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Abstract In this paper we explore the possibility of giving a justification of the
“semantic information” content and measure, in the framework of the recent
coalgebraic approach to quantum systems and quantum computation, extended to
QFT systems. In QFT, indeed, any quantum system has to be considered as an
“open” system, because it is always interacting with the background fluctuations of
the quantum vacuum. Namely, the Hamiltonian in QFT always includes the
quantum system and its inseparable thermal bath, formally “entangled” like an
algebra with its coalgebra, according to the principle of the “doubling” of the
degrees of freedom (DDF) between them. This is the core of the representation
theory of cognitive neuroscience based on QFT. Moreover, in QFT, the probabil-
ities of the quantum states follow a Wigner distribution, based on the notion and
measure of quasiprobability, where regions integrated under given expectation
values do not represent mutually exclusive states. This means that a computing
agent, either natural or artificial, in QFT, against the quantum Turing machine
paradigm, is able to change dynamically the representation space of its computa-
tions. This depends on the possibility of interpreting QFT system computations
within the framework of category theory logic and its principle of duality between
opposed categories, such as the algebra and coalgebra categories of QFT. This
allows us to justify and not only to suppose, like in the “theory of strong semantic
information” of L. Floridi, the definition of modal “local truth” and the notion of
semantic information as a measure of it, despite both measures being defined on
quasiprobability distributions.

G. Basti (✉)
Faculty of Philosophy, Pontifical Lateran University, Vatican City, Italy
e-mail: basti@pul.it

© Springer International Publishing AG 2017
G. Dodig-Crnkovic and R. Giovagnoli (eds.), Representation and Reality in Humans,
Other Living Organisms and Intelligent Machines, Studies in Applied Philosophy,
Epistemology and Rational Ethics 28, DOI 10.1007/978-3-319-43784-2_9

177



1 Introduction: A Paradigm Shift

Perhaps the best synthesis of the current paradigm shift in fundamental physics is
the positive answer that it seems necessary to give to the following question: “Is
physics legislated by cosmogony?”. Such a question is the title of a visionary paper
written in 1975 by J.A. Wheeler and C.M. Patton and published in the first volume
of a successful series of the Oxford University about quantum gravity [1].

Such a revolution, suggesting a dynamic justification of the physical laws,
fundamentally amounts to the so-called information-theoretic approach in quantum
physics as the natural science counterpart of a dual ontology taking information and
energy as two fundamental magnitudes in basic physics and cosmology. This
approach started from Richard Feynman’s influential speculation that a quantum
computer could simulate any physical system [2]. This is the meaning of the famous
“it from bit” principle posited by R. Feynman’s teacher, Wheeler [3, p. 75]. The
cornerstones of this reinterpretation are, moreover, D. Deutsch’s demonstration of
the universality of the quantum universal Turing Machine (QTM) [4], and C.
Rovelli’s overall development of a relational quantum mechanics (QM) [5]. An
updated survey of such an informational approach to fundamental physics is pro-
vided in the recent collective book, edited by H. Zenil, and with contributions,
among others, from R. Penrose, C. Hewitt, G. J. Chaitin, F. A. Doria, E. Fredkin,
M. Hutter, S. Wolfram, S. Lloyd, besides D. Deutsch himself [6].

There are, however, several theoretical versions of the information-theoretic
approach to quantum physics. It is not important to discuss all of them here (for an
updated list in QM, see, for instance [7]), even though all can be reduced to
essentially two:

1. The first one is the classical “infinitistic” approach to the mathematical physics
of information in QM. Typical of this approach is the notion of the unitary
evolution of the wave function, with the connected, supposed infinite amount of
information it “contains” being “made available” in different spatiotemporal
cells via the mechanism of the “decoherence” of the wave function. Finally,
essential for this approach is the necessity of supposing an external observer
(“information for whom?” [7]) for the foundation of the notion and of the
measure of information. This is ultimately Shannon’s purely syntactic measure
and notion of information in QM [5]. Among the most prominent representa-
tives of such an approach, we can quote the German physicist Zeh [8, 9] and the
Swedish physicist Tegmark [10].
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2. The second approach, the emergent one today, is related to a “finitary”1

approach to the physical mathematics of information, taken as a fundamental
physical magnitude together with energy. It is related to quantum field theory
(QFT), because of the possibility it gives of spanning the microphysical,
macrophysical, and even the cosmological realms, within only one quantum
theoretical framework, differently from QM [17].

In this chapter we discuss the relevance of this second approach for the theory of
semantic information in both biological and cognitive sciences.

2 From QM to QFT in Fundamental Physics

The notion of the quantum vacuum is fundamental in QFT. This notion is the only
possible explanation, at the fundamental microscopic level, of the third principle of
thermodynamics (“The entropy of a system approaches a constant value as the
temperature approaches zero”). Indeed, the Nobel Laureate Walter Nernst first
discovered that, for a given mole of matter (namely an ensemble of an Avogadro
number of atoms or molecules) for temperatures close to absolute zero, T0, the
variation of the entropy ΔS would become infinite (through division by 0).

Nernst demonstrated that, to avoid this catastrophe, we have to suppose that the
molar heat capacity C is not constant at all, but vanishes, in the limit T → 0, to
make ΔS finite, as it has to be. This means, however, that near absolute zero, there
is a mismatch between the variation of the bodys content of energy and the supply
of energy from the outside. We can only avoid such a paradox by supposing that
such a mysterious inner supplier of energy is the vacuum. This implies that absolute
zero is unreachable. In other terms, there is an unavoidable fluctuation of the
elementary constituents of matter. The ontological conclusion for fundamental
physics is that we can no longer conceive physical bodies as isolated.

The vacuum becomes a bridge that connects all objects among them. No isolated body can
exist, and the fundamental physical actor is no longer the atom, but the field, namely the
atom space distributions variable with time. Atoms become the “quanta” of this matter field,
in the same way as the photons are the quanta of the electromagnetic field [18, p. 1876].

1For the notion of “finitary” computation, as distinguished from “infinitistic” (second-order
computation) and “finististic” (Turing-like computation), see [11]. This notion depends on the
category theory (CT) interpretation of logic and computation [12], as far as based on Aczel’s
non-well founded (NWF) set theory [13], justifying a coalgebraic semantics in quantum com-
puting [14], as far as based on the CT principle of the dual equivalence between a Boolean initial
algebra and a final coalgebra [15, 16]. The key notion of the doubling of the degrees of freedom
between a q-deformed Hopf algebra and a q-deformed Hopf coalgebra, as representing each
quantum system in quantum field theory, perfectly satisfies such a logic, as we see below.
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For this discovery, eliminating once and forever the notion of “inert isolated
bodies” of Newtonian mechanics, Walter Nernst, a chemist, is one of the founders
of modern quantum physics.

Therefore, the theoretical, core difference between QM and thermal QFT can be
essentially reduced to the criticism of the classical interpretation of QFT as a
“second quantization” of QM. In QFT, indeed, the classical Stone von Neumann
theorem [19] does not hold. This theorem states that, for system with a finite
number of degrees of freedom, which is always the case in QM, the representations
of the canonical commutation relations (CCRs)2 are all unitarily equivalent to each
other, so as.to justify the exclusive use of Shannon information in QM.

On the contrary, in QFT systems, the number of degrees of freedom is not finite,
so that infinitely many unitarily inequivalent representations of the canonical
commutation (bosons) and anticommutation (fermions) relations exist. Indeed,
through the principle of spontaneous symmetry breaking (SSB) in the vacuum
ground state, infinitely (not denumerable) many quantum vacuum conditions,
compatible with the ground state, exist there. Moreover, this not holds only in the
relativistic (microscopic) domain, but also applies to nonrelativistic many-body
systems in condensed matter physics, i.e. in the macroscopic domain, and even on
the cosmological scale [17, pp. 18. 53–96].

Indeed, starting from the discovery, during the 1960s, of dynamically generated
long-range correlations mediated by Nambu–Goldstone bosons (NGBs) [20, 21],
and hence their role in the local gauge theory through the Higgs field, the discovery
of these collective modes deeply changed fundamental physics. Above all, it
appears as an effective, alternative method to the classically Newtonian paradigm of
perturbation theory, and hence to its postulate of the asymptotic condition.

In this sense, “QFT can be recognized as an intrinsically thermal quantum
theory” [17, p. ix]. Of course, because of the intrinsic character of the thermal bath,
the whole QFT system can recover the classical Hamiltonian character, because of
the necessity of still satisfying the energy balance condition of each QFT (sub)
system with its thermal bath (ΔE = 0), mathematically formalized by the “algebra
doubling” between a q-deformed Hopf algebra and its “dual” (see note 2) q-
deformed Hopf coalgebra, where q is a thermal parameter [22].

Therefore, in QFT an uncertainty relation holds, similar to the one of Heisen-
berg, relating the uncertainty on the number of field quanta to that of the field phase,
namely

ΔnΔφ≥φ ℏð Þ,

2It is useful to recall here that the canonical variables (e.g. position and momentum) of a quantum
particle do not commute among themselves, like in classical mechanics, because of Heisenberg’s
uncertainty principle. The fundamental discovery of D. Hilbert consists in demonstrating that each
canonical variable of a quantum particle commutes with the Fourier transform of the other (such a
relationship constitutes a CCR), allowing a geometrical representation of all the states of a
quantum system in terms of a commuting variety, i.e. the relative “Hilbert space”.
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where n is the number of quanta of the force field, and φ is the field phase. If
Δn = 0, φ is undefined so that it makes sense to neglect the waveform aspect in
favor of the individual, particle-like behavior. On the contrary, if Δφ = 0, n is
undefined because an extremely high number of quanta are oscillating together
according to a well-defined phase, i.e. within a given phase coherence domain. In
this way, it would be nonsensical to describe the phenomenon in terms of individual
particle behavior, since the collective modes of the force field prevail.

In QFT there is a duality between two dynamic entities: the fundamental force
field and the associated quantum particles that are simply the quanta of the asso-
ciated field that is different for different types of particles. In this a way, quantum
entanglement does not imply any odd relationship between particles like in QM, but
is simply an expression of the unitary character of a force field. To sum up,
according to this more coherent view, the Schrödinger wave function of QM
appears to be only a statistical coverage of the finest structure of the dynamic nature
of reality.

3 QFT of Dissipative Structures in Biological Systems

3.1 Order and Vacuum Symmetry Breakdowns

It is well known that a domain of successful application of QFT is the study of the
microphysics of condensed matter, that is in systems displaying at the macroscopic
level a high degree of coherence related to an order parameter. The “order
parameter”, which is the macroscopic variable characterizing the new emerging
level of matter organization, is related to the matter density distribution. In fact, in a
crystal, the atoms (or molecules) are “ordered” in well-defined positions, according
to a periodicity law individuating the crystal lattice.

Other examples of such ordered systems in the condensed matter realm include
magnets, lasers, superconductors, etc. In all these systems, the emerging properties
related to the respective order parameters are neither the properties of the ele-
mentary constituents, nor their “summation”, but new properties depending on the
modes in which they are organized, and hence on the dynamics controlling their
interactions. In this way, for each new macroscopic structure, e.g. crystal, magnet
or laser, there corresponds a new “function” the “crystal function”, the “magnet
function”, etc.

Moreover, all these emerging structures and functions are controlled by dynamic
parameters, that in engineering terminology, we can define as control parameters.
Changing one of them, the elements can be subject to different dynamicswith different
collective properties, and hence exhibit different collective behaviors and functions.
Generally, the temperature is the most important of them. For instance, crystals
beyond a given critical temperature—that is different for different materials—lose
their crystal-like ordering, and the elements acquire as a whole the macroscopic
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structure-functions of an amorphous solid or, for higher temperatures, they lose any
static structure, acquiring the behavior-function of a gas.

So, any process of dynamic ordering, and of information gain, is related with a
process of symmetry breakdown. In the magnet case, the “broken symmetry” is the
rotational symmetry of the magnetic dipole of the electrons, and the “magnetiza-
tion” consists in the correlation among all (most) electrons, so that they all
“choose”, among all the directions, that of the magnetization vector.

To sum up, any dynamic ordering among many objects implies an “order rela-
tion”, i.e. a correlation among them. What, in QFT, at the mesoscopic/macroscopic
level is denoted as correlation waves among molecular structures and their chemical
interactions, at the microscopic level any correlation, and more generally any
interaction, are as many coherent oscillation modes of force fields, mediated by
quantum correlation particles. They are called “Goldstone bosons” or “Nambu–
Goldstone bosons (NGBs)” [20, 21, 23], with mass—even though always very small
(if the symmetry is not perfect in finite spaces)—or without mass at all (if symmetry
is perfect, in the abstract infinite space). The lower the inertia (mass) of the corre-
lation quantum, the greater the distance over which it can propagate, and hence the
distance over which the correlation (and the ordering relation) constitutes itself.

However, an important caveat is necessary regarding the different role of
Goldstone bosons as quantum correlation particles, and the bosons of the different
energy fields of quantum physics (Quantum Electro-Dynamics (QED), and Quan-
tum Chromo-Dynamics (QCD)). These latter are the so-called gauge bosons: the
photons γ of the electromagnetic field, the gluons g of the strong field, the bosons
W± and the boson Z of the electroweak field, and the scalar Higgs boson H0 of the
Higgs field, common to all these interactions.

The gauge bosons are properly mediators of energy exchanges among the
interacting elements they correlate, because they are effectively quanta of the
energy field they mediate (e.g. the photon is the quantum of the electromagnetic
field). Therefore, the energy quanta are bosons that can change the energy state of
the system. For instance, in QED of atomic structures, they are able to change the
fundamental state (minimum energy) into one of the excited states of the electronic
“cloud” around the nucleus.

On the contrary, NGB correlating quanta are not mediators of interactions among
elements of the system. They determine only the modes of interaction among them.
Hence, any symmetry breakdown in the QFT of condensed matter of chemical and
biological systems has one only gauge boson mediator of the underlying energy
exchanges, the photon, since they are all electromagnetic phenomena. Therefore, the
phenomena involved here, from which the emergence ofmacroscopic coherent states
derives, implies the generation, effectively the condensation, of correlation quanta
with negligible mass, in principle null: the NGB, indeed. This is the basis of the
fundamental “Goldstone theorem” [24, 25]. NGBs acquire different names for the
different modes of interaction, and hence of the coherent states of matter they deter-
mine: phonons in crystals, magnons in magnets, polarons in biological matter, etc.
Indeed, what characterizes the coherent domains in living matter is the phase coher-
ence of the electric dipoles of the organicmolecules and of thewater, inwhich only the
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biomolecules are active. Therefore, although the correlation quanta are real particles,
observable with the same techniques (diffusion, scattering, etc.), not only in QFT of
condensed matter, but also in QED and in QCD like the other quantum particles,
wherever we have to deal with broken symmetries [21], nevertheless they do not exist
outside the system they are correlating. For instance, without a crystal structure (e.g.
when heating a diamond over 3545 °C), we still have the component atoms, but no
longer phonons. In this regard, the correlation quanta differ from energy quanta, like
photons. Because the gauge bosons are energy quanta, they cannot be “created and
annihilated” without residuals.

So, in any quantum process of particle “creation/annihilation” in quantum
physics, what is conserved is the energy/matter, mediated by the energy quanta
(gauge bosons), not their “form”, mediated by the NGB correlation quanta. Also in
this regard, a dual ontology (matter/form) is fundamental for avoiding confusion
and misinterpretation in quantum physics.

Moreover, because the mass of the correlation quanta is in any case negligible
(or even null), their condensation does not imply a change of the energy state of the
system. This is the fundamental property for understanding how, not only the sta-
bility of a crystal structure, but also the relative stability of the structures/functions
of living matter, at different levels of self-organization (cytoskeleton, cell, tissue,
organ, etc.), can depend on such basic dynamic principles. In fact, all this means
that, if the symmetric state is a fundamental state (a minimum of the energy
function corresponding to a quantum vacuum in QFT of dissipative systems), also
the ordered state, after symmetry breakdown and the instauration of the ordered
state, remains a state of minimum energy, thus being stable in time. In kinematic
terms, it is a stable attractor of the dynamics.

3.2 Doubling of Degrees of Freedom (DDF) in QFT
and in Neuroscience

We said that the relevant quantum variables in biological systems are the electrical
dipole vibrational modes in the water and organic molecules, constituting the
oscillatory “dynamic matrix” in which also neurons, glia cells, and the other
mesoscopic units of brain dynamics are immersed. The condensation of massless
NGB (polarons)—controlling the electrical dipole coherent oscillation modes,
and corresponding, at the mesoscopic level, to the long-range correlation waves
observed in brain dynamics—depends on the triggering action of an external
stimulus for symmetry breakdown of the quantum vacuum of the corresponding
brain state. In such a case, the “memory state” corresponds to a coherent state for
the basic quantum variables, whose mesoscopic order parameter displays itself as
the amplitude and phase modulation of the carrier signal.

In the classical Umezawa model of brain dynamics [26], however, the system
suffered from an “intrinsic limit of memory capacity”. Namely, each new stimulus
produces an associated polaron condensation, cancelling the preceding one, for a
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sort of “overprinting”. This limit does not occur in dissipative QFT where the many-
body model predicts the coexistence of physically distinct patterns, amplitude
modulated and phase modulated. That is, by considering the brain as it is, namely
an “open”, “dissipative” system continuously interacting with its environment, there
does not exist only one ground (quantum vacuum) state, like in the thermal field
theory of Umezawa, where the system is studied at equilibrium; On the contrary, in
principle, there exist infinitely many ground states (quantum vacuums), thus giving
the system a potentially infinite capacity of memory. To sum up, the solution to the
overprinting problem relies on three facts [27]:

1. In a dissipative (nonequilibrium) quantum system, there are (in principle) infi-
nitely many quantum vacuum’s (ground or zero-energy) states, on each of which
a whole set of nonzero energy states (or “state space” or “representation states”)
can be built.

2. Each input triggers one possible irreversible time evolution of the system, by
inducing a “symmetry breakdown” in one quantum vacuum, i.e. by inducing in
it an ordered state, a coherent behavior, effectively “freezing” some possible
degrees of freedom of the behaviors of the constituting elements (e.g. by
“constraining” them to oscillate on a given frequency). At the same time, the
input “labels” dynamically the induced coherent state, as an “unitary
non-equivalent state” of the system dynamics. In fact, such a coherent state
persists in time as a ground state (polarons are not energetic bosons, but
Nambu-Goldstone bosons) thus constituting a specific “long-term” memory
state for such a specific coupling between the brain dynamics and its environ-
ment. On the other hand, a brain that is no longer dynamically coupled with its
environment is either in a pathological state (schizophrenia) or simply dead.

3. At this point, the DDF principle emerges as both a physical and mathematical
necessity of such a brain model: physical, because a dissipative system, even
though in nonequilibrium, must anyway satisfy the energy balance; mathe-
matical, because the zero energy balance requires a “doubling of the system
degrees of freedom”. The doubled degrees of freedom, say Ã (the tilde quanta,
where the nontilde quanta A denote the brain degrees of freedom), thus represent
the environment to which the brain state is coupled. The environment (state) is
thus represented as the “time-reversed double” of the brain (state) on which it is
impinging. The environment is hence “modeled on the brain”, but according to
the finite set of degrees of freedom the environment itself elicited in the brain.

What is relevant for our aims is that, each set of degrees of freedom A and for its
“entangled doubled” Ã, there is a relater unique number N , i.e. N A,N A ̃, which in
modul, Nj j, univocally, identifies i.e. dynamically labels, a given phase coherence
domain, i.e. a quantum system state entangled with its thermal bath state, in our
case, a brain state matching its environment state. This depends on the fact that,
generally, in the QFT mathematical formalism, the number N is a numeric value
expressing the NGB condensate value on which a phase coherence domain directly
depends. In an appropriate set-theoretic interpretation, because for each “phase
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coherence domain” x, Nj j effectively identifies univocally such a domain, it cor-
responds to an “identity function Idx” that, in a “finitary” coalgebraic logical cal-
culus, corresponds to the predicate satisfied by such a domain because it identifies
it univocally. In other words, Vitiello’s reference to the predicate “magnet function”
or “crystal function” we quoted at the beginning of Sect. 3.1 are not metaphors, but
are expressions of a fundamental formal tool—the “co-membership notion”—of the
coalgebraic predicate calculus (see Sect. 5.2). Regarding the DDF applied to the
quantum foundation of cognitive neuroscience, we have illustrated elsewhere its
logical relevance, for an original solution of the reference problem (see [28, 29]).

There exists a huge amount of experimental evidence in brain dynamics of such
phenomena, collected by W. Freeman and his collaborators. This evidence found,
during the last ten years, its proper mathematical modeling in the dissipative QFT
approach of Vitiello and his collaborators, justifying the publication during recent
years of several joint papers on these topics (see, for a synthesis, [30, 31]).

To sum up [32], Freeman and his group used several advanced brain imaging
techniques such as multielectrode electroencephalography (EEG), electrocor-
ticograms (ECoG), and magnetoencephalography (MEG) study what neurophysi-
ologist to generally consider the background activity of the brain, often filtering it
out as “noise” with respect to the synaptic activity of neurons they are exclusively
interested in. By studying these data with computational tools of signal analysis with
which physicists, differently from neurophysiologists, are acquainted, they discov-
ered the massive presence of patterns of AM/FM phase-locked oscillations. They are
intermittently present in resting and/or awake subjects, as well as in the same subject
actively engaged in cognitive tasks requiring interaction with the environment. In
this way, we can describe them as features of the background activity of brains,
modulated in amplitude and/or in frequency by the “active engagement” of a brain
with its surroundings. These “wave packets” extend over coherence domains cov-
ering much of the hemisphere in rabbits and cats [33–36], and regions of linear size
of about 19 cm in human cortex [37], with near-zero phasedispersion [38]. Syn-
chronized oscillations of large-scale neuron arrays in the β and γ ranges are observed
by MEG imaging in resting and motor-task-related states of the human brain [39].

4 Semantic Information in Living and Cognitive Systems

4.1 QFT Systems and the Notion of Negentropy

Generally, the notion of information in biological systems is a synonym of the
negentropy notion, according to E. Schrödinger’s early use of this term. Applied,
however, to QFT foundations of dissipative structures in biological systems, the
notion of negentropy is not only associated with the free energy, as Schrödinger
himself suggested [40], but also with the notion of organization, as the use of this
term by A. Szent-György first suggested [41]. The notion of negentropy is thus
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related with the constitution of coherent domains at different space–time scales, as
the application of QFT to the study of dissipative structures demonstrates, since the
pioneering work by Frölich [42, 43].

In this regard, it is important to emphasize also the key role of the notion of
stored energy that such a multilevel spatiotemporal organization in coherent
domains and subdomains implies (i.e. the notion of quantum vacuum “foliation” in
QFT), as distinct from the notion of free energy of classical thermodynamics [44].
Namely, as we know from the discussion above, the constitution of coherent
domains allows chemical reactions to occur at different timescales, with a conse-
quent energy release, thus becoming immediately available exactly where/when it is
necessary. For instance, resonant energy transfer among molecules typically occurs
in 10−14 s, whereas the molecular vibrations themselves die down, or thermalize, in
a time between 10−9 and 101 s. Hence, this is a 100% highly efficient and highly
specific process, being determined by the frequency of the vibration itself, given
that resonating molecules can attract one another. Hence, the notion of “stored
energy” is meaningful at every level of the complex spatiotemporal structure of a
living body, from a single molecule to the whole organism.

This completes the classical thermodynamic picture of Szilard [45] and Brillouin
[46], according to which the “Maxwell demon” for getting information to com-
pensate the entropic decay of the living body must consume free energy from the
environment. This means an increase of the global entropy according to the Second
Law. However, this has to be completed in QFT with the evidence coming from the
Third Law discussed in this paper.

This occurs at the maximum level in the biological realm in human brain
dynamics. To illustrate this point as DDF applied in neuroscience, Freeman and his
collaborators spoke about “dark energy” for the extreme reservoir of energy hidden
in human brain dynamics. The human brain indeed has 2% of the human body mass,
but dissipates 20–25% of the body resting energy. This depends on the extreme
density of cells in the cortices (105/mm3), with an average of 104 connections [47].

To conclude this discussion, we showed that the “dual paradigm” related to the
QFT interpretation of the “information-theoretic” approach to quantum physics
does not depend on the distinction between “energy” and “information”, like in the
QM interpretation, where the “information” notion and measure—differently from
the “energy” ones—are “observer-related”, and therefore, logically, only “syntac-
tic”. In the QFT interpretation, where “information” is a physical magnitude, i.e. a
thermodynamic negentropy, the duality concerns the two components of the
negentropy notion and measure. These are, respectively, the energetic component
(quantum “gauge bosons”) and the ordering component (quantum “Nambu–
Goldstone bosons”) of a phase coherence domain, including the two entangled
quantum states of the system and of its environment.

On the other hand, precisely because “ordering” is also a fundamental semantic
notion in set-theoretic logic, the “semantic information” notion and measure strictly
depend on the logical and mathematical notion of “duality”. This duality in cate-
gory theory logic concerns two opposed categories, specifically, in theoretical
computer science (TCS), the notion of the “dual equivalence” between an algebra
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and its coalgebra, on which the notion of “local truth” and “finitary computation”,
on the one hand, as well as the notion and measure of semantic information, on the
other, strictly depend.

These two notions of “duality”, physical and logical, are however strictly
interconnected in QFT, because both depend on the notion of NGB condensates, as
constituting, respectively, the “ordering” component of the negentropy in infor-
mation physics, and the sufficient condition for interpreting QFT systems as
computing systems. A short introduction to all these notions will be the object of
the rest of this paper, in the framework of the recent “coalgebraic approach” to
quantum computing in TCS.

4.2 Syntactic Versus Semantic Information in Quantum
Physics

4.2.1 Shannon’s Syntactic Theory of Information in QM
and in Mathematical Communication Theory

The Shannon nature of the notion and measurement of information that can be
associated with decoherence in QM, overall in the relational and hence computa-
tional interpretations of QM illustrated above, has been emphasized [5]. In fact, in
both cases, the “information” can be associated with the uncertainty H removal, in
the sense that, the “more probable” or “less uncertain” an event/symbol is, the less
informative (or, psychologically, less “surprising”) its occurrence is. Mathemati-
cally, in the mathematical theory of communication (MTC), the information H as-
sociated with the ith symbol x among N (=alphabet), can be defined as

H = ∑
N

i=1
p xið ÞI xið Þ= − ∑

N

i=1
p xið Þ log p xið Þ,

where p(xi) is the relative probability of the ith symbol x with respect to the
N possible ones, and I is the information content associated with the symbol
occurrence, that is, the inverse of its relative probability (the less probable it is, the
more informative its occurrence is). The information amount H thus has the
dimensions of a statistical entropy, being very close to the thermodynamic entropy
S of statistical mechanics:

S= − kB ∑
i
p xið Þ log p xið Þ,

where xi are the possible microscopic configurations of the individual atoms and
molecules of the system (microstates) which could give rise to the observed
macroscopic state (macrostate) of the system, and kB is the Boltzmann constant.
Based on the correspondence principle, S is equivalent in the classical limit, i.e.
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whenever the classical notion of probability applies, to the QM definition of entropy
by John von Neumann:

S= − kBTr ρ log ρð Þ,

where ρ is a density matrix and Tr is the trace operator of the matrix. Indeed, it was
von Neumann himself who suggested to Claude Shannon to denote as “entropy” the
statistical measure of information H he discovered. The informativeness associated
with (the occurrence of) a symbol in the MTC (or with an event in statistical
classical and quantum mechanics) is only “syntactic” and not “semantic” [48, p. 3].
Effectively, the symbol (event) occurs as uninterpreted (context independent) and
wellformed (determined), according to the rules of a fixed alphabet or code (i.e.
according to the unchanged laws of physics).

Anyway, starting from the pioneering works of Mackay [49] and of Carnap and
Bar-Hillel [50], in almost any work dealing with the notion of information in
biological and cognitive systems, the vindication of its semantic/pragmatic char-
acter is a leit motiv. Particularly, because information concerns here self-organizing
and complex processes, in them the “evolution of coding”, and the notion of “local
(contingent) truth” (semantics), in the sense of adequacy for an optimal fitting with
the environment (pragmatics), are essential [51–53]. More specifically, in QFT
differently from QM, the pragmatic information content is significant, defined as the
ratio of the rate of energy dissipation (power) to the rate of decrease in entropy
(negentropy) [53] a measure generally considered in literature as the proper
information measure of self-organizing systems. Evidently, in the DDF formalism
of QFT, in the relationship between a quantum system and its thermal bath (en-
vironment), and specifically, in neuroscience, the relationship between the brain and
its contextual environment, the notion and measure of pragmatic information, as
described in [53], play an essential role [47].

What is to be emphasized here, above all, is that theWigner function (WF) in QFT,
from which the probabilities of the physical states are calculated, is deeply different
from the Schrödinger wave function of QM, not only because the former, differently
from the latter, is defined on the phase space of the system; What is much more
fundamental is that theWFuses the notion of quasiprobability [54], and not the notion
of probability of the classical Kolmogorov axiomatic theory of probability [55].

Indeed, the notion of quasiprobability allows regions integrated under given
expectation values to not represent mutually exclusive states, thus violating one of
the fundamental axioms of Kolmogorov’s theory i.e. the separation of variables in
such distributions is not fixed, but, as is the rule in the case of phase transitions, can
evolve dynamically (see the QFT interpretation of the “quantum uncertainty prin-
ciple” at the end of Sect. 2). From the computability theory standpoint, this means
that a physical system in QFT, against the TM and QTM paradigms, is able to
change dynamically the “basic symbols” of its computations, since new collective
behaviors can emerge from individual ones, or vice versa. In this way, this justifies
the definition of the information associated with a WF as a “semantic information
content”.
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The semantic information in QFT computations hence satisfies, from the logical
standpoint, the notion of contingent, or better, local truth, thus escaping from the
Carnap and Bar-Hillel paradoxes (CBPs) [50]. To introduce this notion, it might be
pedagogically useful to discuss briefly the “theory of strong semantic information”
(TSSI) developed by L. Floridi, essentially because it shares with QFT the same
notion of quasiprobability. In the QFT usage of the quasiprobability notion there is
no necessity of violating also the other axiom of Kolmogorov’s axiomatic theory of
probability, i.e. the axiom excluding the “negative probabilities”. On the contrary,
Floridi uses the notion of negative probabilities [56], so that the reference to his
theory has only a “pedagogical” value in the present context.

4.2.2 Floridi’s Semantic Information Theory

Following the critical reconstruction of both theories (CSI and TSSI) by
Sequoiah-Grayson [57], the CSI approach is based on Carnap’s theory of intensional
modal logic [58]. In this theory, given n individuals and m monadic predicates, we
have 2nm possible worlds and 2m Q-predicators, intended as individuations of pos-
sible types of objects, given a conjunction of primitive predicates either unnegated or
negated. A full sentence of a Q-predicator is a Q-sentence, hence a possible world is
a conjunction of n Q-sentences, as each Q-sentence describes a possible existing
individual. The intension of a given sentence is taken to be the set of possible worlds
that make it true, i.e. are included by the sentence. This is in relation with the notion
of semantic information in CSI, here referred to as the content of a declarative
sentence s and denoted by “Cont(s)”. In this way, the CBP consists in the evidence
that, because an always true sentence is true for all possible worlds, i.e. it does not
exclude any world, it is empty of any semantic content (effectively, it is a tautology)
the maximum semantic content is for the always false (i.e. contradictory) sentence,
because it excludes any possible world.

In Carnap & Bar Hillel terms, “a self-contradictory sentence asserts too much: it
is too informative for being true” [50, p. 229]. Effectively, it is well known also to
common sense that tautologies have no information content. What is paradoxical
for common sense is that contradictions have the maximum information content.
For logicians, however, who know the famous pseudo-Scotus law, according to
which anything can be derived from contradictions (i.e., the so-called “explosion
principle”), this conclusion is not surprising, once we have defined the information
content of a sentence s, Cont(s), as the set of all sentences (possible worlds)
belonging to the same universe W of the theory excluded by s.

Of course, the limit of CSI consists in its abstraction, namely in the logical
notion of truth, and the a priori probability that it supposes. Surprisingly, but not
contradictorily, it is just this supposition of a logical notion of truth (=true in all
possible contexts, or “worlds” in modal logic terms) that makes it impossible to use
truth as a necessary condition for meaningfulness in CSI.

What makes the TSSI of Floridi and followers interesting is that it offers a theory
and measures of the semantic information for contingent and not necessary
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propositions namely for propositions that are not logically true, i.e. true for all
possible worlds, in contrast to both tautologies (i.e. logical laws) and/or general
ontology propositions which are true for whichever “being as being”. Namely, both
the propositions of all empirical sciences and the propositions of specific ontologies
are true for objects actually existing (or that existed, or that will exist) only in some
possible worlds—in the limit one: the actual, “present” world. In other terms, the
scientific and ontological theories are “models” (i.e. theories true only for a limited
domain of objects), precisely because both have semantic content, differently from
tautologies. I developed elsewhere [59] a formal ontology of the QFT paradigm in
natural sciences, in which this notion of truth is logically and ontologically justified,
as an alternative to Carnap’s logical atomism, i.e. alternative to the formal ontology
of the Newtonian paradigm in natural sciences, on which both CSI and BCP
depend.

Hence, it is highly significant to develop a theory and a measure of information
content such as TSSI, compatible with what S. Sequoiah-Grayson defines as the
contingency requirement of informativeness (CRI), supposed in TSSI. Unfortu-
nately, a requirement such as CRI cannot be supposed, but only justified, as G.
Dodig-Crnkovic indirectly emphasizes in her criticism of TSSI [60], and this is the
limit of TSSI. In fact, the CRI states [57]: «A declarative sentence s is informative
iff s individuates at least some but not all wi from W (where wi ∈ W)».
Sequoiah-Grayson recognizes that CRI in TSSI is an idealization. However, he
continues,

Despite this idealization, CRI remains a convincing modal intuition. For a declarative
sentence s to be informative, in some useful sense of the term, it must stake out a claim as to
which world, out of the entire modal space, is in fact the actual world.

This requirement is explicitly and formally satisfied in the formal ontology of the
“natural realism” as an alternative to the “logical atomism” of CSI [59, 61].
Effectively the main reason, Floridi states, leading him to defend the TSSI is that
only such a theory having truthfulness as necessary condition for meaningfulness
can be useful in an epistemic logic. In it, indeed, the entire problem consists in the
justification of the passage from belief as “opinion” to belief as “knowledge”,
intended as a true belief.

That a CRI is operating in TSSI is evident from the “factual” character of the
semantic information content in it, and of its probabilistic measure. Starting from
the principle that semantic information σ has to be measured in terms of distance of
σ from w, we have effectively four possibilities. Using the same example of Floridi
[56, p. 55ff.], let us suppose that there are exactly three people in the room: this is
the situation denoted in terms of the actual world w. The four possibilities for σ as
to w are:

(T) There are or there are not people in the room;
(V) There are some people in the room;
(P) There are three people in the room;
(F) There are and there are not people in the room.
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By defining θ as the distance between σ and w, we have: θ (T) = 1;
θ (V) = 0.25 (for the sake of simplicity); θ (P) = 0; θ (F) = −1. From these
relations it is possible to define the degree of informativeness i of σ, that is:

iðσÞ=1− θðσÞ2.

The graph generated by the equation above (Fig. 1a) shows this as θ ranges from
the necessary false (F) (=contradiction) to the necessary true (T) (=tautology), both
showing the maximum distance from the contingent true (P).

To calculate the quantity of semantic information contained in σ relative to ι(σ),
we need to calculate the area delimited by the equation above, that is, the definite
integral of the function ι(σ) on the interval [0, 1]. On the contrary, the amount of
vacuous information, which we denote as β, is also a function of θ. More precisely,
it is a function of the distance of θ from w, i.e.

Zθ

0

ι σð Þdx= β.

It is evident that, in the case of (P), β = 0. From α and β, it is possible to
calculate the amount of semantic information carried by σ, i.e. γ, as the difference
between the maximum information that can be carried in principle by σ and the
vacuous information carried effectively by σ, that is, in bit:

γðσÞ= logðα− βÞ.

Of course in the case of (P):

γ Pð Þ= logðαÞ.

Fig. 1 a Degree of informativeness. From [56, p. 56], b Boolean lattice in equation logic
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That confirms CRI in TSSI, that is, the contingently true proposition, namely
denoting the actual situation w and/or expressing the true knowledge of w, carries
the maximum semantic information about w.

5 Coalgebraic Semantics of Quantum Systems

5.1 Category Theory Logic and Coalgebraic Semantics

To satisfy Dodig-Crnkovic’s criticism about the necessity of a formal justification
of the notion of “local (contingent) truth” theory in logic and computability theory,
let us start from the extension of the Boolean lattice (matrix) of Fig. 1b from the
propositional calculus (Boolean equation logic) to the monadic predicate calculus,
that is, where the proposition is b = ¬ a. In such a case, the meet of the lattice
(a ∧ b) would correspond to the always false proposition (a ∧ ¬a), and the join
(a ∨ b) would correspond to the always true proposition (a ∨ ¬a) of the
quasiprobability distribution of Fig. 1a, while the maximum of this distribution
corresponds to the assertion of |a| (and not of a | b, as in the lattice in figure) as
“locally true”. To make this representation computationally effective , it is neces-
sary that we are allowed to associate this maximum to a measure of the maximum of
entropy expressing the “matching” (convergence till equivalence) of the results of
two “concurrent computations” of a system and of its environment, as the result of
the “physical work” of the phase space dynamic reconfiguration (phase transition),
consuming all the available “free energy”, generated by the original “mismatch”
between them.

What is highly significant for our aims is that in a way completely independent
from quantum physicists—at least till the very last years (see Sect. 5.2 below)—
logicians and computer scientists developed in the context of CT logic a coalgebraic
approach to Boolean algebra semantics that only recently started to be applied also
to quantum computing. Let us start from some basic notions of the CT logic (for a
survey, see [12]).

The starting point of such a logic from set theory is that the fundamental objects
of CT are not “elements” but “arrows”, in the sense that also the set elements are
always considered as domains-codomains of arrows or morphisms—in the case of
sets, domains-codomains of functions.

In this sense, any object A, B, C, characterizing a category, can be substituted by
the correspondent reflexive morphism A → A constituting a relation identity IdA.
Morover, for each triple of objects, A, B, C, there exists a composition map Af BgC,
written as g◦f (or sometimes f; g), where B is the codomain of f and domain of g.3

3We recall that typical example of function composition is a recursive, iterated function:
xn+1 = f (xn).
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Therefore, a category is any structure in logic or mathematics with
structure-preserving morphisms, e.g. in set-theoretic semantics, all the models of a
given formal system, because sharing the same structure constitutes a category. In
this way, some fundamental mathematical and logical structures are also categories:
Set (sets and functions), Grp (groups and homomorphisms), Top (topological
spaces and continuous functions), Pos (partially ordered sets and monotone func-
tions), Vect (vector spaces defined on numerical fields and linear functions), etc.

Another fundamental notion in CT is the notion of functor, F, that is, an oper-
ation mapping objects and arrows of a category C into another D, F: C → D, so as
to preserve compositions and identities. In this way, between the two categories,
there exists a homomorphism up to isomorphism. Generally, a functor F is co-
variant, that is, it preserves arrows, directions and composition orders (e.g. in the
QM attempt of interpreting thermodynamics within kinematics [62]); i.e.
if f :A→B, thenFA→FB; if f ◦g, thenFðf ◦gÞ=Ff◦Fg; if idA, thenFidA = idFA.
However, two categories can be equally homomorphic up to isomorphism if the
functor G connecting them is contravariant, i.e. reversing all the arrows, directions
and the composition orders, i.e. G: C → Dop:

if f :A→B, thenGB→GA; if f◦g, thenGðg◦f Þ=Gg◦Gf ; but if idA, thenGidA = idGA.

Through the notion of contravariant functor, we can introduce the notion of
category duality. Namely, given a category C and an endofunctor E: C → C, the
contravariant application of E links a category to its opposite, i.e. Eop: C → Cop. In
this way it is possible to demonstrate the dual equivalence between them, in
symbols: C⇌Cop. In CT semantics, this means that, given a statement α defined on
C, α is true iff the statement αop defined on Cop is also true. In other terms, truth is
invariant for such an exchange operation over the statements, that is, they are dually
equivalent. In symbols: α ⇄ αop, as distinguished from the ordinary equivalence of
the logical tautology: α ↔ β, defined within the very same category.

A particular category, indeed, that is interesting for our aims is the category of
algebras, Alg. They constitute a category because any algebra A can be defined as a
structure on sets characterized by an endofunctor projecting all the possible combi-
nations (Cartesian products) of the subsets of the carrier set, on which the algebra is
defined, onto the set itself, that is,A ⊗ A → A. The other category interesting for
us is the category of coalgebras Coalg. Generally, a coalgebra can be defined as a
structure on sets, whose endofunctor projects from the carrier set onto the coproducts
of this same set, i.e. A → A ⊗ A. Despite appearances, an algebra and its
coalgebra are not dual. This is the case, for instance, of a fundamental category of
algebras in physics, that is, the category of Hopf algebras, Halg, generally used in
dynamic system theory both in classical and in quantummechanics, aswe know. Each
HAlg is essentially a bi-algebra because it includes two types of operations on/from
the carrier set, where—because they are used to represent energetically closed systems
—products (algebra, e.g., for calculating the energy of a single particle in a quantum
state) and coproducts (coalgebra, e.g., for calculating the total energy of two particles
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in the same quantum state) can be defined on the same basis, and therefore commute
among themselves. That is, there exists a complete symmetry between a HAlg and its
HCoalg, so that they are equivalent and not dually equivalent. In this sense, any Hopf
algebra is said to be self-dual, that is, isomorphic with itself. Tomake, on the contrary,
a Hopf algebra dually equivalent with its coalgebra, as we know from thermal QFT,
we have to introduce a q-deformation, where q is a thermal parameter. In this case,
both coproducts and then products do not commute among themselves. In fact, in the
case of coproducts used for calculating a quantum state total energy, they are asso-
ciated to a system state energy and to its thermal-bath state energy, so that they cannot
commute among themselves.

More generally, indeed, it is possible to define a dual equivalence between two
categories of algebras and coalgebras by a contravariant application of the same
functor. We might give two examples of this notion, the first in mathematics and
computability theory concerning Boolean algebras, and the second in computa-
tional physics concerning QFT.

5.2 Coalgebraic Semantics of a Boolean Logic
for a Contravariant Functor

The first example, concerning Boolean algebras, depends essentially on the fun-
damental representation theorem for Boolean algebras demonstrated in 1936 by the
American mathematician M. Stone, five years after having demonstrated with John
von Neumann the fundamental theorem of QM we quoted in Sect. 2. Indeed, the
Stone theorem associates each Boolean algebra B to its Stone space S(B) [63].
Therefore, the simplest version of the Stone representation theorem states that every
Boolean algebra B is isomorphic to the algebra of partially ordered by inclusion
closed-open (clopen) subsets of its Stone space S(B), effectively an ultrafilter4 of
the power set of a given set (interval) of real numbers defined on S(B).

Because each monotone function between a Boolean algebra A and a Boolean
algebra B corresponds to a continuous function from S(B) to S(A) in the opposite
direction so to make them dual, we can state that each endofunctor Ω in the
category of the coalgebras on Stone spaces, SCoalg, induces a contravariant functor
in the category of the Boolean algebras, BAlg [64, 65]. In CT terms, the theorem—

effectively demonstrated by Abramsky in 1988—states the dual equivalence
between them for the contravariant application of the “Vietoris functor” V, i.e.
SCoalg( V)⇌ BAlgðV*). Let us deepen this fundamental point, by summarizing the
essential steps leading to this result.

It is difficult to exaggerate the fundamental importance of the Stone theorem that,
according to computer scientists, inaugurated the “Stone era” in computer science. In

4We recall here that by an “ultrafilter” we mean the maximal partially ordered set defined on the
power set of a given set ordered by inclusion, and excluding the empty set.

194 G. Basti



Particular, this theorem demonstrated definitively that Boolean logic semantics
requires only a first-order semantics because it requires only partially ordered sets
and not totally ordered sets. This result is particularly relevant for the foundations of
computability theory. Indeed, the demonstration of the fundamental Lövenheim–

Skolem theorem (1921) blocked the research program of E. Schröder of the so-called
algebra of logic in the foundations of mathematics and of calculus [64], because it
demonstrated that algebraic sets are not able to deal with non-denumerable sets, e.g.
with the totality of real numbers. For this reason, and the subsequent fundamental
demonstrations of Tarski’s theory of truth as correspondence (1929) [65], and of
Gödel’s incompleteness theorems (1931) [66], the set-theoretic semantics migrated to
higher-order logic, in order to grant the total ordering of sets, by some foundation
axiom, e.g. the axiom of regularity in Zermelo-Fraenkel (ZF) set-theory. In this way,
no infinite chain of inclusions among sets is allowed in standard set theory, so as to
separate the semantic “set ordering” from the complete “set enumerability”.5

Therefore, the further step for making the Stone theorem computationally
effective for a Boolean first-order semantics, avoiding the limits of the Turing-like
computation scheme, where a UTM is effectively a second-order TM as to an
infinity of first-order TMs, and then strictly dependent on Gödel and Tarski theo-
rems, is the definition of nonstandard set theories without foundation axioms. In
this way, we allow infinite chains of set inclusions, according to the original
intuition of the Italian mathematician E. De Giorgi [67, 68]. The most effective
among the non-standard set theories is Aczel’s set theories of non-well-founded
(NWF) sets based on the anti-foundation axiom (AFA) [13]. The AFA, indeed,
allowing set self-inclusions and therefore infinite chains of set inclusions, makes it
also possible to define the powerful notion of set co-induction by co-recursion, dual
to the algebraic notion of induction by recursion, both as formal methods of set
definition and proof [15, 68, 69] (see Appendix A.1).

In this sense, the key role of the AFA is threefold:

1. Above all, it grants the compositionality of the set inclusion relations by pro-
hibiting that the ordinary transitivity rule (TR), ⟨∀u, v,wððuRv∧ vRwÞ→ uRwÞ⟩,
where R is the inclusion relation and u, v, w are sets—holds in set inclusions,
because TR supposes the set total ordering. In this way, because only the
“weaker” transitivity of the Euclidean rule (ER) ⟨∀u, v,wððuRv∧ uRwÞ→ vRwÞ⟩
between inclusions is allowed here, this means that the representation of sets
ordered by inclusion as oriented graphs, in which the nodes are sets and the
edges are inclusions with only one root (in our case the set u), always satisfies an
“ascendant–descendant relationship” without “jumps” (each descendant always

5Two corollaries of the Lövenheim–Skolem theorem, demonstrated by Skolem himself in 1925,
are significant for our aims, i.e. (1) that only complete theories are categorical, and (2) that the
cardinality of an algebraic set depends intrinsically by the algebra defined on it. Think, for instance
of the principle of induction by recursion for Boolean algebras, allowing a Boolean algebra to
construct the sets on which its semantics is justified, blocking however Boolean computability on
finite sets. It is evident that Zermelo’s strategy of migrating to second-order set-theoretic semantics
grants categoricity to mathematics on an infinitistic basis.
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has its own ascendant i.e. they form a tree). This is the core of the “composi-
tionality” of the inclusion operator of a coalgebra defined on NWF sets, i.e. the
basis of the so-called tree-unfolding of NWF sets, starting from an “ultimate
root” similar to the universal set V—which is allowed here, because of the
possibility of set self-inclusion,6 i.e. the disjunction of all sets forming the
universe of the theory, like the “join” of a Boolean lattice. All this is the basis
for extending the duality between the category Stone of Stone spaces, and the
category BAlg, to the dual equivalence between the category of the coalgebras
Coalg and the category of the algebras Alg, for an induced contravariant functor
Ω*, i.e. Coalg(Ω) ⇌ Alg(Ω*) [16, p. 417ff].7

2. Secondly, the AFA and the “final coalgebra theorem” justify the coalgebraic
interpretation of modal logic in the framework of first-order logic (see the
fundamental van Benthem theorem in this regard [70]) because the principle of
set unfolding for partially ordered sets within an unbounded chain of set
inclusions gives us an algebraically “natural” interpretation of the modal pos-
sibility operator “⋄”, in the sense that < ⋄α > means that “α is true in some
possible worlds” [71–74], so as to give a computationally effective (first-order
logic, where the predicate calculus is complete) justification to Thomason’s
early program of “reduction of the second-order logic to the modal logic” [75],
made effective by another celebrated theorem, the Goldblatt–Thomason theo-
rem. Because any set tree can be modeled as a Kripke model, this theorem
defines rigorously which elementary classes of Kripke models are modally
definable (for a deep discussion of this theorem, see [76, pp. 33–43]. For an
intuitive treatment of these notions, see Sect. A.2 in the Appendix).

3. Thirdly, in the fundamental paper of 1988 [11], Abramsky first suggested that
the endofunctor of modal coalgebras on Stone spaces, defined on NWF sets, is
the so-called Vietoris functor V.8 In this way we can extend the duality between
coalgebras and algebras for the induction of a contravariant functor Ω*, to the
dual equivalence between modal coalgebras on Stone spaces and modal Boo-
lean algebras for the induction of a contravariant functor V*, i.e., SCoalgðV) ⇌

6Recall that set self-inclusion is not allowed for standard sets because of Cantor’s theorem. This
impossibility is the root of all semantic antinomies in standard set theory, from which the necessity
of a second-order set-theoretic semantics ultimately derives.
7This depends on the trivial observation that a coalgebra C = 〈C,γ : C → ΩC 〉, where γ is a
transition function characterizing C, over an endofunctor Ω: C → C can be seen also as an
algebra in the opposite category Cop, i.e. Coalg(Ω) = (Alg(Ωop)op [16, p. 417].
8The fundamental property ofV is that it is the counterpart of the power set functor℘ in the category
of the topological spaces (i.e. for continuous functions) such as the Stone space category, Stone.
This functor maps a set S to its power set℘(S) and a function f : S → S’ to the imagemap℘f given
by (℘f) (X) ≔ f [X] (= { f(x) | x ∈ X}). Applied to Kripke’s relational semantics in modal logic,
this means that Kripke’s frames and models are nothing but “coalgebras in disguise”. Indeed, a
frame is a set of “possible worlds” (subsets, s) of a given “universe” (set, S) and a binary “acces-
sibility” relation R between worlds, R ⊆ S × S. A Kripke’s model is thus a frame with an eval-
uation function defined on it. NowR can be represented by the functionR[•]: S → ℘(S), mapping
a point s to the collection R[s] of its successors. In this way, frames in modal logic correspond to
coalgebras over the covariant power set functor ℘. For such a reconstruction see [16, p. 391].
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BAlg( V*) [16, p. 393ff]. This depends on the fact that V is a functor defined on
a particular category of topological spaces, the category of the vector spaces
Vect we introduced in Sect. 5.1. Vector spaces are fundamental in physics; also
the Hilbert spaces of the quantum physics mathematical formalism belong to
this category, and, overall, the topologies of Stone spaces are the same of the
C*-algebras associated to Hilbert spaces in quantum physics. On the other hand,
the morphisms characterizing the vector space category are, indeed, linear
functions, so if we apply to modal coalgebras van Benthem’s “correspondence
theorem” [77] and the consequent “correspondence theory” [70] between the
modal logic and the decidable fragments of the first order monadic predicate
calculus, associating each axiom of modal calculus with a first-order formula
(see Appendix A.2 for some examples), we obtain the following amazing result
that Abramsky first suggested [11], and Kupke et al. developed [74]. Namely,
we can formally justify the modal coinduction (tree unfolding) of predicate
domains so as to justify the modal operators of “possible converse membership”
or “possible co-membership”, ⟨∋⟩, and of “actual co-membership”, i.e.
¬⟨¬∋⟩, that is, ∋½ �, where the angular and square parentheses are reminders of
the possibility-necessity, “◊-⎕” operators, respectively [16, p. 392ff].

What, intuitively, all this means for our aims is that, because modal coalgebras
admit only a stratified (indexed) usage of the necessity operator □ and of the
universal quantifier ∀, since a set actually exists as far as effectively unfolded by a
co-inductive procedure, the semantic evaluations in the Boolean logic effectively
consist in a convergence between an inductive “constructive” procedure, and a
co-inductive “unfolding” procedure, namely they effectively consist in the super-
position limit/colimit between two concurrent inductive/coinductive computations
(see Appendix A.1). This is the core of Abramsky’s notion of finitary objects as
“limits of finite ones”, definable only on NWF sets, finitary objects that according to
him are the most proper objects for mathematical modeling of computations [11].

This is also the core of the related notion of duality between an initial Boolean
algebra, starting from a least fixed point, x = f (x), and its final Stonean coalgebra,
starting from a greatest fixed-point (see Appendix A.1), at the basis of the notion of
universal coalgebra as a “general theory of both computing and dynamic systems”
[15]. This theory allows one to justify a formal semantics of computer program-
ming as satisfaction of a given program onto the physical states of a computing
system, outside the Turing paradigm. Indeed, this approach systematically avoids
the necessity of referring to an UTM for formally justifying the universality in
computations, because of the possibility of referring to algebraic and co-algebraic
universality.9 At the same time, this theory is able to give a strong formal foun-
dation to the notion of natural computation, as far as we extend such a coalgebraic

9However, see the fundamental remarks about the limits of decidability and computability in this
first-order modal logic semantic approach in [76], in which it is said, just in the conclusion, that
one of the most promising research programs in this field is related to the coalgebraic approach to
modal logic semantics.
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semantics to quantum systems and quantum computation. This research program
was inaugurated by S. Abramsky and his group at Oxford only a few years ago,
both in fundamental physics [78], and in QM computing [14], even though it has its
most natural implementation in a QFT foundation of both quantum physics and
quantum computation [79].10

From the standpoint of the natural ontology of cognitive neuro dynamics in the
framework of a QFT foundation of it (see Sect. 3.2 above), all this, roughly
speaking, means that it is logically true that the (sub)class of horses is a member of
the (super)class of mammalians iff, dually, it is ontically (dynamically) true that a
co-membership of the species of horses to the genus of mammalians occurs, from
some step n onward of the universe evolution (=“natural unfolding” of a biological
evolution tree), I.e.

⊖∀nðn>mÞ horse∈mammmalian|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AlgebraðΩ*Þ

Ω*←Ω⇆|fflfflfflfflffl{zfflfflfflfflffl}
Onto− logicaliff

horse∋mammalian|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Co−AlgebraðΩÞ

0
@

1
A

In other terms, we are faced here with an example of a “functorially induced”
homomorphism, from a coalgebraic natural structure of natural kinds
(genera/species) into a logical structure of predicate domains (class/subclass), as an
example of modal local truth, applied to a theory of the ontological natural realism,
in the framework of an evolutionary cosmology [59, 82],11 where it is nonsensical
to use not indexed (absolute) modal operators and quantifiers, given that emergence
of physical laws depends on the universe evolution. In parenthesis, this also gives a
solution to the otherwise unsolved problem, in Kripke’s relational semantics, of the
denotation of natural kinds (the denoted objects of common names, such as
“horses” or “mammalians” in our example) and of the connected Kripke’s and
Putnam’s causal theory of reference (see on this point my previous discussion
about these problems in [28]). Finally, this gives a logical interpretation as predi-
cate (e.g. “being horse”) of the “doubled number”, i.e. N A,N Ã, as identity func-
tions relative to two mirrored (doubled) sets of degrees of freedom, A and Ã, one
relative to a logical realm (the Algebra(Ω*)), the other to its dual natural realm (the
Coalgebra(Ω)), the latter satisfying (making true) naturally—i.e. dynamically in

10This depends on the fact that contravariance in QM algebraic representation theory can have
only an indirect justification, as Abramsky elegantly explained in his just quoted paper. QM
algebraic formalism is, indeed, intrinsically based on von Neumann’s covariant algebra, so that
only Hopf algebras’ self-duality are “naturally” (in the algebraic sense of the allowed functorial
transforms) justified in it [62, 80, 81].
11In this regard, the famous Aristotelian statement synthesizing his “intentional” approach to
epistemology—“not the stone is in the mind, but the form of the stone”—has an operational
counterpart in the homomorphism algebra coalgebra of QFT neuro dynamics.
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this QFT implementation—the former (see above, Sect. 3.2). The co-membership
relation in the coalgebraic half has its physical justification in QFT by the general
principle of the “foliation of the QV” at the ground state, and of the relative Hilbert
space into physically inequivalent subspaces”, allowing “the building up” via SSB
of ever more complex phase coherence domains in the QV, given their stability in
time. They do not depend, indeed, on any energetic input (they depend on as many
NGB condensates | N |, each correspondent to a SSB of the QV at the ground state),
but on as many “entanglements” with stable structures of the environment [83].
This justifies Freeman and Vitiello in suggesting that this is the fundamental
mechanism of the formation of the so-called long-term memory traces in brain
dynamics [47], i.e. the formation of the “deep beliefs” in our brains by which each
of us interprets the world, based on her/his past experience, using the recently
diffused AI jargon in artificial neural network computing [84].

Anyway, apart from this “ontological” exemplification, which is useful however
to connect the present discussion with the rest of this chapter, all this means
extending to a Boolean lattice L of the monadic predicate logic the modal semantics
notions of co-induction and/or of “tree unfolding”, so as to give a formal justifi-
cation of the modal notion of “local truth” also in a computational environment.12

Indeed, because such a co-inductive procedure of predicative domains justification
is defined on NWF sets supporting set self-inclusion, i.e. x→ {x}, for each of these
co-induced domains also the relative Idx, i.e. the relative predicate φ, is defined,
without any necessity to refer to Fregean second-order axioms, such as the com-
prehension axiom of ZF set theory, i.e. < ∀x∃y x∈ y ≡ φx > . This justifies the
general statement that, in CT coalgebraic semantics, there exists a Tarski-like model
theory [12], without, however, the necessity to refer to higher-order languages for
justifying the semantic meta language [86], according to Thomason’s reduction
program.

We can thus conclude this section by affirming that the previous discussion
satisfies the first requirement of Dodig-Crnkovic’s criticism to a theory of semantic
information at the end of Sect. 4.2.2, i.e. the necessity of a formal justification of
the theory of “local truth”, essential for the notion and measure of Floridi’s se-
mantic information that can be naturally given in the context of a coalgebraic
(modal) semantics of predicate logic. Quoting the first concluding remark of V.
Goranko and M. Otto’s contribution to the Handbook of Modal Logic devoted to
the Kripke model theory of modal logic [87, p. 323], we can conclude too:

Modal logic is local. Truth of a formula is evaluated at a current state (possible world); this
localization is preserved (and carried) along the edges of the accessibility relations by the
restricted, relativized quantification corresponding to the (indexed) modal operators.

12This result has been recently formally obtained [85]. For an intuitive explanation of this result,
see below the two Appendices, Sects. 7.1–7.2.
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5.3 Coalgebraic Semantics of Quantum Systems

We now have only one last step to perform: implementing the theory of local truth
in a QFT system, that is, demonstrating that the curve of the quasi probability
diagram of Fig. 1a as an information measure of the degree of semantic informa-
tiveness represents a measure of maximal entropy, expressing the fact that a given
dynamic cognitive system (e.g. brain dynamics in the QFT interpretation depicted in
Sect. 3.2) consumed all the free-energy deriving from the mismatch with its thermal
bath, for the reorganization “work” (in the thermodynamic sense) of its inner state,
so to match the outer state (thermal-bath), and then minimizing the free energy of
the whole system (brain + thermal bath). In other terms, we have to interpret the
maximal entropy physical measure as a logical measure of maximal local truth in
the statistical sense. To sum up, we have to interpret consistently a QFT dynamic
system as a computing system.

In the light of the discussion above it is necessary and sufficient for such an aim
to demonstrate that the collections of the “q-deformed Hopf algebras” and the “q-
deformed Hopf coalgebras” of the QFT mathematical formalism constitute two
dually equivalent categories for the contravariant application of the same functor T,
that is, the contravariant application of the so-called Bogoliubov transform. This is
the classical QFT operator of “particle creation-annihilation”, where the necessity
of such a contravariance depends on the constraint of satisfying anyway the energy
balance principle, i.e. q-HCoalg(T) ⇌ q-HAlg(T*). It is useful to recall here that
the q-deformation parameter characterizing each pair of q-deformed Hopf algebra
coalgebra is physically a thermal parameter, so as to constitute the “evolution
parameter” of the universe in a QFT interpretation of cosmology, via SSBs of the
QV, according to Wheeler’s suggestion with which we started our paper that in the
new physics paradigm “cosmogony is the legislator of physics”.

On the other hand, mathematically, this parameter is related to the “Bogoliubov
angle”, θ, characterizing each different application of the transform—where, as we
know, the angle, with the frequency and the amplitude, are the three main
parameters characterizing generally the phase of a given waveform. For a sys-
tematic presentation of the QFT mathematical formalism, see [17, pp. 185–235].

The complete justification of a coalgebraic interpretation of this mathematical
formalism is given elsewhere [79], because we cannot develop it here. Neverthe-
less, at least two points of such a justification are important to emphasize, for
justifying the interpretation of the maximal entropy in a QFT system as a semantic
measure of information, i.e. as a statistical measure of maximal local truth in a CT
coalgebraic logic for QFT systems.

Firstly, the necessary condition to be satisfied in order that a coalgebra category
for some endofunctor Ω, i.e. Coalg(Ω), can be interpreted as a dynamic and/or
computational system, is that it satisfies the formal notion of state transition system
(STS). Generally a STS is an abstract machine characterized as a pair (S, → ),
where S is a set of states, and ((→ ) ⊆ S × S) is a transition binary relation over
S. If p, q belong to S, and (p, q) belongs to (→ ), then (p → q), i.e. there is a
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transition over S. To allow a dynamic/computational system to be represented as a
STS on a functorial coalgebra for some functor Ω, it is necessary that the functor
admits a final coalgebra [16, p. 389]; I.e.:

Definition 1: (Definition of final coalgebra for a functor). A functor Ω : C → C is
said to admit a final coalgebra iff the category Coalg(Ω) has a final object, that is, a
coalgebra ℤ such that from every coalgebra 𝔸 in Coalg(Ω), there exists a unique
homomorphism, !𝔸:𝔸→ℤ.

This property has a very intriguing realization—and this is the sufficient con-
dition to satisfy for formalizing a QFT system as a computing system—into the
final coalgebra associated with a particular abstract machine, the so-called infinite
state black-box machine𝕄⟨M, μ⟩ [16, p. 395]. It is characterized by the fact that the
machine internal states, x0, x1, …, cannot be directly observed, but only some
values (“colors”, cn) associated with a state transition μ. I.e. μ (x0) = (c0, x1),
μ (x1) = (c1, x2), … In this way, the only “observable” of this dynamics is the
infinite sequence of behaviors or stream beh (x0) = (c0, c1, c2, …) ∈ Cω of value
combinations or “words” over the dataset C. The collection Cω forms a labeled STS
for the functor C × I , where I is the set of all the identity functions (labels), as far
as we endow Cω with a transition structure γ splitting a stream u = c0c1c2, … into
its “head” h(u) = c0, and its tail t(u) = c1c2c3…. If we pose γ (u) = (h(u), t(u)), it is
possible to demonstrate that the behavior map x ↦ beh (x) is the unique homo-
morphism from 𝕄 to this coalgebra ⟨C, γ⟩, that is, the final coalgebra ℤ in the
category CoalgðC × IÞ.13

The abstract machine 𝕄 is used in TCS for modeling the coalgebraic semantics
of programming relative to infinite datasets, so-called streams: think, for instance,
of the internet and more generally of all the ever-growing databases (“big data”)
[15]. The application of 𝕄 for characterizing the QFT dynamics as a “computing
dynamics” is evident in the light of the discussion above because we are allowed to
interpret the thermodynamic functor T (Bogoliubov transform) characterizing the
category q-HCoalg(T) as a functor able to associate the observable c of each
“word” (phase coherence domain) of the QFT infinite dataset C, i.e. the infinite
CCRs characterizing the QV, with the correspondent Ic, so that T = ðC × IÞ. Indeed,
each Ic corresponds in the QFT formalism to the NGB condensate numerical value
Nj j univocally identifying each phase coherence domain, i.e. a “word” of the QV
“language”. In this way, the QV, because it is endowed with the SSB state transition
—effectively a phase-transition—structure γ, selecting every time one CCR (head)
from the others (tile), corresponds to the final coalgebra ℤ of the category q-
HCoalg(T). Moreover, the dynamics of 𝕄QFT is a thermo-dynamics; i.e. its state
(phase) transition is “moved” by the II Principle (energy equipartition), in a way

13In parenthesis, in the machine 𝕄 the general coalgebraic principle of the observational (or
behavioral) equivalence among states holds in the following way. Indeed, for every two coal-
gebras (systems) 𝕊1,𝕊2 ∈Coalg C × Ið Þ, !c𝕊1 = !c𝕊2ð Þ⇒ !x𝕊1 = !x𝕊2ð Þ. All scholars agree that
this has an immediate meaning for quantum systems logic and mathematics, as a further jus-
tification for a coalgebraic interpretation of quantum systems.
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that must satisfy, on the one hand, the “energy arrow contravariance” related to the I
Principle, and, on the other one, without consuming all the QV energy “reservoir”
as requested by the III Principle.14 All this implies the necessity of doubling the
behavior map, i.e. x↦beh x, x ̃ð Þ, and all the related objects and structures—i.e. the
necessity of “echoing” each word of the QV language—so as to satisfy finally
the “dual equivalence” characterizing the QFT categorical formalism, i.e. q-HCoalg
(T) ⇌ q-HAlg(T*). In logical terms, the functor induction T ← T* means that the
semantics (coalgebra) induces its own syntax (algebra). This, on the one hand,
justifies the computer scientist’s interest toward a coalgebraic approach to quantum
computation for managing streams, and on the other, demonstrates that the QFT
interpretation of this approach is the more promising one. In fact, what we intended
using the metaphor of “word echoing” within the model of the 𝕄QFT is effectively
the DDF principle determining the dynamic choice, observer independent, of the
structure (syntax) of the “composed Hilbert space” of a QFT system as based on the
dual equivalence (semantics) of one pair q-HCoalg(T) ⇌ q-HAlg(T*) representing
the whole dissipative system [79].

All this is related to the second, final, observation, justifying the interpretation of
the maximal entropy in a QFT “doubled” system as a semantic measure of informa-
tion, i.e. as a statistical measure ofmaximal local truth in the CT coalgebraic logic. In
the QFT mathematical formalism, this maximum of the entropy measure is formally
attained when the above-illustrated DDF principle (far-from-equilibrium energy
balance) between a system (algebra) and its thermal bath (coalgebra) is dynamically
(=automatically) satisfied. This means that we are allowed to interpret the QFT qubit
of such a natural computation as an “evaluation function” in the semantic sense.
Indeed, in the QFT “composed Hilbert space” including also the thermal bath degrees
of freedom, Ã, i.e. HA, Ã =HA⊗HA ̃, for calculating the static and dynamic entropy
associated with the time evolution generated by the free energy, i.e. ϕ tð Þj ⟩, ψ tð Þj ⟩, of
the qubit mixed states ϕj ⟩, ψj ⟩, one needs to double the states by introducing the tilde
states 0 ̃j ⟩ and 1 ̃j ⟩, relative to the thermal bath, i.e. 0j ⟩→ 0j ⟩⊗ 0 ̃j ⟩ and 1j ⟩→ 1j ⟩⊗ 1 ̃j ⟩.
This means that such a QFT version of a qubit implements effectively the CNOT
(controlled NOT) logical gate, which flips the state of the qubit, conditional on a
dynamic control of an effective input matching [79].

6 Conclusion

I used many times in this paper, also in the title, the expression “new paradigm”.
Th. Kuhn, who coined the fortunate expression “paradigm shift”, said that the
“scientific community” has to decree this shift every time it happens in the history

14A condition elegantly satisfied in the QFT formalism by the fractal structure of the systems
phase space and, therefore, by the chaotic character of the macroscopic trajectories (phase tran-
sitions) defined on it, generally [88], and specifically in dissipative brain dynamics [32].
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of science. Therefore, if we agree in giving to the Stockholm Royal Academy the
honor and the duty of representing the scientific community at its higher levels, it
decreed just a few months ago that we are living one of these turns characterizing
the history of modern science. In the official conference press release for
announcing to the world that the 2015 Nobel Prize in Physics was awarded to the
physicists T. Kajita and A. B. McDonald for their observational discovery of the
neutrino mass, the Academy stated that “the new observations had clearly showed
that the Standard Model cannot be the complete theory of the fundamental con-
stituents of the universe” [89].

In this paper we defended the idea that QFT interpreted as a “thermal field
theory” is a candidate for constituting, above all, the proper theory of the “physics
beyond the Standard Model” because it is able to give physics a strong formal
alternative to the “perturbative methods” and their “asymptotic states” that lie at the
basis of the Standard Model “mechanistic” interpretation of the statistical distinc-
tion between “fermions” and “bosons”, in terms of “particles” and of “force field
quanta”, respectively. The validity of perturbative methods relies indeed on the
possibility of correctly defining asymptotic states for the system, namely states
defined in infinitely distant space time regions, so as to make interactions negli-
gible, in the presumption that this representation is not falsifying the nature of the
physical system to be represented. In this light, the “paradigm turn” with which
today we are faced is therefore not only with respect to the Standard Model physics
(QED and QCD, i.e. the so-called standard QFT), but also to QM, the “many-body
dynamics” extension of classical mechanics, from Laplace on. Therefore, the pre-
sumption of correctly representing a system as isolated lies at the bottom of the
same origins of modern physics and modern calculus. This presumption cannot
hold, however, in the case of QFT systems, as they are intrinsically “open” to
background QV fluctuations, or, more generally, when we have to reckon with
system phase transitions. In all these cases, the QFT alternative picture of repre-
senting both fermions and bosons as quanta of the relative force field is more
suitable. On the other hand, we showed that the paradigm shift we are discussing,
because it involves the foundations of modern science, also involves the founda-
tions of mathematics and computability theory, as far as both are related to non
standard set theories.

The alternative formalism offered by thermal QFT is, therefore, the doubled
algebra representation of a quantum system and of its thermal bath, through the
mathematical formalism of the DDF between a q-deformed Hopf algebra and its q-
deformed Hopf coalgebra, as illustrated in this chapter. Such formalism has been
successfully applied not only in fundamental physics, the physics of neutrino
oscillations included [17, pp. 91–95], but also in condensed matter physics, bio-
logical matter, and brain dynamics. For this reason, in this chapter we deepened the
possibility of justifying in such a formalism also the notion and measure of “se-
mantic information”, generally associated with biological and neural information
processing. For this aim, we discussed an information-theoretic interpretation of the
DDF in QFT systems, in the framework of the coalgebraic approach to quantum
computation, recently introduced as an alternative to the information-theoretic
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interpretation of QM systems as quantum Turing machines. This allowed us to give
a formal justification of the notion of “local truth”, associated with the measure of
semantic information that is therefore interpreted as a measure of maximal entropy,
because it minimizes the “free energy” associated with the mismatch with the
system environment thermal bath. Practically, this measure expresses the “entan-
glement” that dynamically occurred, as signaled by the flipping of the associated
qubit, between the degrees of freedom of the system and of its thermal bath, within
the same representation space including both [79]. This result is ultimately based on
the possibility of justifying the dual equivalence between the categories of the q-
deformed Hopf algebras and the q-deformed Hopf coalgebras, allowing one to
interpret quantum computations of QFT systems in the framework of category
theory logic. This initial result opens the way to new promising scenarios in
quantum natural and artificial computation to be explored in the near future.

Appendix A

A.1 Induction and Coinduction as Principles of Set Definition
and Proof for Boolean Lattices

The collection of clopen subsets of a Stone space, to which a Boolean algebra is
isomorphic, according to the Stone theorem is effectively an ultrafilter U (or the
maximal filter F) on the power set, ℘(S), of the set S. Namely, it is the maximal
partially ordered set (maximal poset) within ℘(S) ordered by inclusion, i.e. (℘(S),
⊆), with the exclusion of the empty set. Any filter F is dual to an ideal I, simply
obtained in set (order) theory by inverting all the relations in F, that is, x ≤ y with
y ≤ x, and by substituting intersections with unions. From this derives that each
ultrafilter U is dual to a greatest ideal that, in Boolean algebra, is also a prime ideal,
because of the so-called prime ideal theorem, effectively a corollary of the Stone
theorem, demonstrated by himself. All this, applied to the Stone theorem, means
that the collection of partially ordered clopen subsets of the Stone space, to which a
Boolean algebra is isomorphic, corresponds to a Boolean logic complete lattice
L for a monadic first-order predicate logic. From this, the definition of induction
and coinduction as dual principles of set definition and proof is immediate, as soon
as we recall that the fixed point of a computation F is given by the equality x = F
(x) [68, p. 46]:

Definition 2 (sets inductively/coinductively defined by F). For a complete Boolean
lattice L whose points are sets, and for an endofunction F, the sets

Find: =⋂ xjFðxÞ≤ xf g
Fcoind: =⋃ xjx≤FðxÞf g
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are, respectively, the sets inductively defined by a recursive F, and coinductively
defined by a co-recursive F. They correspond, respectively, to the meet of the
pre-fixed point and the join of the post-fixed points in the lattice L, i.e. the least and
greatest fixed points, if F is monotone, as required from the definition of the
category Pos (see above, Sect. 5.1).

Definition 3 (induction and coinduction proof principles). In the hypothesis of
Definition 2, we have:

if FðxÞ≤ x then Find ≤ x ðinduction as amethod of proof)
if x≤FðxÞ then x≤Fcoind ðcoinduction as amethod of proof)

These two definitions are the basis for the duality between an initial algebra and
its final coalgebra, as a new paradigm of computability, i.e. Abramsky’s finitary
one, and henceforth for the duality between the universal algebra and the universal
coalgebra [15].

A.2 Extension of the Coinduction Method to the Definition
of a Complete Boolean Lattice of Monadic Predicates

The fundamental result of the above-quoted Goldblatt–Thomason theorem and van
Benthem theorem is that a set-tree of NWF sets—effectively a set represented as an
oriented graph where nodes are sets, and edges are inclusion relations with subsets
governed by Euclidean rule—corresponds to the structure of a Kripke frame of his
relational semantics, characterized by a set of “worlds” and by a two-place
accessibility relation R between worlds, e.g. the second graph from left below
corresponds to the graph of the number 3, with u = 3, v = 2, w = 1. Therefore for
understanding intuitively the extension of the coinduction method to the domains of
monadic predicates of a Boolean lattice, let us start from (1) the “Euclidean rule
(ER)” ‹∀u,v,w ((uRv ∧ uRw)→ vRw)› (see the second from left graph below),
driving all the NWF set inclusions and that is associated by van Benthem’s cor-
respondence theorem to the modal axiom E (or 5): ‹◊α→⎕◊α›, of the modal
propositional calculus, and (2) from the “seriality rule (SR)” ‹∀u∃v (uRv)› (an
example of this axiom is given by the fourth or fifth graph below)—that has an
immediate physical sense, because it corresponds to whichever energy conservation
principle in physics, e.g. the I Principle of Thermodynamics—and that is associated
to the modal axiom D: ‹⎕α → ◊α›. The straightforward first-order calculus, by
which it is possible to formally justify the definition/justification by coinduction
(tree unfolding) of an equivalence class as the domain of a given monadic predi-
cate, through the application of the two above rules to whichever triple of objects
‹u, v, w›, is the following:

For ER, ‹∀u,v,w ((uRv ∧ uRw) → vRw)›; hence, for seriality, ‹∀u,v (uRv →
vRv)›; finally: ‹∀u,v,w [((uRv ∧ uRw) → (vRw ∧ wRv ∧ vRv ∧ wRw)) ↔
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((v≡w) ⊂ u)]›, I.e. (v≡w) constitutes an equivalence subclass of u, say Y, because
a “generated” transitive15-symmetric-reflexive relation holds among its elements,
which are therefore also “descendants” of their common “ascendant”, u. More
intuitively, using Kripke’s relational semantics graphs for modal logics, where ‹u, v,
w› are also “possible worlds” (models) of a given universe W, and where R is the
two-place “accessibility relation” between worlds, the above calculus reads:

The final graph constitutes a Kripke-like representation of the KD45 modal
system, also defined in literature as “secondary S5”, since the equivalence rela-
tionship among all the possible worlds characterizing S5 here holds only for a
subset of them, in our example, the subset of worlds {w, v}.
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