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Abstract. In this paper (This is a revised and extended version of the
article A Comparison of Polish Taggers in the Application for Auto-
matic Speech Recognition that appeared in the Proceedings of Language
and Tools Conference, Poznan, 2013.) we investigate the performance of
Polish taggers in the context of automatic speech recognition (ASR). We
use a morphosyntactic language model to improve speech recognition in
an ASR system and seek the best Polish tagger for our needs. Polish is
an inflectional language and an n-gram model using morphosyntactic fea-
tures, which reduces data sparsity seems to be a good choice. We investi-
gate the difference between the morphosyntactic taggers in that context.
We compare the results of tagging with respect to the reduction of word
error rate as well as speed of tagging. As it turns out at present the tag-
gers using conditional random fields (CRF) models perform the best in the
context of ASR. A broader audience might be also interested in the other
discussed features of the taggers such as easiness of installation and usage,
which are usually not covered in the papers describing such systems.

Keywords: Morphosyntactic tagger · Polish · Automatic speech recog-
nition · Language model

1 Introduction

Unlike English, which is a positional language, Polish has a rich morphology, with
many morphosyntactic features. This boils down to the observation that many
syntactic features that in English are encoded in the relative position of words,
in Polish are encoded in the suffix of the word. For instance the expressions dom
Adama and Adama dom (Adam’s house) although not equally probable, express
the same relation between these words. What is more the number of tokens in
Polish and other inflectional languages is larger than in English, since words have
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many forms (e.g. Adam, Adama, Adamowi, Adamem, Adamie, Adamowie,... are
all forms of Adam).

These two facts have important implications when building a language model
for an ASR system for Polish [29]. The first one makes the generally accepted
methods improving language models, namely class-based n-grams [4] less useful,
since they are based only on the positions of words. The second means that when
building word-based language model for Polish, the size of the corpus has to be
substantially larger than for English, in order to overcome the data-sparseness
problem.

In this research we investigate the differences in the performance of taggers
in the application for ASR. We want to find out which of the available taggers
is the best in terms of tagging quality and speed. Since there are many taggers
designed specifically for Polish we are not going to develop our own solution. As
a result we asses the primary features of the taggers such as accuracy and speed,
but we have also an opportunity to compare their secondary features, such as
the easiness of installation and their licenses.

Even though there are results showing which of the implemented taggers
performs the best on the reference corpus (Concraft) [24], we want to find out
if the differences in accuracy are preserved in a setting which is substantially
different from the original one. This is caused by the large number of ungram-
matical sentences that are present in the output of an acoustic module as well as
restriction on the number of employed grammatical categories (part-of-speech1

(POS), number, gender and case).

2 Taggers

The comparison of the taggers is restricted to the following systems: WMBT [17],
Pantera [1], WCRFT [18] and Concraft [24]. These are the most up-to-date, pub-
licly available systems enlisted on the “Computational Linguistics in Poland”2

web-page (in the section “Language Tools and Resources for Polish”) which were
developed specifically for Polish. We do not include in the comparison TaKIPI
[12] as well as TnT [2] for which there is a Polish model available. Regarding
TaKIPI the reason is that it was bound to a specific tagset which is no longer
supported, especially in the primary Polish corpus, that is National Corpus of
Polish (NCP) [15]. As a result it is no longer developed and its performance is
reported [1,17,18,24] to be inferior to all the presented taggers. The reason for
TnT is that it uses second-order Markov models, which are also reported to be
inferior to all the presented techniques (with respect to tagging of Polish).

The comparison has the following structure. First we present a short descrip-
tion of the technique used by the tagger, together with the information about
its license. Second we describe the issues (if any) connected with the installation
1 We use the terms part-of-speech and grammatical class interchangeably in this doc-

ument, due to the way they are used in the literature regarding Polish tagsets and
taggers.

2 http://clip.ipipan.waw.pl/LRT.

http://clip.ipipan.waw.pl/LRT
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and usage of the tagger. Then we present the general overview of the technique
implemented in the tagger. We conclude the presentation with a more detailed
description of the adaptations employed to solve specific Polish tagging issues.

2.1 WMBT

WMBT3 (Wroc�law Memory-Based Tagger) [17] is a tagger that utilizes the
Memory Based Learning (MBL) technique and is distributed under a Lesser
General Public License (LGPL). It uses the TiMBL library [5], which is a set of
Natural Language Processing (NLP) tools employing MBL methods for various
language-related problems. Although TiMBL comes with a specific tool designed
for tagging, WMBT only uses its general MBL capabilities.

The installation of WMBT is not straightforward and requires manual instal-
lation of several other libraries: Maca [17], Corpus2, Morfeusz [26], WCCL [19]
and TiMBL. The first library is used for splitting the analyzed text into para-
graphs and segments. It also works as a proxy to the morphological analyzer.
Corpus2 provides an efficient access to corpora (NCP in particular). Morfeusz is
a quite popular library for morphological analysis of Polish words and is used in
all the other taggers. WCCL provides a formalism for expressing and transform-
ing various lexical and morphosyntactic features, such as case agreement. It is
also used by WCRFT. TiMBL is the already mentioned library providing MBL
tools and algorithms.

The installation requires manual downloading of some of the tools, since not
all of them are provided as packages for popular operating systems (e.g. Ubuntu).
They also have many dependencies so the overall process is pretty tiresome. The
most problematic is the requirement for the TiMBL Python wrapper, which is no
longer supported by the developers of that library. Compilation and installation
errors are not uncommon. What is more, running WMBL on a plain text requires
a separate call to Maca, for the input preprocessing. As a final note we should
observe, that the tagger is no longer developed by the team, since it was replaced
by WCRFT.

The general idea behind MBL-based tagging [6] is as follows: during the
training phase, the word occurrences are transformed into feature-vectors which
are, together with the correct value of the morphsyntactic label, stored in the
memory of the tagger, i.e. they are simply recorded. During the disambiguation
phase words are also transformed into feature-vectors, the tagger consults its
memory and finds the vectors which are the most similar (w.r.t to a selected
metric) to the vector in question and selects the best label using voting among
the k-most similar examples.

WMBL uses MBL together with tiered tagging [22]. This is due to the fact,
that Polish morphosyntactic labels are positional, i.e. the values of various mor-
phosyntactic categories applicable for a given grammatical class are concatenated
and form a complex label. As such the number of possible and also the empir-
ically observed distinct labels is large (more than 4 thousand and 1 thousand

3 http://nlp.pwr.wroc.pl/redmine/projects/wmbt.

http://nlp.pwr.wroc.pl/redmine/projects/wmbt
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respectively). To overcome the data-sparseness problem WMBT disambiguates
the input using a sequence of tiers, each using a separate model capturing the
features of only one grammatical category (e.g. case) or the grammatical class.
It should be noted that due to the sequential nature of the tiers, the error made
by a preceding tier cannot be corrected by the following one and in such cases
the tagger selects one arbitrary label.

WMBL uses the following features to convert a word occurrence into a
feature-vector: values of the grammatical class, number, gender and case of the
surrounding words; lowercased orthographical forms of the surrounding words,
if they were popular enough (among 500 most popular words in the training cor-
pus) and binary features indicating if there is a possible agreement in number,
gender or case between the word in question and the surrounding words. All
these features are used on all tiers.

During the disambiguation the labels that are compatible with the word in
question are supplied by the morphological analyzer. Then at each tier a separate
memory is used to retrieve the most similar vectors. The winning grammatical
category value (e.g. nominative case) is selected and all the labels provided by
the previous tier that are not compatible with the selected value are removed. If
that step would yield the label set empty, no action is taken, with assumption
that the remaining ambiguity might be removed by the subsequent tiers. If the
ambiguity remains until the end of the procedure, one of the remaining labels is
arbitrarily selected.

2.2 Pantera

Pantera4 (“Polskiej Akademii Nauk Tager Ekstrahuj ↪acy Regu�ly Automaty-
cznie”, which means in English “Automatic Rule Extraction Based Tagger of
the Polish Academy of Sciences”) [1] is distributed under General Public License
(GPL) and is based on the idea of Brill tagger [3]. In the past (2013) the instal-
lation procedure was straightforward, since the tagger was available as a package
for many Linux distributions (Ubuntu, Fedora and OpenSuse). But these pack-
ages are no longer available for the most up-to-date distributions, so it has to be
complied by the user. Fortunately it also does not require any external resources,
so the procedure is rather straight-forward. We should also note, that the code
of the tagger is available at code.google.com – a service that is no longer in
operation. Thus we might conclude that the system is no longer developed.

The mode of operation of the tagger is similar to the idea used in the Brill
tagger, i.e. during the learning phase the tagger processes the learning material
using its current knowledge and then, by comparing the results with the reference
corpus it induces rules that are used to fix the observed errors. At each iteration
the rule that has the largest good to bad modifications margin is selected, the
text is tagged once again and the procedure is repeated. A unigram label statistic
is used as an initial model.

4 http://code.google.com/p/pantera-tagger/.

http://code.google.com/p/pantera-tagger/
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The modifications implemented in Pantera mainly account for the character-
istic features of inflectional languages. The original Brill tagger had very small
set of templates used as transformations. The set was extended in Pantera and
in particular the transformation rules were split into a test (LHS) and an action
(RHS) part, allowing for more flexible rule construction. The morphosyntactic
labels were disambiguated in several passes covering only one selected grammat-
ical category. The LHS of the rules might cover lexical features, such as prefix
and suffix of the word. And the last but not the least, the implementation was
simplified and parallelized.

The generalization of the transformation rules was introduced firstly in order
to capture complex conditions that could be useful in Polish (e.g. for capturing
case or gender agreement, which can not be expressed by the rules devised in
Brill tagger), and secondly in order to allow for assigning the whole morphosyn-
tactic label at once as well as only a part of the label e.g. a value of particular
grammatical category or the grammatical class.

The multipass tagging works as follows during the learning phase the tagset
is converted to a set of tagsets, each covering smaller number of grammatical
categories. The training is started with the most simplified tagset and the rules
are recorded. Then a more feature-rich tagset is used and new set of rules is
discovered. The procedure is repeated until it reaches the original tagset. Then
during the tagging the rules recorded at each step are applied separately and
the values of already determined grammatical categories are not changed.

The last interesting extension covered the lexical features. The LHS of the
rules may check if the word contains particular letter, starts or ends with par-
ticular letter sequence and so on. The authors of the tagger reported that the
lexical rules improved the tagging accuracy by 1.5 % point.

2.3 WCRFT

WCRFT5 (Wroc�law Conditional Random Field Tagger) [18] can be treated as a
development of the WMBT tagger, since they share the tiered approach. The pri-
mary difference is the classifier used to select the labels on each tire in WCRFT
the decision is made using Conditional Random Field (CRF) [9,21] linear-chain
classifier.

The tagger is distributed under the LGPL license. The installation proce-
dure is similar to WMBL, i.e. it uses similar external libraries (Maca, Corpus2,
Morfeusz, etc.) and in many cases this requires manual installation of second-
order dependencies. On the other hand the tagging process was simplified, e.g.
Maca does not have to be called as a separate step.

Conditional Random Fields is a mathematical model used to estimate the
conditional probability of a hidden states assuming given set or sequence of
observations. In general they are similar to Hidden Markov Models (HMM) [16],
with the primary difference being the fact that CRF is a conditional model while
HMM is a generative model. In the context of NLP CRF is gaining popularity,

5 http://nlp.pwr.wroc.pl/redmine/projects/wcrft/.

http://nlp.pwr.wroc.pl/redmine/projects/wcrft/


A Revised Comparison of Polish Taggers in the Application for ASR 73

since unlike HMM it allows to directly represent distant and forward relations,
which are quite common in languages as well it works well with dependencies
between the input features, which are also very common.

The design of a CRF for NLP tasks boils down to a selection of a number of
characteristic functions which indicate if a given feature holds for the observation
in question. The values of these functions with respect to the individual tokens
are linearly combined using a fixed set of weights. The weights are determined
during the training of the model.

Although the model requires that the features are binary, it is usually easier
to model at least some of the features as having multiple values. Since this is a
very popular scenario, CRF introduces the notion of function-templates which
can be formulated using multi-valued features but are transformed into functions
with a binary counter-domain. As a side effect a large number of functions might
be generated. Since the training time is quadratic with respect to the number of
possible labels (more than one thousand in Polish), the straightforward appli-
cation of CRF to the problem of Polish morphosyntactic tagging fails due to
practical time and memory constraints.

This is the reason why WCRFT uses tiered approach towards tagging: by
following the same label selection scheme as WMBT, the set of available label
values within each tier is significantly reduced and the CRF model may be prac-
tically employed. In fact the primary difference between WMBT and WCRFT
lays in the label selection method (k-nearest neighbors in the case of WMBT
and highest conditional probability in the case of WCRFT) and the fact that
in WMBT the classifiers works token by token, while in WCRFT all labels are
provided for the whole sentence at once (with respect to the processed tire).

Regarding the features that were used as the input for the model, WCRFT
uses: word form of the token, possible values of gender, number and case, agree-
ment between the token and the next token, agreement between three subsequent
tokens and capitalization of the word. These primary features are used to define
secondary features, which are dependent on the index relative to the analyzed
token and in some cases are used to test two or three subsequent tokens.

2.4 Concraft

Concraft6 (Constrained Conditional Random Fields Tagger) [24] is another tag-
ger utilizing the model of Conditional Random Fields. It is distributed under the
BSD two-clause license. The tagger is written in Haskell and comes as a module,
that can be downloaded and installed via the Cabal package management tool.
Assuming that the Haskell system (including the Cabal manager) is properly
installed and configured the installation procedure is very simple and amounts
to issuing one command. The tagger is supplemented with a model trained over
the NCP corpus which has to be separately downloaded.

On the other hand the documentation of the system is rather minimalistic
and amounts to a Readme file. It does not cover any command line options and

6 http://hackage.haskell.org/package/concraft.

http://hackage.haskell.org/package/concraft
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since the default output of Concraft is a plain text (using very simple tabulation
scheme) we have to assume that this system is unable to produce XML as an
output. In order to work properly Concraft also requires Maca and Corpus2 tools
to perform the segmentation of the input text.

Concraft uses Constraint Conditional Random Fields in order to achieve two
goals: the primary, i.e. the disambiguation of morphosyntactic labels and the
secondary, i.e. the inference of most probable labels for the unknown words
(which are used in constraining the search space during the disambiguation).

It employs second-order linear chain CRF to model the interdependence
between the words, their morphosyntactic labels and the previous labels. Since
the set of distinct labels contains more than 1000 entries, the model is further
simplified by introducing layers: each layer may contain different grammatical
categories. As a result the number of distinct labels is reduced. It should be
noted however that the layers are not tiers, i.e. they are used in parallel, which
allows to model their interdependence. In the development of the model for Pol-
ish two layers were used: part-of-speech, case and person in the first layer, and
other categories in the second layer.

In order to provide probable labels for the unknown words (i.e. reducing more
than 1000 possible labels to a number which is closer to the average 4 labels for
the known words) a first-order CRF is used. The feature set covers: lowercase
prefixes and suffixes of length 1 and 2, a boolean value indicating if the word is
known and a packed shape of the word capturing lower/upper case letters, digits
and other symbols. These features together with the label of the previous word
are used to estimate the probabilities of the labels, then a fixed number of the
most probable labels (10) is provided to the disambiguation phase.

Regarding the features that are used during disambiguation Concraft is very
minimalistic. It contains only the lowercase forms of the previous, the current
and the next token. In the case of unknown words it also contains lowercase
prefixes and suffixes of the word of lengths 1, 2 and 3 and packed shape of the
word, together with the information of the first letter case.

3 Evaluation

In order to evaluate the taggers’ performance in the context of ASR we have
implemented two evaluation scenarios. In both cases the morphosyntactic LM
was incorporated into the results of speech recognition according to the following
equation:

P (hi) = P (hi)α
wLM ∗ P (hi)

β
mLM ∗ P (hi)

1−α−β
AM , (1)

where:

– P (hi) – probability of the i-th recognition hypothesis,
– wLM – word LM,
– mLM – morphosyntactic LM,
– AM – acoustic model (AM),
– α, β – weights of the respective LMs.
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Thus the probabilities of a given hypothesis according to the different models
were combined using a set of weights optimized on a tuning corpus.

The primary difference between the scenarios was the fact, that the first
scenario lacked the word LM (i.e. the α parameter was set to 0). The other
differences regarded different systems used to build the AM and different corpora
used to evaluate the results.

In both cases in the first step a morphosyntactic n-gram model of Polish was
built with the help of SRI LM package [20]. One-million subcorpus of NCP [15]
was used to compute the counts of the specific tags combinations. The probability
of a given set of morphosyntactic tags, given the set of previous morphosyntactic
tags was estimated as:

P (hi)mLM =
∏

wj∈hi

P (V (wj)|V (wj−N+1)...V (wj−1)) , (2)

where:

– V (wj) – the set of morphosyntactic tags attached to word wj ,
– N – n-gram order,
– wj−N+1...wj−1 – N–1 words preceding the word wj .

To reduce the data sparsity the set of morphosyntactic tags attached to each
word was filtered only to include grammatical class and values of gender, number
and case (if applicable for a given class). Then the model was refined using
Witten-Bell (WB) discounting [25]. We have used WB discounting, although the
Kneser-Ney [8] method is reported to perform the best in the case of language
modeling for ASR. The reason for that was the relatively small number of distinct
labels, namely 734, which excluded the application of Kneser-Ney discounting.

3.1 HTK + mLM

The following steps depended on the evaluation scenario. In the first scenario the
n-best list of speech recognition acoustic hypotheses was produced by HTK [27].
Each of the compared taggers was then used to convert the sequence of words into
sequence of tags. These tags were filtered in order to keep only the tags present
in the mLM. Then SRI LM was used to assign the probabilities to each sequence
of tags according to the mLM (we have used 3-order LM in this scenario). Then
the tuning corpus was used to compute the β weight implementing a grid search
strategy. That parameter was defined independently for each of the taggers. In
the last step the recognition hypotheses of each speech signal in the testing set
were re-scored according the Eq. 1. The procedure is depicted on Fig. 1.

To evaluate the impact of the taggers on ASR we used several speech corpora.
The first one (C1), which was used as a tuning set, included 108 sentences
spoken by one male voice, without any added noise, but spoken in an office
with working computers. It covered political speeches and spoken fragments
of song lyrics. The second corpus (C2) consists of 31 samples of one young
female professional speaker. These were recordings without noise, made for a film



76 A. Smywiński-Pohl and B. Zió�lko

Fig. 1. Rescoring of the hypotheses according to the morphosyntactic LM.

about speech technologies from prepared and checked sentences. The third corpus
(C3) consisted of 281 short sentences and commands recorded during various
tests of speech and speaker recognition systems at AGH University of Science
and Technology with addition of recordings from meetings of the Department
Council. This corpus was collected to combine many various voices (one speaker
say no more than 6 sentences, often just one or two) and recording devices,
often with a natural random noise due to bad acoustic conditions (reverberation
of room, voices of other people in a corridor, cars from outside etc.) We used
also recordings of LUNA corpus [10] which is a corpus of telephone conversations
from a call center of Warsaw public transport information. 192 samples of various
female voices (C4) and 228 of male voices (C5) were used. These are informal
sentences with many questions. The corpus is full of grammar mistakes, very
common in natural conversations. The testing corpus consisted of the C2, C3,
C4 and C5 corpora.

3.2 Kaldi + mLM + wLM

In the second scenario we have used a more recent automatic speech recognition
system called Kaldi [14]. The AM was a triphone HMM Gaussian mixture model
[7]. It was trained on a large dataset of recordings collected by AGH [28] and
Techmo and selection of recordings from the Global Phone acoustic database [23].
The processing pipeline also included a word-level trigram LM (wLM), trained
on a subset (containing approx. 600 million tokens) of NCP. That model was
directly combined with the AM, since both models were expressed as weighted
finite state transducers [11]. The weight of the wLM was determined in separate
set of experiments. As a result the output of the system was similar to that
of HTK, with the exception, that also the wLM was taken into account in the
probability assigned to the hypotheses.

The evaluation was performed solely on the Global Phone corpus, and
included a subset of speakers (4 women and 4 men). The tuning set included
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(randomly selected) 10 % of all recording, totaling in 249 entries, while the test-
ing set included 2240 entries. In each case the recordings of the speaker that
was tested were excluded from the training set, thus the system was tested in a
speaker-independent fashion.

The mLM was used to rescore the hypotheses in the same manner as in the
previous scenario, with the exception, that the α parameter was not 0 and the
order of the LM was 5. Yet the β parameter was optimized after the α parame-
ter was determined, thus it followed the same grid-search strategy. Moreover the
probability of hypotheses produced by Kaldi already included the wLM compo-
nent. The reason for that was the implemented beam-search strategy, that takes
into account both AM and wLM during the search in the hypotheses space.

3.3 Tagging Speed

We also evaluated the speed of the taggers, since this feature is quite important
in the case of on-line ASR. We measured separately the start-up time and the
processing time. The start-up time was measured as the time required to tag one
sentence “Ala.”, while the processing time was measured for a set of acoustic
hypotheses including 900 entries. The loading time was averaged over 5 runs,
while the processing time over 10 runs. In the following reports the loading time
is subtracted from the processing time.

In all cases the tests were carried out in hot-boot setting, i.e. the linguistic
models employed in the tagging were used on the same computer in previous
experiments. As a result all files read by a tagger were cached in the operational
memory. The computer used to perform the tests had an Intel i7-3537U CPU
clocked at 2.0 GHz with 2 cores and 4 hardware threads, 8 GB of RAM and a
256GB SSD drive. The operating system was 64-bit Ubuntu 14.04 LTS.

4 Results

Table 1 includes the comparison of the taggers in terms of performance in the
first scenario. The best performing tagger is Concraft, reaching 25.2 % points
(pp.) WERR on average, while the worst is WMBT with 23.2 pp. WERR. The
difference between the best and the worst results is not large, but statistically
significant. Performing a paired Student t-test with p < 0.05 shows that the
Concraft tagger is better from both the Pantera and WMBT taggers, but not
from the WCRFT tagger. It should be observed that the best performing taggers
(Concraft and WCRFT) use the same technique (CRF) and the same training
corpus, however their results are slightly different.

Table 2 includes the results of the comparison when both the word-level and
morphosyntactic LMs were applied. Here both the absolute results and their
differences are much smaller (2 orders of magnitude in case of WERR)7. More-
over we have not observed any statistically significant differences between the
7 We have not included the results for WMBT since it was impossible to obtain its

results when these tests were performed. Moreover its behaviour was the worst in
all the other tests, so we have not expected to see any improvement.
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Table 1. Comparison of the performance of the taggers in terms of Word Error Rate
Reduction [WERR] when only morphosyntactic LM was employed.

Corpus Weight WMBT Pantera WCRFT Concraft

C2 0.04 24.7 28.6 28.4 26.8

C3 0.39 27.7 28.9 30.7 31.0

C4 0.28 25.2 25.4 26.4 29.0

C5 0.29 14.5 12.5 13.6 13.7

Avg. 23.1 23.1 24.4 25.2

taggers. The probable reason for that result is the fact, that the wLM already
included important interdependencies between the grammatical classes and cat-
egories between the words and the observed improvement was so small. The
other explanation could be based on the fact, that the α parameter was opti-
mized independently of the β parameter, thus we have reached a local maximum.
Yet a scenario when both parameters are optimized at once is much more imple-
mentationally demanding and was out of scope of this paper.

Table 2. Comparison of the performance of the taggers in terms of WERR when both
word and morphosyntactic LMs were employed

Tagger WERR

Pantera 0.28

WCRFT 0.36

Concraft 0.31

Table 3 includes the comparison of the speed of the taggers. The WCRFT
tagger has the best loading time – below one fifth of a second, while WMBT has
the worst loading time exceeding 10 s. It should be stressed that all taggers were
trained on the same corpus (1-million subcorpus of NCP), so these differences are
caused only by the internal representation of the knowledge used by the taggers
and the implementation of the loading procedure. When it comes to the tagging
time Pantera is definitely the winner, with the tagging time (around 3.5 s) 2
times shorter than the next fastest tagger namely WCRFT. Here WMBT is the
worst once again with the tagging time exceeding 200 s. It is apparent that the
speed of the taggers varies significantly and should be strongly considered when
choosing the optimal solution for a given settings.

The table also includes the information of the version of taggers. Only in one
case (Concraft), the version was given explicitly. In the other cases we provided
the Git or SVN revisions of the particular versions that were used in the test.
When comparing with our previous test [13] we might observe that only two
taggers are actively developed (WCRFT and Concraft). Both of them made
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Table 3. Comparison of the speed of the taggers.

Tagger Version Load [ms] Tagging [ms]

WMBT 0d67980 10560 186650

Pantera r156 2778 3564

WCRFT 5fba260 194 8202

Concraft 0.7.4 9207 10793

significant improvements in the tagging time (in case of WCRFT it was 4-fold).
We should also note, that the loading time of Concraft can be reduced to 0,
since the system implements a client-server architecture and the model might be
preloaded before the tagging is performed.

5 Conclusion

The general results of the taggers comparison are as follows: both of the actively
maintained taggers, i.e. WCRFT and Concraft offer similar results both in terms
of accuracy of the tagging and the tagging speed. Concraft installation is simple,
assuming you have Haskell and Cabal installed. WCRFT installation is more
demanding, since it requires more dependencies to be installed by the user.
Pantera offers the highest speed of tagging, but WCRFT is caching up (2 times
longer tagging time at present). WMBL does not offer any improvement neither
in tagging accuracy nor in speed – this is probably the primary reason it is no
longer developed.

Regarding the application of morphosyntactic LMs in ASR: a sole mLM offers
significant recognition improvement, compared to the output produced by HTK.
Yet if a word-level LM is involved, the improvement is negligible and probably
is not worth the extended recognition time.
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