
Chapter 5

Optical and Physical Methods for Mapping
Flooding with Satellite Imagery

Jessica Fayne, John Bolten, Venkat Lakshmi, and Aakash Ahamed

5.1 Introduction

Flood and surface water mapping is becoming increasingly necessary, as extreme

flooding events worldwide can damage crop yields and contribute to billions of

dollars economic damages as well as social effects including fatalities and

destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).

Utilizing earth observing satellite data to map standing water from space is indis-

pensable to flood mapping for disaster response, mitigation, prevention, and warn-

ing (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s

(Landsat, USGS 2013), researchers have been able to remotely sense surface

processes such as extreme flood events to help offset some of these problems.

Researchers have demonstrated countless methods and modifications of those

methods to help increase knowledge of areas at risk and areas that are flooded

using remote sensing data from optical and radar systems, as well as free publically

available and costly commercial datasets.

In 1972, Landsat 1 also called Earth Resources Technology Satellite-1 (ERTS-1)

was launched, prompting an explosion of literature on the ability to map surface
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processes from space using wavelengths in the optical and near-infrared spectrum

(Irons et al. 2016). Landsat 1 paved the way for the Landsat sensor series (1972–

most recent launch of Landsat 8 in 2013), along with many other optical and radar

surface monitoring sensors and sensor series, including Advanced Very High

Resolution Radiometer (AVHRR); Moderate Resolution Imaging Spectrora-

diometer (MODIS); Advanced Spaceborne thermal Emission and Reflection Radi-

ometer (ASTER); Visible Infrared Imager Radiometer Suite (VIIRS); Satellite Pour

l’Observation de la Terre (SPOT); Sentinel, Advanced Land Observing Satellite

(ALOS); Envisat; Radarsat; and Soil Moisture Active Passive (SMAP).

Earth observing satellites are able to capture images of the earth at varying

spatial scales, and with different orbital periods, making each satellite sensor and

dataset unique. Optical sensors may have the ability to capture surface reflectance

data from visible blue, green, and red wavelengths, as well as emissivity data

through infrared wavelengths. Though a variety of wavelengths and bandwidths

are available, the two bandwidths found in many sensors are centered around the

red wavelength (~0.65 nm) and near-infrared wavelength (~0.85 nm) (Berkeley Lab

2016), with varying bandwidths. These two bands are universally used in surface

monitoring studies including mapping vegetation phenology, surface water and

flooding, snowmelt, and drought monitoring (Rouse et al. 1973; Colwell 1974;

Tucker 1979; Song et al. 2004; Pettorelli 2009; Hasan 2011; Gopinath et al. 2014;

Abbas 2014). Infrared wavelengths are key for water studies due to the high

absorption over water, and relative ease of identification beside dry land (Frazier

2000; Lei 2009).

The availability of Landsat/ERTS-1 and AVHRR-1 data allowed scientists

(Rouse et al. 1973; Colwell 1974; Tucker 1979) to develop an algorithm to quantify

vegetation change over time, the Normalized Difference Vegetation Index (NDVI).

Because the index uses near-infrared and red wavelengths, it can be universally

applied to most sensor datasets. In addition, the exploitation of the difference

between the near-infrared and red wavelengths allows NDVI to be applied to

other studies such as water detection (Lei 2009), and it has inspired similar spectral

indices specifically for water mapping such as the Normalized Difference Water

Index (NDWI) (Gao 1996; McFeeters 1996), the Vegetation Supply Water Index

(VSWI) (Cai et al. 2011; Abbas et al. 2014), and the Normalized Difference Pond

Index (NDPI) (Lacaux et al. 2006).

While these indices may be useful for analyzing surface conditions, they are also

subject to errors introduced by input datasets. Some sensor-based errors include

scan line errors (SLC-Off Products, 2013), scan angle errors (TIRS SSM Anomaly,

2015), and edge of swath pixel-bowtie effects (NOAA-NESDIS VIIRS User’s
Guide 2013), while atmospheric conditions such as cloud coverage, cloud shadow,

haze, pollution, scattered light from ground-based reflective objects, and atmo-

spheric scattering may render many images unsuitable for analysis (Anderson

et al. 2007; Holben 2007; Pettorelli et al. 2009). In areas where cloud coverage is

pervasive, the use of cloud-penetrating radar is ideal, allowing data on surface

texture to be collected instead of reflectance or emissivity (Brivio et al. 2002;

Parinussa et al. 2016). When radar data is unavailable, preprocessing methods

such as regression (Swets et al. 1999; Zhang et al. 2003), curve fitting (van Dijk

84 J. Fayne et al.



et al. 1987), and maximum value (Holben 2007) formulas as well as cloud masking

techniques (Fayne et al. 2015) have been implemented alongside atmospheric

correction (University of California Berkeley College of Natural Resources) to

determine the likely pixel value.

The sensors chosen for flood mapping efforts largely depend on the goals of

the individual project, as well as sensor availability and funding. Optical sensors

may be limited to surface inundation detection, while radar sensors may to

determine water depths (Smith 1997; Hess et al. 2003). The ability to see fine

details on the ground, known as spatial resolution, and to get data in a timely

manner, known as temporal resolution, are important questions asked in remote

sensing research. Studies may choose to sacrifice temporal resolution in favor of

spatial resolution to create risk maps (Mueller et al. 2016; Revilla-Romero

et al. 2015), while others may create high temporal resolution near real-time

mapping products (Nigro et al. 2014). Further, studies may require the use of

elevation models (Gallant and Dowling 2003; Guerschman et al. 2011), land

cover datasets (Townsend and Walsh 1998; Gallant and Dowling 2003; Sun

et al. 2012), or hydrological modeling software (Knebl et al. 2005) to obtain a

certain level of precision or accuracy.

This chapter will review methods for mapping floods and open water using

spectral formulas and statistical methods commenting on false color composite

techniques with optical data, physical models using radar and ancillary datasets

such as land cover maps and digital elevation models (DEMs), and will conclude

with a look into the future of flood mapping techniques and applications. Some

methods may be demonstrated with MODIS Terra 250- and 500-m data (path/row

tile H28v07) (NASA-LPDAAC; USGS-EROS 2016) over the Lower Mekong

Basin (LMB) to demonstrate visual impacts of the differences over the same

study area. The demonstration area is located in Cambodia and Southern Vietnam,

and the focus will be around the Tonle Sap Lake and Mekong Delta. This region

was chosen because the LMB experiences monsoonal flooding between May and

December, the MODIS data and a modified flood extent polygon (UNITAR-

UNOSAT 2013) used in the example figures are observed during October 2013

(Fig. 5.1).

5.2 Optical Sensors

Flood mapping research using optical and near-infrared sensors may use a combi-

nation of statistics and empirical formulas to measure flood extent, such as spectral

indices and single-band thresholds. To understand the capabilities and limitations

of spectral indices, researchers must consider atmospheric penetration at certain

wavelengths and the product availability of the desired wavelengths.

The United States Geological Survey (USGS) has produced an online Spectral

Characteristics Viewer (USGS 2014), graphing the spectral response patterns of

nine different minerals, nine vegetation types, four water types (ice, snow, clear,
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turbid), and three types of “desert varnish,” between 0 and 3000 nm (0–3 μm). The

spectral viewer also allows users to view the bands relative to the spectral response

graph for four Landsat sensors, Earth Observing-1 Advanced Land Imager, (EO-1

ALI), the ASTER and MODIS sensors on the Terra platform, and Sentinel 2A

MultiSpectral Instrument (MSI).

Spectral graphs and others (ASTER Spectral Library 2008) like this help to

explain how spectral indices and wavelength-based algorithms help scientists

identify water features as separate from land. The spectral bands from MODIS

show sensitivity to differences in reflectance from lawn grass, dry grass, and water.

Note how the lawn grass spectra reflectance increases sharply in the near-infrared,

while clear and turbid water show very low reflectance in visible wavelengths, and

almost zero reflectance in the infrared wavelengths. The clear and turbid water in

blue and dark blue do not reflect light past 1.2 μm, or 1200 nm. This allows for a

clear delineation of water and other features using wavelengths beyond 1200 nm,

such as bands MODIS 5, 6, and 7. In addition, the contrast between the highly

reflective grass and very low reflectivity in clear and turbid water make the use of

band 2 particularly useful.

Because water absorbs infrared radiation instead of reflecting (Campbell and

Wynne 2011), also evidenced by the Spectral Viewer, many studies have been able

to take advantage of the “dark pixel” values that occur as a result of low reflectance.

As you can see in Fig. 5.2, the near-infrared shows clear and turbid water having a

Fig. 5.1 The demonstration region is the Lower Mekong Basin, seen here with MODIS (path/row

tile H28v07). The southern region of the MODIS tile is extracted to highlight areas that are

commonly flooded along with the modified flood extent
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much lower reflectance than grasses, which will yield an infrared image where both

water and grasses are present to show grass as very bright as water as very dark.

5.2.1 Band Thresholding

In 1993, Manavalan et al. applied a density slicing technique to a series of near-

infrared (760–900 nm) images to identify the appropriate thresholds for the land–

water boundary to monitor reservoir capacity. Density slicing generally involves an

iterative process of the arbitrary segmentation of image values into intervals to aid

in the visual identification of spectrally dissimilar features. Similarly, Frazier and

Page (2000) compared the classification accuracy of density slicing to a more

sophisticated maximum-likelihood classification to identify water bodies. In

Frazier and Page (2000) the boundaries to extract the water bodies were selected

by first identifying 12 different training sites over three water body types (river,

lagoon, and dam) and using the maximum and minimum values for all training

areas across Landsat-5TM bands 1–7. The study found that the values extracted for

band 5 (1550–1750 nm) gave the best visual approximation of the ground truth

image, achieving an overall accuracy of 96.9%, compared to 97.4%, the overall

accuracy of the maximum-likelihood classification, demonstrating that single-band

threshold techniques may be equally beneficial for mapping water compared to

more data and computation intensive methods (Fig. 5.3).

The density slice technique demonstrated here shows how a grayscale infrared

image (a) can be first transformed by applying a color ramp that helps distinguish

between different features (b). The image here is in the raw digital number format

from MODIS. The areas that reflect very highly may reach 3000, while areas that

absorb infrared will be very low. Because water absorbs infrared, it is expected to

Fig. 5.2 USGS Spectral Viewer with dry and lawn grass, along with melting snow, clear water,

and turbid water with Terra MODIS bands 1–7
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have a very low reflectance in MODIS band 6. Finally, upon visual examination, a

threshold such as 1500 in this cause can be selected that best depicts the feature of

interest (c).

5.2.2 Spectral Indices

Other uses of red and infrared reflectance data combine the two bands into spectral

indices. The one such spectral index is the Normalized Difference Vegetation Index

(Rouse et al. 1973; Colwell 1974; Tucker 1979). The index was created to identify

and measure vegetation health and phenology in ERTS-1, using a normalized scale

�1 to 1, where 1 is very healthy vegetation, and values approaching zero are

unhealthy vegetation or not vegetation at all (McFeeters 1996). The contrast of

the high absorption of the red wavelength and the high reflectance of infrared by

plant chlorophyll allows researchers to normalize chlorophyll activity between

different plant types and various stages of development (Tucker 1979; Gao

1996). However, the normalization of the infrared and red wavelengths allows

researchers to use the negative side of NDVI to focus on water’s absorption of

infrared to separate land and water (Lacaux et al. 2006; Lei et al. 2009), which may

also be useful in flood monitoring studies.

Two similar studies in 1996 created indices particularly for measuring water, the

Normalized Difference Water Index (NDWI). One index maximizes the green

(Landsat 4MSS 500–600 nm) reflectance of water features, while minimizing the

infrared (Landsat 4MSS 800–1100 nm) reflectance, (called NDWIg hereafter)

(McFeeters 1996) in order to delineate open water features. A modification of the

NDWIg index helped to reduce sensitivity and over-detection of water in urban

areas (Xu 2006). The MNDWI (MNDWIg) replaces the near-infrared wavelength

(Landsat-5TM 760–900 nm) with mid-wave infrared (Landsat-5TM

1550–1750 nm), as there is greater contrast in the reflectance of lake water, urban

areas, and vegetation in the mid-wave band in the study region, compared to

infrared reflectance (Fig. 2 seen in Xu 2006).

Researchers compared these spectral indices to help understand their relevance

across water coverage fractions and sensor types (Lei 2009). The analysis focused

Fig. 5.3 Density slice threshold using Terra MODIS Band 6 (1628–1652 nm) 500 m MOD09A1

8-day composite October 24, 2013
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on the available infrared (or SWIR/MWIR) wavelength combinations with green

(variations of NDWIg), with Landsat 7 ETM+, SPOT-5, ASTER, and MODIS. The

study found that for all sensors excluding MODIS, the short wave bandwidth

(~1550 ~ 1750 nm) worked best with the green bandwidths (~500 ~ 600 nm). Still,

a bandwidth with a shorter frequency than the other sensors’ SWIR, but longer than

the NIR is recommended, as evidenced by the choice of MODIS band

5 (1230–1250 nm) over band 6 (1628–1652 nm), which is more similar to the

SWIR bandwidths on other sensors in the study. The research further concluded that

NDVI is an inappropriate choice for delineating water bodies when short wave and

green bands are available (Lei 2009).

The second NDWI focused on vegetation liquid moisture using short wave

infrared (AVIRIS 1240 nm) and infrared (AVIRIS 860 nm) (called NDWIs here-

after), where both wavelengths are sensitive to canopy chlorophyll and moisture

content (Gao 1996). As NDWIs is sensitive to variations in vegetation moisture, it

may be beneficial to identify spatial variations where forested or crop areas are

becoming inundated with floodwater in order to delineate open water from vegeta-

tion with high water content.

The Normalized Difference Pond Index (NDPI) helps to identify small water

bodies (greater than 100 m2) where vegetation might be present, which may not be

detected by other water indices or NDVI, particularly as pixel sizes increase to more

coarse resolution (Lacaux et al. 2006). NDPI was developed using the SPOT-5

sensor, utilizing the green (500–590 nm) and shortwave (1580–1750 nm called

middle infrared MIR in the text) wavelengths. NDPI identifies standing water when

vegetation is present, which may allow for a more rigorous account of shallow

water bodies that are not easily distinguishable in other water indices that focus on

pure water or turbid water with little vegetation presence, which may be dominant

in deeper flooded areas.

While some rice and grain crops may benefit from seasonal flooding, prolonged

floods can cause immense damage to agricultural areas by wash away soils and

crops. To contribute to agricultural food risk assessment the Modified Land Surface

Water Index (MLSWI) was created by comparing combinations of infrared

(841–876 nm) and two different shortwave bands (1628–1652 and

2105–2155 nm) (Kwak 2015). The near-infrared MODIS band 2 (841–876 nm)

and shortwave infrared MODIS band 7 (2105–2155 nm) were shown to be ideal in

Bangladesh. This is a surprising result, compared with the laboratory spectra (Lei

2009), where the shorter wavelength (1230–1250 nm) was an improvement over the

longer wavelength (1630–1650 nm) when green (550–570 nm) was the comple-

mentary bandwidth.

The surface water indices all show a very similar map of flooding in the Mekong

Region seen in Fig. 5.4. The Normalized Difference Water Index (NDWIg), when

using a threshold of 0–1, shows the smallest flood extent (a). The Modified

Normalized Difference Water Index (mNDWI) shows more flooding, as it was

meant to be more sensitive to the effects of water in heterogeneous pixels (b).

Finally, the Normalized Difference Pond Index (NDPI) shows the largest flood

extent, as it is very sensitive to water turbidity. The variance shown between the
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water indices might be due to the nature of water turbidity in the region and the

relatively coarse resolution, compared to the finer resolution data used in the

original index development.

5.2.3 Color Composite

Earlier research (Ali et al. 1989) identified AVHRR bands 1 (580–680 nm) and

2 (725–1100 nm) as suitable for studying water turbidity and land water separation,

respectively, prompting a study by Rasid and Pramanik (1990) to use the two bands

in a color composite method to delineate flood boundaries and identify areas

inundated with deeper water. Researchers have also used near-infrared color com-

posites to determine which pixel might have a mixture of water and land as

transition zones can be difficult to distinguish in coarse resolution imagery (Chen

2013). The low reflectance in the near-infrared wavelengths allows researchers to

identify turbid water, which may be shallower compared to clear water, which may

be deeper. The color composites aid in preliminary visual inspection before con-

tinuing onto further studies to incorporate other datasets such as elevation models

and land cover datasets, which will be discussed in the next section (Table 5.1).

5.3 Physically Based Models, Additional Input Data

Physical data such as temperature, texture, or elevation have also proven to be

reliable methods to mapping floods. Temperature data can be formulated from

measurements derived from long wavelength infrared data or brightness tempera-

ture conversion from passive microwave sensors, while texture and elevation can be

derived from active microwave products and photogrammetric products derived

from optical data. Additional sources of data that may be used in flood mapping

efforts may be land cover datasets, outputs from hydrological models, and soil

moisture and precipitation information.

Fig. 5.4 Surface water indices (a) NDWIg, (b) mNDWIg, (c) NDPI
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5.3.1 Thermal

As water bodies have a relatively consistent temperature compared to dry land

masses (Schaaf and Lakshmi 2000), land surface temperature (LST) can be used to

delineate water bodies by identifying temperature contrasts between dry land and

water. Researchers have studied this relationship over the United States using the

High Resolution Infrared Sounder (HRIS) (Schaaf and Lakshmi 2000) as well as in

Australia using MODIS (Parinussa et al. 2016), citing differences in surface

temperature recorded between morning and evening satellite overpasses. The

sensors used in these studies contain long wave infrared bands ranging from

10,600 to 12,510 nm to measure temperature through the computation of the data

recorded from surface radiance and emissivity (Chedin et al. 1984; Wan 1999; Lei

et al. 2016).

Cloud coverage during flood events makes the use of infrared imaging for flood

detection a difficult task. While infrared bands may be able to penetrate small

particle masses such as haze or cirrus clouds, denser stratus clouds pose a problem,

preventing clear observations of the surface. In these cases, the use of cloud-

penetrating radar is available, as the large wavelengths are able to surpass the

relatively small particle sizes of the clouds (Liou 2002; Parinussa 2008). Surface

temperature from radar measurements can similarly be used to identify flooding

while penetrating cloud cover. Surface temperature can be calculated from bright-

ness temperatures observed from microwave wavelengths. Brightness temperature,

the measure of radiation emission from the surface, can be recorded by measuring

the temperature at the antenna of the sensor. Surface temperature TS may be

Table 5.1 Formulas wavelengths and thresholds used in Figs. 5.3 and 5.4

Formula

Author

Formula with original bandwidth used

Formula with MODIS bands used

NDWIgreen

McFeeters (1996)

NDWIgreen¼ ((500–600 nm)�(700–800 nm))/((500–600 nm)

+ (700–800 nm))

(band 4� band 2)/(band 4 + band 2)

mNDWIgreen

Xu (2006)

NDWIgreen¼ ((520–600 nm)�(1550–1750 nm))/((520–600 nm)

+ (1550–1750 nm))

(band 4� band 5)/(band 4 + band 5)

NDPI

Lacaux

et al. (2006)

NDPI¼ ((1580–1750 nm)�(500–590 nm))/((1580–1750 nm)

+ (500–590 nm))

(band 6� band 4)/(band 6 + band 4)

NDVI

Rouse

et al. (1973)

NDVI¼ ((700–800 nm)�(600–700 nm))/((700–800 nm) + (600–700 nm))

(band 2� band 1)/(band 2 + band 1)

NDWIswir

Gao (1996)

NDWIswir¼ (860 nm–1240 nm)/(860 nm+ 1240 nm)

(band 2� band 5)/(band 2 + band 5)

VSWI

Cai et al. (2011)

VWSI¼NDVI/LSTkelvin

5 Optical and Physical Methods for Mapping Flooding with Satellite Imagery 91



produced with varying accuracy, as determined by wavelength and algorithms used,

the general principle of the conversation is given by the relationship with brightness

temperature TB and the emissivity of the surface in kelvin e; r is reflectivity at the

surface (Lakshmi 2013)

e ¼ 1� r;

TB ¼ eTS:

The Advanced Microwave Scanning Radiometer—Earth Observing System

(AMSR-E) and its ancestor AMSR-2 are dual-polarized passive microwave sensors

with a wide range of spatial resolutions, and a twice daily revisit at 1:30 p.m. and

1:30 a.m. AMSR-E functioned from June 2002 to October 2011, while AMSR-2

became available beginning July 2012. MODIS is flown along with AMRS-E on the

Aqua satellite platform, as a complement of sensor types for hydrologic applica-

tions capturing measurements at the same time. Both sensors can derive surface

temperature products; however, Parinussa et al. (2008, 2016) found that because of

the relative consistency between the datasets and the high accuracy as compared

with ground measurements, a combined dataset was proposed, featuring MODIS as

the primary data, and filling in cloud cover gaps using AMSR-2. The MODIS/

AMSR-2 combined surface temperature product could produce a daily flood map

with no cloud coverage when day and night observations are compared. In contrast,

studies have identified that the difference between the vertically and horizontally

polarized brightness temperatures observed simultaneously can also be used to

identify open water, as large differences signify the presence of strongly polarized

signals as are found in open water (Choudhury 1989; Smith 1997).

In addition to identifying flooding through diurnal changes in surface tempera-

ture, LST data can be used with NDVI to create the Vegetation Water Supply Index

(VWSI), as VWSI ¼ NDVI=LST, which was originally created to monitor drought

conditions (Cai et al. 2011), by identifying vegetation stress under arid settings. The

inverse of the drought values may be used to identify above average moisture. A

modification of the VWSI, known as the Normalized Vegetation Water Supply

Index,

NVSWI ¼ VSWI� VSWImin

VSWImax � VSWIminð Þ
� �

*100

normalizes the values over the study period to give more context to the severity of

the output values, which are then segmented into equal interval classifications. The

drought values are below 60, while wet values are above 80 (Abbas et al. 2014).

The three vegetation indices focus on identifying vegetation health and not

water. However, based on the premises that floodwater may obscure vegetation or

that floods might destroy healthy vegetation, vegetation indices may be used to help

map floods. The Normalized Difference Water Index (NDWIs) identifies water

content of vegetation; in Fig. 5.5a, the flooding in the region is shown with high
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water content values as 0–0.20. The Normalized Difference Vegetation Index

(NDVI) is generally symbolized as values �1 to 1 with healthy vegetation being

above zero; Fig. 5.5b shows the flooded region as negative values. The Vegetation

Water Supply Index in Fig. 5.5c is based on NDVI and provides more information

than NDVI alone as land surface temperature information is added. Because of

surface water, surface temperature is not always able to be recorded from MODIS,

leaving no data regions shown in white inside the floodplain.

5.3.2 Radar Imaging

The surface temperature example is not the only combination of radar and optical

remote sensing methods to map floods. Radar is able to measure ground texture

through backscatter at multiple wavelengths much longer than is found in the

optical spectrum. Wavelengths for radar sensors are generally measured in length

centimeters (cm) or frequency (MHz, GHz). Ground features are expected to have a

coarse texture, giving a speckled appearance in radar imagery, whereas water

features are expected to be very flat or specular. Another study showed that while

a C-Band (5.6 cm) synthetic aperture radar (SAR) image could penetrate cloud

cover to identify surface features, backscatter from wind caused waves reduced the

specular nature of the water bodies, preventing the water to be identified by the

sensor (Alsdorf et al. 2007). It is then suggested that the L-Band (24-cm wave-

length) sensor may be ideal for measuring inland surface water bodies, as it is not as

sensitive to the rough texture of water caused by wind or flow turbulence.

Although raw backscatter data can be detrimental to direct observations of water

surface when there is wind roughening, the backscatter coefficients of X- and

L-band sensors have been used (Rosenqvist and Birkett 2002; Hess et al. 2003) to

extract flood inundation extent when surface water is not specular, or is mixed with

vegetative features such as in wetlands. To complement SAR systems that have the

capability to measure stage height, Smith (1997) devised a method to combine

European Space Agency SAR data with optically derived inundation extent from

Landsat to obtain elevation extent/discharge rating curve to derive water elevations

at the land–water boundary.

Fig. 5.5 Vegetation indices for water content and vegetation health (a) NDWIs, (b) NDVI,

(c) VSWI
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Researchers have also presented the case that while satellite imagery in the

visible and near-infrared wavelengths is useful for mapping water extents, problems

such as canopy cover and emergent vegetation can obscure and mix pixels, respec-

tively, causing classification errors (T€oyrä et al. 2002). This study utilized the

C-Band on the satellite radar sensor RADARSAT and the NIR (790–890 nm)

data from SPOT to create a composite to identify flood boundaries, which was

repeated in another study, where visible imagery from Landsat thematic mapper

(TM) and Envisat advanced synthetic aperture radar (ASAR) system were used to

identify flooded regions (Ramsey et al. 2012). Acquiring flood depth information

can also be difficult to using visible imagery with varying vegetation types or

regularly flooded marsh areas (Rasid and Pramanik 1990; Ramsey et al. 2012).

The Ramsey et al. (2012) study provided a solution to this problem by utilizing

SAR and ASAR to identify relative water penetration depths in different marsh

areas.

5.3.3 Digital Elevation Models

Incorporating ancillary data such as elevation is an important part of flood mapping.

When available, digital elevation models are used in conjunction with optical,

radar, and modeled data.

The integration of optical and radar data with digital elevation models using

geographic information system (GIS) processing techniques is described in

Townsend and Walsh (1998). The Position Above the River Index (PARI) model

is an integrative approach creates a potential inundation map based on the river’s
proximity to other hydrologic features, such as tributaries or streams.

In a study based in northern Italy, researchers found that due to the delay of the

satellite overpass from the peak inundation time, only a fraction of the flooded area

was observed by the satellite (Brivio et al. 2002). In a technique similar to the PARI

model from Townsend andWalsh (1998), a cost-distance matrix was created. Using

the areas that were mapped using C-Band SAR after the peak flood, Brivio

et al. (2002) created a digital elevation model to create a cost-distance matrix to

calculate the difficulty of water traveling from the river to the remaining flooded

regions; the matrix was then used to trace the path of the river to the flooded region.

Flood depths provide a useful dynamic to flood maps giving the user specific

information about the inundation level and the type of risks that exist in that area.

Emergency planners and disaster mitigation teams typically require water depth

information in areas other than at gage locations. A method to create water depth

grids is identified (Lant 2013) by subtracting the DEM from the inundation extent.

In calibration of coarse resolution mapped flood extents, it was suggested (Fayne

and Bolten 2014; Guerschman et al. 2011) that a higher resolution elevation model

should be used to remove areas that would be unlikely to flood such as ridge tops or

high hillsides. Gallant and Dowling (2003) created a multistep iterative process to

categorize digital elevation models as flat valley bottoms or flat ridge tops and areas
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in between, known as the Multi-Resolution Index of Valley Bottom Flatness

(MRVBF). As flooding is expected to occur along valley bottoms, a threshold

may be used to mask out values that MRVBF and the complement Multi-Resolution

Ridge Top Flatness (MRRTF) consider a high hillside or hilltop.

5.3.4 Classification Algorithms Using Elevation Data

Another method of mapping floods using coarse resolution imagery and elevation

models is seen in the Open Water Likelihood (OWL) algorithm. OWL uses a

logistic regression to incorporate MODIS shortwave infrared reflectance bands,

NDVI, NDWIs, and MRVBF to obtain the probability that a fraction of the coarse

resolution pixel is inundated (Guerschman 2011). The formula is as follows:

OWL ¼ 1þ exp a0 þ
X5
i¼1

ai*xi

 ! !�1

where

a0—3.41375620

a1—0.000959735270

a2—0.00417955330

a3—14.1927990

a4—0.430407140

a5—0.0961932990

x1—SWIR (1628–1652 nm) MODIS band 6 (reflectance� 1000)

x2—SWIR (2105–2155 nm) MODIS band 7 (reflectance� 1000)

x3—NDVI

x4—NDWIs

x5—MRVBF

This method was again validated (Chen et al. 2013), as it was applied to 500-m

MODIS Daily and 8-day images, and was visually compared against Landsat

5 (Fig. 5.6).

The four elevation-based products shown here are derived from 90-m elevation

data (a) collected from the Shuttle Radar Topography Mission and were

preprocessed by removing voids and sinks in the data (CGIAR-CSI). The perma-

nent water bodies are overlayed in white. The Multi-resolution Valley Bottom

Flatness (b) used the SRTM data as a product input to estimate the flatness of the

floodplain, and therefore the likelihood of deposition. The light blue region in b is

the flattest, while the white region is the smoothed, flat water surface. The water

depth grid (c) was created by subtracting a binary classification of the NDPI

(Fig. 5.4c) from the elevation model. Using this method, the region surrounding

the lake shows the deepest flooding, while the delta shows shallower flooding.
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The Open Water Likelihood (OWL) algorithm combines inputs from two short-

wave infrared bands, NDWIs (Fig. 5.5a) NDVI (Fig. 5.5b), and MrVBF (b) to

identify what fraction of the pixel is likely inundated. Unlike other water detection

algorithms, OWL is more sensitive to mixed pixels, reducing uncertainty caused by

the other algorithms which may use less input variables.

Outputs from the OWL and MRVBF algorithms have also been combined in a

decision tree and logistic regression approach with Landsat to create binary classi-

fications of water bodies over time, then were combined to create a map of

cumulative observations of surface water from space. Similarly, another study

used a regression tree approach to integrate the predictors of water presence to

derive a map of water fraction, instead of a binary classification, applied to coarse

resolution MODIS imagery.

As many studies have cited problems with cloud and terrain shadow being

spectrally similar to the low reflectance of water in the infrared wavelengths

(Xu et al. 2006; Sun et al. 2012; Nigro et al. 2014), Li et al. (2015) used a geometric

algorithm to identify and remove cloud shadow. This study is particularly relevant

to all of the research related to optical data, as many of the spectral indices and

thresholds mentioned in section one, use infrared reflectance. The terrain shadow

removal study identifies that the root-mean-square (RMS) height, internal and

external height difference are good indicators of surface roughness and delineation

of water from terrain.

Fig. 5.6 (a) SRTM Elevation Model in meters, (b) MrVBF, (c) Water depth grid in meters,

(d) OWL Water Likelihood Fraction
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5.3.5 Software Models, Rainfall, and Soil Moisture

It is also worth mentioning that flood inundation maps can also be prepared using

computer software, using input data such as gage height, elevation models, and land

cover maps. Part of the US Army Corps of Engineers, the Hydrological Engineering

Center developed the River Analysis System (HEC-RAS) and other hydrological

modeling software, which is commonly used in combination with remotely sensed

data (Lant 2013). The software suite enables researchers to create inundation maps,

surface profiles, and model flow direction and physics, as well as taking into

account topographic features such as surface roughness and slope, or seasonal

changes in seasonal vegetation, and anthropogenic factors such as changes in

impervious surfaces or crop cycles (United States Army Corps of Engineers

HEC-RAS).

The implementation of software for flood modeling is particularly useful com-

pared to, or in conjunction with, remote sensing studies as issues with temporal

latency, cloud cover, cloud or terrain shadow, and spatial resolution are reduced or

eliminated. Incorporating rainfall estimates is particularly useful for flood forecast-

ing and flash flood analysis (Krajewski and Smith 2002). Many of the studies

discussed here focus on slow and persistent flooding; however, one study created

a framework to map inundation threats and flash flooding at city and regional scales

by integrating the HEC-RAS system with precipitation data (Knebl 2005), while

another estimated flood extent by combining precipitation data with a routing

model (Wu et al. 2014).

As the surface soil moisture state is key to the infiltration or runoff of precipi-

tation (Entakhabi et al. 2010), the recently launched Soil Moisture Active Passive

(SMAP) sensor (NASA-JPL-SMAP) and other soil moisture products can be useful

tools in mapping floods and determining flood risk when soil moisture is

approaching a saturated state. Analogous to the use of radar backscattering to

determine standing water, the unique dielectric properties of water and dry soil

allows water to be measured as a fraction of soil to determine volumetric moisture.

Therefore, if the soil is approaching saturation, then flooding is likely to occur.

While the SMAP data was not available during the demonstration year, the 2015

volumetric soil moisture from the SMAP sensor (L3 SM_P 36 km 2015, National

Snow and Ice Data Center NSIDC 2015, 2016) is able to capture increased soil

moisture around the areas shown as flooded from the 2013 MODIS data.

The SMAP volumetric soil moisture data is publically available at 36 km

although special algorithms and processing may be capable of creating a higher

resolution product to 9 or 3 km. The coarse resolution of the 36-km pixels may not

be enough to measure flooding independently, but it is clear in Fig. 5.7 that the

SMAP sensor is able to capture increased moisture over the target region. While

SMAP is not intended to map floods, the ability for SMAP to identify soils that are

increasing in saturation before a flood event is very important for flood hazard and

damage mitigation.
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5.3.6 Change Detection Methods

Finally, change detection is a universal method to monitor flood events, as areas

that were not previously flooded would appear different spectrally, thermally, and

texturally. Simple subtraction between images of different dates also known as

differencing (Song et al. 2004), calculating the standard deviation of a baseline of

data with the z-score of the newer data (Sarp 2011), and percent change formulas

(Hasan and Islam 2011) are all useful tools for identifying surface changes, and can

be implemented across sensor types, spatial and temporal resolutions. However, it

is important to note that although the algorithms may not be temporally dependent,

the latency between compared datasets may skew the validity of the results, as other

factors may contribute to the observed change. Trend analysis is one method to

monitor flooded areas over time, as individual pixel values or basin averages can be

made into a time series to identify when flooding is occurring or may occur in the

future when flooding is cyclical. While Nash et al. (2014) used auto-regression

techniques on NDVI to predict seasonal variations in vegetation health, another

study used the TIMESAT (Eklundh et al. 2009) software to fit a function on the time

series of NDVI data for snow-vegetation dynamics (J€onsson et al. 2010).

5.4 Conclusion

The field of remotely sensed flood mapping continues to evolve and improve. The

development and improvements of real-time data access systems have allowed

scientists to harness power of programming languages such as Python, C++,

and R, in order to digest data as soon as it becomes available, and to create output

data in a rapid manner. Instead of simply hosting the data in a list format online for

users to download, many authors have found it useful to demonstrate their flood

Fig. 5.7 SMAP 36 km

Volumetric Soil Moisture

Data October 23, 2015
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products on online web dashboards, such as the Dartmouth Flood Observatory

(Brakenridge and Daniel 1996), the MODIS Near Real-Time (NRT) Global Flood

Mapping Project (Nigro et al. 2014), and the Near Real-Time Flooding in Southeast

Asia Project (Ahamed and Bolten 2016). Both the Global Flood Mapping and the

Flooding in Southeast Asia projects rely on methods discussed here using MODIS

data, such as infrared band thresholding and spectral index combined with change

detection, respectively.

Free publically available and costly commercial Earth observing satellites are

able to capture images of the earth at varying spatial scales, and with different

orbital periods. Optical sensors may have the ability to capture surface reflectance

data from visible blue, green, and red wavelengths, as well as longer wave infrared

bands and emissivity data. Radar sensors may focus on brightness temperature or

backscattering coefficients to identify moist and saturated soil. Finally, these first-

level datasets can be used as inputs to other computational modeling software, time

series, or regression algorithms to provide value-added improvements, increasing

the spatial or temporal resolution of the input datasets, or creating a wholly different

product entirely.

Utilizing earth observing satellite data to map standing water from space is

indispensable to flood mapping for disaster response, mitigation, prevention, and

warning as extreme flooding events worldwide can damage crop yields and con-

tributing to billions of dollars economic damages as well as social effects including

fatalities and destroyed communities. The increase in the quantity and variety of

flood mapping techniques using satellite data has allowed broader and less-

technical audiences to be able to benefit from flood products. The use of remotely

sensed data by diverse audiences increases the general knowledge of flooding in a

given area and may help to mitigate pervasive economic and social damages caused

by flooding.
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