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Abstract. Dynamic contrast-enhanced MRI (DCE-MRI) acquires T-weighted
MRI scans before and after injection of an MRI contrast agent such as gadolinium
(Gd). Gadolinium causes the relaxation time to decrease, resulting in higher MR
image intensities after injection followed by a gradual decrease in image inten-
sities during wash out. Gd does not pass the intact blood-brain barrier (BBB),
thus its dynamics can be used to quantify pathology associated with BBB leaks.
In current clinical practice, it is suggested to use the same pulse sequence for
pre-injection T calibration and Gd concentration calculation in the DCE image
sequence based on the spoiled gradient recalled echo (SPGR) signal equation.
A common method for T, estimation is using variable flip angle (VFA). How-
ever, when the parameters such as the repetition time (TR) for image acquisition
could be tuned differently for T, estimation and DCE acquisition, the popular
dcemriS4 software package that handles only a fixed TR often results in dis-
crepancies in Gd concentration estimation. This paper reports a quick solution for
calculating Gd concentrations when different TRs are used. First, the
pre-injection T map is calculated by using the Levenberg-Marquardt algorithm
with VFA acquisition, then, because the TR used for DCE acquisition is different
from the VFA TR, the equilibrium magnetization is updated with the TR for
DCE, and the Gd concentration is calculated thereafter. In the experiments, we
first simulated Gd concentration curves for different tissue types and generated
the corresponding VFA and DCE image sequences and then used the proposed
method to reconstruct the concentration. Comparing with the original simulated
data allows us to validate the accuracy of the proposed computation. Further, we
tested performance of the method by simulating different amounts of K"
changes in a manually selected region of interest (ROI). The results showed that
the new method can estimate Gd dynamics more accurately in the case where
different TRs are used and be sensitive enough to detect slight K™ changes in
DCE-MRI.

Keywords: DCE-MRI - T, relaxation - Gd concentration - Pharmacokinetics

© Springer International Publishing Switzerland 2016
G. Zheng et al. (Eds.): MIAR 2016, LNCS 9805, pp. 259-268, 2016.
DOI: 10.1007/978-3-319-43775-0_23



260 E.D. Rockers et al.

1 Introduction

Dynamic contrast-enhanced (DCE) MRI has been widely used in many clinical studies
for noninvasive detection and characterization of diseases [1]. For example, it can
not only quantify pathologies of brain tumor associated with blood-brain barrier
(BBB) leakage [2], but also study possible BBB disruption in aging, dementia, stroke
and multiple sclerosis [3]. In acquiring DCE-MRI, a contrast agent (CA) such as
gadolinium (Gd) is injected into the blood stream while acquiring a series of T;-
weighted MR images. CA concentration can be calculated from MR image intensities
for quantitative pharmacokinetic analysis [4]. The injection of Gd results in T, relax-
ation time changes compared to the pre-injection T; (denoted as T;y). Therefore,
DCE-MRI acquisition generally consists of two stages. The first stage is to estimate an
intrinsic tissue T map. This estimation can be done by acquiring images with variable
flip angles. The second stage is to estimate the time varying Ti(t) map sequence from
the DCE-MRI sequence right before and after Gd injection.

To accurately estimate the pre-injection longitudinal relaxation time map T, the
variable flip-angle (VFA) spoiled gradient recalled echo (SPGR) method provides high
spatial resolution with relatively short acquisition times and is commonly used in basic
and clinical research [5]. Specifically, by capturing T,-weighted MR images at different
flip angles, Ty, can be calculated using the Levenberg-Marquardt algorithm based on
the SPGR signal equation. Next, for computing the Gd concentration from the
DCE-MRI image sequences, the same SPGR signal equation is employed to estimate
the time varying T;(t) map sequences. In the dcemriS4 software [6], the CA.fast
function can be used for this task.

However, in practice the parameters for image acquisition might have been tuned
differently for T, calibration and for DCE acquisition stages. For example, in some of
our clinical research data, different repetition times (TR) had been used. Because the
equilibrium magnetization and T, are estimated using one TR value, and the DCE
acquisitions use another, the parameters estimated from the SPGR signal equation may
generate discrepancies when applied to DCE. In this paper, we present a simple and
practical solution for calculating Gd concentrations when different TRs are used for T,
calibration and DCE acquisition.

The major steps remain the same as the dcemriS4 package. Specifically, first, the
tissue T map is calculated by using the Levenberg-Marquardt algorithm with variable
flip angles. Then, because the TR used for DCE acquisition is different the one used for
Tq calibration, a new equilibrium magnetization map is calculated with the new TR, so
that the SPGR signal equation can better fit the DCE image sequence. Then, the Gd
concentration is calculated in a similar way.

In experiments, we first modified the dcemriS4 software package so that different
TRs can be used for calculating Gd concentration from DCE-MRI image sequences.
Then, we investigated the performance of the modification using simulated Gd con-
centration signals and different levels of K™ changes in a manually marked ROL.
After simulating Gd concentration curves for different brain tissues, we generated the
DCE-MRI image sequences and then estimated the concentration curves using the
proposed method. In this way, the estimation accuracy can be calculated.
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For 3D DCE image series, spatially correlated Gaussian noises are added to the
simulated DCE-MRI image sequences with predefined K™ changes in a manual ROL
This allows us to compare two groups of DCE-MRI sequences, one with and another
without K™ changes. After simulating DCE-MRI sequences with different conditions
and re-calculating K™", we use the SPM package to highlight group differences [7].
The experimental results showed that the new method can estimate Gd dynamics more
accurately in the case of different TRs, and it is sensitive to K"™" changes in
DCE-MRL

2 Method

2.1 Estimation of T; from SPGR Images

In MR imaging, the T, relaxation time, or the spin-lattice relaxation time, measures
how quickly the net magnetization vector recovers to its ground state along the
direction of the main magnetic field B. Generally, the measured SPGR signal intensity
can be defined as a function of the longitudinal relaxation time 77, the repetition time
TR, the flip angle 0, and the equilibrium longitudinal magnetization M, as,

o _ Mo(1 —exp(=TR/T1))sin(0) (1)
O 1 —exp(=TR/Tyo)cos(0)

Variable flip angle acquisitions are commonly used to estimate the intrinsic relax-
ation time maps. Given a series of (N) flip angles 0y, .. .0y and corresponding SPGR
images Si, . . .Sy, with a fixed repetition time TR, the nonlinear least squares algorithm
aims to estimate My and 7o by minimizing the sum of squared errors between the left
and right sides of Eq. (1) normalized/weighted by the expected signal standard devia-
tion. The Levenberg-Marquardt algorithm is one such method for estimating M, and
T1o. This can be achieved by using the M0.fast function in the dcemriS4 package.

2.2 Estimation of Gd Concentration from DCE-MRI Sequences

During DCE-MRI acquisition, a series of MRI images are captured while the contrast
agent GGd is injected into the blood stream. Herein, we denote the DCE image sequence
as I;, with t = 1,...T, and T is the number of DCE images captured. The first several
(P) frames are pre-injection acquisitions, and the contrast agent injection starts from
frame P + 1. Therefore, Eq. (1) can be directly used for calculating the dynamic T (¢)
by simply modifying the equation to:

I —_1lrl My sin(0) — I
Ty(t) TR |Mysin(0) — Lcos(0)]

(2)

However, because of the multi-variable nature of the SPGR signal equation, the
parameters estimated for one case may result in discrepancies when applied to another
imaging case, particularly for new TR values. It has been suggested that the P
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pre-injection frames of the DCE image sequences can be used to “normalize” the
relaxation time sequences [8]. Thus, by replacing Sy with the average of the first P
pre-injection frames, the following equation is used:

Mo(1 — exp(—TR/T;(1))sin(0) _ Mo(1 — exp(~TR/Ty)) sin(0)
1 — exp(=TR/T;(t))cos(0) 1 —exp(=TR/Tyo) cos(0)

L—S= (3)

where Sy = average(I;,t = 1,...P). Then, we can calculate the relaxation time by:

1 -1 1 - (A+B)
= 75 1n ) (4)
Ti(t) TR |1 —cos(0)(A+B)
l—exp(—%)
where A = Mg;f?e) and B=—>—~——. It has been assumed that the pulse

1—exp (—%) cos(0)
sequence for T, calibration and DCE acquisition is set to be the same during MRI
scanning, i.e., TR remains the same in Tj( estimation (Sect. 2.1) and Gd concentration
computation (Sect. 2.2).

2.3 Improvement of Dynamic 7 (f) Computation from DCE-MRI

In clinical practice, we found that the repetition time (TR) for T; estimation and DCE
acquisition are often different. The effect is that the replacement of Sy with the average
of the pre-injection DCE images may result in discrepancies because the VFA images
and DCE images have different TRs. Basically, denoting the new repetition time of
DCE as TR, the parameters estimated in Sect. 2.1 will not hold during DCE con-
centration estimation because Sy # Ire = average(l;, = 1,...P) for the new flip angle
0, of DCE, i.e.,

I 75 MO(I - exp(_TR/TIO)) Sin(en)
pre 1 —exp(—TR/Tyo) cos(6,)

(5)

As shown in Fig. 1, we optimized M, and T} using four flip angles (2°, 7°, 18° and
25°) and tested the reconstructed SPGR images by using different TR and 6 and
computed the difference between the reconstructed images and the original captured
images. When TR remains the same (top row), we can precisely reconstruct the SPGR
images with different flip angles, while, when TR is different (bottom row), the
reconstructed image demonstrated larger errors. The reason is not because the equi-
librium magnetization and the intrinsic Tjo maps are changed due to the acquisition
parameter change, but because the original estimation of the multi-variate nonlinear
equation (Eq. (1)) only applies to the original TR value.

To remedy this discrepancy we can use all the flip angles and TR values during T,
calibration and DCE acquisition to estimate My and T;o in Eq. (1). However, this
requires more acquisitions at different combinations of flip angles and TR values. In
practice, these extended multiple acquisitions may not be available.



Quantitative Analysis of 3D T1-Weighted Gadolinium (Gd) DCE-MRI 263

6.5E5

-2 8E5

(d) (e)

Fig. 1. Reconstructing SPGR images using the same 7Tjp map with different TRs. Top:
reconstruction using the same TR (5 ms) during T, calibration; (a) is the SPGR image captured
using TR = 5, = 12°, and (b) is the reconstructed image using Eq. (1) with the same parameters.
(c) shows the difference image between images (b) and (a). Bottom: reconstruction using different
TR. (d) is the average of pre-injection DCE captured using TR = 3.14, 6 = 10°, (e) is the
reconstructed MR image using Eq. (1), and (f) is the difference between images (e) and (d).

As mentioned in Introduction, the problem that we are often facing is that TR
values may be different during T, calibration and DCE acquisition, and there is only
one fixed TR and flip angle during DCE acquisition. Therefore, we can assume that the
estimated T relaxation time map (an intrinsic property of tissues) is fixed and will
estimate a new equilibrium magnetization map that better fits the new flip angle (0,)
and the new TR, i.e., TR,. Therefore, by solving

I M, (1 — exp(—=TR,/Tho)) sin(0,)
P 1 —exp(—TR,/Tio) cos(0,,)

(6)

we get a new equilibrium magnetization map M, for the new flip angle and new TR,

v — Iore(1 — exp(—TR,/T1o) cos(0y))
! (I —exp(—TR,/T1)) sin(6,)

(7)

Notice that although the real equilibrium magnetization has not been changed, we
simply did not estimate it well particularly for the new TR value because of the lack of
available TR and flip angles values during T, calibration in Sect. 2.1. Re-calculating
M, here makes the SPGR signal intensity equation better fits the new TR value for
different flip angles. Finally, the new relaxation rates 1/T;(f) can be calculated using
Eq. (4), by applying the new parameters: M,,, TR,, and 0,.
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2.4 Summary of the Gd Concentration Computation Algorithm

The improved algorithm for computing Gd Concentration from DCE-MRI with dif-
ferent TRs is summarized as follows:

e Stage 1. Calculate tissue relaxation Ty, map. Input SPGR images S; with corre-
sponding acquisition TR and flip angles 0;, i = 1,..., N, and apply the dcemriS4
package to compute M, and Ty using the Levenberg-Marquardt algorithm.

e Stage 2. Calculate Gd concentration from DCE-MRI image sequences using the
following three steps:

— Step 2.1. Input the pre-injection DCE image frames /;,# = 1, .. .P, and calculate
their average image as Iy, and use Eq. (7) to calculate the new equilibrium
magnetization map M, using the new TR and flip angle for DCE acquisition,
ie., TR, and 0,,.

— Step 2.2. For the entire DCE-MRI sequence I;,f = 1,...T, calculate the relax-
ation rates 1/7(¢) by replacing My with M,, and 6 with 6, in Eq. (4).

— Step 2.3. Calculate Gd concentration using the following equation:

where v is the relaxivity of Gd, for which we assume an in-vitro value of
3.9ImMol] 's~! [9]. The pharmacokinetic model used by dcemriS4 is the
extended Tofts model [4] convolved with a population average of directly
measured AIFs, modeled as a bi-exponential function [10]. This model can be
used to determine K™, the transfer constant, which is a reflection of perme-
ability, capillary surface area, and blood flow [11].

3 Experiments

3.1 Evaluation Using Simulated MR Signals

First, we evaluated the accuracy of the algorithm using simulated MR signals from Gd
concentration curves. Specifically, after a bolus injection of dose D (mmol/kg), given
the values of the transfer constant K", the rate constant k,,, we can use the following
equation to simulate the Gd concentration curve [4]:

C(t) = DK™ " ailexp(—kept) — exp(—mit)]/[mi — kep, (9)
i=1

where a; = 3.99 kg/liter, a, = 4.78 kg/liter, m; = 0.144/min, and my = 0.0111/min
Subsequently, the relaxation rate R, (t) = 1/T(¢) can be obtained from Eq. (8), and the
corresponding MR signal S(¢) can be calculated using Eq. (1). Then, temporally cor-
related Gaussian noises are added to the simulated MR signals. By setting the typical
mean values of K t0 0.119, 0.071, 0.034 for CSF, GM, and WM, and those of kep tO
0.480, 0.534, and 0.457, respectively, we simulated the concentration curves of



Quantitative Analysis of 3D T1-Weighted Gadolinium (Gd) DCE-MRI 265

WM Concentration GM Concentration CSF Concentration

[<G)
With Step 2.1
— Without Step 2.1

[0
With Step 2.1
Without Step 2.1

)
With Step 2.1
- Without Step 2.1

oo [\MA_M,\__"*
0 feat e 0 foand 0 fams

50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Time (s) Time (s) Time (s)

Gd concentration
°
°
g
Gd concentration
o o
o o
S
F
Gd concentration
o o
o o
s 2

Fig. 2. The original and the reconstructed Gd concentration signals. Blue: original simulated
concentration; red: reconstructed concentration using our method (with Step 2.1); green: original
method (without Step 2.1). (Color figure online)

different tissues shown as blue curves in Fig. 2. These blue curves were used to
generate MR signals, and the proposed algorithm (the method with Step 2.1 included)
and the original algorithm (without Step 2.1) were used to reconstruct these concen-
tration signals. We used TR = 3.14 ms, and 6 = 10° for DCE, which are different than
those used for simulating the flip angle MR signals (TR = 5 ms, and 6 = 2°,7°,
18°,27°). After reconstruction, the recovered green curves were vertically shifted. For
conveniently comparing their shapes, we shifted them back so the pre-injection con-
centration is zero. It can be seen from Fig. 2 that the green curves cannot fully recover
the contrast of the original C(¢). Quantitatively, the areas under the curves (AUC) for
red ones have small difference from the blue ones: 0.3 %, 0.8 %, and 4.0 %, and those
for the green curves are more different from the blue curves: 45.0 %, 45.1 %, and
42.2 %, for CSF, GM, and WM, respectively.

3.2 Application in Gd DCE-MRI Analysis

We applied the proposed algorithm in pre-processing of DCE-MRI datasets by simu-
lating K™ change. Because of lack of ground truth for DCE-MRI images, first, we
generated simulated DCE-MRI datasets from a segmented image using realistic K"
and k., parameters for different tissue types, including WM, GM, and CSF. Then, K’ trans
and k., are subject to a spatially correlated Gaussian distribution for different tissue
types, and a manually selected region of interest (ROI) was used to simulate the
“abnormal” region, wherein the mean values of K" and k,, are set differently.

The detailed simulation steps are as follows. First, we set the mean values of K"
and k., for different tissues according to the segmented MR image, then, the standard
deviation (std) of K™ is set to x% of the mean values. In this way we generated the
K™ map for every voxel in the segmented MR image and spatially smoothed it with a
3 x 3 x 3 window. A group of 10 K" maps are generated to act as the control
group. Another study group was generated in a similar way, and additionally the K"
values within the manual ROI (see Fig. 3) were shifted, and the shifting parameter is
subject to a Gaussian distribution N(m, d), with m as y% of the K"** mean, and J the
prescribed std for m. In summary, x% reflects the variability of K"“™ for each tissue
type, and y% is the amount of relative changes of K" to simulate the abnormality
within ROL. In the simulation, we kept k., unchanged as the desired mean values of
different tissue types.
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According to these settings, each experiment was performed by first simulating the
two groups of K" maps with different parameters (x% and y%), and the VFA
images, as well as the DCE-MRI image sequence were then simulated in a similar way
as Sect. 3.1 (Gaussian noises are added to the simulated images). Then, we used the
proposed method to calculate the Gd concentration maps and computed the K”“™ maps
using the Tofts model. Finally, we applied the SPM package for statistical analysis,
where a 7mm X 7mm X 7mm spatial smoothing window was applied on the resultant
K™ maps before calculating the p-value map. We tested the conditions when
x% =10 % and 20 %, and y% = 1 %,...7 %, respectively. Figure 3(a) shows the
segmented image used as the template image for the simulation, and the brown region
is the manually picked abnormal region. In the subsequent images in Fig. 3, we show
the —log(p) maps when x% = 10 % and y% =1 %,...5 %. It can be seen that at the
variability level of 10 % (std of K" is 10 % of its mean), the method can catch the
shape of the abnormal ROI when the different between control and abnormal is
4% ~ 5 %.

1% change in ROI

2% change in ROI

3% change in ROI 4% change in ROI 5% change in ROI

Fig. 3. Group comparison of K" change in ROL The segmented image with a manual ROI is
used to simulate the K™ maps of two groups, one with and another without K" shifts in the
ROL The —log(p) maps show group differences for different amount of shifts by applying SPM
on the reconstructed K" maps.

Figure 4 plots the mean and std of the p-values within the ROI for two different
K™ variability levels: x % = 10 % and 20 %. It can be seen that as more variability
appears in K" for the tissues, the minimal change that can be detected has been
increased. Notice that these experiments have not incorporated image registration errors
in the simulation. In real cases, the sensitivity for detecting permeability between
groups could also be affected by image registration errors.
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Fig. 4. The mean and std of p-values within the ROI under different simulation conditions.

Finally, it is worth noting that the objective of this paper is to evaluate the proposed
method on simulated Gd concentrations to show that concentration maps can be esti-
mated more accurately, particularly when the repetition time is different for T, cali-
bration and DCE acquisition. In our recent study [12], the proposed method was
applied to analyze real DCE-MRI imaging data for quantifying group differences of Gd
dynamics between young and old healthy adults.

4 Conclusion

This paper presents a simple yet effective solution for calculating Gd concentrations
when different TRs are used during T1 calibration and DCE acquisition. We showed
that due to the limited number of VFA acquisitions during baseline calibration, the
SPGR signal equation, as a multi-variate nonlinear function, has not been calibrated
well enough to account for different TR values. To remedy this shortcoming, we first
used the Levenberg-Marquardt method to estimate the intrinsic T, relaxation time from
different flip angle acquisition, and then recalculate the equilibrium magnetization map
using the pre-injection DCE images acquired with a new TR and new flip angle. The
modified SPGR signal equation is thus tuned to the new TR and flip angle and can
better represent the DCE image sequences. Gd concentration dynamics are then cal-
culated. In experiments with simulated DCE-MRI, we showed that the new method can
generate more accurate concentration maps, and hence improve the quantitative anal-
ysis of DCE-MRI for human brain BBB analysis.
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