud University, France
Yuzuru Tanaka Hokkaido University, Japan

Program Committee Chairs

Dimitris Kotzinos University of Cergy-Pontoise, France
Dominique Laurent University of Cergy-Pontoise, France

Local Organization

Emanuel S. Grant University of North Dakota, USA

Publicity

Emanuel S. Grant University of North Dakota, USA

Program Committee

Akaishi, Mina Hosei University, Japan
Asano, Yu Hokkaido University, Japan
Boursier, Patrice University of La Rochelle, France
Choong, Yeow-Wei HELP University, Malaysia
d’Orazio, Laurent Clermont University, France
Furukawa, Koichi Kaetsu University, Japan
Grant, Emanuel S. University of North Dakota, USA
Halfeld Ferrari Alves, Mirian University of Orléans, France
Ito, Kimihito Hokkaido University, Japan
Jen, Tao-Yuan University of Cergy-Pontoise, France
Kawtrakul, Asanee Kasetsart University, Thailand
Kotzinos, Dimitris University of Cergy-Pontoise, France
Laurent, Anne Université Montpellier, France
Laurent, Dominique University of Cergy-Pontoise, France
Lucchese, Claudio ISTI-CNR, Italy
Marinica, Claudia University of Cergy-Pontoise, France
Marsh, Ronald A. University of North Dakota, USA
Okada, Yoshihbiro Kyushu University, Japan

Petit, Jean-Marc University of Lyon, France
Ravindran, Anton Rapidstart, Singapore
Sellis, Timos Swinburne University of Technology, Australia
Spyratos, Nicolas Université Paris-Sud, France
Stanchev, Peter Kettering University, USA, Bulgarian Academy

of Science, Bulgaria
Sugibuchi, Tsuyoshi Internet Memory Foundation, France
Tanaka, Yuzuru Hokkaido University, Japan
Vodislav, Dan University of Cergy-Pontoise, France
Yoshioka, Masaharu Hokkaido University, Japan

X Organization

Contents

Modeling, Querying and Updating of Information

On Monotonic Deductive Database Updating Under the Open World
Assumption . 3

Dominique Laurent

PROPER - A Graph Data Model Based on Property Graphs. 23
Nicolas Spyratos and Tsuyoshi Sugibuchi

A Semantic Matrix for Aggregate Query Rewriting 46
Romain Perriot, Laurent d’Orazio, Dominique Laurent,
and Nicolas Spyratos

Information Extraction

RDF Graph Summarization Based on Approximate Patterns 69
Mussab Zneika, Claudio Lucchese, Dan Vodislav, and Dimitris Kotzinos

Robust Approach for Interesting Points Extraction of Moving Human
from 2D Videos . 88

Yu Xiang and Yoshihiro Okada

Information Vizualization

Analysis, Visualization and Exploration Scenarios: Formal Methods
for Systematic Meta Studies of Big Data Applications 107

Klaus P. Jantke and Jun Fujima

Visualization System by Combinatorial Use of Edge Bundling and Treemap
for Network Traffic Data Analysis . 128

Ryo Takayanagi and Yoshihiro Okada

Interactive Metric Learning-Based Visual Data Exploration: Application
to the Visualization of a Scientific Social Network 142

Masaharu Yoshioka, Masahiko Itoh, and Michèle Sebag

Author Index . 157

http://dx.doi.org/10.1007/978-3-319-43862-7_1
http://dx.doi.org/10.1007/978-3-319-43862-7_1
http://dx.doi.org/10.1007/978-3-319-43862-7_2
http://dx.doi.org/10.1007/978-3-319-43862-7_3
http://dx.doi.org/10.1007/978-3-319-43862-7_4
http://dx.doi.org/10.1007/978-3-319-43862-7_5
http://dx.doi.org/10.1007/978-3-319-43862-7_5
http://dx.doi.org/10.1007/978-3-319-43862-7_6
http://dx.doi.org/10.1007/978-3-319-43862-7_6
http://dx.doi.org/10.1007/978-3-319-43862-7_7
http://dx.doi.org/10.1007/978-3-319-43862-7_7
http://dx.doi.org/10.1007/978-3-319-43862-7_8
http://dx.doi.org/10.1007/978-3-319-43862-7_8

Modeling, Querying and Updating
of Information

On Monotonic Deductive Database Updating
Under the Open World Assumption

Dominique Laurent(B)

ETIS Laboratory, ENSEA/UCP/CNRS, Cergy-Pontoise, France
dominique.laurent@u-cergy.fr

Abstract. In this paper, we present and discuss our preliminary work
on a deductive database model in which insertions and deletions are
associated with time stamps. Although time stamps have been used for
many purposes in traditional approaches to databases, no approach did
investigate their impact in a deductive framework under the so called
Open World Assumption (OWA).

To do so, we consider Datalog databases with negation in the body of
the rules and define the semantics of such databases using a three valued
logics. Relying on our previous work on database updating, we show that
updates in our approach are performed in a deterministic way and pre-
serve database consistency with respect to the rules. Moreover, contrary
to standard approaches, we argue that our model is monotonic in the
sense that through time, updates refine the database semantics, while
never overriding results from past semantics. We relate our approach to
standard updating approaches from the literature and we discuss imple-
mentation issues based on the graph database model.

Keywords: Open world assumption · Datalog with negation · Database
semantics · Deductive database updating · Temporal databases · Graph
databases

1 Introduction

In this paper, we present and discuss our preliminary work on a deductive data-
base model in which insertions and deletions are associated with time stamps.
We propose a novel approach meant to take into account the needs of many
current applications, specifically in the domains of data integration and data
warehousing. Our approach has the following characteristics:

1. As usual when dealing with Datalog databases [12], in our approach, a data-
base D is a pair (E,R) where E (respectively R) is called the extension
(respectively set of rules) of D. However, whereas in standard approaches,
the extension E is a set of ground facts, in our approach the extension E
contains ground facts along with negated ground facts, referred to as nega-
tive facts. The role of negative facts is explained in the next item. The rules
in R are standard Datalog rules with negation, as explained in [10,12], and

c© Springer International Publishing Switzerland 2016
E. Grant et al. (Eds.): ISIP 2015, CCIS 622, pp. 3–22, 2016.
DOI: 10.1007/978-3-319-43862-7 1

4 D. Laurent

applying the rules in R to the extension E produces a set of positive and neg-
ative facts that is called the semantics of D. The specificities of the semantics
considered in our approach is introduced below.

2. As in our previous work [3,26], and contrary to standard approaches to data-
base updating [5,30,32] where only insertions are stored in the form of pos-
itive facts, we allow the presence of negative facts in the database, in order
to also store the deletions. Moreover, similarly to [3,26], the database updat-
ing process as defined in this paper is deterministic and consistent, in the
sense that all updates are indeed processed, in a deterministic way, and they
preserve consistency with respect to the rules present in the database.

3. We associate every positive or negative fact involved in a given update with
a time stamp, as done in some models of temporal databases [6,11,24]. We
assume that we are given an infinite and totally ordered set to which these
time stamps belong. We do not make any further hypothesis on this set,
in particular on whether it is countable or not. Time stamps allow us to
keep track of all updates along with their processing time. In this context, we
define a preordering with respect to which updates are monotonic. Intuitively,
the monotonicity property expresses the fact that updates refine the global
semantics of a database, and preserve the semantics as computed in the past.

4. The database semantics is defined so as to reflect the Open World Assumption
(OWA), contrary to most database models that assume the Closed World
Assumption (CWA) [29]. We argue that considering the OWA instead of the
CWA is relevant in most applications related with data integration on the
Web, for the following intuitive reason: when a fact does not appear in the
answer to a query, this does not mean that this fact is false, but rather that
it has not been searched properly. Therefore, in the absence of any other
information such a fact will be considered unknown, instead of false. We refer
to [8] for a more detailed discussion on this issue.

We illustrate our approach through the following example that will serve as a
running example throughout the paper.

Example 1. We consider three atoms a, b and c, and a set of rules R containing
the only rule c ← a,¬b. In this setting, we assume that the rule c ← a,¬b should
hold with the following meaning: at any time t, if a and ¬b are true, then c is
true.

Notice that this way of handling rules reflects the OWA, in the sense that
the rule applies only when there is an explicit evidence that its body holds. As
opposed to this remark, CWA approaches would interpret the rule as follows: if
a is true and if b cannot be proven as true, then c is true.

We now consider the following changes of the database through time:
Starting time t0. Initially, say at time t0, the database extension E is supposed
to be empty, meaning that a, b and c are all unknown. This implies that the
rule does not apply and thus that the database semantics is empty. It should be
noticed that to do so, we must consider a three valued logics where a formula
can be either true, false or unknown. Moreover, it should be clear that unknown
facts are not stored.

On Monotonic Deductive Database Updating Under the OWA 5

Time t1 strictly greater than t0. If at a given time t1, a is inserted then the
database extension E contains the only pair (a, t1), implying that a is now true
but that b remains unknown. Since the rule does not apply when a is true and
b is unknown, the semantics of the database at time t1 contains the only fact a,
meaning that b and c remain unknown.
Time t2 strictly greater than t1. If at time t2, b is inserted, then the database
extension E contains the two pairs (a, t1) and (b, t2). In this case, at time t2, a
clearly remains true whereas b becomes true. Since the rule does not apply when
a and b are true, the semantics of the database at time t2 is {a, b}.
Time t3 strictly greater than t2. Assume now that at time t3, b is deleted from
the database. This update is achieved in our approach by inserting (¬b, t3) into
the database, which implies that the new database extension E is

E = {(a, t1), (b, t2), (¬b, t3)}.
Since t1 is the largest time stamp stored in the database for a, we consider that
a is still true at time t3. Since ¬b becomes true at time t3, this overrides the fact
that b was previously true. However, it should be noticed that storing (b, t2) in
the database state allows to keep track that b was true between times t2 and t3.
On the other hand, the fact that at time t3, a is true and b is false allows to
apply the rule, implying that c is true. Therefore, at time t3, the semantics of
the database is as follows: {a,¬b, c}.
Time t4 strictly greater than t3. As a last update, let us now consider that at
time t4, c is deleted. As in the previous case, this is achieved by inserting (¬c, t4)
into the database extension E, which thus becomes

E = {(a, t1), (b, t2), (¬b, t3), (¬c, t4)}.
At this stage, it is important to notice that we do not consider that this last
update brings a contradiction to the rule, but rather, we consider that c becomes
an exception to the rule. We refer in this respect to our previous work on data-
base updates in the context of the Well-Founded semantics [3,26]. We simply
recall here that in this approach, updates are given priority over the rules, thus
modeling exceptions to the rules. In the case of our example, this implies that
the intuitive meaning of the rule c ← a,¬b provided earlier has to be amended
as follows: at any time t, if a and ¬b are true, and if ¬c does not hold in the
database state, then c is true. As a consequence, at time t4 the semantics of the
database is the following: {a,¬b,¬c}. �

The paper is organized as follows: In Sect. 2 we introduce the basic definitions
regarding our database model and in Sect. 3, we present our approach to database
updating and study its main properties. In Sect. 4, we relate our model with
standard models from the literature and we sketch possible ways of implementing
our approach in the context of graph databases [4,22]. Section 5 concludes the
paper and suggests research issues related to this work.

6 D. Laurent

2 Basic Definitions

2.1 Background

As seen in the introductory section, our approach deals with Datalog databases
with negation [9,10,12,17], and therefore we use the standard associated termi-
nology. We recall in this respect from [12] that a literal g is an expression of
one of the two forms p(t1, . . . , tn) or ¬p(t1, . . . , tn) where p is an n-ary predicate
and t1, . . . tn are constants or variables; in the first case g is said to be positive
and in the second case g is said to be negative. Moreover, a literal g is said to
be ground when no variable occurs among its arguments, and in this case if g is
positive (respectively negative) it is called a fact or a positive fact (respectively
a negative fact).

In order to formally take time stamps into account, we assume that we are
given an infinite and totally ordered set to which these time stamps belong. We
do not make any further hypothesis on this set, in particular on whether it is
countable or not. Time stamps are denoted by t possibly with primes or indices.

As seen in Example 1, we consider that ground literals associated with time
stamps are stored in a database. Such an association is denoted as a pair (g, t),
called a t-literal, where g is a ground literal and t is a time stamp.

The following example illustrates the notation and terminology introduced
above in the context of Example 1.

Example 2. We first note that for the sake of simplification, in Example 1, ground
literals are denoted by constants a, b and c. This simplification should be under-
stood as a short hand for three ground literals, say pa(α), pb(β) and pc(γ) (stand-
ing respectively for a, b and c) where pa, pb and pc are three unary predicates
and α, β and γ are three constants.

Denoting by E the set of t-literals considered at the last step described in
Example 1, we have E = {(a, t1), (b, t2), (¬b, t3), (¬c, t4)}, meaning intuitively
that in E:

– From time t1 on, a is true.
– Between times t2 and t3, b is true, whereas, after time t3, b is false.
– From time t4 on, c is false.

We note that the fact that both b and ¬b occur in E is not contradictory, but
represents a change in the truth value of b (going from true to false). Moreover,
since t1 < t2, the content of E gives no indication about the truth value of b
between times t1 and t2. In this case, b is unknown in E. �

In order to formalize the remarks in Example 2, we first introduce the notion of
t-validity as follows.

Definition 1. Let X be a set of t-literals. For every ground literal g and every
time stamp t, g is said to be t-valid in X if there exists a time stamp t′ such that

– t′ ≤ t and (g, t′) is in X and
– for every t′′ such that t′ ≤ t′′ ≤ t, (¬g, t′′) is not in X.

On Monotonic Deductive Database Updating Under the OWA 7

The set of all literals t-valid in X is denoted by V (X, t).
The set X is said to be consistent if for every time stamp t and every fact f ,

V (X, t) does not contain f and ¬f .

Applying Definition 1 to Example 2, it can seen that the set E is consistent.
Moreover, a is t-valid in E for every t ≥ t1, whereas b is t-valid in E of every t
such that t2 ≤ t < t3. It is also easy to see that, for every t such that t2 ≤ t < t3,
we have V (E, t) = {a, b}.

As seen in Example 1, t-literals provide a simple and intuitive way of modeling
updates while taking into account their associated time stamps. However, as
will be seen later, this simple way of dealing with time can not be used when
considering database semantics in our approach.

This is so because, when computing the database semantics at different
time stamps, a ground literal g can successively be unknown, then true and
then unknown again (which is not possible when considering database updates).
Unfortunately, as shown in the forthcoming Example 6, it turns out that t-literals
do not allow to express the last change, i.e., that g becomes unknown.

In order to cope with this difficulty, we consider pairs of the form 〈 g, [t1, t2) 〉
where g is a ground literal and [t1, t2) stands for the set of time stamps t such
that t1 ≤ t < t2; moreover, we use the notation [t1,∞) to mean that the interval
has an infinite upper bound.

Calling such a pair an int-literal, we define the notion of t-validity in a set
of int-literals in much the same way as for sets of t-literals (see Definition 1).

Definition 2. Let Y be a set of int-literals and t a time stamp. A ground literal
g is said to be t-valid in Y if there exists 〈g, I〉 in Y such that t belongs to I.
The set of all literals t-valid in Y is denoted by V (Y, t).

The set Y is said to be consistent if for every time stamp t and every fact f ,
V (Y, t) does not contain f and ¬f .

We illustrate the notion of int-literal through the following example.

Example 3. Let us consider the following set Y , where as in Example 1, a, b and
c are atoms and t1, t2, t3 are distinct time stamps such that t1 < t2 < t3:

Y = {〈a, [t1,∞) 〉, 〈¬b, [t2, t3) 〉, 〈c, [t2, t3) 〉, 〈b, [t3,∞) 〉}.

For t such that t2 ≤ t < t3, we have V (Y, t) = {a,¬b, c}, because in this case,
t ∈ [t1,∞) and t ∈ [t2, t3) hold. On the other hand, for t′ such that t3 ≤ t′, we
have V (Y, t′) = {a, b}, because now, t ∈ [t1,∞) and t ∈ b, [t3,∞) hold. �

Relating sets of t-literals with sets of int-literals, we notice that every set X of
t-literals can be associated with a set int(X) of int-literals as follows:

int(X) = {〈 g, [t1, t2) 〉 | (g, t1) ∈ X ∧ (¬g, t2) ∈ X ∧
(∀t)(t1 ≤ t < t2 ⇒ (¬g, t) �∈ X)} ∪

{〈 g, [t1,∞) 〉 | (g, t1) ∈ X ∧ (∀t)(t1 ≤ t ⇒ (¬g, t) �∈ X)}.

8 D. Laurent

To illustrate this relationship in the context of Example 2, consider again the set
E = {(a, t1), (b, t2), (¬b, t3), (¬c, t4)}. It is then easy to see that we have:

int(E) = {〈 a, [t1,∞) 〉, 〈 b, [t2, t3) 〉, 〈 ¬b, [t3,∞) 〉, 〈 ¬c, [t4,∞) 〉}.
The following proposition states that t-validity in a set of t-literals and t-validity
in its associated set of int-literals coincide, thus justifying the fact that we use
the same terminology regarding t-validity in the two kinds of sets.

Proposition 1. For every set X of t-literals and every time stamp t, we have
V (X, t) = V (int(X), t).

Proof. 1. By Definition 1, g is t-valid in X for a given time stamp t if and only
if X contains a pair (g, t′) such t′ ≤ t and X contains no pair (¬g, t′′) such that
t′′ ≤ t′ ≤ t. According to the definition of int(X), this implies that g is t-valid in
X for a given time stamp t if and only if int(X) contains a pair 〈g, I〉 where I is
a time interval whose lower bound is t′ and whose upper bound is greater than
t (i.e., infinite if ¬g does not occur in X associated with a time stamp greater
than t1, or finite otherwise). Therefore, g is t-valid in X for a given time stamp
t if and only if t ∈ I, which by Definition 2 means that g is t-valid in int(X).
Therefore the proof is complete.

We now emphasize that int-literals are strictly more expressive than t-literals,
in the sense that there exist sets of int-literals that have no corresponding set of
t-literals that preserves t-validity.

To see this, consider the set Y = {〈 g, [t1, t2) 〉}, meaning that the ground
literal g is t-valid for every t such that t1 ≤ t < t2. Intuitively, this corresponds
to the following: before t1, g was unknown, between t1 and t2 g holds, and after
t2, g is again unknown. Now, if X is a set of t-literals such that, for every t,
V (X, t) = V (Y, t), then X must contain the t-pair (g, t1) to state that g holds
from t1 on, but we can not express that neither g nor ¬g hold from t2 on.

As will be seen later on, int-literals are needed in our approach for defining
the semantics of a database, whereas t-literals are used for defining the database
extension, i.e., the database content. We now introduce the following relation
over sets of int-literals.

Definition 3. Let Y1 and Y2 be two sets of int-literals. Y1 is said to refine Y2,
denoted by Y1 � Y2, if for every 〈g2, I2〉 in Y2, there exists 〈g1, I1〉 in Y1 such
that g1 = g2 and I1 ⊆ I2.

It is easy to see from Definition 3 that set inclusion implies refinement, in the
sense that for all sets of int-literals Y1 and Y2, if Y2 ⊆ Y1 then Y1 � Y2.

However, the converse does not hold because for Y1 = {〈 g, [t1, t2) 〉} and
Y2 = {〈 g, [t1,∞) 〉} with t1 < t2, Y1 � Y2 holds whereas Y1 and Y2 are not
comparable with respect to set inclusion.

On the other hand, it is easy to see that the relation � is reflexive and
transitive, implying that � is a pre-ordering. However this relation is not anti-
symmetric and thus, not an ordering. The following example explains why the
relation � is not anti-symmetric.

On Monotonic Deductive Database Updating Under the OWA 9

Example 4. Consider the set E of Example 2 and its associated set of int-literals
int(E) = {〈 a, [t1,∞) 〉, 〈 b, [t2, t3) 〉, 〈 ¬b, [t3,∞) 〉, 〈 ¬c, [t4,∞) 〉} as given earlier.

Let Y = int(E) ∪ {〈¬c, [t5, t6) 〉} where t5 and t6 are two time stamps such
that t4 < t5 < t6. In this case, according to Definition 3, int(E) and Y are two
distinct sets such that int(E) � Y and Y � int(E). Indeed:

– For every pair π = 〈 g, I 〉 in Y , either π belongs to int(E) or π = 〈 ¬c, [t5, t6) 〉.
In the first case, we trivially have a pair in int(E) satisfying Definition 3
(namely π itself), and in the second case, 〈 ¬c, [t4,∞) 〉 satisfies Definition 3
because of the inclusion [t5, t6) ⊆ [t4,∞). Thus, int(E) � Y holds.

– Conversely, Y � int(E) holds because int(E) ⊆ Y . �

The fact that the relation � is a pre-ordering but not an ordering raises the
question of equivalent sets of int-literals, i.e., sets Y1 and Y2 for which Y1 � Y2

and Y2 � Y1 hold. Example 4 suggests that such equivalent sets represent the
same information in terms of t-validity. However, this point is left outside the
scope of the present paper, and a complete study of this question is still needed.

2.2 Database and Database Semantics

As in standard approaches to Datalog databases with negation [9,10,12,17], we
consider that a database consists of an extension and a set of rule. However, in
our approach, the extension is a set of t-literals (and not a set of facts) and the
rules are standard Datalog rules with negation.

Definition 4. A database D is a pair D = (E,R) where E and R are respec-
tively called the extension and the rule set of D. If D = (E,R), then:

– E is a set of t-literals.
– R is a set of standard Datalog rules with negation, that is, rules of the form

r : h ← b1, . . . , bn where
1. for i = 1, . . . , n, bi is a literal (positive or negative) and the set of all bi’s

(i = 1, . . . , n) is called the body of the rule, denoted by body(r),
2. h is a positive literal, called the head of the rule, denoted by head(r),
3. all variables occurring in h are assumed to also occur in the body of the

rule (i.e., rules are safe).

Given a database D = (E,R), the set V (E, t) is called the state of D at time t
and is denoted by Dt. The database D is said to be consistent if for every time
stamp t, Dt is consistent.

As usual, the extension E of a given database D = (E,R) as mentioned in
Definition 4 is meant to contain the facts currently stored in the database as a
result of the updates that have been processed so far.

Regarding database semantics, the presence of time stamps in the database
allows for considering the database semantics at different points of time. To do
so, given a database D = (E,R), we associate D with the so-called membership
immediate consequence operator [10] that we adapt so as to take into account the

10 D. Laurent

presence in E of (i) negative facts and of (ii) time stamps. We address item (i)
based on our previous work on updates [3,26], whereas item (ii) is the subject
of the remainder of the present section.

In the definition given next, we consider valuations of the variables occurring
in rules, that is mappings associating every variable occurring in the rules with
a constant. To this end, we use the following notation: if r is a rule in R and inst
an instantiation, then inst(head(r)) is the instantiation of the literal head(r)
and inst(body(r)) denotes the set of instantiations of the literals in body(r).

Definition 5. Let D = (E,R) be a database and t a time stamp. The mem-
bership immediate consequence operator associated to D, denoted by T∈

D is a
mapping associating every set X of t-literals with the following set:

T∈
D(X, t) = Dt ∪ {h | (∃r ∈ R)(h = inst(head(r))∧

inst(body(r)) ⊆ V (X, t) ∧ ¬h �∈ Dt)}.

It is easy to see that for every fixed time stamp t the membership immediate
consequence operator T∈

D(, t) as defined above is monotonic and continuous. As
a consequence this operator has a unique least fixed point obtained as the limit
of the sequence

(
T k

)
k≥0

defined as follows:

– T 0 = T∈
D(∅, t)

– for every k > 0, T k = T∈
D(T k−1, t).

This is precisely this least fixed point that we call the semantics of D at time t,
which is denoted by semt(D).

Example 5. In the context of Example 1, and according to Definition 4, we denote
by D = (E,R) the database obtained after the last given update. Thus, as seen
in Example 2, E = {(a, t1), (b, t2), (¬b, t3), (¬c, t4)} and R = {c ← a,¬b}.

We note that, for the sake of simplification, we consider here the simple case
where no variables occur in the rules. As a consequence, each rule is equal to its
unique instantiation. Based on Definition 5, we now illustrate the computations
of semt(D) for t = t1, . . . , t4.

Since Dt1 = {a}, we have in this case: T 0 = T 1 = {a} because the rule
of R does not apply. Therefore, semt1(D) = {a}. For similar reasons, we have
semt2(D) = {a, b} because Dt2 = {a, b}, which again prevents the rule of R from
applying. Now, the computation of semt3(D) is as follows:

1. We have Dt3 = {a,¬b}, and thus T 0 = {a,¬b}.
2. Using the rule in R, we obtain T 1 = {a,¬b} ∪ {c} = {a,¬b, c}, because ¬c is

not in Dt3 .
3. As no further ground literal is generated when computing T 3 to T 2, we obtain

that semt3(D) = {a,¬b, c}.

On Monotonic Deductive Database Updating Under the OWA 11

On the other hand, the computation of semt4(D) is as follows:

1. We have Dt4 = {a,¬b,¬c}, and thus T 0 = {a,¬b,¬c}.
2. Then, since ¬c is in Dt4 , the rule in R does not generate c in T 1. Thus, we

obtain T 1 = T 0.

Therefore, we have semt4(D) = {a,¬b,¬c}. �
The following proposition states that, for every time stamp t occurring in a
consistent database D, the semantics of D at time t contains the extension of D
and that this semantics is consistent.

Proposition 2. Let D = (E,R) be a consistent database. For every time stamp
t occurring in E:

1. Dt ⊆ semt(D).
2. The set semt(D) is a consistent set of ground literals.

Proof. 1. By definition of T∈
D, for every set X of t-literals, the set Dt is a subset

of T∈
D(X). Therefore, for every k ≥ 0, Dt is a subset of T k, which entails that

Dt is a subset of semt(D).
2. Since D is assumed to be consistent, for every time stamp t occurring in E,
Dt is a consistent, i.e., Dt does not contain a fact f along with its negation ¬f .
On the other hand, by Definition 4, as R contains only rules whose head is a
positive literal, literals that belong to semt(D) but not to Dt are positive facts.
Thus, assuming that semt(D) is not consistent implies that there exists a fact f
in semt(D) \ Dt such that ¬f belongs to Dt. Since this is not possible because
of the definition of T∈

D in Definition 5, the proof is complete.

An important remark regarding OWA and database semantics as defined above
is now in order. We first recall that defining semantics for Datalog databases
with negation had been the subject of important research efforts in the past (see
[9] for a survey of this topic). Among these semantics, we cite the Kripke-Kleene
semantics as defined in [14] and the Well-Founded semantics introduced in [17].
We focus on these two semantics because they can easily be adapted to our
context in much the same way as done above for the T∈

D operator (we refer to
our previous work in [3,26] regarding the case of the Well-Founded semantics).

Our choice of defining database semantics using the membership immediate
consequence operator is motivated by our assumption that working under the
OWA is preferable to working under the CWA. Indeed, in our approach, no
negative fact is obtained by the semantic operator, since no rule can explicitly
generate a negative fact. This means that, contrary to CWA, we make no partic-
ular explicit or implicit assumption regarding negative facts. On the other hand,
the approaches in [14,17] work under CWA because:

– In [14], when computing the considered operator for a given set X of ground
literals, a negative fact ¬f is obtained when every instantiated rule whose head
is f has a body containing a contradiction with respect to X. Consequently,
when f is the head of no instantiated rule, then ¬f is deduced, which means
that CWA is assumed.

12 D. Laurent

– In [17], when computing the greatest set of unfounded facts for a given set X
of ground literals, a negative fact ¬f is obtained when, for every instantiated
rule whose head is f , the body contains either a contradiction with respect
to X, or a fact already found as being unfounded. As above, this implies that
¬f is deduced when f is the head of no instantiated rule, which again means
that CWA is assumed.

However, it should be noticed that, under the hypothesis that CWA is prefer-
able to OWA, choosing one of the two semantics mentioned above would not
basically change the way our approach is constructed; only the computations of
the database semantics semt(D) would change, but all theoretical results based
on the output of these computations would still hold.

Now, given a database D, and based on the semantics defined at different
time stamps occurring in D, we address the issue of defining the global semantics
of D. However, the following example shows that defining this global semantics
as the union of all semantics at all time stamps occurring in D is not correct.

Example 6. In the context of Example 1, let us now consider the database D′ =
(E′, R) where E′ = {(a, t1), (¬b, t2), (b, t3)} (where t1 < t2 < t3) and R contains
the single rule c ← a,¬b. Computations similar to those in Example 5 yield the
following: semt1(D

′) = {a}, semt2(D
′) = {a,¬b, c} and semt3(D

′) = {a, b}.
Consequently, the global semantics of D′ should be the set S of all t-literals

that can be built up using the three sets above, namely:

S = {(a, t1), (a, t2), (¬b, t2), (c, t2), (a, t3), (b, t3)}.

However, we argue that S is not the appropriate set to represent the global
semantics of D′ for the following two reasons:

1. The pairs (a, t2) and (a, t3) are redundant because removing these two pairs
from S does not change the fact that a is t-valid for every t such that t1 ≤ t.

2. More importantly, S is not correct regarding the t-validity of c. Indeed, con-
sidering the semantics semt2(D

′) et semt3(D
′), c is t-valid for t2 ≤ t < t3,

whereas for t ≥ t3, c is no longer t-valid. On the other hand in S, c is clearly
t-valid for every t such that t ≥ t2, thus for t ≥ t3. �

Referring back to our previous discussion about the expressiveness of t-literals
with respect to that of int-literals, Example 6 shows that the global semantics
can not be expressed using t-literals. This is so because in the semantics, ground
literals may become unknown after being true or false, whereas, as will be seen in
the next section, this is not possible when dealing with the database extension.

In order to cope with the difficulty raised in Example 6, the global semantics of
a given database D = (E,R) is defined below using int-literals. In this definition,
as well as in the remainder of this paper, we assume that the first time stamp
related to D is t0 and that, at time t0, E is equal to the empty set.

Definition 6. Let D = (E,R) be a database and t1, . . . , tn all time stamps
occurring in E such that t1 < . . . < tn. The global semantics of D, denoted by
SEM(D), is the set of all int-literals 〈g, I〉 satisfying one of the following two
items:

On Monotonic Deductive Database Updating Under the OWA 13

– I = [ti, tj), where
1. i, j ∈ {1, . . . , n}, i < j, and
2. g �∈ semti−1(D), g �∈ semtj (D), and
3. (∀k ∈ {1, . . . , n})(i ≤ k < j ⇒ g ∈ semtk(D));

– I = [ti,∞), where
1. i ∈ {1, . . . , n}, and
2. g �∈ semti−1(D), and
3. (∀k ∈ {1, . . . , n})(i ≤ k ⇒ g ∈ semtk(D)).

Applying Definition 6 to the database D′ of Example 6 yields the following global
semantics:

SEM(D′) = {〈 a, [t1,∞) 〉, 〈 ¬b, [t2, t3) 〉, 〈 c, [t2, t3) 〉, 〈 b, [t3,∞) 〉}.
It can be seen that SEM(D′) correctly represents the information conveyed by
the sets semti(D

′) (i = 1, 2, 3) in the sense that for every ground literal g and
every time stamp ti (i = 1, 2, 3), g is ti-valid in SEM(D′) if and only if g is in
semti(D

′). The following proposition shows that this property holds in general,
for any time stamp t.

Proposition 3. Let D = (E,R) be a database. For every ground literal g and
every time stamp t, g is t-valid in SEM(D) if and only if g is in semt(D).

Proof. Using the same notation as in Definition 6, let g be a ground literal such
that g belongs to semt(D). Denoting by k the least index such that tk ≤ t and g
is in semtp(D) for p ≥ k and tp ≤ t, Definition 6 implies that SEM(D) contains
an int-literal 〈g, I〉 such that I = [tk, tj) with tk ≤ t < tj , or I = [tk,∞). In both
cases, by Definition 2, we have that g is t-valid in SEM(D).

Conversely, let us assume that g is t-valid in SEM(D). In this case, by Defin-
ition 2, SEM(D) contains an int-literal 〈g, I〉 such that t is in I. By Definition 6,
I is either [ti, tj) or [ti,∞) and g belongs to semti(D). Let k be in {1, . . . , n−1}
such that [tk, tk+1) or [tk,∞) is the least interval I0 included in I and containing
t. It is easy to see that such a k always exists and is unique. Moreover, we have
the following:
(i) Applying again Definition 6, g belongs to semtk(D).
(ii) I0 contains no time stamp from {t1, . . . , tn} other than tk, implying that for
every time stamp q in I0, semq(D) = semtk(D).
Hence, semt(D) = semtk(D), which implies that g is in semt(D). Therefore, the
proof is complete.

3 Updates

In this section, we define the two standard update operations insert and delete
in our model, and then, we study their basic properties.

Definition 7. Let D = (E,R) be a database and tc a time stamp strictly greater
than any time stamp occurring in E (tc can be referred to as the current time
stamp). For every fact f

14 D. Laurent

– the insertion of f in D results in the database denoted by ins(f, tc,D) =
(Ef

tc , R), where Ef
tc = E ∪ {(f, tc)};

– the deletion of f from D results in the database denoted by del(f, tc,D) =
(E¬f

tc , R), where E¬f
tc = E ∪ {(¬f, tc)}.

In the literature [24], time stamps stored in temporal databases can be of two
kinds, namely processing time or validity time. While processing time refers to
the time when the update has been performed in the system, validity time refers
to the time the update should be taken in to account in the database semantics.
Many examples can be found in the literature, this topic lying beyond the scope
of this paper, we refer to [24] in this respect.

Although our approach can deal with any of these two kinds of time stamps,
the fact that in Definition 7 the stored time stamps refer to the current time
means that processing time is considered. We note however that considering
validity time instead of processing time does not raise any particular difficulty.
Moreover, dealing with the two kinds of time stamps in our model should be
possible but we do not investigate further this issue in this paper.

On the other hand, as stated by Definition 7, in our approach as well as in
our previous work [3,26], updates are insert-only operations, even in the case
of deletion. We note that keeping track of deletions is not new, since this is
common practice in DBMSs and in data warehouse systems. However, the impact
of deletions on database semantics has never been addressed as we do in our
approach.

We now state the main properties of our updating approach. As an immediate
consequence of Definition 7 and Proposition 2, the proposition below states that
updates are always valid and preserve database consistency.

Proposition 4. For every consistent database D = (E,R), every time stamp tc
strictly greater than any time stamp occurring in E, and every fact f :

1. ins(f, tc,D) and del(f, tc,D) are consistent.
2. Moreover, the following holds:

– f ∈ semtc(ins(f, tc,D)), and
– ¬f ∈ semtc(del(f, tc,D)).

It is important to notice that Proposition 4(1) implies that, in our approach all
databases are consistent. Indeed, every database is obtained through updates,
starting from the empty database which is trivially consistent. Therefore in the
remainder of this paper, we always refer to consistent databases, even when the
word ‘consistent’ is omitted.

Notice however in this respect that Proposition 4(1) holds because we con-
sider that only one update at a time is possible. It is easy to extend Definition 7
so as to consider a set of insertions and deletions, all associated with the same
time stamp. In that case however, database consistency is ensured if updates in
this set are ‘globally consistent’, meaning that no fact is inserted and deleted at
the same time.

On the other hand, Proposition 4(2) shows that updates are always per-
formed, in the sense that an inserted fact becomes true and a deleted

On Monotonic Deductive Database Updating Under the OWA 15

fact becomes false in the updated database. We emphasize that traditional
approaches to database updating fail to satisfy this property, in particular in
the case of deletion.

Next, we illustrate this important feature of our approach in the context of
Example 1.

Example 7. We recall that in Example 1 the only rule in R is c ← a,¬b. Thus,
when considering D = (E,R) where E = {(a, t1), (b, t2), (¬b, t3)}, the deletion
of c from D at time t4 is problematic in traditional approaches, as explained
below:

– As c occurs in the head of a rule, it could be considered as an intentional fact
on which updates are not allowed. In this case, which is that of traditional
approaches to deductive databases [12], the deletion is simply rejected.

– Assuming that the deletion is not rejected, it should be noticed that c has never
been inserted. Consequently, approaches to updates that define a deletion as a
removal from the extension would leave the database unchanged, thus making
the deletion impossible to process.

– Another option (as in [5]) consists in modifying the database extension so
as to prevent from triggering the rule. In our example, this would lead to
two possible updates: either delete a or insert b. This is a typical case of non
determinism that traditional approaches fail to take into account in general.

�

We now turn to the monotonicity properties of our approach. The following
proposition states in this respect that past semantics can be safely recovered
from any updated database.

Proposition 5. For every database D = (E,R), every fact f and every time
stamp t such that t < tc (where tc stands for any time stamp strictly greater
than any time stamp occurring in E), we have:

semt(D) = semt(ins(f,D, tc)) = semt(del(f,D, tc)).

Proof. Since tc is assumed to be strictly greater than any other time stamp
t occurring in D, the states at time t of D, ins(f,D, tc) and del(f,D, tc) are
equal, in other words, Dt = (ins(f,D, tc))t = (del(f,D, tc))t. This implies that
the corresponding semantics at t are the same, and thus the proof is complete.

We illustrate Proposition 5 in the context of Example 1 as follows.

Example 8. Let D′′ = (E′′, R) be the database such that E′′ = {(a, t1), (b, t2)}
and R = {c ← a,¬b}. Then, it is easy to see that D′′

t2 = (del(b,D′′, t3))t2 =
(del(c, del(b,D′′, t3), t4))t2 = E′′. Thus:

semt2(D
′′) = semt2(del(b,D′′, t3)) = semt2(del(c, del(b,D′′, t3), t4)) = {a, b}.

��

16 D. Laurent

Proposition 5 shows that the database semantics at a given time t1 is preserved
in any forthcoming state at time t2 (t2 > t1) obtained through updates. This
means intuitively that past semantics is preserved, while more and more such
past semantics become available through time.

As a second result regarding monotonicity, the following proposition states
that our approach to updating is monotonic with respect to the pre-ordering �,
meaning intuitively that updates always refine database semantics.

Proposition 6. For every database D = (E,R), every fact f and every time
stamp tc strictly greater than all time stamps occurring in E, we have:

SEM(ins(f,D, tc)) � SEM(D) and SEM(del(f,D, tc)) � SEM(D).

Proof. In this proof, we again assume that the time stamps occurring in D
are t1, . . . , tn suct that t1 < . . . < tn. Therefore, for every int-literal 〈g, I〉 in
SEM(D), either I is of the form [ti, tj) with ti < tn and tj ≤ tn, or I is of the
form [ti,∞) with ti ≤ tn. Moreover, the time stamps occurring in either of the
databases ins(f,D, t) and del(f,D, t) are such that t1 < . . . < tn < tc.

Now, let 〈g, I〉 be an int-literal in SEM(D). Recalling from Proposition 5 that
for every time stamp t such that t < tc, we have semt(D) = semt(ins(f,D, tc)) =
semt(del(f,D, tc)), we consider the following two cases, depending on the form
of the interval I:

1. If I is [ti, tj), then 〈g, I〉 is in SEM(ins(f,D, tc)) and in SEM(del(f,D, tc)),
because in this case, for every t in I we have t < tn < tc.

2. If I is [ti,∞), then we distinguish the two cases whereby g is or not in
semtc(ins(f,D, tc)) or semtc(del(f,D, tc)). If g is in, then 〈g, I〉 is unchanged
in SEM(ins(f,D, tn)) or in SEM(del(f,D, tc)).
If g is not in semtc(ins(f,D, tc)) or semtc(del(f,D, tc)), then in the global
semantics of the updated database, 〈g, [ti,∞)〉 is changed into 〈g, [ti, tc)〉 and
again two cases occur:
– If ¬g is in semtc(ins(f,D, tc)) or semtc(del(f,D, tc)) then 〈¬g, [tc,∞)〉

appears in the global semantics of the updated database.
– If ¬g is not in semtc(ins(f,D, tc)) or semtc(del(f,D, tc)) then no new

int-literal appears in the global semantics of the updated database.

Therefore, in any case, assuming that 〈g, I〉 is an int-literal in SEM(D)
implies that SEM(ins(f,D, tc)) and SEM(del(f,D, tc)) contain an int-literal
〈g, I ′〉 such that I ′ ⊆ I. As a conclusion, by Definition 3 we obtain
SEM(ins(f,D, tc)) � SEM(D) and SEM(del(f,D, tc)) � SEM(D) and thus,
the proof is complete.

The following example illustrates Proposition 6 in the context of Example 1.

Example 9. As in Example 8, let us consider the database D′′ = (E′′, R) where
E′′ = {(a, t1), (b, t2)} and R = {c ← a,¬b}, along with the deletion of b from
D′′ at time t3. In this case, it can be seen that we have:

SEM(D′′) = {〈a, [t1,∞)〉, 〈b, [t2,∞)〉} and
SEM(del(b,D′′, t3)) = {〈a, [t1,∞)〉, 〈b, [t2, t3)〉, 〈¬b, [t3,∞)〉, 〈c, [t3,∞)〉}.

On Monotonic Deductive Database Updating Under the OWA 17

Therefore, by Definition 3, we indeed have SEM(del(b,D′′, t3)) � SEM(D′′).��
To conclude this section, we emphasize that Propositions 5 and 6 can be sum-
marized as follows: updating a database D refines its global semantics while pre-
serving its past semantics at any time before this update.

4 Discussion

In this section, we relate our approach to earlier work and then, we sketch the
issue of implementation in the context of graph databases.

4.1 Comparison with Related Work

As noticed earlier, our approach heavily relies on previous work in various
research domains, namely temporal databases, database semantics and data-
base updating. We thus comment further how our approach relates to previous
work in these domains.

Temporal databases have been the subject of many research efforts during the
last three decades, and providing a survey of this important work is beyond the
scope of the present paper. We simply mention here three broad research areas
related to our present work: (i) temporal logics [11,16], (ii) deductive temporal
databases [6], and (iii) relational temporal databases [24].

Clearly, our approach falls in the second area mentioned above, where time
labels are associated to formulas, as in [16]. In this context, we even consider the
simplest case where labels cannot be combined and where rules do not involve
time.

Our approach is quite different than those dealing with temporal deductive
databases [6,11] in which logical temporal operators are defined and used for
expressing temporal queries. This is so because our goal is not to define a new
temporal database model, but rather to define a framework assuming OWA, in
which updating is monotonic. However, it is important to notice that the issue of
non basic temporal queries in our approach should be investigated in the context
of OLAP queries [13].

Another important remark regarding our way of dealing with time is that
point wise time stamps are not expressive enough for defining the database
semantics. This point is not new, but an illustration of the following basic results
known for many years: the algebra for time intervals proposed in [2] has strong
expressiveness properties, at the cost of being undecidable (as shown in [20]),
whereas dealing with time through point wise time stamps is decidable (as shown
in [16]). We also mention that this issue has been the subject of more recent work
in [31], in the context of relational temporal databases. Relating the work in [31]
regarding time granularity with our approach is a non trivial open issue that
should be investigated.

As for temporal databases, our goal here is not to survey all approaches
to database updating that have been published during the last four decades.

18 D. Laurent

Instead, the very basic point that we would like to stress is that, contrary
to standard logics, all update approaches proposed so far are non-monotonic,
in the sense that updating a database may invalidate previous knowledge
(whereas in standard logics introducing new hypotheses does not invalidate the-
orems). It is commonly argued that this property is a consequence of CWA,
which, as mentioned earlier, is not suitable for many current applications. We
refer to [8] for more detailed motivations on why considering OWA.

It is also important to recall that our approach is based on a three-valued
logics thus allowing for considering unknown facts, additionally to true and false
facts. This framework was also considered in previous work on database seman-
tics assuming CWA (see [9,10]), and the two semantics defined respectively in
[14] (Kripke-Kleen semantics) and in [17] (Well-Founded semantics) are among
the most popular. Considering OWA implies that we consider here the simpler
operator known as membership immediate consequence operator.

However, we recall that it is possible to consider in our approach any of the
two standard CWA semantics as defined in [14,17], and that, in either of these
two cases, Propositions 5 and 6 still hold. This means that monotonicity is not
a consequence of the choice of the database semantics, and thus, monotonicity
is not a consequence of choosing OWA rather than CWA. Instead, this means
that monotonicity is a consequence of keeping track of all updates along with
their associated time stamps. We think that more work is needed for further
investigating this important point.

Additionally to the issues mentioned above regarding temporal OLAP queries
and monotonicity, the following extensions are worth investigating:

– As we consider a three-valued logics, new types of updates are possible, namely
updates that would allow a fact to become unknown after being true or false.
Notice that this is not possible according to Definition 7, although this can
happen for facts that are deduced by the rules (remember the case of fact
c in Example 6). Such new types of updates should be carefully investigated
because their intuitive semantics and their impact on the semantics are not
clear (at least to the author of this paper).

– Going one step further, considering a database model in which inconsistencies
are possible is an issue that has been the subject of many research efforts (see
for instance [18,28]) and, as argued in [8], consistency is an important but
open issue under the OWA. We think that tackling this problem using the
four-valued logics introduced in [7] offers promising perspectives.

– Another relevant issue is to extend our approach so as to take into account
constraints such as functional dependencies. Notice that updating in the pres-
ence of constraints has been the subject of many research papers, among which
we cite [3,32] in the context of deductive databases, and our previous work in
[25] in the context of relational databases.

– The last issue that we would like to mention is related to the exceptions to the
rules, inspired by the work in [21,27] in the context of association rule mining
[1]. In this context, the goal is to generate rules that are ‘almost’ satisfied by
the underlying data set, in the sense that the quality measure of confidence

On Monotonic Deductive Database Updating Under the OWA 19

allows to keep the number of exceptions to the rules below a given threshold.
It is shown in [27] that association rule mining can be adapted to the case of
mining Datalog rules with negation whose number of exceptions is also kept
below a given threshold. It is clear that this work also applies to our approach,
thus allowing to generate new rules when the currently existing rules have too
many exceptions due to deletions.

4.2 Possible Implementation Using Graph Databases

In addition to the theoretical issues listed above, one important work to achieve
is implementing our approach. Although this could be done using traditional
frameworks dealing with temporal deductive databases (see for instance in [24]),
we think that, in our context, it is more appropriate to consider novel data
models, and more specifically the graph database model [4,22]. This is so because
all novel data models recently introduced, known as NoSQL, have been designed
to better scale up given the data size in many current applications, and also to
better handle the flexibility of the schema of the data.

As a first possible environment for implementing our approach, we cite RDF1,
a standard model in which the stored triples are seen as two vertices and one
edge linking them in a graph. The work in [19] investigates a temporal extension
of this model, in which every RDF triple is associated with a time stamp. As it
seems that our approach can be easily ‘embedded’ in that of [19], we are planning
to shortly investigate this issue. As another interesting work related to ours, in
[15] the authors propose a global approach to updating an RDF knowledge base,
seen as a Datalog program. Therefore, combining the approaches in [15,19] with
our work seems to be a very promising research direction.

On the other hand, in a more general graph database model, data are rep-
resented in terms of vertices and edges, not always stored as triples as in the
case of RDF. Consequently, implementing our model in such a framework means
that every vertex and every edge stored in the database is associated with a
set of pairs of the form (t, upd) where t is a time stamp and upd is a value
representing the type of the corresponding update, i.e., either an insertion or a
deletion. Considering a multi-relational graph data model, as for example the
one of Neo4j (see http://neo4j.com), these pairs could simply be attributes or
properties associated to the vertices and to the edges. We notice that, in such a
setting, querying the database according to time stamp values requires to visit
the whole graph, which is costly. An intuitively appealing example of such query
is to retrieve the latest update processed against the database.

Another interesting option would be to consider time stamps as vertices and
store an update as an edge connecting its time stamp to the ‘object’ it involves.
Notice that in this case, the query mentioned above can be efficiently answered
because it simply requires to retrieve the vertex representing the largest time
stamp in the database, and from this vertex to go through its associated link

1 RDF stands for ‘Resource Description Framework’ and is a W3C Recommendation,
see https://www.w3.org/standards/techs/rdf#w3c all.

http://neo4j.com
https://www.w3.org/standards/techs/rdf#w3c_all

20 D. Laurent

leading to the ‘object’ involved in the update. However, although this works
when the ‘object’ is a vertex, this is not the case when the ‘object’ is an edge,
because in a graph, an edge can not be connected by another edge to a vertex.

To cope with this difficulty, an extended graph database model dealing with
hyper graphs is required, because such a model allows to connect as many vertices
as needed through hyper edges that are defined as sets of vertices. For example, if
v1 and v2 are vertices representing respectively an employee and a department,
inserting that at time t employee v1 becomes a member of department v2 is
performed by storing the edge {t, v1, v2}, associated with a label indicating that
the update is an insertion. Since HyperGraphDB [23] (see http://hypergraphdb.
org) handles hyper graphs, implementing our approach using this software will
be investigated in the next future.

5 Concluding Remarks

The work presented in this paper results in a monotonic approach to database
updating under the Open World Assumption (OWA), combining well known
previous work on temporal database and on deductive database. In our app-
roach, database semantics is defined in a three valued logics, in order to take
into account that OWA was preferred over CWA. We recall in this respect that
OWA was preferred in order to take into account the specificities of most cur-
rent applications involving social networks, data mining or data warehousing.
We also emphasize again that, in our approach, all updates are performed in a
deterministic way and preserve database consistency with respect to the rules in
the database, because rules can have exceptions.

Another important property of our approach is monotonicity of update oper-
ations, in the sense that updates refine database semantics while preserving the
past semantics (i.e., the semantics of any past database state can be recovered
even after an arbitrary number of updates). We also argued that this result is
basically a consequence of the fact that we store updates associated with a time
stamp to keep track of the history of the updates.

As this paper reports on preliminary work, many issues remain open and
need to be investigated in the future. We recap below all issues that have been
listed earlier in the paper:

– Implementation: It has been suggested just above that this very important
issue should be addressed in graph database models, and more specifically
involving RDF triples or hyper graphs.

– Extend the rules by incorporating time variables, and similarly, take con-
straints into account, possibly involving time.

– Define possible extensions regarding new kinds of updates (that would involve
several facts at a time and/or that would allow for a fact to become unknown
after being true or false) or new semantics in a four valued logics (that would
allow to consider inconsistencies in the database).

– Study new OLAP queries involving time stamps in the context of our app-
roach.

http://hypergraphdb.org
http://hypergraphdb.org

On Monotonic Deductive Database Updating Under the OWA 21

– Apply data mining techniques in order to generate rules that would take
updates into account (in the sense that the number of exceptions to the rules
is minimized).

Acknowledgement. The author wishes to thank the anonymous referees whose com-
ments and suggestions helped improve a preliminary version of the paper.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules. In: Advances in Knowledge Discovery and Data Mining, pp.
309–328. AAAI-MIT Press (1996)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

3. Alves, M.H.F., Laurent, D., Spyratos, N.: Update rules in datalog programs. J.
Log. Comput. 8(6), 745–775 (1998)

4. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1: 1–1: 39 (2008)

5. Atzeni, P., Torlone, R.: Updating intensional predicates in datalog. Data Knowl.
Eng. 8, 1–17 (1992)

6. Baudinet, M., Chomicki, J., Wolper, P.: Temporal deductive databases. In: Tem-
poral Databases, pp. 294–320. Benjamin/Cummings (1993)

7. Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern
Uses of Multiple-Valued Logic. D. Reidel, Dordrecht (1977)

8. Bergman, M.: The open world assumption: elephant in the room. In:
AI3: : Adaptative Information, pp. 1–11 (2009). www.mkbergman.com/852/
the-open-world-assumption-elephant-in-the-room/

9. Bidoit, N.: Negation in rule-based database languages: a survey. Theor. Comput.
Sci. 78(1), 3–83 (1991)

10. Bidoit, N., Froidevaux, C.: Negation by default and unstratifiable logic programs.
Theor. Comput. Sci. 78(1), 86–112 (1991)

11. Bidoit, N., Objois, M.: Temporal query languages expressive power: µTL versus
T-WHILE. In: 12th International Symposium on Temporal Representation and
Reasoning (TIME 2005), pp. 74–82. IEEE Computer Society (2005)

12. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

13. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Rec. 26(1), 65–74 (1997)

14. Fitting, M.: A Kripke-Kleene semantics for logic programs. J. Log. Program. 2(4),
295–312 (1985)

15. Flouris, G., Konstantinidis, G., Antoniou, G., Christophides, V.: Formal founda-
tions for RDF/S KB evolution. Knowl. Inf. Syst. 35(1), 153–191 (2013)

16. Gabbay, D.M.: Introduction to labelled deductive systems. In: Gabbay, D.M.,
Guenthner, F. (eds.) Handbook of Philosophical Logic: Observation of Strains,
Chap. 3, vol. 17, pp. 179–266. Springer, Heidelberg (2013)

17. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

18. Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing
inconsistent databases. IEEE Trans. Knowl. Data Eng. 15(6), 1389–1408 (2003)

www.mkbergman.com/852/the-open-world-assumption-elephant-in-the-room/
www.mkbergman.com/852/the-open-world-assumption-elephant-in-the-room/

22 D. Laurent

19. Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing time into RDF. IEEE
Trans. Knowl. Data Eng. 19(2), 207–218 (2007)

20. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM
38(4), 935–962 (1991)

21. Hussain, F., Liu, H., Suzuki, E., Lu, H.: Exception rule mining with a relative
interestingness measure. In: Terano, T., Liu, H., Chen, A.L.P. (eds.) PAKDD 2000.
LNCS, vol. 1805, pp. 86–97. Springer, Heidelberg (2000)

22. Robinson, E.E.I., Webber, J.: Graph Databases. New Opportunities for Connected
Data, 2nd edn. O’Reilly Media, Beijing (2015)

23. Iordanov, B.: HyperGraphDB: a generalized graph database. In: Shen, H.T., Pei,
J., Özsu, M.T., Zou, L., Lu, J., Ling, T.-W., Yu, G., Zhuang, Y., Shao, J. (eds.)
WAIM 2010. LNCS, vol. 6185, pp. 25–36. Springer, Heidelberg (2010)

24. Jensen, C.S., Snodgrass, R.T.: Temporal data management. IEEE Trans. Knowl.
Data Eng. 11(1), 36–44 (1999)

25. Laurent, D., Luong, V.P., Spyratos, N.: The use of deleted tuples in database,
querying, updating. Acta Inf. 34(12), 905–925 (1997)

26. Laurent, D., Luong, V.P., Spyratos, N.: Updating intensional predicates in deduc-
tive databases. Data Knowl. Eng. 26(1), 37–70 (1998)

27. Laurent, D., Vrain, C.: Learning query rules for optimizing databases with update
rules. In: Pedreschi, D., Zaniolo, C. (eds.) LID 1996. LNCS, vol. 1154, pp. 153–172.
Springer, Heidelberg (1996)

28. Loyer, Y., Spyratos, N., Stamate, D.: Hypothesis-based semantics of logic programs
in multivalued logics. ACM Trans. Comput. Log. 5(3), 508–527 (2004)

29. Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 55–76 (1977)
30. Reiter, R.: On formalizing database updates: preliminary report. In: Pirotte, A.,

Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580, pp. 10–20. Springer,
Heidelberg (1992)

31. Terenziani, P., Snodgrass, R.T.: Reconciling point-based and interval-based seman-
tics in temporal relational databases: a treatment of the telic/atelic distinction.
IEEE Trans. Knowl. Data Eng. 16(5), 540–551 (2004)

32. Torlone, R.: Update operations in deductive databases with functional dependen-
cies. Acta Inf. 31(6), 573–600 (1994)

PROPER - A Graph Data Model
Based on Property Graphs

Nicolas Spyratos1(B) and Tsuyoshi Sugibuchi2

1 Laboratoire de Recherche en Informatique, UMR8623 of CNRS,
Université Paris-Sud 11, Orsay, France

Nicolas.Spyratos@lri.fr
2 CustomerMatrix Inc., Paris, France

sugibuchi@gmail.com

Abstract. We present a graph data model, called PROPER, which is
based on property graphs. Our model consists of a property graph G
“augmented” with the concepts of hyper node and hyper edge. A hyper
node is an abstraction of a set of nodes of G having the same properties;
and a hyper edge is an abstraction of a set of edges of G having the same
label. A graph database over G is defined to be a higher level property
graph whose nodes and edges are hyper nodes and hyper edges over G.
We introduce a set of operations that generate new hyper nodes and new
hyper edges from old, therefore providing the basis for a query language
in PROPER. We call this set the “graph algebra”. We also show how
certain semantic constructs such as equational constraints and ISA rela-
tionships can be defined in our model.

We demonstrate the expressive power of PROPER by showing how
a relational database, together with functional dependencies, can be
embedded in PROPER in the form of a graph database; and how the
relational algebra operations can be mapped as operations of the graph
algebra.

1 Introduction

A graph is a collection of nodes and edges in which nodes represent entities and
edges represent directed relationships between nodes. An edge has a source node
and a target node.

Figure 1(a) shows a graph representing social network data. Each node and
each edge is associated with a unique identifier (an integer in our example) and a
label. Two nodes or two edges can have the same label; this is the case of nodes
2 and 3, and edges 5 and 7. Moreover, there can be two different edges with the
same source and the same target as long as they have different labels; this is the
case of edges 6 and 7. The identifiers and labels of nodes and edges come from
predefined sets. For example, in Fig. 1(a), identifiers are integers and labels are
character strings.

A graph is a general purpose expressive structure allowing to model all kinds
of real world scenarios, ranging from business and government applications to
c© Springer International Publishing Switzerland 2016
E. Grant et al. (Eds.): ISIP 2015, CCIS 622, pp. 23–45, 2016.
DOI: 10.1007/978-3-319-43862-7 2

24 N. Spyratos and T. Sugibuchi

Fig. 1. A graph and a property graph

biology, mobile telephony, geomatics or social networks [5,6]. Unlike the rela-
tional model of data, a graph-based data model can describe not only uniform
and rule-bound relationships but also exceptional and irregular data.

Graph databases have attracted a lot of attention in recent years [1,2]. Their
success is mainly due to the fact that many modern applications are naturally
modelled as graph representations. In graph databases, data is stored natively in
graph structures and queries are defined in terms of graph traversals and graph
matching [7].

The most popular variants of graphs today are the property graph [6], the
resource description framework (RDF) [3] and the hypergraph [4]. The model
that we introduce in this paper is based on property graphs. A property graph
is a graph in which each node and each edge can be associated with a set of
key-value pairs.

Figure 1(b) shows a property graph, which is actually the graph of Fig. 1(a)
in which we have associated a set of key-value pairs with some of its nodes
and edges. For example, node 1 is associated with two key-value pairs, namely
Age : 56 and Job : ‘Actor’. The labels Age and Job are the keys, and 56 and
‘Actor’ are the corresponding values. Similarly, node 2 is associated with two
key-value pairs; node 4 with one key-value pair; and edge 6 with one key-value
pair; while node 3 and edges 5, 7 and 8 are associated with no key-value pairs.
Keys and their values come from predefined sets. For example, in Fig. 1(b), keys
are character strings; the values of the key Age are integers; the values of the
key Job are character strings, etc.

Fig. 2. Representing property-value pairs of a node

In this paper we shall represent the key-value pairs of a node using a different
approach, as shown in Fig. 2. Figure 2(a) shows the usual representation using
key-value pairs. Figure 2(b) shows our representation, where the key-value pair

PROPER - A Graph Data Model Based on Property Graphs 25

Age: 56 is represented by the edge 1 → 56 with label pAge; and the key-value pair
Job: ‘Actor’ is represented by the edge 1 → ‘Actor’ with label pJob. The label
pAge stands for “property Age”, and similarly, the label pJob stands for “property
Job”. In accordance with our representation, our reading of properties becomes
as follows: “pAge(1) = 56” (read as “pAge of 1 equals 56”); and “pJob(1) =
‘Actor’” (read as “pJob of 1 equals ‘Actor’”), as shown in Fig. 2(c). It is important
to note that the properties of a node are declared during node creation but their
values might not be known at node creation time. In other words the values of
one or more properties of a node might be missing.

A basic assumption underlying our model is that no node can have two
different properties with the same target (such properties are called “parallel
properties” and they differ only in their labels). For example, no node n can
have two different properties, pAge and p′

Age. Indeed, in such a case, it would
be possible to associate node n with two different ages. Of course there are
situations where it makes sense to have two different properties with the same
target. However, in this paper we shall make the assumption of “no parallel
properties” in a node.

Note that a similar situation arises in the relational model, where the basic
assumption is that attribute values are atomic (the so called first normal form
assumption). An immediate consequence of this assumption is that on any given
tuple no attribute can have two different values.

One can visualize the data of a property graph by considering that each node
and each edge is “clickable”. By clicking a node/edge, the associated properties
appear (and they are also clickable). By clicking a property we obtain the asso-
ciated value. For example, in Fig. 2(b), if we click node 1 then the properties
pAge and pJob appear; and if we click pAge then we obtain the value 56; and if
we click pJob then we obtain the value ‘Actor’.

In this paper we present a graph data model, that we call PROPER. It
consists of a property graph G “augmented” with the concepts of hyper node
and hyper edge. A hyper node H is an abstraction of a set of nodes of G having
the same properties; and a hyper edge E from hyper node H to hyper node H ′

is an abstraction of a set of edges from nodes of H to nodes of H ′ having the
same label. A graph database over G is defined to be a higher level property
graph whose nodes and edges are hyper nodes and hyper edges.

Fig. 3. Abstracting a set of two nodes 1 and 2 as a hyper node H

26 N. Spyratos and T. Sugibuchi

As an example of hyper node consider two nodes of a property graph G,
say 1 and 2, as shown in Fig. 3(a). Following our representation (as explained in
Fig. 2) we can “factor out” the labels pAge and pJob and view these two nodes
(collectively) as a single node H; and we can view the properties pAge and pJob
(collectively) as two functions, PAge and PJob, on the set H = {1, 2}, defined as
follows (refer also to Fig. 3(b)):

PAge : H → Age such that PAge(1) = pAge(1) = 56 and PAge(2) = pAge(2) =
21

PJob : H → Job, such that PJob(1) = pJob(1) = ‘Actor’ and PJob(2) =
pJob(2) = ‘Singer’

Then the set H = {1, 2} together with the functions PAge and PJob is a hyper
node over G.

It is important to note that, in the above definitions of PAge and PJob, the
codomains Age and Job are attributes in the sense of the relational model (i.e.
they are names, each of which is associated with a set of values called its domain).
It is also important to note that, as we mentioned earlier, the value of one or
more properties of a node might be missing. In other words, the functions PAge

and PJob are in general partial functions.
As an example of hyper edge consider the five edges shown in Fig. 4(a). If we

collect together the edges 8, 10 and 11 then we have a hyper edge E from hyper
node H = {1, 2} to hyper node H ′ = {4, 5, 6} as shown in Fig. 4(b). Note that
the only requirement in order to have a hyper edge is that all its constituent
edges have the same label. In other words, it is not necessary to include in E
all edges from hyper node H to hyper node H ′ with label e. Figure 4(c) shows
another example of hyper edge E′.

Fig. 4. Abstracting a set of edges as a hyper edge

In our model we use a set of operations over hyper nodes and hyper edges that
generate new hyper nodes and new hyper edges from old, therefore providing the
basis for a query language. Additionally, We introduce two semantic concepts,
namely equational constraints and ISA hyper edges, inspired from functional
dependencies of the relational model and ISA relationships of semantic models,
respectively.

One important application of graph databases as defined here is graph sum-
marization, whose main goal is to produce a compressed representation of an

PROPER - A Graph Data Model Based on Property Graphs 27

input graph [10–12]. Indeed, the way hyper nodes and hyper edges are defined
in our model (as abstractions of sets of nodes and of sets of edges, respectively)
is actually a summarization tool. Graph summarization is important in order to
understand the underlying characteristics of large graphs, and graph summariza-
tion techniques are critical in this respect [12]. However, graph summarization
lies beyond the scope of the present paper.

Another possible application of graph databases is in providing an expressive
data model in which relational databases can be embedded. The need for such
an embedding is motivated by the fact that the vast majority of data underpin-
ning the Web are stored in relational databases and relational databases have a
proven track record of scalability, efficient storage, optimized query execution,
and reliability. However, as compared to relational databases, graph databases
are more expressive and data represented in graph databases in general, and in
RDF databases in particular can be interpreted, processed and reasoned over by
software agents. We shall discuss the embedding of relational databases in graph
databases in more detail later on.

The remaining of the paper is organized as follows. Section 2 presents the
formal model, namely, hyper nodes, hyper edges, and graph databases; Sect. 3
introduces the operations over hyper nodes and hyper edges; Sect. 4 discusses
equational constraints and ISA hyper edges; Sect. 4 presents the embedding of
relational databases as graph databases; and Sect. 6 contains concluding remarks
and suggestions for future work. Proofs of theorems are omitted due to lack of
space.

We emphasize that, although theoretical in nature, our work uses only basic
and well known mathematical concepts, namely functions and their basic oper-
ations.

2 The Formal Model

In this section, we first define formally the concepts of hyper node and hyper
edge over a property graph G and then the concept of graph database over G.

2.1 Hyper Nodes

We have seen in the introduction that (a) a hyper node H over a property
graph G is a set of nodes of G having the same properties and (b) the common
properties of the nodes in H become the properties of H. In other words, H is
an abstraction of a set of nodes and their (common) properties.

Definition 1 (Hyper Node). Given a property graph G, a hyper node over
G is a set H of nodes of G having the same set of properties. Moreover, if
{pAi

: H → Ai/i = 1, 2, . . . , k} is the set of (common) properties of the nodes in
H, then the set {PAi

: H → Ai/i = 1, 2, . . . , k} of properties of H is defined as
follows: PAi

(n) = pAi
(n) for all nodes n in H.

28 N. Spyratos and T. Sugibuchi

Note that the properties of a hyper node are “induced” by those of its con-
stituent nodes. Indeed, as nodes are added or deleted from the hyper node, the
(extensions of the) properties PAi

change.
Also note that, as the properties of a node satisfy the “no parallel properties”

assumption, so do the properties of a hyper node. As a consequence, we shall use
the notation PAi

to denote unambiguously the property H → Ai within a hyper
node H; and we shall use the notation HpAi

to denote the property H → Ai

in case there is a property H ′ → Ai in a different node H ′ having the same
codomain Ai.

Henceforth, we shall refer to the set {Ai/i = 1, 2, . . . , k} of all targets in H as
the basis of H. As we mentioned in the introduction, each A − i is an attributes
in the sense of the relational model; and it is associated with a set of values
called its domain and denoted by dom(Ai).

Intuitively, a hyper node should be regarded as a container collecting together
nodes (from the underlying graph G) that have the same properties and that
are of interest in a specific application.

In practice, a hyper node can be created by (a) asking the system to allocate
a new identifier (b) declaring a label H for the hyper node and (c) declaring a
set of properties. Once this is done, we can insert in H any node n of interest
whose properties “agree” with those of H. The insertion is done by declaring n
as an instance of H.

For example, in Fig. 3, nodes 1 and 2 have each the two properties of H,
namely pAge and pJob. Therefore, in the absence of any condition they qualify as
members of H. In other words, a hyper node can be seen as a schema and any
node of G conforming to it can be a member. Clearly, one may define as many
hyper nodes over G as needed for a specific application.

2.2 Hyper Edges

Given two hyper nodes H and H ′, there might be several edges of G connecting
nodes of H to nodes of H ′. It is a set of such edges that we call a hyper edge
from H to H ′. The only requirement is that all edges in the set have the same
label.

Definition 2 (Hyper Edge). Let G be a property graph and let H, H ′ be hyper
nodes over G. A hyper edge from H to H ′ is a set E of edges from nodes of H
to nodes of H ′ such that they all have the same label.

Note that a hyper edge can be associated with one or more properties (e.g.
the date of its creation), in much the same way as an edge of G can be associated
with a set of properties. Also note that a hyper edge sets up a binary relation
between the nodes of H and the nodes of H ′ (we shall come back to this remark
in the following section).

It is important to note that we do not require that all edges of G from nodes
of H to nodes of H ′ having the same label belong to the hyper edge. It is up to
the designer to determine which edges of G, and with what label, will be included

PROPER - A Graph Data Model Based on Property Graphs 29

in a hyper edge from H to H ′ What we do require is that whatever the edges
included in a hyper edge, they must all have the same label. Figure 4 shows five
edges of a property graph G and two hyper edges E and E′.

2.3 Graph Databases

Roughly speaking, a graph database over a property graph G simply collects
together and manages data of interest from G. Formally, a graph database is
defined as follows.

Definition 3 (Graph Database). Let G be a property graph. A graph database
over G is a property graph whose nodes and edges are hyper nodes and hyper edges
over G.

In other words, a graph database over a property graph G is simply a property
graph of higher level than G. Note that G can be viewed as a “data space” of
interest (e.g. G could be a social network); and a graph database over G can
be viewed as a “data-generated schema” containing a subset of data of interest
from G.

Also note that as a graph database is a property graph, each of its hyper
nodes can be associated with one or more properties, in addition to the properties
induced by its constituent nodes. Similarly, each hyper edge can be associated
with one or more properties of its own, in addition to the properties associated
with its constituent edges.

For example, the hyper node H of Fig. 3(b) has the properties PAge and
PJob induced by its constituent nodes 1 and 2. In addition to these properties
we might want to associate H with a property giving the date of its creation.
This is a property that refers to the hyper node H itself and has nothing to do
with the properties of the nodes 1 and 2: it’s simply information regarding H.
As such, this information can be viewed as metadata with respect to the data
contained in H. Similarly, a hyper edge can be associated with a property saying
whether the binary relation that the hyper edge represents is functional or non
functional (and if functional, whether one-one, onto, etc.).

In conclusion, a graph database as defined here can be used to describe both
data and metadata - and this is an important feature of our model.

3 The Query Language

In a graph database we would like to combine hyper nodes and hyper edges to
derive new ones, in much the same way as in a relational database one combines
tables to derive new ones (using relational algebra operations). To this end we
define in this section a set of operations to which we shall refer (collectively) as
the “graph algebra”. A query over a graph database is then defined to be any
well formed expression whose operands are hyper nodes and/or hyper edges and
whose operations are among those of the graph algebra. Due to lack of space
we present only the definitions of operations for hyper nodes. Their definiyons

30 N. Spyratos and T. Sugibuchi

Fig. 5. Union and difference of of hyper nodes

for hyper edges are quite similar to those for hyper nodes (recall that, like a
hyper node, a hyper edge is a uniquely identified entity associated to a set of
properties).

Union. The union of two hyper nodes H1 and H2 is a hyper node H whose
set of nodes is the union of H1 and H2 and whose properties are those of H1

“extended” to H1 ∪ H2, as shown in Fig. 5.

Definition 4 (Union). Let H1 and H2 be two hyper nodes with common basis
{Ai/i = 1, 2, . . . , k}, and with properties P11, . . . , P1k and P21, . . . , P2k, respec-
tively. Then the union of H1 and H2 denoted by H1 ∪H2 is a hyper node H with
properties P1, . . . , Pk defined as follows: H = H1 ∪ H2 Pi(n) = P1i(n) if n is in
H1 and Pi(n) = P2i(n) otherwise, for all nodes n in H1 ∪ H2, i = {1, 2, . . . , k}.

Note that if a node belongs to both H1 and H2 it will have the same properties
in both hypernodes (i.e. a node of the underlying graph G is associated with the
same properties independently of the hyper nodes to which it might belong).

Difference. The difference between a hyper node H1 and a hyper node H2 is
a hyper node H whose set of nodes is the difference of H1 and H2 and whose
properties are those of H1 “restricted” to H1 \ H2, as shown in Fig. 5.

Definition 5 (Difference). Let H1 and H2 be two hyper nodes with common
basis {Ai/i = 1, 2, . . . , k}, and with properties P11, . . . , P1k and P21, . . . , P2k,
respectively. Then the difference of H1 and H2 denoted by H1\H2 is a hyper node
H with properties P1, . . . , Pk defined as follows: H = H1\H2, Pi(n) = P1i(n),
for all nodes n in H1\H2, i = 1, 2, . . . , k.

Restriction. The restriction operation takes as input a hyper node H and a
subset S of H and restricts all properties of H to S.

PROPER - A Graph Data Model Based on Property Graphs 31

Fig. 6. Hyper node restriction

Definition 6 (Restriction). Let H be a hyper node with properties P1, . . . , Pk,
and let S be a subset of H. The restriction of H to S is a hypernode whose set
of nodes is S and whose properties are the restrictions P1/S, . . . , Pk/S, where
Pi/S denotes the restriction of function Pi to S.

We note that the subset S can be defined either explicitly (by enumerating
the nodes belonging to it) or implicitly (by giving property values and computing
S through function inverses). Figure 6 illustrates these two ways of defining the
set S used in the definition of a hyper node restriction: when S is given explicitly
(i.e. S = {1, 3}), we simply restrict the domain of definition of properties PA

and PB to S = {1, 3}; and when the set S is given implicitly through the value
b of PB we compute S as follows: S = P−1

A (b) = {1, 2}.
Another way to define S implicitly is using properties of H whose codomains

are associated to the same domain of values. For example, suppose that prop-
erties PA and PB have dom(A)= dom(B). Then we can specify S as follows:
S = {n ∈ H/PA(n) = PB(n)}.

Projection. The projection operation takes as input a hypernode H and a
subset X of the properties of H and removes from H all properties Pi that are
not in X.

Definition 7 (Projection). Let H be a hyper node with properties P1, . . . , Pk,
and let X be a subset of the set of properties of H. The projection of H on X,
is a hyper node, denoted by πX(H), with the same set of nodes as H and with
properties those in X.

Figure 7 illustrates hyper node projection.

Pairing. In order to define this operation we need an auxiliary definition,
namely the pairing of two functions.

Definition 8 (Pairing of Functions). Let f : X → Y and g : X → Z be two
functions with common source. We define the pairing of f and g, denoted by
f ∧ g, to be the function f ∧ g : X → Y × Z defined by: f ∧ g(x) = (f(x), g(x)).

32 N. Spyratos and T. Sugibuchi

Fig. 7. Hyper node projection

Figure 8(a) shows an example of pairing two functions. Clearly, the definition
of pairing can be extended to more than two functions with common source in
the obvious way.

It is important to note that pairing works as a “tuple constructor”. Indeed,
given an element x in the common source of two or more functions, the pairing
puts together their values on x to create a tuple; and the element x works as this
tuple’s identifier. When applied to a hyper node, pairing creates a set of tuples
by pairing the hyper node properties as stated in the following definition.

Definition 9 (Pairing of a Hyper Node). Let H be a hyper node with prop-
erties P1, . . . , Pk. The pairing of H, denoted by pair(H), is defined to be a hyper
node with the same set of nodes as H and the single property P1 ∧ P2 ∧ . . . ∧ Pk.

Figure 8(b) shows an example of pairing a hyper node.

Fig. 8. Hyper node pairing

Product. In order to define this operation we need an auxiliary definition,
namely the product of two functions.

Definition 10 (Product of Functions). Let f : X → Y and g : X ′ → Y ′ be
any two functions. We define the product of f and g, denoted by f × g to be the
function f × g : X × X ′ → Y × Y ′ defined by: f × g(x, x′) = (f(x), g(x′)).

Figure 9 shows an example of product of two functions. Clearly, the definition
of product can be extended to more than two functions in the obvious way.

Definition 11 (Product of Hyper Nodes). Let H and H ′ be two hyper
nodes. The product of H and H ′, denoted by H × H ′, is defined as follows:
H × H ′ = pair(H) × pair(H ′)

Note that the product H × H ′ contains pairs of nodes and a single property
as shown in the example of Fig. 10.

PROPER - A Graph Data Model Based on Property Graphs 33

Fig. 9. Product of two functions

Fig. 10. Product of hyper nodes

Function Renaming. Roughly speaking, renaming a hyper node H whose
basis is A1, . . . , Ak means replacing the names H,A1, . . . , Ak with possibly new
names H ′, A′

1, . . . , A
′
k, without changing the nodes or their property values.

Definition 12 (Hyper Node Renaming). Let H be a hyper node with prop-
erties PA1 , . . . , PAk

. A renaming function on H is an injective function r that
associates the names H,A1, . . . , Ak with (possibly new) names H ′, A′

1, . . . , A
′
k

such that:

– H = H ′ (as sets of nodes)
– dom(Ai) = dom(A′

i), i = 1, . . . , k
– PAi

(n) = PA′
i
(n), for all nodes n in H, i = 1, . . . , k

Then H ′ is said to be a renaming of H.

Figure 11 illustrates this definition. We note that when we say “possibly new
names” in the above definition we simply mean that it is not necessary to change
all names (some names may remain unchanged).

In what follows we shall refer to the set of operations introduced in this
section as the graph algebra. We note that these operations are not independent
from each other, in the sense that some of them are defined in terms of others.
For example, pairing can be defined using product. Indeed, let f : X → Y and
g : X → Z be two functions with common source. Then to define their pairing,

Fig. 11. Hyper node renaming g ◦ p = p′ ◦ f

34 N. Spyratos and T. Sugibuchi

based on their product, it is sufficient to restrict the product f × g to the set
of pairs {(i, i)/i ∈ X} and define f ∧ g(i) = f × g(i, i) for all x in X. However,
defining a minimal set of operations for the graph algebra lies outside the scope
of the present paper.

We note that, in addition to the operations of the graph algebra, we can use
set theoretic operations (Cartesian product of sets, set union, set difference, ...),
as well as the usual operations on functions (in particular, function composition).

4 Semantic Constraints

In this section we present semantic constraints that graph databases might be
required to satisfy. We consider two types of constraints: (a) equational con-
straints among the properties of a hyper node and (b) ISA hyper edges between
hyper nodes. The definition of equational constraint is motivated by the con-
cept of functional dependency in relational databases while the definition of ISA
hyper edge is motivated by the concept of ISA link in semantic models.

4.1 Equational Constraints

As we have seen earlier, a hyper node H over a property graph G has a set
of properties induced by its constituent nodes. Now these properties might
depend on each other in various ways. In this paper we consider only one type
of dependency among the properties of a hyper node, namely equational con-
straints. In defining an equational constraint we use the following notation: if
X = PA1 , PA2 , . . . , PAk

is a set of properties of H then we use ∧X to denote the
pairing PA1 ∧ PA2 , . . . , PAk

.

Definition 13 (Equational Constraint). Let H be a hyper node with set of
properties P . An equational constraint in H is an expression of the form f :
∧X → ∧Y , where X and Y are sets of properties of H. We say that f holds in
H if f ◦ ∧X = ∧Y .

For example, if PA, PB and PC are properties of H then f : PA ∧ PB → PC

is an equational constraint in H. Intuitively, the meaning of this constraint is
that the values of PC are determined by the values of PA ∧ PB (using f). When
defining a hyper node one may declare equational constraints that the hyper
node must satisfy. A hyper node that satisfies its constraints is called consistent
and otherwise inconsistent. As in the case of traditional databases, consistency
is checked during updates (i.e. when a property is added to the hyper node or
when the values of one or more properties are modified). The following theorem
expresses three important properties of equational constraints.

Theorem 1. Let H be a hyper node of a graph database. Then the following
hold:

1. if Y is a sub-pairing of X then X → Y holds for all pairings X, Y of properties
of H

PROPER - A Graph Data Model Based on Property Graphs 35

2. if X → Y holds then X ∧ Z → Y holds, for all pairings X, Y and Z of
properties of H

3. if f : X → Y and g : Y → Z hold then so does g ◦ f : X → Z, for all pairings
X, Y and Z of properties of H

These three properties correspond to Armstrong’s axioms for functional
dependencies in relational databases. An interesting question is whether these
properties constitute an axiomatization of equational constraints - a topic lying
beyond the scope of this paper.

4.2 ISA Hyper Edges

In its most general form a hyper edge from hyper node H to hyper node H ′ is
a set of edges from nodes of H to nodes of H ′ such that they all have the same
label. Therefore a hyper edge sets up a (directed) relation from H to H ′. Of
particular interest are hyper edges that connect each node of H to at most one
node of H ′. Such hyper edges set up a function (partial or total) from H to H ′.
We call such hyper edges functional hyper edges; and from now on, when we say
“hyper edge” we shall mean “functional hyper edge”.

Note that functional hyper edges from H to H ′ can be combined with the
properties of H and H ′ (which are also functions) to produce interesting results.
In this section, we focus on hyper edges that represent one-one functions as they
model ISA relations.

Definition 14 (ISA Hyper Edge). A hyper edge E is called an ISA hyper
edge if E is injective.

Figure 12 shows an ISA hyper edge E from hyper node H to hyper node H ′.
Clearly, if we compose E with each property of H ′ we obtain new properties of
H, namely p′

C and p′
D (in dotted lines). Such properties can be considered as

properties of H “inherited” from H ′ through the ISA hyper edge E.
The intuitive interpretation of property inheritance is that an ISA hyper

edge E maps identifiers of individuals in its source to identifiers of the same
individuals in its target.

For example, a division manager in a company is also an employee of the
company, therefore he is identified in two different ways: as an employee and as
a manager. Viewed as a manager, he has the properties of an employee together
with the additional properties that a manager has. This situation is described by
a hyper edge E : Manager → Employee such that, for each manager identifier i,
E(i) is the identifier of that manager seen as an employee. It is therefore natural
that i be associated with the properties of employee in addition to his properties
as a manager.

We note that the one-one property of an ISA hyper edge has to be maintained
during updating. In other words, this property acts as a constraint that needs
to be verified during hyper edge updating (e.g. an addition of an edge of G to
an ISA hyper edge would be accepted only if it does not violate the one-one
property).

36 N. Spyratos and T. Sugibuchi

Fig. 12. ISA hyper edge E and property inheritance (PC and PD are inherited by H)

Fig. 13. Parallel path equality: E3 = E2 ◦ E1

Moreover, the one-one property is not the only property that an ISA hyper
edge must satisfy. Indeed, ISA hyper edges must also satisfy what we call “Par-
allel Path Equality Property” (PPE Property for short).

To understand this property, consider the ISA hyper edges, E1, E2 and E3, as
shown in Fig. 13. Consider now the two paths of ISA hyper edges from Manager
to Person, namely the direct path E3 and the indirect path E1;E2. Intuitively,
any manager identifier i corresponds to one and only one person identifier inde-
pendently of the path followed in order to find that identifier in Person. This
means that we must have: E3(i) = (E2◦E1)(i) for all managers i; in other words,
we must have: E3 = E2 ◦ E1.

Calling “parallel paths” two or more paths with the same source and the
same target, we have the following definition.

Definition 15 (Parallel Path Equality Constraint). Let H and H ′ be two
hyper nodes. Let Pi = Ei1 , . . . , Eik be a set of n parallel ISA paths from H to H ′,
i = 1, . . . , n. Let comp(Pi) = Eik ◦ · · · ◦ Ei1 be the composition of the ISA hyper
edges along the path Pi, i = 1, . . . , n. Then the Parallel Path Equality Constraint
(PPE Constraint) is defined as follows: comp(P1) = . . . = comp(Pn).

It should be noted that the one-one property acts as a constraint on individual
ISA hyper edges, whereas the PPE Property acts as a constraint on the whole
graph database.

5 Mapping Relational Databases to Graph Databases

In graph databases relationships between data are represented by means of edges
between nodes, in sharp contrast to relational databases, where relationships
between data in different tables are represented by means of values appearing in
tuples of the two tables. As a consequence, graph databases scale more naturally
to large data sets as they do not require expensive join operations to compute
relationships. In addition, graph databases are more flexible than relational data-
bases as they do not rely on a rigid schema.

PROPER - A Graph Data Model Based on Property Graphs 37

On the other hand, as we mentioned in the introduction, the vast major-
ity of data underpinning the Web are stored in relational databases, hence the
need for embedding relational databases in graph databases. A survey of current
approaches regarding the mapping of relational databases in graph databases,
and in particular in RDF databases can be found in [13].

In this section we show how such an embedding can be done by (a) showing
how a relational table can be mapped as a hyper node in our model, (b) how
operations on relational tables can be mapped as operations on hyper nodes
and (c) how the functional dependencies of a relational table can be mapped as
equational constraints in a hyper node.

Although embeddings of relational tables to graphs have been proposed in the
past, they rely mostly on ad-hoc methods. One notable exception is the work pre-
sented in [8], where a systematic embedding of relational databases to property
graphs is proposed including the embedding of queries and of key dependencies.
In that work, the authors consider each tuple of a relational table R as a function
t from the attributes of R to the corresponding attribute domains, as depicted
in Fig. 14(a). Let’s call this approach the “tuples-as-functions” approach, which
is the usual way of viewing tuples in the relational model. Following this app-
roach, the authors of [8] model each tuple identifier t as a node n(t) of a property
graph, with the set of pairs {(A, t(A))/A is an attribute of R} as the set of its
property-value pairs; and they model the table R as the set of nodes {n(t)/t is
a tuple in R}.

Our approach is fundamentally different than that of [8] in that we consider
as functions the attributes of R rather than its tuples. In our “attributes-as-
functions” approach, each attribute A of R is seen as a function fA from the
set of tuple identifiers of R to the domain of A, as depicted in Fig. 14(b). (the
tuples of R can then be reconstructed by pairing all functions fA). In fact, this
is the approach followed by column databases, as for example in MonetDB [9].
Following this approach we model each tuple identifier t as a node n(t) of a
property graph (as in [8]) but this time R is mapped as a hyper node whose set
of nodes is the set {n(t)/t is a tuple in R} and whose set of properties is {fA/A
is an attribute of R}.

By the way, following the “tuples-as-functions” approach, a table is seen as
a set of as many functions as there are tuples in the table; whereas, follow-
ing the “attributes-as-functions” approach, a table is seen as a set of as many

Fig. 14. Two ways of looking at a relational table

38 N. Spyratos and T. Sugibuchi

functions as there are attributes in R. Therefore, the “attributes-as-functions”
approach leads to a compact representation of a table (and this is precisely
what is exploited in column databases to achieve higher performance in data
analytics).

5.1 Mapping a Relational Table

In order to map a relational table R in a graph database as defined in this paper,
we view the table name R as an attribute of the table itself having the set of
tuple identifiers as its domain (see Fig. 15(a)) and then we map R as a hyper
node H(R) (see Fig. 15(b)). Formally we have:

Fig. 15. Mapping a relational table as a hyper node

Definition 16 (Mapping a Relational Table). Let G be a property graph
and let R(A1, . . . , Ak) be a relational table. The image of R in G is defined to be
a hyper node H(R) over G such that: (a) each tuple identifier t in R is mapped
as a node identifier n(t) of H(R) and (b) each attribute A of R is mapped as a
property PA of H(R) defined by: PA(n(t)) = t(A).

Note that this mapping is invertible (i.e. one can recover the table R from
the hyper node H(R)).

5.2 Mapping Relational Algebra Operations

In this section we show how each operation of the relational algebra is mapped as
an operation of our graph algebra, and by consequence, how a relational algebra
expression is mapped as a graph algebra expression.

Union. In the relational model, the union of two tables R1 and R2 is defined
only if the two tables have the same set of attributes, and it is mapped as the
union of their images H(R1) and H(R2).

Definition 17 (Mapping Union). Let G be a property graph, and R1, R2 two
relational tables with the same attribute set. The image of R1∪R2 in G is defined
to be the union H(R1) ∪ H(R2) of the images of the two tables.

PROPER - A Graph Data Model Based on Property Graphs 39

Fig. 16. Mapping relational union as union of hyper nodes

Figure 16 illustrates this definition.

Difference. As for the union, the difference of two tables R1 and R2 is defined
only if the two tables have the same set of attributes, and it is mapped as the
difference of their images H(R1) and H(R2).

Definition 18 (Mapping Difference). Let G be a property graph, and R1,
R2 two relational tables with the same attribute set. The image of R1\R2 in G
is defined to be the difference H(R1)\H(R2) of the images of the two tables.

Figure 17 illustrates this definition.

Selection. To see how relational selection is mapped, consider the selection
σA=a(R) as shown in Fig. 18 and let S = p−1(a). Then R is mapped to the
hyper node H(R)/S (recall that H(R)/S is the hyper node H(R) with each of
its properties restricted to the set S).

Fig. 17. Mapping difference as difference of hyper nodes

40 N. Spyratos and T. Sugibuchi

Fig. 18. Mapping relational selection as hyper node restriction

Definition 19 (Mapping Selection). Let R be a relational table and σC(R)
the selection of R under condition C. Then σC(R) is mapped to H(R)/S, where
the set S is defined as follows:

– if C = (A = a) then S = P−1
A (a)

– if C = ¬(A = a) then S = R \ P−1
A (a)

– if C = (A = a) AND (B = b) then S = P−1
A (a) ∩ P−1

B (b)
– if C = (A = a) OR (B = b) then S = P−1

A (a) ∪ P−1
B (b)

– if C = (A = B), where dom(A) = dom(B) then S = {n ∈ H(R)/PA(n) =
PB(n)}
Figure 18 illustrates the mapping of selection. Conditions of the form

(attribute = value) such as A = a or B = b in the above definition are known
as “elementary conditions” in relational model terminology. In general, the con-
dition C in a selection operation is a Boolean combination of elementary con-
ditions. Although in the above definition we only considered conditions with
one elementary condition or a combination of two elementary conditions, the
extension to more than two elementary conditions should be obvious.

Projection. In the relational model, the projection of a table R over a set
of attributes X is the table obtained from R by (a) keeping only the columns
contained in X and (b) removing repeated tuples in the result (if any). To see
how relational projection is mapped in our model, consider the table R and its
image H(R) as shown in Fig. 19. The projection πA(R) is mapped to the hyper
node πA(H(R)) which results from H(R) if we keep only the property PA.

Definition 20 (Mapping Projection). Let G be a property graph, let R be a
relational table, and let H(R) be the image of R in G. Let X = {A1, . . . , Am} be
a subset of the attribute set of R and P1, . . . , Pm the properties of H(R) corre-
sponding to the attributes A1, . . . , Am, respectively. The image of πX(R) in G is
defined to be the projection πX(H(R)) of the image H(R) of R.

PROPER - A Graph Data Model Based on Property Graphs 41

Fig. 19. Mapping projection as hyper node projection

Product. In the relational model, the product of two tables R1 and R2 is always
defined even if the two tables have different sets of attributes. To see how the
relational product is mapped, consider the tables R1 and R2 and their images
H(R1) and H(R2) as shown in Fig. 20. The product R1 × R2 is mapped to the
product H(R1) × H(R2) of the images of the two tables.

Definition 21 (Mapping Product). Let G be a property graph, and R1, R2

two relational tables. The image of R1 × R2 in G is defined to be the product
H(R1) × H(R2) of the images of the two tables.

Figure 20 illustrates this definition.

Fig. 20. Mapping the product of two tables as the product of hyper nodes (recall that
H(R) × H(S) = (pA × pB) × (pC × pD))

42 N. Spyratos and T. Sugibuchi

Renaming. In the relational model, a renaming function over a table
R(A1, . . . , Ak) is an injective function f that associates the names R,A1, . . . , Ak

with names R′, A′
1, . . . , A

′
k in the predefined sets from which names of tables

and attributes are drawn, such that the tuples of R remain unchanged in the
renamed table R′. More precisely, if f(Ai) = A′

i, i = 1, . . . , k, then the tuples t′

of R′ are defined by: t′(f(A′
i)) = t(f(A)), for all i = 1, . . . , k and for all tuples t

in R. The image of the renaming of R is defined to be the renaming under f of
the hyper node H(R) to which R is mapped

Definition 22 (Mapping Renaming). Let G be a property graph, let
R(A1, . . . , Ak) be a relational table, and let f be a renaming of R. Then the
renamed table f(R)(f(A1), . . . , f(Ak)) is mapped to the renaming of H(R)
under f .

Figure 21 illustrates this definition. We end this section by noting that,
although not difficult, proving the correctness of mapping the relational alge-
bra operations to graph algebra expressions is a long and tedious task that we
omit here because of lack of space.

Fig. 21. Mapping relational renaming as a hyper node renaming

5.3 Mapping Functional Dependencies

In the relational model, given a table R, a functional dependency over R is an
expression of the form X → Y where X and Y are attribute sets in R. We say
that X → Y holds in R (or that R satisfies X → Y) if whenever the equality
t(X) = t′(X) is true in R then so is the equality t(Y) = t′(Y). This means that
a functional dependency X → Y is actually a function from X to Y , whose
extension can be obtained by projecting R over X ∪Y . The question now is how
to map this concept to the image H(R) (i.e. to the hyper node to which R is
mapped).

Note first that the above definition of functional dependency uses the tuples-
as-functions approach, whereas in our work we use the attributes-as-functions

PROPER - A Graph Data Model Based on Property Graphs 43

Fig. 22. Mapping a functional dependency as an equational constraint in a hyper node

approach. Therefore, first, we need to express the definition of functional depen-
dency using the attributes-as-functions approach. This is stated in the following
proposition.

Proposition 1. Let X → Y be a functional dependency over R. Then we have:
X → Y holds in R if and only if there is a unique function h : X → Y such that
h ◦ projX = projY .

Note that in the above proposition the projections projX and projY are seen
as functions (in the way explained earlier) and that a functional dependency
is defined through an equational constraint on the table R. Using the above
proposition, we can now define how a functional dependency over R can be
mapped in the image H(R). Given a set X = A1, . . . , Ak of attributes from R,
we use the notation X̄ to denote the set of corresponding properties in H(R);
and we use the notation ∧X̄ to denote the pairing of the properties in X̄.

Definition 23 (Mapping a Functional Dependency). Let G be a property
graph, let R be a relational table and let f : X → Y be a functional dependency
over R, where X and Y are sets of attributes appearing in R. Then the image
of X → Y in H(R) is defined to be H(f) : ∧X̄ → ∧Ȳ .

The following proposition states that this mapping is correct.

Proposition 2. f holds in R if and only if H(f) : ∧X̄ → ∧Ȳ holds in H(R).

Figure 22 shows schematically how the mapping of f is done, using single
attributes on both sides of the functional dependency in order to make things
easier to understand.

6 Concluding Remarks

We have seen a graph database model based on property graphs. A notable
feature of our model is that a graph database over a property graph is again a
property graph but of higher level, therefore enjoying all properties and results
known about property graphs. We have also seen a set of operations on graph
databases whose well formed expressions constitute the query language of a
graph database. Additionally, we have defined two semantic constraints that

44 N. Spyratos and T. Sugibuchi

a graph database might be required to satisfy, namely equational constraints
within a hyper node and ISA relations between hyper nodes.

We have demonstrated the expressive power of our model by showing how
a relational database, together with functional dependencies, can be embedded
in our model in the form of a graph database; and how queries over relational
tables can be mapped as queries over the corresponding graph database.

Future work includes three main research lines. First, we would like to use
equational constraints to develop a decomposition theory for graph databases
that parallels the one developed for relational databases based on functional
dependencies. We believe that most of the results found in the context of rela-
tional schema design based on table decomposition can be mapped to graph
databases.

The second research item concerns the introduction and study of additional
types of semantic constraints, most notably inclusion dependencies and align-
ment functions between nodes in the bases of two hyper nodes (inspired by
similar concepts developed in the context of relational databases).

The third research item concerns the relationship between our graph data-
bases and RDF databases, as the latter form the largest subset of NoSQL data-
bases.

References

1. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput.
Surv. (CSUR) 40(1), 2012–2015 (2008)

2. Wood, P.T.: Query languages for graph databases. ACM SIGMOD Rec. 41(1),
50–60 (2012)

3. W3C: Resource Description Framework (RDF) Model and Syntax Specifica-
tion. https://www.w3.org/TR/PR-rdf-syntax/

4. Levene, M., Poulovassilis, A.: An object-oriented data model formalised
through hypergraphs. Data Knowl. Eng. 6(3), 205–224 (1991)

5. Easley, D., Kleinberg, J., Crowds, M.: Reasoning about a Highly Connected
World. Cambridge University Press, Cambridge (2010)

6. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media, New
York (2015)

7. Rodriguez, M.A., Neubauer, P.: The graph traversal pattern management,
graph data management techniques and applications. In: Sakr, S., Pardede,
E. (eds.) IGI Global, ISBN: 9781613500538, August 2011

8. De Virgilio, R., Maccioni, A., Torlone, R.: R2G: a tool for migrating relations
to graphs. In: EDBT/ICDT 2014 Joint Conference (2014)

9. Boncz, P., Manegold, S., Kersten, M.: Database architecture optimized for the
new bottleneck: memory access. In: Proceedings of VLDB 1999, p. 5465 (1999)

10. Cebiric, S., Goasdoue, F., Manolescu, I.: Query-oriented summarization of RDF
graphs. Proc. VLDB Endow. 8(12), 1–39 (2015)

11. Campinas, S., Perry, T., Ceccarelli, D., Delbru, R., Tummarello, G.: Introduc-
ing RDF graph summary with application to assisted SPARQL formulation.
In: DEXA Workshops (2012)

https://www.w3.org/TR/PR-rdf-syntax/

PROPER - A Graph Data Model Based on Property Graphs 45

12. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summa-
rization. In: Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data (2008)

13. Sahoo, S.S., et al.: A survey of current approaches for mapping of relational
databases to RDF. W3C RDB2RDF Incubator Group Report (2009)

A Semantic Matrix for Aggregate
Query Rewriting

Romain Perriot1(B), Laurent d’Orazio1, Dominique Laurent2,
and Nicolas Spyratos3

1 Clermont Université, CNRS, Université Blaise Pascal,
LIMOS UMR 6158, Moulins, France

{romain.perriot,laurent.dorazio}@univ-bpclermont.fr
2 ENSEA, CNRS, Université de Cergy Pontoise, ETIS UMR 8051, Cergy, France

dominique.laurent@u-cergy.fr
3 UniverSud Paris, CNRS, Université Paris Sud, LRI UMR 8623, Orsay, France

nicolas.spyratos@lri.fr

Abstract. In order to take into account the ever increasing volumes of
data to be stored in computing systems and applications, the concept of
cloud computing offers appropriate environments in which elastic archi-
tectures are provided under a pay-as-you-go cost model. Thus, when it
comes to exploit these huge volumes of data, it is of paramount impor-
tance that optimization techniques can be used in order to reduce the
computing costs. Query rewriting and caching is one of the most popular
optimization techniques in this respect.

In this work, we propose a novel approach to deal with rewriting of
aggregate queries, the most common queries in data warehousing appli-
cations. We propose a new strategy to generate possible rewritings for
a new query, using the content of the cache, namely previously asked
queries stored as cache entries. Our solution relies on a semantic matrix,
and is generic enough to consider queries involving selection, projection
and any aggregation functions.

Keywords: Optimization · Query rewriting · Aggregate query · Data
warehouses · Semantic caching · Materialized views · Cloud computing

1 Introduction

New opportunities such as cloud computing [2] aiming to tackle increasing needs
of computing and storage resources, lead to envision data management at an
unexpected scale in various contexts (medicine, particles physics or astronomy
for example). Especially the amount of information to be involved and as a
consequence expensive data processes, like analytic query processing, make it
necessary to consider optimization from a new perspective.

Performance optimization in databases has been studied for many years, in
particular using methods such as indexing, materialized views, prefetching or

c© Springer International Publishing Switzerland 2016
E. Grant et al. (Eds.): ISIP 2015, CCIS 622, pp. 46–66, 2016.
DOI: 10.1007/978-3-319-43862-7 3

A Semantic Matrix for Aggregate Query Rewriting 47

caching. These methods would help improve the performance in big data, opti-
mizing resources management. In particular, semantic caches [6,13] enable to
rewrite queries so as to reuse stored results from previous requests. A weak
point when considering cache techniques is that such techniques are efficient
only when tuned for a given precise and restricted context. On the other hand,
when considering Big data applications, new perspectives arise. Indeed, in these
applications, an optimization process considered as non efficient in traditional
applications, may improve performance because huge data volumes are consid-
ered. The question is thus: how to leverage data processing on a semantic cache
so as to reduce the computation costs in the context of Big data?

Semantic caching has been introduced in the 90 s in distributed data bases
and then has been considered in web [4,5,16] and grid computing [8] mainly
focusing on selection queries and do not consider aggregations. On the other hand
some research efforts have dealt with rewriting queries with aggregate functions
but without considering selections [15], and the case of selection conditions has
been addressed in [18]. We refer to Sect. 4 for more details on these approaches.

In this paper we propose a new strategy to generate several possible rewrit-
ings for a new query, using the content of the cache, namely previously asked
queries. Our solution relies on a semantic matrix, and is generic enough to con-
sider queries involving selection, projection and usual aggregation functions.

The remainder of this paper is organized as follows. In Sect. 2, we provide
the background notions used throughout the paper, and in Sect. 3, we present
our approach in details. In Sect. 4, we overview related work, and in Sect. 5, we
conclude the paper.

2 Background

2.1 Aggregate Query

In this work, we consider a data warehouse implemented as a relational database
over a star schema, and aggregate queries expressed against such a schema.

According to the standard definition (see [14]), a star schema consists of a
distinguished table ϕ defined over attribute set F , called the fact table, together
with a set of other tables δ1, . . . , δN respectively defined over attribute sets
D1, . . . , DN , called the dimension tables, such that:

1. If K1, . . . ,KN are the (primary) keys of δ1, . . . , δN , respectively, then their
union K = K1 ∪ . . . ∪ KN is the (primary) key of ϕ. In other words, for
every i = 1, . . . , N , δi satisfies the functional dependency Ki → Di and ϕ
satisfies the functional dependency K → F . We denote by F the set of all
these dependencies.

2. For every i = 1, . . . , N , πKi
(ϕ) ⊆ πKi

(δi) (thus each Ki is a foreign key in
the fact table ϕ). The attribute set F \ K is called the measure of the star
schema. In what follows, we assume this set to be reduced to one attribute
denoted by M .

48 R. Perriot et al.

An aggregate query is defined as an aggregation (or set of aggregations) of the
measure attribute M over a set of grouping attributes X, using a selection pred-
icate Pred. In SQL, such a query is written as follows:

SELECT X, aggr(M) AS result

FROM T

WHERE Pred

GROUP BY X

where

– aggr is one of the standard aggregation functions min, max, count, sum or
avg,

– T refers to the join of the dimension tables with the fact table,
– Pred is a boolean formula, also called selection predicate, built up from triples

(attr, op, value) where attr is an attribute, value is an element of the domain
of attr and op is a comparison operator in {=,≤,≥, <,>} (assuming that such
comparisons make sense), and from the usual connectors ‘and’ (∧), ‘or’ (∨),
‘not’ (the negation of ϕ being denoted by ϕ).

In order to simplify notation, we assume that the table T and the measure
attribute M are fixed. In this context, an aggregate query Q as displayed above
is simply denoted by the triple Q = 〈X,Pred, aggr〉.

2.2 Aggregate Query Comparison

As shown in [15], an aggregate query Q = 〈X,Pred, aggr〉 can be associated
with a partition Π(Q) of the set of tuples in T , by considering the partition
associated with the projection over X involved in Q (that is, two tuples t1 and
t2 in T belong to the same block of Π(Q) if πX(t1) = πX(t2)).

Now, given two aggregate queries Q1 = 〈X1, P red1, aggr1〉 and Q2 =
〈X2, P red2, aggr2〉, Q1 and Q2 can be compared using the well known parti-
tion refinement partial ordering.

Formally, we say that Q1 refines Q2, denoted by Q1 � Q2 if the partition
Π(Q1) refines the partition Π(Q2), denoted by Π(Q1) � Π(Q2). In other words,
we have Q1 � Q2 if every block in Π(Q1) is a subset of a (single) block of Π(Q2).

It is easy to see that the relation � is reflexive and transitive, but not anti-
symmetric. This relation is thus a pre-ordering which induces an equivalence
relation defined as follows: the aggregate queries Q1 and Q2 are said to be equiv-
alent, denoted by Q1 ≡ Q2 if Q1 � Q2 and Q2 � Q1 both hold.

As a consequence, Q1 ≡ Q2 holds if Π(Q1) = Π(Q2), meaning that the
aggregates in Q1 and Q2 are computed according to the same partition.

Based on this equivalence relation, we denote by Q1 ≺ Q2 the fact that
Q1 � Q2 holds but Q1 ≡ Q2 does not hold.

Moreover, as shown in [15], the pre-ordering � can be characterized using the
underlying functional dependencies in F . Indeed, denoting by X+ the closure

A Semantic Matrix for Aggregate Query Rewriting 49

of the attribute set X with respect to F , it can be shown that for all aggregate
queries Q1 = 〈X1, P red1, aggr1〉 and Q2 = 〈X2, P red2, aggr2〉, Q1 � Q2 holds if
and only if X+

2 ⊆ X+
1 (or, in other words if and only if the dependency X2 → X1

can be deduced from F based on the Armstrong’s axioms).
As a consequence, given two aggregate queries Q1 = 〈X1, P red1, aggr1〉 and

Q2 = 〈X2, P red2, aggr2〉, we have Q1 ≡ Q2 if and only X+
1 = X+

2 . This implies
in particular that, if for every Q = 〈X,Pred, aggr〉, Q+ denotes the query
〈X+, P red1, aggr〉, we have Q ≡ Q+.

We end the subsection by recalling some well known properties of the aggre-
gate functions. In what follows, we assume that R is a set of numbers and that
Π(R) is a partition of R. Then, an aggregate function aggr is said to be asso-
ciative if the following holds:

aggr(R) = aggr({aggr(P) | P ∈ Π(R)}).

It is easy to see that min, max and sum are associative, whereas count and avg
are not. However for these two functions, the following holds:

count(R) =sum({count(P) | P ∈ Π(R)})
avg(R) =sum(R)/count(R)

avg(R) =
sum({sum(P) | P ∈ Π(R)})
sum({count(P) | P ∈ Π(R)})

.

As will be seen later, these properties are used when rewriting an aggregate
query Q using another aggregate query Q′ such that Q ≺ Q′. Moreover, the
following properties are also useful: for all sets of numbers A and B:

– If the aggregation function is min or max then we have
(1) aggr(A ∪ B) = aggr(aggr(A), aggr(B)).

– If the aggregation function is sum or count then we have
(2) aggr(A ∪ B) = aggr(A) + aggr(B) − aggr(A ∩ B).
As a consequence, if A ∩ B = ∅, then aggr(A ∪ B) = aggr(A) + aggr(B).

2.3 Motivation and Running Example

The general problem of query rewriting has been the subject of many research
efforts since the last three decades, and is still currently a hot topic because of the
Big data phenomenon that brings new types of applications and environments.
However it is well known that this problem its full generality is intractable,
because as mentioned in [3], the problem of query rewriting using (materialized)
views is Co-NP-complete with respect to the size of these views.

As previously mentioned, our goal in this work is to tackle the rewriting prob-
lem in the following setting: (i) the queries being considered as the materialized
views and the queries to be rewritten are aggregate queries, (ii) the underlying
database is a data warehouse organized according to a star schema, and (iii) the
size of the data warehouse is large enough to refer to Big data.

50 R. Perriot et al.

In this context, we provide a method for finding valid rewritings of a given
aggregate query Q, based on aggregate queries Q1, . . . , Qn whose results are
stored in a cache. Q1, . . . , Qn are called the resources, whereas the underlying
database or data warehouse is called the source.

On the other hand, when considering semantic caching, as we do in this
work, the rewritten form of a given query can be split into two distinct sub-
queries usually referred to as the probe query and the remainder query. The
former retrieves data from resources, whereas the latter retrieves data from the
source exclusively.

As will be seen later in the paper, our approach allows for rewritings that
involve probe and reminder queries in one single rewriting, thus allowing for
flexibility in the proposed solutions.

Throughout the paper, we consider the following example as a running exam-
ple to illustrate our approach. The data warehouse in our running example is
organized as a four dimensional star schema defined as follows:

– The dimension table Customer is defined over the attributes c Id, c name,
c city and c country standing respectively for customer identifier, customer
name, customer city and customer country.

– The dimension table Store is defined over the attributes s Id, s name and
s addr standing respectively for store identifier, store name and store address.

– The dimension table Product is defined over the attributes p Id, p name and
p price standing respectively for product identifier, product name and product
unit price.

– The dimension table Date is defined over the attributes d Id, d day, d month
and and d year standing respectively for date identifier, date month and date
year.

– The fact table Sales is defined over the attributes c Id, s Id, p Id, d Id and
M , where M is the quantity.
A tuple (c, s, p, d,m) in Sales means that the customer identified by c bought
in store identified by s the product identified by p on date identified by d and
in quantity m.

Moreover, we assume that the following functional dependencies hold:

– c Id → c name, c city, c country and c city → c country over the dimension
table Customer

– s Id → s name, s addr over the dimension table Store
– p Id → p name, p price over the dimension table Product
– d Id → d day, d month, d year over the dimension table Date
– c Id, s Id, p Id, d Id → M over the fact table Sales.

We denote by F the set of all functional dependencies listed above, and we also
assume that the following inclusion dependencies hold:

πc Id(Sales) ⊆ πc Id(Customer), πs Id(Sales) ⊆ πs Id(Store),
πp Id(Sales) ⊆ πp Id(Product), πd Id(Sales) ⊆ πd Id(Date).

These functional and inclusion dependencies clearly define a star schema over
which we assume given a data warehouse instance. Moreover, the following

A Semantic Matrix for Aggregate Query Rewriting 51

queries are seen as resources, meaning that the definitions and the answers of
theses queries are stored in cache.

Q11 = 〈(p name, c city, c country), (d year ≥ 2000 ∧ d year < 2008),min〉
Q12 = 〈(p name, s name),

(c country = FR ∧ d year ≥ 2005 ∧ d year < 2010),min〉
Q13 = 〈(p name), (�),min〉
Q14 = 〈(s name), (c country = FR ∨ (d year ≥ 2000 ∧ d year < 2005)),min〉

Q21 = 〈(p name, s name), (c country �= DE ∧ d year < 2010), sum〉
Q22 = 〈(p name), (c country �= FR ∧ c country �= DE ∧ d year < 2005), sum〉
Q23 = 〈(p name, c country), (d year ≥ 2005 ∧ d year < 2010), sum〉
Q24 = 〈(p name), (c country �= FR ∧ d year < 2005), sum〉.

We then consider the problem of rewriting the following two queries Q1 and Q2,
using the resource queries given above:

Q1 = 〈(p name), (c country = FR ∧ d year ≥ 2000 ∧ d year < 2010),min〉
Q2 = 〈(p name), ((c country = FR ∨ c country = DE) ∧ d year < 2005), sum〉.

Many approaches from the OLAP (On-Line Analytical Processing) query rewrit-
ing and OLAP semantic caching literature would fail to rewrite Q1 and Q2 using
the queries Q1i and Q2j (i, j = 1, . . . , 4). However, as shown in Fig. 1, such
rewritings exist.

In order to illustrate and motivate our approach, we now give some intuition
on why these rewritings are valid. We first notice in this respect that considering
only the aggregate functions involved in the given queries shows that, for i = 1, 2
rewriting Qi can at most involve the queries Qij for j = 1, . . . , 4.

To explain why the first query in Fig. 1 is a valid rewriting of Q1 we first
notice that the blocks defined by the grouping attributes in Q11, Q12 and Q13

refine the blocks defined by the grouping attribute in Q1, and that such is not
the case for the blocks of the grouping attribute in Q14. Therefore Q14 cannot be
used for rewriting Q1, explaining why Q14 does not occur in the rewritten query.
It is important to notice in this respect that, as argued in [15], this is due to
the fact that the functional dependencies X1 → X1i trivially hold for i = 1, 2, 3,
whereas X1 → X14 cannot be obtained from F .

On the other hand, although the grouping attribute in Q13 is the same as in
Q1, Q13 is not involved in the rewriting because of the following:

– The selection predicate is the trivial tautology � (or true), which implies
that the blocks defined by the grouping attribute in Q13 cover the whole set
of tuples in T , whereas in Q1 we are only interested in a subset of T .

– The only attribute in X13 (i.e., p name) does not allow to select the tuples
needed in the answer to Q3 because these tuples are characterized by their
values over attributes c country and d year.

Considering now Q11 and Q12, we note the following: the tuples of T satisfying
Pred11 are a subset of those satisfying Pred1, as only those concerning the years
between 2008 and 2009 are missing, and these tuples are recovered through the

52 R. Perriot et al.

Fig. 1. Possible rewritings for the aggregate queries Q1 and Q2

predicate Pred12. Therefore, the aggregate values for Q1 can be obtained by
computing the min of the aggregate values of Q11 and of Q12. This is precisely
what expresses the first query shown in Fig. 1.

We emphasize in this respect that this rewriting is valid despite the fact that
the set of tuples satisfying Pred11 and Pred12 is not empty. This is so because
the aggregate function min satisfies the property of associativity, which implies
that for all sets E and F we have min(E ∪ F) = min(min(E),min(F)).

We now explain why the second query in Fig. 1 is a valid rewriting of Q2. We
first note that in this case, all queries Q2j with j = 1, . . . , 4 are involved in the
rewriting. This is so because, contrary to the previous case, the blocks defined
by the partitioning attributes of all these queries refine those of the partitioning
attribute of Q2.

As the aggregate function sum does not enjoy the associativity property, the
overlappings implied by the involved selection predicates have to be carefully
taken into account. This explains why in the rewritten query the numbers −2
and −1 appear respectively associated with Q22 and Q23. To roughly explain
why these numbers occur, notice first that the tuples satisfying Pred22 have
to be discarded from the answer to Q2 (as they concern countries other that
those of interest in Q2). Since some of these tuples are brought in the answer
through Q21 and Q24 they must be ‘discarded twice’ in order to have a correct
computation of the aggregate sum. A similar argument shows that some tuples

A Semantic Matrix for Aggregate Query Rewriting 53

considered in the answer to Q24 have also to be discarded due to considerations
on the attribute d year.

Figure 2 gives an informal pictorial representation of the previous explana-
tions. To roughly explain this figure, every plan represents the set of all tuples in
T and every rectangle in this plan represents a subset of T whose tuples are char-
acterized by a conjunction of the selection predicates of the involved queries (the
splits shown in the two cases are to be explained later). In the case of Fig. 2(a)
the symbols � and ⊥ indicate whether the query occurs or not in the rewrit-
ing, whereas in Fig. 2(b) these symbols are replaced with numbers that give the
coefficient to be associated with the aggregate result of the corresponding query.

To conclude with this example, we point out that, contrary to most existing
approaches from the literature, rewritings as those shown in Fig. 1, are possible
in our approach because (i) any selection predicate can be considered (in partic-
ular disjunctions as in Pred14 and Pred2 in Q14 and Q2 respectively), and (ii)
overlapping blocks (coming from different queries in the cache) can be considered
in the rewritten query.

Fig. 2. Combination of resources for Q1 and Q2 rewritings

54 R. Perriot et al.

3 Our Approach

In this section, we first overview our approach by identifying five steps in the
global rewriting process, and then, the first four steps are presented in details.

3.1 Overview of the Approach

We first recall that we consider that n aggregate queries Q1, . . . , Qn where for i =
1, . . . , n, Qi = 〈Xi, P redi, aggri〉 are resources stored along with their answers
in a cache, and that a new query Q = 〈X,Pred, aggr〉 has to be rewritten in
terms of the resources. In this setting, our approach consists in generating a
generic linear system of the form Ax = b whose solutions correspond to possible
rewritings of Q.

It is important to notice that as our approach gives a global method for
finding valid query rewritings, restrictions according to some specific architec-
tures can be taken into account in order to discard non interesting solutions.
For example, if our rewriting method is used in a semantic cache carried by a
remote client in a client/server architecture, the method could be restricted in
order to eliminate valid rewritings that would cause expensive data shipping.
This important issue, which is not addressed in this paper, will be the subject
of our future work. The proposed approach follows the steps as shown below:

Step 1: Identify which queries among Q1, . . . , Qn have a chance to be used for
rewriting Q. The resulting set of queries is called the candidate queries of Q
and denoted by cand(Q).

Step 2: Based on the selection predicates of the candidate queries and the one
in Q, build a partition of the tuples in T .

Step 3: Seek for the queries in cand(Q) that can be ‘partitioned’ into two queries
according to the predicate of another query in cand(Q) ∪ {Q}.

Step 4: Build up the matrix A and the vector b of the targeted system by con-
sidering the predicates associated with the blocks of the partition obtained
at Step 2 and the candidate queries obtains at the previous step.

Step 5: Compute the solutions of the system, taking into account the specificities
of the current context so as to discard inefficient solutions.

In the next subsections, we present in details the first four steps above and we
refer to our future work regarding the last one. We simply mention here about
this last step that, although solving the system can be done based on one of the
numerous approaches available in the literature, we are aware that optimizing
this resolution step according to the computing environment is far from trivial.

Before presenting these first four steps of our approach, we point out that
our approach relies on the following basic remarks:

– The properties (1) and (2) of the aggregate functions given earlier lead us to
distinguish the two cases where the aggregate function is either
(i) min or max, or

A Semantic Matrix for Aggregate Query Rewriting 55

(ii) sum or count.
Notice that avg is not mentioned since it is a combination of sum and count,
thus falling in case (ii).

– However, these two cases are expressed using a common formalism related to
linear system of the form Ax = b, with different interpretations.

In case (i), thanks to property (1), given the semantic regions S1 and S2, we may
compute the aggregate over S1 ∪ S2 by simply considering the results computed
over S1 and S2, even when S1 ∩ S2 �= ∅. Therefore, a correct rewriting in this
case has just to indicate whether a given resource is to be considered or not for
a given semantic region, no matter of how many resources are considered.

Referring again to our running example, although the semantic regions
defined by d year ≥ 2000 ∧ d year < 2008 and d year ≥ 2005 ∧ d year < 2010
overlap, the result of the aggregation of min (respectively max) for d year ≥
2000 ∧ d year < 2010 is correctly obtained from the min (respectively max)
over each of these semantic regions. We refer to Fig. 2(a) for an informal view of
these overlappings in the case of the query Q1 in our running example.

In case (ii), i.e., one of the aggregates sum or count is considered, due
to property (2), overlapping semantic regions have to be carefully taken into
account in order to get the correct aggregated results. It turns out in this case
that a correct rewriting is like a linear combination of the different aggregate
results of the different candidate queries. We refer to Fig. 2(b) for an informal
view of such a linear combination in the case of the query Q2 in our running
example.

To sum up, the rewriting problem is expressed as an equation of the form
Ax = b whose solutions x correspond to correct rewritings. However, the system
is considered under different interpretations, depending on the case:

– In case (i) (i.e., the aggregate is min or max), the equation has to be inter-
preted in Boolean algebra. In this case elements in A, b or x are 0 or 1,
0 (respectively 1) being interpreted as ⊥ or false (respectively � or true).
Moreover, the sum and product operators + and ∗ are respectively interpreted
as ‘or’ (∨) and ‘and’ (∧).

– In case (ii) (i.e., the aggregate is sum or count), the equation has to be
interpreted as usual in linear algebra. Therefore in this case, the elements in
A, b and x are numbers. More precisely, the elements in A and b are numbers
equal to either 0 or 1, while the elements in x are integers that might be
different than 0 and 1.

We now turn to the presentation of steps 1 to 4 of our approach.

3.2 Step 1: Computing the Set of Candidate Queries

A resource Qi = 〈Xi, P redi, aggri〉 can be used for rewriting the aggregate query
Q = 〈X,Pred, aggr〉 only if

1. X ⊆ Xi and
2. aggr = aggri.

56 R. Perriot et al.

These queries are called the candidate queries of Q and their set is denoted by
cand(Q). We recall in this respect from [15] that in order to have these two
conditions satisfied in as many cases as possible, or in other words, to have as
many queries Q as possible such that cand(Q) �= ∅, it can be assumed that

1. Xi is closed under the functional dependencies of F (i.e., X+
i = Xi), and

2. all aggregate values for min, max, sum and count are stored, in which case
the second condition above is always satisfied.

In the context of our running example, the above hypotheses are clearly not
considered. In this example, we have cand(Q1) = {Q11, Q12, Q13} because all
these candidate queries involve the aggregate min as does Q1, and their sets
of projected attributes contain the attribute p name. It should be noticed that,
although Q14 also involves the aggregate min, this query is not in cand(Q1)
because its projected attribute is different than p name.

On the other hand, we have cand(Q2) = {Q21, Q22, Q23, Q24} because all
these queries involve the aggregate sum as does Q2, and because their sets of
projected attributes all contain the attribute p name.

3.3 Step 2: Partitioning T

Now, given Q and its associated set cand(Q), we consider the table T as a multi-
dimensional set whose dimensions are the attributes occurring in the predicates
of the queries of cand(Q) or in the predicate of Q. This way of considering T
is referred to as the semantic space in the remainder of the paper. The goal of
this step is to partition this semantic space using the predicates of the queries
in Pred(Q) and the predicate of Q. Clearly, for doing so, the queries involving
a tautological predicate will not help. Therefore these queries are not taken into
account in this step.

For a fixed attribute attr occurring in the semantic space, the triples
(attr, op, value) defining the predicates generate a partition of the domain of
attr, and combining all these partitions for all involved attributes generates a
partition of the semantic space. Each block of this partition, called a semantic
region, is thus defined by a conjunction of conditions, each of involving only one
of the attributes defining the semantic space. Therefore, a tuple t in T belongs
to such a block if and only if t satisfies the conjunction defining the block.

In our running example, recalling that cand(Q1) = {Q11, Q12, Q13} and
cand(Q2) = {Q21, Q22, Q23, Q24}, in both cases the corresponding predicates
involve the two attributes d year and c country. Therefore, for each of the
queries Q1 and Q2, the semantic space is a two dimensional representation of
T . Moreover, since the predicate in Q13 is the trivial tautology �, this query
is not considered for the construction of the semantic regions associated to Q1.
Figure 3 displays the semantic regions for the queries Q1 and Q2.

To explain how these semantic regions are computed, let us assume that
cand(Q) consists of k aggregate queries Q1, . . . , Qk. Every semantic region is
then defined as a conjunction of k + 1 conjuncts equal to either Predi or Predi

A Semantic Matrix for Aggregate Query Rewriting 57

Fig. 3. Semantic regions for Q1 and Q2 rewritings

for i = 1, . . . , k, or to Pred or Pred, (where Pred is the selection predicate of the
query Q). Moreover, in order to avoid empty semantic regions, the conjunctions
resulting in a contradiction are be discarded.

The computation of these conjunctions can be done based on a binary tree
whose root is the node labeled � and at each level i = 1, . . . , k, the two children
of the current node are nodes labeled Predi and Predi, respectively. Then a
k + 1 level is added by introducing two children to every node at level k, these
nodes being labeled Pred and Pred. In this tree, every path from the root to a
leaf corresponds to a conjunction and thus, after deleting the contradictions all
semantic regions are known.

Figure 4 shows the trees associated with the queries Q1 and Q2 of our running
example. In each of these trees contradictory paths have been discarded by cross-
ing out the node from which the contradiction arises. As an example, the seventh
leaf (counting them in a top-down manner) labeled Pred1 has been crossed out
in the tree of Fig. 4(a) because the corresponding path is associated with the for-
mula Pred11∧Pred12∧Pred1 which is a contradiction, whereas Pred11∧Pred12
is not (this is so because Pred11∧Pred12 implies 2005 ≤ d year < 2008 whereas
Pred1 implies d year ≤ 2000 or d year > 2010).

58 R. Perriot et al.

Fig. 4. The binary trees associated to the semantic regions for Q1 and Q2

The selection predicates of the resulting semantic regions for the queries Q1

and Q2 are shown in Figs. 5 and 6, respectively.

Fig. 5. Semantic regions for Q1 rewriting

We stress that the above computation has to be carefully implemented and
optimized. Indeed, for k candidate queries, 2k+1 conjunctions have to be tested,
and in the general case, each test is itself known to be NP-complete, since it
consists in testing the satisfiability of a boolean formula.

To cope with this difficulty, we first note that when generating the binary
tree, satisfiability can be checked at each stage in order to stop constructing a
branch as soon as a contradiction is encountered. Another interesting property
for optimizing the processing is as follows: when a contradiction is reached due
to a predicate P , then we know that the other branch associated with P cannot
lead to a contradiction. In this case the corresponding test can be of course
avoided.

Based on these remarks, we propose to implement a knowledge base for
storing all satisfiable conjunctions that have been tested or deduced so far.

A Semantic Matrix for Aggregate Query Rewriting 59

Fig. 6. Semantic regions for Q2 rewriting

This knowledge base would then come with deduction algorithms, for exam-
ple based on constraint programming, so as to provide an efficient computation
of the semantic regions.

3.4 Step 3: Partitioning Queries

This step is motivated by the fact that, in order to generate as many rewritings
as possible, the predicates in the candidate queries must be as ‘close’ as possible
to the predicates defining the semantic regions. In fact, the ideal case is when
it can be shown that for every candidate query Qi, the predicate Predi or its
negation Predi occurs in the definition of only one semantic region SRj .

As an example, consider the query Q1 of our running example along with the
semantic regions shown in Fig. 3(a). In this case it can be seen that rewriting
Q1 using the queries in cand(Q1) = {Q11, Q12, Q13} with no further selection
condition is is not possible. On the other hand, replacing Q11 with the queries

Q1
11 = 〈(p name, c city, c country),

(d year ≥ 2000 ∧ d year < 2008 ∧ c country = FR),min〉
Q2

11 = 〈(p name, c city, c country),
(d year ≥ 2000 ∧ d year < 2008 ∧ c country �= FR),min〉

does not change the semantic space and the semantic regions, but gives candi-
date queries whose predicates are closer to those defining the semantic regions.
Moreover in this case, Q1 can be rewritten, as seen previously. Indeed, it is easy
to see that the rewritten form of Q1 given in Fig. 1 can be written using Q1

11

with no selection condition and Q12. This is so because the selection condition
c country = FR in the query of Fig. 1 is in fact part of the definition of Q1

11.
We notice regarding this example that the ‘split’ of the plan labeled Q11 in

Fig. 2(a) is an informal representation of the explanations just above.
In the general case, in order to generate splits as shown in the previous

example, we ‘partition’ the candidate queries so as their selection predicates fit
the partition of the semantic space as accurately as possible. More precisely, for
every candidate query Qi, we look for a predicate P such that

1. Predi ∧ P is equivalent to Predi ∧ Pred∗ where Pred∗ is a non tautological
selection predicate in {Predj | j = 1, . . . , k ∧ j �= i} ∪ {Pred}. Notice that

60 R. Perriot et al.

tautological predicates P� are not considered here because Predi ∧Pred� is
equivalent to Predi.

2. The two queries

SELECT X, result FROM Qi WHERE P GROUP BY X
and
SELECT X, result FROM Qi WHERE NOT(P) GROUP BY X

are indeed SQL queries, meaning that P can be written as a condition using
only attributes from the set Xi of the projected attributes of Qi.

When such is the case, we consider two new aggregate queries denoted by QP
i

and QP
i , and defined as follows:

QP
i = 〈Xi, P redi ∧ P, aggri〉 and QP

i = 〈Xi, P redi ∧ P , aggri〉.
Since the selection predicates of these two queries clearly better fit the semantic
regions than does Predi, these queries are put in cand(Q) in replacement of Qi.

Using the same notation as above, the computation of these new candidate
queries is achieved according to the following processing, referred to as parti-
tioning Qi in the remainder of the paper:

1. Write the formula ϕ = Predi ∧ Pred∗ in its conjunctive normal form.
2. Remove from ϕ every clause C such that Predi ⇒ C holds.
3. Writing the resulting formula φ as φ = Predi ∧P , if P involves only triples of

the form (attr, op, value) such that attr occurs in Xi, then generate the two
queries QP

i = 〈Xi, P redi ∧ P, aggri〉 and QP
i = 〈Xi, P redi ∧ P , aggri〉.

The set of aggregate queries obtained after partitioning all queries of cand(Q)
is denoted by cand∗(Q), and the elements of cand∗(Q) are denoted by Q∗

j =
〈X∗

j , P red∗
j , aggr∗

j 〉 where j ranges between 1 and l.
It should be noticed that when writing Q∗

j , we refer either to a query Qi of
cand(Q) or to a query of the form QP

i or QP
i where Qi is in cand(Q). We draw

attention on the fact that the two indexes i and j might be different and that if
cand(Q) contains k candidate queries, we have k ≤ l.

We now illustrate the partitioning of the query Q11 in the context of our
running example. In this case, the processing is applied to Pred∗ = Pred12 and
then to Pred∗ = Pred1 as follows:

– Regarding Q12 we have ϕ = Pred11 ∧ Pred12 = (d year ≥ 2000 ∧ d year <
2008) ∧ (c country = FR ∧ d year ≥ 2005 ∧ d year < 2010).

1. As ϕ is in conjunctive normal form, this first step is skipped.
2. Then, since (d year ≥ 2000 ∧ d year < 2008) ⇒ d year < 2010, C =

(d year < 2010) is removed, and no other clause can be removed.
3. We thus end up with φ = (d year ≥ 2000∧d year < 2008)∧(c country =

FR∧d year ≥ 2005), meaning that, according to the third step, P is the
predicate (c country = FR ∧ d year ≥ 2005). Since the attribute d year
is not in X11, no new query is generated.

A Semantic Matrix for Aggregate Query Rewriting 61

– Regarding Q1 we have ϕ = Pred11 ∧ Pred1 = (d year ≥ 2000 ∧ d year <
2008) ∧ (c country = FR ∧ d year ≥ 2000 ∧ d year < 2010).

1. As above, ϕ is in conjunctive normal form and so, this step is skipped.
2. In this case, the following two implications hold: (d year ≥ 2000 ∧

d year < 2008) ⇒ d year ≥ 2000 and (d year ≥ 2000 ∧ d year <
2008) ⇒ d year < 2010. Therefore, the clauses (d year ≥ 2000) and
(d year < 2010) are removed, and no other clause can be removed.

3. We thus end up with φ = (d year ≥ 2000∧d year < 2008)∧(c country =
FR), meaning that P1 = (c country = FR). Since c country is in X11

the process succeeds, and so Q11 is replaced by the two queries QP1
11 and

QP1
11 .

Applying this partition processing to the two other candidate queries Q12 and
Q13 shows that no further new queries can be generated for Q1. Hence, we have

cand∗(Q1) = {QP1
11 , QP1

11 , Q12, Q13}.

On the other hand, similar computations applied to Q2 and cand(Q2) show that
the only partitioning in this case is that of Q23 using Pred21, resulting in the two
queries QP2

23 and QP2
23 where P2 = (c country �= DE). This query partitioning is

shown informally in Fig. 2(b) through the split of the plan labeled Q23 into two
other plans, and the resulting set of candidate queries for Q2 is

cand∗(Q2) = {Q21, Q22, Q
P2
23 , QP2

23 , Q24}.

3.5 Step 4: Building the Matrix A and the Vector b

Now, we assume that the semantic regions SR1, . . . , SRp have been identified
through their respective associated conjunctions PredSR1 , . . . , P redSRp

and that
the set cand∗(Q) = {Q∗

1, . . . , Q
∗
l } has been computed as described just above.

Every Q∗
j in cand∗(Q) is associated with a vector VQ∗

j
of p numbers in {0, 1} as

follows: for every i = 1, . . . , p,

VQ∗
j
[i] =

{
1, if Pred∗

j occurs in PredSRi
or if Pred∗

j is a tautology
0, if Pred∗

j occurs in PredSRi
.

It is important to notice that when Q∗
j is of the form QP

j or QP
j , the query results

from a partitioning of a candidate query Qi using another query Q′
i. In this case,

in the construction of VQ∗
j
, Pred∗

j is assumed to be written as Predi ∧ Pred′
i or

Predi ∧ Pred′
i.

We thus obtain a matrix P of p rows and l columns from which the final
matrix A will be constructed. On the other hand, a similar process applied to Q
gives a vector VQ such that for i = 1, . . . , p, VQ[i] = 1 if Pred occurs in PredSRi

and VQ[i] = 0 if Pred occurs in PredSRi
. The vector VQ is precisely the vector

denoted by b in our targeted system.
The last step of the construction of the semantic matrix A consists in adding

to P the identity matrix I of p rows and p columns. This matrix is meant to

62 R. Perriot et al.

allow in the rewritten query to address subqueries to the underlying table T ,
when it is not possible to use the candidate queries of cand∗(Q). These queries
are called the remainder queries.

Such situation happens when a semantic region cannot be associated with
any query in cand(Q), that is when the predicate

(∧j=k
j=1 Predj

)
∧Pred is not a

contradiction. In this case, the tuples in the associated semantic region cannot
be retrieved through the queries Qj (j = 1, . . . , k) nor through the queries Q∗

j

(j = 1, . . . , l). Therefore, in this case, a subquery addressed to the table T is
necessary to retrieve them. Another scenario where remainder queries might be
useful is when the tuples in a semantic region stored in the cache cannot be
reached by the system or when their retrieval is known to be more expensive
than that of the corresponding tuples in T .

It is therefore relevant to take into account remainder queries for any semantic
region, which we do by considering the identity matrix I.

The remainder queries associated to I are denoted by Rj for j = 1, . . . , p and
are defined in SQL by

SELECT X, result FROM T WHERE PredSRj
GROUP BY X.

As a consequence, the semantic matrix A has p rows, each corresponding to a
semantic region, and l + p columns, the l first columns corresponding to the
candidate queries of cand∗(Q) and the other p columns corresponding to the
remainder queries.

Writing this matrix A = [P |I], we recall that it defines a linear system Ax = b
where b is column vector of p rows associated to the query Q to be rewritten.
The solutions of this system allow for rewriting the query Q using the resource
queries in cand(Q) whose answers are assumed to be stored in a cache.

Fig. 7. Matrix for Q1 rewriting

In the context of our running example, the two matrices for rewriting Q1 and
Q2 and their associated column vector b are respectively shown in Fig. 7 and in
Fig. 8 under the form of a single table that can be written as [A|b], that is [P |I|b].
Moreover, in this setting, it is easy to check that the vectors x1 and x2 shown
below are possible solutions of the corresponding systems Ax = b.

x1 = [0, 1, 1, 0, 0, 0, 0, 0, 0]
x2 = [1,−2, 0,−1, 1, 0, 0, 0, 0, 0, 0]

A Semantic Matrix for Aggregate Query Rewriting 63

Fig. 8. Matrix for Q2 rewriting

These vectors are precisely those that lead to the rewritten queries displayed in
Fig. 1.

4 Related Works

Query rewriting using materialized views has motivated many research efforts
during the last decades. We refer to [12] for a wide survey on this topic, including
the main related references.

Among all these approaches we mention that in [1], as one of the earliest deal-
ing with query rewriting using materialized views in the presence of functional
and inclusion dependencies, as we do in our approach. However, in contrast to the
present paper, the queries considered in [1] do not involve aggregate functions.

In our previous work [15], we considered query rewriting of aggregate queries
in the presence of functional and inclusion dependencies, but in this approach
the queries were restricted to very particular conjunctive WHERE clauses that
are generalized in the present paper. It is important to notice that in [15], and
contrary to the present paper, the issue of cache maintenance was also addressed
based on query comparison with the goal of avoiding redundancies.

In [18], the authors consider the problem of OLAP query rewriting using
materialized views, as we do in this paper. The approach deals with general
aggregate queries involving GROUP BY, HAVING and WHERE clauses, and
takes into account hierarchies defined over the dimension tables. In [18], selection
conditions in WHERE clauses are expressed as cross-products of intervals over
dimensional attributes. Then given an aggregate query Q the authors of [18]
address the issue of covering the hyper rectangle defined by the WHERE clause
of Q by non overlapping hyper rectangles defined by the WHERE clauses of
materialized views. As we do allow overlappings in our approach, rewritings
obtained in our approach cannot be obtained in [18] (as for instance the rewriting
of Q2 in our running example). Therefore, our approach is more general than
that of [18], except that we do not consider queries containing a HAVING. We
argue that this issue can easily be addressed as done in [15], that is, by not
considering the clause when storing the answers in the cache.

On the other hand, the notion of semantic cache was introduced in [6] in a
client-server environment as a client cache storing entries as groups of tuples,

64 R. Perriot et al.

a group being characterized by a predicate. This approach allows to optimize
data exchange between the server and the client, because server requests are
expressed using predicates stored in the cache, and so, only the tuples in the
corresponding blocks are sent. This approach was generalized in [13,20] by con-
sidering several groups in one request, referred to as semantic segments in [20].

In [7], the authors consider a multi-dimensional data cube along with the
hierarchies defined over the dimensions. In this context, they define chunks as
groups of tuples defined by their values on the dimensions and to their aggrega-
tion levels. To answer a given query, the system determines the chunks required
for answering the query. If some of these chunks are not stored in the cache,
they are retrieved form the underlying cube and the cache is updated accord-
ingly, taking into account a specific cost model related to the granularity of the
chunks to be stored.

As already mentioned above, in our previous work [15,19], we also propose a
semantic caching taking into account aggregation levels. In this work, levels are
characterized based on the functional dependencies instead of hierarchy analysis,
as done in [7,18]. In doing so we can also exploit the query comparison recalled
in Sect. 2 in order to design an efficient replacement policy in the cache as fol-
lows: only the most specific queries are stored (because these queries allow to
recompute the more general ones). Moreover, in order to be able to rewrite as
many queries as possible for a given level of specificity, we store all aggregate
values and all attributes related to that level.

As a last category of related work, we mention the approaches in [9–11,17]
that address the issue of semantic caching in cloud computing environments,
using the standard map-reduce paradigm. In [9,10], the results of previous
queries are cached and reused, and in [11,17], execution plans are stored and
shared.

5 Conclusion

We have presented a novel approach for rewriting aggregate queries using a cache
containing the answers to previously asked queries. Our approach extends our
previous work so as to take into account any selection predicate in the WHERE
clause of the queries. Moreover, an important feature of approach is that it is
capable of generating several rewritings for a given query. This is so because the
rewritings are obtained as solutions of a linear system which in general can have
more than one solution. As argued earlier in the paper, this original property is
relevant in Big data environments, where computation costs are of paramount
importance. Our approach allows to take this important into account, because
cost constraints can be considered in the linear system, so as to discard solutions
expected to be costly.

The work presented in this paper is clearly the very first step towards obtain-
ing an effective rewriting system. We list below the main open issues that will
be addressed in the next future:

A Semantic Matrix for Aggregate Query Rewriting 65

– Providing a method for computing one or more solutions of the generated
system is of course a basic issue to be addressed. Although standard methods
exist for that, we have to enhance them with the constraints to be considered
to model costs constraints in Big data environments.

– Extending the cache maintenance of [15] to the more general context of this
work is a key issue that will be investigated shortly.

– Although obtaining several solutions is an interesting property of our app-
roach, it is important to characterize these solutions from a theoretical point
of view. We suspect that the step of query partitioning plays a central role in
this issue.

– Implementing and testing our approach is of course a work that has to be
done as soon as possible. We started working on this, based on the preliminary
results shown in [19].

References

1. Afrati, F., Kiourtis, N.: Query answering using views in the presence of dependen-
cies. In: International Workshop on New Trends in Information Integration (NTII),
pp. 8–11 (2008)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

3. Calvanese, D., Giacomo, G.D., Lenzerini, M., Vardi, M.Y.: What is query rewrit-
ing? (Position paper), pp. 1–13. www.dis.uniroma1.it/∼lenzerin/krdb01/main.ps

4. Chen, L., Rundensteiner, E.A., Wang, S.: Xcache: a semantic caching system for
XML queries. In: ACM SIGMOD International Conference on Management of
Data, p. 618. ACM (2002)

5. Chidlovskii, B., Borghoff, U.M.: Semantic caching of web queries. VLDB J. 9(1),
2–17 (2000)

6. Dar, S., Franklin, M.J., Jónsson, B., Srivastava, D., Tan, M.: Semantic data caching
and replacement. In: VLDB 1996, Proceedings of 22th International Conference on
Very Large Data Bases, pp. 330–341. Morgan Kaufmann (1996)

7. Deshpande, P., Ramasamy, K., Shukla, A., Naughton, J.F.: Caching multidimen-
sional queries using chunks. In: ACM SIGMOD International Conference on Man-
agement of Data, pp. 259–270. ACM Press (1998)

8. d’Orazio, L., Traoré, M.K.: Semantic caching for pervasive grids. In: International
Database Engineering and Applications Symposium (IDEAS), ACM International
Conference Proceeding Series, pp. 227–233. ACM (2009)

9. Elghandour, I., Aboulnaga, A.: Restore: reusing results of mapreduce jobs. PVLDB
5(6), 586–597 (2012)

10. Elghandour, I., Aboulnaga, A.: Restore: reusing results of mapreduce jobs in pig.
In: ACM SIGMOD International Conference on Management of Data, pp. 701–704.
ACM (2012)

11. Giannikis, G., Alonso, G., Kossmann, D.: Shareddb: killing one thousand queries
with one stone. PVLDB 5(6), 526–537 (2012)

12. Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10, 270–294 (2001)
13. Keller, A.M., Basu, J.: A predicate-based caching scheme for client-server database

architectures. VLDB J. 5(1), 35–47 (1996)

www.dis.uniroma1.it/~lenzerin/krdb01/main.ps

66 R. Perriot et al.

14. Kimball, R.: The Datawarehouse Toolkit. Wiley, New York (1996)
15. Laurent, D., Spyratos, N.: Rewriting aggregate queries using functional depen-

dencies. In: International ACM Conference on Management of Emergent Digital
EcoSystems (MEDES), pp. 40–47. ACM (2011)

16. Lillis, K., Pitoura, E.: Cooperative xpath caching. In: ACM SIGMOD International
Conference on Management of Data, pp. 327–338. ACM (2008)

17. Nykiel, T., Potamias, M., Mishra, C., Kollios, G., Koudas, N.: Mrshare: sharing
across multiple queries in mapreduce. PVLDB 3(1), 494–505 (2010)

18. Park, C., Kim, M., Lee, Y.: Rewriting OLAP queries using materialized views and
dimension hierarchies in data warehouses. In: International Conference on Data
Engineering, (ICDE), pp. 515–523. IEEE Computer Society (2001)

19. Perriot, R., d’Orazio, L., Laurent, D., Spyratos, N.: Rewriting aggregate queries
using functional dependencies within the cloud. In: Kawtrakul, A., Laurent, D.,
Spyratos, N., Tanaka, Y. (eds.) ISIP 2013. CCIS, vol. 421, pp. 31–42. Springer,
Heidelberg (2014)

20. Ren, Q., Dunham, M.H., Kumar, V.: Semantic caching and query processing. IEEE
Trans. Knowl. Data Eng. 15(1), 192–210 (2003)

Information Extraction

RDF Graph Summarization
Based on Approximate Patterns

Mussab Zneika1, Claudio Lucchese2, Dan Vodislav1, and Dimitris Kotzinos1(B)

1 ETIS Lab (ENSEA, UCP, CNRS UMR 8051), Pontoise, France
Mussab.Zneika@ensea.fr, {Dan.Vodislav,Dimitrios.Kotzinos}@u-cergy.fr

2 ISTI-CNR, Pisa, Italy
Claudio.Lucchese@isti.cnr.it

Abstract. The Linked Open Data (LOD) cloud brings together infor-
mation described in RDF and stored on the web in (possibly distributed)
RDF Knowledge Bases (KBs). The data in these KBs are not necessarily
described by a known schema and many times it is extremely time con-
suming to query all the interlinked KBs in order to acquire the necessary
information. But even when the KB schema is known, we need actually
to know which parts of the schema are used. We solve this problem by
summarizing large RDF KBs using top-K approximate RDF graph pat-
terns, which we transform to an RDF schema that describes the contents
of the KB. This schema describes accurately the KB, even more accu-
rately than an existing schema because it describes the actually used
schema, which corresponds to the existing data. We add information on
the number of various instances of the patterns, thus allowing the query
to estimate the expected results. That way we can then query the RDF
graph summary to identify whether the necessary information is present
and if it is present in significant numbers whether to be included in a
federated query result.

Keywords: RDF graph summary · Approximate patterns · RDF
query · Linked Open Data · Federated query

1 Introduction

The amount of RDF (Resource Description Framework, www.w3.org/RDF/)
data available on the semantic web is increasing fast both in size and complexity,
e.g. more than 1000 datasets are now published as part of the Linked Open Data
(LOD) cloud, which contains more than 62 billion RDF triples, forming big and
complex RDF data graphs. It is also well established that the size and the
complexity of the RDF data graph have a direct impact on the evaluation of the
RDF queries expressed against these data graphs. There are cases, especially
on the LOD cloud, where we observe that a query against an RDF Knowledge
Base (KB) might retrieve no results at the end because either (a) the association
between the different RDF KBs is weak (based only on a few associative links) or
(b) there is an association at the schema level that has never been instantiated
c© Springer International Publishing Switzerland 2016
E. Grant et al. (Eds.): ISIP 2015, CCIS 622, pp. 69–87, 2016.
DOI: 10.1007/978-3-319-43862-7 4

www.w3.org/RDF/

70 M. Zneika et al.

at the actual data level. The bigger and more complex the RDF KBs involved
are, the more costly this operation will be, without giving any useful results at
the end. So it is useful to know before evaluating a complex query towards an
actual KB both the structure and the size of the content of the KB. This means
that we need to know the main associations among the different “types” of data
stored and statistical information (mainly counts) for the instances that can be
classified under them.

By creating summaries of the RDF KBs, we allow the user or the system to
decide whether or not to post a query, since (s)he knows whether information
is present or not. This would provide significant cost savings in processing time
since we will substitute queries on complex RDF KBs with queries first on the
summaries (on much simpler structures with no instances) and then with queries
only towards the KBs that we know will produce significant results. We need
to compute the summaries only once and update them only after significant
changes to the KB. Given the (linked) nature of LOD KBs this will speed up
the processing of queries in both centralized and distributed settings. Moreover,
this would allow working and posting queries towards many RDF KBs that carry
none at all or only partial schema information. By applying RDF summarization
techniques, we can extract, at least, a subset of the schema information (that
should represent quite well at least the main types of instances stored in the
KB and their relationships) and thus facilitate the query building for the end
users with the additional benefit of categorizing the contents of the KB based
on the summary. We can envision similar benefits when KBs are using mixed
vocabularies to describe their content. In all these cases we can use the RDF
summary to concisely describe the data in the RDF KB. Thus in this work we
study the problem of LOD/RDF graph summarization that is: given an input
RDF graph (that might extending itself over multiple RDF stores and might
link different datasets), find the summary graph which reduces its size, while
preserving the original inherent structure and correctly categorizing the instances
included in the KB.

Two main categories of graph summarization efforts have been proposed in
the literature to this date and are discussed in more detail in Sect. 5 of this paper:
(1) aggregation and grouping approaches [11], which are based on grouping the
nodes of input RDF graph G into clusters/groups based on the similarity of
attributes’ values and neighborhood relationships associated with nodes of G
and (2) structural extraction approaches [4,6] which are based on extracting some
kind of schema where the summary graph is obtained based on an equivalence
relation on the RDF data graph G, where a node represents an equivalence
class on nodes of G. To the best to our knowledge, few of these approaches are
concentrating on RDF KBs and only one of them [4] is capable of producing
RDF schema as result, which would allow the use of RDF tools (e.g. SPARQL)
to query the summary. Our approach provides comparable or better results in
most cases.

Thus in this paper, we address the problem of creating RDF summaries
of LOD/RDF graphs that is: given an input RDF graph, find the summary

RDF Graph Summarization Based on Approximate Patterns 71

graph which reduces its size, while preserving the original inherent structure
and correctly categorizing the instances included in the KB. The contribution of
our work is a novel solution into summarizing semantic LOD/RDF graphs, where
our summary graph is a RDF graph itself so that we can post simplified queries
towards the summarizations and not the original graphs and exploit also the
statistical information about the structure of a the RDF input graph which are
included to our summary graph like the number of class and property instances
per pattern, so as to decide whether or not to post a query to a specific RDF
KB, our solution is based on mining top-k approximate graph patterns [13]. In
summary, our solution is responding to all the requirements by extracting the
best approximate RDF graph patterns, construct a summary RDF schema out
of them and thus concisely describe the RDF input data. We offer the following
features:

– The summary is a RDF graph itself, which allows us to post simplified queries
towards the summarizations using the same techniques (e.g. SPARQL).

– Statistical information like the number of class and property instances per
pattern is included in our summary graph, which allows us to estimate a
query’s expected results’ size towards the original graph.

– The summary is much smaller than the original RDF graph, contains all the
important concepts and their relationships based on the number of instances.

– Schema independence: it summarizes the RDF input graphs regardless of hav-
ing or not RDFS triples (this means that we do not require or assume any
schema information).

– Heterogeneity independence: it summarizes the RDF graphs whether they are
carrying heterogeneous or homogeneous information.

In the sequel, Sect. 2 recalls the some of the foundations of RDF and RDFS,
which are useful for defining some concepts in our work and are used to define
both the schema and the queries asked against any RDF graph; Sect. 2 also
sets the requirements for calculating RDF summaries. Section 3 describes our
approach for RDF graph summarization and describes both the pre-processing
of the data and the post processing of the results in order to construct a summary
that is also a valid RDFS. Section 4 presents our preliminary experiments while
Sect. 5 presents related work. We then conclude our paper in Sect. 6.

2 Preliminaries

In this section, we give basic terminology used in this work about the RDF data,
schema and queries. We then formulate the problem this work addresses.

The RDF data model is the standard model for representing data on the
Web in terms of triples of the form (s, p, o), explaining that the subject s has the
property p, and the value of that property p is the object o. Each triple denotes a
binary relationship between two entities. For example, the triple (X, painted, Z)
denotes a relationship between an entity represented by X (e.g., a painter) and
another entity represented by Z (e.g., a painting). The intuitive way to view

72 M. Zneika et al.

a collection of RDF data statements is to represent them as a labeled directed
graph in which entities are represented as nodes and named relationships as
labeled directed edges. These RDF data statements are usually accompanied
with a schema called RDF Schema which provides a data-modeling vocabulary
for RDF data. RDF Schema provides concepts for declaring and describing the
resource types (called classes) (e.g. Painter) and the resource relationship and
attributes (called properties) (e.g. paints). RDF Schema can also be represented
as a directed labeled graph where the labeled nodes represent the names of
classes and the labeled edges the name of relations and properties. Some defini-
tions are given below to define and explain the RDF schema graph and the RDF
instance Graph. Let C,P, I and L be the sets of class Universal Resource Iden-
tifiers (URIs), property URIs, instance URIs and literal values respectively, and
let T be a set of RDFS standard properties {rdfs:range, rdfs:domain, rdf:type,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:label, rdfs:comment}. The concepts of
RDF schemas and instances can be formalized as follows.

Fig. 1. RDF Schema and instance graphs

Definition 1 (RDF schema graph). An RDF schema graph Gs = (Ns, Es,
λs, λe, C, P, T) is a directed labeled graph where:

– Ns is the set of nodes.
– Es ⊆ {(x, α, y)|e : x ∈ Ns, α ∈ T, y ∈ Ns} is the set of labelled edges.

RDF Graph Summarization Based on Approximate Patterns 73

– λs : Ns −→ C ∪ P is a injective node labeling function that maps nodes of Ns

to class and property URIs, such that λs(n) ∈ C ∪ P for any n ∈ Ns.
– λe : Es −→ T is a injective edge labeling function that maps edges of Es to

RDFS standard property URIs included in T , such that λe(e) ∈ T for any
e ∈ Es.

Example 1. The upper part of Fig. 1 shows a visualization example of an RDF
schema graph which describes the cultural domain. For example, the class Artist
denotes the set of resources which represent artists’ entities, while the class
Artifact denotes the set of resources which represent artifacts’ entities. Note that
properties serve to represent characteristics of resources as well as relationships
between resources. For example the properties fname, lname represent the first
name and the last name of an artist respectively, while property creates denotes
that instances of the class Artist are related to instances of the class Artifact
by a create relationship. Both classes and properties support inheritance, e.g.,
the class Painter is a subclass of Artist class while the property paints is sub-
property of creates property.

Definition 2 (RDF data graph). An RDF instance graph or RDF data graph
Gi = (Ni, Ei, λi, λei, I, P, L) Gs is a directed labeled graph where:

– Ni is the set of nodes.
– Ei ⊆ {(x, α, y) : x ∈ Ni, α ∈ P, y ∈ Ni} is the set of labelled edges.
– λi : Ni −→ I ∪L is a node labelling function that maps nodes of Gi to instance

URIs or literals, respectively such that λi(n) ∈ I ∪ L for any n ∈ Ni.
– λei : Ei −→ P is a injective edge labeling function that maps edges of Ei to

property URIs, such that λei(e) ∈ P for any e ∈ Ei.

Example 2. The lower part of Fig. 1 depicts an instance graph building on the
schema information explained in the Example 1, where the dashed arrows denote
a member of relationships from instances to classes. This graph represents 6
different resources. The resource [Picasso] (we use [X] to denote that X is an
instance of some textitclass) is an instance of the Painter class (part of the RDF
Schema defined earlier) having two properties fname and lname with values of
type String and two properties paints with value the resources [Woman] and
[Guernica]. The resource [Rembrandt] is also described as an instance of the
Painter class having two properties fname and lname with string value but it
has only one property paints with value the resource [Abrahama]. [Abrahama],
[Woman] and [Guernica] resources are described as instances of Painting class
having exhibited property with value the resource [museum.es] which is described
as an instance of the Museum class.

Definition 3 (Type Edge). We define Type Edge the edge with rdf: type label,
which is typically used to define a type of which the node is an instance of, e.g.,
the dashed edge type in Fig. 1 declares that the node Picasso is a Painter. We
denote the type edge with (x, τ, y). Let Types(x) = {λi(y) : ∀(x, τ, y) ∈ Ei ∧ x ∈
Ni} be the set of nodes’ labels related to the node x via an explicit type edge
definition, e.g., the Types(Picasso) = {Painter}, while Types(Guernica) =
{Painting}.

74 M. Zneika et al.

Definition 4 (Properties). We define as Properties(x) = {α : ∀(x, α, y) ∈
Ei : α �= τ ∧ λi(y) ∈ I ∧ x ∈ Ni} the set of labels of the non-Type edges which
associate the node x with a set of entity nodes (nodes labeled by instance URIs).

Definition 5 (Attributes). We define as Attributes(x) = {α : ∀(x, α, y) ∈
Ei : α �= τ ∧ λi(y) ∈ L ∧ x ∈ Ni} the set of labels of the non-Type edges which
associate the node x with a set of literal nodes(nodes labeled by literal values),

Example 3. The set of properties associated with [Picasso] node in our example
are {paints}, while the set of attributes of [Picasso] node are {fname, lname}.

Definition 6 (RDF graph pattern). An RDF graph pattern GP =
(NP , EP , λP , β, P) is a connected edge-labeled directed graph where:

– NP is a set of nodes;
– EP ⊆ ES;
– λP : EP −→ P and for e ∈ EP , λP (e) = λs(e);
– β : NP −→ N maps nodes to the set of natural numbers.

Example 4. The pattern {1 −→ paints −→ 2 −→ exhibited −→ 3} has adequate
support in the instance graph shown in the bottom part of Fig. 1, which means
that we can find an adequate number of instances and instance relationships
or properties in the corresponding part of the RDF data graph that could be
represented by this pattern.

2.1 RDF Summary Requirements

Given the above definitions, we are interested in extracting a summary graph
having the following characteristics:

– The summary is a RDF graph: The summary graph should be a RDF graph
itself, which allows us to post simplified queries towards the summarizations
using the same languages or techniques (e.g. SPARQL).

– The size of the Summary: The volume of a graph is the numbers of its edges
and nodes. Reducing the volume of a summary comes with a price, that of
reduced precision of the summary. Thus the summary graph should:

• Be smaller than the original RDF graph.
• Contain all the important information.
• Report the most representative nodes (classes) and edges (properties).
• Be schema independent: It must be possible to summarize the RDF graphs

whether or not they have associated RDFS triples.

We are also interested in working towards specifying the quality of the summary.
An example of this is identifying the summary’s precision, i.e. errors in summary
that can be e.g. invalid edges or path(s), which do not exist in the actual data
graph. The precision model should account for the paths that exist in summary
but not in data graph.

RDF Graph Summarization Based on Approximate Patterns 75

3 RDF Summarization

We present in this section our approach of RDF graph summarization, which is
based on extracting the smallest set of approximate graph patterns (as provied in
[13]) that best describe the input dataset, where the quality of the description is
measured by an information theoretic cost function. We use a modified version of
the PaNDa+ algorithm presented in [13], which uses a greedy strategy to identify
the smallest set of patterns that best optimize the given cost function. The
PaNDa+ algorithm normally stops producing further patterns when the cost
function of a new patterns’ set is larger than the corresponding noise reduction.
It also allows the users to fix a value k to control the number of extracted
patterns. Since PaNDa+ is using a binary matrix to represent the instances
participation in a property (column), one of the challenges that we faced was
how to map the RDF KB to this binary matrix while preserving the semantics
of this KB and in addition producing always a valid RDF graph as a result.
Our approach works in three independent steps that are described below and
are visualized in Fig. 2.

Fig. 2. Our RDF graph summarization approach

3.1 Binary Matrix Mapper

We transform the RDF graph into a binary matrix D, where the rows represent
the subjects and the columns represent the predicates. We preserve the seman-
tics of the information by capturing distinct types (if present), all attributes and
properties. In order to capture both the subject and the object of a property, we
create two columns for each property. The first column captures the instance that
is the subject (belongs to the domain of the property), while the second one (we
call it reverse property) captures the instance that is the object (belongs to the
range of the property), eg. for the property paints we create two columns (paints,
R paints) see Table 1 where the column paints captures the participation of an
instance as subject {Picasso,Rembrant} while the column R paints captures
the participation of an instance as object {Woman,Guernica,Abrahama}. We
extend the RDF URI information by adding a label to represent the different

76 M. Zneika et al.

predicates carrying this information into the patterns. This label is of the follow-
ing form: Usage prefix and the RDF URI element label where these two parts
are concatenated with a forward slash (“/”), where the usage prefix is T for
type, P for property and R for reverse properties. This matrix is defined in the
following way:

D(i; j) =

⎧
⎪⎨

⎪⎩

1, the i-th URI (as defined in RDF) has j-typeof or is j-property’s
domain/range or is j-attribute’s domain

0, otherwise

Example 5. Table 1 shows the mapped binary matrix D for the RDF graph
depicted in Fig. 1. This matrix consists of 9 columns and 6 rows, where
the columns represent 2 distinct attributes (fname, lname), 2 distinct
properties (paints, exhibited), 2 distinct reverse proprieties (Reverse paints,
Reverse exhibted), 3 distinct types (Painter(c), Painting(c), Museum(c)). In
order to distinguish between the types/classes and the properties/attributes at
the visualization level, we use Y(c) to denote that Y is type/class. The rows
represent the 6 distinct subjects (Picasso, RembrantvanRijn, Woman, Guernica,
Abraham, museum.es), e.g. D(1,1)=D(1,3)=D(1,4)= D(1,5)=1 because Picasso,
who is described in the first row, is an instance of Painting class and has (lname,
fname) attributes and paints properties respectively, while D(1,6)=0 because
Picasso does not have the exhibited property.

Table 1. The mapped binary matrix D for the RDF instance graph depicted in Fig. 1

Painter(c) Painting(c) lname fname Paints Exhibited R paints R exhibited Museum(c)

Picasso 1 0 1 1 1 0 0 0 0

Rembrant 1 0 1 1 1 0 0 0 0

Woman 0 1 0 0 0 0 1 0 0

Guernica 0 1 0 0 0 1 1 0 0

Abraham 0 1 0 0 0 1 1 0 0

museum.es 0 0 0 0 0 0 0 1 1

Note here that our experiments so far (please see next section) provide indi-
cation that the algorithm works adequately well even in the absence of any
schema information, or in other words no schema information is required for the
algorithm to work adequately well.

3.2 Graph Pattern Identification

We aim at creating a summary of the input RDF graph by finding patterns in
the binary matrix produced in the previous step (see Table 1). By patterns, we
mean properties (columns) that occur (are marked with 1) either completely or
partially (and thus approximately) in several subjects (rows). This problem is

RDF Graph Summarization Based on Approximate Patterns 77

known in the data mining community as approximate pattern mining. This is an
alternative approach to pattern enumeration. It aims at discovering the set of k
patterns that best describe, or model, the input data. Algorithms differ in the
formalization of the concept of dataset description. The quality of a description is
measured internally with some cost function, and the top-k mining task is casted
into the optimization of such cost. In most of such formulations, the problem
is demonstrated to be NP-hard, and therefore greedy strategies are adopted.
Moreover in our case, it is important that we also manage to preserve or extract
some meaningful semantics from the KB, so the problem has an additional level
of complexity, which is partially handled in the next step where an RDF graph
is constructed from the extracted patterns.

Example 6. Table 2 shows possible patterns which can be extracted from the
mapped binary matrix depicted in Table 1. The first column represents the
pattern id. The second column represents the predicates included in a pattern
and the third column represents the number of subjects per pattern, e.g., the
pattern P1 denotes that there are three subjects belong to the Painting class
and have {exhibited} an outgoing attribute and {paints} an incoming attribute.
It should be noted here that since approximate patterns are computed having
a subject classified under a pattern, as already explained, does not necessarily
mean that in the KB this subject carries necessarily all the properties. This one
reason why the information on which subjects are classified under which pattern
is not carried along in the extracted schema.

Table 2. Extracted patterns example

ID Pattern Correspondence class

P1 Painting(c), exhibited, revers paint 3

P2 Painter(c), paints, fname, lname 2

P3 Museum(c) 1

Firstly we introduce some notation. Without loss of generality we refer to
a binary matrix D ∈ {0, 1}N×M as a transactional dataset of N transactions
and M items, where D(i, j) = 1 if the j−th item occurs in the i−th transac-
tion, and D(i, j) = 0 otherwise. An approximate pattern P identifies two sets
of items/transactions, and is denoted by a pair of binary vectors P = 〈PI , PT 〉,
where PI ∈ {0, 1}M and PT ∈ {0, 1}N . The outer product PT · PT

I ∈ {0, 1}N×M

of the two binary vectors identifies a sub-matrix of D. We say that the occurrence
(i, j) is covered by P iff i ∈ PT and j ∈ PI .

The quality of a set of patterns Π =
{
P1, . . . , P|Π|

}
depends on how well

they match the given dataset D. We account for the mismatches with a noise
matrix N ∈ {0, 1}N×M defined as:

N =
∨

P∈Π

(PT · PT
I) � D. (1)

78 M. Zneika et al.

where ∨ and � are respectively the element-wise logical or and xor operators.
The matrix N encompasses those occurrences D(i, j) = 1 which are not covered
by any pattern in Π (false negatives), as well as those D(i, j) = 0 which are
incorrectly covered by any of the patterns in Π (false positives).

Approximate Top-k Pattern Discovery requires to find a small set of patterns
Π that minimizes the noise matrix N . More formally:

Problem 1 (Approximate Top-k Pattern Discovery). Given a binary dataset D ∈
{0, 1}N×M and an integer k, find the pattern set Πk,

∣
∣Πk

∣
∣ ≤ k, that minimizes

a cost function J(Πk,N):

Πk = argmin
Πk

J(Πk,N). (2)

Different approaches proposed different cost functions which are tackled with
specific greedy strategies. In addition, it is usually possible to specify additional
parameters, whose purpose is to make the pattern set Πk subject to some con-
straints, such as the minimum frequency of a pattern (i.e., the number of its
transactions), or the maximum amount of false positives tolerated in each pat-
tern.

In this work, we adopted the state-of-the-art PaNDa+ algorithm [13] to
extract relevant patterns from the binary dataset resulting from a transformation
of the original RDF graph.

PaNDa+ adopts a greedy strategy by exploiting a two-stage heuristics to
iteratively select a new pattern: (a) discover a noise-less pattern that covers the
yet uncovered 1-bits of D, and (b) extend it to form a good approximate pattern,
thus allowing some false positives to occur within the pattern. It is discussed also
in Sect. 5 that PaNDa+ is considered the state of the art for the approximate
pattern mining algorithms.

PaNDa+ greedily optimizes the following cost function:

J+(Πk,N , γN , γP , ρ) = γN (N) + ρ ·
∑

P∈Πk

γP (P) (3)

where N is the noise matrix, γN and γP are user defined functions measuring
the cost of the noise and patterns descriptions respectively, and ρ ≥ 0 works as
a regularization factor weighting the relative importance of the patterns cost.

Depending on the parameters of the J+, PaNDa+ can greedily optimize
several families of cost functions, including the ones proposed by other state-of-
the-art algorithms [12,15,16,25]. In this work, inspired by the MDL principle
[19] we used γN (N) = enc(N), γP (P) = enc(P) and ρ = 1, where enc(·) is the
optimal encoding cost.

PaNDa+ extracts patterns iteratively, and each pattern is grown greedily by
adding new items and checking those transactions that approximately include
those items. Rather than considering all the possible exponential combinations
of items, these are sorted to maximize the probability of generating large cores,
and processed one at the time without backtracking. We mention two sorting

RDF Graph Summarization Based on Approximate Patterns 79

strategies: (a) by frequency of an item in the full dataset, and (b) by the average
frequency of every pair of items including the given item (named charm by [26]).

Differently from other algorithms, PaNDa+ allows to define two maximum
noise thresholds εr, εc ∈ [0, 1] which bound the ratio of false positive, row- and
column-wise respectively, of each extracted pattern. Finally, it also allows to tune
via the parameter ρ the relative importance of the patterns simplicity versus the
amount of noise induced.

These features make PaNDa+ a very flexible tool for approximate pattern
mining extraction and allow us to include some RDF related knowledge in the
algorithm so that the computations will benefit from that.

3.3 Constructing the RDF Summary Graph

We have implemented a process, which reconstructs the summary as a valid RDF
graph using the extracted patterns. For each pattern, we start by generating a
node labeled by a URI (minted from a hash function), then we add an attribute
with the bc:extent label representing the number of instances for this pattern.
Then and for each item involved in this pattern, we use the labels generated in
3.1 to understand its type. So depending on whether it is:

– a property: We generate a direct edge from the node representing the pattern
containing this property to the node representing the pattern containing the
reverse property.

– an attribute: We generate a direct edge to a newly generated node labeled by
a URI (g from a hash function).

– Type: We generate a direct edge labeled with RDF:type label to the newly
generated node labeled with the RDFS label of this type.

The process exploits RDF-related information already embedded in the binary
matrix (e.g. property X range links) and tries to construct a valid RDF schema
to represent the KB. This schema is enriched with statistical information since
the algorithm returns for each pattern the number of instances it corresponds to.

Example 7. Figure 3 shows the constructed RDF summary graph for the set of
patterns depicted in Table 2. The names of the patterns (using their pattern-
ids (e.g. P1, P2, etc.) are not showed here) but we can easily, even visually,
observe that we have recovered the original schema minus the subclassof and
subpropertyof relationships, which we do not deal with at this stage of the work.
In this example we also do not capture the superclasses but this is due to the
fact that they are not explicitly instantiated in the KB.

4 Experiments

In this section, we give an evaluation of our RDF graph summarization approach
using the real-world Jamendo1 dataset. Jamendo is a real dataset from the LOD
1 http://dbtune.org/jamendo/.

http://dbtune.org/jamendo/

80 M. Zneika et al.

Fig. 3. RDF Summary graph for the set of patterns depicted in Table 2

cloud containing information about music artists and their productions, since it
is an online distributor of the production of independent music artists. The data
focus on record authorship, release and distribution over internet channels. Its
data representation relies on the Music Ontology2 and parts of FOAF, Dublin
Core, Event, Timeline and Tags ontologies. This dataset is interlinked with the
Geonames3 and the Musicbrainz4 datasets. It consists of 1,047,837 triples, which
are classified under 11 classes and are using 25 properties. The schema informa-
tion about the Jamendo dataset is reported in Fig. 4. We evaluate our approach
for the following two cases:

– Fully typed data: Where each instance of this dataset has at least one typeof
link/property.

– Untyped Data: Where none of the datasets subjects/objects or properties has
a defined type (we explicitly deleted all of them).

Table 3 shows the results of applying the PaNDa+ with the charm sorting
and typed Xor Cost function parameters (which are briefly explained in Sect. 3.2)
on the fully typed Jamendo dataset. The first column shows the pattern id, the
second shows the predicates involved in the pattern, while the third column
shows the number of instances per pattern. The last column shows the corre-
sponding class for a pattern. We have 15 patterns: P1 represents the Playlist
class and the properties that have this class as domain or range, P2 represents
the Track class and the properties that have this class as domain or range, P3
represents the Signal class and the properties that have this class as domain or
range, P4 represent the Interval class and the properties that have this class as
domain or range, P5 represents the Record class and the properties that have
2 http://musicontology.com/.
3 http://www.geonames.org/ontology.
4 http://musicbrainz.org/.

http://musicontology.com/
http://www.geonames.org/ontology
http://musicbrainz.org/

RDF Graph Summarization Based on Approximate Patterns 81

Fig. 4. Schema information about the Jamendo dataset

Table 3. PaNDa+ with fully typed Jamendo dataset

ID Pattern Extent corresponding class

P1 Playlist(c), Reverse available-as, format 102804 Playlist

P2 Track(c), available-as, title, license,
track-number, Reverse published-as,
Reverse track

45634 Track

P3 Signal(c), published-as, Reverse-recorded-as,
time

45634 Signal

P4 Interval(c), Reverse time, onTimeline 45634 Interval

P5 Record(c), date, image, Reverse made,
available-as, maker, track, title, taggedwith

5786 Record

P6 Tag(c), Reverse taggedwith, tagName 9235 Tag

P7 Lyrics(c), text, Reverse factor 8823 Lyrics

P8 MusicArtist(c), name, made, Reverse maker,
based-near, homepage, img

3346 MusicArtist

P9 MusicArtist(c), name, made, Revese-maker 159 MusicArtist

P10 Document(c), Reverse-license 92 Document

P11 Recorded-as 45634 . . .

P12 Factor 8823 . . .

P13 Description 880 . . .

P14 Torrent(c) 11572 Torrent

P15 Ed2k(c) 11572 Ed2K

82 M. Zneika et al.

this class as domain or range, P6 represents the Tag class and the properties
that have this class as domain or range, P7 represents Lyrics class and the prop-
erties that have this class as domain or range , P8 represents MusicArtist class
and the properties that have this class as domain or range, P9 represents Musi-
cArtist class also, P10 represents Document class and the properties that have
this class as domain or range, P14 represents Torrent class, and P15 represents
ED2k class. We can note that we have two patterns P8 and P9 represent the
class MusicArtist. The pattern 8 represents it and its following properties(name,
homepage, biography, based-near, img) while the pattern P9 represents it and
its following properties(name, made). We have this case because at the level of
data we have 3346 instances of MusicArtist have the following properties (name,
homepage, biography, based-near, img), while only 159 instances having (name,
made). Our Post-processing in this case to merge these two patterns and replace
them by one pattern.

In comparison with the original schema of the Jamendo dataset, which was
reported in Fig. 4, the results contain exactly the same information. In other
words, all the classes and all the properties are correctly identified (are the same
with the original schema of the dataset) and the corresponding instances are
correctly classified.

Table 4. PaNDa+ with untyped Jamendo dataset

ID Pattern Extent Corresponding class

P1 Playlist(c), Reverse available-as, format 102804 Playlist

P2 Track(c), available-as,title, license,
track-number, Reverse-published-as,
Reverse track

45634 Track

P3 Signal(c), published-as, Reverse-recorded-as,
time

45634 Signal

P4 Interval(c), Reverse time, onTimeline 45634 Interval

P5 Record(c), date, image, Reverse made,
available-as, maker, track, title, taggedwith

5786 Record

P6 Tag(c), Reverse taggedwith, tagName 9235 Tag

P7 Lyrics(c), text, Reverse factor 8823 Lyrics

P8 MusicArtist(c), name, made, Reverse maker,
based-near, homepage, img

3346 MusicArtist

P9 MusicArtist(c), name, made, Revese-maker 159 MusicArtist

P10 Document(c), Reverse-license 92 Document

P11 Recorded-as 45634 . . .

P12 Factor 8823 . . .

P13 Description 880 . . .

RDF Graph Summarization Based on Approximate Patterns 83

Table 4 shows the results of applying the PaNDa+ with the charm sorting
and typed Xor Cost function parameters on the untyped Jamendo dataset. In
comparison these results with the results of the Table 3, we find that these results
miss 2 patterns, the pattern P14 which represents Torrent class and the pattern
P15 which represents ED2k class. Note here that our experiments provide indi-
cation that the algorithm works adequately well even in the absence of all the
schema information. One thing that can be noted here and needs to be further
investigated is that both those patterns are having only one member, which is
the corresponding class information and which is now deleted from the dataset.
Thus not finding these two patterns is completely reasonable since this infor-
mation does not exist anymore in the KB. Nevertheless we need to further look
into the matter.

5 Related Work

5.1 Graph Summarization

In the literature we find works that deal with the (RDF) graph summarization
problem either partially or to its full extent. So we can find relevant works
under the more generic concepts of graph compression [1,18], graph synopsis
[2], graph simplification [24] and network abstraction [29]. All refer to the same
problem, i.e. how to extract from a graph the most representative nodes and
edges, thus minimizing the graph. The most extensive literature exists in the
field of graph compression, especially for Web graphs [1,18]. One of the problems
usually encountered in these works is that the result is not RDF graph itself,
something not suitable for our case since we need to be able to keep querying
the graphs using the same techniques (e.g. SPARQL).

Few efforts have been reported in the literature on summarizing the Data
graphs. These efforts fall under two categories based on the type of algorithms
used and the goal of the summarization. The first category contains algorithms
[11,17,21–23,28] for summarizing the homogenous directed labeled graph based
on an aggregation algorithm. The main goal of algorithms in this category is
to produce understandable concise graph representation, which is smaller than
the original graph in size, in order to facilitate the visualization and to highlight
communities in the input Data graph, which greatly facilitates its interpretation
based on an aggregation algorithm. The idea behind that is to group the nodes of
data graph G into clusters/groups based on the similarity of attributes’s values
and neighborhood relationships associated with nodes of G. The most known
algorithm in this category is the K-SNAP [22,23] algorithm which produces a
summary graph with size K (contains K groups) by grouping nodes based on
set of user-selected node attributes and relationships. It begins with a grouping
based on attributes of the nodes, and then tries to divide the existing groups
according to their neighbors groups. Two super-nodes are connected by a super-
edge if there is a pair of nodes, one from each group, connected in the original
graph. They require nodes in each group having the same attribute information,
so the total number of possible attribute values cannot be too many. Otherwise,

84 M. Zneika et al.

the size of summaries will be too large for users to explore. K-SNAP allows
summaries with different resolutions, but users may have to go through a large
number of summaries until some interesting summaries are found. The second
limitation of the K-SNAP that it is only applicable for homogeneous graphs. In
other words, it is only applicable for the graphs which represent single community
of entities (e.g., student community, readers community), where all these entities
have to be characterized by the same set of attributes. Something not suitable
for the semantic web graphs since the RDF graphs are usually heterogeneous
and it also may be without knowledge (nodes are not attributed). The third
limitation is that it handles only the categorical node attributes but in the real
world, many node attributes are not categorical, such as the age of a user or the
salary.

The second category contains algorithms [3–10,20,27] for summarizing the
hetero- or homo-geneous RDF graphs, based on an equivalence relation. The
main goal of this type of summarization is to extract some kind of schema in
order to understand the data and the interlinks that are used both within and
across the input linked datasets. A summary graph Gss is obtained based on
an equivalence relation on the RDF data graph G, where a node represents an
equivalence class on nodes of G. Khatchadourian, Shahan, and Consens [6,7]
propose a software called ExpLOD, which produces summary graphs for one or
more specific aspects of an RDF dataset, e.g., class or predicate usage. Their
summary can be generated even if the RDF input graph does not use the full
schema or it uses multiple schemas. Summary is computed over the RDF graph
using each nodes bisimulation label: two nodes v and u are bisimilar if they have
the same set of types and properties. Some statistics, like the number of instances
per class or the number times a property is used to describe all instances, are
aggregated with the structural information. The advantage of ExpLOD approach
is that its generated summaries show a datasets structure as homo- or hetero-
geneous as it may be. The level of detail (i.e., the granularity of the summary
graph) can be controlled by changing the labels that are created for nodes. The
big disadvantage is represented by the need for preprocessing the whole RDF
graph to the labeled graph, a process that requires the materialization of the
whole dataset for many of the investigated aspects. The second limitation is
that the created summaries are not RDF graphs themselves. These approaches
are similar in principle with our approach in that they try to extract some kind
of schema. The main difference between us and them is that very few of these
summarization approaches are concentrating on RDF KBs and only one of them
[4] is capable of producing a guaranteed RDF schema as the result. Producing
valid RDF schema as a summary allows us to use standard RDF tools (e.g.
SPARQL) to query the summary. Our approach provides comparable or better
results in most cases.

5.2 Approximate Frequent Pattern Mining

The classical definition of frequent item set requires that all the items of each
mined set actually occur in the supporting transactions. In order to deal with

RDF Graph Summarization Based on Approximate Patterns 85

noisy and large databases, the common approach is to relax the notion of support
of an item set by allowing missing items in the supporting transactions. Differ-
ent approaches proposed different cost functions which are tackled with specific
greedy strategies. Asso [15] is a greedy algorithm aimed at finding the pattern
set Πk that minimizes the amount of noise in describing the input data matrix
D. This is measured as the L1-norm ‖N‖ (or Hamming norm), which simply
counts the number of 1 bits in matrix N . The Hyper+ [25] algorithm also tries
to minimize the patterns cost ‖PI‖ + ‖PT ‖ in order to find a compact pattern
set. Finally, in [16] an information theoretical approach is adopted, where the
cost of the pattern set and of the noise is measured by their encoding cost in
bits.

PaNDa+ was shown to be more computationally efficient, able to extract
high quality patterns both from binary and from graph data [13], and that
such patterns can be successfully exploited for other data mining tasks, e.g.,
classification [14]. Differently from other algorithms, PaNDa+ allows to tune
the maximum allowed row-wise and column-wise missing items (noise) accepted
in each pattern. For these reasons, we adopted PaNDa+ a general approximate
pattern mining tool.

6 Conclusions and Future Work

In this work we apply a top-k approximate graph pattern mining algorithm in
order to extract a summary of an RDF KB. The summary is not necessarily
the complete schema of the KB but it is the used/active schema of the KB,
usually a subset of the original full schema, and always remains a valid RDF/S
graph. Comparing it with the original RDF schema that was used while creating
the KB, shows us that the summary presented by our system is very close to
it, which in the specific examples we run means that the algorithm performs
exceptionally well without relying on the existing schema information.

The work shows a lot of potential, so in the near future we plan to:
– perform experiments with bigger datasets, in order to explore the limits of the

algorithms and design new more scalable solutions for the problem
– perform experiments with different parameters for the algorithms based on

additional experiments or also parameters that will be guided by the data
– add the ability to capture user preferences and provide personalized summaries

of the large RDF graphs based not only on size (how big or small a user requires
the summary to be) but also based on intended use or based on the application

– provide theoretical proofs on the ability to always create summaries that are
valid RDF schemas and can be queried by standard RDF machinery (e.g.
SPARQL)

– investigate how we can update the RDF summaries based on the updates in
the RDF KB.

Additionally we envision to apply the algorithm in a set of interlinked KBs
where we can measure the actual benefits on the overall query performance
improvement for a set of queries run over all the KBs. This would allow us to
validate the original motivation of this work to its full extent.

86 M. Zneika et al.

References

1. Adler, M., Mitzenmacher, M.: Towards compressing web graphs. In: 2001 Proceed-
ings Data Compression Conference, DCC 2001, pp. 203–212. IEEE (2001)

2. Aggarwal, C.C., Wang, H.: Managing and Mining Graph Data, vol. 40. Springer,
New York (2010)

3. Alzogbi, A., Lausen, G.: Similar structures inside rdf-graphs. In: LDOW (2013)
4. Campinas, S., Perry, T.E., Ceccarelli, D., Delbru, R., Tummarello, G.: Introducing

rdf graph summary with application to assisted sparql formulation. In: 2012 23rd
International Workshop on Database and Expert Systems Applications (DEXA),
pp. 261–266. IEEE (2012)

5. Goasdoué, F., Manolescu, I.: Query-oriented summarization of rdf graphs. Proc.
VLDB Endowment 8(12) (2015)

6. Khatchadourian, S., Consens, M.P.: ExpLOD: summary-based exploration of inter-
linking and RDF usage in the linked open data cloud. In: Aroyo, L., Antoniou, G.,
Hyvönen, E., Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC
2010, Part II. LNCS, vol. 6089, pp. 272–287. Springer, Heidelberg (2010)

7. Khatchadourian, S., Consens, M.P.: Exploring rdf usage and interlinking in the
linked open data cloud using explod. In: LDOW (2010)

8. Khatchadourian, S., Consens, M.P.: Understanding billions of triples with usage
summaries. In: Semantic Web Challenge (2011)

9. Konrath, M., Gottron, T., Scherp, A.: Schemex-web-scale indexed schema extrac-
tion of linked open data. In: Semantic Web Challenge, Submission to the Billion
Triple Track, pp. 52–58 (2011)

10. Konrath, M., Gottron, T., Staab, S., Scherp, A.: Schemex-efficient construction of
a data catalogue by stream-based indexing of linked data. Web Seman. Sci. Serv.
Agents World Wide Web 16, 52–58 (2012)

11. Louati, A., Aufaure, M.-A., Lechevallier, Y., Chatenay-Malabry, F.: Graph aggre-
gation: application to social networks. In: HDSDA, pp. 157–177 (2011)

12. Lucchese, C., Orlando, S., Perego, R.: Mining top-k patterns from binary datasets
in presence of noise. In: SDM, pp. 165–176. SIAM (2010)

13. Lucchese, C., Orlando, S., Perego, R.: A unifying framework for mining approxi-
mate top-k binary patterns. IEEE Trans. Knowl. Data Eng. 26, 2900–2913 (2014)

14. Lucchese, C., Orlando, S., Perego, R.: Supervised evaluation of top-k itemset min-
ing algorithms. In: Madria, S., Hara, T. (eds.) DaWaK 2015. LNCS, vol. 9263, pp.
82–94. Springer, Heidelberg (2015)

15. Miettinen, P., Mielikainen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. IEEE Trans. Knowl. Data Eng. 20(10), 1348–1362 (2008)

16. Miettinen, P., Vreeken, J.: Model order selection for boolean matrix factorization.
In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 51–59 (2011)

17. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded
error. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 419–432. ACM (2008)

18. Raghavan, S., Garcia-Molina, H.: Representing web graphs. In: 2003 Proceedings
of 19th International Conference on Data Engineering, pp. 405–416. IEEE (2003)

19. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471
(1978)

20. Schätzle, A., Neu, A., Lausen, G., Przyjaciel-Zablocki, M.: Large-scale bisimulation
of rdf graphs. In: Proceedings of the Fifth Workshop on Semantic Web Information
Management, p. 1. ACM (2013)

RDF Graph Summarization Based on Approximate Patterns 87

21. Sun, Y., Kongfa, H., Zhipeng, L., Zhao, L., Chen, L.: A graph summarization
algorithm based on rfid logistics. Physics Procedia 24, 1707–1714 (2012)

22. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summariza-
tion. In: Proceedings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data, pp. 567–580. ACM (2008)

23. Tian, Y., Patel, J.M.: Interactive graph summarization. In: Yu, P.S., Han, J.,
Faloutsos, C. (eds.) Link Mining: Models, Algorithms, and Applications, pp. 389–
409. Springer, New York (2010)

24. Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A.: Compression of weighted
graphs. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 965–973. ACM (2011)

25. Xiang, Y., Jin, R., Fuhry, D., Feodor, F.: Dragan.: summarizing transactional data-
bases with overlapped hyperrectangles. Data Min. Knowl. Discov. 23(2), 215–251
(2011)

26. Zaki, M.J., Hsiao, C.-J.: Efficient algorithms for mining closed itemsets and their
lattice structure. IEEE Trans. Knowl. Data Eng. 17(4), 462–478 (2005)

27. Zhang, H., Duan, Y., Yuan, X., Zhang, Y.: Assg: adaptive structural summary for
rdf graph data. In: ISWC (2014)

28. Zhang, N., Tian, Y., Patel, J.M.: Discovery-driven graph summarization. In: 2010
IEEE 26th International Conference on Data Engineering (ICDE), pp. 880–891.
IEEE (2010)

29. Zhou, F., Toivonen, H.: Methods for network abstraction. Ph.D. Thesis, The
Department of Computer Science at the University of Helsinki (2012)

Robust Approach for Interesting Points
Extraction of Moving Human from 2D Videos

Yu Xiang1 and Yoshihiro Okada1,2(&)

1 Graduate School/Faculty of Information Science and Electrical Engineering,
Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Japan

{yu.xiang,okada}@inf.kyushu-u.ac.jp
2 Innovation Center for Educational Resources, Kyushu University Library,

Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Japan

Abstract. Human action recognition is a key technique for content-based video
retrieval. Because a human motion consists of several sequential poses of the
human, specifying each poses of the human motion is required for human action
recognition. In this paper, the authors focus on end points and joint points of a
human skeleton as interesting points obtainable from the human silhouette
image of each video frame including a human motion because those points are
important for specifying human poses in the human motion. This paper presents
a stable and effective end points and joint points extraction method for the
human body from 2D videos. The authors employ a perfect foreground object
segmentation algorithm by background subtraction to obtain a moving object.
Morphological and connection labeling-based algorithms are then performed on
foreground objects. In addition, the paper considers the cast shadow and
skeleton pruning problem which will influence the accuracy of the interesting
points extraction. The experiments also show the good results of the proposed
method.

Keywords: Action recognition � Video retrieval � End points extraction �
Background removal � Moving object extraction

1 Introduction

Action recognition and retrieval is one of the key problems in computer vision that has
been studied in the recent years. It is related to a number of real world applications such
as video surveillance, sport analysis, healthcare monitoring and so on. Nowadays, there
are vast literatures on action/activity representation [1, 2]. A lot of researches deal with
the action recognition problem by statistics on motion features [3, 4]. Some researches
use dense optical flow directly [5, 6], but the calculation cost of these methods are high
and most pixels are meaningless for action recognition, as the motion consistency on
rigid parts of an object. So, some other researches consider finding several interesting
parts of the image, and then estimating motion feature descriptors on these parts. The
interesting parts are usually called spatial-temporal interesting points [7, 8]. For finding
the interesting points, methods like Harris, SIFT, and some salient strategies have been
used. Although the calculation details of these methods are different, the basic ideas are
similar for finding the points changing abruptly at the low level image features and

© Springer International Publishing Switzerland 2016
E. Grant et al. (Eds.): ISIP 2015, CCIS 622, pp. 88–104, 2016.
DOI: 10.1007/978-3-319-43862-7_5

clustering the features. Obviously, these interesting points could represent the most
meaningful parts for the images. Since the interesting points estimation is global
without limitation and general to all the images, these methods could be used for action
recognition of any real videos. This is the advantage of these methods. However,
meaningful parts by low level image features may not represent meaningful parts of
human behavior, especially for some complicated behavior like articulated objects in
the clutter background. In addition, if a video consists of multiple frames recorded by
different location video cameras, obviously we could get more information from the
motion object itself. Intuitively, the interesting points from topology structure [9] of a
moving object could reflect the behavior better than from human pre-defined low level
image features. The other disadvantage of low level image features for interesting
points extraction is that it is difficult to decompose estimation procedure and combine
other image processing methods. So, the researches for other image processing fields,
such as shadow removal [10, 11], noise elimination, motion de-blurring [12], are hard
to be applied to improve the extracted feature descriptor. In contrast, if we extract the
interesting points from the motion object itself, we could naturally consider decom-
posing the procedure into some independent modules. So, the video processing pro-
cedure could be more flexible to different situations. Intuitively, the end points and joint
points from the topology of a moving object are the most important for motion
recognition. In this paper, an effective interesting points extraction system is proposed.
There are two primary contributions in the system: 1. we combine an excellent motion
segmentation algorithm with shadow removal and some morphology processing to
generate a more effective segmentation algorithm; 2. we propose an effective pruning
method to improve the generated skeleton.

The paper is organized as follows. Section 2 describes some related works.
Section 3 introduces details of the methods. Section 4 shows and analyzes experi-
mental results of our system. Section 5 concludes the paper.

2 Related Works

There are several researches for extracting interesting points of moving objects from
videos. Murat, et al. [13] introduces a silhouette based interesting points extraction
method. They segment a moving object as a silhouette
based on a statistical background estimation that calculates
the gravity of the silhouette, and obtains a distance his-
togram from the center to each border point. They extract
the local maximal points in the histogram and project them
onto the silhouette. Their method is fast and effective if a
human action comprises more stretch movements than
bending movements. For example, to the bending pose in
Fig. 1, Murat’s method will generate the wrong end points
shown as the two red points. Obviously, now the green
points are the correct end points. Intuitively, a human
skeleton can be used for effectively specifying the shape of
a human body. Currently, some researchers [14, 15] use a Fig. 1. Wrong endpoints.

Robust Approach for Interesting Points Extraction 89

3D skeleton and its joint points for the human action recognition. Their methods show
good results for the human action recognition while their research purposes are dif-
ferent for 2D videos. Apparently, the lack of depth data will require additional pro-
cedures for the skeleton extraction, joint points and end points. Although there are
more and more 3D videos existing on the Internet, 2D videos are still in the majority.
So, for the action recognition of 2D videos, it is still important to extract interesting
points from moving human images. Geetha et al. [16] introduce an end points
extraction method. They design an adaptive template for detecting the human in an
image. But their template could not ensure that the bounding box contain an entire
human when it is like stretch poses. As well, they ignore joint points, which are also
very important for the human action recognition. In addition, cast shadow [17] often
appears in videos, so this problem should be also considered, otherwise it will produce
a wrong skeleton as showed in Fig. 2. For removing the bad influence from the sha-
dow, we employ a chromaticity based method [18], which will be introduced in the
Sect. 3. Furthermore, instead of human template matching for the human shape
detection, we use a perfect background subtraction algorithm ViBe [19] to generate the
binary silhouette image of a human, and thin algorithm [20–22] to generate the human
skeleton.

3 Proposed Method

3.1 System Components

Figure 3 shows system components for our proposed method. The proposed system
primarily consists of two parts; the morphology based pre-processing and interesting
points extraction. The pre-processing part enhances the segmentation coming from the
ViBe and chromaticity algorithms. This part is very important; otherwise the skeleton
extraction could not obtain an effective skeleton for interesting points extraction. To the
segmentation problems, three treatments have been considered. Noise elimination is
carried out by removing the isolating points from the segmentation algorithm result.
Disconnect parts elimination removes the segments and leaves the necessary segment.

Fig. 2. Wrong skeleton with cast shadow

90 Y. Xiang and Y. Okada

Holes elimination enhances the remaining segment. The details of the pre-processing
should be introduced in Sect. 3.3. The interesting points extraction first obtains a
skeleton from the remaining segment, and then extracts some interesting points from
the skeleton according to the predefined templates.

3.2 Segmentation for Moving Objects

For segmenting a moving object, we employ a very useful background subtraction
algorithm called ViBe. Here, we simply introduce the algorithm. The algorithm initials
a background color set M(x) of samples from the previous video frames. Figure 4
shows an example in the two dimensional Euclidean color space. All the green points
represent the colors in M(x). To classify a pixel value v(x) according to its corre-
sponding model M(x), they compare it to the closest values within the set of samples by
defining a sphere SRðv(x)) of radius R centered on v(x). The pixel value v(x) is then
classified as a background if the cardinality, denoted #, of the set intersection of this
sphere and the collection of model samples M(x) is larger than or equal to a given
threshold #min.

3.3 Cast Shadow, Hole and Noise Dispose

Although ViBe is very fast and generates good motion segmentation, it still produces
some harmful factors to skeleton extraction. For example, these are holes in the right arm
and the right foot, and rugged part in the left hand shown in Fig. 5(b). In addition, the
light disturbance will produce noise and the cast shadow. If we extract a skeleton from
directly the segmentation result of ViBe, it will be not good as shown in Fig. 5(c). For
solving these problems, we use a chromaticity based shadow removal algorithm [18].

Fig. 3. System components.

Robust Approach for Interesting Points Extraction 91

Figure 5(d) shows the algorithm removes the cast shadow, but it maybe makes the hole
problem more serious and causes disconnect parts. To solve this problem, we propose a
morphology and two-scan labeling [23] based algorithm as follows.

In the algorithm, � and H represent dilation and erosion respectively. Pmo means the
remaining segment. Max function represents the largest segment we just reserve. Iflood
means that we execute the flood algorithm on the remaining segment. The two-scan
labeling result is shown in Fig. 6, where cyan is the pmo. Flood finds the hole in pmo.
Bitwise operations xor and or fill out the hole in pmo, or the hole will make the
extracted skeleton worse, as shown in Fig. 7. Based on the above algorithm, in most
cases, we can eliminate most harmful elements like noise, error motion segment and so
on, and improve the connectivity of the primary motion object.

Fig. 4. Comparison of a pixel value with a set of samples in a two dimensional.

92 Y. Xiang and Y. Okada

3.4 Skeleton and Interesting Points Extraction

The thin algorithm [20] can be used for generating the skeleton. For finding interesting
points from the skeleton, we use template definitions for end point, joint point on the 8
neighbors similar to Nicholas R. Howe skeleton analysis [24]. Figure 8 shows two
templates for endpoint definitions and four templates for joint point definitions. But in
our research, we use 16 templates for endpoint definitions and 159 templates for joint

(a) Video frame (b) Segmentation by ViBe

(c) Bad skeleton (d) Shadow removal

Fig. 5. Initial segmentation and Shadow removal.

Robust Approach for Interesting Points Extraction 93

point definitions. For distinguishing different template, we use the binary system to
indicate each template uniquely. First, we define the weight values of neighbors of P1
clockwise as shown in Fig. 9. P2;P3;P4; . . .;P9 ¼ 20; 21; 22; . . .; 27. And Fig. 10
shows their unique identifier. We classify the unique identifiers into end point set:
{1, 3, …..} and joint point set {21, 37, 41, 168, ……}. To each pixel, by calculating
the identifier value, we can label it as an end point or a joint point.

Fig. 6. Two-scan labeling representation.

Fig. 7. Wrong skeleton with hole.

94 Y. Xiang and Y. Okada

3.5 Redundant Points Removal

Although the above interesting points extraction algorithm could obtain the basic end
point and joint point sets as shown in Fig. 11, the two sets both include some redundant
points. For example, the end point 5, painted by a green circle is useless as an end
point. For end point 3 and 4, any one is enough. In addition, after removing above end
points, naturally the joint points 1 and 5 painted by red circles are also useless. We
observe that these invalid end points are usually the shortest branches among all the
joint-end point branches, so sequentially removing the shortest joint-end point branches
enables effectively eliminate the redundant points. For most human skeleton models,
the joint points 2, 3 and 4 painted by red circles, indicating the left, right shoulders and
hip are key joints. Considering the principle for the termination condition, we propose a
skeleton optimization algorithm as follows.

Input: binary skeleton image S, joint point set JP and end point set EP .
Output: the new JP and EP after pruning redundant points.
For each point i in JP do

Execute eight directions recursion traverse(EDRT) algorithm to find its di
rectly connecting end point set

i 1 1 2 2 n nSE ={(endpoint ,len),(endpoint ,len)...(endpoint ,len)} and the joint

point set i 1 1 2 2 n nSJ ={(jointpoint ,len),(jointpoint ,len)...(jointpoint ,len)}.

.
End
Define total end point set

For num(JP)>3 && num(EP)>5 do

In TE, to the points having some same joint points, select the shortest branch
and prune.

Remove the corresponding end point and joint point to the branch.
Update TE , TJ , JP and EP .

End
Return JP and EP

TE={ SEi, i JP} and joint point set TJ={ SJi, i JP}

.

In the algorithm, subscript i is the index of a point in joint point set JP. The subscript 1
to n indicate some directly connected points. They also come from the end point set and
joint point set respectively. Len is the length from joint point i to some end point or

(a) (b)

Fig. 8. (a) End point. (b) Joint point.

Robust Approach for Interesting Points Extraction 95

joint point. For example, in Fig. 12(a), the input sets are JP ¼ f1; 2; 3g and
EP ¼ f13; 14; 15; 16; 17g. For the points in JP, SE1 ¼ fð1; 15; 3Þg, SE2 ¼ fð2; 14; 3Þ;
ð2; 13; 3Þg, SE3 ¼ fð3; 16; 1Þ; ð3; 17; 2Þg, and SJ1 ¼ fð1; 2; 2Þ; ð1; 3; 2Þg,
SJ2 ¼ fð2; 1; 2Þg, SJ3 ¼ fð3; 1; 2Þg, TE = SEi; i 2 JPf g, TJ = SJi; i 2 JPf g. In the TE,
obviously the shortest length is 1, so point 16 should be removed. After removing the
point 16, point 3 is not joint point now. Figure 12(b) shows the result, currently
TE ¼ fð1; 15; 3Þ; ð1; 17; 4Þ; ð2; 14; 3Þ; ð2; 13; 3Þg, TJ ¼ fð1; 2; 2Þ; ð2; 1; 2Þg. Now,
there are three branches owning the same shortest length 3, randomly remove one and
update the TE, TJ, JP and EP, until satisfying the termination condition.

In the optimization algorithm, search one direction each time until it is 0, an end
point or a joint point, then clockwise search the other directions, the speed is very low.

P9 P2 P3
P1 P4P8
P6 P5P7

Fig. 9. Eight neighbors’
weight values.

0 1=2 +2 =3

0 2 4=2 +2 +2 =21

0 3 5=2 +2 +2 =41

0 2 5=2 +2 +2 =37

3 5 7=2 +2 +2 =168

0=2 =1

Fig. 10. Unique identifier calculations.

Fig. 11. Interesting points result.

96 Y. Xiang and Y. Okada

So, we use an effective EDRT algorithm to make the whole optimization procedure
faster. The algorithm is a parallel algorithm described as follows.

Input: joint point set JP , end point set EP, binary skeleton image S, binary visited
image F.
Output: TE and JE .
For each point jp in JP do

 Push jp into FIFO queue A

 For each point kp in A do

 According to the binary visited image F, record the visited values of

 eight neighbor points of kp as B.

 To the point with value 1 in S and value 0 in F, set its visited value
 in F as 1.

If finding an end point or a joint point among the eight neighbor
points.

 Recover the visited value of eight neighbor points of kp in

F from B.
Else
 Push the eight neighbor points into A.

 End
End

Here, we use the example shown in Fig. 13 to explain this algorithm. For joint point
2, we hope to find the end points and joint points directly connecting to it. Figure 14
shows FIFO queue A. In the first loop, we push the points satisfying conditions, i.e.point
4, 6, and 8 into the FIFO queue shown in the most left part and set them visited value as
1 in the image F. Then, pop 4 as a new tested point, we find that only point 1 satisfies
conditions, but point 1 is a joint point, so we need not execute the EDRT on it. The
distance between point 2 and point 1 on eight neighbors is 2 shown in the second most
left part. Now we should process the second point in queue A, the point 6, obviously
only point 10 satisfying conditions, so we add 10 into queue, then we process point 8,
only point 9 satisfying conditions, so we add 9 into queue. Finally, we will find the direct
connection end point 13 and joint point 1 for tested point 2.

4 Experiment and Analysis

Figure 15 shows some interesting points extraction results of video frames by our
system. The video was taken by a canon digital video camera. The first row is the
frames from the video. The shadow, motion blur and noise will influence the ViBe
segmentation reult, but through our enhancement, the segmentation will be improved

Robust Approach for Interesting Points Extraction 97

greatly. Row 2 and 6 show the enhanced segmentation results. Row 3 and 7 are the
interesting points extraction results according to the interesting point templates.
Because the contours of segmentation results are not smooth, so there are redundant
branches that cause meaningless interesting points when extracting the skeleton. Row 4
and 8 are the results after pruning. By comparing row 3, 7 and row 4, 8 we could
clearly find that in most cases, the redundant points will be eliminated effectively,
particularly to the end points. Because our pruning algorithm uses the key joint points
and human topology as termination conditions, so the algorithm performance will not
been influenced by the number of branches. The optimization results of column 3 prove
it clearly. In most cases, the limbs of the human will be the longest branches, so
eliminating a shortest branch each time is reasonable. From column 4, 5, and 6, we
could find that although the skeleton branches connecting to the end points are not
correct as a human topology, even in column 4, the joint point connecting to the left
hand is not in a good position; the extracted end points are accurate. So even if an error
skeleton has been generated due to the small angle at elbow, but it is still a high
probability that the length from some human joints to the limb end points is longer than
to a wrong branch end point. So the errors in Fig. 1 should be avoided greatly. For
example, to an outstretched human body, as column 1 shows, the human joints con-
necting hands are the shoulder joint points. In this case, the end point at the hand could
be recognized as a meaningful end point easily. But as for the examples in column 5

Fig. 12. (a) Pruning example (b) One step pruning result Fig. 13. EDRT example

Fig. 14. EDRT FIFO example.

98 Y. Xiang and Y. Okada

and 6, because the wrong skeleton for judging whether the end point at the hand is a
meaningful end point, we need to compare with a wrong branch end point. But relying
on the advantage in nature, the end point at the hand still has a high probability to beat
wrong branch end point. In column 6 and column 3, there are some other wrong
skeleton results, the closed loops between joint points, but the finally end point results
show that our algorithm could overcome this error and extract the correct end points.
This is because that instead of selecting the shortest joint-end point branch to prune
each time, our algorithm will only select the branches with twin branch sharing the
same joint. This simple but effective process frees us from the complex closed loops
calculation. If you need, you can also easily find the closed loops based on the end
points result. Of course, there is some shortage in our algorithm, for example, there are

row 1

row 2

Fig. 15. From top to down is video frames, segmentations after enhancement, skeleton
procedure and interested points extraction, interested points optimization.

Robust Approach for Interesting Points Extraction 99

row 3

row 4

column 1 column 2 column 3

Fig. 15. (continued)

100 Y. Xiang and Y. Okada

row 5

row 6

Fig. 15. (continued)

Robust Approach for Interesting Points Extraction 101

some errors in the hands of column 2 and left hand of column 3. The errors are caused
by fore and back occlusion of the body. Differently with 3D videos, there is no depth
data in 2D videos, so some tracking method is necessary for solving this problem.

row 7

row 8

column 4 column 5 column 6

Fig. 15. (continued)

102 Y. Xiang and Y. Okada

5 Conclusion

In this paper, we proposed a human topology based interesting points extraction system
for 2D video frames. Although the state of the art background subtraction algorithm
ViBe has a very excellent foreground segmentation performance, it could not still
satisfy the requirement of skeleton extraction. However, after our enhancement pro-
cess, the segmentation is more suitable for skeleton extraction. The paper uses two
template types for extracting interesting points. However, due to some errors in
extracted skeleton, redundant interesting points exist. The paper proposes an excellent
human topology based pruning algorithm. The excellent EDRT algorithm used in the
pruning algorithm realizes a semi-parallel traverse, not obtaining the correct relation-
ships between a joint point and an end point, but having a high speed. The reasonable
pruning theory and termination conditions ensure that even under some error skeleton
cases, the algorithm could still avoid the errors arising in Fig. 1 easily and finally
generate correct end points.

Of course, there are still some shortages of the system, as it is incapable of dealing
with the occlusion situation. Maybe adding some tracking module could overcome the
shortage. We will focus on this as our future work.

References

1. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28(6),
976–990 (2010)

2. Messing, R., Pal, C., Kautz, H.: Activity recognition using the velocity histories of tracked
keypoints. In: ICCV, pp. 104–111, 29 September 2009

3. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR,
pp. 886–893, 25 June 2005

4. Ciptadi, A., Goodwin, M.S., Rehg, J.M.: Movement pattern histogram for action recognition
and retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II.
LNCS, vol. 8690, pp. 695–710. Springer, Heidelberg (2014)

5. Wang, H., Kläser, A., Schmid, C., Liu, C.: Dense trajectories and motion boundary
descriptors for action recognition. Int. J. Computer Vis. 103(1), 60–79 (2013)

6. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In:
CVPR, pp. 3169–3176, 20–25 June 2011

7. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from
movies. In: CVPR, pp. 1–8, 23–28 June 2008

8. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2/3), 107–123 (2005)
9. Wang, C., Wang, Y., Yuille, A.L.: An approach to pose-based action recognition. In: CVPR,

pp. 915–922, 23–28 June 2013
10. Wang, Z.P., Shin, B.-S., Klette, R.: Accurate human silhouette extraction in video data by

shadow evaluation. Int. J. Comput. Vis. 64(6), 476–483 (2014)
11. Sun, B.Y., Li, S.T.: Moving cast shadow detection of vehicle using combined color models.

In: CCPR, pp. 1–5, 21–23 October 2010
12. Zheng, S.C., Xu, L., Jia, J.Y.: Forward motion deblurring. In: ICCV, pp. 1465–1472, 1–8

December 2013

Robust Approach for Interesting Points Extraction 103

13. Ekinci, M., Gedikli, E.: Silhouette based human motion detection and analysis for real-time
automated video surveillance. Turk. J. Elec. Engin. 13(2), 199–229 (2005)

14. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3D
skeletons as points in a lie group. In: CVPR, pp. 588–595, 23–28 June 2014

15. Lin, Y.Y., Hua, J.H., Tang, N.C., Chen, M.H., Mark Liao, H.Y.: Depth and skeleton
associated action recognition without online accessible RGB-D cameras. In: CVPR,
pp. 2617–2624, 23–28 June 2014

16. Geetha, M., Anandsankar, B., Nair, L.S., Amrutha, T., Rajeev, A.: An improved Human
Action Recognition system using RSD Code generation. In: ICONIAAC 2014 (2014).
Article No. 57

17. Xu, L.Q., Landabaso, J.L., Pardàs, M.: Shadow removal with blob-based morphological
reconstruction for error correction. In: ICASSP, pp. 729–732, 18–23 March 2005

18. Sanin, A., Sanderson, C., Lovell, B.C.: Shadow detection: a survey and comparative
evaluation of recent methods. Pattern Recogn. 45(4), 1684–1695 (2012)

19. Barnich, O., Van Droogenbroeck, M.: ViBe: a universal background subtraction algorithm
for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011)

20. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun.
ACM 27(3), 236–239 (1984)

21. Lam, L., Lee, S.-W., Suen, C.Y.: Thinning methodologies-a comprehensive survey. IEEE
Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)

22. Costa, D.C., Mello, C.A.B.: Topological stacking grayscale thinning for edge detection and
real-time applications. In ICIP, pp. 4717–4721, 27–30 October 2014

23. He, L.F., Chao, Y.Y., Suzuki, K.: A run-based two-scan labeling algorithm. IEEE Trans.
Image Process. 17(5), 749–756 (2008)

24. Howe, N.R.: Contour-Pruned Skeletonization. http://cs.smith.edu/*nhowe/research/

104 Y. Xiang and Y. Okada

http://cs.smith.edu/~enhowe/research/

Information Vizualization

Analysis, Visualization and Exploration
Scenarios: Formal Methods for Systematic Meta

Studies of Big Data Applications

Klaus P. Jantke(B) and Jun Fujima

ADISY Consulting GmbH & Co. KG,
Frauentorstraße 11, 99423 Weimar, Germany
{klaus.p.jantke,jun.fujima}@adisy.de

Abstract. There is not much doubt that the progress of information
and communication technologies, the computerization of all areas of life,
and the engagement of increasingly more human beings in the usage of
computerized gadgets results in an enormous growth of data available.
The data available bear potential for solving urgent problems such as,
e.g., forecasting of the spreading of diseases and related prevention, the
estimation of the impact of forthcoming disasters like sinkholes, earth-
quakes, and tsunamies and the preparation of adequate measures, or
the development of more precise weather forecasts, to name just a few.
Data need to be analyzed. There is a manifold of methodologies and
tools to support human exploration. How to do this is treated as an art.
But scenarios of data analysis, visualization, and exploration are not yet
considered. The present work is intended to fill the gap and to contribute
to a paradigmatic shift from the art to a science.

1 Introduction

Human-computer interaction for purposes of data analysis, visualization, and
exploration–to shorten the expression, this will subsequently be abbreviated by
DAVE, in many places–is overwhelmingly manifold and largely unforeseeable.
Processes of discovery are, to some extent, cases of serendipity (see, for instance,
Schubert (2013) and Jantke and Fujima (2015)).

On the one hand, there are increasingly many efforts world-wide to improve
the analysis of big data and high expectations of the effects in literally unlimited
fields of science, technology, and the society as a whole.

On the other hand, although studies of big data are intensified, there are no
attempts at all to better understand the process of doing so. To the author’s
very best knowledge, there is not yet any systematic and theoretically well-
founded investigation of scenarios of data analysis, visualization, and exploration
(subsequently more shortly named ‘scenarios of DAVE’ or ‘DAVE scenarios’).

This paper is introducing the term and the terminology, is explaining the
methodology, and aims at a demonstration of applications.

c© Springer International Publishing Switzerland 2016
E. Grant et al. (Eds.): ISIP 2015, CCIS 622, pp. 107–127, 2016.
DOI: 10.1007/978-3-319-43862-7 6

108 K.P. Jantke and J. Fujima

1.1 Motivation

To set the stage for appropriate formalizations, for problem representation and
process description, and for systematic reasoning focusing human (re)search and
its results, we need a firm scientific basis.

As Norbert Wiener put it nicely, “Der Gedanke, daß Information in einer
sich ändernden Welt ohne merkbare Minderung des Wertes gestapelt werden
kann, ist falsch.” (Wiener (1958), p. 122) To translate Wiener’s message shortly,
storying large amounts of information is bringing with it a severe loss of value.

So, what are human beings doing when searching big data and, in particular,
what are they looking for . . . ? Do they hope to see something unforeseeable?
Do they dig for golden nuggets of information or even knowledge?

To Nobel Prize winner Albert Szent-Györgyi are ascribed the appealing words
that “discovery consists of seeing what everybody has seen and thinking what
nobody has thought” (emphasis by the authors). However appealing, this seems
to contradict the current practice of big data analysis, visualization, and explo-
ration in which humans strive hard to look at data–heterogeneous data from
largely varying sources, in particular–to see data differently. DAVE scenarios
aim at showing much more than anybody has ever seen before.

The authors oppose as well the opinion that big data analysis is digging
for golden nuggets of information (Veluswamy (2008), Zhang and Zhou (2004)).
The saying that “visualization exploration is the process of extracting insight
from data via interaction with visual depictions of that data” (Jankun-Kelly
et al. (2007), p. 357) is a similar misconception. Instead of squeezing insights
out of the data, it is a creative process of model formation based on incomplete
information, very much like theory induction Popper (1934).

Seen from the perspective of serendipity, knowledge discovery based on big
data is an art. In his 1974 Turing Award lecture, Donald Knuth said that “the
science without the art is likely to be ineffective; the art without the science is
certain to be inaccurate” (Knuth (1974), p. 37). Seen from this point of view, the
present work is intended to be some contribution toward transforming the art
into a science. Scenarios of DAVE are among this science’s principles of work.

With the above perspective in mind, what may be the goal of systematizing
the involved creative work of big data analysis, visualization, and exploration?
Even more fundamentally, is it really appropriate to aim at a formalization of
(some of) the intellectual processes taking place when dealing with big data?
This sounds like a question for what we nowadays call Artificial Intelligence.

To put a reliable cornerstone for our endeavor, Norbert Wiener is providing
an interesting hint: “If I were to choose a patron saint for cybernetic . . . I should
have to choose Leibniz” (Wiener (1962), p. 12). What did apply to Cybernetics
then, does apply to Artificial Intelligence, i.e. to automated reasoning, nowadays.

Leibniz describes the vision that philosophers–instead of arguing–write down
their respective positions and find out who is right by calculation: “calculemus”
(see Gerhardt (1849), vol. 7, p. 200). Similarly, this paper aims at representing
DAVE scenarios to provide a foundation of automated reasoning about big data.

Data Analysis, Visualization and Exploration Scenarios 109

1.2 Related Work

As Jankun-Kelly et al. put it, the human-computer interaction (HCI) community
has long been concerned with the low-level mechanics of user interface interaction
(Jankun-Kelly et al. (2007), p. 359). They characterize their own work as being
situated “between the low-level syntactic models and high-level semantic models
of user interaction” (Jankun-Kelly et al. (2007), p. 359).

Jankun-Kelly et al. see visualization exploration as a process of parameter
modification (Jankun-Kelly et al. (2007), Sect. 3, Fig. 2 on p. 360). Accordingly,
the interaction processes under consideration are sequences of parameter deriva-
tions (for an illustrative example see Jankun-Kelly et al. (2007), p. 364, Fig. 5).

The present authors, however, go beyond the limits of such a perspective.
The higher expressiveness of the present approach is based on features of meme
media (for details, see below) that allow for the decomposition of visualizations.

In Amar et al. (2005), the authors contrast “representational primacy”, a
data-centric view of information visualization that relies on user skills to generate
insight, to “analytic primacy” that puts the human user in focus.

Amar et al. believe that in general, information visualization can benefit
from understanding the tasks that users accomplish while doing actual analytic
activity. Such understanding achieves two goals: first, it aids designers in creating
novel presentations that amplify users’ analytic abilities; second, it provides a
common vocabulary for evaluating the abilities and affordances of information
visualization systems with respect to user tasks (Amar et al. (2005), p. 111).

Toward this goal of putting human activity in focus, they present a set of ten
low-level analysis tasks that largely capture people’s activities while employing
information visualization tools for understanding data.

These tasks–there are, among others, “Find Extremum”, “Determine Range”
and “Find Anomalies” (Amar et al. (2005), p. 114)–are of a much more rough
granularity than what is in focus in the present paper. Consider the task “Corre-
late” sketched vaguely as follows: “Given a set of data cases and two attributes,
determine useful relationships between the values of those attributes” (Amar
et al. (2005), p. 114).

The approach by Heer, Mackinlay et al. is characterized by these authors’
interest in tools that facilitate iterative forms of interaction Heer et al. (2008).
They focus on “the design of history mechanisms for information visualization”
(Heer et al. (2008), p. 1189).

At a first glance, their basic concepts are very close to the present authors’
concept of play states (see below). However, the motivation is completely dif-
ferent and, thus, leads to different investigations and results. Heer, Mackimlay
et al. explicitly visualize interaction histories to extend the data visualization by
an extra visualization of the user’s interaction history (Heer et al. (2008), Fig. 2
on p. 1192).

There are some doubts that substantially extending visualizations makes
exploratory analysis significantly easier. Therefore, the present authors study
interaction histories, but refrain from revealing the history representations to
the human users. Cognitive effort and cognitive load must be kept low.

110 K.P. Jantke and J. Fujima

In the present approach, interaction scenarios are intellectual tools on a meta-
level that are subject to studies in their own right.

2 Toward the Introduction of Formal Concepts

When describing human behavior in formal terms, there is a need to formalize
elementary activities. There is rarely an optimal level of abstraction (see Sect. 4
for a more detailed discussion). As a consequence, there are varying approaches.
This leads to the necessity to discuss several variants and to explain choices.
Issues under discussion may be of varying complexity. Illustrations might help.
Therefore, the authors decided to base the subsequent main part of this paper
on the second author’s implementation of a prototypical tool for data analysis,
visualization, and exploration within a certain context of business intelligence.
Part of the conceptualization to come will be illustrated by means of screenshots
taken from this implementation when running.

All elementary human activities to be introduced subsequently will be named.
To keep the formalization short, single letters such as q to indicate querying and
f to indicate filtering, for instance, are preferred. All names of elementary actions
are collected in a set denoted by M . As usual, M∗ denotes the set of all finite
strings over M including even the empty string ε. To exclude the empty string,
we set M+ = M∗\{ε}.

Strings π ∈ M+ denote sequences of human activities. To make this explicit,
we sometimes use notations like π = μ1 . . . μn where every μi belongs to M .

Among the elements of M , there are actions such as extraction and inspection
which may appear less intuitive than, e.g., filtering. Those human activities in
the process of big data analysis, visualization, and exploration which possibly
need some more detailed illustration will be introduced by means of exemplifying
webble manipulations.

The webble technology according to Kuwahara and Tanaka (2010) has been
chosen as an appropriate underlying knowledge media technology Tanaka (2003).
The following Sect. 3 introduces webble technology in some depth.

Webbles are objects on the human-machine-interface which have a certain
Model-View-Controller architecture. They are manipulated on the screen and
some of the manipulations mean certain activities abstractly represented in M .
Other typical activities are pushing buttons, e.g., and typing in terms specifying
queries or filters.

Elementary activities of interest are abstractly represented by elements of M .
Finite sequences μ1 . . . μn ∈ M+ formally represent particular human behavior
in the course of data analysis, visualization, and exploration.

In dependence on the available opportunities, human activities are of largely
varying significance. Modal logic Blackburn et al. (2001) provides appropriate
ways of reasoning about alternatives of behavior. Part of this reasoning–in full
agreement with Leibniz’ vision and program–may be computerized.

All conceptualization and terminology shall be seen in the light of reasoning
about human behavior in dependence on certain contexts.

Data Analysis, Visualization and Exploration Scenarios 111

Before we can dive deeper into formal representations of human behavior
and logical reasoning, we need to summarize webble technology in Sect. 3 and to
complete the conceptualization in Sect. 5 for which Sect. 4 is intended to provide
some intuitive approach.

3 Webble Technology for Big Data Analysis

Webble technology Kuwahara and Tanaka (2010) is the latest implementation
of the meme media architecture Tanaka (2003). It provides a web-based middle-
ware platform where users can make use of published media objects.

In the webble platform, knowledge resources including texts, images or videos
as well as application tools, databases, or services are represented as visual media
objects called webbles. Users cannot only consume webbles as elementary media
objects but also reuse them as components of more complex applications by
combining them at runtime environment.

The feature of flexible customization or composition has a beneficial effect
on data analysis, visualization, and exploration tasks. It is not trivial to select
proper combinations of target data, statistical methods, or visualization tech-
niques from uncountably many possibilities. It may depend on tasks as well
as the domain of the tasks. Therefore, it is helpful to provide a flexible envi-
ronment for publishing elementary functionality as components and combining
those components to construct data analysis tools on demand.

To demonstrate the potential of the webble technology in data analysis, visu-
alization, and exploration process, we have developed a prototypical application
(Fig. 1) based on the webble platform implemented in Fujima (2013).

Fig. 1. ADISY Business Intelligence Demo based on the webble technology

Webbles are persistent objects and each webble has its Model-View-
Controller structure internally. The view is implemented as a custom HTML

112 K.P. Jantke and J. Fujima

element that works as a wrapper of a variety of types of computational resources.
It provides a standard set of user manipulations such as select, deselect, move,
copy, paste, peel, and drag-and-drop.

The view also exposes slots which work as input/output ports of communica-
tion between webbles. Slots hold data or property values of webbles. When a new
value is submitted to a slot, the owner webble changes its behavior according to
the submitted value.

By pasting one webble on another through a drag-and-drop operation, the
pasted webble becomes a child of the other webble. With this manipulation, a
user can combine webbles physically. Further, the user can define s slot connec-
tion between physically combined webbles to define a communication channel.
Through the slot connection, two webbles communicate with each other and
work in a coordinated manner by sending or receiving some values.

Fig. 2. The composition structure of the ADISY Business Intelligence Demo

The implemented application is for exploring sales data of a company. It
mainly consists of BI-base webble, data source webbles, chart webbles, measure
webbles, and some GUI components (Fig. 2).

The main functionality is implemented as the BI-base webble. It has a basic
data manipulation functionality of multi-dimensional data to convert source data
to the form that fits to the input of chart components. It has #data slot to receive
the source data. When a certain data is submitted to the slot, BI-base analyzes
them and automatically detects possible dimensions and measures of the orig-
inal data. The detected dimensions and measures are held in the #dimension
and #measures slots, respectively. The dropdown box webbles are connected to
these slots as input interface, so users can easily select a dimension and multiple
measures to aggregate the source data with a certain view point. As soon as
a user changes these parameters, the BI-base makes data conversion and the
converted result is set to #visDataset.

Users can connect data source webbles to specify the target data source
and chart webbles to make a visualization of converted data. Drag-and-drop
manipulation of webbles does all these connections, so users don’t have to connect
manually slots in the process of data exploration (a key feature briefly named
auto-connect).

Data Analysis, Visualization and Exploration Scenarios 113

4 Scenarios of Playing Digital Games

In the preceding sections, we have set the stage for the conceptualization which
is intended to be the main contribution of the present paper (see Sect. 5 below).
The conceptualization’s formalisms will allow for a computerization of a certain
part of the reasoning process based on modal logic (Sect. 6).

Before going into all the details of the formalism, the authors feel the need
to explain where the present approach comes from. It has been introduced for
the purpose of analyzing and understanding human-computer interaction in an
area where the interaction is particularly intense and the behavior of different
human beings may be largely varying: playing digital games (see Jantke (2009)).

This application domain is motivating some of the notations. M contains
all the elementary activities of interaction; the letter is intended to resemble
the term move. For the same reason, elements of M are usually denoted by μ,
possibly with indices for decoration. Finite sequences of those elements represent
(parts of) game play and, hence, are denoted by π, as well with indices, if needed.
In dependence on the game mechanics, some sequences of actions (moves) may
occur, whereas others do not. For talking about, we denote any fixed game by G.
All finite sequences within M+ which represent admissible sequences of playing
the game G from the beginning to the very end are collected in a set Π(G) ⊆ M+.
The letters π and Π are chosen to resemble the term play. Accordingly, the
elements of Π(G) are called play states of G.

Because every digital game–naturally–is a computer program, Π(G) may be
seen as a formal language Hopcroft et al. (2001). In some sense, the game serves
as a grammar able to generate every string in Π(G).

This point of view is particularly useful when pondering the varying levels
of abstraction. What is reasonably seen as an action? And what, in contrast, is
either too fine or too rough? When analyzing, visualizing, and exploring game
playing behaviors, there are different layered languages of ludology Lenerz (2009).
Between these language levels, there do exist mappings up and down. Actions on
a higher layer have an interpretation by a sequence of actions on a lower layer.
Vice versa, some sequences of actions on a lower layer establish some meaning
on a higher layer. Similar questions are of great relevance to the present work.

The application area of playing digital games makes some key issue obvious:
Many of the potential sequences of human game play in Π(G) will never happen.
There is the need for another concept representing what may really take place.
Ψ(G) ⊆ Π(G) denotes the set of all those sequences of game play which really
occur when humans play the game G. Usually, there is a big difference between
Ψ(G) and Π(G). For real digital games, Ψ(G) can hardly be a formal language.

To illustrate the expressiveness and the reach of the present formalization
when applied to games, we discuss some example. The difference between Ψ(G)
and Π(G) allows for the precise characterization of challenges in game design.

In a play state π, some move μ is enforced, if ∀π′ ∈ Π(G)(π � π′ → πμ � π′)
holds, where � indicates that the left string is an initial segment of right one.
Now, contrast this condition to ∀π′ ∈ Ψ(G)(π � π′ → πμ � π′) and ponder the
challenge of a design in which the second formula holds, but the first does not.

114 K.P. Jantke and J. Fujima

5 Formalisms of Analysis, Visualization, and Exploration

The preceding Sects. 1 and 4 provide a very first impression of the present app-
roach which begins with a selection of what to speak about: elementary human-
machine interactions. The set of these activities is named M .

For DAVE scenarios, we may assume a finite collection D of databases taken
into account. To name these databases, we choose D1,. . . ,Dk. One may think of
D = {D1, . . . , Dk}. For simplicity, the action of selecting a certain database for
access is simply denoted by the database’s name. Thus, M contains all Dδ.

Fig. 3. Access to a database “AD2010” by dragging and dropping the proxy webble

It depends on the functionality and on the implementation of tools for big
data analysis, visualization, and exploration whether or not the selection of a
particular database comes with a default visualization and/or a default query
and/or a default filter. If all this does not hold, the access to a database does
not directly result in some visualization (as on display in Fig. 3).

The ADISY Business Intelligence Demo implementation will be used for pur-
poses of illustration subsequently. Figure 3 above shows the result after clicking
one of the four database proxy webbles sitting in a row next to each other, then
dragging the one selected over the business analytics tool and dropping it into
the input place in the left lower corner. This elementary action is denoted by
DAD2010. There are four of them: DAD2009,DAD2010,DAD2011,DAD2012 ∈ M .

After selecting a database, one may restrict the amount of records under
consideration by a query.

In the present case study, we slightly suspend the focusing of investigation.
Instead, we discuss the selection of some visualization as on display in Fig. 4.
There are currently four types of visualization available which we shortly name
Group, Line, Pie, and Table. In formal terms, vGroup, vLine, vPie, vTable ∈ M .

Data Analysis, Visualization and Exploration Scenarios 115

Fig. 4. Selection of the visualization “Grouped Bar Chart” formally named vGroup

Every visualization comes with, first, some default filtering and, second, some
default rendering which determine what to show and how to show it. In the
present application case, the default filtering shows just the number of records.

Fig. 5. Data visualization by a “Grouped Bar Chart” with its default rendering

The selection of a particular visualization shows the data in the default ren-
dering as on display in Fig. 5. Frequently, users consider the initial rendering
inappropriate and modify it. Because rendering is technically quite involved, we
do not go into further details. The investigation of variants of renderings is worth
some extra effort and should be accompanied by a sufficiently detailed practice.

116 K.P. Jantke and J. Fujima

Fig. 6. Filtering and aggregation by selection of the “Datum (Quartal)” option

Instead, we put some more emphasis on filtering as shown on the present
page. The above screenshot in Fig. 6 shows an aggregation which is a particular
form of filtering. The number of records remains the unchanged measure shown.

Fig. 7. Filtering by means of selecting the two measures “Umsatz” and “Wareneinsatz”

There are many intuitive ways of filtering. From Figs. 6 to 7, the user has
selected the measures “Umsatz” and “Wareneinsatz”.

The data are worth some closer inspection. For this purpose, one may click
the data visualization and drag a copy of the grouped bar chart off the blue
frame of the tool. Copying is another type of elementary action (see Fig. 8).

Data Analysis, Visualization and Exploration Scenarios 117

Fig. 8. Taking a copy of the 2010 data visualization and accessing the 2011 database

After taking the copy of the data of 2010, it makes sense to have a closer
look for the same data from another year. This means another database access
as on display in Fig. 8 (see lower left corner of the tool).

Fig. 9. Inspection of slighter differences between the data from two different databases

Some differences are easy to spot. Others may need some closer inspection.
Opening tooltips as shown in Fig. 9 is a method of inspection.

Within the framework of the present scenarios of data analysis, visualiza-
tion, and exploration, inspection is another type of elementary actions. For
a more detailed description of inspections, decomposable visualizations are
advantageous.

118 K.P. Jantke and J. Fujima

Fig. 10. Two copies of related visualizations put aside for an in-depth comparison

An essential step of data exploration is comparison of varying data presented
in a similar form. To support this, the ADISY Business Intelligence Demo imple-
mentation allows for arbitrarily many copies of visualization webbles and their
related arrangement on the screen (Fig. 10).

Fig. 11. Two tooltips extracted for post-processing at another place and time

Webble technology offers appropriate features to support the extraction of
building blocks such as tooltips, e.g., which carry possibly valuable information.
The extracted objects being webbles as well–like the two tooltip objects in the
above Fig. 11–may be processed by other webble-based tools.

Data Analysis, Visualization and Exploration Scenarios 119

The screenshots on display in the series of Figs. 3, 4, 5, 6, 7, 8, 9, 10 and
11 exemplify a certain process of human-computer interaction aiming at data
analysis, visualization, and exploration which may be abstractly described by a
sequence of finite length built over M or, in other terms, by some string π of M∗.

According to the preceding explanation accompanying the above sequence of
figures, this string is of the particular form

DAD2010 vGroup f0
Group r0Group fDatum(Quartal) fUmsatz,Wareneinsatz . . .

which will be continued after a short, but necessary supplementary discussion.
An action of accessing a database such as DAD2010 does not need any further

specification. The selection of a particular visualization method such as vGroup

may bring with it some default filtering and/or some default rendering.
In contrast, other elementary actions are ambiguous. When making a copy,

it may be necessary to name the object which is duplicated. When inspecting a
certain part of a media object, it may be necessary to name this part explicitly.

Consequently, it may be sometimes very difficulty to specify with sufficient
precision what may possibly occur as an element of M .

This is the point where the choice of meme media technology, in general
Tanaka (2003), and of contemporary webble technology based on HTML5, CSS
and JavaScript, in particular Fujima (2013), turns out to be valuable.

When the digital object copied is a webble, this allows for a sufficiently
clear syntactic representation. When the object which occurs in response to an
inspection activity is a webble, this allows for a precise specification of action.
Furthermore, this does allow for extraction as well.

To manipulate webbles (see Sect. 3), one selects a particular webble and,
then, manipulates the selected object as desired, e.g., by peeling it off from the
compound webble hosting it and moving it to another place (for shortness, we
call this extraction), by drag and drop over another webble, by duplication, or by
any other admissible activity. This does apply to all actions including DAD2010

and vGroup which occur in the string above.
When accessing a database by means of an action like DAD2010, there is no

need to mention the click before. Notation is simplified by dropping unnecessary
details. However, there is no ideal level of granularity as we know from related
studies of representing game play (see Sect. 4 and Lenerz (2009), especially).

In other cases, however, making the selection click explicit helps to avoid
misunderstanding and to resolve conflicts.

Therefore, we introduce an action s representing the selection of an object,
i.e., a webble. This action’s parameter is the name (the identifier) of the webble
selected. Consequently, M contains as many potential actions of the form s(. . .)
as there are webbles in use. This allows for continuing the string shown above.

. . . s(gbc1) ex DAD2011 s(gbc2) s(gbc3) in s(gbc2) ex s(gbc2) s(gbc3) in . . .

where names such as gbc1 (for grouped bar chart) are identifiers of webbles.
This represents the human actions leading to the situation on display in Fig. 10.
A few more steps of selection and extraction bring us from Figs. 10 to 11.

120 K.P. Jantke and J. Fujima

To sum up intermediately, human behavior of data analysis, visualization,
and exploration taking place in a possibly longer interaction with certain tools
is represented by a string of symbols. Every symbol represents an action which is
considered elementary. The set of symbols taken into account is denoted by M .

It depends on the available tools and their functionalities as well as on the
focus of investigation what is considered relevant to be represented in the set M .

The deployment of webble technology for providing flexible environments
tailored toward effective data analysis, visualization, and exploration processes
brings with it some hints about what to represent: webble manipulations.

The following Table 1 summarizes a minimal set M of elementary actions.

Table 1. A set of elementary actions underlying the formalization of DAVE scenarios

Symbol Meaning Comment/Explanation

Dn Database access The index n names the database

q Query

f Filter

v Visualization Selecting a type of visualization

r Render Determining the look of a visualization

s(n) Select The parameter n names the object

in Inspect Searching by digital manipulation

ex Extract Peeling off a webble and putting it aside

Those readers who are experienced in the field of data analysis, visualization,
and exploration as well as those readers who are familiar with webble technology
might easily come up with further elementary actions missing in the table above.
It seems highly desirable to see all standard webble manipulations (see Sect. 3)
as elementary actions.

However, for the introduction of DAVE scenarios and for an investigation of
this approach’s reach, the actions listed above are sufficient.

The symbols named in the table form the set M . User behavior is abstractly
described by sequences π ∈ M+ of finite length. Very similar to the area of game
play (see Sect. 4), for every environment serving the purpose of data analysis,
visualization, and exploration–like the ADISY Business Intelligence Demo–there
are sequences which may occur and others which are technically impossible.
Those strings which are possible form a set Π ⊆ M+. Many of the interactions
which are possible never happen. The strings which occur form Ψ .

The set Ψ of strings over M which contains abstract descriptions of what
humans really do in the course of data analysis, visualization, and exploration
is the field of study. DAVE scenarios are intended to understand what is in Ψ .
Scenarios are initial segments of strings in Ψ . The set of scenarios is named Σ
and formally defined as Σ = { σ | ∃π (π ∈ Ψ ∧ σ � π) }.

Data Analysis, Visualization and Exploration Scenarios 121

6 Reasoning About Search and Research Behavior

Underlying every DAVE scenario, there is static knowledge about the domain
and about the tools at the user’s fingertips. The user’s behavior is represented
by some string π of Ψ . This may be seen as the relevant dynamic knowledge.

Prior work on, so to speak, scenarios of game play (see Sect. 4 above) has
revealed the potential of the approach. An analysis of strings π representing game
playing behavior lead to a characterization of the players’ mastery of crucial game
features and, thus, of learning effects induced by game play Jantke (2012).

In the present section, the authors confine themselves to a survey of the
essentials of the logical reasoning approach.

When investigating human behavior and studying insights which may be
deduced from human behavior, there is always the above mentioned static back-
ground knowledge behind. For a short formal treatment, this basic knowledge
is denoted by BK. Assume a particular statement expressed in logical terms
by a formula ϕ. Assume furthermore some recently observed human behavior
represented by a string π ∈ M+. The question of interest is whether or not
the statement ϕ can be deduced from π. In logical terms, the expression is
BK ∪ {π} |= ϕ.

Because all reasoning takes place in a fixed context in which the background
knowledge can be assumed to be fixed, one may simplify the terminology by
dropping BK. The problem in the simplified notation is the question for π |= ϕ.

To ease the readers access, the present formal introduction is interrupted by
a short illustration. The intention is to show how to deduce statements from
observed behavior. A few particularly simple cases are sketched.

First, imagine a string π in which a very long subsequence of rendering actions
occur, one rendering followed by the other. This may be interpreted as the human
user starring at the same data and step by step looking at the data differently. For
illustration, one may look at data visualizations such as in Tanaka and Sugibuchi
(2001), Fig. 1, Ito et al. (2006), Fig. 5, Ito et al. (2011), Fig. 1, and others. It is
very easy to imagine that humans look at the data representation turning it
backwards and forwards, to the left and to the right, doing so repeatedly. Long
sequences of subsequent renderings are an indicator of humans being lost in
the data, so to speak. In combination with the actions following the rendering
sequences, one may draw conclusions about success or failure.

As a second example, imagine a string in which substructures of the form
D... s(. . .) s(. . .) in occur immediately one after the other, where the database
changes from one substring to the next. This leaves the impression of a stringent
inspection. But there is no way to say anything about the success. Assume,
instead, that the repeatedly occurring substrings are all of the extended form
D... s(. . .) s(. . .) in s(. . .) ex . Every low level step of analysis, visualization, and
exploration ends with the extraction of some materialized piece of information.

Apparently, we are talking about some type of patterns or instances of pat-
terns, resp. (see, e.g., Angluin 1980), Jantke (2012), Jantke and Arnold (2014)).
A more systematic study is beyond the limits of this introductory contribution.

122 K.P. Jantke and J. Fujima

To continue the more formal investigation of abstractly represented human
behavior, recall that every string π ∈ M+ may be explicitly written as a finite
sequence of elements of M , i.e., π = μ1 . . . μn.

This leads to the fundamental question of how to interpret a human user’s
action μn+1 after μ1 . . . μn has been observed so far.

In case the user’s action was enforced without any opportunity left, one
can not draw any conclusion from the execution of action μn+1 after μ1 . . . μn.
Consequently, logical reasoning intended to understand and, possibly, to evaluate
a human user’s activities needs to consider alternative behaviors.

Clearly, the preferable formal apparatus to deal with possibility vs. necessity
is modal logic Blackburn et al. (2001).

Fig. 12. A hierarchy of modal logics

There is a variety of modal logics char-
acterized by modal operators and cer-
tain constraints of relations among them
(Fig. 12).

However different, the core is built by
the two operators
 and � meaning possi-
bility and necessity, respectively.

It is custom to assume the standard
relationship �ϕ ⇐⇒ ¬♦¬ϕ for all propo-
sitional formulas ϕ.

Here is no space to fully lay out modal
logics for the purpose of reasoning about
DAVE scenarios. We confine ourselves to
the essentials.

In modal logics, the validity of propo-
sitional formulas is defined as known from
conventional logics. The validity of possi-
bility and, thus, of necessity (according to
the standard relation mentioned above) is
determined by means of a relation between
potential models. Ψ is the set of models of
interest. Therefore, one defines this basic
relation R over Π × Π. In terms of game play (see Sect. 4), the relation R
declares which future play states π′ can be anticipated when being in a play
state π. This assumes π � π′ i.e., π is an initial segment of π′.

When carrying over this approach to logical reasoning about DAVE scenarios,
R specifies the expected foresight of human researchers when being engaged in
analyzing, visualizing, and exploring big data.

Within this framework, reasoning about observed human behavior can be
computerized, due to completeness results in modal logics Blackburn et al.
(2001).

Just one interesting case shall be illustrated. For any play state π and any
action μ, the formula επ

μ denotes that μn+1 is an enforced action in the state
π (see Sect. 4). This may be checked by trying to deduce π |= �επ

μ. As long as
this does not succeed, π |= ♦¬επ

μ is hypothetically assumed. Then, μn+1 may be
considered a conscious human choice, thus, being worth an in-depth evaluation.

Data Analysis, Visualization and Exploration Scenarios 123

7 Abductive Learning as a Prerequisite for Discovery

Though being quite short, the preceding sections provide a sufficiently formal and
comprehensive approach to in-depth investigations of human-computer inter-
actions aiming at analysis, visualization, and exploration of big data toward
novel insights or, at least, new hypotheses. This section is intended to sketch an
application case based on some recent workshop presentation Yoshioka (2015).

As Yoshioka points out, the ability to literally see clusters in visualized data
may depend on parameters of the underlying visualizations. When data records
are shown in a 2D space or, possibly, in a virtual 3D space, the selection of
attributes assigned to the axis is decisive. When searching for clusters, one may
experiment with varying metrics (see Fig. 13 for a rough illustration).

Changing weights and stretching axis are elementary approaches to the step-
wise transformation of the visual appearance of data. Those actions change the
rendering. To say it the other way around, playing with renderings may lead to
visual appearances of data which are easier to interpret than others.

Fig. 13. Metrics variation toward intuitively perceivable clusters in visualized data;
the form of the data record visualization indicates the cluster to which a record belongs

Assume there are two clusters of data records. If there a exist two disjoint
convex areas in the plane such that the one contains all record visualizations
of the first cluster and the other one all of the second cluster, then the clusters
become visually perceivable. This property is summarized by a certain formula ϕ.

There are in-depth investigations into the modification of renderings by
changing metrics of the 2D space Yoshioka (2015).

Assume a DAVE scenario π of the structure π = π1π2 with π2 ∈ {r, in}+,
π1 �|= ϕ and π1π2 |= ϕ. Sequence π2 represents efforts to make clusters visible.

Formal language learning is a special case of exploratory clustering. It is
known that formal language learning, i.e. clustering, may require the acquisition
of appropriate metrics or similarity measures. π2 represents the process–which
may be computerized Sakakibara et al. (1994)–of learning those constituents.

124 K.P. Jantke and J. Fujima

8 Summary and Outlook

Within the present paper, the authors’ contribution is focusing big data analysis,
visualization, and exploration. There has been briefly introduced an appropriate
technology based on which the second author has designed and implemented a
demo tool, the so-called ADISY Business Intelligence Demo. All experimentation
and illustrations presented within the figures of this paper have been made by
means of this tool. However practically useful and illustrative, the ultimate focus
of the paper is not on the ADISY Business Intelligence Demo, but on so-called
DAVE scenarios, i.e. on meta-level investigations.

The authors’ favored approach is formal, i.e. it relies on formal syntax and
allows for processing with formal methods. Logical reasoning is of particular
interest and the automation of this reasoning is an ultimate goal. Seen in this
light, one may call it an Artificial Intelligence approach Grabowski et al. (1989).

8.1 The Reach of the Present Approach to DAVE Scenarios

As described above (see Sect. 4), the present approach originates from digital
media research, especially from investigations of the impact of playing games.
It has been demonstrated to be very useful to characterize mastery of game play
Jantke (2012).

Furthermore, the approach turns out to be appropriate to the formalization of
pattern concepts in game play Jantke and Arnold (2014). Very roughly speaking,
patterns are logical formulas possibly valid in some play state. The two formulas
∀π′ ∈ Π(G)(π � π′ → πμ � π′) and ∀π′ ∈ Ψ(G)(π � π′ → πμ � π′) mentioned
by the end of Sect. 4 are examples of patterns. In this particular case, one pattern
is more general than the other one, as ∀π′ ∈ Π(G)(π � π′ → πμ � π′) implies
∀π′ ∈ Ψ(G)(π � π′ → πμ � π′) (but not vice versa).

The pattern concept may be easily carried over from play states to scenarios.
Syntactically, this makes no difference.

When a particular scenario σ represents some human behavior in the course
of an analysis, visualization, and exploration process, one may look for patterns
valid in the scenario σ. Because this representation is thoroughly formalized,
the search for patterns can be fully automated. Computer programs may monitor
the emergence of scenarios over time–similarly to monitoring human game play–
and may draw conclusions accordingly.

Patterns or instances of patterns1 that occur in scenarios may characterize
human behavior in manifold ways. Formally describable and, thus, automatically
recognizable properties of strings exhibit human preferences and may reveal mis-
conceptions and misunderstandings (see Vosniadou (2013) for valuable details).
1 The distinction of patterns from their instances is blurred in the logical approach.

In Dana Angluin’s approach to patterns common to sets of strings Angluin (1980),
the distinction is clear. Patterns are strings which may contain variables. In contrast,
instances are ground. A string is an instance of a pattern, if it may result from a
substitution of variables. The logical approach a bit more expressive. If two different
formulas ϕ and ψ hold in some scenario and ϕ implies ψ, then ϕ is an instance of ψ.

Data Analysis, Visualization and Exploration Scenarios 125

8.2 Limitations of the Present Approach to DAVE Scenarios

There is no doubt that the present approach is having its limitations, most
of them being due to its immature state of development. The present paper
represents the very first publication of the authors’ idea of DAVE scenarios.
Subsequent papers will deal with the one or the other issue in some more depth.

Furthermore, there are some aspects which require a more comprehensive
investment of scientific background, for instance, bridging the gap from knowl-
edge about media perception and psychology to formal methods. Figure 14 below
is intended to illustrate just one example. Both screenshots show three webbles
extracted from the ADISY Business Intelligence Demo tool. In the lower left
case, the webbles are cluttered over the screen, whereas they are well-arranged
on the upper right screen. By analyzing view parameters of the corresponding
webbles, this may be detected automatically. Positioning of webbles with respect
to each other is another elementary action worth to be taken into account.

8.3 Outlook

Foremost, there is an obvious need to validate the present approach in practice.
The authors are in close contact to a larger group of historians who are interested
in investigating their own work in using big data under the perspective of DAVE
scenarios, partially for a better understanding of serendipity Schubert (2013).

Fig. 14. Different ways of arranging extracted visualization objects on the screen

126 K.P. Jantke and J. Fujima

Acknowledgement. The authors are grateful to Yuzuru Tanaka for his seminal work
and for his great enthusiasm to share his vision of meme media evolution of external-
ized knowledge. To both of them, he has provided very good working conditions on
several occasions. Furthermore, he recently draw the authors’ interest to the topic of
the present contribution.

Part of this work has been supported by the German Federal Ministry for Educa-
tion and Research (BMBF) within the joint project Webble TAG under the respective
sub-project grants no. 03WKP41B (Webble ABI) and no. 03WKP41D (Webble TaT).

References

Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in informa-
tion visualization. In: IEEE Symposium on Information Visualization, Minneapolis,
MN, USA, pp. 23–25, October 2005

Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21,
46–62 (1980)

Arnold, O., Spickermann, W., Spyratos, N., Tanaka, Y. (eds.): Webble Technology.
CCIS, vol. 372. Springer, Heidelberg (2013)

Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic. Cambridge Texts in Theoretical
Computer Science, vol. 53. Cambridge University Press, Cambridge (2011)

Fujima, J.: Building a meme media platform with a JavaScript MVC framework and
HTML5. In: Arnold et al. (2013), pp. 79–89 (2013)

Gerhardt, C.I. (ed.): Die philosophischen Schriften von G. W. Leibniz, Berlin/Halle
(1849)

Grabowski, J., Jantke, K.P., Thiele, H. (eds.): Grundlagen der Künstlichen Intelligenz.
Akademie-Verlag, Berlin (1989)

Heer, J., Mackinlay, J.D., Stolte, C., Agrawada, M.: Graphical histories for visualiza-
tion: supporting analysis, communication, and evaluation. IEEE Trans. Vis. Comput.
Graph. 14(6), 1189–1196 (2008)

Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Boston (2001)

Ito, K., Igarashi, M., Takada, A.: Data mining in amino acid sequences of H3N2
influenza viruses isolated during 1968 to 2006. In: Jantke, K.P., Kreuzberger, G.
(eds.) Knowledge Media Technologies, First International Core-to-Core Workshop,
TU Ilmenau, Germany, Diskussionsbeiträge, vol. 21, pp. 154–158, July 2006

Ito, K., Igarashi, M., Miyazaki, Y., Murakami, T., Iida, S., Kida, H., Takada, A.:
Gnarled-trunk evolutionary model of influenza A virus hemagglutinin. PLoS ONE
6(10), 1–9 (2011)

Jankun-Kelly, T., Ma, K.-L., Gertz, M.: A model and framework for visualization
exploration. IEEE Trans. Vis. Comput. Graph. 13(2), 357–369 (2007)

Jantke, K.P.: AI planning of conflicts in non-linear spaces of time. In: IEEE Symposium
on Computational Intelligence and Games, Milano, Italy, September 7–10 2009, pp.
88–95. IEEE Press (2009)

Jantke, K.P.: Patterns of game playing behavior as indicators of mastery. In: Ifenthaler,
D., Eseryel, D., Ge, X. (eds.) Assessment in Game-Based Learning: Foundations,
Innovations, and Perspectives, pp. 85–103. Springer, New York (2012)

Data Analysis, Visualization and Exploration Scenarios 127

Jantke, K.P., Arnold, O.: Patterns - the key to game amusement studies. In: 3rd Global
Conference on Consumer Electronics (GCCE 2014), Makuhari Messe, Tokyo, Japan,
7–10 October 2014, pp. 478–482. IEEE Consumer Electronics Society (2014)

Jantke, K.P., Fujima, J.: Toward far-reaching and effective participation in an e-society.
In: Kommers, P., Isaias, P. (eds.) 13th International Conference on e-Society 2015,
Madeira, Portugal, 14–16 March 2015, pp. 71–78. IADIS (2015)

Knuth, D.E.: Computer programming as an art. In: Turing Award Lectures, pp. 33–46.
ACM Press, New York (1974)

Kuwahara, M.N., Tanaka, Y.: Programmable and customizable meme media objects
in a knowledge federation framework einvironment on the web. In: Karabeg, D.,
Park, J. (eds.) Second International Workshop on Knowledge Federation, Dubrovnik,
Croatia, 3–6 October 2010

Lenerz, C.: Layered Languages of Ludology - Eine Fallstudie. In: Beyer, A.,
Kreuzberger, G. (eds.) Digitale Spiele - Herausforderung und Chance, Game Studies,
pp. 39–52. Boizenburg vwh (2009)

Popper, K.R.: Logik der Forschung. Tübingen (1934)
Sakakibara, Y., Jantke, K.P., Lange, S.: Learning languages by collecting cases and

tuning parameters. In: Arikawa, S., Jantke, K. (eds.) Algorithmic Learning Theory.
LNCS(LNAI), vol. 872, pp. 533–547. Springer, Heidelberg (1994)

Schubert, C.: Digital Humanities zwischen Informatik und Geisteswissenschaften? In:
20 Jahre Arbeitsgemeinschaft Geschichte und EDV. Abhandlungen der Arbeitsge-
meinschaft Geschichte und EDV (AAGE), Band 2,pp. 167–186. Computus Druck
Satz & Verlag, Gutenberg (2013)

Tanaka, Y.: Meme Media and Meme Market Architectures: Knowledge Media for
Editing, Distributing and Managing Intellectual Resources. IEEE Press and Wiley-
Interscience, New York (2003)

Tanaka, Y., Sugibuchi, T.: Component-based framework for virtual information mate-
rialization. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226,
pp. 458–463. Springer, Heidelberg (2001)

Veluswamy, R.: Clinical quality data mining in acute care. In: The Physician Executive,
pp. 48–53 (2008)

Vosniadou, S. (ed.): International Handbook of Research on Conceptual Change, 2nd
edn. Milton Park: Routledge, New York (2013)

Wiener, N.: Mensch und Menschmaschine. Ullstein, Frankfurt am Main, Berlin (1958)
Wiener, N.: Cybernetics. The MIT Press, Cambridge (1962)
Yoshioka, M.: Interactive operation of MDS visualization results with distance metric

learning. In: International Workshop on Information Search, Integration and Per-
sonalization, ISIP 2015, Grand Forks, North Dakota, USA, 1–2 October 2015 (2015,
unpublished)

Zhang, D., Zhou, L.: Discovering golden nuggets: data mining in financial application.
IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 34(4), 513–522 (2004)

Visualization System by Combinatorial Use of Edge
Bundling and Treemap for Network Traffic Data Analysis

Ryo Takayanagi1 and Yoshihiro Okada1,2(✉)

1 Graduate School/Faculty of Information Science and Electrical Engineering,
Kyushu University, Motooka 744, Nishi-ku, Fukuoka, Japan

r.1sc09024w@gmail.com
2 Institute of Systems, Information Technologies and Nanotechnologies (ISIT),

Fukuoka SRP Center Building 7F, Momochihama 2-1-22, Sawara-ku
Fukuoka 814-0001, Japan

okada@inf.kyushu-u.ac.jp

Abstract. With the spread of the Internet, the increase of damage caused by
malware has become a worldwide problem. Malicious persons attack computer
systems by focusing on their some vulnerabilities called security holes in order to
install malware. Especially, a zero-day attack is a serious problem that tries to attack
through a certain security hole before the treatment against it. So, the visualization of
network traffic is very important in order to find out such attacks. In this paper, the
authors propose a visualization system called PacketVisualization of darknet data
using Treemap layout algorithm and its extended version using Edge Bundling for
analysis of such attacks and shows some visualization examples.

Keywords: Visualization · Network data · Darknet · Treemap · Edge Bundling

1 Introduction

Because of recent digital technologies, computers and the Internet have become an indis‐
pensable infrastructure for our lives. Through the Internet, we can publish our informa‐
tion as various types of media data, and can exchange with each other. However,
conversely to the convenience of the Internet, cyber security has become significant
because there have been a lot of various types of cyber-attacks. Consequently, cyber-
attacks have become serious problems in the world. For example, more than 300 million
victims per year and more than 113 billion $ damages reported in Norton security report
2013 (Statistics research) [11]. Generally, cyber-attacks target to vulnerabilities of our
computer systems, and then we must treat known vulnerabilities as early as possible by
updating our systems. However, unfortunately it is impossible to prevent new cyber-
attacks that target to unknown vulnerabilities. To reduce their damage, we must detect
such new attacks as early as possible. To detect new cyber-attacks, we must analyze the
behaviors of such attacks. The visualization is one of the analysis methods for cyber-attack
behaviors. Many visualization tools have been proposed [8–15] and practically used so
far. To detect new attacks rapidly by analyzing darknet traffic data with visualization, in
this paper, we propose a new visualization tool called PacketVisualization based on
Treemap layout algorithm [3–5] and its extended version using Edge Bundling [6, 7].

© Springer International Publishing Switzerland 2016
E. Grant et al. (Eds.): ISIP 2015, CCIS 622, pp. 128–141, 2016.
DOI: 10.1007/978-3-319-43862-7_7

Next Subsect. 1.1 describes what a darknet is. PacketVisualization can be used as macro
level visualization for coarse analysis, and extended PacketVisualization can be used as
micro level visualization for fine analysis of darknet data.

1.1 Darknet

As shown in Fig. 1, a darknet is a certain network of IP addresses those are actually not
used. While ordinary communications between any two computers of a standard IP
address space, not darknet, are bidirectional, communications to a darknet are unidir‐
ectional. Traffic data of a darknet are IP packets come to the darknet. Traffic data of a
darknet seems few because they are not for standard communications. However, the
number of such traffic data is large in fact [1, 2]. Most of the data are regarded for any
attacks. Therefore, such traffic data can be used to investigate any malware activity to
infect with it like scanning to check vulnerabilities, botnet activities, and reply against
malicious hosts of false IP.

Fig. 2. Cube (left) and Atlas (right).

Fig. 1. Image of darknet.

Visualization System by Combinatorial Use of Edge Bundling 129

2 Related Works

There are many visualization tools and systems for network traffic data. In Japan, espe‐
cially, NICTER (Network Incident analysis Center for Tactical Emergency Response) of
NICT (National Institute of Information and Communication Technology) has developed
and practically used several visualization systems. Figure 2 shows its two visualization
systems called Cube and Atlas for darknet traffic data [12]. Cube employs four attributes of
IP packet data and displays each IP packet as a moving line from a source plane repre‐
senting source IP and source Port to a destination plane representing destination IP and
destination Port. These four attributes are very important for analyzing the behavior of an
attacker. Atlas displays each IP packets as a moving line from an actual location to the
darknet on the earth map. Figure 3 shows its large scale visualization systems for intranet
traffic data called NIRVANA (left) as short form of NIcter Real-time Visual ANAlyzer, and
called DAEDALUS (right) as short form of Direct Alert Environment for Darknet And
Livenet Unified Security [13]. As a visualization tool similar to Atlas of NICTER, Fig. 4
(left) is Cyberthreat Real-Time Map of Kaspersky [14]. These are all network flow visuali‐
zation systems displaying current IP packets in real time, and then, it is possible to intui‐
tively understand the current behavior of IP packets. However, it is difficult to understand
statistical information of each attributes.

Fig. 3. NIRVANA (left) and DAEDALUS (right).

As attributes level visualization of IP packets, Fig. 4 (right) is FloViz proposed by
Taylor et al. and Fig. 5 shows Parallel Coordinates version of Time-tunnel with 2Dto2D
visualization proposed by Okada [15]. FloViz displays each IP packet as one curve line
from source IP located on the lower half part of an outside circle to destination IP located
on the upper half part of the circle with passing through source Port and destination Port
located on the inner circle. Okada’s system displays each IP packet as one poly-line of
Parallel Coordinates and also its 2Dto2D visualization has the similar concept to
NICTER Cube. So, with the system, it is possible to understand the behavior of IP
packets as not only their attribute values but also their flows.

In this paper, we also propose attributes level visualization systems of IP packets.
One is PacketVisualization system based on Treemap layout algorithm and the other is
Extended PacketVisualization system using Treemap layout algorithm and Edge
Bundling functionality. With these two visualization systems, network administrators

130 R. Takayanagi and Y. Okada

can investigate states of IP packets in from macro level (coarsely) to micro level (finely).
This is the advantage of our proposed visualization systems.

Fig. 4. Cyberthreat Real-Time Map (left) and FloVis (right).

3 PacketVisualization System Based on Treemap

Our PacketVisualization is derived from a 2D visualization tool called Treemap [3–5]
proposed by Ben Shneiderman et al. in 1992. Treemap visualizes hierarchical informa‐
tion in space-filling layout manner. Before introducing PacketVisualization system, next
subsection describes Treemap and its layout algorithm.

3.1 Treemap

Generally, hierarchical data like the upper part of Fig. 6 is represented as a tree structure.
As shown in the lower part of the figure, its Treemap hierarchically lays out each node
of the tree as a bounding box, whose size is the same as the specific weight or attribute
value given to the node. Practically, a lot of tree-structured data exist and the size of

Fig. 5. Parallel Coordinates version of Time-tunnel with 2Dto2D visualization.

Visualization System by Combinatorial Use of Edge Bundling 131

such data is going to be greater and greater. Such a huge size of tree-structured data
needs efficient visualization tools. As a result, Treemap has become one of the very
useful visualization tools.

Fig. 6. Hierarchical data (upper) and their Treemap (lower) using D3.js (http://bl.ocks.org/
mbostock/4063582)

There are several layout algorithms for Treemap, e.g., slice-and-dice [3], Squarified
[4], Strip, Ordered and quantum treemaps [5]. Although we implemented most of them
in our PacketVisualization system, here we explain only the simplest layout algorithm
called slice-and-dice shown in Fig. 7. If there is a tree structure shown in the upper left
part, its Treemap layout becomes the upper right part by the algorithm shown in the
lower part of the figure. First of all, the root node, its wait value is 100, is assigned to
the whole area of a given rectangle. This is Step 1 of the algorithm. Next, its two child
nodes, those wait values are 40 and 60, are assigned to the two areas those sizes are
proportional to the wait value of the corresponding node. This is Step 2 of the algorithm.
This assignment is taken repeatedly. This is Step 3 of the algorithm.

132 R. Takayanagi and Y. Okada

http://bl.ocks.org/mbostock/4063582
http://bl.ocks.org/mbostock/4063582

3.2 PacketVisualization System

Figure 9 shows a screen shot of PacketVisualization system. PacketVisualization is
developed using C# of Microsoft and it runs on MS Windows platforms supporting .NET
Framework4.0. Readable IP packets data of a darknet captured by Pcap is converted
from the binary data into the text data using a command line tool called TShark of
WireShark, one of the packet capture tools. Although each IP packet data includes
various attributes as shown in Fig. 8, we use six attributes in our visualization experi‐
ments, those are Time, Protocol (UDP/TCP), Source IP, Destination IP, Source Port and
Destination Port.

Source IP and destination IP are four byte data (four octet data) and can be repre‐
sented hierarchically according to each octet. So, source IP and destination IP are
visualized by Treemap. Therefore, we developed our PacketVisualization system based
on Treemap.

Macro Level Visualization of PacketVisualization System. PacketVisualization
system reads one month traffic data and visualizes from one month, one day to one hour
hierarchically. It is possible to interactively change sampling time period and choose
one of Treemap layout algorithms. Each node means destination IP and its area size is

Fig. 7. Treemap layout algorithm of slice-and-dice.

Fig. 8. Contents of IP packet data.

Visualization System by Combinatorial Use of Edge Bundling 133

the number of packets came to the destination IP. Its color represents the number of
unique hosts (source IPs). By the glance at the size of each node and its color, it is
possible to understand them intuitively. Through drill down manner by mouse device
operations to select a target node, it is possible to move into more fine visualization
about the target node as micro level visualization.

Problem of PacketVisualization System. Macro level visualization of PacketVisual‐
ization has a problem to be solve, that is too few attributes, e.g., # of packets and # of
source IPs and then difficult to intuitively recognize what kinds of activities occur. We
need to drill down from macro level visualization for coarse investigation into micro
level visualization for fine investigation. Therefore, we extended PacketVisualization
with Edge Bundling for micro level visualization.

4 Extended PacketVisualization by Combinatorial Use of Edge
Bundling and Treemap

PacketVisualization system has only one Treemap that visualizes just one of the source
IP or destination IP as a hierarchical data. Extended PacketVisualization System can

Fig. 9. Screen shot of PacketVisualization system, here traffic data of one month, first level nodes
correspond to days, size of node: # of packets, color of node: # of source IPs /# of packets, red:
small, green: middle, blue: large in HSV color system. (Color figure online)

134 R. Takayanagi and Y. Okada

visualize both source IP and destination IP by two Treemaps shown in Fig. 10 (left). For
IP packet analysis, destination port is also very significant attribute because most cyber-
attacks are specifiable by the destination port. Therefore, we use three attributes, i.e.,
source IP, destination IP, and destination port in our extended PacketVisualization
system to visualize each IP packet. See Fig. 10 (left). Each IP packet is represented a
curve from the right side Treemap (source IP) to the left side Treemap (destination IP)
through the vertical list of destination ports in the center area. To draw these curves, we
employ Edge Bundling drawing method. Its examples are shown in Fig. 10 (right)
obtained from the paper [6]. By employing Edge Bundling drawing method, it is possible
to avoid the overlapping of edges (lines) and becomes easier to understand the distri‐
bution of IP packets. See Fig. 12. Source IPs are hierarchically mapped into Treemap
of source IP according to its octet. So, it is possible to visualize collaborative activities
of attacker’s computers having the similar source IPs and also attacks for targeting to
vulnerable ports by looking at the center area. Before explaining Extended PacketVi‐
sualization system, next subsection describes Edge Bundling algorithm.

Fig. 11. Edge Bundling Algorithm.

Fig. 10. Extended PacketVisualization System (left) and example of Edge bundling [2] (right).

Visualization System by Combinatorial Use of Edge Bundling 135

Fig. 12. Screen shots of an extended PacketVisualization System without Edge bundling (Upper)
and with Edge bundling (Lower). (Color figure online)

136 R. Takayanagi and Y. Okada

4.1 Edge Bundling Algorithm

Edge Bundling is used in visualization of hierarchical data represented as a tree.
Although the visualization of a tree like Treemap is easy to understand its hierarchical
structure, but not to understand relationships between any two nodes of the tree. So,
edges (lines) are used to represent such relationships. Then, Edge Bundling bundles
edges (lines) by being to be represented as a B-spline curve of two leaf nodes with their
ancestor nodes used as its control points as shown in Fig. 11.

By employing Edge Bundling in Treemap, it becomes possible to understand hier‐
archical relationships between any two nodes besides their direct relationship. From this
reason, we use Edge Bundling drawing method in our extended PacketVisualization.

4.2 Extended PacketVisualization System for Micro Level Visualization

As shown in Fig. 10 (right), Edge Bundling is applicable to Treemap so as to add another
information like direct relationship between any two leaf nodes. Figure 12 shows visu‐
alization examples of extended PacketVisualiation system without edge bundling
(upper) and with edge bundling (lower). By employing Edge Bundling drawing method,
it becomes easier to understand similar or the same IP packets as a batch of them although
those are sometimes represented as one curve without Edge Bundling. This is the main
reason why we employ Edge Bundling drawing method. By employing two Treemaps
and Edge Bundling, we can visualize IP packets of a darknet in more detail with extended
PacketVisualization system.

Left sided Treemap is for destination IPs. Its each node corresponds to a certain
destination IP. Its area size means the number of IP packets that has the destination IP
and its assigned number means the fourth octet of the destination IP. Because a darknet
is a segment of subnet mask /24 usually, only fourth octets are assigned to each nodes
of destination IPs. When visualizing IP packets of not a darknet but a standard network,
four octets are used and displayed hierarchically using Treemap layout algorithm.

Destination port is very significant attribute because most cyber-attacks are specifi‐
able by the destination port. Centered Nodes are for destination ports. The numbers
assigned to each nodes mean destination port numbers of IP packets appeared in the
corresponding time period.

Right sided Treemap is for source IPs. Its each node corresponds to a certain source
IP. Its area size means the number of IP packets that has the source IP and its assigned
number means the source IP itself. The levels of source IPs hierarchy are indicated by
thickness and color, i.e., thick black (first octet), black and green (second octet), green
(third octet), and red (fourth octet).

Each edge means one IP packet represented as a B-spline curve drawn from its source
IP node (fourth octet) to its destination IP node (fourth octet) through its destination port
node with using the ancestor nodes of the source IP as its control points. It is possible
to freely move destination port nodes interactively by mouse device operations. Further‐
more, it is also possible to interactively change sampling time period.

Visualization System by Combinatorial Use of Edge Bundling 137

5 Visualization Results

This section presents several visualization results of extended PacketVisualization
system for darknet IP packets data.

5.1 Darknet IP Packets Data

Our project has several darknets like SensorXXX. We use those IP packets data repre‐
sented as Pcap data. Once, we changed those binary data into text data. Packets in which
syn+ack, rst flag are true are removed because those seem back scatters, well known
attacks.

5.2 Activities of Attacks can be Visualized

There are some activities of cyber-attacks can be visualized using extended Packet‐
Visualization system. One is scanning from a certain host. In this case, edges from
the host become a batch. The batch come to branch if uses different multiple desti‐
nation IPs. Another one is collaborative actions of a certain host group, upper octets
of source IP addresses are the same. In this case, edges from the host group become

Fig. 13. Attacks through 993/TCP port (Sensor053 2014/04/11) (Color figure online)

138 R. Takayanagi and Y. Okada

a batch. The batch goes through the same node of a certain destination port. The
followings are those cases.

Scanning from a Certain Host. Figure 13 is a screen shot of the visualization result
about Sensor053: 04:00–04:30 of 11, Apr., 2014. The number of packets is around 3,000.
Some ports are used by many packets those reach different destination IPs not uniformly.
Therefore, this case seems several scanning from different hosts. Especially, red colored
edges seem for the attack targeting to vulnerability of OpenSSL called Heartbleed
because those destination port is 933/TCP used for IMAPS (Internet Message Access
Protocol over TLS/SLL).

Fig. 14. Attacks through 1433/TCP port (Sensor053 2014/01/27) (Color figure online)

Collaborative Actions of a Certain Host Group. Figure 14 shows a screen shot of
the visualization result of Sensor053: 21:00–22:00 of 27, Jan., 2014. The number of
packets is around 5,000. The edges from certain source IPs reach all destination IPs
uniformly. Using B-spline curves, it is obvious that this case is scan for targeting certain
destination ports. Especially, red colored edges seem for the attack targeting to vulner‐
ability of Microsoft SQL Server because those destination port is 1433/TCP used for
that service.

Changes between Two Sequential Time Periods. Figure 15 shows two snapshots of
the two sequential time periods, 04:00–04:30 (left) and 04:30–05:00 (right) of 11, Apr.,
2014 of the same darknet, Sensor053. In 04:00–04:30 time period, some ports are used

Visualization System by Combinatorial Use of Edge Bundling 139

by many packets, 1993, 21320 for proxy servers, 1433 for SQL servers. In 04:30–05:00
time period, also some ports are used by many packets, 80 for HTTP and 443 for HTTPS
of Web service, and 445 for Microsoft file sharing services. In this case of Fig. 15, it is
also possible to understand the transition between two sequential time periods by the
visualization of extended PacketVisualization system.

6 Conclusion and Future Work

This paper proposed the visualization system based on Treemap layout algorithm for
network traffic data called PacketVisualization. With PacketVisualization system,
through drill down manner by mouse device operations to select a target node, it is
possible to move into more fine visualization about the target node as micro level visu‐
alization. We also proposed its extended version using Treemap layout algorithm and
Edge bundling functionality. With the two proposed visualization systems, it is possible
to investigate network traffic data at from macro level visualization to micro level visu‐
alization. By showing several visualization results of extended PacketVisualisation, we
clarified its usefulness.

As future work, we will visualize more and more network traffic data for the analysis
of them and clarify the usefulness of our proposed visualization systems. In addition,
we have to improve GUI for more effective analysis and we think that the collaborative
use with other visualization systems is also important.

Acknowledgements. This work was partially supported by Proactive Response Against Cyber-
attacks Through International Collaborative Exchange (PRACTICE), Ministry of Internal Affairs
and Communications, Japan.

Fig. 15. Sensor053: 04:00–04:30 of 11, Apr., 2014 (left) and Sensor053: 04:30–05:00 of 11,
Apr., 2014 (right).

140 R. Takayanagi and Y. Okada

References

1. Biddle, P., England, P., Peinado, M., Willman, B.: The darknet and the future of content
protection. In: Becker, E., Buhse, W., Günnewig, D., Rump, N. (eds.) Digital Rights
Management. LNCS, vol. 2770, pp. 344–365. Springer, Heidelberg (2003)

2. Bailey, M., Cooke, E., Jahanian, F., Myrick, A., Sinha, S.: Practical darknet measurement.
In: 40th Annual Conference on Information Sciences and Systems (CISS), pp. 1496–1501,
IEEE (2006)

3. Shneiderman, B.: Tree visualization with tree-maps: 2-D space-filling approach. ACM Trans.
Graph. (TOG) 11(1), 92–99 (1992)

4. Bruls, M., Huizing, K., Van Wijk, J.J.: Squarified treemaps. In: de Leeuw, W.C., van Liere,
R. (eds.) Data Visualization 2000. Part of the series Eurographics, pp. 33–42. Springer,
Vienna (2000)

5. Bederson, B.B., Shneiderman, B., Wattenberg, M.: Ordered and quantum treemaps: making
effective use of 2D space to display hierarchies. ACM Trans. Graph. (TOG) 12(4), 833–854
(2002)

6. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical
data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)

7. Holten, D., Van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comput.
Graph. Forum 28(3), 983–990 (2009). Blackwell Publishing Ltd.

8. Taylor, T., Paterson, D., Glanfield, J., Gates, C., Brooks, S., McHugh, J.: Flovis: flow
visualization system. In: Conference for Homeland Security Cybersecurity Applications &
Technology, pp. 186–198. IEEE (2009)

9. Fischer, F., Mansmann, F., Keim, D.A., Pietzko, S., Waldvogel, M.: Large-scale network
monitoring for visual analysis of attacks. In: Goodall, J.R., Conti, G., Ma, K.-L. (eds.) VizSec
2008. LNCS, vol. 5210, pp. 111–118. Springer, Heidelberg (2008)

10. Ball, R., Fink, G.A., North, C.: Home-centric visualization of network traffic for security
administration. In: Proceedings of ACM Workshop on Visualization and Data Mining for
Computer Security, pp. 55–64. ACM (2004)

11. http://www.symantec.com/content/ja/jp/about/presskits/2013_Norton_Report.pdf
12. http://www.nicter.jp/nw_public/scripts/index.php#nicter
13. http://www.nict.go.jp/nsri/cyber/research.html
14. https://cybermap.kaspersky.com/
15. Okada, Y.: Network data visualization using parallel coordinates version of time-tunnel with

2Dto2D visualization for intrusion detection, (WAINA 2013). In: IEEE 27th International
Conference on Advanced Information Networking and Applications Workshops, pp. 1088–
1093, 25–28 March 2013

Visualization System by Combinatorial Use of Edge Bundling 141

http://www.symantec.com/content/ja/jp/about/presskits/2013_Norton_Report.pdf
http://www.nicter.jp/nw_public/scripts/index.php%23nicter
http://www.nict.go.jp/nsri/cyber/research.html
https://cybermap.kaspersky.com/

Interactive Metric Learning-Based Visual Data
Exploration: Application to the Visualization

of a Scientific Social Network

Masaharu Yoshioka1(B), Masahiko Itoh2,3, and Michèle Sebag4

1 Graduate School of Information Science and Technology,
Hokkaido University, N14 W9, Kita-ku, Sapporo 060-0814, Japan

yoshioka@ist.hokudai.ac.jp
2 Institute of Industrial Science, The University of Tokyo,

4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
3 Social ICT Research Center, National Institute of Information

and Communications Technology, 4-2-1, Nukui-Kitamachi,
Koganei, Tokyo 184-8795, Japan

4 TAO, LRI - CNRS, Univ. Paris-Sud,
Bldg 650, Rue Noetzlin, 91190 Gif-sur-Yvette, France

Abstract. Data visualization is a core approach for understanding data
specifics and extracting useful information in a simple and intuitive
way. Visual data mining proceeds by projecting multidimensional data
onto two-dimensional (2D) or three-dimensional (3D) data, e.g., through
mathematical optimization and topology preserved in multidimensional
scaling (MDS). However, this projection does not necessarily comply
with the user’s needs, prior knowledge and/or expectations. This paper
proposes an interactive visual mining approach, centered on the user’s
needs and allowing the modification of data visualization by leveraging
approaches from metric learning. The paper exemplifies the proposed sys-
tem, referred to as Interactive Metric Learning-based Visual Data Explo-
ration (IMViDE), applied to scientific social network browsing.

1 Introduction

Knowledge discovery from databases, the process of extracting knowledge from
data [1], must be focused on the user needs: indeed, the desired knowledge prop-
erties (being new and useful) largely depend on the user’s prior knowledge and
expectations.

Data visualization is a core approach to understanding the data specifics,
and extracting useful information in a simple and intuitive way [2], through
projecting the multidimensional data in R

d onto R
2, thus enabling its visual

inspection. The quality of the projection thereby governs the quality of the
knowledge extracted along data visualization. One of the best known data visu-
alization approaches, Multi-Dimensional Scaling (MDS), proceeds by minimizing
the topology loss induced by the projection from R

d onto R
2 [3] (more in Sect. 2).

c© Springer International Publishing Switzerland 2016
E. Grant et al. (Eds.): ISIP 2015, CCIS 622, pp. 142–156, 2016.
DOI: 10.1007/978-3-319-43862-7 8

Interactive Metric Learning-Based Visual Data Exploration 143

However, the MDS projection does not necessarily comply with the users’
prior knowledge and/or expectations about the problem domain. For this rea-
son, several approaches have been proposed to interactively modify the MDS
projection [3,4]. In particular, Brown et al. [5] proposed to leverage the distance
metric learning pioneered by Large Margin Nearest Neighbor (LMNN) [6] in the
context of supervised machine learning (Sect. 3). Specifically, LMNN [6] is aimed
at the Mahalanobis distance on the data space such that it maximizes the classi-
fication accuracy of the k-nearest neighbor process, and shows that this problem
reduces to a convex optimization problem1.

This paper focuses on distance metric learning in the context of multidimen-
sional data visualization for data exploration. The proposed Interactive Metric
Learning-based Visual Data Exploration (IMViDE) system is an iterative 5-step
process, using the standard Euclidean distance on R

d as initial distance:

1. The data is displayed in R
2 using MDS together with the current distance.

2. The user specifies some distance-related constraints by labeling a few data
points; the requirement is that a labeled point should be close to some other
points with the same label, and further away from points with different labels.

3. The distance on R
d is optimized to account for the constraints, based on the

ideas from [6].
4. Most importantly, IMViDE provides the user with feedback, displaying the

features most relevant/impacted by the metric changes. This feedback allows
the user to make sense of the search path and clarify his/her intention about
the exploratory data analysis.

5. IMViDE relaunches MDS with the new metric and updates the data visu-
alization. In this visualization result, data points that share the same label
form a cluster as a result of distance metric learning, and the user can find
data points that are as close to the cluster as similar ones in the context of
this exploratory analysis. If the user is not satisfied with the visualization
results, he/she goes back to step 2 to revise the visualization result that fits
his/her intention.

This paper is organized as follows. Section 2 briefly reviews related works of
data visualization and distance metric learning. For the sake of completeness,
distance metric learning is described in Sect. 3. An overview of the IMViDE
system is detailed in Sect. 4. IMViDE is exemplified in Sect. 5, considering the
visualization of a social network. The paper concludes with a discussion and
some perspectives for further research.

2 Related Works

Data visualization techniques are used to represent characteristic information in
the target data to the user’s intuitive ways [2]. In particular, for multidimensional

1 Note that the classification accuracy maximization can also be tackled by feature
selection, that is, a combinatorial optimization problem.

144 M. Yoshioka et al.

data, there are several methods of projecting multidimensional data in R
d onto

R
2 such as MDS [3], PCA [7], SOM [8], GTM [9], and t-SNE [10]. The results

of visualization using such methods sometimes differ from the user’s intention;
the interactive visualization is, therefore, required for modifying visualization
results based on the user’s intention and intuition.

Some studies provided functions for interactively changing parameters for
dimension reduction and visualization. iPCA [11] and XGvis [12] enable users
to interactively adjust dials or sliders to modify influential parameters in PCA
or MDS respectively. However, it is difficult for users with no mathematical
knowledge to predict the results caused by varying parameters. They therefore
rely on trial-and-error to obtain desirable responses.

InterAxis [13] and Dust & Magnet [14] enable users to intuitively define
and modify axes by dragging data points on the side of the x or y axes or
attributes on a scatter plot respectively. iVisClassifier [15], using semisupervised
Linear Discriminant Analysis (LDA), allows users to interactively label data and
recompute clusters and projections. However, they did not provide functions
for directly defining relationships between data points such as closeness and
remoteness.

Another approach is using the concept of distance metric learning [16].
Distance metric learning is a framework for calculating appropriate distance
metrics to classify labeled data more accurately. Most of these algorithms are
formalized as supervised Mahalanobis distance learning. There are two main
approaches. One is driven by nearest neighbors, such as Neighborhood Com-
ponents Analysis (NCA) [17] and LMNN [6] and the other covers information-
theoretic approaches, such as Information-Theoretic Metric Learning (ITML)
[18] and Sparse Distance Metric Learning (SDML) [19].

There are some studies that use distance metric learning for construct-
ing appropriate distance metric that fits the users’ prior knowledge [5,20–23].
LAMP [21] provided a multidimensional projection technique enabling users to
build local transformations from some control points directly specified by users.
Mizuno et al. presented an approach for manipulating arrangements of the local
features and global categories of images by projecting the overall feature space
onto a two-dimensional (2D) screen space [22]. V2PIs [20] and its extension [23],
and Dis-function [5] allowed users to move data points in a 2D projected space to
update the weight of a weighted-MDS model and the distance function of MDS
respectively. Their method is similar to our method in that they allow users to
explicitly reflect their intention by directly manipulating data points. However,
their purpose of interaction on the scatter plot is mostly to provide a global
optimum projection or distance functions from labeled or sampled data points
based on the user’s prior knowledge. By contrast, our purpose is exploring the
user’s classification standards based on distance metric learning through inter-
active manipulation of data points, and constructing an information retrieval
system enabling users to retrieve related and/or similar information from their
interesting data points. In addition, because our system would like to learn new
distance metric by using a few numbers of labeled data, it is difficult to use an
information-theoretic approach for our problem.

Interactive Metric Learning-Based Visual Data Exploration 145

In the information retrieval research, there are several methods for provid-
ing feedback information to show the characteristics of a document that attract
users’ intention. For example, DualNavi [24] provides characteristic terms from
selected retrieved results to modify the original retrieved query. Scatter/gather
[25] is an interactive document clustering technique that is widely used in several
domains [26,27]. In this framework, the system conducts document clustering in
the original document collection and provides information about the cluster by
using topical words of the cluster (scatter). From the clustering results, the user
selects one or more clusters that attract his/her attention and make a new docu-
ment collection for further analysis (gather). The user iterates the scatter/gather
process to find out the useful information. Although the framework of the system
is different from our approach; i.e., IR starts with a query and our approaches
start with selecting interesting data, it is helpful to show such feedback infor-
mation to understand the characteristics of the results.

3 Distance Metric Learning for kNN Classification

The k-nearest neighbors (kNN) method, is one of the oldest and simplest meth-
ods for pattern classification that associates an instance with the majority class
of its k nearest neighbors. The performance of this method critically depends on
the distance metric used to identify nearest neighbors. In a supervised machine
learning context, optimizing the distance metric based on labeled examples in
such a way that it maximizes the kNN performance, comes naturally.

3.1 LMNN Classification

Weinberger et al. [6] formalized the problem of metric learning in terms of opti-
mizing a linear change in representation, such that the Euclidean distance in
the new representation yields optimal kNN performances as follows. Let us first
introduce some notations:

– Let the training set E be defined as:

E = {(xi, yi),xi ∈ R
d, yi ∈ {−1, 1}, i = 1 . . . n}

– For each pair (i, j) with 1 ≤ i, j ≤ n, let yi,j be 1 iff yi = yj and 0 otherwise.
– Let j � i denote that xj is a target neighbor of xi (that is, xj is among the

k nearest neighbors of xi with same label as xi, yj = yi).
– Finally, let [z]+ = max(z, 0) denote the standard hinge loss of z.

With these notations, the goal is to find a linear change in representation on
R

d, with L, a d × d matrix, such that the distance DL on R
d is defined as:

DL(x,x′) = ||L(x − x′)||, (1)

146 M. Yoshioka et al.

optimize two cost functions, respectively noted as εpull(L) and εpush(L). The
cost function εpull(L), to be minimized, is the sum of the distances between any
xi and its target neighbors:

εpull(L) =
∑

j�i

DL(xi,xj)2

The cost function εpush(L), to be minimized, measures the excess distance
between a point xi and its target neighbor xj , compared to another neighbor xl

which belongs to another class than xi:

εpush(L) =
∑

i,j�i

∑

l

(1 − yil)[1 + DL(xi,xj)2 − DL(xi,xl)2]+

Finally, with α the weight parameter balancing the two criteria, the opti-
mization problem is defined as:

Find L∗ = arg max
L

(αεpull(L) + (1 − α)εpush(L)) . (2)

For the sake of convex optimization, one rather seeks M = LtL with Lt the
transpose matrix of L, such that

DL(x,x′)2 = ||L(x − x′)||2 = (x − x′)tLtL(x − x′)

For simplicity of notation, DL is denoted DM in the following.
This change in representation enables to reformulate Pb (2) as a semidefinite

programming problem (SDP):

Minimize (α)εpull(M) + (1 − α)εpush(M) (3)
s.t. (xi − xj)tM(xi.xj) ≤ 1 − ξijl (4)

ξijl ≥ 0 (5)
M � 0. (6)

The constraint M � 0 indicates that matrix M is required to be positive
and semidefinite. While general-purpose solvers can solve this SDP, such solvers
tend to scale poorly when the number of constraints increases. Therefore, they
propose to use a special- purpose solver based on a combination of subgradient
descent in both matrices L and M .

3.2 Efficient Computation

The gradient computation can be done most efficiently by careful book-keeping
from one iteration to the next. Let Mt denote the current solution at step t. As
a simplifying notation, let matrix Cij be defined as:

Cij = (xi − xj)(xi − xj)t

Interactive Metric Learning-Based Visual Data Exploration 147

The loss function in Eq. 6 is rewritten as:

ε(Mt) = (1− μ)
∑

j�i

tr(MtCij) + μ
∑

i,j�i

∑

l

(1− yil) [1 + tr(MtCij)− tr(MtCil)]+ (7)

with tr(A) denoting the trace of matrix A.
Note that Eq. 7 is piecewise linear with respect to Mt. Let Nt be the set of

triplets (i, j, l), such that the indices (i, j, l) satisfy

1 + tr(MtCij) − tr(MtCil > 0)

(they trigger the hinge loss in Eq. 7). With this definition, the gradient Gt of
ε(Mt) can be written as:

Gt =
∂ε(Mt)
∂Mt

= (1 − μ)
∑

j�i

Cij + μ
∑

i,j�i

∑

l

(1 − yil)(Cij − Cil). (8)

4 Overview of Interactive Metric Learning-Based Visual
Data Exploration

MDS is a popular method for projecting a set of data points x1 . . .xm (not
necessarily in a metric space) onto R

2 based on the matrix of their dissimilarities
or distances. Formally, to each xi MDS associates a projection zi ∈ R

2, in such
a way that the Euclidean distance d(zi, zj) in R

2 approximates the dissimilarity
between xi and xj . This projection in the 2D plane enables visual inspection
of the data. However, the initial dissimilarities and the associated visualization
might not reflect the user’s prior knowledge and desires, hindering the visual
data mining process.

4.1 The IMViDE Algorithm

The proposed Interactive Metric Learning-based Visual Data Exploration
(IMViDE) system aims at addressing this drawback, by allowing the user to
interactively modify the MDS visualization results. In the following, it is assumed
that the data points are real-value vectors (x1 ∈ R

d); further research is con-
cerned with extending the proposed approach to the general case.

The user interacts with IMViDE by specifying that some data points should
or should not be close to each other in the representation 2D space. The IMViDE
algorithm is a four-step process:

1. The MDS projection is applied on the basis of the current distance matrix;
the resulting projection of the data points is displayed in the 2D plane.

2. The user interacts with IMViDE by selecting pairs of points as similar or
dissimilar.

148 M. Yoshioka et al.

3. The metric is revised to account for the above constraints (pairs of similar or
dissimilar data points).

4. A new distance matrix is computed according to the new distance and the
process is iterated (go to step 1).

4.2 Distance Metric Learning for MDS

The inspiration for the IMViDE algorithm was taken from the metric learning
approach presented in Sect. 3 to find a linear transformation of the initial feature
space, complying with the user-specified constraints.

In contrast to the standard kNN context, however, the number of
neighborhood-related constraints is low as they result from the interaction with
the user. We, therefore, adapt the optimization objective (Eq. 6). The original
pull cost function “penalizes” small distances between every data point and
close data points with different labels. In our case, as few points are “labeled”,
we penalize the small distances between every labeled xi and all xj that do not
have the same label as xj .

Finally, the optimization criterion used to find the Mahalanobis distance
complying with the current constraints, where yil is set to 1 if xi and xj share
the same label, and 0 in all other cases is the following:

εpull(Mt) =
∑

i,j�l

DMt
(xi,xj) (9)

ε′
push(Mt) =

∑

i,j�l

∑

l

(1 − yij)yil (10)

[1 + DMt
(xi,xl) − DMt

(xi,xl)]+ (11)
ε′(Mt) = (1 − μ)ε′

push(Mt) + μεpush(Mt). (12)

The gradient of ε′(Mt), noted G′
t, reads:

G′
t =

∂ε′(Mt)
Mt

= (1 − μ)
∑

i,j�l

Cij + μ
∑

i,j�l

∑

l

(Cij − Cil). (13)

The minimization of the cost function is handled using the same gradient
algorithm as in [6].

4.3 Functionalities of IMViDE

We implemented the IMViDE system based on the discussion above. This system
is made of two components:

Interactive Metric Learning-Based Visual Data Exploration 149

– The first component, Visualization, takes charge of the visualization of the
members of the social network. The current distance matrix is used as input
of MDS to yield a projection of the members on the 2D plane. The metric is
initially the Euclidean metric (M0 = Id) on the representation space.

– The second component, Interaction and Metric Learning, takes charge of the
following operations:

• The user selects similar and dissimilar pair(s) of nodes for distance metric
learning. The system adds the same label for nodes of similar pair(s) and
adds a different label for dissimilar pair(s).

• An important functionality is to provide some feedback to the user, indi-
cating what (the system thinks) are the main goals of his/her search.

The detailed procedure of updating the distance metric is as follows.

1. Selection of similar and dissimilar pair(s) for metric learning.
From the MDS visualization results, the user selects nodes that belong to the
same group for adding same labels. When the user selects nodes without a
label, the system generates a new label for the nodes. When the user selects
nodes with labels, all labels are merged as one label and add merged label
are added to all related nodes. For example, at first the user selects n1, n2, n3

for adding labels, these three nodes have the label l1. Next, the user selects
n4, n5 for adding labels, these two nodes have the label l2. When the user
selects n1, n4, n6 for adding labels, labels l1 and l2 are merged as l1 and all 6
nodes n1, ..., n6 are labeled as l1.

2. Metric learning by using similar and dissimilar pair(s) information.
Based on the information about labeled nodes, the system refines M for
minimizing the cost function by using a linear programming problem with a
positive semidefinite constraint [6]. In this process, the gradient G′

t (Eq. 13)
is used to refine M stepwise. As the total minimization process requires high
computational cost and may change the distance among nodes drastically,
there are several cases for which the visualization results change drastically
and result interpretation is inappropriate. Therefore, the system produces an
intermediate result of the stepwise refinement process for the MDS visualiza-
tion.

3. Updating MDS results by using the Mahalanobis distance metric.
Based on the stepwise refinement result of M , the system updates the MDS
visualization result. To keep the continuity of the visualization results, the
MDS visualization result is updated by using the SMACOF (scaling by major-
ing a convex function) algorithm [28] and a previous visualization result is
used as the initial input. As a result, the position of all nodes slightly moves
based on this update process. The user can continue this minimization process
in step 2 to see the effect of the distance metric learning (e.g., some unlabeled
nodes move in the same direction and some unlabeled nodes do not move).
In addition, the user can also go back to step 1 for modifying labels.

The IMViDE system produces feedback information to the users by using the
difference between the most important words for each class before and after the

150 M. Yoshioka et al.

interaction. Formally, let ci and c′
i respectively denote the center of mass of the i-

th class in the initial representation (respectively in the current representation):

ci =
∑

j∈Cli

xj/|Cli| (14)

c′
i = Mtci (15)

The contribution of the initial j-th dimension in the current representation,
denoted as raj is defined, where rj is a vector whose j-th element is 1 and 0
otherwise:

raj = Mtrj (16)

Finally, noting cij , c
′
ij , raij the j-th coordinates of the ci, c

′
i, rai vectors, and

P (w|zj) the probability of the word w for class j as computed by probabilistic
latent semantic analysis (PLSA), we compute the characteristic score vectors
Iwi and I ′

wi, indicating the relevance of every term for class i, with respect to
the initial and current metric:

Iwi =
T∑

j=0

cijP (w|zj) (17)

I ′
wi =

T∑

j=0

T∑

k=0

c′
ijrajkP (w|zk) (18)

The top-� words (� = 10 in the experiments) relevant to each class before and
after the interaction are displayed, giving the user feedback about the most
important aspects of the i-th class, as interpreted through the metric learning
and PLS preprocessing.

5 Visualization of a Scientific Social Network

The proposed IMViDE algorithm was empirically assessed on the visualization
of a social network. For the sake of reproducibility and easy assessment, we used
the social network of scientists involved in the European Network of Excellence
PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning,
2003–2013), where each scientist member of the network is described by his/her
papers.

5.1 Pre-processing

We used the data made public for the Pascal Visualization Challenge, available
at: http://analytics.ijs.si/∼blazf/pvc/data.html. The goal was to visualize the
relationship between the authors based on the similarity among the contents
of their paper (as opposed to the similarity induced by the coauthorship and
citations).

The available data were preprocessed as follows:

http://analytics.ijs.si/~blazf/pvc/data.html

Interactive Metric Learning-Based Visual Data Exploration 151

1. Construction of the paper database with abstract and author information.
Noun, adjective, adverb, and verb are selected and normalized by using Tree-
Tagger2 as candidates for the index keywords.

2. Selection of keywords.
Keywords with the minimum document frequency and listed in stop list (e.g.,
be, do, one, etc.) were removed from the index keyword lists. We used a
minimum document frequency of 1 in this experiment.

3. Construction of feature vectors.
For each author, index keyword information on all his/her papers were col-
lected and coded as his/her feature vector. In this vector, all index keywords
correspond to one dimension in the feature vector space, and the value for
that dimensions are calculated by TF · IDF.

4. Construction of reduced dimension feature vector by PLSA [29].
To avoid the effect of the sparseness of the keyword feature vectors, we applied
PLSA for constructed feature vectors for dimension reduction.

From the Pascal challenge data, we constructed feature vectors for 313
authors with 2986 index keywords and the feature vectors were reduced into
40 dimensions by using PLSA.

5.2 Experiments

Figure 1 shows an example of initial MDS visualization results. In this case,
the user selected four coauthors of a paper; Bernhard Schoelkopf (who is the
author with the largest number of papers in this database), Thomas Navin Lal,
Dengyong Zhou, Olivier Bousquet who belong to the same group (red points in
Fig. 1). These authors have multiple articles in the database and Table 1 shows
the number of subject category articles for each researcher3.

Table 1. Number of articles for categorized topics

Name BC CS IT LO MV TA Total

Bernhard Schoelkopf 4 15 1 21 8 19 34

Thomas Navin Lal 4 1 0 3 0 3 7

Dengyong Zhou 0 3 1 5 0 8 8

Olivier Bousquet 0 11 0 14 0 17 19

BC: brain–computer interface, CS: computational,
information-theoretic learning with statistics, IT:
information retrieval and textual information access,
LO: learning/statistics and optimization, MV:
machine vision, TA: theory and algorithms

2 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/.
3 The total differs from the sum of the categories as each article may have more than

one subject category.

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

152 M. Yoshioka et al.

Fig. 1. Initial MDS visualization results (Color figure online)

Figure 2 shows a zoomed image of an MDS visualization based on a result of
distance metric learning, showing that the system found a new distance metric
in which the three authors are closer to each other. Figure 3 shows the character-
istic terms in Figs. 1 and 2, with Center and Center(diff) the list of top ranked
keywords respectively based on the I ′

wi value and I ′
wi − Iwi.

At the initial stage, as I ′
wi = Iwi, all values for Center(diff) equal zero.

Initially, keywords related to these authors common topic categories “CS”, “LO”,
and “TA” (e.g., “algorithm” and “method”) had a higher value. After distance
metric learning those values are increased that represents keywords related to
those categories are important features for calculating similarities. Followings is
the list of top-ranked keywords based on Center:I ′

wi value and Center(diff):I ′
wi−

Iwi value were as follows.

Center:I ′
wi use, algorithm, problem, text, paper, datum, approach, base, model

Center(diff):I ′
wi − Iwi algorithm, problem, classification, number, different,

model, result, statistical, evolutionary

In addition, from Fig. 2, we could determine some other authors (depicted
as green points), who have a research topic that is also related to “CS”, the
application of machine learning algorithms to text data. Although those authors
were somewhat close to Bernhard Schoelkopf, Thomas Navin Lal, Dengyong
Zhou, or Olivier Bousquet in the initial visualization, there were many other
researchers around them (Fig. 4). This result shows how the metric learning

Interactive Metric Learning-Based Visual Data Exploration 153

Fig. 2. Zoomed MDS visualization results based on DML

Fig. 3. List of characteristics terms in Figs. 1 and 2

154 M. Yoshioka et al.

state could help retrieving researchers with similar research interest during the
interaction with the user.

Fig. 4. Original positions of related authors in the initial MDS visualization

5.3 Discussion

There are several issues to be discussed in this system. One is the scalability issue.
Because of the high computational complexity of LMNN based on SDP, LMNN
does not scale well for a large data set [30]. The random sampling algorithm
proposed by Wu et al. [30] may be a possible solution. Another solution is similar
to the concept of scatter/gather [25]. At the initial stage a limited number of
nodes (e.g., selection of researchers based on the number of articles) are used
for initial visualization and distance metric learning. When the user is satisfied
with the result at a certain level, the system selects nodes close to the labeled
nodes and expands nodes by adding nodes that are close to these selected nodes
by using the Mahalanobis distance. This approach is also good for improving
the readability of the data presented on the screen, as it is quite difficult to read
through the label of nodes more than thousands. Another issue is related to the
technique for projecting the multidimensional data in R

d onto R
2. There are

several other techniques for this projection. First, we will investigate how the
nonlinear t-distributed stochastic neighbor embedding (t-SNE) [10] compares to
MDS. In addition to these further research directions, we also plan to extend
our framework with multi-user functionalities, when several users interact with
a large map.

6 Conclusions

This paper shows how metric learning can be embedded in an interactive visual
data mining system, providing an intuitive and easy control of the visualization
functionality. A main contribution of the approach is the provision of feedback,
indicating the “angles” of users’ queries in terms of the dimensions (here, terms)
most relevant to the new display. We also discuss the future research directions
of this approach.

Interactive Metric Learning-Based Visual Data Exploration 155

Acknowledgement. We would like to thank Prof. Jean-Daniel Fekete for many sug-
gestions and discussion about this work. The first author was partially supported by
JSPS KAKENHI Grant Number 25280035.

References

1. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Advances in Knowledge Discovery
and Data Mining, pp. 1–34. American Association for Artificial Intelligence, Menlo
Park (1996)

2. Keim, D.: Information visualization and visual data mining. IEEE Trans. Visual
Comput. Graphics 8(1), 1–8 (2002)

3. Buja, A., Swayne, D.F., Littman, M.L., Dean, N., Hofmann, H., Chen, L.: Data
visualization with multidimensional scaling. J. Comput. Graph. Stat. 17(2), 444–
472 (2008)

4. Broekens, J., Cocx, T.: Object-centered interactive multi-dimensional scaling: ask
the expert. In: Proceedings of the Eighteenth Belgium-Netherlands Conference on
Artificial Intelligence (BNAIC 2006), pp. 59–66 (2006)

5. Brown, E.T., Liu, J., Brodley, C.E., Chang, R.: Dis-function: learning distance
functions interactively. In: IEEE Conference on on Visual Analytics Science and
Technology (VAST 2012), pp. 83–92. IEEE (2012)

6. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

7. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002)
8. Kohonen, T.: Self-organizing Maps. Springer, Heidelberg (2001)
9. Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: the generative topographic

mapping. Neural Comput. 10(1), 215–234 (1998)
10. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.

Res. 9(2579–2605), 85 (2008)
11. Jeong, D.H., Ziemkiewicz, C., Fisher, B.D., Ribarsky, W., Chang, R.: iPCA: an

interactive system for PCA-based visual analytics. Comput. Graph. Forum 28(3),
767–774 (2009)

12. Buja, A., Swayne, D.F., Littman, M.L., Dean, N., Hofmann, H., Chen, L.: Data
visualization with multidimensional scaling. J. Comput. Graph. Stat. 17(2), 444–
472 (2008). doi:10.1198/106186008X318440

13. Kim, H., Choo, J., Park, H., Endert, A.: Interaxis: steering scatterplot axes via
observation-level interaction. IEEE Trans. Vis. Comput. Graph. 22(1), 131–140
(2016)

14. Yi, J.S., Melton, R., Stasko, J.T., Jacko, J.A.: Dust & magnet: multivariate infor-
mation visualization using a magnet metaphor. Inf. Visual. 4(3), 239–256 (2005)

15. Choo, J., Lee, H., Kihm, J., Park, H.: iVisClassifier: an interactive visual analytics
system for classification based on supervised dimension reduction. In: Proceedings
of the IEEE Conference on Visual Analytics Science and Technology, IEEE VAST
2010, Salt Lake City, Utah, USA, 24–29 October 2010, part of VisWeek 2010, pp.
27–34 (2010)

16. Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors
and structured data. CoRR abs/1306.6709 (2013)

17. Goldberger, J., Hinton, G.E., Roweis, S.T., Salakhutdinov, R.: Neighbourhood
components analysis. Adv. Neural Inf. Process. Syst. 17, 513–520 (2004)

http://dx.doi.org/10.1198/106186008X318440

156 M. Yoshioka et al.

18. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric
learning. In: Proceedings of the 24th International Conference on Machine Learn-
ing, pp. 209–216. ACM (2007)

19. Qi, G.J., Tang, J., Zha, Z.J., Chua, T.S., Zhang, H.J.: An efficient sparse metric
learning in high-dimensional space via l1-penalized log-determinant regularization.
In: Proceedings of the 26th Annual International Conference on Machine Learning,
ICML 2009, pp. 841–848. ACM, New York (2009)

20. Leman, S.C., House, L.L., Maiti, D., Endert, A., North, C.: Visual to parametric
interaction (v2pi). PloS One 8(3), e50474 (2013)

21. Joia, P., Coimbra, D.B., Cuminato, J.A., Paulovich, F.V., Nonato, L.G.: Local
affine multidimensional projection. IEEE Trans. Vis. Comput. Graph. 17(12),
2563–2571 (2011)

22. Mizuno, K., Wu, H., Takahashi, S.: Manipulating bilevel feature space for category-
aware image exploration. In: IEEE Pacific Visualization Symposium, PacificVis
2014, Yokohama, Japan, 4–7 March 2014, pp. 217–224 (2014)

23. Hu, X., Bradel, L., Maiti, D., House, L., North, C., Leman, S.: Semantics of directly
manipulating spatializations. IEEE Trans. Vis. Comput. Graph. 19(12), 2052–2059
(2013)

24. Takano, A., Niwa, Y., Nishioka, S., Hisamitsu, T., Iwayama, M., Imaichi, O.: Asso-
ciative information access using DualNavI. In: Proceedings of the Sixth Natural
Language Processing Pacific Rim Symposium, pp. 771–772 (2001)

25. Cutting, D.R., Pedersen, J.O., Karger, D., Tukey, J.W.: Scatter/gather: a cluster-
based approach to browsing large document collections. In: Proceedings of the
15th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 318–329 (1992)

26. Gong, X., Ke, W., Khare, R.: Studying scatter/gather browsing for web search.
Proc. Am. Soc. Inf. Sci. Technol. 49(1), 1–4 (2012)

27. Zhang, Y., Broussard, R., Ke, W., Gong, X.: Evaluation of a scatter/gather inter-
face for supporting distinct health information search tasks. J. Assoc. Inf. Sci.
Technol. 65(5), 1028–1041 (2014)

28. Leeuw, J.D., Mair, P.: Multidimensional scaling using majorization: SMACOF in
R. J. Stat. Softw. 31(3), 30 (2009)

29. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 1999, pp. 50–57. ACM, New York (1999)

30. Wu, K., Zheng, Z.: Fast lmnn algorithm through random sampling. In: IEEE Inter-
national Conference on Data Mining Workshop (ICDMW), November 2015, pp.
871–876 (2015)

Author Index

d’Orazio, Laurent 46

Fujima, Jun 107

Itoh, Masahiko 142

Jantke, Klaus P. 107

Kotzinos, Dimitris 69

Laurent, Dominique 3, 46
Lucchese, Claudio 69

Okada, Yoshihiro 88, 128

Perriot, Romain 46

Sebag, Michèle 142
Spyratos, Nicolas 23, 46
Sugibuchi, Tsuyoshi 23

Takayanagi, Ryo 128

Vodislav, Dan 69

Xiang, Yu 88

Yoshioka, Masaharu 142

Zneika, Mussab 69

	Preface
	Organization
	Contents
	Modeling, Querying and Updating of Information
	On Monotonic Deductive Database Updating Under the Open World Assumption
	1 Introduction
	2 Basic Definitions
	2.1 Background
	2.2 Database and Database Semantics

	3 Updates
	4 Discussion
	4.1 Comparison with Related Work
	4.2 Possible Implementation Using Graph Databases

	5 Concluding Remarks
	References

	PROPER - A Graph Data Model Based on Property Graphs
	1 Introduction
	2 The Formal Model
	2.1 Hyper Nodes
	2.2 Hyper Edges
	2.3 Graph Databases

	3 The Query Language
	4 Semantic Constraints
	4.1 Equational Constraints
	4.2 ISA Hyper Edges

	5 Mapping Relational Databases to Graph Databases
	5.1 Mapping a Relational Table
	5.2 Mapping Relational Algebra Operations
	5.3 Mapping Functional Dependencies

	6 Concluding Remarks
	References

	A Semantic Matrix for Aggregate Query Rewriting
	1 Introduction
	2 Background
	2.1 Aggregate Query
	2.2 Aggregate Query Comparison
	2.3 Motivation and Running Example

	3 Our Approach
	3.1 Overview of the Approach
	3.2 Step 1: Computing the Set of Candidate Queries
	3.3 Step 2: Partitioning T
	3.4 Step 3: Partitioning Queries
	3.5 Step 4: Building the Matrix A and the Vector b

	4 Related Works
	5 Conclusion
	References

	Information Extraction
	RDF Graph Summarization Based on Approximate Patterns
	1 Introduction
	2 Preliminaries
	2.1 RDF Summary Requirements

	3 RDF Summarization
	3.1 Binary Matrix Mapper
	3.2 Graph Pattern Identification
	3.3 Constructing the RDF Summary Graph

	4 Experiments
	5 Related Work
	5.1 Graph Summarization
	5.2 Approximate Frequent Pattern Mining

	6 Conclusions and Future Work
	References

	Robust Approach for Interesting Points Extraction of Moving Human from 2D Videos
	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 System Components
	3.2 Segmentation for Moving Objects
	3.3 Cast Shadow, Hole and Noise Dispose
	3.4 Skeleton and Interesting Points Extraction
	3.5 Redundant Points Removal

	4 Experiment and Analysis
	5 Conclusion
	References

	Information Vizualization
	Analysis, Visualization and Exploration Scenarios: Formal Methods for Systematic Meta Studies of Big Data Applications
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Toward the Introduction of Formal Concepts
	3 Webble Technology for Big Data Analysis
	4 Scenarios of Playing Digital Games
	5 Formalisms of Analysis, Visualization, and Exploration
	6 Reasoning About Search and Research Behavior
	7 Abductive Learning as a Prerequisite for Discovery
	8 Summary and Outlook
	8.1 The Reach of the Present Approach to DAVE Scenarios
	8.2 Limitations of the Present Approach to DAVE Scenarios
	8.3 Outlook

	References

	Visualization System by Combinatorial Use of Edge Bundling and Treemap for Network Traffic Data Analysis
	Abstract
	1 Introduction
	1.1 Darknet

	2 Related Works
	3 PacketVisualization System Based on Treemap
	3.1 Treemap
	3.2 PacketVisualization System

	4 Extended PacketVisualization by Combinatorial Use of Edge Bundling and Treemap
	4.1 Edge Bundling Algorithm
	4.2 Extended PacketVisualization System for Micro Level Visualization

	5 Visualization Results
	5.1 Darknet IP Packets Data
	5.2 Activities of Attacks can be Visualized

	6 Conclusion and Future Work
	Acknowledgements
	References

	Interactive Metric Learning-Based Visual Data Exploration: Application to the Visualization of a Scientific Social Network
	1 Introduction
	2 Related Works
	3 Distance Metric Learning for kNN Classification
	3.1 LMNN Classification
	3.2 Efficient Computation

	4 Overview of Interactive Metric Learning-Based Visual Data Exploration
	4.1 The IMViDE Algorithm
	4.2 Distance Metric Learning for MDS
	4.3 Functionalities of IMViDE

	5 Visualization of a Scientific Social Network
	5.1 Pre-processing
	5.2 Experiments
	5.3 Discussion

	6 Conclusions
	References

	Author Index

