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Abstract Empirical research on mental representation is challenging because inter-

nal representations are not available to direct observation. This chapter will show

how empirical results from developmental studies, and insights from computational

modelling of those results, can be combined with existing research on adults. So

together all these research perspectives can provide convergent evidence for how

visual representations mediate object recognition. Recent experimental studies have

shown that development towards adult performance levels in configural processing

in object recognition is delayed through middle childhood. Whilst part-changes to

animal and artefact stimuli are processed with similar to adult levels of accuracy

from 7 years of age, relative size changes to stimuli result in a significant decrease in

relative performance for participants aged between 7 and 10. Two sets of computa-

tional experiments were run using the JIM3 artificial neural network with adult and

‘immature’ versions to simulate these results. One set progressively decreased the

number of neurons involved in the representation of view-independent metric rela-

tions within multi-geon objects. A second set of computational experiments involved

decreasing the number of neurons that represent view-dependent (non-relational)

object attributes in JIM3’s surface map. The simulation results which show the best

qualitative match to empirical data occurred when artificial neurons representing

metric-precision relations were entirely eliminated. These results therefore provide
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further evidence for the late development of relational processing in object recog-

nition and suggest that children in middle childhood may recognise objects without

forming structural description representations.

1 Introduction

Only a fraction of a second passes from when a person sees a familiar visual object

to when they can then name it. Despite it being relatively quick, the process of visual

object recognition is complex, with multiple sub-processes, some occurring in par-

allel. Multiple forms of representation are invoked in object recognition, from the

point of initially perceiving an object to finally being able to provide the name for

it. A very rough framework to start understanding the complexities of recognition

is to consider how recognition processes get started and how they complete. First, a

person perceives an object is present in sense data. Then this perceptual pattern is

compared with a representation of some kind for that object type in long-term mem-

ory. When a match is found between these two representations of the object currently

present in perception, recognition has occurred. However, this brief sketch is an over-

simplification because perceptual processes do not complete before memory retrieval

starts. Rather, perception and memory retrieval occur together and influence each

other. In addition this rough distinction between perceptual and memory processes

leaves open many further questions. For example, can the perceptual component of

the overall recognition process be broken down to more basic sub-processes?; how

are visual features in sense data selected and bound [44, 48]?; how are part-relations

bound [28]?; and, what is the role of attention in object recognition [34]? Ques-

tions also arise from considering how percepts are matched to memories: does object

recognition rely on one, two or many mediating representations, in perception, and in

long-term memory [21]?; and what backwards projections or ‘top-down’ influences

from memory retrieval to perception exist [19]?

The main question that this chapter is concerned with arises from the finding

that object recognition performance changes through adolescence. So this chapter

explores possible developmental trajectories for how object recognition representa-

tions change during this period in development. Specifically, this chapter will use

computational modelling to attempt to explain empirical evidence for differences

in the visual representations used for object recognition in middle childhood (ages

7–10) and adulthood. In attempting to answer this specific question, some general

issues in recognition processes and representations for recognition will need to be

examined. So before the developmentally focussed question can be answered we

will consider what representations are used when adults recognise objects. Visual

object recognition has been far more intensively studied in adults than children, and

current theories propose that adults use a variety of representations when recog-

nising objects. These include compositional representations which describe objects

as three-dimensional (3D) structures in terms of the interrelationship of their parts
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[4, 29, 36], and image-based representations which capture two-dimensional (2D)

object views [18, 37].

1.1 Compositionality in Visual Object Representations

Humans are highly accomplished at recognising objects visually. Familiar objects

can be recognised in novel viewpoints, and new unseen members of familiar cate-

gories are also often recognised with speed and accuracy. Structural description the-

ories explain this impressive performance by proposing that recognition of objects

occurs through intermediate object representations that are compositional in nature

and are abstracted from sensory data. Formal logics and natural languages demon-

strate compositionality because the meaning of linguistic or logical expressions with

multiple parts is determined not just by the meaning of those parts but the way they

are put together. In addition to language, compositionality is found in a diverse range

of other entities in the world including visual objects. So in a recognition task an

object’s identity can be determined by identifying relations between its component

parts, not just the nature of those parts viewed in isolation [4]. In our interactions

with objects the perception of compositionality can be manifested across multiple

modalities [32]. We can perceive visual compositionality in scenes and objects and

thus form structural descriptions. Structural description recognition processes that

are mediated by compositional representations are also termed analytic processes

because they specify the relations among an object’s parts explicitly and indepen-

dently ([43], p. 257).

The ‘recognition by components’ (RBC) theory of object recognition is distin-

guished from other structural description theories of object recognition because it

postulates that geons (geometric components derived from readily detectable prop-

erties of edges) are the fundamental unit of representation for objects [4]. Geons can

therefore be compared with phonemes in spoken language. In both systems, a small

number of representational primitives can code for a very large number of com-

ponent representations (words or visual objects, respectively). In the original RBC

theory 36 geons are proposed as components for all objects, compared with the 55

phonemes required to represent virtually all words in human speech [4]. A key sim-

ilarity of these systems is that how the primitives are combined matters. One way in

which phonemes and geons differ is that phonemes form words by linkage in serial

chains where the order matters. However, visual objects can be formed of multiple

geons with several different types of relations, such as larger-smaller, and above-

below or beside. For example, consider a typical coffee mug. The spatial relation

between the handle and the body of a coffee mug might be explicitly described as

a small curved cylinder side attached to a vertical straight cylinder. This structural

description would match a whole range of slightly different coffee mugs. So what

structural descriptions allow is a generalisation across metric variations that are still

within categorical divisions. This property of structural descriptions is related to the

issue of view-invariance to rotation discussed in the next section.
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Artificial neural networks can represent visual compositionality and hence model

natural cognition [21, 47]. Visual compositionality is also of interest in machine rep-

resentations because it can facilitate artificial systems extracting verbal descriptions

of scenes or objects. Active research questions include the comparative benefits of

mechanisms for neural instantiation of visual combinatorial representations [12, 47],

and how generalised shape information develops [13].

1.2 Non-compositional Image-Based Object Representations

Visual object recognition that is accomplished through the use of image-based rep-

resentations provides a complementary capability to recognition relying on com-

positional representations [21]. This is because abstracting images into parts and

relations between parts takes time and is potentially error prone. Avoiding these

drawbacks, and just using the actual image in sensory data to match against a similar

type of unabstracted view-based representation for objects in long-term memory can

therefore afford a faster and potentially less error-prone route to recognition. Image-

based recognition will also be advantageous when an object does not possess distinct

separable components which can be described compositionally, such as is the case

with a cloud or piece of wire. Image based representational theories propose that the

particular 2D object views received in sensory data are encoded in memory. This

is an opposing account to structural description theories because no abstract rep-

resentations are held in memory. View-based representations are also described as

‘holistic’ because, although they may include visual features or fragments, these are

not represented independently but rather at fixed locations within the 2D object over-

all shape. In terms of compositionality, such image-based representations do not get

decomposed into recombinable components. So view-based (holistic) coding is ana-

logue rather than compositional because object parts that are big in the image have

to be represented as a big proportion of the view-based representation, if one part is

above another in the image it has to be positioned above in the representation, not

just described as such. In view-based representations object parts are represented in

terms of their topological positions in a 2D space described by the outline of the

object [39, 41]. When perceptual images are matched to view-based representations

in memory this occurs “all of a piece” [43]. This means that an object is recognised

according to its overall shape and features within the image but not in terms of the

interrelationship of isolatable parts.

To recognise an object such as a horse, a view-based representation of a horse

in memory would be matched “in its entirety” against the object’s perceptual image

to determine the degree of fit [39, 41]. As Thoma, Hummel and Davidoff note, the

“process is directly analogous to laying a template for [a] horse over the image of
the [] horse and counting the points of overlap” ([43], p. 259).
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1.3 Differing Predictions for Performance Outcomes from
Rotation in Depth

When a known object is presented from an unfamiliar view the 2D view-based

representation in memory may not fully match up to the currently sensed image

because rotated objects can present different 2D images from the familiar views that

are already in memory. Image-based theories propose that known objects seen in

unfamiliar views can still be matched and recognised by bringing these perceptual

images into line with stored images in memory. This is postulated to occur through

processes of normalisation, which can include alignment, mental rotation and view

interpolation [8, 30, 31, 37, 38, 45, 46]. An important characteristic of all these

normalisation theories is that they predict a linear cost in recognition performance

due to rotation. Structural description theories do not make the same prediction of

linear cost to rotation. Figure 1 helps illustrates the difference between predictions on

rotation costs to recognition performance for view-based and structural description

mechanisms. A recognition task based on this object would involve an experiment

with a learning phase and a test phase. In the learning phase, a participant would

Fig. 1 Figure showing why structural description and image-based theories make different predic-

tions about performance in response to rotation in depth. After the object has been learned in the

view shown by stimuli A, this and other novel views (B–F) can be tested for how quickly they are

recognised as the same as the familiar learned object view. View-based theories predict that recog-

nition latencies will increase proportionately with rotation magnitude, from stimuli B through to

stimuli F. Structural description theories predict no added recognition cost from stimuli B through

to stimuli D, as all these stimuli are described with the same structural description, and it is the

abstract structural description that is matched to memory
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become familiar with object A, perhaps by learning a name or label for this object,

but would never see the object in the rotated views B–F. Then in the test phase of

the experiment, the participant would have to show recognition of objects, perhaps

by assigning them as already learned but rotated objects or novel objects that have

never been seen in any view. In the images presented in Fig. 1, a view-based process

with a normalisation mechanism with linear cost to rotation would predict stimuli

B would take longer to recognise than A, and C longer than B, D longer than C,

through to F, but with the same added cost to recognition latencies as the magni-

tude of rotation increased from presentations of B to a presentation of the F view

of the stimuli. However, Fig. 1 shows why changes in viewpoint will often make no

difference to the structural description that results when perceiving the object from

different rotated views. Despite the fact that the rotations in depth for objects B–

F in Fig. 1 result in significant changes to the observable 2D image, object views

for stimuli B, C and D generate exactly the same structural description as the origi-

nal learned familiar object A, with the same relations between the same component

parts [large curved cylinder side-attached small truncated cone] and [small truncated

cone above small cube]. So for objects B–D recognising the same structural descrip-

tion as A would predict the same recognition latencies. Object E has the truncated

cone mostly occluded, and in object F it is completely occluded. So a view-invariant

response to rotation would be unlikely with these object views. In summary, struc-

tural description models predict that rotation will not affect recognition performance

when the same structural descriptions will reliably result, and image-based theories

predict that, when novel rotated views are perceived, recognition is not immediate

and some process is required to transform the perceived 2D image to check matches

against previously viewed 2D exemplars in memory.

1.4 The View Dependence/Invariance Debate

Recent object recognition theories often invoke some form of structured represen-

tation activity in parallel with image-based representations (though details differ

between particular approaches) [2, 3, 17, 21, 27]. This relatively high level of agree-

ment within the object recognition community was not always the case. In the late

1980s and most of the 1990s, there occurred a vigorous debate about the nature of

internal representations for object recognition amongst psychologists carrying out

visual object recognition research. On the one hand were proponents of structural

description models, such as the RBC theory of object recognition [5–7]. On the

other hand were those who promoted view-based theories which proposed repre-

sentations much closer to the sensory input [18, 37, 38]. The differing predictions

illustrated by Fig. 1 led to an approximately 10 years debate in object recognition

research. The view-dependence/invariance debate assumed that object recognition

performance that was invariant to object rotation provided evidence for structural

description representations, and rotational costs in performance were viewed as evi-

dence for image-based representations in recognition. The debate occurred in these
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terms because researchers who were actually interested in elucidating the nature of

internal representations used object recognition performance for known objects in

novel rotated viewpoints as a proxy or surrogate for the nature of the internal repre-

sentations believed to be involved in object recognition.

As the number of published studies increased, significant evidence was found that

supported both positions in the view-dependence debate on visual object recognition.

Sometimes recognition occurs with little performance cost from stimulus rotation,

supporting the view-invariant predictions of the RBC theory. Other studies report a

pronounced cost to rotation, with increasing performance costs as the magnitude of

the rotation increased. As Hayward noted in 2003:

the viewpoint debate appears to have run out of steam. It has ended because, on most major

issues, the two sides are in basic agreement. Both agree that a change in viewpoint will

normally result in viewpoint costs, albeit small in some cases. Both agree that some visual

properties, particularly those related to the structure of an object, will be particularly impor-

tant for generalizing across viewpoint. Finally, neither can deny the findings of the other,

both view-invariant and view-specific patterns of data have been replicated so often that it

has been difficult for either to argue that their opponents’ results are a special case ([17], p.

425).

So a consensus has arisen that both image-based representations and structured

representations with some degree of abstraction from the sensory image are involved

in visual object recognition. With dual processes mediated by contrasting represen-

tations operating in parallel we can produce rotation performance predictions that

have a different, more complex pattern. We can expect the fastest recognition to

occur when an image is perceived in a familiar view, as both structural description

and view-based mechanisms will operate optimally. Next fastest will be images that

are rotated but which are still parsed to give the same structural description as the

familiar view. After this, rotations that result in occlusions of geons that are clearly

seen in the familiar view, or when previously unseen geons become viewable, result

in the slowest recognition. The next section will present further convergent evidence

for the operation of dual recognition processes. These dual processes (with dual rep-

resentations) act as complementary solutions to object recognition because the dual

processes draw upon the contrasting strengths of image-based and compositional

representations.

2 Accumulation of Further Evidence for Multiple
Representations Mediating Adult Object Recognition

2.1 Fractionating the Visual Object Recognition System into
Independent Components

At the close of the view-dependence/invariance debate, the mixed results from

studies of object rotation suggested that both view-invariant and view-dependent
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mechanisms are likely to be operating. Stankiewicz [33], and Foster and Gilson

[15] responded to this state of affairs with research aiming to observe indepen-

dent dimensions of the object recognition system using experimental manipulations.

These experiments thus enable us to see how structural and view information is

combined by object recognition processes [17]. Foster and Gilson used ‘paper clip’

stimuli that did not possess geons, and that varied in their number of parts (struc-

tural information) and in view-specific properties such as length, degree of curva-

ture and angle of joints between parts. They then assessed how each of these prop-

erties affected discrimination performance. Experiments showed object structure

information and image-based information are both independent and are combined

additively. Stankiewicz conducted experiments which showed that 3D properties,

such as primary axis curvature and aspect ratio, are estimated independently of 2D

object image properties. He also showed that 3D shape is estimated independently

of object viewpoint. As Stankiewicz notes [33], the results of fractionating the visual

object recognition system into independent components provide strong evidence for

a dual process model of object recognition, with a view-invariant component that

forms structural descriptions and hence compositional representations, and a view-

dependent component that forms representations much closer to the unabstracted

sensory image.

2.2 Neuropsychology Evidence for Dual Representations in
Object Recognition

Evidence for dual processes (and hence dual representations) occurring in visual

object recognition is also provided by neuropsychological case studies. Dual process

theories of visual object recognition postulate that each process acts upon a different

kind of representation. Analytic processes involve perception of object, parts before

the formation of compositional representations. Holistic processes do not involve

such a decomposition. Davidoff and Warrington found patients who could not recog-

nise individual object parts but who could name whole objects [10, 11]. However,

the fact that the intact naming ability only occurred in familiar object views sug-

gests that these patients’ abilities resulted from holistic recognition whilst analytic

recognition no longer functioned.

2.3 Priming Evidence for Dual Representations in Object
Recognition

Perhaps the most comprehensive and persuasive evidence for the dual nature of

representations for visual object recognition comes from behavioural studies which

measure how priming can improve recognition performance. Priming involves the
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repeated viewing of an object, and priming effects help infer the nature of repre-

sentations because of various changes that can be made in the manner in which the

priming object can be depicted [40]. Priming benefits to recognition performance

are measured as the difference in latencies between repeated and unrepeated (and so

unprimed) probe images [39, 41]. The key finding from priming studies is that per-

formance can be improved by two kinds of priming: (1) by primes that are presented

so that they are attended to and (2) with primes that are presented so that they are not

attended to [43]. Attended primes are believed to activate both structural description

and view-based representations. Unattended primes are presented outside the focus

of attention for a brief enough exposure that attention cannot switch to them. Priming

images in these cases only increase recognition when they exactly match the object

being recognised. However, attended primes can be altered with various modifica-

tions that leave the structurally described elements intact and still provide perfor-

mance improvements. These modifications include being mirror-reflected [23], split

and recombined [43], rotated in the picture plane [42] and rotated in depth [41].

Splitting images and then recombining them is an interesting modification for a

prime because split and recombined images give highly similar structural descrip-

tions if the image is not split where it would naturally be parsed into its geon compo-

nents. Thoma, Davidoff and Hummel [43] use images where splitting in the middle

resulted in all part shapes being recoverable in the recombined image. So split images

disrupt view-specific matching, and hence result in no performance increase when

unattended. However, they do give a performance increase when attended, as ana-

lytic recognition is based on discrete, isolatable parts which are still present in the

split and recombined stimuli [40].

Section 1.4 explained that recognition after rotating objects in depth did not pro-

vide a clear-cut distinction between view-invariant and view-dependent processes.

This is because both structural description theories and view-based theories provide

explanations for how humans recognise rotated stimuli. Structural description the-

ories posit representations that do a lot of the ‘heavy lifting’ in recognition tasks.

So such relatively rich representations only need to be acted upon with relatively

simple processes to produce flexible recognition behaviour. If image-based represen-

tations are acted upon with similarly simple processes, they cannot be expected to

perform as flexibly as systems using structural descriptions. But the key issue is that

image-based representations may be operated upon with complex and sophisticated

processes which compensate for the lack of flexibility in the representation. So an

object recognition researcher may be left using view-dependence/invariance to dis-

tinguish two kinds of representation that predict similar outcomes because structural

description theories postulate simple operations on “smart” representations, whereas

view-based theories postulate “smart” operations on simple representations ([20], p.

160). However, using priming images rotated in depth works better at distinguishing

underlying representations because it works by priming representations that medi-

ate view-invariant mechanisms and these representations are not involved in view-

dependent mechanisms. So as with priming probes formed from split images, prime

probes that have been rotated in depth still possess the same parts and part-relations

as the unrotated images, and hence give a performance benefit to mechanisms that are
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mediated by structural description representations. Rotating objects in depth results

in significant changes to the observable 2D image, and this image-based representa-

tion has no carry-over effect on the recognition task and so does not give a priming

benefit to performance.

Priming studies not only show that the structure of part-relations in priming

images is only captured in attended conditions, but also that performance improve-

ments from priming from same-view pairs is equivalent in attended and non-attended

conditions (around 50 ms improvement in recognition performance when a same-

view image is previously presented attended or unattended). That the priming ben-

efit of a view-based representation is equal with and without attention suggests that

the process that provides this benefit occurs independently and that the recognition

system has at least two independent components [39, 41]. In summary, the results of

many priming studies show that attended prime images reliably primed exactly the

same view as well as many modified images that kept the prime images, structural

description elements intact, whereas unattended images only primed themselves in

exactly the same view [39].

2.4 Brain Imaging Evidence for Dual Representations in
Object Recognition

Whilst behavioural studies using priming techniques have made great progress in

consolidating knowledge of the representational distinctions in object recognition

processes [39]. Thoma and Henson [40] have also extended the behavioural findings

from priming experiments by conducting the first brain imaging studies to provide

neural evidence for dual processes mediated by contrasting compositional and view-

based representations. Their results implicate a ventral stream in attention requiring

processing mediated by compositional representations and a dorsal stream impli-

cated in view-based recognition which does not require attention. They adapted prim-

ing paradigms which used split and recombined priming stimuli. As Thoma and

Henson [40] note:

The current findings support hybrid models of visual object recognition that include both

analytic and holistic object pathways, with the analytic pathway dependent on visual atten-

tion. Regions in the left ventral visual stream only showed repetition suppression (RS) from

primes in more anterior fusiform regions, and the amount of this RS correlated with the

amount of behavioural priming, consistent with an analytic pathway. Regions in the dorsal

stream on the other hand, specifically the intraparietal sulcus, showed repetition enhance-

ment (RE) only for intact primes, regardless of attention and the amount of RE correlated

with the amount of behavioural priming from uncued, intact primes, consistent with a holis-

tic pathway. ([40], p. 524)
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2.5 Summary of Representational Properties of Dual
Recognition Systems

Dual process theories have become quite well established through convergent evi-

dence from behavioural, neuropsychological and imaging studies. In these theories,

it is hypothesised that the representations mediating recognition differ as a func-

tion of whether an object is attended or ignored [35] and multiple visual represen-

tations are activated in response to attended objects. These include: (1) composi-

tional structural descriptions with explicit relations that require attention as visual

features must be bound into parts and parts then need to be bound to relations; and

(2) non-compositional image-based representations of specific views that are acti-

vated in response to attended and non-attended objects (that are outside the focus

of attention). In addition to being distinguished by whether they require attention,

representations also differ in how much they are abstracted from the sensory image.

Compositional representations need to abstract away from many details of the image

present in sensory data, whilst image-based representations do not need to signifi-

cantly abstract from sense data. Figure 2 presents some distinctions between compo-

sitional and view-based recognition processes.

However, the great majority of this convergent evidence for the operation of dual

processes (and dual representations) in visual object recognition has come from stud-

ies using adults as participants, leaving open the possibility of different developmen-

tal trajectories for image-based and compositional representations. The next section

presents relevant empirical evidence from recent studies with adults and children.

Fig. 2 Table summarising

the contrasting properties of

the representations

mediating structural

description and view-based

recognition processes

Structural description View-based
representations representations

Abstracted away from Based upon view - specific
particular examples in details of an exemplar image
sense data with no abstraction
Compositionally formulated Image-based/analogue
representations in perception representations in perception
and memory and memory
Analytic (decomposition Holistic (no decomposition
into parts and recombination into isolatable parts and no
with relations between parts) explicit relations between parts)
3D representations 2D representations
Response to object rotation is Response to rotation is
viewpoint invariance viewpoint dependence
performance performance
Ventral stream Dorsal stream
implicated implicated
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3 The Development of Configural Processing in Object
Recognition: Recent Empirical Results

A number of behavioural studies suggest there is a retarded developmental trajec-

tory for object recognition, with object recognition skills continuing to significantly

improve during adolescence [9, 24, 32]. Recently, Jüttner et al. [26] examined devel-

opmental trends associated with identification of correct pictures when presented

alongside incorrect distracters (in a 3 alternative-forced-choice (AFC) task). Two

distracter types were compared: part-changed stimuli, where one part of the stimuli

was substituted for an incorrect part (Fig. 3); and a change to the overall proportions

of the object (the configural change condition, Fig. 4).

Fig. 3 Showing an animal

version of a part-change

stimuli used in human

studies. Selecting the ‘real’

cow image is a

non-configural task as only

one object-part needs to be

checked at a time
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Fig. 4 Showing an animal

version of a relative size

change stimuli used in

human studies. Selecting the

‘real’ fly image is a

configural task as

recognition results from

checking the relative sizes of

two (or more) parts

In both part-change and configural (relative size) change conditions, the task is

to choose the ‘correct’ image. So in Fig. 3 the bottom ‘cow’ is the only image with

a cow’s head. In Fig. 4 the middle ‘fly’ is the only one with eyes that are the correct

size in proportion to its body. In addition to stimuli derived from a set of naturalistic

animal images, experiments were undertaken with stimuli from naturalistic images

of defined-base, rigid artefacts (see [26], p. 163 for examples). Responses to defined-

base, rigid artefact stimuli (Figs. 5 and 6) showed the same pattern of results as the

animal stimuli.

The part-change and configural change sets of experimental stimuli were cali-

brated to be equally difficult for adults, with an 0.8 mean accuracy set for both

conditions. After calibration with adults on upright stimuli, adult performance was

recorded on inverted (upside down) versions of the stimuli. Then the same stimuli

set was used to assess recognition performance in school children aged between 7
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Fig. 5 Showing an artefact

version of a part-change

stimuli used in human

studies. Selecting the ‘real’

bicycle image is a

non-configural task as only

one object-part needs to be

checked at a time

and 16 years in upright and inverted conditions. Overall, 32 participants were used

in each of six age ranges (7–8, 9–10, 11–12, 13–14, 15–16 and adult).

The full description of method and results for these experiments is detailed in

[26]. Performance in terms of accuracy, and latency preceding a correct response,

show a similar pattern of results to each other, with no evidence of a speed/accuracy

trade-off. The key empirical results for younger children (7–10-years-old) are that,

whilst part-change performance is marginally lower than adult levels, relative size

change performance is significantly lower. For older children (11–16-years-old),

part-change performance has reached the adult level whilst relative size change per-

formance is still not fully consolidated [26]. Figure 7 shows mean and standard errors

of the recognition accuracy, with results combined across animals and artefacts, as

the stimulus type (animal/artefact) did not significantly affect recognition accuracy

or latency nor interact with any other experimental variable. Developmental studies

have used the differential performance of recognition using configural processing

and part-based processing as a surrogate for differing access/use of image-based and

structural description representations. This is because, whilst part-based recognition
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Fig. 6 Showing an artefact version of a relative size change stimuli used in human studies. Select-

ing the ‘real’ motorbike image is a configural task as recognition results from checking the relative

sizes of two (or more) parts

Fig. 7 Results of experiments where participants of different ages were tested with part and con-

figural changed stimuli
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only requires focussing on a single object part, configural processing requires attend-

ing to at least two parts at the same time.

To evaluate further this possible dual process explanation for these results, this

paper now presents simulation results gained by developmentally regressing JIM3

[21], a prominent dual process model that simulates visual object recognition. JIM3

was created as an implementation of RBC theory as a computer simulation, and its

use in computational modelling of human vision demonstrates how machine vision

algorithms can investigate representations for object recognition.

4 JIM3: A Dual Process Model of Object Recognition

4.1 Introduction to JIM3

JIM3 is an eight-layer artificial neural network model of visual object recognition

[21–23]. It takes as input a representation of contours from a single object’s image.

The output is a representation of an object’s identity. Figure 8 (adapted from [21])

shows JIM3’s eight layers and the two places where changes were made to develop-

mentally regress the architecture.

4.2 Layers 1–3: From Feature Maps to Independent Geons

The first three layers comprise feature maps and are concerned with grouping local

features into sets. These sets correspond to which geons the features arise from. Layer

1 outputs the contours present in the image. Layer 2 uses these contours to compute

vertices and axes, which are then processed by layer 3 as it computes the surfaces

that belong to each geon. So the overall behaviour of this subsystem is to determine

what individual geons are present in an image from the simultaneous presentation

of a complete multi-geon contour set. These individual geons are then output from

this subsystem as isolated and independent object parts with no explicit relationship

to other geons arising from the same object.

When an object is initially presented to the model, all the features of an image

will tend to fire at once. This event simulates the first tens of ms of natural object

perception and occurs in the running simulation in the first several processing iter-

ations. Then in an attentive process which involves inhibition and competition, the

attributes from different geons become temporally separated. This process occurs

through the global action of a particular kind of artificial neural network connection

termed by [22] as fast enabling links (FELs).

The first three layers of JIM3 act together to output each component geon at a

different point in time. If this did not happen and attributes of separate geons fired

synchronously, then their attributes would get super-imposed. The three conditions
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Fig. 8 Diagram of JIM3 showing the two locations in the architecture where changes were made

to capture this architecture’s performance for an earlier developmental stage

which cause FELs to treat units as from the same geon are: local coarse coding

of image contours; cotermination in a intra-geon vertex; and, distant collinearity

through lone terminations. The simultaneously firing features become organised so

that only the attributes for a single geon fire at one time by an iterative process of

competition and inhibition.

4.3 Layer 4: Routing Gates (Passing Each Independent Geon
Forward Separated in Time from the Other Geons)

The fourth layer is a set of routing gates that splits the output from the first three

layers and sends this output to two separate subsystems in layer 5. The informa-

tion carried by these routing gates is of attribute sets for individual geons. After an

initial period of phase locking, the information about individual geons are sent as

temporally separated signals. That is, attributes for individual geons are transmit-

ted together and separated in time from the transmission of attributes describing the

other geons present in the target object. This means that at any particular time the

output from the routing gates is just an attribute set for one individual geon from
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the target object. Then after a gap in time, the next geon is transmitted. Then after

further gaps in time, more geons are transmitted until the details of all geons present

in the target object are communicated through these routing gates.

4.4 Layer 5: View-Dependent and View-Independent
Bindings: Two Parallel Ways to Put the Separated Geons
Back Together Again

JIM3’s fifth layer comprises two separate parallel components. These are both con-

cerned with combining inputs arising from the feature maps in the first three layers.

So in both of these parallel components the geons which were separated in layers 1–3

are ‘put back together again’ into two different representations of the single whole

object. However, these two subsystems are distinguished because they accomplish-

ing binding of the output of the feature maps in very different ways, and the resulting

representations are also very different. It is these two components of layer 5 which

are the two locations in JIM3 that were chosen to change and hence implement mod-

els of less developed object recognition abilities found in adolescents and younger

children (see Fig. 8).

4.5 The View-Independent Subsystem

A view-independent subsystem called the independent geon array (IGA) acts to form

representations of explicit relations between geons, thus dynamically (but slowly)

forming a view-independent structural description of the object. It accomplishes

binding of the geons which result from the first three layers by identifying how indi-

vidual geons relate to each other in terms of relative size and relative position within

the overall object they originated from. So this attention-requiring component of

layer 5 is a serial mechanism rather than the global parallel and distributed process-

ing mechanism that operates in the view-dependent surface map.

This subsystem achieves several important outcomes not achieved by the faster

view-dependent system. First, the attribute-relation structure is formed explicitly.

Since relations among geons are made explicit they enable humans to appreciate

relational similarities between objects independently of whether similar object parts

stand in corresponding relations. So we can appreciate two objects are similar if they

have a large geon above a small geon, whatever the non-accidental properties of any

of the geons. Second, relations are dynamically bound to the geons they describe. So

this provides the potential for recognising complex multi-geon objects with a variety

of interrelationships between the geons; to do this with static binding mechanisms

such as templates might involve an impractically large set of templates ([23], p. 204).

Figure 9 presents three different objects all described by the same set of attributes:
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Fig. 9 Figure showing how very different objects can be formed from combination of the same

attributes but with different relations between the attributes. Object a has a large geon with straight

sides and straight cross-section beside a smaller geon which is curved along axis with a round cross-

section. Object b has a large geon with straight sides and a round cross-section beside a smaller geon

which is curved along its axis and with a straight cross-section. Object c has a large geon which

is curved along its axis with a straight cross section beside a smaller geon with straight sides and

round cross section

a large part and a small part, one part curved and one straight edged and one part

with a straight cross-section and one part with a curved cross-section. What distin-

guishes these two objects is how particular attributes are dynamically linked to each

other. So in the attributes for object (a), the large geon attribute is linked to straight

sides and straight cross-section, whilst the small geon attribute is related to curved

edge and curved cross-section. Thirdly, forming relations which are invariant with

geon identity and viewpoint allows the formation of a structural description that will

remain the same under translation, scale and left–right reflection and is relatively

insensitive to rotation in depth [22].

4.6 The View-Dependent Subsystem

The soonest to complete is the surface map representation in the other subsystem

in layer 5. This accomplishes a view-dependent static binding of geons by coding

where each geon is fixed at a specific position in a holistic surface map. This 2D

representation captures the interrelation of geons as they were perceived in one par-

ticular view. The mapping from the output of the feature maps in the first subsystem

preserves the topological relations and metric properties of the geon attributes but

discards their absolute sizes and location in the image. This means that the target

image representation in the holistic surface map is invariant with translation and

scale. However, because the topological relations and metric properties that are pre-

served in the holistic surface map come from only one particular view of the object,

this representation is sensitive to rotation in depth and the picture plan and left–right

reflection ([21], p. 498). Although this second subsystem in layer 5 does not form
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structural descriptions, it does have the advantage of being much faster, as it does

not need to wait for its inputs to include temporally separated geons, a process which

takes time and can include errors.

4.7 Layers 6–8: Learning About Multi-geon Objects and
Recognising Them When Learnt

The sixth to eighth layers constitute the model’s long-term memory. A simple kind of

unsupervised Hebbian learning is used to encode the patterns of activation generated

in layer 5. Each unit in layer 6 learns to respond to geon shape attributes and relations.

Units in layer 7 sum input from layer 6 to reconstruct patterns representing geons and

relations into complete structural descriptions of whole objects. These layer 7 units

then activate object identity units in layer 8.

5 Simulation Results for Experiments Using Animal and
Artefact Stimuli

5.1 Procedure for Simulation Experiments

To simulate the results from the animals and artefacts experiments of [26] we devel-

opmentally regressed JIM3 by changing two properties of the model. Figure 8 shows

that the locations where the two parameters were changed were both in layer 5 of

JIM3. The parameters chosen to make less mature, ‘child’ versions of JIM3 were

the numbers of ‘neurons’ involved in processing in these two components. It was

assumed that, at earlier levels of development, there might be either less resources

given to recognition tasks (or perhaps these resources would be used less effectively)

and this would be expected to decrease performance.

First, on the assumption that children have a less metrically-precise holistic rep-

resentation of object shape than do adults, we reduced the number of locations in the

model’s surface map from 17 (the centre plus two radii and eight orientations away

from the centre) to 9 (the centre plus two radii and four orientations), 5 (the cen-

tre plus one radius and four orientations); and 1 (a single central location). So with

17 neurons the model’s surface map provides the most precise representation of the

target object metric properties and when reduced respectively to nine neurons the

model loses the eight neurons that provide the most fine-grained metric precision.

Then with each further reduction in surface map neurons, it is again the neurons that

provide the most metric precision that are removed. Second, on the assumption that

children are generally much less relational than adults in their thinking (an assump-

tion for which there is a great deal of empirical support [13]), we removed relation

units from the model’s independent geon array (IGA) for the child simulations. As
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a result of this change, the ‘child’ version of the model has an implicit representa-

tion of an object’s inter-part relations in the surface map at an adult level, but less

resources given to an explicit representation of those relations.

Before these developmentally regressed versions of JIM3 were used, we decided

upon a performance measure which would allow straightforward comparison

between the performance of JIM3 and the results reported by Jüttner et al.’s exper-

iments with human participants [26]. We also developed a set of stimuli which was

calibrated in a similar manner to the calibration carried out in the empirical studies

with humans.

5.1.1 Performance Measure

In the original experiments of [26], human subjects (adults and children of various

ages) were tested for their ability to choose the correct picture of an animal or an arte-

fact from a display depicting an un-altered picture of that animal or artefact along

with two distracters. There were two main conditions arising from use of two dif-

ferent types of distracter: a variant constructed by changing one part of the original

object and another variant created by changing the relative part sizes of the original

object (and thus effectively changing the metric relations among the object’s parts).

JIM3 is not capable of performing this ‘choose the correct object out of three’

task (instead, it simply views one object at a time and attempts to find the best match

in its long term memory (LTM)). Therefore, we developed a performance measure

to estimate how well it would perform the choice task based on how well each object

matched the correct (trained) object and each of the distracters activated the trained

object’s representation in the model’s LTM. This measure was based on the model’s

response time to recognize an object (the number of iterations until an object [trained

object or distracter variant] activated the corresponding trained object’s representa-

tion in LTM to criterion [21]). A second possible measure which might be used when

the model could not activate the corresponding trained object representation was the

model’s accuracy (i.e. the likelihood that an object [trained or distracter] would acti-

vate the corresponding trained object’s representation in LTM). However, this was

not used because the simulations typically ‘recognised’ both target objects and dis-

tracters as the target object, with the only distinction between conditions being how

many simulation cycles this took (since the distracter objects were not present in the

set of recognition targets present in the learning phase).

The logic of these measures is that, the more closely a distracter matches the

representation of a trained object in LTM, the more difficult it would be for the model

to correctly reject that distracter in favour of the trained target. Accordingly, our RT-

based measure of performance consists of the model’s RT to ‘correctly’ recognise

a distracter (either non-accidental-property (NAP) or size change) as an instance

of the trained target. So although the model did not correctly reject the distracters

(even very long durations eventually resulted in recognition of the learned target),

it is the closest performance measure to a ‘rejection’ of a distracter that the current

implementation of JIM3 can support.
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A drawback of this performance measure is that, since it compares human perfor-

mance accuracy with simulation timing, it does not provide a straightforward com-

parison between different types of task that take different amounts of time to be

carried out within the simulation. This applies to the upright and inverted stimuli

tasks, with inverted stimuli taking longer to be recognised than upright stimuli. This

does not of course mean that inverted stimuli are easier to recognise. So within a

manipulation this performance measure does allow for comparisons, but between

manipulations we cannot say that longer to recognition in JIM3 infers better dis-

crimination performance.

5.1.2 Calibration of Stimuli for Equal Difficulty with the Adult Version
of JIM3

The original behavioural experiments involved a calibration stage where part-change

and configural change stimuli sets were formed to be of equivalent difficulty. Follow-

ing this original design, we ran pilot simulations with JIM3 to equate the discrim-

inability of the NAP and size-change variants of the trained stimuli.

Specifically, we made five novel multi-part objects and trained JIM3 to recognize

them, along with the dozen or so objects it was trained to recognize in the simula-

tions reported in [21]. We then made two variants of each trained stimulus. An NAP

distracter was made by changing one non-accidental property of one geon in the cor-

responding trained object; and a size-change distracter was made by changing the

size of one geon in the corresponding trained object. During piloting we made sev-

eral variants of each size-change distracter and chose, for the final simulations, the

variant whose discriminability from the corresponding trained object most closely

matched that of the NAP distracter. That is, following the original experiment, we

explicitly equated the NAP and size-change distracters for their discriminability from

the corresponding trained objects to adults. For the adult version we used JIM3 in its

original 2001 version [21], with 𝜎 (the standard deviation on the Gaussian receptive

fields of the memory units in layer 6) set to 0.5 and the metric precision and sur-

face map precision set to maximum (adult) values. In Fig. 10 we can see data points

emphasised with dashed circles that the performance measures for the NAP changes

averaged at 10.94 simulation cycles and were 10.8 for the relative size configural

changed stimuli.

5.2 Results of Simulation of Animals and Artefacts
Experiment

Figures 10 and 11 show the results of the two sets of computational experiments

with JIM3 developmentally regressed from adult level (3) to three lower levels of

development (level ‘0’ being the most regressed), with Fig. 10 presenting results
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Fig. 10 Showing simulation results of animals and artefacts experiment with Metric Precision at

four different levels of ‘development’

Fig. 11 Showing simulation results of animals and artefacts experiment with the surface map at

four different levels of ‘development’

with metric relation precision in the IGA decreased and Fig. 11 with surface map

precision decreased. Both these graphs show adult results in the upright condition

circled with a dashed line—denoting that they were calibrated to be similar in value.

Figure 10 shows that, as metric precision in the IGA is decreased, there is a differ-

ent pattern of results in the NAP change and configural change conditions. As metric

precision tends to zero neurons being used, recognition performance in the config-

ural change condition drops. However, we seem to see a performance increase with

the NAP change condition when metric precision is decreased. So these simulated

results show the same qualitative pattern found in the empirical results presented in

[26].

Figure 11 shows that, as surface map precision is decreased, there is no evidence

to suggest a different pattern of results between the NAP change and configural

change conditions. This pattern of results is therefore different from the empirical

results presented in [26].
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5.2.1 Statistical Analysis for Metric-Properties (MP) Manipulated
Architecture

The simulation data were analysed with a 4 metric precision level: MP level 3

(adult with 45 neurons from three receptive field classes) versus MP level 2 (30

neurons from two receptive field classes) versus MP level 1 (15 neurons from

one receptive field class) versus MP level 0 (no neurons) ×2 (manipulation: part

change versus relative size change) ×2 (orientation: upright vs. inverted) mixed

ANOVA with Metric Precision level as the between factor. The analysis yielded sig-

nificant main effects for manipulation [F(1, 799) = 41.08, p < 0.0005] and orienta-

tion [F(1, 799) = 84.56, p < 0.0005] but not for Metric Precision Level [F(1, 799) =
0.571, p = 0.634].

Significant interactions were found between metric precision level and manipula-

tion [F(3, 799) = 5.41, p = 0.001] and between orientation and manipulation [F(1,
799) = 24.773, p < 0.005].

Two post hoc independent-samples t-tests were conducted to explore the interac-

tions:

∙ A first independent-samples t-test was conducted to compare the two most devel-

opmentally separated metric precision levels for the relative size change manipu-

lation upright condition: MP level 3 (adult with 45 neurons from three receptive

field classes) versus MP level 0 (no neurons). There was a significant difference in

scores for adult MP level 3 (adult) and MP level 0 [t(98) = 7.28, p < 0.0005, two

tailed]. The magnitude in the difference of the means (mean difference = 3, 95%

CI: 2.18–3.82) was large (eta squared = 0.353).

∙ A second independent-samples t-test was conducted to compare the two most

developmentally separated metric precision levels for the NAP change manipula-

tion upright condition: MP level 3 (adult with 45 neurons from three receptive field

classes) versus MP level 0 (no neurons). There was a non-significant difference in

scores for adult MP level 3 (adult) (M = 3, and MP level 0 [t(98) = −1.947, p =
0.054, two tailed]. The magnitude in the difference of the means (mean difference

= 4, 95% CI: −8.072 to 0.77) was large (eta squared = 0.85).

5.2.2 Discussion for MP Manipulated Architecture

The analysis showed that there is a significant difference between relative size

changed and NAP changed stimuli, but this main effect may not be a clear match

to the required discrepancy between relative size changed and NAP changed condi-

tions specified in Sect. 1. This is because the inverted results may produce much of

this main effect difference and the difference between simulations of upright stim-

uli may not be significant when considered on their own against each other. So a

post hoc test, discussed below, provides a finer detailed analysis of the relative size

change and NAP change manipulations in the upright condition.

There is also a significant main effect of orientation between upright and inverted

stimuli, with the inverted stimuli taking longer to be incorrectly recognised. Our per-
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formance measure suggests that, within the same task, taking longer to be recognised

is equivalent to a more accurate recognition. But between tasks this relationship does

not hold. So since the simulation will actually take longer to recognise inverted stim-

uli because they are upside down, this main effect does not show that inverted stimuli

are easier to discriminate.

There was no main effect for metric precision level. However, this does not mean

that there were not differences between the simulated age ranges. A significant inter-

action was found between metric precision level and manipulation. So as the simula-

tion parameters modelled ‘younger’ parameters in the relative size change condition,

performance decreased and in the NAP change condition performance increased. So

these results do match the empirical results, but as noted above, the larger component

of this difference between manipulation conditions may have come from the inverted

results, as these mean values differ more widely than the upright conditions. The

interpretation that the inverted conditions provide most of the difference between

manipulation conditions is strengthened by the significant interaction between ori-

entation and manipulation, with inverted relative size changed stimuli having the

longest number of simulation cycles to recognition (in the MP = 0 condition over 40

cycles).

The complication in the analysis of considering upright and inverted orientations

together was resolved with a post hoc t-test which only looked at upright results

to consider whether the ‘youngest’ MP regressed condition was significantly dif-

ferent from the adult performance level. This gave a very clear result. The relative

size change condition showed significantly lower recognition performance for the

youngest parameters, whereas the NAP change condition showed no significant dif-

ference between youngest and adult parameters, and a large effect size in the opposite

direction to the relative size change condition (see Fig. 12). So the metric relation

regressed simulations demonstrate a very clear dissociation in performance between

the relative size change and NAP change conditions, just as the empirical results with

human subjects show.

Metric relation MP 0 MP 3 Δ Effect
regressed (adult) size
Part (NAP) change 14.94 10.94 +4* Large*
Config change 7.8 10.8 –3 Large

Surface map SMP 0 SMP 3 Δ Effect
regressed (adult) size
Part (NAP) change 9.2 10.94 –1.74 Moderate
Config change 9.56 10.8 –1.24 Moderate

Fig. 12 Key comparisons from post hoc t-tests. This table presents results from the two computa-

tional experiments, one which simulated the developmental regression of metric relation precision

(top half of table) and the other experiment which regressed surface map precision (* not a signifi-

cant difference, p = 0.054)
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5.2.3 Statistical Analysis for Surface-Map (SM) Manipulated
Architecture

The simulation cycle data were analysed in a 4 surface map level: SM level 3

(adult with 17 neurons in two further orientations from the center neuron) ver-

sus SM level 2 (9 neurons in two further orientations from the centre) versus SM

level 1 (5 neurons in one further orientation from the centre) versus SM level

0 (1 neuron with no further orientations from central neuron) ×2 (manipulation:

part change vs. relative size change) ×2 (orientation: upright vs. inverted) mixed

ANOVA with metric precision level as the between factor. The analysis yielded

significant main effects for manipulation [F(1, 799) = 14.42, p < 0.0005] and orien-

tation [F(1, 799) = 71.81, p < 0.0005] and for surface precision level [F(1, 799) =
6.4, p < 0.0005].

Significant interactions were found between manipulation and orientation

[F(1, 799) = 16.13, p < 0.0005] and between surface map precision and orienta-

tion [F(1, 799) = 24.773, p < 0.001]. The interaction between surface map precision

level and manipulation was not significant.

Two post hoc independent-samples t-tests were conducted to explore the interac-

tion:

∙ A first independent-samples t-test was conducted to compare the two most devel-

opmentally separated surface map precision levels for the relative size change

manipulation upright condition: SM level 3 (adult with 17 neurons) versus SM

level 0 (1 neuron). There was a significant difference in scores for SM level 3

(adult) and SM level 0 [t(98) = 2.81, p = 0.006, two tailed]. The magnitude in the

difference of the means (mean difference = 1.24, 95% CI: 0.36–2.11) was moder-

ate (eta squared = 0.074).

∙ A second independent-samples t-test was conducted to compare the two most

developmentally separated surface map precision levels for the NAP change

manipulation upright condition: SM level 3 (adult with 17 neurons) versus SM

level 0 (1 neuron). There was a significant difference in scores for adult SM level

3 (adult) (M =3) and SM level 0 [t(98) = 2.31, p = 0.023, two tailed]. The magni-

tude in the difference of the means (mean difference = 1.74, 95% CI: 0.24–3.23)

was moderate (eta squared = 0.047).

5.2.4 Discussion for SM Manipulated Architecture

The analysis showed that there is a significant difference between relative size

changed and NAP changed stimuli; but as in the MP changed architecture, the SM

changed inverted results may produce much of this main effect difference. So a post

hoc test, reported below, provided a test of this point.

As with the MP regressed architecture, there is also a significant main effect of

orientation between upright and inverted stimuli in the SM regressed experiments.

The same explanation applies here as above: the inverted condition involves a dif-

ferent task so we cannot conclude inversion increases recognition performance.
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There was a main effect for surface map precision level. As the simulation mod-

elled ‘younger’ versions, performance levels decreased. Again, as with the MP

regressed architecture, the SM-changed simulations show an interaction between

surface map precision and orientation, with the longest number of simulation cycles

recorded in the inverted condition. There is not a significant interaction between sur-

face map precision and manipulation.

The post hoc t-test results highlight that the surface map regressed results do

not match the empirical results reported in [26]. This test looked at whether the

upright results for the ‘youngest’ SM regressed condition were significantly different

from the adult performance level. Both manipulation conditions were significantly

lower performing in the youngest SM condition than the adult condition, with a sim-

ilar effect size. This pattern of results is clearly different from the empirical results

reported by [26].

Figure 12 highlights the results of the post hoc t-tests for both the MP regressed

and SM regressed architectures.

6 Conclusions

This paper shows that recent empirical results presented by Jüttner et al. [26] can be

explained in terms of dual process models of object recognition. Simulations with the

JIM3 artificial neural network suggest that a non-attentive process develops early in

humans and allows part-based recognition at adult levels by children in the 7–10 age

range. According to this dual process explanation, the observed developmental delay

in the relative size change stimuli results from the later development of attention-

requiring processes that support perception of relations between object parts and the

production of structural descriptions in object perception and recognition.

Removing neurons from the non-attentive surface map in JIM3 did not cause a

significant difference to appear in JIM3’s performance on the part (NAP) change and

configural (relative size) change conditions. However, a notable and surprising result

was that it took reducing the neurons all the way to zero in the attention-requiring

IGA to bring about a significant difference between these experimental conditions in

the other set of computational experiments with JIM3. The psychological inferences

that can be taken from this finding are discussed in more detail below. However,

just viewing this result from the perspective of processing with machine represen-

tations provides a key lesson for artificial systems engineering. This is that the dual

processes in JIM3 interact together in producing behaviour so that deficiencies in

attention-requiring processes were masked by non-attentive processes. This high-

lights a more general challenge in empirical research on the structures used to rep-

resent reality: how should experimentalists untangle the interacting effects linked to

multiple representation types?

The purpose of running simulations with varying precision levels for metric rela-

tions in the IGA and the holistic surface map was to see if either of these simulations

captured the pattern of results shown in empirical observation of humans. What the
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human results from [26] showed was that performance for younger participants on

configurally changed stimuli decreased compared with adult levels whereas perfor-

mance on NAP changed stimuli stayed the same. A successful simulation should

therefore show equal performance between stimuli distracter types for ‘adult’ para-

meters and show a lower performance on relative size change stimuli than part-

change stimuli for developmentally younger simulation parameters. As can be seen

comparing Figs. 7 and 10, the simulations where metric-relation precision level

changes in the IGA were decreased provide a good qualitative fit to the pattern

observed with Jüttner et al.’s artefact and animal stimuli [26]. Since the human par-

ticipants performed a different task than did the model, it is impossible to provide a

precise quantitative fit between the empirical and simulation data.

The limitations in this particular modelling exercise using JIM3 are of four types.

Firstly, the task that the simulation carried out was probably more simple than var-

ious strategies likely used by the human experimental participants to eliminate dis-

tracters. In the JIM3 experiments time to recognition is always taken for stimuli pre-

sented on their own. The ‘choose one from three task’ gives more potential for using

complex memory retrieval strategies than simply measuring time to recognition for

a single object. In addition, which strategies might be used in either task is likely to

change through development independently of the changes to resources given over

to metric relation or surface map precision. Developing proficiency in metacognition

and increasing cognitive resources have been presented as competing explanations in

memory development [14]. The simulations reported here present development just

in terms of an increase in the numbers of neurons used for recognition in the IGA

and the holistic surface map. So this explains changes in performance over devel-

opment just in terms of differences in cognitive resources. We can also imagine an

analogous theory of development from ‘increasing metacognition’ when attempting

to explain developmental trajectories in object recognition.

Secondly, the images that JIM3 learns and then recognises are simpler than the

naturalistic 2D images used by [26]. The naturalistic images possess difference in

texture and colour which the stimuli used by JIM3 do not possess.

Thirdly the modelling exploration has been set up as a two-horse race, to decide

which of these changes to JIM3 provides the best fit for the pattern of empirical

results for adults and children described by [26]. Each of these regressions was

‘clean’ in the sense that only one parameter at a time was regressed. In a real infant

we might expect both MP and SM precision to decrease as well as there being a

number of other changes that involve lower recognition performance for younger

participants. For example, on the assumption that children have less stable and/or

precise memories for objects than do adults, we might change 𝜎 on the Gaussian

receptive fields in layer 6 of JIM3 from 0.5 (the value in the adult simulations) to

1.0. This increase would have the effect of making any given unit in layer 6 more

tolerant of deviations from its preferred pattern (corresponding to the centre of the

distribution). Possible future computational experiments with JIM3 might therefore

involve co-varying the two existing changes with each other and with changes in 𝜎.

However, preliminary experiments have shown that decreasing 𝜎 on its own does not

cause relative size stimuli to be processed less effectively, with mean simulation runs
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actually higher for relative size stimuli at a value of 𝜎 that gives minimal recognition

performance.

Lastly, both the empirical results and the modelling research do not rule out the

impact that differing life experiences and consequent encoding differences in mem-

ories might have on the performance of JIM3 after layer 5.

These four limitations of: (1) task and strategy simplicity, (2) ‘clean’ changes to

parameters, (3) image simplicity and (4) learning experience in the simulation being

equal between regressed and adult architectures might all be expected to increase

recognition performance in JIM3 compared with human performance. So it may

be as a result of a combination of these factors that it took decreasing the metric

precision neurons to zero to get a large drop in performance. Alternatively, the find-

ing that only the ‘MP=0’ condition provides a large decrement in performance may

suggest that children of age 7–9 years really do have a much lower than previously

expected ability to make metric judgements in visual object recognition. That this is

not apparent in day-to-day life or in other kinds of object recognition experiment may

be because this lower ability will only be apparent when children view objects in such

a way that their highly performing 2D systems cannot quickly produce recognition.

Otherwise partial orderings rather than absolute metric judgements may suffice. So

one suggestion for future work is to adapt JIM3 so that it can support more complex

tasks and more complex strategies, with image simplicity matched, with many para-

meters being systematically changed during simulations, and with learning regimes

matched to those that the adult participants experienced. Some of these suggestions

have already been carried out; for example, experiments have been conducted which

control for differing previous experience with novel objects (see [26] experiment 3

and [25]). The finding that JIM3 needs to have no metric relation precision to quali-

tatively match 7–9-years-old human performance might also suggest new empirical

studies where participants learn novel objects but are then presented with very differ-

ent views of these objects so that the view-dependent system would not be expected

to maintain high performance levels.

In addition to just thinking about the four limitations noted above for how the

computer simulation matches the task used in the human experiments, we can also

consider that the human experiments are a limited approach in capturing the com-

plexities of object recognition in more ecologically valid contexts. For instance, the

human recognition task modelled in this paper involves a participant sitting passively

whilst being presented with images, which do not move and cannot be acted upon or

manipulated. This is partly done to conserve clear experimental control between the

experimental conditions. However, it does have the downside of limiting possible

mechanisms of active perception, such as the development of sensorimotor contin-

gencies, and so limiting the role of active perception mechanisms which may not rely

on explicit representations. Future work may involve more active experimental tasks,

and modelling these observations with robots rather than disembodied simulations.

There are also a number of deeper issues linked to the core features of JIM3. For

example, in JIM3, both the view-dependent and view-independent routes through the

architecture use geons as a fundamental representational unit. However, it is not a set-

tled issue what the basic level in structural descriptions in visual object recognition
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are. For example, children from 3 to 4 made less use than adults of the shape bound-

aries that distinguish different types of geons [1]. So to model children’s performance

we might want to relax the requirement that geons are a fundamental representational

unit at earlier stages in development. In addition, it is also worth noting that JIM3

possesses surfaces in layer 3 of the architecture, but these surfaces are only used

in the assignment of geons before layer 4, rather than primitives for the spatial rela-

tionships recorded in the view-independent component of layer 5. However, surfaces

have been proposed as representational primitives within spatial relationships [27].

Secondly, in JIM3 there is limited opportunity for processing in later layers to

influence earlier processing in an on-line dynamic fashion. For example, top-down

effects of memory on processing before layer 5 through backward projections do not

occur in JIM3. We might imagine that attention emerges moment to moment as an

internal representation of an object emerges, a dynamic process not captured within

JIM3. Instead, in JIM3, attention is ‘on full’ as the object starts to be represented.

Lastly, JIM3 is a dual process model where each process is supported by differ-

ent hardware, in the form of separate neural networks in layer 5. Other dual process

theories have a similar arrangement. For example, object perception and action are

proposed to occur in two separate dorsal and ventral streams [16, 40]. Alternatively,

the idea of dual processes can be de-linked from the idea of dual ‘systems’. It may

be different processing occurs at different times on a common substrate. So ‘dual

process–one system’ could be a design schema for a new object recognition system

where compositional and non-compositional processes are separated in time but not

space. Alternatively, as Thoma and Henson’s imaging results suggest, there may be

two streams: dorsal and ventral, where the dorsal stream is involved in solely view-

based recognition and the ventral stream involves some view-based as well as compo-

sitional recognition. Evidence for this complex arrangement is presented by Thoma

and Henson, who noted that in their imaging studies: “the ventral stream regions
also showed greater RS from intact than split primes, which would not be expected
if these regions utilised purely structural representations” ([40], p. 524). This find-

ing makes intuitive sense if we think of attention building up over the briefest of

moments in time rather than starting ‘on full’. So before attention can link object

parts dynamically with relations, this system will already be decomposing parts and

these isolated and independent parts may trigger backward activation from mem-

ory traces before fully compositional memories are matched to fully compositional

perceptual representations.

So, in summary, a version of JIM3 with regressed metric relation precision in the

IGA has been shown to provide a better match to empirical results than a regressed

holistic surface map version. An interesting finding is that even small numbers of

neurons present in the IGA can provide similar level of recognition performance to

an ‘adult’ JIM3 with its full complement of neurons. Though the lessons for human

psychology from this are still to be worked out, this work does provide an example

for research in machine representation of the benefits of dual representation systems.

Future work has also been suggested that: (1) would involve adapting JIM3 to more

closely match the types of task and stimuli and learning pattern used in empirical

studies of object recognition development; (2) that would involve empirical testing
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of younger adolescents with stimuli that have been rotated so that the view-dependent

mechanisms do not provide an effective route to recognition; and (3) would involve

developing alternatives to JIM3 that support surfaces as a representational primitive,

provide more backward projections to provide top-down effects of existing knowl-

edge, and development of dual process–single system models where differences in

processing exist across time but not across resources.

Philosophers have long theorised about compositionality and its benefits. This

research illustrates the challenges in investigating how object representations

develop. These include that, in natural systems, there is no transparent access to

internal representations; performance on simple behavioural tasks, such as measur-

ing view-dependence/invariance to object recognition of rotated images, can act as a

poor surrogate for internal representations; multiple representational forms can inter-

act to produce complex behavioural patterns; and the existing implemented compu-

tational models do not always neatly fit completely with emerging empirical para-

digms. However, using a variety of investigative methods, including priming experi-

ments, neuropsychological studies, brain imaging and computational modelling can

provide convergent evidence and an elaborated view of how neural systems can sup-

port representational diversity in humans, other animals and machines.
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