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Abstract This paper deals with a particular class of TU-games, whose cooperation
is restricted by a network structure. We consider a communication situation (or
graph game) in which a network is produced by subsequent formation of links
among players and at each step of the network formation process, the surplus
generated by a link is shared between the players involved, according to some rule.
As a consequence, we obtain a family of solution concepts that we investigate on
particular network structures. This approach provides a different interpretation of
the position value, introduced by Borm et al. (SIAM J Discret Math 5(3):305-320,
1992), since it turns out that a specific symmetric rule leads to this solution concept.
Moreover, we investigate the problem of computing the position value on particular
classes of networks.

Keywords TU-games ¢ Networks ¢ Communication situations * Coalition for-
mation ¢ Allocation protocols * Position value

1 Introduction

A TU-game (a cooperative game with transferable utility) also referred to as
coalitional game describes a situation in which all players can freely interact with
each other, i.e. every coalition of players is able to form and cooperate. However, this
is not the case in many real world scenarios. A typical situation is when there exists
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a restriction on the communication possibilities among players, as in the context
of social interactions between groups of people, political alliances within parties,
economic exchange among firms, research collaborations and so on. In order to
represent and study such situations it is necessary to drop the assumption that all
coalitions are feasible. Then a natural question arises: how can we model restrictions
of the interaction possibilities between players?

A typical way to do so is that of considering a network structure' that describes
the interaction possibilities between the players: the nodes of the network are the
players of the game and there exists a link between two nodes if the corresponding
players are able to interact directly. In this context it is usual to refer to such
networks as communication networks, since a typical situation they model is a
restriction of communication possibilities between players.

This approach leads to the definition of a so-called communication situation [13]
and to the search for solution concepts that take into account the constraints imposed
by the underlying network structure. For the class of graph games, a crucial point
is to study how the communication constraints influence the allocation rules. There
are at least two ways to measure this impact that correspond to two different main
streams in the recent literature.

In a first approach, the communication constraints determine how a coalition is
evaluated. There is no actual restriction constraint on the set of feasible coalitions,
but if a coalition is not connected through the communication graph, its worth is
evaluated on the connected components in the induced graph. This approach is
investigated in the seminal paper by Myerson [13], who introduces the Myerson
value in order to generalize the Shapley value from TU-games to graph games.
Jackson and Wolinsky [11] extend Myerson’s model by considering a function
assigning values to networks as a basic ingredient. Borm et al. [4] introduce the
position value for communication situations. Like the Myerson value, the position
value is based on the Shapley value, but it stresses the role of the pairwise
connections in generating utility, rather than the role of the players. The value of
a pairwise connection is derived as the Shapley value of a game on the set of links
of the network and the position value equally divides the value of each link among
the pair of players who form it. The position value has been extended in [19] to the
setting of network situations introduced in [11] and an axiomatic characterization in
this context is given in [21].

In a second approach, the communication constraints determine which coalitions
can actually form. The definition of the Shapley value relies on the idea of a one-
by-one formation of the grand coalition: its interpretation assumes that the players
gather one by one in a room; each player entering the room gets his marginal
contribution to the coalition that was already there and all the different orders in
which the players enter are equiprobable. To take into account the communication
constraints, the orderings of the players that induce disconnected coalitions are

'Other models introduced in the literature are discussed in [17], including extensions of the
interaction channels to hypergraphs and probabilistic networks, among others.
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ruled out: the formation of the grand coalition requires a communication at any
stage. In order to satisfy the communication constraints Demange [5] proposes to
model the sequential formation of the grand coalition by a rooted spanning tree of
the communication graph. Each rooted spanning tree represents a partial order on
the players set such that the arrival of a new player forms a connected coalition.
Demange [5] introduces the hierarchical outcome in order to extend the concept of
marginal contribution from orderings of the players to rooted spanning trees. This
second approach is also studied by Herings et al. [9] who introduce the average tree
solution for graph games in which the communication graph is a forest (cycle-free
graph). This allocation is the average of the hierarchical outcomes associated with
all rooted spanning trees of the forest. Hering et al. [10] and Baron et al. [2] show
how an extension of the average tree solution to arbitrary graph games can be seen
as another generalization of the Shapley value. In [3], the principle of compensation
formulated by Eisenman [6] is generalized from orderings of the players to rooted
spanning trees and the compensation solution for graph games is introduced.

Based on the idea that the formation of the grand coalition requires a com-
munication at any stage, our approach is different in spirit with respect to the
aforementioned models. We assume indeed a different mechanism of coalition
formation which results from subsequent connection of links among players. This
idea naturally leads to consider a communication situation where a network between
the players is produced by a permutation of links and we suppose that, at each
step of the network formation process, the surplus generated by a link is shared
between the players involved according to a certain protocol. Taking into account
this mechanism, we propose a class of solution concepts where each solution
corresponds to a different allocation protocol. In particular, at a certain step when a
link between two players forms, it is reasonable to equally share the surplus between
the players that are responsible for this connection, i.e. the two nodes incident to
the link that is formed. It turns out that the solution obtained by this particular
allocation protocol is indeed the position value. Our model thus provides a different
interpretation for this well-known solution concept and proposes a family of solution
that embraces the basic principles of both the approaches described above, providing
a bridge between two different ways of modeling the restriction of communication
possibilities between players in a coalitional game.

The paper is structured as follows. In Sect.2 we introduce basic definitions
and notations regarding coalitional games and networks. Section 3 describes the
concept of communication situation and related solutions in literature. In Sect. 4 we
introduce the notion of allocation protocol and the class of solution concepts that
derives. Section 5 presents some preliminary results and in Sect. 6 we give formulas
for the position value on specific communication situations. Section 7 concludes the

paper.
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2 Games and Networks

In this section, we introduce some basic concepts and notations on coalitional games
and networks.

A coalitional game is a pair (N, v), where N denotes the set of players and
v : 2Y — R is the characteristic function, with v(9) = 0. A group of players
S C N is called coalition and v(S) is called the value or worth of the coalition
S. If the set N of players is fixed, we identify a coalitional game (N, v) with the
characteristic function v.

We shall denote by ¢ the class of all coalitional games and by ¥V the class of
all coalitional games with players set N. Clearly, ¢" is a vector space of dimension
2" — 1, where n = |N|. The canonical basis for this vector space is given by the
family of canonical games {es, S € N}. The game e is defined as:

1ifS=T

SCN,S #0.
0 otherwise - 7

es(T) = {

It is possible to consider another basis for ¢V, the family of the unanimity games
{us, S € N}, where ug is defined as:

1ifSCT

SCN,S#0.
0 otherwise - 7

us(T) = {

Every coalitional game v can be written as a linear combination of unanimity games
as follows:

v=" Y cs(us, (1)

SCN.S£0D

where the constants cgs, referred to as unanimity coefficients of v, can be inductively
defined in the following way: let c;y(v) = v({i}) and, for S € N of cardinality
s> 2,

cs)=v) = Y er(v). )

TCS.T#0

An equivalent formula for the unanimity coefficients is given by:

cs(v) = Y (=D)Fu(T). 3)

TCS

Given a coalitional game, it is usual in many applications to consider as a solution
the Shapley value of the game. The Shapley value was introduced by Shapley [16]
in the context of cooperative games with transferable utility. The approach followed
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by Shapley consists of providing a set of properties that a solution for TU-games
should satisfy. A formula to compute the Shapley value is the following:

Bw)= ) M(u(su {it) —v(S)), VieN, 4)

!
SSN\{i} "

where s = || is the cardinality of coalition S and n = |N]|.
The Shapley value belongs to the broader class of semivalues:

W)= Y PluSUL}) —v(S) VieN, 5)

SEN\{i}

where n = |N|, s = |S| and p} is such that p! > O forall s = 0,1,...,n— 1,
Z?;(l) (";1) p; = 1 and represents the probability that a coalition of size s + 1 forms.
Furthermore, if p} > O for all s, then the semivalue is called regular semivalue.
We shall write p; instead of p% when there is no ambiguity about the players set. In

particular, the Shapley value is a regular semivalue with
Ps = —7 - (6)

and the Banzhaf index [1] is defined by (5) with p; = 5.
Another class of regular semivalues is the one of the g-binomial semivalues [14]
w9, where

ps=q'(1—q " 7)

with g € [0, 1] (by convention, we take 0° = 1 if ¢ = 0 or ¢ = 1). In particular if
g = 0 we obtain the dictatorial index ¥ (v) = v({i}), while if ¢ = 1 we get the
marginal index W} (v) = v(N) — v(N\{i}). Note that ¢ = 1/2 gives wl/2 = B, the
Banzhaf value.

An undirected graph or network I is the pair (V, E), where V is a set of nodes
and E C {{i,j} : i,j € V,i # j} is the set of links between the nodes.

We denote by deg(i) the degree of anode i € V, i.e. the number of links incident
to iin I". Given a subset S € V of nodes, we define the induced subgraph Iy =
(S, Es), where E is the set of links {i,j} € E such that i,j € S. Similarly, we denote
by I'4 the graph (V,4,A) induced by a subset A C FE of links, where V, is the set of
nodes incident to at least one link of A.

A path between i and j in a graph I is a sequence of distinct nodes (ig, i1, , ix)
such that iy = i, iy = jand {i5,i;41} € EVs =0,...,k— 1. Two nodes i and j are
said to be connected in I' if i = j or if there is a path between them in I". We call
chain the set of nodes on a path with different endpoints and we denote by s-chain
a chain with s nodes. A connected component in I' is a maximal subset of V with
the property that any two nodes of V are connected in I". We denote by C the set
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of connected components in I". A graph I" is said to be connected if there exists a
path between every two elements of V. A subset of nodes S € V (respectively, a set
of links A € E) is connected if the induced graph I's (respectively, I) is connected.

A cyclein I' is a path (ig, i1, - - - , ix) such that iy = i;. A forest is a graph without
cycles. A tree is a forest with only one connected component.

3 Cooperative Games with Restricted Communication:
The Position Value

A coalitional game describes a situation in which every coalition of players is able
to form and cooperate. If there exists a restriction on the interaction possibilities
among players, not all coalitions are feasible. We can represent this situation by
introducing a network structure that models the interactions between players. This
leads to the definition of a communication situation.

Given a graph I' and a coalitional game (N, v) we can define the so-called
communication situation [13] as the triple (N, v, I"), where N is the set of players,
(N, v) is a coalitional game and I" is an undirected graph with N as set of vertices.
The graph I" = (N, E) describes the communication possibilities between players:
an indirect communication between i and j is possible if there is a path that connects
them; if {i,j} € E, then i and j can communicate directly.

Borm et al. [4] introduce a solution concept for a communication situation based
on the approach of Meessen [12]: given I" = (N, E) and A C E, the link game v" is
defined by:

i) = Y (D), ®)

TeCry

where Cr, is the set of connected components in ;. We denote by ¢, the vector
space of all link games on I" = (N,E), E C {{i,j} : i,j € V,i # j}, where N
is a fixed set of players. Note that the dimension of ¥, is equal to the number of
connected subsets of Ej; i.e. the cardinality of {A C E : Iy is connected}.

Every link game v’ can be written as a linear combination of unanimity link
games as follows:

vl = Z ca(b)uy, )

ACE

where ¢, are the unanimity coefficients of v*:

cah) = (=D)AL (py; (10)

BCA
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or equivalently cgy(v") = vE({l}) and for A C E, |A| > 2:

) =v@) = Y ). (11)

BGA.B#D

Given a communication situation (N, v,I"), the position value w(N,v,I") is
defined as:

(N, v, T") = % Z @,(WVH) VieN, (12)

a€A;

where A; = {{i,j} € E,j € N} is the set of all links for which player i is an
endpoint. Note that, since the players in v* are the elements of E, i.e. the links of I',
in formula (12) we compute the Shapley value of a link. We shall write 7 (v) when
there is no ambiguity about the underlying network.

We point out here a particular property satisfied by the position value that
will be useful for our purpose, namely the superfluous arc property [21]. Given
a communication situation (N, v, I'), with I = (N, E), we call superfluous a link a
such that v£(A U {a}) = vi(A) VA C E.

The superfluous arc property states that if a is a superfluous arc, then
7(N,v,I") = n(N,v, I'’), where I’ = (N, E\{a}). The property follows directly
by formula (12): the links (or arcs) that provide a marginal contribution equal to zero
to every coalition of links (not containing the link itself) do not give contribution to
the sum in (12), thus the position value does not change if they are removed from
the network.

Note that, like the Shapley value, every semivalue ¥P induces a solution concept
¥P for communication situations given by:

YyP(N, v, T) = % > wP@h. (13)

a€A;

We write ¥ (v) when there is no ambiguity about the underlying network. Note that,
by definition of semivalue, the superfluous arc property still holds for every solution
Y corresponding to a given semivalue.

See [18, 19, 21] for an axiomatic characterization of the position value for
network situations, which generalize the context of communication situations.

4 Coalition Formation and Allocation Protocols

In Sect.2 we introduced the Shapley value and gave a formula to compute it.
Formula (4) has the following interpretation: suppose that the players gather one by
one in a room to create the grand coalition. Each player entering the room gets his
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marginal contribution to the coalition that was already in the room. Assuming that
all the different orders in which they enter are equiprobable, one gets the formula,
where n! is the number of permutations on a set of n elements.

Let us consider a different mechanism of coalition formation: let us assume that
a coalition forms by subsequent formation of links among players. This naturally
leads to consider a communication situation, where a network between the players
is produced by a permutation of links and all the different orders in which the links
form are considered to be equiprobable.

In this scenario, we can imagine that, when a link between two players forms, the
players that are connected to each other receive a certain value according to some
rule. Let us suppose that, at each step of the network formation process, when a
link between two players i and j forms, the value of the coalition S, where S is the
connected component containing i and j, reduced by the values of the connected
components formed by the players of S at the previous step, is shared between the
players involved according to a certain protocol. Then a natural question rises: How
to share this value?

Given a communication situation (N, v, I"), let us consider a possible permu-
tation o of links. At each step k of the network formation process, when the k-th
link @ = {i,j} in the sequence determined by o forms, let us consider the surplus
produced by a:

7 =v(S) —v(Ci_y,) — v(Cy ) (14)

where S is the connected component in I” containing i and j at the step k, and C}_ Lo

and C,_, , are the connected components in I” at the step k — 1, containing i and j,
respectively.

An allocation protocol is a rule that specifies how to divide S} between
the players in S. Given an allocation protocol r and a communication situation
(N, v, I'), a solution of v, that we shall denote by ¢"(v), is given by:

|E|

r 1 T ( QO :
) = I YD fS). YieN, (15)

" 0€XE k=0

where Xr is the set of possible orders on the set of links E in I" and f is a function
that assigns to each player i € N a fixed amount of the surplus S7, depending on the
allocation protocol r.

In other words, the solution ¢’ (v) is computed by considering all possible
permutations of links, and summing up, for each player i, all the contributions he
gets with the allocation procedure r, averaged by the number of permutations over
the set of links among the players, with the interpretation discussed at the beginning
of this section.
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This idea leads to the introduction of a class of solution concepts: different
choices of the allocation protocol define different solutions for a communication
situation. At a certain step, when a link a = {i, j} forms, it is possible to consider
the allocation protocol that equally divides the surplus between players i and j only.
The solution obtained by this particular allocation protocol is indeed the position
value 7 defined in (12).

Note that other solution concepts can be achieved by sharing the surplus among
the players involved in a different way.

S Preliminary Results

In this section we present some preliminary results that will be useful in the next
sections.

Proposition 1. Let (N, v, I') be a communication situation and v* the correspond-
ing link game. Then c4(vF) = 0 for any coalition A C E which is not connected in
I, where c4(vh) are the unanimity coefficients of v*.

Proof. We prove the result by induction on a = |A].
Suppose a = 2,i.e.A = {1, b}, 11,1, € E, where [, and [, belong to two different
connected components. From this hypothesis and from (8) and (11) we get

v({h}) +v({k})
cuy (1) + gy () (16)

v (A)

and

vh(4) = 3 ep(ot)

BCA

= ¢y (") + ey (0F) 4 eawh). (17)

By comparing (16) and (17), we get that c4 (vY) = 0.

Let us now consider k > 2 and suppose by inductive hypothesis that cz(v") =
0, VB such that |B| < k and B is not connected in I". We shall prove that ¢, (vl) =
0 VA such that A is not connected and |[A| = k + 1. Let B C A be a connected
component in I, i.e. B; € Cr,. Then by hypothesis A\B; # @. It follows that:

vE(A) = vE(B)) + vE(A\B)). (18)
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Moreover it holds:

vh(A) = 3 epoh)

BCA

Yo+ D b+ > cz(v")

BCB) BCA\B| BCA:ANB £OABN(A\B)#£0

vH(B1) + vH(A\B)) + Z cp(v") + ca(vh)
BSA:BNB £BABN(A\B) 0

vE(B1) + vH(A\B)) + ca(vh), (19)

where (19) follows from the inductive hypothesis.
Then, by comparing (18) and (19) we get: c4(v") = 0, which ends the proof. O

Note that an equivalent result has been proved by Van den Nouweland et al. [21] for
a value function (i.e. a characteristic function over subsets of links).

Corollary 1. The family of unanimity games {us,A C E, where A is connected in
I'} is a basis for 4,

Proof. From Proposition 1, we get that {us, A C E, where A is connected in "} is
a spanning set for the vector space ¢;. Moreover the cardinality of this set is equal
to the dimension of ¥;. O

Equivalent results hold in the context of graph-restricted games and the proofs can
be found, for example, in [8]. Moreover, the previous results hold for a generic value
function v that satisfies the component additivity property, i.e. such that v(A) =
ZTGCFA v(T) for every network I" over the set of nodes N.

6 The Position Value on Particular Classes
of Communication Situations

In general, given a communication situation (N, v, I") it is not easy to compute the
position value. However, it is so for particular classes of games and graphs. In this
section we give formulas to compute the position values on particular classes of
communication situations, where the underlying network is described by a tree or a
cycle. We assume w.l.0.g throughout our work that v({i}) = 0 Vi € N.
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6.1 The Position Value on Trees

Let (N,v,I") be a communication situation, where I" = (N,E) is a tree and
IN| = n. Given anode i € N and a coalition S C N, we define fringe(S) = {j € N\S
such that {i,j} € E for somei € S}. Letf(S) := |fringe(S)|, degs(i) the degree of i in
S, i.e. the number of nodes in S that are directly connected to i in I" and degfinge(s) (i)
the number of nodes in fringe(S) that are directly connected to i in I".

We provide a formula for the position value on eg, with S € N connected in
I" such that |S| > 2. If S is not connected, it doesn’t make sense to consider the
position value of e, since the associated link game €% is the null game.

Proposition 2. Let S C N connected in I', where I is a tree and |S| > 2. Then the
position value on the canonical game eg is given by:

—2)!(f(S)=1)! .
JEE Si(s) ifi € S

mi(es) = —%% if i € fringe(S) (20)

0 otherwise

where m = s + f(S) and 8;(s) = f(S)degs(i) — (s — 1)degpinge(s) (i)

Proof. We observe that every link not in Esyfinge(s) is superfluous. Therefore
mi(es) = O for every i ¢ S U fringe(S) and we can reduce the network to
(S Ufringe(S)’ ESUfringe(S))'

Consider i € S. Node i gets a positive contribution (equal to 1/2) every time
a link incident to it is the last one to form inside S and no link outside § already
formed. This happens degs (i) times. Moreover it gets a negative contribution (equal
to —1/2) when all the links in S already formed and a link incident to i is the first
one to form outside S. This happens degjyinge(s) (i) times. Therefore we get

—D!m—s—1)!
Y degs (i) — (s zm(ni 1)3! ) degf,mgg(s)(i)],

Ir(s—2)!(m—s)!
es) = L[ 72—
2
where m = s 4 f(S) and the expression (20) follows directly.

Consider i € fringe(S). Node i gets a negative contribution when all the links in S
already formed and the only link that connects i to S is the first one to form outside
S. Therefore we get

1(s—1D)l(m—s—1)!
mi(es) = —3 =)
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Note that the formula holds also for S = N, with fringe(N) = @, which implies that
f(N) = 0. On the other hand, when S = {i}, the associated link game ¢% is the null
game, as for S not connected.

Let us consider the unanimity games {ug, S € N}. We also provide a formula for
the position value on ug, with § € N connected in I" such that |S| > 2.

Proposition 3. Let S C N connected in I', where I is a tree and |S| > 2. Then the
position value on the unanimity game ug is given by:

%degx(i)ﬁ ifieS
mi(us) = 21
0 otherwise.

Proof. We observe that every link not in Es is superfluous. Therefore 7;(ug) = 0
for every i ¢ S and we can reduce the network to (S, Es).

Consider i € S. Node i gets a positive contribution (equal to 1/2) every time
a link incident to it is the last one to form inside S. This happens degg(i) times.
Therefore we get

1(s—2)!(m—s)! .
mi(es) = ETI)!degS(l)’
where m = s and the result follows directly. O

Moreover, if S = {j}, easy calculations show that:

3 ifi=j
mius) = 1 3 if i € fringe({j})

0  otherwise.

6.2 The Position Value on Cycles

Let (N,v,I") be a communication situation, where I" = (N, E) is a cycle and
IN| = n.

We provide a formula for the position value on eg, where S € N is a s-chain (i.e.
S is connected in ') with 2 < s < n— 2. If S is not connected, or S = {i}, it doesn’t
make sense to consider the position value of eg, since the associated link game €% is

the null game.

Proposition 4. Let S € N be a s-chain in I', where I' is a cycleand2 < s <n—2.
Then the position value on the canonical game eg is given by:
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— ) (m—s—1)! ip
%—(‘ 2();&1)? Wm—2s+1)ifi €S,
(s—2)!(m—s)! e
=T fies;
mi(es) = (22)
—1)! —s—1)! ep e .
—%—(S l()r'n(fl)s! Dt ifi € fringe(S)
0 otherwise

where m = s + f(S), S, is the set of the extremal nodes and S; = S\S, is the set of
the internal nodes.

Proof. We observe that every link not in Esyfinges) is superfluous. Therefore
mwi(es) = 0 for every i ¢ S U fringe(S) and we can reduce the network to
(S Ufringe(S)’ ESUfringe(S))'

Consider i € S. We shall distinguish between the internal and extremal nodes of
the chain S. Let i € S, the set of endpoints in I's. Node i gets a positive contribution
when the link incident to it in the chain is the last one to form inside S and no
link outside S already formed. Moreover it gets a negative contribution when all the
links in § already formed and the link incident to i in fringe(S) is the first one to
form outside S. Therefore we get

Ir(s=2)!m—s)! (—DIm—s—1)!
miles) = 5 - |
2 (m—1)! (m—1)!
where m = s + f(S) and the expression (22) follows directly.

Leti € S; = S\ S,. Node i gets a positive contribution when one of the two links
incident to it in S is the last one to form inside S. Therefore we get

1(s—2)!(m—ys)!
T[,’(ES) = 2[5W]

Consider i € fringe(S). Node i gets a negative contribution when all the links in S
already formed and the only link that connects i to S is the first one to form outside
S. Therefore we get

1(s—D!(m—s—1)!
7i(es) = =3 =)

On the other hand, if § = N\{j}, the following proposition holds:

Proposition 5. Let S € N be a s-chain in I', where I' is a cycle and s = n — 1.
Then the position value on the canonical game eg is given by:
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4—n Iy
== S1E€Se

mi(es) = 1 wmne=y i€ S (23)

—ﬁ if i € fringe(S)

where S, is the set of the extremal nodes and S; = S\S. is the set of the internal
nodes.

Proof. Using the same argument of the previous proof, formulas for i € S are
derived by noting that there is no superfluous link and m = n. Moreover, the only
node i € fringe(S) gets twice the contribution he gets in the previous case since it is
directly connected to S by its incident links. O

Note that if S = N, there is no superfluous link and by symmetry 7;(es) = %, for all
i€N.

We provide a formula for the position value on ug, with § € N an s-chain. If
2 < |S| < n — 1, the following proposition holds:

Proposition 6. Let S C N be a s-chainin I', where I is a cycleand2 < s <n—1.
Then the position value on the unanimity game ug is given by:

1[ (n—=s+1) 1 o
5[ Z(;—l) + (28‘ - 3)n(n—l)] lfl €S,

mi(us) = | 3295 + 20— 2) ] Wi €S

=Dy ifi¢s

where S, is the set of the extremal nodes, i.e. the endpoints in I's, and S; = S\S, is
the set of the internal nodes.

Proof. We observe that there is no superfluous link. Consider i € S,. Node i gets a
positive contribution (equal to 1/2) every time the link incident to it in the chain is
the last one to form inside S (no matter which links already formed outside ).

Moreover it gets a positive contribution when the link incident to it outside the
chain is the last one to form in E \ {a}, where a is the link incident to i in the chain
S and every time one of the two links incident to i is the last one to form in E \ {b},
where b is one of the links in the chain § not incident to i. Note that the first case
happens Y /_ ("_‘;(H) times; the second one only occurs once and the last case
happens 2(s — 2) times. This yields the following formula for i € S,:

1|l (n—s+1\Gs—2+k!n—s—k+1)! 1
]T,'(I/ts) = — |:Z( ) + (2S—3)mi| .

]
2 prd k n!
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Consider i € S;. Node i gets a positive contribution (equal to 1/2) every time one
of the two links incident to it in the chain is the last one to form inside S (no matter
which links already formed outside S). Moreover it gets a positive contribution
whenever one of the two links incident to it is the last one to form in E'\ {a}, where a
is other link incident to i in the chain S and every time one of the two links incident
to i is the last one to form in E \ {b}, where b is one of the links in the chain S not
incident to i. Note that the first case happens 2 3"7_y (""3*") times; the second one
only occurs twice and the last case happens 2(s — 3) times.

Consider i ¢ S. Node i gets a positive contribution (equal to 1/2) every time one
of the two links incident to it is the last one to form in E \ {a}, where a is one of the
links in the chain S. This happens 2(s — 1) times. It follows that:

_ — s—24k)!(n—s—k+1)! ifi
%[ Z:i) (n i+1)w++)+(25—3)m] ifiesS,

mi(us) = | 3[2 X020 (L) NPT 126 - ) ekl e s,

(s — 1)n_(n1_1) ifigs

This formula can be simplified by using Lemma (1) (see Appendix):

s+ 1 =24+k'n—s—k+1)!
Z(f’l N )

= k n!
_l§<n—s) n—s+1 (s=2+k)n—s—k+1)!
n— k Jn—s—k+1 (n—1)!
_n—s+1 rfj(n—s) (s—2+k!(n—s—k)!
n = k (n—1)!
where (24) follows from identity (27). This ends the proof. O

Note that if S = N, all players are symmetric and 7;(us) = % On the other hand, if
S = {j}, the position value is very easy to compute. In fact, the links a = {i,j} and
b = {j, k} are symmetric players in the link game, while all the remaining links are
superfluous. This implies that @, = @, = % and @. = 0 Vc € E\{a, b}.

1/2ifi=j
wi(us) =3 1/4ifi #j{i,j} €E
0 otherwise.
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6.3 The Position Value for a Generic Coalitional Game

In the last two sections we provided formulas for the position value on particular
classes of games. We shall use those formulas and the results of Sect.5 to derive
an expression that shows the relation between the position value for a generic game
and the position value of unanimity games.

Proposition 7. Let (N, v, I') be a communication situation. Then the position value
fori e N is given by

m) = Y a@Hmw), (25)

ACE connected

where w is such that w* = uy.

Proof. By definition of position value and by Corollary 1 we get that:

TURED SENCCEED S SRS LN

a€A; a€A; ACE connected
— L
= E ca(v)mi(w)
ACE connected
where w is such that wX = uy. O

This result implies that, in order to compute the position value of a generic game,
we have to consider the position value on those games whose corresponding link
game is a unanimity game on a connected subset of links.

However, when I' is a tree, the formula (25) can be simplified and a direct
relation between the position value for a generic game and the position value of
unanimity games can be obtained.

Corollary 2. Let (N, v, I") be a communication situation, where I' is a tree. Then
the position value for i € N is given by

m@) = Y crWh)mius). (26)

SCN connected

Proof. Consider A C E connected in I". Let S be the set of nodes in 4. This
definition of S induces a bijection between the set {w : w* = u,, A connected in I'}
and the set {ug : S € N, S connected in I"}. Therefore the result follows directly.

O

However, the computation of the position value for a generic game remains
difficult even if the underlying graph is a tree. Indeed, deriving the position value
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using formula (26) requires listing all subtrees of a tree (the problem has been
extensively addresses in the literature, see, for example, [7, 15, 20] without) and
computing the corresponding unanimity coefficients.

7 Conclusions

In this paper we proposed a family of solution concepts for communication
situations that embraces the principles of the two main approaches existing in the
related literature. We also provided a different interpretation of the position value,
as the solution concept arising from a particular symmetric allocation protocol,
which prescribes how to share the surplus generated by a link among the players
involved in the network formation process. Moreover, we provide an expression for
the position value of a game when the underlying network is a tree, which relates its
computation to the one for unanimity games.

The computation of the position value and its complexity remains an open
problem, which has not been studied in the literature and deserves, in our opinion,
further investigation. Another interesting direction for future research is to provide
a characterization of the family of solution concepts we introduced, based on some
reasonable properties that an allocation protocol should satisfy. Moreover, it would
be interesting to investigate the relationship between different allocation protocols
and known solution concepts, besides the position value.

Acknowledgements We are grateful to Stefano Moretti and Roberto Lucchetti for helpful
comments on a previous version of the paper.

Appendix
Lemma 1. Given n,s € Nand 2 < s < n, the following combinatorial identity
holds:
2‘: n=s\G-2+kbn—s—k! _ 1 ' @n
= k (n—1)! s—1

Proof. To derive the position value on trees for the unanimity games ug, we made
use of the superfluous arc property. An equivalent formula can be obtained directly
by considering all the possible coalitions to whom a given link provides a positive
marginal contribution.

Each i ¢ S gets a null contribution from every incident link, because of the
superfluous arc property. Consider i € S. Node i gets a positive contribution (equal
to 1/2) every time a link incident to it is the last one to form inside S (no matter
which links already formed outside S). This happens degg(i) times. It follows that:
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Sdegs(i) Yy (1) = f i e S
mi(us) = (28)

0 otherwise.

From the equivalence of formulas (21) and (28), the result follows directly. O

We point out that other combinatorial identities arise by considering a generic
regular semivalue ¥ and computing the corresponding ¥ (N, ug, I') as in (13), when
I' is a tree.

As for the position value, the solution 1 (us) can be obtained directly or by using
the superfluous arc property. From the equivalence of the corresponding formulas,
it follows that:

f (n - S) n—1 o oos—1 (29)
k Ps+ik—2 = Ps—2

k=0

where {pj’”}j is a probability distribution over the subsets of links in a network with
m links. Precisely, p;" represents the probability for a link to join a coalition of
cardinality j, with 0 <j <n — 1.

For example, by considering the Banzhaf index, we get the trivial identity

— [n—s) 1 1
Z( k )—2n_z =53 (30)

k=0

Non-trivial identities can be derived by considering other regular semivalues, such
as the p-binomial semivalues:

n—s n_s B o o
Z( ) )q”" 21— gy = g2, 31)

k=0

where g € (0, 1).

Note that the combinatorial identities that we derived can be easily obtained
through classical game-theoretical tools by computing the corresponding power
indices on the unanimity games.
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