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Abstract Engineers fine-tune the design of robot bodies for control purposes; how-

ever, a methodology or set of tools is largely absent, and optimization of morphology

(shape, material properties of robot bodies, etc.) is lagging behind the development

of controllers. This has become even more prominent with the advent of compli-

ant, deformable or ‘soft’ bodies. These carry substantial potential regarding their

exploitation for control—sometimes referred to as ‘morphological computation’. In

this article, we briefly review different notions of computation by physical systems

and propose the dynamical systems framework as the most useful in the context of

describing and eventually designing the interactions of controllers and bodies. Then,

we look at the pros and cons of simple versus complex bodies, critically reviewing the

attractive notion of ‘soft’ bodies automatically taking over control tasks. We address

another key dimension of the design space—whether model-based control should

be used and to what extent it is feasible to develop faithful models for different mor-

phologies.

This article is a substantially revised version of [20].
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1 Introduction

It has become increasingly common to explain the intelligent abilities of natural

agents through reference to their bodily structure, their morphology and to make

extended use of this morphology for the engineering of intelligent abilities in arti-

ficial agents, e.g. robots—thus ’offloading’ computational processing from a cen-

tral controller to the morphology. These uses of morphology for explanation and

engineering are sometimes referred to as ’morphological computation’ (e.g. [15, 16,

39]). However, in our view, only some of the characteristic cases that are embraced

by the community as instances of morphological computation have a truly compu-

tational flavor. Instead, many of them are concerned with exploiting morphological

properties to simplify a control task. This has been labeled ’morphological control’

in [14]; ’mechanical control’ could be an alternative label. Developing controllers

that exploit a given morphology is only a first step. The space of possible solutions

to a task increases dramatically once the mechanical design is included in the design

space: imagine having a hand with 10 instead of 5 fingers: there will be completely

new ways of grasping things. At the same time, the search space of controllers and

mechanical design combinations also becomes enormous.

In this work, we want to take a close look at these issues. First, we will borrow

the ‘trading spaces’ landscape from [41] that introduces a number of characteris-

tic examples and distributes them along a metaphorical axis from ‘informational

computation’ to ‘morphological computation’. Second, we will analyze under what

circumstances physical bodies can be said to compute and then propose the dynam-

ical systems description as the most versatile framework to deal with brain–body–

environment interactions. Third, we will critically look at the pros and cons of sim-

ple versus complex (highly dimensional, dynamic, nonlinear, compliant, deformable,

‘soft’) bodies. Fourth, we will address another key dimension of the design space—

whether model-based control should be used and to what extent it is feasible to

develop faithful models for different morphologies. We will close with an outlook

into the future of ‘soft’ robotics.

2 Design ‘Trading Spaces’

Pfeifer et al. [41] offer one possible perspective on the problem in Fig. 1. In tradi-

tional robots—as represented by industrial robots and Asimo in the figure—control is

essentially confined to the software domain, where a model of the robot exists and the

current state of the robot and the environment is continuously being updated in order

to generate appropriate control actions sent to the actuators. In biological organisms,

on the other hand, this does not seem to be the case: the separation between ‘con-

trollers’ and ‘controlled’ is much less clear, and behavior is orchestrated through a

distributed network of interactions of informational (neural) and physical processes.

Furthermore, there is no centralized neural control, but a multitude of recurrent loops
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Fig. 1 The design trading space. This figure illustrates the degree to which each system relies

on explicit control or self-organization of mechanical dynamics. On the left-hand side of the spec-

trum, computer algorithms and commercial computers rely on physical self-organization at the

minimum level, while towards the right-hand side, more embodied, more soft and smaller scale

systems require physical interactions as driving forces of behaviors. The design goal then is to find

a proper compromise between efficiency and flexibility, taking into account that a certain level of

flexibility can also be achieved by changing morphological and material characteristics. (Figure

and caption from [41])

from the lowest level (e.g. reflexes and pattern generators in the spinal cord) to dif-

ferent subcortical and cortical areas in the brain. At the same time, the bodies them-

selves tend to be much more complex in terms of geometrical as well as dynamical

properties. This has motivated the design of compliant, tendon-driven robots such

as ECCE [51] or Kenshiro [35] and soft, deformable robots such as Octopus (e.g.

[29]) (we are moving from left to right in Fig. 1). However, compared with humans

or biological octopus, a comparable level of versatility and robustness in the orches-

tration of behavior has not yet been achieved in the robotic counterparts. In more

restricted settings, the design and subsequent exploitation of morphology is easier,

as the jumping and landing robot frog [36], the passive dynamic based walker (Cor-

nell Ranger [4]), or the coffee-balloon gripper demonstrate. The predecessors of the

Cornell Ranger, the original passive dynamic walkers [33], are a powerful demon-

stration that appropriate design of morphology can generate behavior in complete

absence of software control. Yet, there is only a single behavior, and the environmen-

tal niche is very narrow. The coffee-balloon gripper [8] employs a similar strategy,

but achieves surprising versatility on the types of objects that can be grasped. Body

designs that follow this guideline were also labeled ‘cheap designs’ [42].

3 Is the Body Really Computing?

The systems toward the right-hand side of Fig. 1 rely on physical interactions rather

than computer programs to orchestrate their behaviors. This end of the spectrum is

labeled ‘morphological computation’. However, in which sense can these systems be
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said to compute? In the case of the passive dynamic walker and its active descendants

(Cornell Ranger) or the jamming-based (coffee-balloon) grippers cited above, the

body is ingeniously contributing to its, perhaps primary, function: enabling physical

behavior in the real world. This is often interpreted in the ‘offloading sense’: the

body design takes over computation from the brain (e.g. [39])—the hypothetical

computation that is needed for walking has been fully off-loaded from a hypothetical

controller to the morphology of the walker. However, we argue that this view is hard

to defend beyond the level of a metaphor. It is difficult to imagine a real example

where one could choose to solve the task ‘through the brain’ or ‘through the body’

and smoothly interchange their contributions.

A word on what we mean by computation is in order. Let us take the Cornell

Ranger example—a robot based on the passive dynamic walker with a simple con-

troller on top. The robot is certainly not performing abstract digital computation (as

represented by the Turing model, for example). Borrowing the terminology from

[13, p. 5–6], the part of the controller can be said to perform online and embedded

computation—such computation is interactive rather than batch, as it relies on a con-

tinuous stream of inputs (from sensors in this case) for its execution and produces a

continuous stream of outputs (control actions). However, it is the physical interac-

tion, not the controller, that plays the key part in accomplishing the task here. Some

authors would subsume this type of interaction under a computational framework as

well—e.g. “embodied computation should be understood as a physical process in an

ongoing interaction with its environment” [13, p. 6]. Other authors pose much stricter

requirements on physical computation: according to Horseman et al. [22], a physical

system can be said to compute only if it was designed as such. That is, there needs

to be a user that has an abstract computational problem that he wants to solve by a

physical machine. This machine (the computer) needs to be designed and its model

derived that allows for encoding of abstract inputs into the machine and decoding

them again after physical evolution of the machine’s state. In this view, computa-

tion cannot be assigned ex post, and physical systems with interesting computational

properties, ‘intrinsically computing’ [11], do not fulfill these requirements.

It is not central to practitioners whether the controlled system is ‘computing’.

However, a unified theory or level of description is desirable. The dynamical systems

framework seems to be the most versatile in this context, as it (i) fits the informational

and physical processes equally well, (ii) copes with continuous (in time) streams of

continuous input and output signals, and (iii) is already used by control theory.

4 Dynamical Systems Perspective

Let us look at the concept of self-stabilization, which is often cited in the “mor-

phological computation community”. While maximally exploiting the interaction of

the body with the environment can lead to ‘pure physics walking’ like in the pas-

sive dynamic walker case [33], what if the agent is perturbed out of this preferred

regime? It seems that corrective action needs to be taken. However, it can be the
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very same mechanical system that can generate this corrective response. This phe-

nomenon is known as self-stabilization and is a result of a mechanical feedback loop.

To use the dynamical systems description, certain trajectories (such as walking with

a particular gait) have attracting properties and small perturbations are automatically

corrected, without control, or one could say that ‘control’ is inherent in the mechan-

ical system. Examples of this phenomenon are a self-stable bike, driving alone after

being pushed and compensating for major disturbances [27], or the contribution of

biological muscles to human walking as reviewed by Blickhan et al. [5] in a paper

entitled ‘Intelligence by mechanics’ (more examples in this line can be found in [19]

or [18] with videos of the bicycle and other material).

A general formulation of a control problem in control theory is making a dynam-

ical system follow a desired trajectory. For our purposes, we will consider the cases

where the dynamical system is physical—the body of the agent; in control theory,

this is the so-called ‘plant’. There are numerous control schemes and branches of

control theory, and the reader is referred to abundant literature on the topic (e.g. [3,

12, 25]). The performance of the controller can be evaluated on various grounds:

precision of a trajectory with respect to a reference trajectory, or energy expendi-

ture, for example. In addition, performance, stability, and robustness guarantees are

required by industry. Control theory typically deals with the design of controllers

that optimize these criteria. Some control schemes with appropriate cost functions

will automatically result in minimal control actions and thus “optimize the contri-

bution of the morphology”. For example, Moore et al. [34] used discrete mechanics

and optimal control to steer a satellite while exploiting its dynamics to the maximum.

Carbajal [10] developed related methods for reaching, plus offered a formalization of

the concept of ‘natural dynamics’. Nevertheless, the plant is treated as fixed in these

approaches. Yet, the properties of the physical body obviously have a key influence

on the final performance of the whole system (plant + controller), which calls for

including them into the design space.

5 Simple or Complex Bodies?

The spirit of the morphological computation literature that follows the ‘offloading’

or ‘trade-off’ perspective, is that complex (highly dimensional, dynamic, nonlinear,

compliant, deformable, ‘soft’) bodies are advantageous for control because they can

take over the ‘computation’ that a controller would otherwise have to perform (e.g.

[15, 16, 39] or [9] explicitly in Fig. 1). Complex nonlinear bodies certainly give rise

to more complex dynamical landscapes where the location of attractors could—if

properly exploited— facilitate the performance on a given task.

This view is in stark contrast to the views prevalent in control theory. There, linear

time-invariant systems are the ideal plants to control. Solutions for nonlinear systems

are much more difficult to obtain, and they often involve a linearization of the system

of some sort. In fact, human-like bodies are a nightmare for control engineers ([43]

is an interesting case study), and highly complex models and controllers would be

required.
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What would be an ideal body then? And, does a complex body imply simple or

complex control? Recent attempts at quantifying the amount of morphological com-

putation shed more light on this issue. Zahedi and Ay [52] propose two concepts for

measuring the amount of morphological computation by calculating the conditional

dependence of future world states W ′
(encompassing the body state) on previous

world states W and action A taken by the agent. According to concept 1, the amount

of morphological computation is inversely proportional to the contribution of the

agent’s actions to the overall behavior. That is, if action of the agent’s motors (A) has

little influence on the future physical state of the agent in the environment (W ′
), mor-

phological computation is high. Concept 2 calculates the amount of morphological

computation by isolating the positive contribution of the world to the overall behav-

ior (effect of W on W ′
), obtained from the ‘difference’ between conditional probabil-

ity distributions with and without the action variable, p(w′ ∣ w, a) versus p(w′ ∣ w)
(see [52] for details). Here, systems with high morphological computation would

be those with strong ‘body dynamics’ or ‘natural dynamics’ (see, e.g. [23] or [10]

for a formal definition). However, optimizing for morphological computation in the

above sense, one would arrive at systems with strong internal dynamics (concept 2),

resisting control actions (concept 1), which seems very impractical for engineers. In

fact, Klyubin et al. [26] proposed a different measure relying on information theory,

empowerment, which is equivalent to the opposite of morphological computation

under concept 1; maximizing empowerment amounts to maximizing the effect of

the agent’s actions.

Rückert and Neumann [45] study learning of optimal control policies for a sim-

ulated four-link pendulum which needs to maintain balance in the presence of dis-

turbances. The morphology (link lengths and joint friction and stiffness) is manipu-

lated, and controllers are learned for every new morphology. They show that: (1) for

a single controller, the complexity of the control (as measured by the ‘variability’ of

the controller) varies with the properties of the morphology: certain morphologies

can be controlled with simple controllers; (2) optimal morphology depends on the

controller used; (3) more complex (time-varying) controllers achieve much higher

performance than simple control across morphologies.

In summary, the performance on a task will always depend on a complex inter-

play of the controller, body and environment: taking out the controller is just as big

a mistake as taking out the body was. The tasks that can be completely solved by

appropriate tuning of the body, such as passive dynamic walking, are the exception

rather than the rule. A controller will thus be needed too. A complex body may have

the potential to partially solve certain tasks on its own; yet, it may present itself as

difficult to control, model (if the controller is relying on models), design and man-

ufacture. An optimal balance thus needs to be found. For that, however, new design

methodologies that would encompass complex cost functions (performance on a

task, versatility, robustness, costs associated with hardware whose parameters can

be manipulated, etc.) are needed. Hermans et al. [17] very recently proposed such

a method that uses machine learning to optimize physical systems; an approximate

parametric model of the system’s dynamics and sufficient examples of the desired

dynamical behavior need to be available though—which leads us to the next section.
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6 With or Without a Model?

Including the parameters of the body into the design considerations may give rise to

better performance of the whole system; these may be solutions involving a simpler

controller, but also solutions that were previously unattainable when the body was

fixed. Following the dynamical systems perspective, [14] provides an illustration

of the possible goals of the design process: (1) To design the physical dynamical

system such that desired regions of the state space have attracting properties. Then

it is sufficient to use a simple control signal that will bring the system to the basins

of attraction of individual stable points that correspond to target behaviors. (2) More

complicated behavior can be achieved if the attractor landscape can be manipulated

by the control signal.

If a mathematical formulation of the controller and the plant is available, this

design methodology can be directly applied. The first part is demonstrated by McGeer

[33] on the passive dynamic walker: The influence of scale, foot radius, leg iner-

tia, height of center of mass, hip mass and damping, mass offset and leg mismatch

is evaluated. In addition, the stability of the walker is calculated. Recently, Jerrold

Marsden and his coworkers presented a method that allows for co-optimization of the

controller and plant by combining an inner loop (with discrete mechanics and opti-

mal control) and an outer loop (multiscale trend optimization). They applied it to a

model of a walker and obtained the best position of the knee joints ([38], Chap. 5).

However, typical real-world agents are more complex than simple walkers.

Holmes et al. [21] provide an excellent dynamical systems analysis of the locomo-

tion of rapidly running insects and derive implications for the design of the RHex

robot. Yet, they conclude that “a gulf remains between the performance we can elicit

empirically and what mathematical analyses or numerical simulations can explain.

Modeling is still too crude to offer detailed design insights for dynamically stable

autonomous machines in physically interesting settings”. Hermans et al. [17] sim-

ilarly note that applying their method to robotics, which is known to suffer from

lack of accurate models, is a challenge. The modeling and optimization of more

complicated morphologies—such as compliant structures—is nevertheless an active

research topic (e.g. Wang [50] and other work by the author). The second point of

Füchslin et al. [14]—achieving ‘morphological programmability’ by constructing

a dynamical system with a parametrized attractor landscape—remains even more

challenging though.

One of the merits of exploiting the contributions of body morphology should be

that the physical processes do not need to be modeled, but can be used directly. How-

ever, without a model of the body at hand, several body designs need to be produced

and—together with the controller—tested in the respective task setting. The design

space of the joint controller–body system blows up, and we may be facing a curse

of dimensionality. This is presumably the strategy adopted by the evolution of bio-

logical organisms that could cope with the enormous dimensionality of the space. In

robotics, this has been taken up by evolutionary robotics [37]. The simulated agents

of Karl Sims [47] demonstrate that co-evolving brains and bodies together can give
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rise to unexpected solutions to problems. More recently, Bongard [6] showed that

morphological change indeed accelerates the evolution of robust behavior in such

a brain–body co-evolution setting. With the advent of rapid prototyping technolo-

gies, physics-based simulation could be complemented by testing in real hardware

[31], but this reintroduces the modeling through the back door: the phenotypes in the

simulator now become models, and they need to sufficiently match their real coun-

terparts. Yet, a ‘reality gap’ [24, 28] always remains between simulated and real

physics. The only alternative is to optimize in hardware directly, which is in gen-

eral slow and costly. Brodbeck et al. [7] provide an interesting illustration showing

how locomoting cube-like creatures can be evolved in a model-free fashion through

automated manufacturing and testing. However, in summary, the design decisions—

which parameters to optimize—are based on heuristics, and a clear methodology is

still missing. Furthermore, with the absence of an analytical model of the controller

and plant, no guarantees on the system’s performance can be given.

7 Conclusion and Outlook

‘Morphological computation’ and ‘morphological control’ are very attractive con-

cepts, receiving significant attention and carrying great potential. The rich prop-

erties of ‘soft’ bodies (highly dimensional, dynamic, nonlinear, compliant, and

deformable) have been largely overlooked or deliberately suppressed by classical

mechatronic designs, as they are largely incompatible with traditional control frame-

works, where linear plants are preferred. This is definitely a missed opportunity. On

the other hand, while complex bodies carry a lot of ‘auto-control’ potential, this

property does not come for free. In this article, we provided a critical review of the

design ‘trading spaces’, an imaginary landscape from ‘control–dominant’ systems

whose natural dynamics is suppressed to designs that capitalize on self-organization

of the physical system interacting with the environment. We conclude that the contri-

butions of the body to the task are not computational in any substantial sense and pro-

posed the dynamical systems descriptions as the most versatile in order to facilitate

description, understanding, control, and design of brain–body–environment systems.

The pros and cons of simple versus complex bodies were illustrated on examples. It

has to be said that the exploitation of truly complex bodies to accomplish tasks is

still mostly at a ‘proof-of-concept’ stage. A closely connected issue is that of mod-

eling of these systems—soft bodies are notoriously difficult to model. The model

may not be necessary for the system to perform the task; however, without a model,

the understanding and design are more complicated and performance guarantees are

limited. The field, which has been dominated by heuristics so far, needs to embrace

more systematic approaches that allow one to navigate in this complex landscape.

In terms of applications, the most relevant area where exploitation of morphology

is and will be the key is probably robotics, and in particular soft robotics (see [2,

40, 41, 49] and the first issue of the journal Soft Robotics [48]). ‘Soft’ robots, with

the robot Octopus (e.g. [29]) serving as a good representative, break the traditional
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separation of control and mechanics and exploit the morphology of the body and

properties of materials to assist control as well as perceptual tasks. Pfeifer et al.

[40] even discuss a new industrial revolution. Appropriate, ‘cheap’, designs lead to

simpler control structures, and eventually can lead to technology that is cheap in a

monetary sense and thus more likely to impact on practical applications. Yet, a lot

of research in design, simulation, and fabrication is needed (see [30, 32, 46] for

reviews).

The area of soft robotics and morphological computation seems to be rife with

different trading spaces [41]. As we move from the traditional engineering frame-

work with a central controller that commands a ‘dumb’ body toward delegating more

functionality to the physical morphology, some convenient properties will be lost.

In particular, the solutions may not be portable to other platforms anymore, as they

will become dependent on the particular morphology and environment (the passive

dynamic walker is the extreme case). The versatility of the solutions is likely to drop

as well. To some extent, the morphology itself can be used to alleviate these issues—

if it becomes adaptive. Online changes of morphology (such as changes of stiffness

or shape) thus constitute another tough technological challenge (see also the project

LOCOMORPH [1]). Completely new, distributed control algorithms that rely on

self-organizing properties of complex bodies and local distributed control units will

need to be developed [32, 44].
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