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Abstract An effective tax system is an important part of economic and social
interactions in human society. The key element of the tax system is tax control
which provides the main functions of taxation and allows for increasing tax
revenue and fees to the state budget. However, total tax audits of a population
of taxpayers is economically unreasonable, and even selective tax audits are not
always profitable. In this case the propagation of information can be viewed as an
“infection of the mind,” and its spread shows an interesting resemblance to that
of epidemics. We thus use a modification of the classical Susceptible-Infected-
Recovery model to describe the process. We assume that information propagates
through the population by pairwise contacts between spreaders and others in the
population and Informed agents disseminate information through their network of
contacts or social networks. We study a model of spreading information in a large
population of taxpayers and describe the dynamics of this process in complex social
networks. We formulate an optimal control problem of tax auditing and analyze the
behavior of agents in different subgroups depending on received information.

Keywords Tax control ¢ Information spreading ¢ SIR model ¢ Epidemic
process * Optimal control ¢ Social networks

1 Introduction

One of the most important aspects of modeling taxation is tax control and so it has
been the subject of continuous interest in much recent research. The standard model
of taxation used to describe the behavioral relationship between taxpayers and the
tax authority is static. For example, [1, 17-19] formulate mathematical models of
tax evasion and auditing. Two of the most famous works [17] and [18] applied

E. Gubar (b)) « S. Kumacheva ¢ E. Zhitkova  O. Porokhnyavaya

Faculty of Applied Mathematics and Control Processes, St. Petersburg State University,
Universitetskii prospekt 35, Petergof, St. Petersburg 198504, Russia

e-mail: e.gubar@spbu.ru; s.kumacheva@spbu.ru; e.zhitkova@spbu.ru;
olga.porokhnyavaya@ gmail.com

© Springer International Publishing Switzerland 2016 91
L.A. Petrosyan, V.V. Mazalov (eds.), Recent Advances in Game Theory

and Applications, Static & Dynamic Game Theory: Foundations & Applications,

DOI 10.1007/978-3-319-43838-2_5


mailto:e.gubar@spbu.ru
mailto:s.kumacheva@spbu.ru
mailto:e.zhitkova@spbu.ru
mailto:olga.porokhnyavaya@gmail.com

92 E. Gubar et al.

a game-theoretical approach to describe the taxation problem for the first time:
they have presented the interaction between tax authority and taxpayers based on a
hierarchical game “principal-to-agent.” As well as in [1] and [19], optimal strategies
are defined as optimal scheme or optimal contract, including tax and penalty rates
and the probabilities of auditing.

However as tax collection is a periodic event, this problem can be considered as a
dynamic process which occurs, for example, on a yearly basis. Moreover, it has been
proved that a total tax audit is quite expensive and so the tax authority must define
a method which helps to collect taxes while minimizing the costs of inspections. In
particular, spreading information about the positive social benefits of tax collection
or possible penalties for tax evasion through social networks and media provides a
tool of control of large group of taxpayers.

A major difference between the models which have been studied in the past
and our current study is that we combine an approach based on game theory with
one accounting for the process of spreading information. Recent studies have been
shown that the process of spreading information resembles an epidemic process
and hence it is possible to use a modification of the Susceptible-Infected-Recovered
(SIR) model to characterize the propagation of information.

As in classical SIR model we consider a large but finite population of taxpayers
which is divided into several subgroups subject to the relevance of information.
The entire population may be sorted out to Uninformed, Informed, Indifferent, and
Resistant. The subgroup Uninformed consists of agents, who do not have informa-
tion about a future tax auditing campaign. Informed agents received information and
disseminate it if it is important to them. Indifferent taxpayers get information, but is
not interesting to them and they may not transfer it.

We suppose that information is propagated through the population by pairwise
contacts between spreaders and others in the population of taxpayers. The important
fact is that if someone has adopted information and it is important, or she believes
in it, then the agent is capable of spreading it to others.

In real life, social networks offer a good platform for interactions among agents in
a population and many taxpayers have extensive social contacts and can disseminate
information through their contacts network. It is a fact that in a social network
information spreads rapidly through different channels without many restrictions
and it is possible to consider the Internet and social networks as an effective tool
for the propagation of information. However people are more likely to believe
news from their friends and relatives while network information must be verified
and from time to time as it has a lack of credibility. Hence we have to take into
account a group of agents who ignore the received news. The scale-free structure
of the Internet implies that each agent with an access to the social network has a
statistically significant probability of having a very large number of contacts, which
can be estimated by the average connectivity of the network.

During the past decades different models for the propagation viruses and
information in networks have been developed. One of the first papers, applying
epidemic processes to the spreading of the rumors, ideas, and information, is [3].
In [14] the spreading of computer virus over the network is considered as the
propagation of epidemic process.
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In this paper, we establish a complex control-theoretic model to design tax
authority control strategies through the propagation of information and advertising
the bonuses of participating in tax collection campaign to mitigate the impact of
nonpayment on society. Information transmission can be represented by dynamics
on a graph where vertices denote individuals and an edge connecting a pair of
vertices indicates interaction between individuals. Due to a large population of
people involved in the process of spreading rumors and information, random
graph models such as scale-free networks in [7, 13] are convenient to capture the
heterogeneous patterns in the large scale complex network.

This paper is organized as follows. In Sect. 2, we review a static game-theoretical
model of tax control. In Sect. 3, we formulate and analyze the complex model of
propagation information through the social network in a population of taxpayers;
we formulate an optimal control problem and present a structure of an optimal
program for spreading information by the tax authority, employing Pontryagin’s
maximum principle. In Sect. 4 we show a modification of algorithm which forms a
scale-free network. Finally, we present simulations and conclusions about the model
and discuss the impact of parameters to the system so that we can come up with
suggestions for possible preventative or control methods.

2 Static Model

Based on a game-theoretical model presented in [1] in this section we present a
static model of tax control. In the mentioned model the tax authority (high level
of the hierarchy) and N taxpayers (low level of the hierarchy) are players. Each
taxpayer has income level equal to i;, where j = 1,N. At the end of every tax period
the jth taxpayer can declare her income as r; which can be less or equal to her true
income i; (r; < i; for each j = I,_N).

After collecting the tax returns the tax authority audits taxpayers with the
probability p. The tax auditing supposed to be absolutely effective, that is, it reveals
the existing evasion.

Let £ be the tax rate, = be the penalty rate (these rates are assumed to be
constants). If the evasion is revealed as a result of a tax audit, then the evaded
taxpayer should pay unpaid tax and the penalty, which depends on the evasion level:
&+ m)(G —rp).

Then the jth taxpayer’s expected payoff is defined from the equation

Bi=1i—&r—p(E+m)G—r), ey

where the first summand is always paid by the taxpayer (pre-audit payment), and
the second—as the result of the tax auditing—made with probability p (post-audit
payment).
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Then the tax authority’s net income can be defined as

N
J=Y (r;+pE+m)G—r)—p-T). )

Jj=1
where ¢ is the unit cost of one audit. Let’s define it as

_ B
c=—, 3)
v

where B is the tax authority’s budget, v is the share of the audited taxpayers:

v

P= “)

Naturally, every players’ aim is to maximize their expected payoffs.
For obtaining the further results we should use the next proposition, which was
formulated for the model, described above, and proved in [1].

Proposition 1. Let the inequality
(§+mi;=c, Q)
be fulfilled for the subset {1, Ny} (Ngy < N) of N taxpayers. The optimal tax

authority’s strategy is p* = for every j = 1,Ny. The jth taxpayer’s optimal
strategy is

Etn

_ 0, ifp < p*,
@) =P =r
ij, fp = p*.

Let the inequality (5) be not fulfilled for every j = Ny + 1, N. The optimal tax
authority’s strategy is p = 0. The jth taxpayer’s optimal strategy is rj* 0) =0.

The first case of the Proposition 1 is about the optimal strategy of tax authority
in terms of what the tax audit is profitable for it (inequality (5) is satisfied). In
response, the optimal strategy for lower level players is to decide to pay taxes or
not, depending on the probability of being audited, chosen by the top player. This
result is similar to the “threshold rule,” obtained in [19] for another mathematical
model of tax control.

The second case is a pessimistic situation. In this case, the tax authority does not
have sufficient funds to carry out the necessary tax audits. Taxpayers are rational,
and in these conditions they can afford not to pay anything.
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3 Dynamic Model of Spreading Information

As we indicated above, taxation is a regular process and can be formulated as a
dynamic model that takes into account the dissemination of information as a factor
to stimulate tax compliance.

Let’s assume that at the first moment of the process the audit probability p = 0.
The total population of rational taxpayers evades of taxation in accordance with the
second case of the Proposition 1.

In practice there is no information about the relation of parameters in (5) for every
j = 1, N, therefore, the tax authority does not know whether auditing is profitable
or not. Moreover, as the tax authority’s budget B is strongly limited, auditing with
probability p* is practically impossible.

Therefore, the tax authority has to stimulate unaudited taxpayers to pay tax that
corresponds to their true income level. The means of such stimulation is spreading
information about future audits to the taxpayers (which can be irrelevant in general).
This information makes rational taxpayers think that the audit probability is high
enough that paying taxes is less costly than evading them and risking having to
pay back-taxes along with the penalties. Within the framework of this model, this
information is given by inequality

p=p" (6)
where p* = Hin (due to Proposition 1).
The tax authority spreads this information with the intensity u(f) (the share of

the Informed taxpayers per unit time), u € [0; %], where # is the possible maximum
value of control function u.

3.1 Scheme of Spreading Information

Here we consider the process of spreading information over the network of contacts
modeled as a scale-free network. Each node of such network represents a taxpayer,
who gets the information and propagates it over her social contacts, internet, social
networks, etc.

The entire population of taxpayers is divided into four subgroups according to
their relation to spreading information (see [6, 8, 13]):

* Uninformed taxpayers S (we denote the number of agents in this group as ng).
They do not have any information about future auditing and, therefore, do not
pay taxes (r; = 0 due to Proposition 1).



96 E. Gubar et al.

Fig. 1 Scheme of information spreading in a taxpayers population

* Informed taxpayers I (group n;). These taxpayers receive information and
propagate it: at first, they pay the taxes corresponding to their true income levels
(§i); second, they spread the information over Uninformed taxpayers.

 Indifferent taxpayers E (group ng). They get information, but do not propagate it:
they do not spread the information over Uninformed taxpayers and pay the taxes
and penalties ((§ 4 m)i)) if and only if they were audited;

* Resistant taxpayers R (group ng). The taxpayers from this subgroup are those
who lost their interest in the information, because they paid taxes and propagated
the information or, vice versa, did not propagate it and, so, paid penalties. In any
case, the information becomes irrelevant for them.

Let’s denote shares of Uninformed, Informed, Indifferent, and Resistant as

=" g M opk _ME kTR
N’ N’ N’ N

3

where S¥ + E* + I* + R* = 1 and k is the degree of each taxpayer’s connections
at time ¢. Initial states are I*(t)) = I§ > 0, EX(t)) = E5 > 0, R*(t)) = RS > 0,
Sk(to) = 1—If — E§ — RS,

The scheme of information spreading in a population of taxpayers is presented
in the following diagram. See Fig. 1.

3.2 Constructing the Aggregated System Profit

In the current study, the aggregated system profit consists of two different parts: first,
profit which was received by the tax authority from the propagation of information
and, second, tax auditing. This step gives us the following conclusions.
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The first conclusion is that in the model examined there is a two-component
budget

T
B= / (B1(P©) + ba(u(®)) dr, ™
0

where b1 (p(t)) is the cost of auditing with probability p and b, (u(¢)) is the cost for
activating the spread of information: it is twice differentiable and increasing function
in u(t), such that »,(0) = 0, b,(u) > 0, when u(¢) > 0.

The second conclusion is that the aggregated system profit also consists of two
components:

J=Jaud+~]infv €]

where J,,4 is the tax authority’s net income, obtained as a result of auditing, and J;,s
is the profit, obtained from spreading information.

The first summand is the post-audit payments of Indifferent taxpayers (from the
subgroup E) without total audit cost:

Jaud = ge(EX(T) — b1 ((T)). ©)
where b (p(T)) is defined from
bi(p(T)) = ngp(T)e, (10)
and the post-audit payments of the taxpayers from E* are
ng
ge(EX(T) = (E+m)p ) _ij. (11)
j=1

To simplify the following reasoning, we will substitute gz(E*(¢)) in the next
continuous estimation:

ge(EX(T)) = (¢ + m)PNE“(D)i, (12)

where i is the average taxpayers’ income.
The second summand of the aggregated system profit is the profit from the
propagation of information:

T
Jog = /0 (Fr (R4 — fe(EX 1)) — b(u(1))) e, (13)

where the integrand is a sum of the taxes fx(R"(f)) collected from the Resistant
taxpayers R¥, without the taxes unpaid by the Indifferent taxpayers from E* and the
cost of activating information spreading b, (u(t)).
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The first summand under the integral in (13) is

RE@O) =6 0] (14)

J=1
The second summand with minus is the unpaid taxes

ng

feE Oy =D i]- (15)

J=1

We should use the continuous estimations for fx(R*(¢)) and fz(E*(r)), as it was
done for gz (E*(f)) in (12):

fr(R (1)) = ENR (1), (16)
fe(EX(1)) = ENEX(1)i, (17)

where i is the average taxpayers’ income.

fr(R¥(#)) and fz(E*(¢)) (from (16) and (17) correspondingly) are non-decreasing
and differentiable functions, such as fz(0) = 0, fz(0) = 0, fr(R*(r)) > 0,
fe(EF(t)) > 0 for R*(t) > 0, E*(t) > 0.

The cost for activating information spreading b, (u(f)) can be defined as

by(u(r)) = Nu(r)c, (18)

where ¢ is the unit cost of information spreading.
Thus, the aggregated system profit (the tax authority’s net income) is

T
J= / e (RE0) — [ (EX0) — ba )] dit + ge(EX(TY) — by G(TY).  (19)
0

3.3 Constructing the System of Equations

We define a process of spreading information as a system of nonlinear differential
equations corresponding to the scheme (Fig. 1). In our study, we use a modification
of a classical epidemic model (see [10, 14]):

Sk = —8,1*S*O; — usk;

jk = (SllkSk@] — (O’] =+ Ot)[k;
EF = alk;

Rk = oyI* + uS*;

(20)
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where control
0<u(®) <u<l, forallte[0,T], (21)

where u is a boundary value of control; §; is the rate of spreading of information
in subgroup I; oy is the rates of forgetting of information in subgroup /; and « is a
probability that received information is not important for an agent.

®,(t) represents a probability that any given link points to an Informed or
Indifferent taxpayer (see [7, 14]), as

(K)P(K'|k)I,
Z W)

o) = k’ ;

(22)
k/
where 7 (k) denotes the infectivity of a node with degree k [7, 14]:

1. (k) <k;
2. (k) is monotonically increasing;
3. lim (k) =M > 0;

k—>00

P(K'|k) shows the probability of a node with degree k pointing to a node with degree
K': P(K|k) = K P(k) , Where mean value (k) = > kP(k).

k
Within the frarnework of a model statement (20)—(21), we solve the optimal
control problem. We find the optimal intensity of information spreading u(), which
gives maximum to the functional (13)

T
/ﬁ@@)ﬁ@@)mmMmemu 23)
0

3.4 Optimal Control Problem of Propagation Information

We find the optimal propagation strategy u to the problem described above applying
Pontryagin’s maximum principle [5, 15]. We define the associated Hamiltonian H
and adjoint functions Ag, A;, Ag, Ag as follows:

H = —by(u) — fe(E*) + fr(R*) + (A1 — As)8;S 1*O; + (Ag — As)uSk+

24
(Ae — Apad* + (Ag — Ap)olk. 24
Adjoint system is
As(t) = — — i = (s = 208161 + (hs = A
ll(f) = —7 = (As — AD8i8* O + (A1 — Ap)ar + (A1 — Ag)oy; 25)

AE(I) = 3Ek _fE(Ek)
Jr(t) = =2 = —fr(RYY;
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with the transversality conditions given by
As(T) =0, Ai(T) =0, Ap(T) =0, Ax(T) = 0. (26)

According to the Pontryagin’s maximum principle [15], there exist continuous
and piecewise continuously differentiable co-state functions A = (Ag, A;, Ag, Ag)
that at every point ¢ € [0, T], where u is continuous, satisfy (25) and (26). In addition,
we have

u € arg max H(X, (Sk,Ik,Ek,Rk),g). 27

u€[0,1]
The derivative of Hamiltonian by u is

OH
= —by(u) + (Ag — As)SE > 0. (28)
u

It is easy to see that Hamiltonian H reaches its maximum if condition (28) is
satisfied.

According to the standard approach our main results are formulated in the
following proposition and auxiliary lemmas:

Lemma 1. Function ¢ is decreasing over the time interval [0, T).
Lemma 2. Forallt, 0 <t < T the following condition holds (Ag — Ag) < O.
Proofs of Lemmas 1 and 2 follow the same technique as in [4, 11].

Proposition 2. In the problem statement (20), (21) (23) optimal control u(t) has
the following structure:

e When b,(+) is concave function for (23), then there exist the time moments t, i €
[0, T] such as

u, if g > by(n)/u, for0 <t <t

u(t) = 0, ifp <by(w)/u, fort<t<T.

(29)

e When by(-) is strictly convex function, then there exist the time moments ty, t €
[0,7],0 <ty <7 =<Tsuchas:

u,on0<t<ty
u(t) = q is continually decreasing function , on ty <t <Tt; (30)

0,ont<t<T;

where ¢ = (Ag — As)S¥ is switching function for control problem (20), (24), (25), u
is defined in (21).
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Rewrite Hamiltonian in the following form:

H= _fE(Ek) +fR(Rk) + (A’I - A’S)SISkaQI + (¢M - bz(”))+ (31)
(AE — A])(Xlk + (A,R - A[)O']Ik.

To prove the main statement of the Proposition 2 we consider two cases:
(1) Consider a case when b, (+) is concave.

Since function b, is concave (b) < 0), then (u¢p — b>(u)) is convex function of u
in (31) and for any ¢ € [0, T] it reaches its maximum either at u(f) = u or u(r) = 0.
From (31) we have that optimal u(f) satisfies u¢p — bo(u) > u¢p — b,(u), where u
is any admissible control, u € [0,u]. If u = u, then switching function is satisfied
¢ > by(u)/u and if u = 0, then ¢ < b, (u) /u.

Lemma 1 suggests that ¢ is decreasing function, then there can be at most one
moment ¢ € [0,7] at which ¢(r) = b,(u), moreover if such moment exists, for
example, 7, then ¢(t) > bry(w)/uon0 <t < tand ¢p(t) < bh(w)/uont <t <T.
Then, (29) is satisfied.

(2) Let cost function b, (+) be strictly convex.

If function b, is strictly convex (b > 0), then minimizer of (u¢ — b,(u)) is unique.
Expression (28) implies that if ‘2—’; = —b,(u) + ¢ = 0 at optimal u else u € [0, u].

Thus, from continuity of functions ¢ and ) follows that u is continuous at all
t € [0,T]. As far as b, is strictly convex, then b, (#) > b,(0), @ > 0. Lemma 1
requires that there exist time moments 7y, 7, such as 0 < #y < 7 < T, which are
defined from the following conditions:

0, if 220 < ¢;
db;! . I
u(t) = <du(¢) ’ if dbjl(lu) <¢ < db;i()); (32)
—= : db) ()
u, if ¢ < T

4 Scale-Free Network

Having considered scale-free network as a tool to structure the population of
taxpayers and an engine for effective information spreading we estimated the
number of contacts as the average connectivity of the network (k) and suppose that
each node has approximately the same number of connections. Usually scale-free
network is defined as a random graph whose degree distribution follows a power
law and the main characteristic of the network does not depend on its size [7, 14].
The probability that a node of these networks has k connections follows a scale-free
distribution P(k) ~ kK~ with an exponent y that ranges between 2 and 3.

We studied the SEIR model of spreading information over a scale-free network
(SF network), taking into account the impact of scale-free connectivity into the
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process of propagations. Based on the algorithm which had been studied in [14]
in the present paper we introduce a modification of the algorithm of constructing
a SF network. We develop a software product that allows for the observation of
the process of dissemination of information and tracking changes in the networks
settings. Below we show the key point of the algorithm:

¢ Initially (in the moment #;), the number of unrelated nodes my is small.
e Atanytimet; = t,_; + | we add a new node with m links that point to an existing
node i with k; links according to the probability

k;
Zj kj .

Here m( and m are the parameters, defined by the user, which have some
restrictions. The parameter m characterizes the average number of connections of
a single individual (k) = 2m. Suppose that the parameter m, must be not more than
m due to the following considerations: if my > m and the next node is added then,
according to (33), the nodes with a zero probabilities of further connection remain
in this network. Then the constructed graph will be disconnected and contains nodes
with no neighbors. These nodes represent individuals who do not have any contacts
in the population and, therefore, are not involved in the epidemic process. These
individuals can then be eliminated. After iterating this process we obtain a network
with N nodes with connectivity distribution P(k) ~ k™.

The detailed process of forming the SF network can be divided into two main
stages:

P(i) = (33)

Step 1. 'We build my disconnected nodes. Then, while the number of available
nodes is not more than m, we add node by node, which immediately get
communication with others. This approach helps to avoid the unacceptable
situation when two nodes are connected by two or more links.

Step 2.  When there are more than m nodes in the network we can use Eq. (33).
Before the size of the network reaches N, the nodes are added one by one. New
node gets the link with one of old nodes according to the calculated probability.
At each iteration the denominator in Eq. (33) changes. Nodes that have already
connected to the added one are not involved in the process anymore. When the
size of the network reaches N, the algorithm is stopped.

Using a scale-free network to assign the connections between agents in the
populations of taxpayers we consider a process of propagating information which
resembles an epidemic, then we must define the parameters of the proposed SEIR
model: §;, 07 are the transition coefficients; the initial distribution of the states of
nodes; p is the audit probability and ¢ is the audit cost; £ and & are the tax and
penalty rates correspondingly; distribution of the population by income level.

As has been shown in the previous research, an epidemic process can take place
in different ways on a network, even when given the same parameters. This occurs
because the initial distribution of the states of nodes introduces an element of
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chance—the user defines the number of nodes in a particular state, but does not
choose exactly which nodes belong to each group. This also changes the initial value
of ®;, since in one case we can obtain a hub as an Informed, which will increase
®;, and in the other case we can obtain a node with a small number of connections.

After all the parameters of the epidemic process are defined, the user can run it
step by step. At each step, the following actions occur:

e For each Uninformed S* node which has a connection with an Informed
“neighbor” I*, we check if he receives and adopts information in accordance
with the specified transition coefficients §;. If the transmission of information is
successful, the Uninformed node changes its status from Sk to I*.

* If a node changed its status from S — I* then it is necessary to determine if
the received information is important to the agent. It means that information
is important for agent with probability (1 — «) and it is indifferent with the
probability «. If the node becomes indifferent, then it belongs to E*.

» Each Informed I* node loses interest in information in accordance with the
transition coefficient o; and becomes resistant to information (R¥).

e after all transitions we recalculate values ®; and draw the new network.

Below we depict an example of process of propagation of information on small
population of taxpayers. In Figs. 2—4 blue dots correspond to Uninformed taxpayers,
red dots—Informed, orange dots—Indifferent, and green dots—Resistant.

5 Numerical Simulations

In this section, we present numerical simulations which are used to corroborate
the results of the main propositions. We study the model of spreading information
with the following parameters: tax and penalty rates are £ = 0.13 and 7 = 0.13
correspondingly; the value of optimal probability is p* = 0.5 (according to the fixed
values of £ and 7r); the value of the actual auditing probability is p = 0.2.

We use the distribution of income among the population of Russian Federation
in April of 2014 (see [2]) and calculate the average income level as the expected
value of the uniform and Pareto distributions [9] (as it was previously done in [12])
to illustrate the simulation results.

We estimate an average monthly income of taxpayers as i = 30,000 (rub)
(see Table 1). According to the statistical data, costs of audit and information
announcements approximately are equal to ¢ = 7455 (rub) and ¢ = 200 (rub),
respectively. We assume that the duration of time period which is valued to
propagate information is 7 = 0.5 (130 days). In our paper we consider population

of size N = 1000 and initial fractions of Uninformed, Informed, Indifferent,
and Resistant are $°(0) = 0.9, EX0) = 0, I*(0) = 0,1, R*(0) = 0. We
use as a model parameters 0 = % = 0.0083, where T = 120 is a period of

obsolescence of information, and « = 0.1. We construct a scale-free network (for
N = 1000), according to the algorithms, which are presented in [14, 16], using the
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Table 1 The distribution of

. No | Average income level (rub) | Share of taxpayers
income among the taxpayers T 1750 0,038

2 14250 0.056

3 16000 0.094

4 | 8500 0.146

5 112,500 0.202

6 |20,000 0.235

7 30,000 0.108

8 170,000 more 0.121

£ 3-:%-3??—-03-5 v

2 e
A

Fig. 2 An example of the network at different moments . t = 8 seconds, N = 45, S¥(r) = 15,
EX(t) = 2, 1(1) = 25, R*(1) = 2,8, = 0.4, = 0.1,0; = 0.05,p = 0.2

next parameters: (k) = 6, P(k) = % m = 5,my = 4, ®; ~ 0.33. Examples of the
networks are presented in Figs. 2, 3, and 4.

In Figs. 5, 6, and 7 we estimate an impact of transitions rate & on SEIR system
and compare fractions of I* in five different cases. A higher value of o suggests
that the fraction I* is less and application of control decreases a number of I* for
the same values of «. This fact shows that spreading information guarantees the
increasing of taxpayers in group R* who will pay taxes.

Figures 8 and 9 show the aggregated system profit and demonstrate the influence
of parameter § to collected taxes. We observe that total system costs which consist
of Jiy and J,,4 persistently grow depending on increasing of « at large value of §
(Figs. 10 and 11).

By studying the impact of various parameters to the population of taxpayers
where tax authority propagates information about future tax audit we can draw a
conclusion that the amount of collected taxes increases if a number of Informed
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Fig. 3 An example of the network at different moments ¢. t = 13 seconds, N = 45, §¥(1) = 0,
EF() = 3,1%(t) = 33,R*(t) = 9,8, = 0.4, = 0.1,0; = 0.05,p = 0.2
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Fig. 4 An example of the network at different moments ¢. T = 42 seconds, N = 45, S(T) = 0,
EXN(T) = 3,IT) = 7, RX(T) = 35,8; = 0.4, = 0.1, 0; = 0.05,p = 0.2. Results: S(T) = 0,
IK(T) = 0, EX(T) = 3, RY(T) = 42, aggregated system profit is J = 109,980 monetary units

taxpayers and spreaders grow. At the same time even if the probability « is high, the
spreading information provokes the augmentation of tax collection with minimum
costs. Therefore we are able to say that this approach can be considered as effective
and reasonable method to improve taxation system.
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Fig. 5 The fraction of Informed taxpayers. Controlled case. Initial states: $¥(0) = 0.9, E¥(0) = 0,
= 0.1, e = 0.(2) 6, = 0.4,

15(0) = 0,1, R(0) = 0, 0, = 0.0083, @ = 0.1. (1) §; = 0.1, I* _
=0.7,1 = 0.38927, tyex = 6
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Fig. 6 The fraction of Informed taxpayers. Uncontrolled case. Initial states: S¥(0) = 0.9, EX(0) =
0, I*(0) = 0,1, R*(0) = 0, 0; = 0.0083, &« = 0.1. (1) § = 0.1, I*,, = 0.1, ey = 0. (2)
8 = 0.4, 1F | = 0.425751, tyyge = 11.(3) §; = 0.7, Lyr = 0.619338, tyyy = 7
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Fig. 7 Fractions of I* in SEIR model, controlled and uncontrolled case. S¥(0) = 0.9, E(0) = 0,

*(0) = 0,1, RX(0) = 0,0; = 0.0083,8; = 0.7. (/) Uncontrolled system. « = 0.1,
I = 0.6193, tyee = 7. (2) Controlled system. & = 0.1, I = 0.3892, f,0r = 6, (3)

Controlled system. « = 0.3, I,’;,ax = 0.1831, tyex = 4, (4) Controlled system. « = 0.5,

15 = 0.1138, tyee = 2, (5) Controlled system. ¢ = 0.3,7%X = 0.1, tey = 0
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Fig. 8 Aggregated system profit tax authority throws information into the taxpayers population.
S¥(0) = 0.9, E¥(0) = 0, I*(0) = 0.1, R¥(0) = 0, oy = 0.0083, &« = 0.7. (I) §; = 0.1,
iy = 282,717, J = 282,945 monetary units. (2) §; = 0.4, J;,y = 158,526, J = 159,171
monetary units. (3) 6; = 0.7, Jy,y = 71,178, J = 72,101 monetary units
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-1500

Fig. 9 Aggregated system profit tax authority throws information into the taxpayers population.
Sk(0) = 0.9, E*(0) = 0, I*(0) = 0, 1, R*(0) = 0, 5; = 0.0083, §; = 0.7. (I) Uncontrolled case.
a = 0.1,/ = —98,018 monetary units. (2) Controlled case. « = 0.1,J = 701,013. (3) Controlled

case. @ = 0.3, J = 111,655 monetary units. (4) Controlled case. « = 0.5 J = 171,343 monetary
units. (5) Controlled case. « = 0.7, J = 211,925 monetary units
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Fig. 10 SEIR model without application of control. $¥(0) = 0.9, E¥(0) = 0, I¥(0) = 0.1,
R¥(0) = 0,07, = 0.0083,8;, = 0.7. I = 0.6193, ty = 7
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Fig. 11 SEIR model without application of control. $¥(0) = 0.9, EX(0) = 0, I*(0) = 0.1,
RY0) = 0,07 = 0.0083, 8, = 0.7. I = 0.3892, 1,0 = 4

max

6 Conclusion

In the present paper we have investigated a complex model in which we combine
a game-theoretical approach of tax control with a dynamic model of information
propagation over a structured population of taxpayers. We formulated an optimal
control problem for a tax auditing policy and analyzed the behavior of agents
depending on social contacts and specific cost functions. All theoretical results
are supported by numerical simulations with the real statistical data. Connections
between taxpayers are modeled as a scale-free network constructed by a specially
developed algorithm. As a result of our research we attempted to provide a new
method of tax collection which can be more efficient and cost-effective.
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