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Preface

Water is the most important natural resource we possess on the planet. Too much

water—floods—can cause tremendous damage by washing away roads and build-

ings, eroding land, and destroying crops and livestock. Floods often result in the

loss of human lives, and can have huge impacts on national economies when

occurring at large scales. At the other end of this spectrum are droughts. Droughts

result in reduced crop yield when irrigation sources are unavailable and rainfall is

the only source of water for crops.

The time scales, inception, and progress of floods and droughts are completely

different. Whereas floods (specifically flash floods) can happen quickly, droughts

take months and sometimes years to form. In the case of flooding, there is some

advance warning in precipitation forecasts using atmospheric models. In cases of

downstream floods, the flow time from the upper reaches of the catchment to the

lower reaches and the outlet offers some advance lead time. In the case of droughts,

the lack of precipitation coupled with high evapotranspiration is a prescription for

disaster, and this could occur over long periods of months to years.

With rapid advances in computer modeling and observing systems, floods and

droughts can be forecasted and assessed with greater precision today than ever

before. Land surface models (especially over the entire Continental United States)

can map the hydrological cycle at kilometer and sub-kilometer scales. In the case of

smaller areas (not the entire Continental United States), there is even higher spatial

resolution, and the only limiting factor is the availability of input data. In situ

sensors are commonly automated and the data directly relayed to the Internet for

many hydrological variables such as precipitation, soil moisture, surface tempera-

ture, and heat fluxes. In addition, satellite remote sensing has advanced to providing

daily (or better) observations at kilometer to 10-km spatial scales.

We are at a critical juncture in studying hydrological extremes. The following

features make this unique. Firstly, in recent years, floods (e.g., in China, Pakistan,

Thailand, Laos, South Carolina, and Eastern China) and droughts (e.g., in Califor-

nia, Australia, and the Asian subcontinent) have centered on extremes involving

water. Water plays an important role in the global economy and thus extreme events
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can have a large economic impact that is not limited to a specific region or country.

Secondly, there have been major advances in the global monitoring of precipitation

and measurement of soil moisture with the launch of the Global Precipitation

Measurement (GPM) mission in February 2014. This follows the Tropical Rainfall

Measurement Mission [TRMM] that provided data from 1997 to 2015 for the

measurement of precipitation and the Soil Moisture Active Passive (SMAP) mis-

sion in January 2015 and the Soil Moisture and Ocean Salinity (SMOS) in

November 2009. These have been complemented by sensors that monitor vegeta-

tion, surface temperature, and evapotranspiration (Moderate Resolution Imaging

Spectroradiometer—MODIS), and the Gravity Recovery and Climate Experiment

(GRACE) that estimates changes in surface and subsurface water storage and

provides a clear picture of the land surface hydrological state. Lastly, we are at

the end of an El-Nino event that alters the normal hydrological cycle. Thus, this is

the perfect time to focus on methods to monitor hydrological extremes and provide

support to emergency management using the latest technology.

This book—Remote Sensing of Hydrological Extremes: Droughts and Floods—
provides an overview of the current state of the science on the monitoring of

droughts and floods using remote sensing. The various chapters in the book span

the diversity of geographical locations and satellite sensors and analyze methods

for studying these extreme events. Droughts and floods are studied in Brazil, the

Congo River Basin of Africa, the Mekong River Basin, the Magdalena River Basin

in Columbia, South America, and various locations in United States. New tools and

analyses have been developed to map floods, and these will prove valuable for

recovery and rebuilding efforts. Analyses of the dependence of land surface vari-

ables in spatial and temporal propagation help to predict droughts. Both of these

analyses (floods and droughts) are of value for future land-use planning.

This book will serve as a reference for students, teachers, practicing hydrolo-

gists, agriculture scientists, engineers, and those involved in water and emergency

management and in the construction and insurance industry.

Water can be a blessing or a curse. . .predictability of water in a flood and lack of
water in a drought is both a scientific problem and a societal necessity.

Stanford, CA Venkat Lakshmi

July 2016
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Chapter 1

Satellite-Based Estimation of Water
Discharge and Runoff in the Magdalena
River, Northern Andes of Colombia

Rogger Escobar C., Juan D. Restrepo, G. Robert Brakenridge,
and Albert J. Kettner

1.1 Introduction

Satellite-derived data provide important information about river characteristics

such as channel geometry, water surface area, water levels, and floodplain exten-

sion (Rokni et al. 2015; Schumann and Moller 2015; Smith 1997). For example,

variations in surface water area along river channels are well detected by various

sensing instruments onboard satellites.

Although some studies suggested that the estimation of river discharge from

satellite data could be possible (Brakenridge et al. 1994; Koblinsky et al. 1993),

reliable applications of satellite-derived data in estimating stream flow have only

slowly developed (e.g., Smith et al. 1995; Smith 1997; Bjerklie et al. 2003;

Brakenridge et al. 2005). Main findings of these studies highlighted that: (1) for

an accurate estimation of discharge from satellite, other data are needed, such as

parameterization of morphological characteristics like sinuosity, slope, vegetation

cover, and distribution of braided channels (Smith et al. 1996); (2) it is possible to

calculate river discharge once velocities are estimated from radar or LIDAR and

water surface elevations are used to estimate average depth (Bjerklie et al. 2003,

2005); and (3) river bank-full discharge can be estimated from remote sensing with

an uncertainty of 24% (Bjerklie 2007).

Such previous work indicates the capabilities of satellites data to monitor stream

flow, but practical methods to monitor global runoff in real time were not available
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until recently. The first attempt to obtain near-real-time discharge from world rivers

was developed by the Dartmouth Flood Observatory (DFO) in association with the

Global Runoff Data Centre (GRDC) (Brakenridge et al. 2005). The method was

based on measuring water surface changes through the Moderate Resolution Imag-

ing Spectro-radiometer (MODIS) in rivers reaches between ~10 and 30 km. Latter,

the Advanced Microwave Scanning Radiometer (AMSR-E) was utilized to estimate

river discharge by capturing temperature changes in wet–dry surfaces. This study

showed that microwave sensors are appropriate for measuring river discharge with

an almost daily orbiting frequency (1–2 days) and low interference from clouds

(Brakenridge et al. 2007).

More recently, the DFO has achieved important goals for more consistent

calibration of discharge-responsive remote sensing signal to discharge values.

The calibration is derived from estimates of the Global Water Balance Model

(WMB) (Wisser et al. 2009), allowing calibration even in places without ground

observations of discharge (Brakenridge et al. 2012; De Groeve et al. 2007). At

present, the DFO (http://floodobservatory.colorado.edu), River Watch version

3 monitors river discharge in 343 sites along many important rivers around the

world. River Watch sites are based on the passive microwave signals from AMRS-

E, AMRS2, TRMM, and GPM, processed in collaboration with the Joint Research

Centre (JRC) (Brakenridge et al. 2012). The satellite signal is calibrated site by site

with discharge from the global Water Balance Model (WBM); only a few sites are

calibrated with water discharge from ground-based gauging stations where infor-

mation is available and consistent (Brakenridge et al. 2015).

For South America, numerous studies have used remote sensing to study river

dynamics, especially in the Amazon River, including the analysis of hydrological

regimes (Filizola et al. 2014; V€or€osmarty et al. 1996), the estimation of river stage

series (Birkett et al. 2002), the dynamics of floodplain water storage (Alsdorf

et al. 2010; Frappart et al. 2005), flooding dynamics (Hall et al. 2011), and

suspended sediment processes (Latrubesse et al. 2005; Restrepo et al. 2016).

Other major studies include the analyses of flooding dynamics with MODIS

imagery in the Paraná River (Handisyde et al. 2014) and the estimation of flood

storage in the world largest wetland, the Pantanal, Brazil, by using the GRACE

mission data and coupled modeling of hydro-climatic variables (Penatti Costa

et al. 2015). The quite different and supplemental data provide by near-daily

satellite microwave radiometry now can be incorporated on such topics as well.

Studies applying satellite data to estimate river discharge and flood dynamics in

Colombia are scarce. A recent exercise of flood frequency mapping in the Magda-

lena basin employed Advanced Land Observing Satellite-Phased Array L-Band

Synthetic Aperture Radar (ALOS-PALSAR) and developed maps of flooded areas

in the lower catchment (Qui~nones 2013). Other attempts obtained preliminary

insights of suspended sediment dynamics in the Momposina floodplain (Fig. 1.1)

by using MODIS imagery during La Ni~na floods in 2009 (Kettner et al. 2010;

Syvitski et al. 2012) and flooding dynamics along the lower course of the Magda-

lena (Walschburger et al. 2015). To the best of our knowledge, no other studies

employing satellite information have been conducted for Colombian fluvial

systems.

4 R. Escobar C. et al.
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During 2011, Colombia was considered a country under extreme risk in terms of

natural disasters (e.g., floods, droughts, and landslides) (http://maplecroft.com/

about/news/ccvi.html). Environmental decision-making and mitigation strategies

for floods lack reliable scientific tools for drainage basin planning (Walschburger

et al. 2015). Flood detection is mostly based on ground-based gauging stations

records, with severe limitations in calibration, accuracy, and data availability.

Unreliable rating curves between river discharge and river stage are constructed

for gauging stations along river floodplains, resulting in the underestimation of river

fluxes when extreme floods exceed the bank-full discharge or the maximum peak

flow (Milliman and Farnsworth 2011). Implementing tools for near-real-time esti-

mation of river discharge and flood magnitudes could allow better mitigation

strategies by producing accessible data to scientists and decision makers.

It is our objective to measure the magnitude and variability of river discharge in

the Magdalena drainage basin by utilizing satellite-derived data. We use the River

Watch version 3 platform from the Dartmouth Flood Observatory (DFO)

(Brakenridge et al. 2015) and provide runoff data in near real time through the

DFO River Watch portal (http://floodobservatory.colorado.edu/DischargeAccess.

html).

Fig. 1.1 Location of the Magdalena drainage basin showing the five DFO satellite-based gauging

stations (red squares) and the corresponding hydrological ground-based stations (black triangles).
We also show two different MODIS-Aqua images at the lower reaches of the Magdalena, the

Momposina floodplain, during low discharge (upper right, Jan. 28, 2010) and high discharge

conditions (lower right, Apr. 27, 2011)
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1.2 The Magdalena River Basin

Drainage basins in the Andes of Colombia, including the large Magdalena and its

principal tributary, the Cauca (Fig. 1.1), are characterized by high precipitation

rates and fast runoff response due to steep slopes (Restrepo et al. 2006). Regional

climate is partly controlled by the occurrence of the El Ni~no Southern Oscillation

(ENSO), which brings dry conditions during the El Ni~no and wet pulses during La

Ni~na. Interannual variability of river discharge shows strong correlations with the

ENSO at periods of 3–5 years (Poveda et al. 2001, 2006). Recently, strong La Ni~na
events in 2008–2009 and 2010–2011 (Fig. 1.1) impacted the Magdalena drainage

basin, causing infrastructural and agricultural damages of over $US 7.8 million

(Hoyos et al. 2013). Also, the Magdalena catchment has become more vulnerable to

strong climatic anomalies and associated floods due to severe changes in land cover

and forest loss during the last three decades (Restrepo et al. 2015).

The Andes Mountains in Colombia consist of three nearly parallel, north–south-

oriented ranges: the Western, Central, and Eastern cordilleras, which merge into a

single range near the Ecuadorian border (Fig. 1.1). Between these ranges lie two

river valleys: the high and narrow Cauca valley to the west and the lower and

broader Magdalena valley to the east. The Magdalena River is the largest river

system of the northern Andes of Colombia (Fig. 1.1), with a length of 1612 km. The

drainage basin area covers 257,438 km2 (24% of Colombia), with headwaters

located at an elevation of 3685 m (Restrepo et al. 2015). The Cauca River, the

most important tributary of the Magdalena, has a drainage basin area of 66,750 km2

or 26% of the Magdalena basin (Restrepo et al. 2006). The mountainous section of

the catchment is characterized by landslide activity over fossil sedimentary rocks.

Most tributaries drain basins less than 6000 km2 and are responsive to both natural

and human-induced change (Restrepo and Syvitski 2006). The geomorphic setting

of the Magdalena comprises subsiding foreland areas, an anastomosing river

pattern, and tributary systems with high vertical aggradation (Latrubesse

et al. 2005).

The Magdalena basin is characterized by monsoonal precipitation, with an

average rainfall of 2050 mm y�1 for the whole basin. Precipitation patterns

throughout the catchment vary greatly, from 500 mm y�1 in the eastern mountains

of the middle and upper basin to more than 5000 mm y�1 in the western basin.

The precipitation in the upper, middle, and lower reaches is 1535, 2185,

and 1630 mm y�1, respectively. The average runoff for the basin as a whole is

953 mm y�1, with a runoff in the upper, middle, and lower reaches of 900, 1260,

and 700 mm y�1, respectively. The mean annual water discharge of the Magdalena

(ground-based station A, Fig. 1.1) and Cauca rivers (ground-based station C1,

Fig. 1.1) are 7200 and 2530 m3 s�1, respectively (Restrepo et al. 2006).

6 R. Escobar C. et al.



1.3 Site Selection and Accuracy Statistics

We selected five locations along the main channels of the Magdalena and Cauca

rivers for installation of “Space Gauging Stations” (Fig. 1.1). Each site exhibits

either braided, anastomosing, or meandered fluvial morphology (relatively broad

floodplains). Such morphologies favor significant variation of the site water surface

area with changes in discharge. For remote sensing to discharge calibration, we

used monthly estimated mean, peak, and low flows (daily values) calculated for

5 years (2003–2007) by the Global Water Balance Model (WBM), and daily river

discharge data (1998–2015) from ground-based gauging stations, obtained from

Instituto de Hidrologı́a, Meteorologı́a y Estudios Ambientales, IDEAM (Fig. 1.1) to

calibrate each space gauging stations.

The River Watch microwave signal is itself a microwave brightness (radiance)

ratio, computed by comparing the radiance from the site pixel to the brightest

(driest) nearby pixel within a 9� 9 pixel surrounding array (De Groeve et al. 2015).

The time series for each site begins January 1, 1998 using the TRMM 37 GHz

channel, and then the ratio ingests also data from AMSR-E, AMSR-2, and GPM

(Fig. 1.2). The River Watch version 3 processor then computes a 7-day forward

running mean from the daily time series of signal ratios, and in order to smooth

some of the observed daily variability believed to be nonhydrological in origin.

Transformation of the remote sensing signal to river discharge values is

performed using a rating equation. The calibrated discharge values were obtained

Fig. 1.2 The European Commission’s (Joint Research Center) “global flood detection system”

produces several microwave signal products. The present analysis uses the “floodmerge” product,

with contributions by different sensors but all using the ground-sensing 36.5 or 37 GHz channels.

The figure is from De Groeve et al. (2015)

1 Satellite-Based Estimation of Water Discharge and Runoff in the Magdalena. . . 7



via rating equations produced in two different ways: (a) via discharge values

derived from WBM and (b) via ground-based observed discharges. For calibration

purposes, we used 5 years (2003–2007) of model estimates and gauging station

records. The WBM model produces daily discharge values for these years at each

measurement site (its global grid resolution is 6 arc minutes). River discharge then

is also obtained from the nearest gauging station. Comparisons were then

established between discharge estimates from the WBMmodel and water discharge

from gauging stations. Simple linear regression was based on 60 months, daily

maximum, minimum, and mean pair-data points, 180 data pairs (Brakenridge

et al. 2012). To improve the fitness of the models, and because along these highly

seasonal rivers the model results exhibit obvious lag compared to observation,

calibration vectors between ground-station discharge versus WBM runoff were

also performed with different lag times. Once obtained, the rating equations are

then used to transform the daily satellite signal data to daily river discharge during

the 1998–2016 period.

To evaluate a priori the expected accuracy of the remote sensing, the rating curve

R2 and the observed signal/noise were used. The R2 quality levels of the rating curve

are classified as: R2> 0.8¼ “5,” R2> 0.7¼ “4,” R2> 0.6¼ “3,” R2> 0.44¼ “2,”

and R2< 0.44¼ “1.” A simple integer signal/noise (S/N ) rating for only the satellite

values is separately computed as follows:

1. The total observed range over 5 years in the signal, at individual River Watch

array sites, varies between values as high as 0.3 (strong variance in signal) to

very low values (0.01). The former indicates that a site is sensitive to and

recording water surface area variability.

2. The average observed day-to-day departure over 5 years is the “noise” statistic.

Most rivers monitored by River Watch exhibit long periods of relatively stable

flow (even though floods do cause some periods of strong daily variation). Thus,

the average daily variation is an indicator of the background level of variability

that any hydrological signal must be visible above.

3. The S/N value compares the signal changes that are believed to be induced by the

actual discharge variability to the daily changes that are produced by other

variables (e.g., sensor detector noise). This ratio, which only refers to the remote

sensing data, is classified into high and low values as follows: S/N> 20¼ “5,”

S/N> 15¼ “4,” S/N> 10¼ “3,” S/N> 5¼ “2,” and S/N< 5¼ “1.”

Finally, and overall accuracy assessment ranking is calculated as the average

between the S/N ratio and the R2 model/observation statistics. Sites rated as “fair”

(2) or better are commonly very useful. Higher accuracy values indicate increasing

goodness of fit of WBMmodeling to remote sensing, and also increasing robustness

of the remote sensing signal itself as a record of hydrological variability

(Brakenridge et al. 2015).
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1.4 Results

For station A, the signal ratio ranged between 0.84 and 0.99, while at B1 they varied

between 0.74 and 0.98. Other stations, including C1, C2, and B2, witnessed ratio

variation between 0.85 and 0.99 (Fig. 1.3). As expected, the sites A, B1, and C1,

which are located along the lower floodplains of the Magdalena, exhibited larger

variations in the signal ratio (from high variability in water surface area). Among

these three sites, B1 shows the most accurate microwave signal. In contrast, B2 and

C2, in the upper basin, with limited alluvial plains and less discharge, exhibited

smaller variations in the microwave ratio information, indicating a possible weaker

satellite detection of water surface variability; however, we later found that regard-

less of this relatively small range in the signal, the estimation of river discharge was

still accurate.

As noted, river discharge values were obtained from the WBM model and also

from five hydrological gauging stations. Determination coefficients (R2) of the

linear regression between observed and predicted water discharges were performed

at different time lags (1–5 months). Positive lags indicate that the microwave signal

was lagged with respect to river discharge and negative lags indicate that river

discharge was lagged with respect to the microwave signal. Calibration improved in

most of the stations once river discharge was lagged by some months (Table 1.1).

For station A, paired correlation R2 between satellite signal and water discharge-

WBM increased from 0.11 at lag 0 to 0.40 at a lag of 2 months, indicating that the

water routing in WBM for that station is too quick. However, results at station B1

Fig. 1.3 Daily time series of microwave satellite signal processed by the JRC, Italy at five

selected sites in the Magdalena River (Fig. 1.1). The microwave signal corresponds to the 7-day

moving average of the “C/M” ratio (M being the radiance over the measurement site, and C being

the brightest/driest “background” radiance from the 9� 9 surrounding array)
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indicate that the microwave signal and river discharge from WBM are well corre-

lated (R2¼ 0.64) without incorporating a time lag. Also, the satellite signal and

stream flow from ground-based observations are well correlated with R2¼ 0.57, but

with a lag of 1 month. Other regressions between satellite signal and river discharge

at stations C1, B2, and C2 showed R2 determination coefficients between 0.40 and

0.64 (Table 1.1). The scatter plots of the best fitting regressions are presented in

Fig. 1.4.

We transformed the satellite signal to river discharge (Fig. 1.5) by using the best

fitting rating curves (Fig. 1.4). The equations used are summarized in Table 1.2. In

general, satellite-observed river discharges follow well the interannual variability

of measured stream flow at ground-based gauging stations (Fig. 1.5). However, the

WBM-based rating curve overestimates the magnitudes of river discharge for

station B1 during peak discharge conditions (Fig. 1.5).

The short wave variability in the upper basin stations B2 and C2 is well captured

by the satellite signal, and the long wave variation is observed in the middle (B1 and

C1) and lower sections of the Cauca and Magdalena rivers. Satellite-observed

discharge matches well with observed discharge values from the ground, especially

during peak discharge conditions (Fig. 1.5). It is worth noting that short-term

fluctuations of stream flow are well captured by the satellite signal in station B2,

a site located along the Magdalena below stream two major dams, Betania and El

Quimbo. The river discharges at site C2 agree well with observed stream flow

values despite the site’s location in the upper basin, with a relatively narrow valley

and limited alluvial plains. As we expected, observed versus observed discharges

match quite well in the most downstream stations, A, B1, and C1 (Fig. 1.5).

Table 1.1 Determination coefficients (R2) of regressions between the microwave signal and river

discharges obtained from WBM model estimates and ground stations

Station: A B1 B2 C1 C2
Lag WBM Ground WBM Ground WBM Ground WBM Ground WBM Ground
-5 0.13 0.03 0.10 0.00 0.32 0.45 0.01 0.00 0.37 0.30
-4 0.27 0.01 0.01 0.01 0.30 0.49 0.01 0.00 0.20 0.19
-3 0.37 0.06 0.03 0.01 0.21 0.34 0.06 0.02 0.13 0.10
-2 0.40 0.22 0.20 0.24 0.24 0.35 0.29 0.20 0.12 0.14
-1 0.30 0.32 0.52 0.57 0.22 0.38 0.47 0.45 0.22 0.29
0 0.11 0.20 0.64 0.32 0.37 0.43 0.41 0.39 0.48 0.57
1 0.03 0.00 0.24 0.02 0.34 0.45 0.25 0.13 0.37 0.43
2 0.03 0.05 0.04 0.00 0.40 0.41 0.19 0.06 0.26 0.28
3 0.08 0.02 0.03 0.02 0.26 0.34 0.13 0.04 0.11 0.08
4 0.15 0.01 0.12 0.18 0.22 0.36 0.12 0.04 0.11 0.09
5 0.12 0.06 0.30 0.34 0.20 0.36 0.08 0.06 0.19 0.16

R2 values are computed by lagging 1–5 months the microwave signal with respect to discharge or

vice versa. Positive lags indicate that the microwave signal was lagged with respect to river

discharge while negative lags indicate that discharge was lagged with respect to the microwave

signal. The highest obtained R2 are highlighted in gray
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Satellite-measured discharge variability shows a robust relation with the ENSO

cycle. During the strong La Ni~na 2010–2011 that caused extended flooding in the

Cauca and Magdalena rivers (Fig. 1.1), most of the gauging sites measured high

discharges that are in close agreement with the observed positive values of the

Southern Oscillation Index. Station B2 is not affected by the ENSO because its

stream flow is largely human controlled by the operation of dams. In contrast, water

Fig. 1.5 Time series of river discharge for the Magdalena River obtained from rating curves using

the WBM model estimates (green line) and discharge from ground-based gauging stations (black
line). We also show ground-based observations of water discharge at each gauging station (red
line). The Southern Oscillation Index (SOI) is shown at the bottom

12 R. Escobar C. et al.
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discharge shows decreasing trends during the current El Ni~no phase 2015–2016

(Fig. 1.4).

The accuracy of obtained river discharge utilizing satellite-derived data and

ground-based rating curves was evaluated by following the River Watch procedure

(Brakenridge et al. 2015). Overall, mean observed discharges obtained from the

ground-based rating curves are very similar to the stream flow values measured at

gauging stations. In addition, most of the determination coefficients are close to 0.5

(Table 1.2). Consequently, long-term trends are well captured by observed values,

while short-term variability might be more influenced by the microwave signal

noise (Fig. 1.4). Data can be accessed from the Dartmouth Flood Observatory at

http://floodobservatory.colorado.edu/DischargeAccess.html.

1.5 Discussion

Obtained values of water discharge via satellite data follow quite well the observed

interannual variability of stream flow measured at ground-based gauging stations.

Observed discharges at the most downstream stations, A, B1, and C2, represent

appropriately the natural seasonality of water discharge along the Magdalena

floodplains (Figs. 1.1 and 1.5).

In this study good satellite signal correlations to ground-based results were

obtained once water discharges were lagged by 1–2 months with respect to the

satellite signal. Satellite measurements of water discharge are based on variations

of width of the water surface area while stream flow estimations at gauging stations

are based on variations in stage height. Thus, as water level rises, it passes through a

more width complex lagoon system. The phase lag observed between discharge and

satellite signal is possibly related to the hydrological dynamics of channel–flood-

plain connections.

Gauging stations on the ground are usually placed on stable river cross-sections

with homogenous channel geomorphology. Thus, many ground-based stations are

located on confined channels without alluvial plains. In such cases, the satellite

signal is limited. In contrast, water surface area in braided, meandered, or anasto-

mosing channel reaches responds very sensitively to variations in width and to

discharge. In addition, large discharge events may exceed the discharge capacity of

the river channel cross-section. In these cases, satellite data capture more properly

the stream flow magnitude in channels with lateral connectivity of floodplains,

where effective width or water surface area can keep constant over longer periods

of time (Smith et al. 1995, 1996). Our results clearly demonstrate the quality of

satellite-derived water discharge along stations in the downstream reaches of the

Magdalena and Cauca rivers (Fig. 1.4 and Table 1.2).

It is interesting to note that rating equations based on the WBM model have

similar or even higher R2 coefficients in comparison to rating curves based on river

discharge from ground-based observations (Fig. 1.4). For all stations, observed time

series of river discharge using the WBM-based rating curves follow closely the
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measured discharge variability of the ground-based stations. The only exception is

station B1, where discharge is overestimated, especially during peak flows. The

WBM-based rating curves can calculate river discharge appropriately in most of the

sites; this approach thus can measure reasonably well discharge on entirely

ungauged river reaches.

Accuracy of the Colombian sites was evaluated by using the same measures

applied to the entire River Watch 3 array (Brakenridge et al. 2015). High S/N ratios

indicate a strong signal compared to background noise. For the Magdalena River,

low values were obtained for all stations (Table 1.2). However, the satellite signals

still appear to monitor appropriately river discharge (e.g., the case of station C2,

where microwave signal ranges between 0.97 and 0.99), but observed satellite river

discharge matches very well with the observed stream flow at ground-based gaug-

ing stations (Fig. 1.5).

All South American rivers, independently of size, display a strong seasonal

discharge and sediment load variability, typically by a factor of 5–10, when

comparing low to high monthly discharge. The interannual variation of discharge

and sediment load associated with the ENSO or El Ni~no-La Ni~na cycle is almost

equally great, typically by a factor of 2–4, comparing low to high annual discharges

(Richey et al. 1986; Depetris et al. 1996; V€or€osmartry et al. 1996; Restrepo and

Kjerfve 2000). For Colombia, relationships between river discharge anomalies and

the ENSO have been found for the Magdalena (Restrepo and Kjerfve 2000;

Restrepo 2013) and other Caribbean rivers such as the Sucio, Sinú, and Canal del

Dique, which exhibit higher water discharge during La Ni~na and lower flows during
El Ni~no (Restrepo et al. 2014). Further statistical analysis on annual stream flow

data and ENSO anomalies show that the ENSO may be responsible for up to 65%

of the interannual stream flow variability in rivers such as the Magdalena, Cauca,

Cesar, Rancheria, and Sinú (Gutiérrez and Dracup 2001; Restrepo and Kjerfve

2000; Restrepo et al. 2014, 2015). The River Watch data clearly record both types

of flow variability.

In this study we have shown the capabilities of River Watch version 3 in

estimating magnitudes of water discharge during flood events. Peak water dis-

charges along the Magdalena River were clearly observed during La Ni~na events

in 2008–2009 and 2010–2011 (Fig. 1.5). Only one station in the upper basin (B2),

with a hydrological regime largely controlled by dams, did not show any season-

ality associated with the La Ni~na cycle. Nevertheless, satellite-based discharge

estimates reflect the magnitudes of stream flow during high discharge conditions,

perhaps even more accurately than those observed at ground-based gauging stations

along floodplains. The satellite-derived data for water discharge appear to be a

reliable method for drainage basin planning and decision making toward flood

mitigation. Many Latin American countries like Colombia lack real-time monitor-

ing systems on river channels. Even along the Magdalena, the best gauged Colom-

bian river, all stations along the main channel are commonly not recalibrated

following major flood events, even though their actual rating curves are known to

alter after such events. Because of such circumstances, satellite-derived water

discharge offers an important complementarity, and for many river reaches the

only reliable information concerning river discharges and including flood events.
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1.6 Conclusions

For Andean rivers of Colombia, characterized by high rainfall rates, steep relief,

and limited alluvial plains, microwave satellite radiometry is a robust tool for

estimating near-real-time water discharge. In this study, stream flow series during

the 1998–2016 were observed at five sites along the Magdalena River and its main

tributary, the Cauca. The remote sensing is sensitive to measurement site water

surface area; calibration to discharge is accomplished by comparison to either

WBM modeled discharges or to ground station values. Time lags are an important

factor affecting the statistical correlations among these three data time series. The

best correlations were obtained once river discharge was lagged with respect to the

satellite signal; a phase lag indicating that satellite detects slower variations in

water surface area compared to the immediate variations in discharge-related river

stage detected by ground-based stations. Regarding absolute values, river discharge

estimates derived from the WBM model can greatly underestimate or overestimate

stream flow values (as judged by comparison to the ground stations). In contrast,

water discharges obtained from ground-based rating curves preserve the observed

river discharge magnitudes.

Observed series of river discharge at the upper basin stations exhibited low

seasonality and smaller variations in the satellite signal. In the middle and lower

reaches of the Magdalena River, the accuracy of the satellite results is improved at

longer time scales. Floods were well recognized by the observed series of river

discharge, especially during La Ni~na event in 2010–2011, the strongest flooding

event on record in Colombia. Four out of five studied stations witnessed high peak

discharges during this period, with stream flow magnitudes being more accurate

than the water discharge values gauged at ground-based stations.

Regions in Colombia such as the lower course of the Magdalena have been

strongly affected by floods and associated sedimentary fluxes during the last

decades. They do not have reliable ground-based data on river discharge and

magnitudes of floods. This study is an innovative applied research generating

near-real-time satellite river data for the region by deriving time series of stream

flow and flooding data back to 1998.
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Chapter 2

Remote Sensing of Drivers of Spring
Snowmelt Flooding in the North Central U.S.

Samuel E. Tuttle, Eunsang Cho, Pedro J. Restrepo, Xinhua Jia,

Carrie M. Vuyovich, Michael H. Cosh, and Jennifer M. Jacobs

2.1 Introduction

Melting of accumulated snow contributes significantly to runoff in northern North

America and mountainous areas (up to 50–95%) (WMO 2009). In many regions,

snowmelt associated with the spring thaw creates an annual risk of flooding, which

can endanger lives and damage private property and infrastructure. For instance,

rapid snowpack melting and rainfall in the northeast U.S. in January 1996 led to

30 fatalities and over $1.5 billion in damages (Anderson and Larson 1996). Snow-

melt flooding along the Red River of the North in 1997 damaged 85% of all

structures in Grand Forks, North Dakota, and caused a total of $4 billion in damages

in the U.S. (Todhunter 2001). Weeks later, flood waters nearly overtopped levees in
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Winnipeg, Manitoba, Canada, but still prompted $500–750 million in expenditures,

including construction of a levee that is one of the largest peacetime efforts in

Canadian history (Rannie 2016). In 2011, spring snowmelt in the north central

U.S. partially contributed to major flooding in the Missouri, Souris, Ohio, and

Mississippi river basins, responsible for up to $3.8 billion in direct damages

(NWS-HIC 2011). Accurate river flow forecasting allows communities and gov-

ernments to better plan for such flooding emergencies and mitigate the impacts of

damaging floods.

Snowmelt flooding occurs when the primary source of floodwater is melting

snow. Accumulated snowpack on the ground surface stores precipitated water that

can be released days, weeks, or months later upon melting. Larger snowpacks store

greater amounts of frozen water and have a larger risk and magnitude of spring

floods. Soil moisture and soil frost status determine how much snowmelt can

infiltrate into soils, because wetter soils and deeper frost (especially paired with

high soil moisture) reduce infiltration, leading to more runoff (Todhunter 2001).

Soil moisture status is often carried over from the late fall due to soil freezing, while

the degree of soil freezing depends on winter air temperatures and the presence and

depth of snow, which insulates the soil (Shanley and Chalmers 1999).

Other factors can exacerbate spring flooding. Precipitation during the spring

melt adds water to the already elevated basin water content. Rainfall can increase

the rate of snow melt by adding heat energy (Harr 1981). Rapid spring thaws deliver

meltwater in shorter time windows and thus result in greater streamflow magnitudes

(Todhunter 2001). Ice jams in river channels can impede river flows, raising the

river height upstream of the blockages (Beltaos 2008). Additionally, changes in

river grade may cause backwater effects (such as just north of Grand Forks, ND;

Todhunter 2001), increasing flood heights. Finally, the spatial pattern of melting

snow can interact with the river network configuration to deliver meltwater from

individual tributaries simultaneously (increasing instantaneous flow volumes) or

asynchronously (Miller and Frink 1984).

Accurate prediction of river flows due to snowmelt flooding requires knowledge

of these factors, both temporally and spatially, and the ability to synthesize their

interactions. However, many of these state variables, such as snow water equiva-

lent, soil moisture, soil frost, and melt phase, are poorly spatially constrained.

Traditionally, observations of these variables are provided by ground stations.

However, ground stations provide only “point” observations from individual loca-

tions, and far too few stations exist in most regions to obtain a reliable spatial

understanding of these hydrological states.

Fortunately, remote sensing can estimate many important drivers of snowmelt

floods, including snow water equivalent (SWE) and soil moisture (among others).

While many methods exist, passive microwave remote sensing has a robust history

for snow and soil moisture, and thus is best prepared for operational use in flood

forecasting. Significant snowmelt floods have occurred in the northern Plains of the

United States. This area is well suited for passive microwave remote sensing

(Vuyovich et al. 2014), so the potential for enhancing flood forecasting using

remote sensing observations is high in this region.
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In this chapter, we review the use of remote sensing observations to constrain

snow water equivalent and soil moisture (two primary drivers of spring snowmelt

floods), using the north central United States as a case study. We provide examples

from previous studies where these methods have shown value, as well as specific

examples from the Red River of the North basin. Attention is given to the potential

for passive microwave instruments to contribute to operational flood forecasting.

2.2 Background on the Red River of the North Basin

The Red River of the North basin (RRB) provides an excellent location to showcase

the challenges from snowmelt flooding in nonmountainous regions, as well as

opportunities for remote sensing to contribute to scientific advancement and reduce

the loss of human life and property. The Red River marks the border between the

states of North Dakota and Minnesota and drains parts of eastern North Dakota,

western Minnesota, and a small area of northeastern South Dakota (see Figs. 2.1

and 2.2). The river flows north from its headwaters in Wahpeton, ND to the United

States–Canada border, and then on through Winnipeg, Manitoba, where it is joined

by the Assiniboine River, and finally into Lake Winnipeg. In its entirety, the Red

Fig. 2.1 Location of the Red River of the North basin (red) and observation sites that have

contributed to the North American Soil Moisture Database (NASMD; blue dots) (Quiring et al. in
press). The red polygon is the area of the RRB that we focus on in this chapter, and the orange
polygon shows the tributary Assiniboine River basin. Notice the relative lack of observations

available in the northern Great Plains, despite its agricultural importance
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River is approximately 885 km long and with a drainage area of 285,000 km2

(including the 162,000 km2 Assiniboine drainage), about 635 km and 101,500 km2

of which are in the United States, respectively (Rannie 2016; Miller and Frink

1984). Along this distance, the main stem of the Red River drops only 72 m, for an

average grade of 0.08 m/km. This lack of relief (Fig. 2.2) is one of the river’s main

features and partly helps to explain why the region is so vulnerable to flooding.

Spring snowmelt floods are a regular occurrence in the Red River of the North

basin. Approximately 85% of the yearly maximum peak flows in the RRB over the

past century resulted from the spring melt, as opposed to only 15% from summer or

fall rain-driven events (Rasmussen 2016, Fig. 2.3). Despite the low average SWE

compared to mountain snowpacks (Sturm et al. 1995; Brasnett 1999), spring floods

in the Red River basin persist on a timescale of weeks to months (e.g., the Red River

exceeded flood stage in Grand Forks, ND for 46 days during the record-breaking

1997 flood; Todhunter 2001) and floodwaters can extend for large distances from

the main channel (e.g., flood width of up to 80–100 km near the U.S.–Canada

border; Schwert 2003; Miller and Frink 1984).

In recent decades, the Red River experienced a number of large flood events

(Fig. 2.3), including the aforementioned 1997 snowmelt flood. More recently, the

2009 spring flood included the highest ever river stage recorded at Fargo, ND,

forcing evacuations and inundating hundreds of homes (Wazney and Clark 2016;

Rogers et al. 2013), while the 2011 flood was the third-highest stage ever recorded

at Grand Forks, ND (Stadnyk et al. 2016). It has been suggested that the increase in

Red River flooding could be due to human-induced climate change, but the region is

subject to multidecadal oscillations from very wet to dry periods (Knox 2000;

Miller and Frink 1984; see Fig. 2.3), making causal attribution challenging (Hirsch

and Ryberg 2012; Rasmussen 2016). Another possible explanation for the increase

in flooding is change in agricultural practices, including extensive ditching and

installation of subsurface drainage (Miller and Frink 1984) (e.g., Bois de Sioux

Fig. 2.2 Terrain (left) (from the ETOPO1 global relief model; Amante and Eakins 2009) and land

cover (right) (NALCMS 2015) of the Red River of the North basin (excluding the Assiniboine

River basin). The basin has very low relief and is dominated by cropland
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Watershed District tile permit growth map: http://www.frontiernet.net/~bdswd/

Files/Tile_Permit_Growth_Map_Reduced.pdf). However, it is difficult to isolate

the effect of the man-made changes to peak river flows (Miller and Frink 1984;

Rahman et al. 2014).

Despite the frequency of flooding in the region, ground observations of hydro-

logical state variables are relatively sparse compared to other regions of the United

States. Currently, frequent, high quality ground-based measurements of SWE and

soil moisture are available from less than 20 and 10 locations, respectively, in the

U.S. portion of the basin. This scarcity of SWE and soil moisture makes flood

forecasting difficult in the Red River, but remote sensing can increase the spatial

and temporal coverage of observations. Two issues that complicate satellite esti-

mates of snow and soil moisture—rugged, steep terrain, and dense vegetation—are

almost entirely absent from this region. The area is classified as 79% cropland, 8%

grassland, shrubland, or wetland, and only 9% is any type of forest (NALCMS

2015; Fig. 2.2). The minimal topographical relief is evident in Fig. 2.2. Due to these

factors, remote sensing can be helpful to constrain hydrologic states that are

important for accurate flood forecasting.

Fig. 2.3 Plot of daily Red River discharge at Fargo, ND (USGS gage 05054000) as a function of

water year and day of water year (courtesy of Richard Koehler, NOAANWS). Blue colors indicate

high flows and red colors indicate low flows. Most of the highest flows occur from March to July,

as a result of the spring snowmelt. The 1930s–1940s was a very dry period, while flows have

increased in recent decades
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2.3 Snow Water Equivalent

SWE is the depth of liquid water that would result if the entire snowpack (at any

given time and location) melted. Accurate flood forecasting requires knowledge of

the magnitude and spatial distribution of SWE within a given basin. Remote

sensing, especially passive microwave methods, can provide estimates of SWE

and thus help to constrain this primary driver of spring flooding in areas such as the

Red River of the North basin.

2.3.1 Passive Microwave

Most research in satellite remote sensing of SWE has focused on microwave

frequencies, and specifically passive microwave radiometers. Passive microwave

sensors detect the natural thermal emission of microwave radiation from the earth’s
surface. The primary instruments used for this purpose are listed in Table 2.1.

Multiple algorithms were developed over the past three decades to convert

passive microwave brightness temperatures to depth and water equivalent of dry

snow, beginning with Chang et al. (1982, 1987). The widely used “Chang algo-

rithm” approach (and its later variants, e.g., Chang and Rango 2000; Kelly 2009)

exploits the fact that higher frequency microwave radiation emitted from the earth’s
surface is scattered by snow particles, while snow is more transparent to micro-

waves at lower frequencies. Generally, the greater the snow depth, the greater the

scattering, and the lower the detected brightness temperature, for a given snowpack

temperature (Ulaby and Stiles 1980). Thus, passive microwave methods technically

observe the effect of snow depth on thermally emitted radiation, so conversion of

inferred snow depth estimates to SWE requires assumption of grain size and density

(e.g., from Sturm et al. 1995, 2010). Chang et al. (1987) used the difference

between brightness temperatures at 37 and 18 GHz frequencies (i.e., the “spectral

gradient”) of the SMMR satellite instrument and calibrated a simple linear coeffi-

cient to convert the brightness temperature difference to SWE, using an assumed

snow density and grain size (Davenport et al. 2012). This approach was later

modified for the SSM/I series of satellite instruments, and expanded to include

more frequencies, and forest fraction and grain size corrections, for the current

operational AMSR-E and AMSR2 algorithms (Kelly 2009). Other authors devel-

oped a modified “Chang” algorithm that further accounts for snow morphology

over the course of the winter (Josberger and Mognard 2002).

In the past 15 years, new algorithms branched out beyond “Chang” methods,

such as an algorithm based on the dense media transfer model (DMRT) (Kelly

et al. 2003), which may soon be implemented as the operational AMSR2 algorithm

(Richard Kelly, University of Waterloo, personal communication). Tedesco

et al. (2004) developed an algorithm based on artificial neural networks, which

compared well to other methods, especially when trained using experimental data.
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Other authors tested algorithms that use artificial neural networks, projection

pursuit regression, general linear models, and nonlinear regression (Josberger

et al. 1998; Singh and Gan 2000; Gan et al. 2009), but Chang-type methods remain

in use as the primary algorithms for AMSR-E and AMSR2. Recent SWE products

assimilate remote sensing and ground observations into computer models, includ-

ing the Finnish Meteorological Institute (FMI)-led Global Snow Monitoring for

Climate Research (GlobSnow) database (Luojus et al. 2013; Takala et al. 2011;

Pulliainen 2006). The combination of models and observations may help to mitigate

some of the shortcomings of passive microwave methods. Fundamental physics of

microwave remote sensing of snow were summarized by Ulaby et al. (1981),

Hallikainen et al. (1986), Mätzler (1987), Hallikainen (1989), and Chang

et al. (1975). Rango (1993), Hall et al. (2006), and Dietz et al. (2012) provided

reviews of snow remote sensing methods, while Clifford (2010) and Frei

et al. (2012) reviewed global snow products.

Table 2.1 Passive microwave satellite sensors for SWE and soil moisture

Instrument

Satellite

platform Agency

Relevant

frequencies

(GHz)

Product

spatial

resolution

Temporal

resolution

Operational

period

Snow water equivalent

AMSR2 GCOM-W1 JAXA 10.65, 18.7,

36.5, 89

10, 25 km 1–2 day 2012–present

AMSR-E Aqua NASA 10.65, 18.7,

36.5, 89

25 km 1–2 day 2002–2011

SSM/I and

SSMIS

DMSP

(multiple)

DoD 19.35, 37.0 25 km 1–2 day 1987–present

SMMR Nimbus-7 NASA 18.0, 37.0 25 km 2–6 day 1978–1987

Soil moisture

SMAP SMAP NASA 1.4 36 km 2–3-day 2015–present

AMSR2 GCOM-W1 JAXA 6.9, 10.65 25 km 1–2 day 2012–present

Aquarius SAC-D NASA 1.4 1 deg. 0.5–1

week

2011–2015

SMOS/

MIRAS

Proteus ESA 1.4 25 km 2 day 2009–present

AMSR-E Aqua NASA 6.9, 10.65 25 km 1–2 day 2002–2012

SSM/I and

SSMIS

DMSP

(multiple)

DoD 19.35 25 km 1–2 day 1987–present

SMMR Nimbus-7 NASA 6.6, 10.7 25 km 2–6 day 1978–1987

AMSR2 Advanced Microwave Scanning Radiometer 2, GCOM-W1 Global Change Observation

Mission—Water “Shizuku,” JAXA Japanese Aerospace Exploration Agency, AMSR-E Advanced

Microwave Scanning Radiometer for EOS, NASANational Aeronautics and Space Administration,

SSM/I Special Sensor Microwave Imager, SSMIS Special Sensor Microwave Imager/Sounder,

DMSP Defense Meteorological Satellite Program, DoD U.S. Department of Defense, SMMR
Scanning Multichannel Microwave Radiometer, SMAP Soil Moisture Active Passive, SAC-D
Satélite de Aplicaciones Cientificas-D, SMOS Soil Moisture and Ocean Salinity, MIRAS Micro-

wave Imaging Radiometer with Aperture Synthesis, ESA European Space Agency

2 Remote Sensing of Drivers of Spring Snowmelt Flooding in the North Central U.S. 27



Some of the earliest studies to examine the potential of microwave radiometers

to detect snow took place in the northern Great Plains (e.g., Foster et al. 1980).

Josberger et al. (1998) explored alternative methods (multiple linear regression,

neural networks, and general linear models) to extract SWE from SSM/I microwave

observations. Singh and Gan (2000) tested multiple “Chang-type” algorithms for

use with SSM/I observations, also in the Red River basin. Foster et al. (2001) tested

Chang et al. (1987) algorithm estimates of snow depth from SSM/I, modified for

snow grain size and forest fraction, against ground observations of snow and

gamma-derived snow depth estimates in the Roseau River basin, finding high

correlation. Josberger and Mognard (2002) developed a Chang-type snow depth

algorithm that uses air temperature to calculate a temperature gradient index as a

proxy for snow grain metamorphism and applied it to SSM/I observations in the

northern Great Plains. Mognard and Josberger (2002) examined the performance of

the temperature gradient index algorithm in the region during the 1996/1997 snow

season, finding that their dynamic algorithm agreed well with ground observations

but algorithms that assume a constant grain size led to underestimation of snow

depth (presumably due to underestimation of grain size). Mote et al. (2003) com-

pared SWE from the SNTHERM model, the SSM/I SWE algorithm, and in situ

measurements from five stations in the northern Great Plains, finding that the model

underestimated SWE and the microwave algorithm overestimated SWE in late

winter, likely due to metamorphism and grain growth. Dong et al. (2005) examined

sources of uncertainty in SMMR Chang algorithm SWE across Canada using SWE

derived from in situ snow depth observations, which indicated that the dominant

errors in remotely sensed SWE are due to saturation of the microwave signal at high

snow depth, high air temperature, and proximity to large water bodies. Chang

et al. (2005) explored the uncertainties in point-based ground data as compared to

larger scale SSM/I satellite estimates in the northern Great Plains. The authors

found some significant differences between the two estimates in yearly snow depths

but insignificant differences using the 10-year mean, and emphasized that approx-

imately ten points measurements are necessary to produce a sampling error of

50 mm in 1� by 1� grid cells. Using airborne gamma radiation SWE estimates as

“truth,” Gan et al. (2009) compared an artificial neural network method of estimat-

ing SWE from SSM/I brightness temperature observations to projection pursuit

regression and nonlinear regression methods in the Red River basin, finding that the

neural network method was superior to the other two methods. Clearly, the northern

Great Plains has been a test bed for developing and evaluating satellite SWE

algorithms.

SWE remote sensing studies specific to the Red River basin decreased in recent

years, but some other larger-scope analyses are worth noting, given their relevance

to the use of passive microwave SWE estimates for flood forecasting. Vuyovich and

Jacobs (2011) compared SSM/I and AMSR-E SWE estimates to a temperature

index snow model driven by Tropical Rainfall Measuring Mission (TRMM) pre-

cipitation estimates in central Afghanistan and found that the satellite estimates

were comparable but of higher magnitude than the modeled SWE for some winters.

This analysis indicated that updating the snow model with satellite SWE estimates
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considerably improved modeled runoff and reservoir storage predictions and noted

that rain on snow events is detectable in microwave observations as sharp decreases

in SWE. Vuyovich et al. (2014) compared SSM/I and AMSR-E SWE estimates to

NOAA NWS Snow Data Assimilation System (SNODAS) estimates in watersheds

across continental United States, finding that the best agreement was for basins with

less than 200 mm maximum annual SWE and forest fraction less than 20%.

Hancock et al. (2013) compared SSM/I, AMSR-E, and GlobSnow SWE estimates

to remotely sensed snow covered area (SCA), in situ ground observations, and

meteorological data across the northern hemisphere. The authors found that SSM/I

and AMSR-E SWE estimates saturated in high snow covers, showed spurious

spikes at the onset of spring melt, and overestimated under cold air temperatures

and in forested areas, indicating that GlobSnow more accurately determines peak

SWE accumulation and the seasonal appearance and disappearance of snowpack.

Analyses by the authors of this chapter suggest that passive microwave SWE

estimates compare reasonably well to other observations in the northern Great

Plains (e.g., Fig. 2.4). The root mean square error (RMSE) between AMSR-E

SWE and 1172 U.S. Army Corps of Engineers (USACE) St. Paul District ground-

snow-survey SWE observations taken between 2002 and 2011 is 34.7 mm with a

coefficient of determination (R2) of 0.36. This error is moderate, but the bias was

only �3.8 mm, indicating that most of the error is likely due to the scale difference

between point surveys and 25 km satellite pixels, along with the considerable

variability of snow depth in the region (Chang et al. 2005; Cork and Loijens 1980).

The aforementioned research articles and further observations by the authors of

this chapter emphasize important limitations of passive microwave SWE estimates

(also discussed by Tedesco and Narvekar 2010):

1. For the wavelengths used by current satellites, the lower frequency microwave

channels cannot penetrate deep snow covers, leading the SWE estimates to

saturate at high snow depths. This is not a frequent concern for the Northern

Great Plains due to its limited snowfall compared to mountainous regions.

2. The physics of wet snow are different than for dry snow. Wet snow favors

absorption of microwave radiation rather than scattering, and thus, SWE

retrieval is not feasible in the presence of liquid water. While microwave

observations from wet snow change somewhat with increasing liquid water

content (Kang et al. 2014), generally wet snow causes the brightness tempera-

tures at different microwave frequencies to converge and thus leads the Chang-

type SWE algorithms to estimate zero snow depth. Vuyovich et al. (2014) used

the weekly maximum SWE to minimize impacts of wet snow on SWE estimates.

3. Accurate characterization of grain size and snow density throughout the winter is

crucial for accurate SWE estimates. Snow metamorphosis over the course of the

winter results in grain size and density increases (Bader et al. 1939; Colbeck

1982; Josberger and Mognard 2002), which can disproportionately decrease

emitted microwave radiation. Increased attenuation at higher frequencies

increases the temperature brightness differences and, without correction,

makes the snow seem deeper than it is in reality (e.g., Chang et al. 1987,

2 Remote Sensing of Drivers of Spring Snowmelt Flooding in the North Central U.S. 29



Fig. 2.1). Thus, an algorithm that assumes a constant snow grain size and density

will often underpredict SWE in early winter (when the grain size is small and

density is low), and overpredict in the late winter (when the grain size is large

and density is high). Changing snow properties and ice formation during melt-

refreeze in early spring may also explain the spurious spikes in SWE observed

by Hancock et al. (2013). In prairie environments such as the Red River basin,

snowpacks are often shallow and air temperatures well below freezing, which

can lead to the formation of large, platy crystals within the snowpack called

depth hoar (Bader et al. 1939; Giddings and LaChapelle 1962), so accurate grain

size estimates are crucial for accurate SWE estimates in this region.

4. Dense vegetation can inhibit accurate retrieval of SWE, but this is not a major

concern for the cropland-dominated Red River basin.

Fig. 2.4 Example comparison of AMSR2 passive microwave satellite SWE estimates to in situ

ground observations, shown using the same color scale. The ground observations were collected

between January 21 and 27, 2016, and the AMSR2 SWE (raster grid) is averaged over that period.

A majority of the ground measurements are from manual snow tube surveys, but one point is from

a snow pillow. The in situ and satellite estimates agree quite well, given the large disparity in

observation scale, but the satellite may slightly overestimate SWE in the northwest RRB
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Atmospheric effects also attenuate the microwave signal, but seasonal variation

in this effect is negligible, and it may only be important during cloudy conditions

(Wang and Tedesco 2007). For low relief, low vegetation watersheds such as the

Red River basin, passive microwave SWE estimates provide the most value from

early winter until snowmelt onset. Awareness of when and how snowpack physical

conditions impact retrievals can optimize the useful information on SWE depth and

spatial variability provided by passive microwave SWE observations. While there

is still room for improvement in the global SWE algorithms, specific regional

products or QA/QC analyses are an alternative approach to improving flood fore-

casting skill using microwave remote sensing.

2.3.2 Airborne Gamma Radiation Surveys

The potential use of natural terrestrial gamma radiation to estimate SWE for flood

forecasting applications was recognized by the National Weather Service (NWS) in

the late 1960s (Peck et al. 1971). Gamma radiation is naturally emitted from

radionuclides in soil, including uranium, potassium, and thorium, and radiation

from approximately the top 20 cm of the soil can be detected above the land surface

(Carroll and Schaake 1983; Carroll 2001). However, water in any phase will

attenuate gamma radiation, so the amount of gamma radiation reaching a detector

from a bare soil is greater than that from the same soil when it is snow covered. The

difference in radiation is proportional to the amount of SWE (i.e., mass of water;

Peck et al. 1971).

Much of the North American-based research on airborne measurement of SWE

using gamma radiation was conducted in the 1970s–1980s, and focused on “ground

truthing” the data using ground measurements of SWE and snow depth, along with

the correction for the effects of soil moisture, background radiation (e.g., from the

aircraft and cosmic sources), atmospheric radon, Compton scattering, and air

density on the gamma radiation signal (Peck et al. 1971, 1980; Carroll and Schaake

1983). Additional studies attempted to quantify the effect of uneven snow cover

(e.g., from drifting; Cork and Loijens 1980; Carroll and Carroll 1989b) and

vegetation (Carroll and Carroll 1989a) on the gamma radiation SWE estimates.

During this time, researchers developed approaches to use the gamma radiation

counts to estimate SWE, including single-flight methods that used the shape of the

gamma spectra to infer SWE (Grasty 1982), and two-flight methods that include a

calibration flight over bare soil in the fall (Carroll and Schaake 1983; Carroll 2001).

In 1980, the NWS set up an operational network of gamma radiation flight lines

in the north central region on the United States, which now consists of over 2400

flight lines in 29 states and seven Canadian provinces. Each flight line is approx-

imately 15–20 km long with a width of approximately 330 m. Thus, the areal

coverage of each flight line is approximately 5–7 km2. Currently, NOAA’s National
Water Center (NWC) maintains the flight line network and measures it each winter

in support of river forecasting centers such as the North Central River Forecast

2 Remote Sensing of Drivers of Spring Snowmelt Flooding in the North Central U.S. 31



Center (NCRFC) (data freely available on http://www.nohrsc.noaa.gov/

snowsurvey/).1 The NWS opted for the two-flight method, utilizing the gamma

radiation counts for the 40K and 208Tl photopeaks, and the total count between 0.41

and 3.0 MeV to obtain a single weighted estimate of SWE (Carroll and Schaake

1983; Carroll 2001). During the fall, gamma radiation for each flight line is

measured over snow-free soil at a height of 150 m, in order to obtain a baseline

estimate of soil moisture (Carroll 2001). The difference in gamma radiation mea-

sured between the fall flight and any subsequent identical flights over winter

snowpack reflects the amount of SWE on the ground (as well as any potential

changes in soil moisture status). Each year, the NWC obtains SWE estimates from

zero to four times per line, depending on the presence of snow and flooding

potential of the region.

Previous studies indicate that airborne gamma radiation techniques estimate

SWE with an RMSE of 8.8 mm and an average bias of +54 mm (Carroll and

Schaake 1983). NWC gamma radiation SWE estimates have become an important

supplemental source of information for flood forecasting in the Red River basin

(Brian Connelly, NCRFC, personal communication). A strength of the gamma

estimates is that they are unaffected by the phase of water on the ground; the

attenuation of gamma radiation is only dependent on the mass of water on the

ground surface (e.g., dry snow, wet snow, ice, ponded water, etc.) and in the top

20 cm of soil. However, spatial coverage (only 5–7 km2 per flight line) and logistics

(limited aircraft flight time over the course of the winter season) limit the usefulness

of the gamma flights. Also changes in below-ground water content during the

winter can lead to inaccurate SWE estimates, as the gamma radiation method is

affected by all water above approximately 20 cm depth.

In summary, it is challenging to capture the magnitude and variability of SWE at

the spatial and temporal scales necessary for operational flood forecasting. Even the

most trusted SWE observations from in situ surveys can be subject to

undersampling errors (Carroll 2001) and lack the sampling density to characterize

the considerable spatial variability of SWE in the region (Chang et al. 2005).

Passive microwave and airborne gamma radiation methods provide complementary

SWE estimates (Fig. 2.5). While gamma radiation observations have a proven track

record for operational flood forecasting, microwave products appear to be of good

enough quality to be informative. For these methods, validation from in situ

observations, and even an intercomparison between the two remote sensing obser-

vations, is difficult because the spatial properties of the different measurement

techniques are not the same. Microwave SWE algorithms continue to evolve to

improve global retrieval performance. However, operational users of these products

would be well served by an understanding of how products perform under the

different snow conditions within their forecast region.

1Until recently, the flight line network was maintained by the NOAA NWS National Operational

Hydrologic Remote Sensing Center (NOHRSC) in Chanhassen, Minnesota, before it became a part

of the National Water Center (NWC).
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2.4 Soil Moisture

Fall soil moisture is important for spring flooding because it determines the

partitioning of snowmelt between infiltration and runoff. Drier soil has a greater

available water storage capacity. In areas with winters where air temperatures often

remain well below freezing, such as the north central United States, soils regularly

freeze in late fall and do not thaw until the spring (Todhunter 2001). This means

that the soil water content in the fall becomes locked in the frozen soil and remains

relatively constant until the following spring thaw. Thus, the soil wetness in late fall

plays a role in determining the severity of spring flooding because drier soils are

able to store more meltwater the following spring, as compared to wetter soils,

resulting in less runoff. While the broader Great Plains region has a rich history as a

test bed for microwave remote sensing of soil moisture, relatively few studies have

Fig. 2.5 Comparison of SWE estimated from NOHRSC airborne gamma radiation surveys and

AMSR-E descending overpasses, shown on the same color scale. The gamma radiation surveys

(colored lines) were conducted between March 11 and 14, 2009, and the AMSR-E SWE (raster

grid) is averaged over that period. The gamma radiation and passive microwave estimates agree

quite well, given the difference in measurement depths and footprint size
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been conducted in the Red River basin. These are summarized in the following

sections, along with relevant studies from other nearby regions.

2.4.1 Passive Microwave

Remote sensing of soil moisture provides value for drought monitoring, agriculture,

climate change, and land–atmosphere interactions. While active microwave satel-

lite sensors (e.g., the Advanced Scatterometer (ASCAT); Wagner et al. 2013) can

also observe soil moisture, passive microwave sensors are more numerous and have

a more robust validation history. Many of the same sensors used for SWE estima-

tion are also used for soil moisture estimation (see Table 2.1). While SWE algo-

rithms utilize microwave measurements in the 10–89 GHz range, soil moisture

remote sensing focuses on lower 1–10 GHz frequencies due to the greater penetra-

tion of those frequencies into the soil (1–5 cm) and greater transmissivity through

vegetation. Older sensors operated at higher frequencies (e.g., SMMR, SSM/I,

AMSR-E: 6–11 GHz), but newer sensors have trended toward lower frequencies

(e.g., SMOS, SMAP: 1.4 GHz), allowing greater observation depths.

While some snow algorithms are relatively simple (e.g., Chang et al. 1987), soil

moisture algorithms must account for the effects of surface temperature, vegetation,

soil roughness, and soil dielectric properties on the thermal emission of microwave

radiation in order to estimate soil moisture (Njoku and Entekhabi 1996). Generally,

soil moisture algorithms use empirical relationships to determine the emissivity

from a soil–water mixture, and modify the emissivity for the effects of soil

roughness and vegetation. Due to this complexity, many algorithms employ an

inverse modeling approach (as compared to the forward approach for SWE) to

relate brightness temperature observations to soil moisture estimates (e.g., Jackson

1993; Owe et al. 2001; Njoku et al. 2003; Jones et al. 2009; Kerr et al. 2012; Santi

et al. 2012).

Numerous remote sensing field validation campaigns have been conducted

across the United States including Oklahoma (SGP97, SGP99, SMEX03,

CLASIC07), Iowa (SMEX02, SMEX05), Georgia (SMEX03), Alabama

(SMEX03), Arizona (SMEX04, SMAPVEX15), and Maryland (SMAPVEX08)

(e.g., Colliander et al. 2012). Despite the relatively flat, low vegetation landscape

of the northern Great Plains, presumably ideal for passive microwave remote

sensing, no campaigns have taken place in North or South Dakota, or Minnesota

(however, SMAPVEX12 was conducted west of Winnipeg, Canada in the Assini-

boine River basin, and CanEX-SM10 was in the neighboring Saskatchewan). Most

campaigns have coincided with experimental watersheds or other well-

instrumented areas. The Red River basin (and the northern Great Plains in general;

see Fig. 2.1) notably lacks in situ soil moisture measurements that could assist in

validation and flood forecasting.

While soil moisture in the Red River basin appears to be understudied, passive

microwave remote sensing has proven successful in more southern areas of the

34 S.E. Tuttle et al.



Great Plains. Jacobs et al. (2003) provided an early demonstration of the potential

value of remotely sensed soil moisture to improve rainfall-runoff predictions, using

observations from the Oklahoma SGP97 experiment. Jackson et al. (2010) vali-

dated estimates from multiple AMSR-E soil moisture algorithms against in situ

measurements in four research watersheds (Little Washita, OK; Reynolds Creek,

ID; Little River, GA; and Walnut Gulch, AZ), finding a wide range of performance

across algorithms. Two of the four tested algorithms met the NASA AMSR-E

mission’s 0.06 m3 m�3 RMSE requirement at the Oklahoma site, and simple bias

and regression corrections yielded standard errors of 0.04–05 m3 m�3 for all four

algorithms. A similar study (Jackson et al. 2012) validated SMOS soil moisture

estimates, indicating an RMSE of approximately 0.043 m3 m�3 and near-zero bias

for the Oklahoma site. Leroux et al. (2016) examined the performance of a

prototype SMAP algorithm over a challenging, wide range of vegetation and soil

conditions using airborne observations from the PALS instrument during the

Manitoba, Canada SMAPVEX12 campaign, finding that soil moisture errors ranged

from 0.05 to 0.1 m3 m�3.

Additional comparisons by the authors of this chapter show that L-band

(1.2 GHz) passive microwave soil moisture products are promising for flood

forecasting applications. Preliminary SMAP Level 3 results in the Red River

basin show that the RMSE is 0.059 m3 m�3, with a bias of �0.011 m3 m�3 (and

Kendall’s τ rank correlation coefficient of 0.578), when evaluated against daily-

averaged in situ soil moisture from 5 cm depth at the Glacial Ridge, MN SCAN site

(Fig. 2.6; Schaefer et al. 2007). This comparison ignores the considerable spatial

difference between the “point” measurements and gridded 36 km resolution satel-

lite estimates, which is likely a significant source of error. SMOS estimates from

Fig. 2.6 Time series of 5 cm depth soil moisture at the Glacial Ridge, MN SCAN site (red) from
April to December, 2015, along with passive microwave satellite estimates from SMAP (black),
SMOS (blue). The SMAP and SMOS estimates agree quite well with the in situ observations,

despite the large difference in observation scales
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2015 also compare favorably to in situ SCAN data, with an RMSE of 0.054 m3 m�3

and bias of �0.013 m3 m�3 (and Kendall’s τ of 0.513). However, the comparison is

not as encouraging for other products from older instruments that operate at higher

frequencies (e.g., AMSR2 with LPRM algorithm: RMSE¼ 0.188 m3 m�3,

bias¼ 0.124 m3 m�3, Kendall’s τ¼�0.017).

Similar to SWE estimates, remotely sensed soil moisture has the ability to

resolve the spatiotemporal evolution of the ground state. Figure 2.7 shows an

example of a late fall soil moisture map from SMAP. The map clearly shows the

relatively dry conditions prior to the fall-winter transition, especially in the south-

ern portion of the Red River basin, although in situ observations suggest that SMAP

estimates may be biased low for finer RRB soils. The Red River clay soils can

develop large cracks under drought conditions, which serve as preferential drainage

pathways. SMAP soil moisture estimates can potentially identify when cracking is

likely to occur. Thus, the remote sensed soil moisture product has value to flood

Fig. 2.7 Late fall soil moisture from SMAP (Level 3 product). The values shown are the mean soil

moisture from November 15 to 28, 2015. The data were screened for the presence of open water

(>10% of pixel area), dense vegetation, precipitation, and snow or ice using SMAP data quality

flags
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forecasting centers for initializing operational models before the winter freeze-up

and may provide insight into infiltration rates. In summary, comparisons between in

situ and passive microwave estimates suggest that current satellite sensors can

provide soil moisture estimates sufficient for operational use in flood forecasting,

although some calibration may be necessary for finer soils.

2.4.2 Additional Soil Moisture Remote Sensing Methods

While passive microwave remote sensing has a strong history of performance in the

Great Plains, the large spatial scale and relatively shallow depth of the soil moisture

observations makes operational use of the products challenging in smaller basins.

There are a number of additional airborne and satellite instruments which can

provide observations to support the characterization of antecedent soil moisture

conditions.

In addition to SWE estimations, airborne gamma radiation surveys produce

estimates of soil moisture in the upper 20 cm of soil. Jones and Carroll (1983)

and Carroll and Schaake (1983) summarize the method used to estimate soil

moisture from gamma radiation observations, which is based on the difference in

gamma radiation flux measured over dry and wet soils. The NWC estimates soil

moisture for each flight line by obtaining gamma radiation observations in coinci-

dence with gravimetric soil moisture samples (approximately 25 per 16–20 km

flight line), yielding an empirical historical relationship. An early study of

155 flights over 42 flight lines found that the RMSE between in situ and airborne

gamma radiation soil moisture is 0.039 m3 m�3 soil moisture with an average bias

of 0.001 m3 m�3 (Jones and Carroll 1983). The NWC surveys the flight line

network over bare soil approximately 1–2 times per fall (http://www.nohrsc.noaa.

gov/snowsurvey/soil.html).

Rijal et al. (2013) explored the potential to use Landsat 5 TM data to detect soil

moisture in the laboratory and field, at a much higher resolution (30 m) than passive

microwave estimates (25–36 km). However, optical reflectance only observes soil

moisture at skin depth, and thus relies on correlation with depth in order to estimate

deeper soil moisture. For this reason, the authors used an empirical relationship to

relate optical reflectance to soil moisture. The authors found an encouraging

average difference of 0.02 cm3 cm�3 between 15 cm depth estimated and field-

measured soil moisture, but cautioned that their model should not be used else-

where without validation. This method could show promise for providing soil

moisture at the property scale with fair temporal resolution, which is not currently

feasible using other methods.

As mentioned earlier, active microwave instruments also have a strong potential

to provide high quality soil moisture estimates (e.g., ASCAT; Wagner et al. 2013).

Additionally, Liu et al. (2011) created a multisensor soil moisture climatology that

incorporates observations from both passive and active instruments starting in 1978

and currently extends through 2014, which could be useful for retrospective model

testing.
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2.5 Remote Sensing Data and Operational Flood
Forecasting Models

While remote sensing observations have tremendous potential to inform antecedent

moisture and snowpack states, translation to improved flood forecasting is not

necessarily straightforward. In order for remote sensing data to be useful for

operational flood forecasting, the data must (1) be trusted by the forecasters, and

(2) successfully integrate into the flood modeling workflow. These points may seem

trivial, but flood forecasting centers have established “tried and true” procedures.

New datasets must demonstrate additional value beyond the current capability of

the modeling system before they will be adopted into the forecasting workflow.

For example, the NOAANational Weather Service North Central River Forecast

Center is responsible for forecasting river flows at 447 forecast points across the

Upper Mississippi, Great Lakes, and Hudson Bay drainages at a 6-hourly time step.

Briefly, the NWS hydrologic operational forecasting modeling system, the Com-

munity Hydrologic Prediction System (CHPS),2 links the SNOW-17 snow model

(Anderson 2006) to the Sacramento Soil Moisture Accounting (SAC-SMA) model

(Burnash 1995) to a number of hydrologic and hydraulic flow routing models. The

primary inputs to the model are mean areal temperature and precipitation from

observations and NWS forecasts, and the main output is river discharge (and stage).

The modeling system is lumped, with the watershed divided into many subbasins,

and the NCRFC calibrates and runs the model at the subbasin scale. During

operational forecasting, the NCRFC forecaster runs the model and obtains a river

flow prediction, which is compared to observed streamflow at U.S. Geological

Survey (USGS) streamgage locations. The forecaster then uses professional judg-

ment to either accept the forecast, or to modify one or more model states and rerun

the model, which will then change the predicted river flows. For instance, if the

model has predicted a higher river discharge than the observed USGS streamflow

for the past few time steps, the forecaster may decide to increase the model SWE to

effectively reduce the meltwater routed to the stream, in order to better match the

observations. In this case, the passive-microwave-derived SWE product might be

well suited to help the forecaster understand variations across the watershed.

The current operational procedure does not have an established approach to

assimilate observational data into the model. Furthermore, modeled streamflows

depend on both model processes and model states, so streamflow prediction errors

can arise from either source. Forecasters can compensate for deficiencies of the

model by making manual changes, and most changes are based on observed

streamflow rather than observed snow or soil moisture. These modifications may

sometimes move the modeled states closer to “reality,” but in other cases, fore-

casters may make adjustments to model states that appear to contradict observa-

tions, but lead to better river forecasts. Due to the latitude given to the forecasters in

2 http://www.nws.noaa.gov/oh/hrl/general/indexdoc.htm
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model modification, remote sensing data will not be incorporated into the modeling

procedure unless the forecasters find that it provides value to improving the

streamflow predictions. For this reason, an early step toward incorporation of

remotely sensed data in operational modeling is to make the data readily available,

so that the forecasters can visualize it during their normal modeling procedure and

gain familiarity with its strengths and weaknesses.

A second consideration for the use of remotely sensed data in operational flood

forecasting is how the remote sensing data maps to the model variables. The

physical dimensions and units of model states may not match those from available

remotely sensed observations. For instance, SAC-SMA is a “bucket” model. Its soil

moisture domains have a defined maximum depth of water (determined separately

for each watershed via calibration), but no specified depth into the ground. Remote

sensing estimates of soil moisture, on the other hand, provide a volumetric measure

of soil moisture which reflects all soil moisture in a given soil depth range. Thus,

input of remote sensing estimates into operational models requires a keen under-

standing of the model states, the remotely sensed data, and the assumptions that

underlie each dataset. Some methods have been developed to address translation of

soil moisture fields into and between models (Koster et al. 2009), which include

cumulative distribution function (CDF) matching (Reichle and Koster 2004), and

data assimilation (Reichle 2008), but to date, there is no standard approach. In order

to enable enhanced operational flood forecasting with remote sensing observations,

facilitation of mutual understanding through communication between forecasters

and remote sensing scientists is likely to be as important as high quality data.

2.6 Conclusion

In the northern Great Plains, great potential exists for remote sensing to contribute

to operational flood forecasting by constraining drivers of spring snowmelt

flooding. The region is generally flat with low vegetation cover, which makes it

suitable for most remote sensing techniques. Many remote sensing methods have

been tested in the region and proven useful in nearby areas (e.g., airborne gamma

radiation surveys, passive microwave, optical, and radar satellite instruments), and

current platforms provide readily available near-real-time data (e.g., SMAP,

SMOS, and AMSR2 soil moisture, AMSR2 and SSM/I SWE). Remote sensing

soil moisture estimates in the Red River appear to be sufficiently accurate for flood

forecasting applications. SWE estimates show promise but users must be aware of

the limitations of the data.

The northern Great Plains, especially Red River of the North basin, lack the

necessary ground observations for accurate spatial characterization of snow water

equivalent and soil moisture at the subbasin scale, which can be provided by remote

sensing observations. However, additional ground instrumentation is needed in

order to validate remote sensing products in the region and to inform flood

forecasting. While additional SWE and soil moisture measurement sites are surely
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necessary, observations of spring snow melting and ripening (which cannot be fully

observed using passive microwave methods) are almost absent in the region,

despite the importance of this time period for spring flooding. Additionally, snow

grain size measurements, and more extensive snow density measurements, could

help to improve SWE algorithms.

Flood forecasting and remote sensing in the northern Great Plains would also

benefit from future field campaigns aimed to better understand snow and soil

moisture processes in the region. Soil moisture field campaigns greatly outnumber

snow campaigns over the past two decades. Snow campaigns hold great potential to

advance the understanding of the region’s hydrology. Such campaigns might

benefit from an opportunistic, as opposed to scheduled, timeframe. Due to the

yearly variability in weather and climate, it is difficult to determine when precip-

itation will occur, when snow will melt, etc., so it would be more effective to have a

campaign ready for execution based on weather rather than planned dates.

While this chapter focuses on remote sensing methods used to estimate snow

water equivalent and soil moisture, other exciting possibilities exist to remotely

sense the drivers of spring snowmelt floods for use in operational flood forecasting.

For instance, Ramage and Isacks (2002), Walker and Goodison (1993), and Gren-

fell and Putkonen (2008) developed methods to detect the presence of wet snow

using passive microwave sensors. Snow covered area (SCA) from optical and

infrared remote sensing (e.g., from the Moderate Resolution Imaging Spectrora-

diometer; MODIS) is considered to be a reliable method to observe snow cover

extent and is already used operationally by some agencies (e.g., for hydropower

generation in Norway; Winther and Hall 1999). The SMAP mission has produced a

soil freeze–thaw product, while satellite instruments such as the Global Precipita-

tion Measurement (GPM) mission (or ground-based radars such as the Next-

Generation Radar (NEXRAD) network) can be used to detect spring precipitation.

Synthetic aperture radar (SAR) and optical sensors (e.g., Landsat, MODIS, VIIRS)

are useful for detecting river ice jams (Kreller et al. 2016). Additionally, during

active flooding, remote sensing of flood heights may be obtainable with instruments

such as the Surface Water Ocean Topography (SWOT) satellite mission, scheduled

for launch in 2020. Finally, the extent of broad, slow-moving floods, such as those

seen on the Red River, can be monitored using optical and infrared remote sensing

(e.g., VIIRS, MODIS, Landsat; Wang et al. 2002; Zhan et al. 2002) or synthetic

aperture radar (SAR; e.g., Wilson and Rashid 2005).

Improved snowmelt flood forecasts would immediately benefit large, vulnerable

communities. Existing remote sensing tools provide a source of critically necessary

information that can be made readily available to the forecasting community.

Emerging remote sensing tools offer promise and, with further development, can

complete the understanding of the significant changes in water and energy cycles

throughout the entire winter and spring seasons.
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Chapter 3

The NASA Global Flood Mapping System

F. Policelli, Dan Slayback, Bob Brakenridge, Joe Nigro, Alfred Hubbard,

Ben Zaitchik, Mark Carroll, and Hahn Jung

3.1 Introduction

Flooding is the most frequently occurring natural disaster, affecting more people

than any other weather-related disaster. According to the Center for Research on the

Epidemiology of Disasters (CRED), there were an average of 171 flood disasters

per year during 2005–2014, up nearly 35% from the previous decade, and
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2.3 billion people were affected by these events during 1995–2015 (CRED and

UNISDR 2015). CRED defines a disaster as a “situation or event, which over-

whelms local capacity, necessitating a request to national or international level for

external assistance . . . An unforeseen and often sudden event that causes great

damage, destruction and human suffering.” Flooding affects populations quite

frequently on all of the Earth’s continents except Antarctica, but it remains stub-

bornly difficult to model and forecast with high precision. To respond to these

events, disaster managers need reliable, low latency, and frequently updated infor-

mation on the location and extent of inundation. Because of its ability to provide a

synoptic perspective on a large range of scales and resolutions, satellite-based

remote sensing offers the most practical solution to providing this information for

many flooding events. To address this need and to provide useful products for the

Earth science research community, we have developed the automated NASA

Global Flood Mapping system. Elements of this system have been mentioned in

previous publications (Revilla-Romero 2015; Brakenridge et al. 2012). Here we

provide background on the capabilities and limitations of satellite remote sensing in

which our system must operate and a full description of the system. We also discuss

the remaining challenges for fully implementing the system, our mitigation strate-

gies for these challenges, recent product uses, product evaluation results, and future

prospects.

3.2 Remote Sensing of Water

A number of factors influence the detection and mapping of surface water using

remote sensing techniques, including the distribution of solar and Earth irradiance

across the electromagnetic (EM) spectrum, the existence of wavelength bands or

“atmospheric windows” in the EM spectrum through which solar or surface-emitted

EM radiation can pass, differential reflection or emission of water in these bands

relative to neighboring land cover types, and differential scattering effects of

atmospheric constituents. Solar irradiance peaks in the visible portion of the EM

spectrum. There is a relatively clear atmospheric window in these wavelengths, and

water reaches its greatest reflectivity at about 500 nm; this is what gives water its

intrinsic blue color. However, soils and vegetation typically reflect solar radiation

more strongly than water, and consequently it is the dark areas within spectral

reflectance images that indicate water (Fig. 3.1). In blue and green wavelengths

(Fig. 3.1a and b), the difference between the reflectance of water and its surround-

ings is somewhat less than in longer wavelengths and photons are preferentially

scattered by the atmosphere, making water difficult to distinguish from its environ-

ment. At progressively longer wavelengths, the number of solar photons drops off;

however, the reflectance of vegetation and soils is generally much higher than water

in these wavelengths. As a consequence, water can be readily distinguished from its

surroundings in red wavelengths (Fig. 3.1c) and through the atmospheric windows
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in the near infrared (NIR, Fig. 3.1d) and short wavelength infrared (SWIR, Fig. 3.1e

and f) portions of the EM spectrum.

Through the mid-wavelength infrared (MWIR) part of the spectrum (Fig. 3.1 g

and h) there are progressively fewer solar photons to reflect; however, there are

increasing numbers of emitted photons, and detection and mapping of water is still

possible, though with some loss of detail. At the longer wavelengths of the thermal

infrared (TIR) portion of the spectrum (Fig. 3.1i), there are significantly decreased

numbers of solar photons to reflect; however, the number of emitted photons

increases, again enabling detection and mapping of water with some loss of detail

(Fig. 3.1j). At temperatures normally encountered on the Earth’s surface, the

wavelength of emitted energy is strongest in the thermal infrared region of the

EM spectrum (8–15 μm); within this range, the clearest atmospheric windows occur

around 11 and 12 μm. The Stefan–Boltzmann law states that the emissive power of

a substance is the product of its emissivity and its temperature raised to the fourth

power. The emissivity of water in the thermal infrared region is in the same range as

a wide variety of soils and vegetation and is not itself a strong discriminator (http://

www.icess.ucsb.edu/modis/EMIS/html/em.html). Yet water can often be distin-

guished from its surrounding environment using thermal remote sensing because

of its differing temperature. This is due to the generally higher heat capacity of

water relative to its surroundings, resulting in slower temperature changes in

response to diurnal inputs. This can mean that during data acquisitions with thermal

infrared sensors, water may appear darker (colder) than its environment during

daytime acquisitions, and lighter (warmer) during nighttime acquisitions,

depending on the precise nature of the temperature changes, the water body, and

the surrounding environment being observed (see Fig. 3.2).
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Fig. 3.1 MODIS data for Lake Chad, Central Africa (reflectance� 10,000), May 19, 2001. Row

1: (a) Band 3 (blue), (b) Band 4 (green), (c) Band 1 (red), Row 2: (d) Band 2 (NIR), (e) Band
6 (SWIR), (f) Band 7 (SWIR), Row 3: (g) Band 23 (MWIR), (h) Band 25, (MWIR), and (i) Band
31 (TIR)
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Efforts to use remote sensing methods to map surface water and flood extent

must work within the opportunities for and constraints against observing water as

described earlier, and further limitations imposed by the currently operating fleet of

satellites (discussed more later). Coauthor G. R. Brakenridge at the “Dartmouth

Flood Observatory” (DFO, http://floodobservatory.colorado.edu/) has found a ratio

of the reflectance from the MODIS NIR and Red 250 m resolution bands, in the

form of (NIR (858.5 nm) +A)/(Red (845 nm) +B) to be very useful for rapid water

mapping purposes. This takes advantage of the increase in absorption by water in

the NIR band relative to the red band and the decrease in absorption by other land

surface types in the NIR band relative to the red band and provides a generally

reliable distinction between open water and other land covers (see Fig. 3.3).

Currently operating optical imaging satellite missions and sensors useful for

surface water and flood mapping include the NASA/ USGS Landsat 7 and 8 satel-

lites, the MODerate resolution Imaging Spectro-radiometer (MODIS) instruments

on the NASA Aqua and Terra satellites, the Advanced Land Imager (ALI) sensor

aboard the NASA Earth Observing Mission 1 (EO-1), the ASTER instrument on the

NASA Terra satellite, the VIIRS (Visible Infrared Imaging Radiometer) instrument

on the NASA/NOAA Suomi National Polar-orbiting Partnership (NPP) satellite,

the French Space Agency’s SPOT (Satellite Pour l’Observation de la Terre) satel-

lites, the European Space Agency (ESA)’s Sentinel-2, and high resolution com-

mercial imaging systems such as Digital Globe’s IKONOS, Quick Bird, GeoEYE,

and WorldView satellites.

Each of these systems has capabilities that can contribute unique information on

flooding to disaster managers, who often need frequently updated, finely detailed
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Low : 14648

Value
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Low : 13615

Fig. 3.2 8-day clear sky average land surface temperature maps of Lake Chad derived from

MODIS Aqua thermal infrared data. Units are 50�Degrees K. (a) daytime acquisition, (b)
nighttime acquisition

Fig. 3.3 Lake Chad region.

Dark areas are identified as

open water using the

Dartmouth Flood

Observatory’s classification

method
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information on the location of floodwaters, which may cover very large areas.

However, there is a technology related trade-off between (1) spatial resolution on

the one hand and (2) temporal resolution and areal coverage on the other in the

design of Earth sensing satellites and sensors. Satellite and sensor systems (such as

the Aqua and Terra MODIS sensors) designed to provide data at relatively high

temporal resolution (each MODIS sensor provides a day and a night acquisition for

nearly the entire globe each day) and large areal coverage (the swath width of the

MODIS sensor is 2330 km) generally have to forego high spatial resolution (the

highest spatial resolution bands on MODIS are 250 m, and there are only two

spectral bands at that resolution). In contrast, a higher resolution imaging system

such as the Operational Land Imager on the Landsat 8 satellite provides a single

panchromatic band at 15 m resolution and eight spectral bands at 30 m. However,

the revisit time rises to 16 days at the equator and the swath width decreases to

185 km. What this means in practice for supporting disaster responders with data

from a single sensor during flooding events is that data can be provided either at

moderate to course resolution very frequently or at higher resolution much less

frequently.

Of all the systems on orbit providing data that can potentially be accessed by our

project, the MODIS sensors provide the highest resolution data available on a

nearly global basis each day. This is the reason we decided to concentrate our

initial efforts on providing flood maps based on NASA MODIS data, primarily

using the two highest resolution (250 m) bands, Band 1 (red) and Band 2 (near

infrared). We endeavor to provide products for most of the globe, updated every

day with the least amount of latency we can achieve, and distribute these in easy-to-

use formats.

3.3 The NASA Global Flood Mapping System: Description

The authors have collaborated to develop and operate an experimental, fully

automated, near global, near real-time (NRT) surface water extent and flood

mapping system. The system has been running at NASA’s Goddard Space Flight

Center since November 2011 and many significant improvements have been

implemented since that time. The system ingests data from the MODIS sensors

on the NASA Aqua and Terra satellites, which has been processed by the NASA

LANCE-MODIS system (Ref. http://lance-modis.eosdis.nasa.gov) and further pro-

cesses the data to produce and distribute daily maps of the Earth’s surface water,

including floods. Data are received by LANCE through satellite downlink,

georeferenced, composited into 10� by 10� tiles and provided to our system within

3–4 h of data acquisition. The 10� by 10� tiles are a convenient size for further

processing and consistent with the long-term record of flood maps produced

manually by DFO. Key elements of the NASA Global Flood Mapping system

include an initial screening for clouds and nonwater land cover types, compositing

of the multiple available observations over a few days to minimize cloud-shadow
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false-positives, identification of water using the 250 m resolution red and NIR

bands on MODIS, and masking of cloud and terrain shadows to produce surface

water extent maps, and further masking for “normal” water to produce flood maps.

We use a MODIS-based product (MOD44W, Carroll et al. 2009) developed by the

University of Maryland as the “normal” water mask.

There are numerous remote sensing-based water detection algorithms described

in the literature including the Carroll et al. 2009 classification tree method; the

Pekel et al. 2014 Hue, Saturation, and Value (HSV) transformation approach; and

the Gao 1996 Normalized Difference Water Index (NDWI) formulation. Coauthor

Brakenridge (DFO) developed the water identification algorithm we have adopted

using an empirical approach described later specifically for rapid flood mapping

through an iterative process. The NASA Global Flood Mapping System applies this

approach for land surfaces up to 70� latitude in the Northern hemisphere and up to

50� latitude in the Southern hemisphere (see Fig. 3.7a). The current algorithm

performs well in this global scale region of coverage (which includes most of

humanity) when compared with independent water classifications using Landsat

and other data sources. We believe there is opportunity to improve the algorithm for

specific regions and to identify “fringe” pixels at the water–land interface as water

when the estimated water fraction exceeds 50% (or other fixed percentage).

The initial cloud screening applies a threshold on SWIR reflectance. For a given

pixel, if Band 7 (2105–2155 nm) reflectance<Cloud Threshold then the pixel is not

likely a cloud and is considered for further processing. Brakenridge has found a

useful Cloud Threshold reflectance to be approximately 0.07. The initial screening

for nonwater land cover types applies a threshold on red band reflectance. For a

given pixel, if Band 1 (620–670 nm)<Soil and Vegetation Threshold then the pixel

is not likely soil or vegetation and is considered for further processing. Soil and

vegetation typically have a higher reflectivity in red than water. Brakenridge has

found a useful Soil and Vegetation Threshold reflectance to be approximately 0.2.

Finally, if (Band 2¼NIR+A)/(Band 1¼Red +B)<Water/Land Threshold then

the pixel is labeled as water. Brakenridge has found useful approximate values of

A¼ 0.001, B¼ 0.1, and a Water/Land Threshold of 0.7.

To provide the most spatially complete cloud-free imagery possible, the data are

composited temporally at a discrete number of time periods (1, 2, and 3 days). If a

pixel (1) passes the initial screenings for clouds and nonwater land cover types,

(2) is identified as water using the MODIS red and NIR bands as described earlier,

and (3) does so for half or more of the data acquisitions for a given composite

product (given there are generally two available observations per day: one or two

water identifications for the 1-day product, two or more for the 2-day product, and

three or more for the 3-day product), then the pixel is finally classified as water.

A second-order 14-day composite product is also generated using the 3-day prod-

ucts from the most recent 14 days, to provide a recent historical view of flooding

and surface water extent, which largely overcomes patchiness due to clouds in

products of lesser time extent. Each product also includes an ancillary layer

indicating persistent cloud cover, by compositing the MOD35 MODIS cloud
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mask (Ackerman et al. 2015) over the appropriate compositing period (1, 2, or

3 days).

Shadows from clouds and terrain are difficult to distinguish from water in

MODIS bands 1 and 2 (Fig. 3.4) and must be removed to avoid false positives.

Our masking for cloud shadows (Fig. 3.5) primarily relies on the compositing

process described earlier, with the imperfect result that if cloud (or other) shadows

occur in the same pixel multiple times (e.g., two for the 2-day product), that pixel

will be tagged as water. This does occur in some regions and especially during

seasons of low sun angle. Fortunately, cloud cover generally does change over time,

so cloud-shadow false-positives are infrequent in the 2-day product, and almost

entirely eliminated in the 3-day product. For the 1-day product, because the

potential for false positives from cloud shadows is enhanced, we also geometrically

project cloud shadow locations based on cloud position and height as given in the

MOD35 (cloud mask) and MOD06 (cloud properties) products, and remove provi-

sionally identified water found under the projected clouds. We do not apply this to

the multiday products because the result is often not optimal, due to assumptions we

must make, limitations in the cloud products, and the difference in resolution (the

cloud products are at 1 km compared with the flood maps at 250 m). However, in

the future, we expect to improve these algorithms so that they can be reliably

applied to the multiday products (while minimizing the removal of real water), and

used to generate cleaner 1-day products. Use of Synthetic Aperture RADAR (SAR)

data to penetrate thicker cloud cover may also be used in the future to supplement

the MODIS data; this type of data has recently become readily available from the

European Space Agency’s Sentinel-1 platform and could significantly enhance our

current system.

We have implemented an initial version of terrain shadow masking (Fig. 3.6)

which uses digital elevation data from the NASA/METI (Japan’s Ministry of

Economy, Trade, and Industry) GDEM2 product and solar viewing geometry

information provided with the MODIS data to project and mask areas of expected

terrain shadowing. Due to assumptions required for near real-time production

purposes, and possible inaccuracies in the DEM, the result is not perfect, but

typically reduces terrain-shadow false water detections by 70–90%. This

examples of misidentified flooded areas Flood water

Non-flood water

Insufficient Data

Fig. 3.4 Misidentification of cloud shadows as flood water. Left: clouds and cloud shadows in

MODIS image circled in yellow. Right: cloud shadows misidentified as flood water in same scene
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Fig. 3.6 Terrain shadow masking. System-identified water is shown in yellow. (a) MODIS image

of the Alps in the area of Lake Geneva. (b) 2-day water extent product. Note proliferation of terrain
shadows misidentified as water. (c) 2-day water extent product with terrain shadow mask applied.

Note significant decrease of misidentified water while retaining correct identification of Lake

Geneva

Fig. 3.5 Cloud shadow masking. System-identified water is shown in yellow. First row: (a)
MODIS image of Arkansas, USA in the region of Little Rock with significant cloud cover. (b)
1-day surface water extent product, without projected cloud mask. (c) 1-day surface water extent

product, with cloud mask applied. Note significant removal of misidentified cloud shadow at the

expense of losing correctly identified water in lower left. Second row: (d) and (e) 2-day and 3-day
water extent products without application of cloud mask. Note significant reduction of

misidentified cloud shadow while not losing identification of real water in lower left. (f) 3-day
surface water extent product with cloud mask applied (not a standard system product). Note loss of

water identification in lower left
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significantly reduces the ‘noise’ that will otherwise litter mountainous areas in

winter, when shadows can be substantial at the nominal overpass times of

10:30 a.m. and 1:30 p.m.

The primary product from the NASA Global Flood Mapping System is the

MODIS Water Product (MWP) provided in raster (geotiff) format. This product

tags pixels with one of four values: (0) insufficient data to determine surface

condition, (1) no water detected, (2) normal water detected (matching water layer

of the MOD44W product), and (3) flood water detected (not matching MOD44W

layer). From this product, we also generate rasters and vector layers for: MODIS

Surface Water (MSW), showing all water detected, MODIS Flood Water (MFW),

showing only flood water, and the MODIS Flood Map (MFM) product, which is

simply an annotated 10� 10� graphic product (png format). These products are

made available through a web interface at http://oas.gsfc.nasa.gov/floodmap

(Fig. 3.7a). The web interface allows users to choose the 10� 10� area of interest
for any dates available in our archive (Fig. 3.7b). Users can also access products

with the different compositing options (1, 2, 3, or 14 days), view a slide show of

maps from the past 10 days, review product-related information, and correspond

with the project team. Due to current limitations on data processing and storage, the

option to view 1-day composites is only enabled (manually) during major flooding

events and other times of interest. The data is also automatically delivered to the

Dartmouth Flood Observatory, where additional value-added products are created

and distributed, including automated 14-day (forward running) and annual surface

water products in .shp (GIS vector) formats.

3.4 Remaining Challenges and Mitigation Strategies

Clouds are a critical limiting factor for any type of land surface imaging using

optical instruments. The MOD35 cloud mask used by our project is imperfect and

thus is only provided as an ancillary dataset for the multiday composite products

and used by necessity for the single day product. It is not uncommon for the

algorithm to detect water in pixels that are marked as cloud in the cloud mask

product. Typically, this occurs when the cloud is thin, and thus we are still able to

detect dark water under it in the red and near-infrared bands (this would be more

difficult at shorter wavelengths). If the cloud mask suggests that more than half of

the available observations for a given composite period are cloudy (e.g., three or

four in a 2-day product), the MWP is coded with an “insufficient data” value. Even

so, if the algorithm does detect water in 2 (or more) observations for such pixels,

then the “insufficient data” value is overwritten with values indicating detected

water (or flood). To summarize, we are never completely certain when we can or

cannot see the surface, but the pattern of “insufficient data” values typically pro-

vides useful spatial context that makes clear if a region was cloudy or not. In the

future, we hope to improve the use of the MODIS cloud mask and cloud properties

products to provide more robust flood mapping products, for example, by using the
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Fig. 3.7 (a) Front page of the web interface for the NASA Global Flood Mapping System, (b)
product viewing example from the web interface for the NASA Global Flood Mapping System;

January 2016 flooding of the Mississippi river, (c) limited zoom capability of current interface

56 F. Policelli et al.



cloud optical depth information from the latter to apply customized water detection

algorithms for surfaces below thin clouds, and by making use of the probability of

cloud detection information from the former for use in the cloud shadow masking

algorithm.

We expect our approach to terrain shadow masking described before to be

enhanced by further masking of areas that are substantially elevated above the

local drainage network, and therefore unlikely to flood. This will be made possible

by processing the HydroSHEDS DEM (http://hydrosheds.cr.usgs.gov, a hydrolog-

ically corrected version of the NASA/DoD (Department of Defense) Shuttle Radar

Topography Mission (SRTM) land surface elevation dataset) with the Height

Above Nearest Drainage Algorithm (HAND; Nobre et al. 2011). This algorithm

calculates a drainage network based on the drainage direction of each pixel, and

then computes the elevation difference between each pixel and the point in the

drainage network to which that pixel drains. The result is an elevation surface with

values relative to the local drainage network. An elevation threshold can then be

applied to this HAND DEM to create a mask that covers areas that are substantially

elevated above the local drainage features, and therefore not likely to flood. Two

known problems exist with this method. First, while HAND effectively identifies

the features that create terrain shadows, if the actual shadows are cast onto pixels

beneath the elevation threshold, the HAND-based mask will not remove the false

positives. In other words, confounding terrain shadows may still fall on areas that

are likely to flood. This is common in narrow riverbeds in mountainous regions and

with shadows cast by tall features. Using the HAND mask in conjunction with the

existing terrain shadow mask partially addresses this concern. The second issue is

that small water bodies that are elevated above the main drainage network may be

improperly masked. This was found to be an issue in the glacial regions of the

Himalayas. Development and testing of this algorithm has been completed and it

will be included in the next version of the system. Dark volcanic soils have also

been found to be misidentified as water (Fig. 3.8) in the current system and will

need to be masked.

Detection of water under dense vegetation cover is also a very challenging

problem and a significant error of omission for the NASA Global Flood Mapping

System and other similar approaches to water extent and flood mapping. The

project team is investigating several approaches, including use of thermal infrared

and Synthetic Aperture RADAR (SAR) data, to introduce mapping of these waters

into the current system. As discussed earlier, under certain conditions, thermal

infrared data can detect water because of temperature differences between the water

and the surrounding land (see Fig. 3.2). Specifically, some researchers have found

utility from this method for mapping water, including under vegetation canopies, in

semiarid and arid regions where the water temperature changes much more slowly

due to the diurnal heating cycle than adjacent dry soil (Leblanc et al. 2011). SAR

backscatter coefficient data is extremely useful to distinguish flooded vegetation,

nonflooded areas, and open water (Jung and Alsdorf 2010). Certain types of flooded

vegetation in SAR amplitude images yield brighter returns than nonflooded areas

because the radar pulse is returned to the antenna when it reflects from water
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surfaces and scatters from inundated vegetation (i.e., the ‘double bounce effect’). In

contrast, open water shows little backscattering return (i.e., a specular reflection).

Furthermore, SAR data can provide information on surface water elevation changes

through analysis of variations of interferometric coherence (Jung and Alsdorf 2010;

Jung et al. 2010).

Lakes and rivers with a high sediment load, which may appear chalky blue or

muddy brown in visible imagery, are often not detected as water by the current

MODIS algorithm. This is a fundamentally difficult issue because such water

bodies can appear spectrally quite similar to certain types of uninundated land

surfaces in the highest resolution MODIS bands. Use of both SAR and thermal IR

bands may help address this issue.

Finally, the current MOD44W reference water is not optimal for our purposes

because it is seasonally static and in places out of date (some indicated lakes have

changed shape or no longer exist, while others have been formed; some rivers have

changed course), and thus does not reflect normal seasonal lake and river water

height variations. Efforts are underway by the authors to develop an ephemeral

water map as an optional mask for our product users.

3.5 Product Use

The target audiences for the NRT flood products are (1) organizations involved in

disaster management and humanitarian relief and (2) the scientific research com-

munity. Recent users in the former category include: UN OCHA, The World Food

Program, UNOSAT, the Global Disaster Alert and Coordination System,

U.S. FEMA, Swiss Re, GeoSUR in Latin America, and the UK-based NGO

Landsat 8 Dec 17, 2013 MODIS NRT Product Dec 17, 2013

Flood water

Non-flood water

Insufficient Data

Fig. 3.8 Misidentification of volcanic soils as water. Left: Landsat 8 image of Hawaii showing

(dark) volcanic soils. Right: NASA MODIS flood map of Hawaii showing locations of

misidentified floodwater (red)
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MapAction. In the latter category are a handful of researchers working to use the

data to improve the results of hydrological models or for understanding regional

flood history. Though they are few in number, their work may prove to be extremely

valuable both to our understanding of the Earth’s surface water and to our ability to

produce accurate near-term forecasts of hydrological conditions, including

flooding.

Because our website is open to the public and we do not track users, it is not

possible to know who all of the users are; however, usage statistics were collected

for the website to provide insight into the size of the user community. Not including

traffic from automated programs, the website received an average of 588 unique

visitors each month from June 2015 through February 2016, the period of data

collection. Only 48.5% of visits to the website last longer than 30 s, which may

mean that roughly half of the unique visitors do not stay long enough to signifi-

cantly interact with the website. Therefore, the number of unique visitors per month

that visit the website and view some of the available information is probably in the

hundreds but is less than 500. The average bandwidth per month is 55.07 GB, which

means an average of 93.7 MB per unique visitor. Figure 3.9 shows the average

number of pages accessed from each country during the period of data collection.

Fig. 3.9 Average number of pages accessed from each country from June 2015 through February

2016. The most prolific users are the US (24,085 pages/month), China (13,528 pages/month), and

the Netherlands (17,717 pages/month)
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3.6 Product Evaluation

Except through the use of other remote sensing products, or of severely limited

numbers (in most cases nonexistent) of ground observations, there are few options

for evaluating the results of satellite-based water and flood mapping. Beatriz

Revilla-Romero et al. (2015) compared the NRT flood mapping products with the

European Union Joint Research Center’s Global Flood Detection System (GFDS)

flood maps, which are based on the use of satellite-based passive microwave

systems. The authors found that for the ten major flood events studied, the two

systems provided highly complementary results. While the microwave system

consistently detected more water, particularly during heavy cloud cover, the higher

resolution optical data from the MODIS system provided considerably more detail

valuable to disaster managers.

A second evaluation, conducted by the flood mapping team members at NASA

GFSC and DFO, was largely restricted to visual inspection and qualitative assess-

ments of the automated mapping results compared to the MODIS products and

augmented by other sources. This evaluation focused on ~50 flood sites and ~50

nonflood sites containing “permanent water.” The selection of these sites was based

on several criteria to better understand how different factors influence the results.

These criteria included: (1) varying latitudes, (2) different times of the year,

(3) areas of high and low percentage cloud cover, (4) areas in which the flood

mapping team had active projects (and thus complementary datasets useful for

evaluation), and (5) flooded areas that coincide with various land cover types,

represented by the NASA MODIS 500 m IGBP Land Cover Type product. The

evaluation analyst used a scale of 1–5 to rate the quality of the products as follows:

1—poor¼water not detected or water erroneously detected.

2—fair¼ less than half of the water is detected.

3—good¼ about half of the water is detected.

4—excellent¼most of the water is detected.

5—almost perfect¼ nearly all of the water is detected.

TMC—Too Many Clouds¼ no flood or permanent water detected.

The results for both flood and nonflood sites are listed in Tables 3.1 and 3.2,

respectively. The full evaluation report is online and can be accessed at (http://oas.

gsfc.nasa.gov/floodmap/documents/NASAGlobalNRTEvaluationSummary_v4.

pdf). Overall, the flood event and permanent water detection capabilities of the

NASA Global MODIS Flood Mapping products worked very well (see example in

Fig. 3.10).

Performance patterns did not seem to be influenced by latitude or time of the

year, although IGBP land cover type may be a factor. The evaluation did not reveal

any unknown deficiency in the water detection algorithm, as most of the errors of

omission seem to be results of cloud cover and inundated vegetation, while areas of

extreme terrain, volcanic material, and cloud shadows lead to errors of commission.

These causes, along with the examples provided in the report, are listed in Table 3.3.
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A main conclusion of the product evaluation was that some opportunities for

improvement lie in the possibility to adjust the band math portion of the algorithm

for different terrain and/or land cover types. Investigating change detection

approaches may also prove fruitful.

3.7 Future Prospects

In the near term, we expect the current product suite and utility of the NASA Global

Flood Mapping System to be enhanced through a number of the strategies discussed

earlier, including the HAND masking of false positives caused by terrain shadows

on areas of high slope, by transitioning to use of swath data to provide improved

shadow masking and decreased product latency, and by the implementation of a

new web Portal to enable inclusion of additional flood mapping products (including

those derived from Landsat data) and supplemental datasets useful to disaster

managers (including roads, schools, hospitals, etc.). Our goals in this regard include

supporting improved situational awareness for disaster managers, improved online

use of the data, and facilitating development of more customized user interfaces.

Other ongoing efforts include the development of an ephemeral water mask as an

optional aid to distinguishing flood from normal water fluctuations, and

Table 3.1 Evaluation of products in flood conditions

Rating Count %

5—almost perfect 11 21

4—excellent 10 19

3—good 2 4

2—fair 1 2

1—poor 11 21

TMC—too many clouds 17 33

Outside product coverage area 1 Eliminated from equation

Totals 53 100

Table 3.2 Evaluation of products in permanent water conditions

Rating Count %

5—almost perfect 16 29

4—excellent 9 16

3—good 7 13

2—fair 2 4

1—poor 4 7

TMC—too many clouds 17 31

Outside product coverage area 1 Eliminated from equation

Totals 56 100
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transitioning the current system to an operational organization. Important system

enhancements to the NASA Global Flood Mapping System which we hope to be

able to implement in the intermediate term include improved cloud shadow

masking, masking of volcanic soils, updating of the current normal water mask,

and processing of water extent and flood maps from the entire MODIS data archive.

Additionally, when the NASA MODIS sensors stop providing data (they are

both already operating well beyond their design lives), products derived from

VIIRS sensor data provided by the NASA Suomi/ NPP mission and future

Table 3.3 Causes of erroneous flood commission/omission

Causes of commission Causes of omission

Terrain variation (Oman, Nepal)—terrain

shadow leading to false flood water positives

Cloud cover (Peru, Cambodia)—obscuring

spectral response of flood water

Volcanic material (Hawaii, Syria, Arizona)—

spectral characteristics of volcanic materials

leading to false flood positives

Inundated vegetation (Namibia)—obscures

surface water

Cloud shadow (Ireland, Australia)—shadow

leading to false flood positives

Short-lived floods, small floods, and

sediment-rich areas of water (not encoun-

tered in the evaluation locations)

Fig. 3.10 Example of successful mapping of flood waters in Bosnia and Herzegovina by the

NASA Global Flood Mapping System. Before (lower left) and after (upper right) images of

flooding are shown in the 30 m resolution Landsat images. Areas identified as flooding are

shown in red in the 250 m resolution MODIS flood maps produced by the system
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NOAA NPOES missions will be necessary for the kind of frequent, synoptic, large-

scale flood mapping our project conducts. Further in the future we expect useful

new data sources to become available to our project, possibly including additional

RADAR sources, near real-time hi-resolution commercial data, and data from

planned missions such as the NASA INSAR mission, the ESA Sentinel -1B and

-2B missions, and others. We also expect to improve the reliability of the MODIS

system’s identification of floodwater to enable automated tasking and processing of

other satellites and datasets for areas identified by the system. Additionally, we

expect to develop appropriate methods of estimating uncertainty, an unmet need

that will be particularly valuable for our research users.

Finally, we believe that many aspects of the system can be improved by closer

partnerships with end-users and other stakeholders. For instance, end-users could

guide us toward producing more useful data products and formats, and help us

identify and mitigate local factors such as DEM inaccuracies to support improved

terrain shadowmasking. It is also very likely that the products could be significantly

improved by working with local officials to improve the definition of the normal

water extent.
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Chapter 4

Congo Floodplain Hydraulics using PALSAR
InSAR and Envisat Altimetry Data

Ting Yuan, Hyongki Lee, and Hahn Chul Jung

4.1 Introduction

Tropical wetlands are one of the most important sources of global carbon and

methane emissions and play a significant role in regulating water balance and

maintaining biodiversity (Barbier 1994; Neue et al. 1997; Hayashi et al. 1998).

The water flow through the tropical wetlands, which governs biogeochemical

process, sediment delivery, and nutrient exchange, is probably the most important

controlling factor (Mitsch and Gosselink 2007). However, the complexity of flood-

water flows has not been well captured because floodwater moves laterally across

wetlands and its movement is not bounded like that of typical channel flow. Water

flow across wetlands is more complex than implied by one-dimensional, point-

based measurements.

As an active microwave sensor, Synthetic Aperture Radar (SAR) has all-day and

all-weather imaging capability. In densely vegetated wetlands, the ability of radar

pulse to penetrate canopy depends on its electromagnetic wavelength. It is well

known that a SAR system with longer wavelength has better canopy penetration

capability than shorter wavelength. Therefore, the L-band SAR instrument with a

wavelength of 23.6 cm onboard JERS-1 and ALOS-1 has been successfully used to

map floodplain inundation extents in river basins with dense vegetation canopy,
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such as the Congo and Amazon basins (Hess et al. 1999, 2003; Rosenqvist and

Birkett 2002; Lee et al. 2014). Apart from inundation areas in the wetlands, L-band

SAR amplitude images have also been used to estimate water level changes or

water depth in the wetlands based on the fact that the double-bounce backscattering

is enhanced when water level increases beneath the vegetation canopy (Kim

et al. 2014; Lee et al. 2015; Yuan et al. 2015). However, the applicability of SAR

amplitude images in estimating water level change is limited in dense forest area

because the hydrological factor becomes less dominant contributing factors to SAR

backscattering variations (Kim et al. 2014; Yuan et al. 2015).

Interferometric SAR (InSAR) technique has been successfully used to map

relative ∂h=∂t in the wetlands with high spatial resolution (~30 m) and centimetric

accuracy (Alsdorf et al. 2001; Lu and Kwoun 2008; Wdowinski et al. 2008).

However, the interferograms can only provide a spatially relative gradient of

water level changes. Therefore, a vertical reference is needed to convert the relative

changes into absolute changes (Kim et al. 2009). Since most of the floodplains are

not monitored by in situ gauges, satellite altimetry-derived water level change has

been used as the vertical reference instead (Kim et al. 2009). Therefore, by

integrating of satellite radar altimetry and InSAR data, mapping spatially detailed

absolute ∂h=∂t in the wetlands becomes possible.

The Congo wetlands play an important role in global water and carbon cycles,

and regulate global and regional climate and environments (Barbier 1994; Neue

et al. 1997; Hayashi et al. 1998). The Congo River meandering over 4374 km is the

world’s second largest river in terms of discharge (40,200 m3/s) and drainage area

(3.7 million km2) (Lehner et al. 2008). Extensive wetlands and swamps, estimated

to be 190,000 km2, expand along the banks of the river and its tributaries (Hughes

1992; Keddy et al. 2009). Despite its enormous size and its significance to global

and regional climate and environment, the Congo Basin is the least known wetland

system (Keddy et al. 2009; Alsdorf et al. 2016). This is mainly due to the historic

instability and conflicts that have plagued in this region. There used to be more than

400 stream gauges in the Congo Basin until 1960 while there are currently only

about ten operating gauges (Alsdorf et al. 2016). In addition to the fact that most of

the in situ gauges are installed in the rivers, not in the wetlands, the

two-dimensional flow in the wetlands cannot be measured with the gauges (Alsdorf

et al. 2007).

Only a couple of studies have used InSAR and satellite altimetry data to explore

the hydraulics of the Congo’s floodplains. Jung et al. (2010) used two interfero-

grams generated with L-band JERS-1 images obtained in 1996 over the interfluvial

wetlands near the confluence of the mainstem and its major tributaries including the

Ubangi and Sangha, and reported that the flow patterns are not well defined and

have diffuse patterns. Lee et al. (2015) generated two PALSAR interferograms over

the similar central regions and revealed dense fringe patterns showing increasing

∂h=∂t toward the mainstem. Since multitemporal water level changes and hydrau-

lic processes have not been extensively investigated, we aim at generating multiple

absolute ∂h=∂t maps over the middle reach of the Congo near the city of Lisala

using PALSAR images, and quantifying and characterizing the flow dynamics in

the floodplains.
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4.2 Study Area

The study area is located along the middle reach of the Congo mainstem, as shown

in Fig. 4.1, near the city of Lisala, the capital of Mongala District in the Democratic

Republic of the Congo. Large islands can be seen in the river, which is typical in the

Congo River. The floodplains next to the mainstem and the islands are covered with

seasonally flooded forest (Hansen et al. 2008). The river surface slope is relatively

high (6~8 cm/km) compared to other reaches of the Congo River (O’Loughlin
et al. 2013).

4.3 Datasets

4.3.1 Envisat Altimetry

We used Envisat RA2 Geophysical Data Record (GDR) of pass 300 from Oct 2002

to Sep 2010 in this study. The revisit period of Envisat is 35 days. The Envisat GDR

contains 18-Hz retracked range observations using OCEAN, ICE-1, ICE-2, and

SEA-ICE retracking algorithms. The along-track sampling of 18-Hz Envisat altim-

etry measurements is about 350 m. Among these retracked measurements, we

adopted ICE-1 retracked measurements which have been shown to provide better

performance over inland water bodies (Frappart et al. 2006; Yuan et al. 2015). The

instrument corrections, media corrections including troposphere and ionosphere

Fig. 4.1 Map of the study

area with Envisat altimeter

pass 300 (white line). The
red and black dots represent
the intersections of Envisat

altimeter pass and the

wetlands in the southern and

northern floodplains,

respectively. ALOS

PALSAR image coverage is

shown with black box.
Background is topography

from C-band SRTM DEM
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corrections, and geophysical corrections including solid Earth and pole tides were

also applied. For cycles 44–70, we applied 5.6 m level Ultra Stable Oscillator

(USO) anomalies using European Space Agency’s (ESA) algorithm in the form of a

table (ESA 2007).

4.3.2 ALOS PALSAR

Sixteen fine-beam mode ALOS PALSAR images were used in this study, as

summarized in Table 4.1. Seven of them were obtained with Fine Beam Single

(FBS) mode (HH polarization) while the other nine were obtained with Fine Beam

Dual (FBD) mode (both HH and HV polarizations). We adopted the HH polariza-

tion mode SAR images because it is known to be sensitive to water level change

beneath the vegetation (Pope et al. 1997; Rosenqvist et al. 2007) and maintain better

coherence for interferometric processing (Kim et al. 2009). It should be noted that

the FBS and FBD images are generated with different bandwidths of 28 and

14 MHz, respectively (Shimada et al. 2009). Therefore, the spatial resolution in

range direction of FBS image is two times higher than that of the FBD image. To

obtain consistent resolution, the FBD images were oversampled by a factor of 2 in

the range direction.

Table 4.1 List of PALSAR scenes used in this study

Scene ID Operation mode Date Path Frame Polarization mode

ALPSRP074660020 FBD 2007/6/19 640 20 HH/HV

ALPSRP121630020 FBS 2007/8/4 640 20 HH

ALPSRP269250020 FBD 2007/9/19 640 20 HH/HV

ALPSRP262540020 FBS 2007/12/20 640 20 HH

ALPSRP101500020 FBS 2008/3/21 640 20 HH

ALPSRP222280020 FBD 2008/5/6 640 20 HH/HV

ALPSRP155180020 FBD 2008/6/21 640 20 HH/HV

ALPSRP114920020 FBS 2008/12/22 640 20 HH

ALPSRP081370020 FBD 2009/6/24 640 20 HH/HV

ALPSRP215570020 FBD 2009/9/24 640 20 HH/HV

ALPSRP249120020 FBS 2010/2/9 640 20 HH

ALPSRP182020020 FBD 2010/5/12 640 20 HH/HV

ALPSRP128340020 FBD 2010/6/27 640 20 HH/HV

ALPSRP088080020 FBD 2010/9/27 640 20 HH/HV

ALPSRP228990020 FBS 2010/12/28 640 20 HH

ALPSRP235700020 FBS 2011/2/12 640 20 HH
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4.4 Results and Discussions

4.4.1 Inundated Areas from PALSAR Backscattering
Coefficients

The energy backscattered to the SAR antenna is sensitive to surface roughness,

dielectric constant, and terrain slope (Bayer et al. 1991; Mattia et al. 1997; Freeman

and Durden 1998). Accordingly, SAR intensity images have been utilized to map

inundated areas based on different radar backscattering mechanisms depending on

different vegetation types. Over open water surface, the radar pulse follows a

specular travel path, which results in little energy backscattered to the SAR

antenna. In cases of dry vegetation, the backscattering is dominated by volume

backscattering from the vegetation canopy. On the other hand, over inundated but

not submerged vegetation, the water surface and vegetation trunk allow the radar

pulse following a double bounce travel path to the antenna. This double-bounce

backscattering from the inundated vegetation results in brighter SAR intensity,

compared to nonflooded vegetation. This phenomenon has been reported by a

number of studies, such as (Hess et al. 1995; Pope et al. 1997; Lu and Kwoun

2008). Based on the fact that variation of hydrologic condition influences the signal

amplitude backscattered to the SAR antenna, SAR images have been used to

delineate flooded and nonflooded areas in the wetlands (Hess et al. 1995, 2003;

Rosenqvist and Birkett 2002; Lee et al. 2014).

To identify inundated areas, backscattering coefficient (σ0) from PALSAR

images was used in this study. After we generated single-look complex (SLC)

images from SAR raw data, all of the SLC images were first coregistered to a

common SLC image obtained on September 19 2007. Second, all of the SAR

images were multilooked by a factor of 4� 9 to reduce the speckle noise. Next,

the multilooked SAR intensity images were geocoded using the 1-arcsec Shuttle

Radar Topography Mission (SRTM) Digital Elevation Model (DEM). Finally, the

backscattering coefficients were calculated using Equation (4.1) with the geocoded

SAR images, following the method in (Yuan et al. 2015). A median filter of 5� 5

was applied to further reduce the speckle noise.

σ0 ¼ 10 log10 DN2
� �þ CF dBð Þ ð4:1Þ

where DN is the digital number of the geocoded SAR intensity image, and CF is the

radiometric calibration factor. Value of CF is �51.8 for FBD HH data and �51.9

for FBS HH data (Werner et al. 2000).

Figure 4.2 shows the spatial and temporal variations of the calculated σ0. The
Congo mainstem shows constantly low σ0 in all of the σ0 images because of

specular backscattering from open water surface. Significant temporal variations

of σ0 can be observed in the floodplains located along the mainstem. For example,

SAR image obtained on December 20 2007 shows the highest σ0 while SAR image

obtained on February 11 2011 shows the lowest σ0. Threshold classifier is a simple
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yet effective method to delineate inundation extents and vegetation types, which

has been implemented in a number of studies, e.g. (Hess et al. 2003; Rosenqvist

2008; Lee et al. 2014). Here, we used a threshold of�6 dB to classify inundated and

noninundated forest areas (Lee et al. 2014). The threshold of �6 dB has been

determined based on the feasibility of generating water level change time series

using Envisat altimetry, and used in the central Congo floodplain delineating the

flooded and nonflooded forests with PALSAR ScanSAR images (Lee et al. 2014).

Fig. 4.2 Maps PALSAR backscattering coefficients showing seasonal variations over the

floodplains
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Then, the SAR pixels with σ0 lower than �14 dB were classified as the

nonvegetated flooded areas (open water surface) as in (Hess et al. 2003). The

estimated inundation maps are shown in Fig. 4.3. The temporal variation of total

inundated areas is shown in Fig. 4.4. The maps of inundated areas will later be used

to determine if the interferometric phases were dominated by water level change or

atmospheric artifacts.

Fig. 4.3 Classification maps of flooded nonvegetated (blue), flooded forests (cyan), and

nonflooded areas (brown)
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4.4.2 InSAR Processing and Coherence Analysis

Two-pass repeat interferometry method has been applied to process the SAR

images. The interferometric processing uses two SAR images, obtained from

different times with slightly different imaging position. The two SAR images

were first coregistered based on the correlation between the SAR intensity images.

An interferogram was then generated by multiplying the first SAR image (master

image) with the complex conjugate of the second coregistered SAR image (slave

image). Flat earth phase was removed with the baseline and its variation throughout

the interferogram using the satellite orbit information. The topographic phase in the

interferogram was simulated using 1 arc-sec resolution SRTM DEM data and then

was subtracted from the interferogram. After removing the topographic component

from the interferogram, a differential interferogram was generated which represents

the relative ∂h=∂t in the floodplains. The residual phase trend throughout the

differential interferogram caused by inaccurate orbit information was estimated

using a second-order polynomial and then removed from the differential

interferogram.

After all the processes afore mentioned, 15 wrapped differential interferograms

were generated as shown in Fig. 4.5. The interferograms were generated using the

Small Temporal Baseline Subset (STBAS) strategy (Hong et al. 2010). The STBAS

method generates interferograms with small temporal baseline criterion in order to

obtain better coherence in wetland environment (Kim et al. 2013). Following the

STBAS method, we generated the interferograms using every consecutive SAR

image pairs except one interferogram shown in Fig. 4.5d generated using SAR

images obtained on December 20 2007 and June 21 2008. The SAR image obtained

on June 21 2008 was used as the slave image instead of the SAR images obtained on

March 21 2008 or May 6 2008 which would have led to the interferogram with

shorter temporal baseline. Because the SAR images obtained on March 21 2008 or

Fig. 4.4 Temporal variation of total inundated areas
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May 6 2008 represent the dry season with least inundated extents (see Fig. 4.3), the

interferograms generated with those SAR images as the slave images lost coher-

ence. Thus, we have generated the interferogram with the SAR image obtained on

June 21 2008 as the slave image instead. The temporal and perpendicular baselines

of the interferograms and the coherences over the floodplains are summarized in

Table 4.2 (the alphabet in the first column is used to refer each interferogram

hereafter). The coherence values were calculated only over the floodplains, located

in the south and north of the mainstem. The extents of the southern and northern

floodplains were delineated using the SAR image obtained on December 20 2007,

which has the highest σ0. The coherences listed in Table 4.2 are overall higher than

Fig. 4.5 Wrapped PALSAR differential interferograms
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0.2 (except for the interferograms (d) and (h)), indicating that the interferometric

phases are overall well maintained using STBAS.

The fringe patterns of the interferograms in the wetlands can be characterized by

spatial patterns of water level changes and atmospheric artifacts. The interferomet-

ric phases due to water level changes and atmospheric artifacts have similar

wavelength (Hong et al. 2010). Thus, the approach used in Mora et al. (2002) to

remove the atmosphere artifacts by applying the high-pass filter in time domain is

not possible in wetlands environment. However, we can use the σ0 images to

determine if the fringes in the interferogram are likely to be caused by water

level change or atmospheric delay (Lu and Kwoun 2008). In addition, it is expected

that the fringes due to water level change should exhibit seasonal dynamics which is

different from the atmospheric artifacts, characterized by high spatial correlation

but low temporal correlation (Mora et al. 2002). Based on these two criteria, three

fringe patterns caused by water level changes were identified.

The first pattern is the fringes parallel to the Congo mainstem flow direction

observed in the southern floodplain, as shown in Fig. 4.5c, d, g, h, j–l, and in the

northern floodplain, as shown in Fig. 4.5c, d, j, and k. These fringes are likely due to

water level changes, not atmosphere delays. First of all, the atmosphere artifacts

cannot result in such repeated pattern along the river. In addition, the location of the

fringes corresponds to the location with significant σ0 variations, implying varia-

tions in hydrologic condition. Furthermore, this parallel fringe patterns are com-

monly observed in a number of interferograms along the mainstem, which further

indicates that it is not due to the atmosphere effect. The second fringe pattern that

Table 4.2 List of ALOS PALSAR interferometric pairs

Pair

Master

date

Slave

date

Temporal

baseline

(days)

Perpendicular

baseline (m)

Mean

coherence in

southern

floodplain

Mean

coherence in

northern

floodplain

(a) 20070619 20070804 46 273.20 0.34 0.33

(b) 20070804 20070919 46 �449.90 0.29 0.25

(c) 20070919 20071220 92 �36.37 0.29 0.29

(d) 20071220 20080621 92 �248.69 0.20 0.19

(e) 20080321 20080506 46 579.67 0.23 0.28

(f) 20080506 20080621 46 456.64 0.26 0.31

(g) 20080621 20081222 184 �828.84 0.22 0.23

(h) 20081222 20090624 184 397.32 0.19 0.20

(i) 20090624 20090924 92 �270.75 0.28 0.38

(j) 20090924 20100209 138 275.42 0.23 0.23

(k) 20100209 20100512 92 283.69 0.20 0.20

(l) 20100512 20100627 46 114.33 0.28 0.32

(m) 20100627 20100927 92 388.08 0.25 0.30

(n) 20100927 20101228 92 �544.35 0.24 0.24

(o) 20101228 20110212 46 364.13 0.25 0.26
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could be due to water level change is the broad flooding pattern perpendicular to the

Congo mainstem in the northern floodplain which is observed in interferograms

shown in Fig. 4.5a, b, and l. Similar to the first fringe pattern mentioned earlier, the

atmosphere effect cannot result in this repeated fringe pattern. The third phase

that could be due to water level change is the fringes observed along the

boundary between the northern floodplain and the upland, as can be seen from

Fig. 4.5f and m. The broad radial phase patterns in southwestern edge of Fig. 4.5i,

and southeastern edge of Fig. 4.5k, and the broad red phase pattern in Fig. 4.5l, are

likely caused by atmospheric delay, not water level changes because of negligible

variation in σ0 as shown in Fig. 4.2.

4.4.3 InSAR-Derived ∂h=∂t

Measurements of ∂h=∂t from InSAR were obtained by unwrapping the differential

interferograms in Fig. 4.5. Six interferograms (a, c, d, f, l, m) were selected for

unwrapping as examples for each fringe pattern identified in Sect. 4.4.2. The

interferograms (c) and (d) were selected for the first phase pattern (dense fringes

parallel to the mainstem), (a) and (l) for the second phase pattern (broad fringes

perpendicular to the mainstem), and (f) and (m) for the third fringes pattern

observed along the boundary of northern floodplain.

Because InSAR-derived ∂h=∂t only represents spatially relative water level

changes in the wetlands (Alsdorf et al. 2007; Kim et al. 2009; Lu et al. 2009), a

vertical reference (or offset) is necessary to convert the relative water level changes

from InSAR to absolute water level changes. Since there is no in situ gauge in the

study area, the offset estimation has been performed using two different methods.

The first method is to use the water level change observed from Envisat altimetry to

estimate the offset for the interferograms in Fig. 4.5c and d. Profile comparisons of

Envisat altimetry and InSAR measurements are shown in Fig. 4.6 in order to

examine the feasibility of using altimetry-derived water level changes to estimate

the offsets. The Envisat altimetry measurements have been interpolated to the SAR

acquisition times. However, it should be noted that satellite altimetry measurements

in dry season can be erroneous such as the black dots in Fig. 4.6d, which have been

excluded from the offset estimation. The comparison shows a good agreement

between altimetry and interferograms (c, d) from high water level season. The

R-squared values are high varying from 0.8 to 0.93 and the root-mean square

differences are from 7 to 11 cm. After unwrapping these interferograms and

applying the offsets estimated from Fig. 4.6, absolute ∂h=∂t maps were generated

as shown in Fig. 4.7a and b. The absolute water level change maps in Fig. 4.7a and b

suggest that the proximal (channel marginal) floodplain close to the mainstem has

the largest water level change during high water season. The absolute ∂h=∂t range
up to from 1.2 to 1.4 m over both the southern and northern floodplains.
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For the interferograms (a, f, l, m), since they were not obtained in high water

season, the Envisat altimetry measurements become too noisy to be used to estimate

the offsets. However, by visually examining the two SAR images (obtained on June

19 2007 and August 4 2007) used to generate the interferogram (a), the SAR image

obtained on August 4 2007 has higher σ0 than the SAR image obtained on June

19 2007. The higher σ0 is expected to be due to higher water level. Thus, the

absolute∂h=∂t is also expected to show positive (or increasing) water level change.

With this positive water level change direction, we generated the absolute ∂h=∂t
map in Fig. 4.7c by assigning 0 to the pixel which has the lowest∂h=∂t. In this case,
as it cannot be assumed that the floodplains have been completely drained on June

19 2007 based on its σ0 image, we intend to use this map only to examine whether

∂h=∂t has increased or decreased, and the directions of water flow. Similarly, we

assigned 0 to the pixel with the lowest ∂h=∂t for the interferograms (f, m), and

obtained the absolute ∂h=∂t maps shown in Fig. 4.7e and f. For interferogram (l),

the SAR image obtained on May 12 2010 has higher σ0 than the SAR image

obtained on June 27 2010. With decreasing σ0, interferogram (l) is expected to

show water level decreasing. Accordingly, we assigned 0 to the pixel with the

highest ∂h=∂t for interferogram (l) to obtain the absolute ∂h=∂t map shown in

Fig. 4.7d. Although Fig. 4.7c–f are not the true absolute ∂h=∂t maps, they still

reflect the relative ∂h=∂t within the floodplain. By visually observing the values in

Fig. 4.7c–f, the relative ∂h=∂t in the floodplain are at decimeter level.

Fig. 4.6 (a) and (d) are the profiles of Envisat altimetry-derived and InSAR-derived water level

changes extracted along the Envisat altimetry ground track from interferograms shown in Fig. 4.5c

and d. Measurements within the southern floodplain and northern floodplain are marked as red dots
and black dots in Fig. 4.1. (b) and (e) show the statistical comparison between them over the

southern floodplain, and (c) and (f) illustrate the comparison over the northern floodplain
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Fig. 4.7 Absolute water level change map over the interfluvial wetlands from integration of

Envisat altimetry and PALSAR InSAR (a) 2007.09.19-2007.12.20, (b) 2007.12.20-2008.06.21.

(c)-(f) show the absolute∂h=∂tmaps by assigning 0 to pixel with the highest or lowest water level

changes. Black arrows show the water flow direction based on mass continuity
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4.4.4 Hydraulic Processes from Absolute ∂h=∂t

Based on the six absolute ∂h=∂tmaps shown in Fig. 4.7, the water flow hydraulics

in the Congo floodplain can be investigated based on mass continuity as in Alsdorf

et al. (2007) and Jung et al. (2010). It is based on the fact that the location with

greater ∂h=∂t receives more water than the location with smaller ∂h=∂t. Thus, the
water should flow from smaller ∂h=∂t to greater ∂h=∂t.

During high water season as shown in Fig. 4.7a and b, both in the northern and

southern floodplains, there is an overall increasing ∂h=∂t trend from upland to the

mainstem. In other words, the proximal floodplain closer to the mainstem has

greater ∂h=∂t than the distal (valley marginal) floodplain closer to the upland.

Back flow arrows in Fig. 4.7a and b are based on the continuity with directions

pointing toward areas of greater water accumulation during water increasing times

in Fig. 4.7a and pointing toward evacuation during water decreasing times in

Fig. 4.7b.

During low water season, we observed broad and diffuse pattern of ∂h=∂t
as discussed in Sect. 4.4.3. Hence, no obvious hydraulic processes based on subtle

∂h=∂t can be observed. Figure 4.7c and d show broad water level change pattern

parallel to the Congo mainstem in the northern floodplain. Figure 4.7e and f show

water level change at the boundary in the northern floodplain, showing water flow

from upland toward the floodplain.

As in Fig. 4.8, we also examined the relationship between our ∂h=∂t
measurements and the 1 arc-sec resolution SRTM topography for the broad and

diffuse ∂h=∂t patterns observed in Fig. 4.7c and d. The ∂h=∂t map, shown in

Fig. 4.7c, during the water filling period shows a flow convergence toward the red

circular region. The∂h=∂tand SRTM profile comparison in Fig. 4.8a shows that the

greater ∂h=∂t values are within the topographic depression area. On the contrary,

the ∂h=∂t map in Fig. 4.7d, during the water draining period shows a flow

divergence from the identical depression area based on Fig. 4.8b.

Fig. 4.8 Comparisons between absolute∂h=∂tand SRTM topography extracted along the profiles

shown as white lines in Fig. 4.7c and d
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4.5 Conclusion

A stack of PALSAR interferograms was generated over the Congo floodplain near

the city of Lisala. Two absolute water level change maps by integrating InSAR-

derived relative ∂h=∂t and Envisat-derived absolute ∂h=∂t were generated. The

proximal floodplain close to the mainstem has greater absolute∂h=∂t than the distal
floodplain close to the upland. Water level change difference within the floodplains

can reach up to 1.2–1.4 m in high water season while the difference is at decimeter

level in low water season. The absolute ∂h=∂t maps have also been used to

investigate the water flow hydraulics in the Congo floodplain based on the mass

continuity. The absolute ∂h=∂t maps in low water season suggest that the water

flow is not well confined and has broad and diffuse pattern. On the other hand, the

absolute ∂h=∂t maps in high water season show rapid spatial variation indicating

water flow from the floodplain toward the mainstem. The relationship between the

absolute∂h=∂t in low water season and SRTM elevation shows the low topography

depression area has the greater water level changes during both the water filling and

draining periods.
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Chapter 5

Optical and Physical Methods for Mapping
Flooding with Satellite Imagery

Jessica Fayne, John Bolten, Venkat Lakshmi, and Aakash Ahamed

5.1 Introduction

Flood and surface water mapping is becoming increasingly necessary, as extreme

flooding events worldwide can damage crop yields and contribute to billions of

dollars economic damages as well as social effects including fatalities and

destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).

Utilizing earth observing satellite data to map standing water from space is indis-

pensable to flood mapping for disaster response, mitigation, prevention, and warn-

ing (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s

(Landsat, USGS 2013), researchers have been able to remotely sense surface

processes such as extreme flood events to help offset some of these problems.

Researchers have demonstrated countless methods and modifications of those

methods to help increase knowledge of areas at risk and areas that are flooded

using remote sensing data from optical and radar systems, as well as free publically

available and costly commercial datasets.

In 1972, Landsat 1 also called Earth Resources Technology Satellite-1 (ERTS-1)

was launched, prompting an explosion of literature on the ability to map surface

J. Fayne, B.A., M.S. (*)

Department of Earth and Ocean Sciences, University of South Carolina,

Columbia, SC, USA

e-mail: jessicavfayne@gmail.com

J. Bolten • A. Ahamed, M.Sc.

Hydrological Sciences Laboratory, NASA Goddard Space Flight Center,

Greenbelt, MD, USA

V. Lakshmi

Department of Geophysics, Stanford University, Stanford, CA, USA

School of Earth, Ocean and Environment, University of South Carolina,

Columbia, SC, USA

© Springer International Publishing Switzerland 2017

V. Lakshmi (ed.), Remote Sensing of Hydrological Extremes, Springer Remote

Sensing/Photogrammetry, DOI 10.1007/978-3-319-43744-6_5

83

mailto:jessicavfayne@gmail.com


processes from space using wavelengths in the optical and near-infrared spectrum

(Irons et al. 2016). Landsat 1 paved the way for the Landsat sensor series (1972–

most recent launch of Landsat 8 in 2013), along with many other optical and radar

surface monitoring sensors and sensor series, including Advanced Very High

Resolution Radiometer (AVHRR); Moderate Resolution Imaging Spectrora-

diometer (MODIS); Advanced Spaceborne thermal Emission and Reflection Radi-

ometer (ASTER); Visible Infrared Imager Radiometer Suite (VIIRS); Satellite Pour

l’Observation de la Terre (SPOT); Sentinel, Advanced Land Observing Satellite

(ALOS); Envisat; Radarsat; and Soil Moisture Active Passive (SMAP).

Earth observing satellites are able to capture images of the earth at varying

spatial scales, and with different orbital periods, making each satellite sensor and

dataset unique. Optical sensors may have the ability to capture surface reflectance

data from visible blue, green, and red wavelengths, as well as emissivity data

through infrared wavelengths. Though a variety of wavelengths and bandwidths

are available, the two bandwidths found in many sensors are centered around the

red wavelength (~0.65 nm) and near-infrared wavelength (~0.85 nm) (Berkeley Lab

2016), with varying bandwidths. These two bands are universally used in surface

monitoring studies including mapping vegetation phenology, surface water and

flooding, snowmelt, and drought monitoring (Rouse et al. 1973; Colwell 1974;

Tucker 1979; Song et al. 2004; Pettorelli 2009; Hasan 2011; Gopinath et al. 2014;

Abbas 2014). Infrared wavelengths are key for water studies due to the high

absorption over water, and relative ease of identification beside dry land (Frazier

2000; Lei 2009).

The availability of Landsat/ERTS-1 and AVHRR-1 data allowed scientists

(Rouse et al. 1973; Colwell 1974; Tucker 1979) to develop an algorithm to quantify

vegetation change over time, the Normalized Difference Vegetation Index (NDVI).

Because the index uses near-infrared and red wavelengths, it can be universally

applied to most sensor datasets. In addition, the exploitation of the difference

between the near-infrared and red wavelengths allows NDVI to be applied to

other studies such as water detection (Lei 2009), and it has inspired similar spectral

indices specifically for water mapping such as the Normalized Difference Water

Index (NDWI) (Gao 1996; McFeeters 1996), the Vegetation Supply Water Index

(VSWI) (Cai et al. 2011; Abbas et al. 2014), and the Normalized Difference Pond

Index (NDPI) (Lacaux et al. 2006).

While these indices may be useful for analyzing surface conditions, they are also

subject to errors introduced by input datasets. Some sensor-based errors include

scan line errors (SLC-Off Products, 2013), scan angle errors (TIRS SSM Anomaly,

2015), and edge of swath pixel-bowtie effects (NOAA-NESDIS VIIRS User’s
Guide 2013), while atmospheric conditions such as cloud coverage, cloud shadow,

haze, pollution, scattered light from ground-based reflective objects, and atmo-

spheric scattering may render many images unsuitable for analysis (Anderson

et al. 2007; Holben 2007; Pettorelli et al. 2009). In areas where cloud coverage is

pervasive, the use of cloud-penetrating radar is ideal, allowing data on surface

texture to be collected instead of reflectance or emissivity (Brivio et al. 2002;

Parinussa et al. 2016). When radar data is unavailable, preprocessing methods

such as regression (Swets et al. 1999; Zhang et al. 2003), curve fitting (van Dijk
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et al. 1987), and maximum value (Holben 2007) formulas as well as cloud masking

techniques (Fayne et al. 2015) have been implemented alongside atmospheric

correction (University of California Berkeley College of Natural Resources) to

determine the likely pixel value.

The sensors chosen for flood mapping efforts largely depend on the goals of

the individual project, as well as sensor availability and funding. Optical sensors

may be limited to surface inundation detection, while radar sensors may to

determine water depths (Smith 1997; Hess et al. 2003). The ability to see fine

details on the ground, known as spatial resolution, and to get data in a timely

manner, known as temporal resolution, are important questions asked in remote

sensing research. Studies may choose to sacrifice temporal resolution in favor of

spatial resolution to create risk maps (Mueller et al. 2016; Revilla-Romero

et al. 2015), while others may create high temporal resolution near real-time

mapping products (Nigro et al. 2014). Further, studies may require the use of

elevation models (Gallant and Dowling 2003; Guerschman et al. 2011), land

cover datasets (Townsend and Walsh 1998; Gallant and Dowling 2003; Sun

et al. 2012), or hydrological modeling software (Knebl et al. 2005) to obtain a

certain level of precision or accuracy.

This chapter will review methods for mapping floods and open water using

spectral formulas and statistical methods commenting on false color composite

techniques with optical data, physical models using radar and ancillary datasets

such as land cover maps and digital elevation models (DEMs), and will conclude

with a look into the future of flood mapping techniques and applications. Some

methods may be demonstrated with MODIS Terra 250- and 500-m data (path/row

tile H28v07) (NASA-LPDAAC; USGS-EROS 2016) over the Lower Mekong

Basin (LMB) to demonstrate visual impacts of the differences over the same

study area. The demonstration area is located in Cambodia and Southern Vietnam,

and the focus will be around the Tonle Sap Lake and Mekong Delta. This region

was chosen because the LMB experiences monsoonal flooding between May and

December, the MODIS data and a modified flood extent polygon (UNITAR-

UNOSAT 2013) used in the example figures are observed during October 2013

(Fig. 5.1).

5.2 Optical Sensors

Flood mapping research using optical and near-infrared sensors may use a combi-

nation of statistics and empirical formulas to measure flood extent, such as spectral

indices and single-band thresholds. To understand the capabilities and limitations

of spectral indices, researchers must consider atmospheric penetration at certain

wavelengths and the product availability of the desired wavelengths.

The United States Geological Survey (USGS) has produced an online Spectral

Characteristics Viewer (USGS 2014), graphing the spectral response patterns of

nine different minerals, nine vegetation types, four water types (ice, snow, clear,
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turbid), and three types of “desert varnish,” between 0 and 3000 nm (0–3 μm). The

spectral viewer also allows users to view the bands relative to the spectral response

graph for four Landsat sensors, Earth Observing-1 Advanced Land Imager, (EO-1

ALI), the ASTER and MODIS sensors on the Terra platform, and Sentinel 2A

MultiSpectral Instrument (MSI).

Spectral graphs and others (ASTER Spectral Library 2008) like this help to

explain how spectral indices and wavelength-based algorithms help scientists

identify water features as separate from land. The spectral bands from MODIS

show sensitivity to differences in reflectance from lawn grass, dry grass, and water.

Note how the lawn grass spectra reflectance increases sharply in the near-infrared,

while clear and turbid water show very low reflectance in visible wavelengths, and

almost zero reflectance in the infrared wavelengths. The clear and turbid water in

blue and dark blue do not reflect light past 1.2 μm, or 1200 nm. This allows for a

clear delineation of water and other features using wavelengths beyond 1200 nm,

such as bands MODIS 5, 6, and 7. In addition, the contrast between the highly

reflective grass and very low reflectivity in clear and turbid water make the use of

band 2 particularly useful.

Because water absorbs infrared radiation instead of reflecting (Campbell and

Wynne 2011), also evidenced by the Spectral Viewer, many studies have been able

to take advantage of the “dark pixel” values that occur as a result of low reflectance.

As you can see in Fig. 5.2, the near-infrared shows clear and turbid water having a

Fig. 5.1 The demonstration region is the Lower Mekong Basin, seen here with MODIS (path/row

tile H28v07). The southern region of the MODIS tile is extracted to highlight areas that are

commonly flooded along with the modified flood extent
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much lower reflectance than grasses, which will yield an infrared image where both

water and grasses are present to show grass as very bright as water as very dark.

5.2.1 Band Thresholding

In 1993, Manavalan et al. applied a density slicing technique to a series of near-

infrared (760–900 nm) images to identify the appropriate thresholds for the land–

water boundary to monitor reservoir capacity. Density slicing generally involves an

iterative process of the arbitrary segmentation of image values into intervals to aid

in the visual identification of spectrally dissimilar features. Similarly, Frazier and

Page (2000) compared the classification accuracy of density slicing to a more

sophisticated maximum-likelihood classification to identify water bodies. In

Frazier and Page (2000) the boundaries to extract the water bodies were selected

by first identifying 12 different training sites over three water body types (river,

lagoon, and dam) and using the maximum and minimum values for all training

areas across Landsat-5TM bands 1–7. The study found that the values extracted for

band 5 (1550–1750 nm) gave the best visual approximation of the ground truth

image, achieving an overall accuracy of 96.9%, compared to 97.4%, the overall

accuracy of the maximum-likelihood classification, demonstrating that single-band

threshold techniques may be equally beneficial for mapping water compared to

more data and computation intensive methods (Fig. 5.3).

The density slice technique demonstrated here shows how a grayscale infrared

image (a) can be first transformed by applying a color ramp that helps distinguish

between different features (b). The image here is in the raw digital number format

from MODIS. The areas that reflect very highly may reach 3000, while areas that

absorb infrared will be very low. Because water absorbs infrared, it is expected to

Fig. 5.2 USGS Spectral Viewer with dry and lawn grass, along with melting snow, clear water,

and turbid water with Terra MODIS bands 1–7
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have a very low reflectance in MODIS band 6. Finally, upon visual examination, a

threshold such as 1500 in this cause can be selected that best depicts the feature of

interest (c).

5.2.2 Spectral Indices

Other uses of red and infrared reflectance data combine the two bands into spectral

indices. The one such spectral index is the Normalized Difference Vegetation Index

(Rouse et al. 1973; Colwell 1974; Tucker 1979). The index was created to identify

and measure vegetation health and phenology in ERTS-1, using a normalized scale

�1 to 1, where 1 is very healthy vegetation, and values approaching zero are

unhealthy vegetation or not vegetation at all (McFeeters 1996). The contrast of

the high absorption of the red wavelength and the high reflectance of infrared by

plant chlorophyll allows researchers to normalize chlorophyll activity between

different plant types and various stages of development (Tucker 1979; Gao

1996). However, the normalization of the infrared and red wavelengths allows

researchers to use the negative side of NDVI to focus on water’s absorption of

infrared to separate land and water (Lacaux et al. 2006; Lei et al. 2009), which may

also be useful in flood monitoring studies.

Two similar studies in 1996 created indices particularly for measuring water, the

Normalized Difference Water Index (NDWI). One index maximizes the green

(Landsat 4MSS 500–600 nm) reflectance of water features, while minimizing the

infrared (Landsat 4MSS 800–1100 nm) reflectance, (called NDWIg hereafter)

(McFeeters 1996) in order to delineate open water features. A modification of the

NDWIg index helped to reduce sensitivity and over-detection of water in urban

areas (Xu 2006). The MNDWI (MNDWIg) replaces the near-infrared wavelength

(Landsat-5TM 760–900 nm) with mid-wave infrared (Landsat-5TM

1550–1750 nm), as there is greater contrast in the reflectance of lake water, urban

areas, and vegetation in the mid-wave band in the study region, compared to

infrared reflectance (Fig. 2 seen in Xu 2006).

Researchers compared these spectral indices to help understand their relevance

across water coverage fractions and sensor types (Lei 2009). The analysis focused

Fig. 5.3 Density slice threshold using Terra MODIS Band 6 (1628–1652 nm) 500 m MOD09A1

8-day composite October 24, 2013
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on the available infrared (or SWIR/MWIR) wavelength combinations with green

(variations of NDWIg), with Landsat 7 ETM+, SPOT-5, ASTER, and MODIS. The

study found that for all sensors excluding MODIS, the short wave bandwidth

(~1550 ~ 1750 nm) worked best with the green bandwidths (~500 ~ 600 nm). Still,

a bandwidth with a shorter frequency than the other sensors’ SWIR, but longer than

the NIR is recommended, as evidenced by the choice of MODIS band

5 (1230–1250 nm) over band 6 (1628–1652 nm), which is more similar to the

SWIR bandwidths on other sensors in the study. The research further concluded that

NDVI is an inappropriate choice for delineating water bodies when short wave and

green bands are available (Lei 2009).

The second NDWI focused on vegetation liquid moisture using short wave

infrared (AVIRIS 1240 nm) and infrared (AVIRIS 860 nm) (called NDWIs here-

after), where both wavelengths are sensitive to canopy chlorophyll and moisture

content (Gao 1996). As NDWIs is sensitive to variations in vegetation moisture, it

may be beneficial to identify spatial variations where forested or crop areas are

becoming inundated with floodwater in order to delineate open water from vegeta-

tion with high water content.

The Normalized Difference Pond Index (NDPI) helps to identify small water

bodies (greater than 100 m2) where vegetation might be present, which may not be

detected by other water indices or NDVI, particularly as pixel sizes increase to more

coarse resolution (Lacaux et al. 2006). NDPI was developed using the SPOT-5

sensor, utilizing the green (500–590 nm) and shortwave (1580–1750 nm called

middle infrared MIR in the text) wavelengths. NDPI identifies standing water when

vegetation is present, which may allow for a more rigorous account of shallow

water bodies that are not easily distinguishable in other water indices that focus on

pure water or turbid water with little vegetation presence, which may be dominant

in deeper flooded areas.

While some rice and grain crops may benefit from seasonal flooding, prolonged

floods can cause immense damage to agricultural areas by wash away soils and

crops. To contribute to agricultural food risk assessment the Modified Land Surface

Water Index (MLSWI) was created by comparing combinations of infrared

(841–876 nm) and two different shortwave bands (1628–1652 and

2105–2155 nm) (Kwak 2015). The near-infrared MODIS band 2 (841–876 nm)

and shortwave infrared MODIS band 7 (2105–2155 nm) were shown to be ideal in

Bangladesh. This is a surprising result, compared with the laboratory spectra (Lei

2009), where the shorter wavelength (1230–1250 nm) was an improvement over the

longer wavelength (1630–1650 nm) when green (550–570 nm) was the comple-

mentary bandwidth.

The surface water indices all show a very similar map of flooding in the Mekong

Region seen in Fig. 5.4. The Normalized Difference Water Index (NDWIg), when

using a threshold of 0–1, shows the smallest flood extent (a). The Modified

Normalized Difference Water Index (mNDWI) shows more flooding, as it was

meant to be more sensitive to the effects of water in heterogeneous pixels (b).

Finally, the Normalized Difference Pond Index (NDPI) shows the largest flood

extent, as it is very sensitive to water turbidity. The variance shown between the
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water indices might be due to the nature of water turbidity in the region and the

relatively coarse resolution, compared to the finer resolution data used in the

original index development.

5.2.3 Color Composite

Earlier research (Ali et al. 1989) identified AVHRR bands 1 (580–680 nm) and

2 (725–1100 nm) as suitable for studying water turbidity and land water separation,

respectively, prompting a study by Rasid and Pramanik (1990) to use the two bands

in a color composite method to delineate flood boundaries and identify areas

inundated with deeper water. Researchers have also used near-infrared color com-

posites to determine which pixel might have a mixture of water and land as

transition zones can be difficult to distinguish in coarse resolution imagery (Chen

2013). The low reflectance in the near-infrared wavelengths allows researchers to

identify turbid water, which may be shallower compared to clear water, which may

be deeper. The color composites aid in preliminary visual inspection before con-

tinuing onto further studies to incorporate other datasets such as elevation models

and land cover datasets, which will be discussed in the next section (Table 5.1).

5.3 Physically Based Models, Additional Input Data

Physical data such as temperature, texture, or elevation have also proven to be

reliable methods to mapping floods. Temperature data can be formulated from

measurements derived from long wavelength infrared data or brightness tempera-

ture conversion from passive microwave sensors, while texture and elevation can be

derived from active microwave products and photogrammetric products derived

from optical data. Additional sources of data that may be used in flood mapping

efforts may be land cover datasets, outputs from hydrological models, and soil

moisture and precipitation information.

Fig. 5.4 Surface water indices (a) NDWIg, (b) mNDWIg, (c) NDPI
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5.3.1 Thermal

As water bodies have a relatively consistent temperature compared to dry land

masses (Schaaf and Lakshmi 2000), land surface temperature (LST) can be used to

delineate water bodies by identifying temperature contrasts between dry land and

water. Researchers have studied this relationship over the United States using the

High Resolution Infrared Sounder (HRIS) (Schaaf and Lakshmi 2000) as well as in

Australia using MODIS (Parinussa et al. 2016), citing differences in surface

temperature recorded between morning and evening satellite overpasses. The

sensors used in these studies contain long wave infrared bands ranging from

10,600 to 12,510 nm to measure temperature through the computation of the data

recorded from surface radiance and emissivity (Chedin et al. 1984; Wan 1999; Lei

et al. 2016).

Cloud coverage during flood events makes the use of infrared imaging for flood

detection a difficult task. While infrared bands may be able to penetrate small

particle masses such as haze or cirrus clouds, denser stratus clouds pose a problem,

preventing clear observations of the surface. In these cases, the use of cloud-

penetrating radar is available, as the large wavelengths are able to surpass the

relatively small particle sizes of the clouds (Liou 2002; Parinussa 2008). Surface

temperature from radar measurements can similarly be used to identify flooding

while penetrating cloud cover. Surface temperature can be calculated from bright-

ness temperatures observed from microwave wavelengths. Brightness temperature,

the measure of radiation emission from the surface, can be recorded by measuring

the temperature at the antenna of the sensor. Surface temperature TS may be

Table 5.1 Formulas wavelengths and thresholds used in Figs. 5.3 and 5.4

Formula

Author

Formula with original bandwidth used

Formula with MODIS bands used

NDWIgreen

McFeeters (1996)

NDWIgreen¼ ((500–600 nm)�(700–800 nm))/((500–600 nm)

+ (700–800 nm))

(band 4� band 2)/(band 4 + band 2)

mNDWIgreen

Xu (2006)

NDWIgreen¼ ((520–600 nm)�(1550–1750 nm))/((520–600 nm)

+ (1550–1750 nm))

(band 4� band 5)/(band 4 + band 5)

NDPI

Lacaux

et al. (2006)

NDPI¼ ((1580–1750 nm)�(500–590 nm))/((1580–1750 nm)

+ (500–590 nm))

(band 6� band 4)/(band 6 + band 4)

NDVI

Rouse

et al. (1973)

NDVI¼ ((700–800 nm)�(600–700 nm))/((700–800 nm) + (600–700 nm))

(band 2� band 1)/(band 2 + band 1)

NDWIswir

Gao (1996)

NDWIswir¼ (860 nm–1240 nm)/(860 nm+ 1240 nm)

(band 2� band 5)/(band 2 + band 5)

VSWI

Cai et al. (2011)

VWSI¼NDVI/LSTkelvin
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produced with varying accuracy, as determined by wavelength and algorithms used,

the general principle of the conversation is given by the relationship with brightness

temperature TB and the emissivity of the surface in kelvin e; r is reflectivity at the

surface (Lakshmi 2013)

e ¼ 1� r;

TB ¼ eTS:

The Advanced Microwave Scanning Radiometer—Earth Observing System

(AMSR-E) and its ancestor AMSR-2 are dual-polarized passive microwave sensors

with a wide range of spatial resolutions, and a twice daily revisit at 1:30 p.m. and

1:30 a.m. AMSR-E functioned from June 2002 to October 2011, while AMSR-2

became available beginning July 2012. MODIS is flown along with AMRS-E on the

Aqua satellite platform, as a complement of sensor types for hydrologic applica-

tions capturing measurements at the same time. Both sensors can derive surface

temperature products; however, Parinussa et al. (2008, 2016) found that because of

the relative consistency between the datasets and the high accuracy as compared

with ground measurements, a combined dataset was proposed, featuring MODIS as

the primary data, and filling in cloud cover gaps using AMSR-2. The MODIS/

AMSR-2 combined surface temperature product could produce a daily flood map

with no cloud coverage when day and night observations are compared. In contrast,

studies have identified that the difference between the vertically and horizontally

polarized brightness temperatures observed simultaneously can also be used to

identify open water, as large differences signify the presence of strongly polarized

signals as are found in open water (Choudhury 1989; Smith 1997).

In addition to identifying flooding through diurnal changes in surface tempera-

ture, LST data can be used with NDVI to create the Vegetation Water Supply Index

(VWSI), as VWSI ¼ NDVI=LST, which was originally created to monitor drought

conditions (Cai et al. 2011), by identifying vegetation stress under arid settings. The

inverse of the drought values may be used to identify above average moisture. A

modification of the VWSI, known as the Normalized Vegetation Water Supply

Index,

NVSWI ¼ VSWI� VSWImin

VSWImax � VSWIminð Þ
� �

*100

normalizes the values over the study period to give more context to the severity of

the output values, which are then segmented into equal interval classifications. The

drought values are below 60, while wet values are above 80 (Abbas et al. 2014).

The three vegetation indices focus on identifying vegetation health and not

water. However, based on the premises that floodwater may obscure vegetation or

that floods might destroy healthy vegetation, vegetation indices may be used to help

map floods. The Normalized Difference Water Index (NDWIs) identifies water

content of vegetation; in Fig. 5.5a, the flooding in the region is shown with high

92 J. Fayne et al.



water content values as 0–0.20. The Normalized Difference Vegetation Index

(NDVI) is generally symbolized as values �1 to 1 with healthy vegetation being

above zero; Fig. 5.5b shows the flooded region as negative values. The Vegetation

Water Supply Index in Fig. 5.5c is based on NDVI and provides more information

than NDVI alone as land surface temperature information is added. Because of

surface water, surface temperature is not always able to be recorded from MODIS,

leaving no data regions shown in white inside the floodplain.

5.3.2 Radar Imaging

The surface temperature example is not the only combination of radar and optical

remote sensing methods to map floods. Radar is able to measure ground texture

through backscatter at multiple wavelengths much longer than is found in the

optical spectrum. Wavelengths for radar sensors are generally measured in length

centimeters (cm) or frequency (MHz, GHz). Ground features are expected to have a

coarse texture, giving a speckled appearance in radar imagery, whereas water

features are expected to be very flat or specular. Another study showed that while

a C-Band (5.6 cm) synthetic aperture radar (SAR) image could penetrate cloud

cover to identify surface features, backscatter from wind caused waves reduced the

specular nature of the water bodies, preventing the water to be identified by the

sensor (Alsdorf et al. 2007). It is then suggested that the L-Band (24-cm wave-

length) sensor may be ideal for measuring inland surface water bodies, as it is not as

sensitive to the rough texture of water caused by wind or flow turbulence.

Although raw backscatter data can be detrimental to direct observations of water

surface when there is wind roughening, the backscatter coefficients of X- and

L-band sensors have been used (Rosenqvist and Birkett 2002; Hess et al. 2003) to

extract flood inundation extent when surface water is not specular, or is mixed with

vegetative features such as in wetlands. To complement SAR systems that have the

capability to measure stage height, Smith (1997) devised a method to combine

European Space Agency SAR data with optically derived inundation extent from

Landsat to obtain elevation extent/discharge rating curve to derive water elevations

at the land–water boundary.

Fig. 5.5 Vegetation indices for water content and vegetation health (a) NDWIs, (b) NDVI,

(c) VSWI
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Researchers have also presented the case that while satellite imagery in the

visible and near-infrared wavelengths is useful for mapping water extents, problems

such as canopy cover and emergent vegetation can obscure and mix pixels, respec-

tively, causing classification errors (T€oyrä et al. 2002). This study utilized the

C-Band on the satellite radar sensor RADARSAT and the NIR (790–890 nm)

data from SPOT to create a composite to identify flood boundaries, which was

repeated in another study, where visible imagery from Landsat thematic mapper

(TM) and Envisat advanced synthetic aperture radar (ASAR) system were used to

identify flooded regions (Ramsey et al. 2012). Acquiring flood depth information

can also be difficult to using visible imagery with varying vegetation types or

regularly flooded marsh areas (Rasid and Pramanik 1990; Ramsey et al. 2012).

The Ramsey et al. (2012) study provided a solution to this problem by utilizing

SAR and ASAR to identify relative water penetration depths in different marsh

areas.

5.3.3 Digital Elevation Models

Incorporating ancillary data such as elevation is an important part of flood mapping.

When available, digital elevation models are used in conjunction with optical,

radar, and modeled data.

The integration of optical and radar data with digital elevation models using

geographic information system (GIS) processing techniques is described in

Townsend and Walsh (1998). The Position Above the River Index (PARI) model

is an integrative approach creates a potential inundation map based on the river’s
proximity to other hydrologic features, such as tributaries or streams.

In a study based in northern Italy, researchers found that due to the delay of the

satellite overpass from the peak inundation time, only a fraction of the flooded area

was observed by the satellite (Brivio et al. 2002). In a technique similar to the PARI

model from Townsend andWalsh (1998), a cost-distance matrix was created. Using

the areas that were mapped using C-Band SAR after the peak flood, Brivio

et al. (2002) created a digital elevation model to create a cost-distance matrix to

calculate the difficulty of water traveling from the river to the remaining flooded

regions; the matrix was then used to trace the path of the river to the flooded region.

Flood depths provide a useful dynamic to flood maps giving the user specific

information about the inundation level and the type of risks that exist in that area.

Emergency planners and disaster mitigation teams typically require water depth

information in areas other than at gage locations. A method to create water depth

grids is identified (Lant 2013) by subtracting the DEM from the inundation extent.

In calibration of coarse resolution mapped flood extents, it was suggested (Fayne

and Bolten 2014; Guerschman et al. 2011) that a higher resolution elevation model

should be used to remove areas that would be unlikely to flood such as ridge tops or

high hillsides. Gallant and Dowling (2003) created a multistep iterative process to

categorize digital elevation models as flat valley bottoms or flat ridge tops and areas
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in between, known as the Multi-Resolution Index of Valley Bottom Flatness

(MRVBF). As flooding is expected to occur along valley bottoms, a threshold

may be used to mask out values that MRVBF and the complement Multi-Resolution

Ridge Top Flatness (MRRTF) consider a high hillside or hilltop.

5.3.4 Classification Algorithms Using Elevation Data

Another method of mapping floods using coarse resolution imagery and elevation

models is seen in the Open Water Likelihood (OWL) algorithm. OWL uses a

logistic regression to incorporate MODIS shortwave infrared reflectance bands,

NDVI, NDWIs, and MRVBF to obtain the probability that a fraction of the coarse

resolution pixel is inundated (Guerschman 2011). The formula is as follows:

OWL ¼ 1þ exp a0 þ
X5
i¼1

ai*xi

 ! !�1

where

a0—3.41375620

a1—0.000959735270

a2—0.00417955330

a3—14.1927990

a4—0.430407140

a5—0.0961932990

x1—SWIR (1628–1652 nm) MODIS band 6 (reflectance� 1000)

x2—SWIR (2105–2155 nm) MODIS band 7 (reflectance� 1000)

x3—NDVI

x4—NDWIs

x5—MRVBF

This method was again validated (Chen et al. 2013), as it was applied to 500-m

MODIS Daily and 8-day images, and was visually compared against Landsat

5 (Fig. 5.6).

The four elevation-based products shown here are derived from 90-m elevation

data (a) collected from the Shuttle Radar Topography Mission and were

preprocessed by removing voids and sinks in the data (CGIAR-CSI). The perma-

nent water bodies are overlayed in white. The Multi-resolution Valley Bottom

Flatness (b) used the SRTM data as a product input to estimate the flatness of the

floodplain, and therefore the likelihood of deposition. The light blue region in b is

the flattest, while the white region is the smoothed, flat water surface. The water

depth grid (c) was created by subtracting a binary classification of the NDPI

(Fig. 5.4c) from the elevation model. Using this method, the region surrounding

the lake shows the deepest flooding, while the delta shows shallower flooding.
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The Open Water Likelihood (OWL) algorithm combines inputs from two short-

wave infrared bands, NDWIs (Fig. 5.5a) NDVI (Fig. 5.5b), and MrVBF (b) to

identify what fraction of the pixel is likely inundated. Unlike other water detection

algorithms, OWL is more sensitive to mixed pixels, reducing uncertainty caused by

the other algorithms which may use less input variables.

Outputs from the OWL and MRVBF algorithms have also been combined in a

decision tree and logistic regression approach with Landsat to create binary classi-

fications of water bodies over time, then were combined to create a map of

cumulative observations of surface water from space. Similarly, another study

used a regression tree approach to integrate the predictors of water presence to

derive a map of water fraction, instead of a binary classification, applied to coarse

resolution MODIS imagery.

As many studies have cited problems with cloud and terrain shadow being

spectrally similar to the low reflectance of water in the infrared wavelengths

(Xu et al. 2006; Sun et al. 2012; Nigro et al. 2014), Li et al. (2015) used a geometric

algorithm to identify and remove cloud shadow. This study is particularly relevant

to all of the research related to optical data, as many of the spectral indices and

thresholds mentioned in section one, use infrared reflectance. The terrain shadow

removal study identifies that the root-mean-square (RMS) height, internal and

external height difference are good indicators of surface roughness and delineation

of water from terrain.

Fig. 5.6 (a) SRTM Elevation Model in meters, (b) MrVBF, (c) Water depth grid in meters,

(d) OWL Water Likelihood Fraction
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5.3.5 Software Models, Rainfall, and Soil Moisture

It is also worth mentioning that flood inundation maps can also be prepared using

computer software, using input data such as gage height, elevation models, and land

cover maps. Part of the US Army Corps of Engineers, the Hydrological Engineering

Center developed the River Analysis System (HEC-RAS) and other hydrological

modeling software, which is commonly used in combination with remotely sensed

data (Lant 2013). The software suite enables researchers to create inundation maps,

surface profiles, and model flow direction and physics, as well as taking into

account topographic features such as surface roughness and slope, or seasonal

changes in seasonal vegetation, and anthropogenic factors such as changes in

impervious surfaces or crop cycles (United States Army Corps of Engineers

HEC-RAS).

The implementation of software for flood modeling is particularly useful com-

pared to, or in conjunction with, remote sensing studies as issues with temporal

latency, cloud cover, cloud or terrain shadow, and spatial resolution are reduced or

eliminated. Incorporating rainfall estimates is particularly useful for flood forecast-

ing and flash flood analysis (Krajewski and Smith 2002). Many of the studies

discussed here focus on slow and persistent flooding; however, one study created

a framework to map inundation threats and flash flooding at city and regional scales

by integrating the HEC-RAS system with precipitation data (Knebl 2005), while

another estimated flood extent by combining precipitation data with a routing

model (Wu et al. 2014).

As the surface soil moisture state is key to the infiltration or runoff of precipi-

tation (Entakhabi et al. 2010), the recently launched Soil Moisture Active Passive

(SMAP) sensor (NASA-JPL-SMAP) and other soil moisture products can be useful

tools in mapping floods and determining flood risk when soil moisture is

approaching a saturated state. Analogous to the use of radar backscattering to

determine standing water, the unique dielectric properties of water and dry soil

allows water to be measured as a fraction of soil to determine volumetric moisture.

Therefore, if the soil is approaching saturation, then flooding is likely to occur.

While the SMAP data was not available during the demonstration year, the 2015

volumetric soil moisture from the SMAP sensor (L3 SM_P 36 km 2015, National

Snow and Ice Data Center NSIDC 2015, 2016) is able to capture increased soil

moisture around the areas shown as flooded from the 2013 MODIS data.

The SMAP volumetric soil moisture data is publically available at 36 km

although special algorithms and processing may be capable of creating a higher

resolution product to 9 or 3 km. The coarse resolution of the 36-km pixels may not

be enough to measure flooding independently, but it is clear in Fig. 5.7 that the

SMAP sensor is able to capture increased moisture over the target region. While

SMAP is not intended to map floods, the ability for SMAP to identify soils that are

increasing in saturation before a flood event is very important for flood hazard and

damage mitigation.
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5.3.6 Change Detection Methods

Finally, change detection is a universal method to monitor flood events, as areas

that were not previously flooded would appear different spectrally, thermally, and

texturally. Simple subtraction between images of different dates also known as

differencing (Song et al. 2004), calculating the standard deviation of a baseline of

data with the z-score of the newer data (Sarp 2011), and percent change formulas

(Hasan and Islam 2011) are all useful tools for identifying surface changes, and can

be implemented across sensor types, spatial and temporal resolutions. However, it

is important to note that although the algorithms may not be temporally dependent,

the latency between compared datasets may skew the validity of the results, as other

factors may contribute to the observed change. Trend analysis is one method to

monitor flooded areas over time, as individual pixel values or basin averages can be

made into a time series to identify when flooding is occurring or may occur in the

future when flooding is cyclical. While Nash et al. (2014) used auto-regression

techniques on NDVI to predict seasonal variations in vegetation health, another

study used the TIMESAT (Eklundh et al. 2009) software to fit a function on the time

series of NDVI data for snow-vegetation dynamics (J€onsson et al. 2010).

5.4 Conclusion

The field of remotely sensed flood mapping continues to evolve and improve. The

development and improvements of real-time data access systems have allowed

scientists to harness power of programming languages such as Python, C++,

and R, in order to digest data as soon as it becomes available, and to create output

data in a rapid manner. Instead of simply hosting the data in a list format online for

users to download, many authors have found it useful to demonstrate their flood

Fig. 5.7 SMAP 36 km

Volumetric Soil Moisture

Data October 23, 2015
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products on online web dashboards, such as the Dartmouth Flood Observatory

(Brakenridge and Daniel 1996), the MODIS Near Real-Time (NRT) Global Flood

Mapping Project (Nigro et al. 2014), and the Near Real-Time Flooding in Southeast

Asia Project (Ahamed and Bolten 2016). Both the Global Flood Mapping and the

Flooding in Southeast Asia projects rely on methods discussed here using MODIS

data, such as infrared band thresholding and spectral index combined with change

detection, respectively.

Free publically available and costly commercial Earth observing satellites are

able to capture images of the earth at varying spatial scales, and with different

orbital periods. Optical sensors may have the ability to capture surface reflectance

data from visible blue, green, and red wavelengths, as well as longer wave infrared

bands and emissivity data. Radar sensors may focus on brightness temperature or

backscattering coefficients to identify moist and saturated soil. Finally, these first-

level datasets can be used as inputs to other computational modeling software, time

series, or regression algorithms to provide value-added improvements, increasing

the spatial or temporal resolution of the input datasets, or creating a wholly different

product entirely.

Utilizing earth observing satellite data to map standing water from space is

indispensable to flood mapping for disaster response, mitigation, prevention, and

warning as extreme flooding events worldwide can damage crop yields and con-

tributing to billions of dollars economic damages as well as social effects including

fatalities and destroyed communities. The increase in the quantity and variety of

flood mapping techniques using satellite data has allowed broader and less-

technical audiences to be able to benefit from flood products. The use of remotely

sensed data by diverse audiences increases the general knowledge of flooding in a

given area and may help to mitigate pervasive economic and social damages caused

by flooding.
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Chapter 6

Near Real-Time Flood Monitoring
and Impact Assessment Systems

Case Study: 2011 Flooding in Southeast Asia

Aakash Ahamed, John Bolten, Colin Doyle, and Jessica Fayne

6.1 Introduction and Background

Floods are the costliest natural disaster (United Nations 2004), causing approxi-

mately 6.8 million deaths in the twentieth century alone (Doocy et al. 2013).

Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD

(Munich Re 2013). Extended duration floods also pose longer term threats to food

security, water, sanitation, hygiene, and community livelihoods, particularly in

developing countries (Davies et al. 2014).

Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest

that precipitation extremes, rainfall intensity, storm intensity, and variability are

increasing due to climate change (IPCC 2007). Increasing hydrologic uncertainty

will likely lead to unprecedented extreme flood events. As such, there is a vital need

to enhance and further develop traditional techniques used to rapidly assess

flooding and extend analytical methods to estimate impacted population and

infrastructure.
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Measuring flood extent in situ is generally impractical, time consuming, and can

be inaccurate (Brakenridge and Anderson 2006). Remotely sensed imagery

acquired from space-borne and airborne sensors provides a viable platform for

consistent and rapid wall-to-wall monitoring of large flood events through time

(Kussul et al. 2011). Terabytes of freely available satellite imagery are made

available online each day by NASA, ESA, and other international space research

institutions. Advances in cloud computing and data storage technologies allow

researchers to leverage these satellite data and apply analytical methods at scale.

Repeat-survey earth observations help provide insight about how natural phe-

nomena change through time, including the progression and recession of floodwa-

ters. In recent years, cloud-penetrating radar remote sensing techniques (e.g.,

Synthetic Aperture Radar) and high temporal resolution imagery platforms (e.g.,

MODIS and its 1-day return period), along with high performance computing

infrastructure, have enabled significant advances in software systems that provide

flood warning, assessments, and hazard reduction potential (Brakenridge

et al. 2003). By incorporating social and economic data, researchers can develop

systems that automatically quantify the socioeconomic impacts resulting from flood

disaster events.

6.1.1 Methods, Satellites, and Sensors Used to Determine
Flood Extent

MODIS, Landsat, radar sensors, and land-surface models have all been successfully

employed to determine flood extent (Nigro et al. 2014; Kuenzer et al. 2013; Wu

et al. 2014). The daily orbit cycle of MODIS instruments aboard Aqua and Terra

makes these instruments particularly attractive for near real-time studies

(Brakenridge and Anderson 2006). Persistent cloud cover can obscure optical

sensors like MODIS and Landsat during the monsoon season, but images composit-

ing can broaden spatial coverage (Chen et al. 2013). Land-surface and hydrologic

models work regardless of atmospheric conditions, but the accuracy is limited to the

resolution of model input data (Orth et al. 2015). Although these models can

estimate inundation depth in addition to extent, the results are typically too spatially

coarse for community-level disaster response.

Radar sensors such as Sentinel, Radarsat 2, ENVISAT Advanced Synthetic

Aperture Radar (ASAR), and TerraSAR-X can penetrate clouds and are unaffected

by atmospheric conditions. Radar backscatter is sensitive to water, and data is

typically obtained at medium to high resolution, rendering these systems extremely

useful for flood detection (e.g., Long and Trong 2001; Kussul et al. 2011). How-

ever, radar sensors like Sentinel have longer return times (12 days), and other radar

satellites must generally tasked for data acquisition. Further, wall-to-wall coverage

of an area is often not practical or a prohibitively lengthy operation. Continuous

now-casting and near real-time flood monitoring by any satellite platform is

therefore a challenging task for all flood-prone regions.
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MODIS instruments aboard Aqua and Terra offer twice-daily multispectral

imagery through NASA Land, Atmosphere Near real-time Capability for EOS

(LANCE) download systems free of cost. Numerous studies have demonstrated

the usefulness of MODIS imagery for flood mapping (Brakenridge et al. 2003;

Brakenridge and Anderson 2006; Nigro et al. 2014). Temporal image compositing

coupled with the frequent return time of MODIS instruments allows for broad

spatial coverage despite intermittent cloud cover. These factors make MODIS a

viable alternative to radar imagery and in situ observations for flood detection

(Islam et al. 2010).

6.1.2 Near Real-Time Flood Monitoring Systems

The Near Real-time Global Flood Mapping Project (GFMP; http://oas.gsfc.nasa.

gov/floodmap/index.html) and Dartmouth Flood Observatory (DFO; Brakenridge

and Anderson 2006) apply an algorithm to MODIS near real-time 250-m resolution

data (Bands 1, 2, and 7) to detect surface water. The Flood Observatory web site

(http://floodobservatory.colorado.edu/) provides recent and historical archives of

global flooding, as well as other flood information such as discharge estimates.

Accuracy assessment of this product on a global scale is still ongoing (Nigro

et al. 2014).

The Global Flood Monitoring System (GFMS) uses near real-time radar precip-

itation data from the Global Precipitation Measurement Mission (GPM) and his-

toric data from the Tropical Rainfall Measuring Mission (TRMM) coupled with a

hydrologic land surface model to estimate runoff and produce a global flood

product that updates every 3 h (Wu et al. 2014). The products provided by GFMS

have the advantage of being independent of cloud cover since they are radar based,

though the spatial resolutions of these products are coarse (Input data is

12 km� 12 km).

Each flood monitoring system is subject to limitations. The GFMP can experi-

ence difficulty monitoring areas with seasonally driven flooding, such as Southeast

Asia. Higher resolution radar satellites have long return times or must be tasked for

image acquisition. The GFMS relies on relatively coarse resolution radar precipi-

tation inputs, which can exhibit bias and uncertainty (e.g., Falck et al. 2015). These

inaccuracies can cascade down the land surface model and skew inundation results.

To this end, there is still a need for effective regional flood inundation mapping

tools for detecting flooding in most areas of the world.
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6.2 Case Study: Near Real-Time Flood Monitoring
and Socioeconomic Impact Estimation
in Southeast Asia

6.2.1 Flood Detection

Researchers at the NASA Goddard Space Flight Center developed regional flood

detection software for Southeast Asia (Doyle et al., in prep), consisting of Thailand,

Vietnam, Cambodia, and Laos. The software routines use near real-time MODIS

data made available at 3-h latency through the NASA Land, Atmosphere Near real-

time Capability for EOS (LANCE) servers. MODIS instruments aboard Aqua and

Terra satellites pass over the Southeast Asia region around 10:30 a.m. and 1:30 p.m.

each day (Nigro et al. 2014). New imagery is ingested, composited spatially and

temporally in daily, 4-day, and 8-day increments to reduce cloud cover, and

compared to historic conditions to detect near real-time flooding.

The Normalized Difference Vegetation Index (NDVI; Tucker 1979) is a numer-

ical ratio between spectral bands 1 and 2 that is useful for flood detection, land

classification, and change detection studies (Brakenridge and Anderson 2006).

Figure 6.1 shows annual NDVI (green) and discharge (blue) over time, illustrating

the strong seasonality of the Mekong River and Southeast Asia region. The south-

west monsoon rain pulse results in flooding and increased surface water from May

through October (MRC, 2010). Figure 6.1 shows decreases in NDVI during the

summer monsoon season as floodwaters obscure vegetation. Since vegetation has a
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Fig. 6.1 Illustrates variability in regional hydrologic cycle by showing NDVI (green) and

Discharge (blue) as a function of day of year
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high NDVI, floodwaters can be detected by analyzing decreases in NDVI relative to

historical conditions.

To determine flood extent, near real-time multispectral MODIS imagery is

downloaded from NASA LANCE servers. The Normalized Difference Vegetation

Index is calculated using the formula:

NDVINRT ¼ NIR� Red

NIR þ Red

� �
ð6:1Þ

where NDVINRT is the near real-time NDVI, NIR is the near infrared spectral band

(band 1), and Red is the red band (band 2). NDVINRT is compared to historic

NDVIDry conditions that are preprocessed and calculated by averaging the 32-day

January NDVI for from 2003 to 2011. Changes between current and historic

conditions are detected on a per-pixel basis as a percent difference:

ΔNDVI ¼ NDVIFlood � NDVIDry

NDVIDry

� �
� 100 ð6:2Þ

When ΔNDVI < �75, the pixel is classified as “flooded,” and when

ΔNDVI > �75 %, the pixel is considered “nonflooded.” Permanent water and

high slope areas are masked out (Fig. 6.3). This methodology is under refinement

and product accuracy assessments are ongoing (Doyle et al., in prep; Fayne et al., in

prep). The ΔNDVI images are saved and served to the web using a geoserver

(http://geoserver.org).

The flood extent model was tested for accuracy against Landsat imagery

(Fig. 6.2) and retrospectively applied to floods that occurred during August–

December 2011 (Fig. 6.4a, b). Flood extent derived from MODIS imagery demon-

strates good agreement with higher resolution Landsat imagery (Fig. 6.2) as well as

Synthetic Aperture Radar (SAR) data (Radarsat 2, Envisat ASAR, TerraSAR-X)

acquired from the United Nations Institute for Training and Research Operational

Satellite Applications program (UNOSAT) during this time period (Fig. 6.4). The

software enables time series analyses and visualizations of flood extent (Fig. 6.5), as

well as historic flood extent analysis.

6.2.2 Socioeconomic Impact Estimation

Flood extent data (Figs. 6.3, 6.4 and 6.5) can be fused with socioeconomic data in

order to formulate rapid spatial and numerical estimates of population and infra-

structure affected by regional flooding. Figure 6.6 illustrates the data processing

algorithm to formulate socioeconomic impacts from MODIS-derived flood extent.

Static data are preprocessed to match the 250 m resolution of flood extent images

(Fig. 6.6, top left and top right). Raster data describing population per grid cell for
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Fig. 6.3 Stack of images used in near real-time flood detection

Fig. 6.2 Landsat scenes (bottom, Path/Row 126/52) show good agreement for flooded area

detection with the corresponding MODIS NDVI change product (top) in the Phnom Penh region

of Cambodia. Date 1 shows MODIS NDVI change product from 8-day composite acquired 8/29 –

9/5/2006 and Landsat 5 TM acquired 9/3/2006. Date 2 shows MODIS NDVI change product from

8-day composite acquired 10/16/2006 – 10/23/2006 and Landsat 5 TM acquired 10/21/2006. Date

3 shows MODIS NDVI change product from 8-day composite acquired 11/1/2006 – 11/8/2006 and

Landsat 5 TM acquired 11/6/2006. Credit: C. Doyle



2015 were obtained for Cambodia, Thailand, Laos, and Vietnam from the

Worldpop data set (Sorichetta et al. 2015; https://worldpop.org). Worldpop uses a

number of covariates and a random forest model (Stevens et al. 2015) to estimate

population at 100 m resolution. The data were resampled to 250 m resolution to

match MODIS resolution.

Data describing the locations of roads, hospitals, airports, rice paddy, and

schools in Cambodia were obtained from sources described in Table 6.1. Point

data were converted to rasters matching MODIS resolution with pixel values

signifying point density of features within each grid cell. The length of roadways

within each grid cell was calculated and a float-type raster image describing

roadway length per cell was preprocessed.

Fig. 6.4 (a) Comparison between 2011 flood extent determined from 4-Day composited MODIS

imagery obtained on October 16th, 2011 and flood extent determined from the United Nations

Institute for Training and Research (UNITAR) Operational Satellite Applications Programme

(UNOSAT; white) using Radarsat 2, ENVISAT ASAR, and TerraSAR-X imagery acquired on

August 28th, September 21st, 23rd, 30th, October 17th, 18th, and 27th. The background image is a

false color image of eight MODIS scenes composited between September 27, 2011 and November

30th, 2011. (b) Zoom of the previous image demonstrating agreement between MODIS flood

detection method and UNOSAT SAR flood detection
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Once flood extent algorithms are applied to MODIS data, flood extent data is

read as a presence/absence array and socioeconomic data are read as float arrays

and multiplied (Fig. 6.6), resulting in estimates of affected population (Fig. 6.7) and

infrastructure (Fig. 6.8) per grid cell. These estimates are summed, written to text

files, and served live to a flood dashboard as interactive and downloadable graphs

(Fig. 6.9). The arrays are also converted to raster imagery so results can be

visualized and manipulated in geographic information system (GIS) software

(Fig. 6.8).

6.2.3 Comparison with Agency and Government Estimates

Socioeconomic impact estimates (Figs. 6.7 and 6.8) were computed for severe

flooding that occurred in 2011 (Figs. 6.3, 6.4 and 6.5) and compared against United

Nations or regional government damage estimates (Tables 6.2 and 6.3). Estimates

of affected population agree reasonably well with agency estimates for Cambodia

Fig. 6.4 (continued)
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Fig. 6.5 Time series of MODIS NDVI flood extent model applied to MODIS images acquired

during widespread flooding occurring September and October 2011 in Southeast Asia. Credit:

C. Doyle

Fig. 6.6 Schematic of data processing workflow for socioeconomic impact estimation model. The

python model framework operates in near real time as new MODIS imagery becomes available



Table 6.1 Summary of data sources used in this study

Data metric Source Link

Population Worldpop http://worldpop.org

Roads UNOCHA http://geodata.pdc.org/geodata/unocha/

Hospitals UNOCHA http://geodata.pdc.org/geodata/unocha/

Airports UNOCHA http://geodata.pdc.org/geodata/unocha/

Schools Humanitarian Data

Exchange

https://data.hdx.rwlabs.org/dataset/cambodia-education

Rice paddy Open Development

Cambodia

http://www.opendevelopmentcambodia.net/

download_maps/rice-ecosystem/

Fig. 6.7 Shows people per grid cell affected by flooding for the 2011 floods around Bangkok,

Thailand, near Tonle Sap Lake, Cambodia, and in the Mekong Delta, Vietnam
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and Thailand but are substantially different for Vietnam and Laos (Table 6.2;

Fig. 6.7). Potential reasons for this discrepancy include lack of clear agency

methods in determining impacted population as well as incomplete flood extent

or population data. Estimates of affected infrastructure (roads, rice, schools) tested

for the 2011 floods in Cambodia agree well with agency estimates (Table 6.3;

Fig. 6.8). These results are archived with each MODIS pass and displayed in

interactive graphics on the dashboard (e.g., Fig. 6.9).

Fig. 6.8 Depicts people per grid cell, (top left), schools (top right), rice paddy plantation areas,

(bottom left) and roads and hospitals (bottom right) affected by the 2011 flood event for Cambodia.

Table 6.3 shows numerical estimates of affected population and infrastructure
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Fig. 6.9 Time series plots generated from 8-day composite images between September and

December 2011 showing the rise and decline of population affected by severe flooding

Table 6.2 Estimates of population impacted by 2011 flooding modeled from 4-day image

composited on October 16, 2011

Cambodia Thailand Vietnam Laos

Population affected (modeled) 1,864,988 1,409,507 4,078,799 25,386

Population affected (Agency or Govern-

ment) estimate

1,500,000 2,100,000 700,000 430,000

Source USAID

(2011)

USAID

(2011)

USAID

(2011)

USAID

(2011)

USAID Source: http://pdf.usaid.gov/pdf_docs/PA00J4C7.pdf

Table 6.3 Results of socioeconomic impact estimation model for Cambodia

Metric 2011 Cambodia flood Other estimate(s) and source

Persons affected (count) 1,864,988 1,200,000 (UN)

1,600,000 (Chea and Sharp 2015)

Major roadways (km) 208 180 (NCDM)

Rice paddy (km2) 4593 3900 (NCDM)

4870 (Chea and Sharp 2015)

Schools (count) 818 1132 (NCDM)

1360 (Chea and Sharp 2015)

Hospitals 1 N/A

Airports 0 N/A

Most agency estimates are made available by the National Center for Disaster Management

(NCDM)
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6.3 Conclusions

During disasters, determining affected population and infrastructure should pre-

clude the allocation of life-saving humanitarian resources such as food, shelter,

health supplies, water, sanitation, and hygiene. Automating near real-time flood

extent and socioeconomic impact analyses allows for estimates to be tallied for

events with sudden or unexpected onset. Systems described here employ open

source software and cloud-based infrastructure, promoting easy access and cost-

effective solutions that can strengthen the decision-making process with the best

and newest available data.

These systems have the potential to save lives, limit infrastructure damage, aid in

urban and agricultural planning, and safeguard economic and community liveli-

hoods. Though tailored for floods in Southeast Asia, similar systems may be

applicable to various disaster scenarios in other regions of the world.
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Part II

Droughts



Chapter 7

Remote Sensing of Drought: Vegetation, Soil
Moisture, and Data Assimilation

Ali Ahmadalipour, Hamid Moradkhani, Hongxiang Yan,

and Mahkameh Zarekarizi

7.1 Introduction

Drought is a natural recurring hazard with slow onset affecting large areas. It can

impose severe impacts on agriculture, hydropower generation, water supply, envi-

ronment, society, and economy. Drought is a complex phenomenon and is classified

into four types including meteorological (lack of precipitation), agricultural (deficit

in soil moisture, and vegetation response), hydrological (deficit in runoff,

streamflow, or groundwater storage), and socioeconomic (social responses to

water supply and demand) droughts (Mishra and Singh 2010). The impacts of

drought have aggravated primarily due to the increase in vulnerability of assets,

as well as the changes in frequency of drought events due to climate change

(Ahmadalipour et al. 2016; Sahoo et al. 2015). Therefore, it is necessary to improve

the current drought-monitoring tools and develop reliable methods for prediction

and early warning of potential droughts (Svoboda et al. 2002; Wan et al. 2004).

Drought monitoring has been historically carried out mainly using ground-based

observations (Svoboda et al. 2002). The monitoring had been more focused on

meteorological and agricultural droughts by means of statistical indices (Palmer

1965). However, many regions do not have adequate gauge instruments (e.g.,

remote regions or agricultural areas) to obtain required precipitation, temperature,

relative humidity, and wind speed data that are needed for accurate assessment of

drought. Furthermore, gage (point) data do not capture the spatial variability of

drought. Therefore, spatial interpolation techniques were used to determine drought

condition of unsampled locations.
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Remote-sensing imagery has been utilized from various aspects in weather and

climatology studies. The Television Infrared Observation Satellite (TRIOS-1) was

the first meteorological satellite and was launched in 1960. It started a new era of

earth monitoring and led to the development of additional satellites such as the

Advanced Very High Resolution Radiometer (AVHRR), Landsat, and the Geosta-

tionary Operational Environmental Satellites (GOES).

Satellite measurements overcome the limitations of gauge-based meteorological

observation. They are cost-effective with high spatial resolution, which provide

consistent and continuous monitoring of the Earth environment (Rhee et al. 2010;

Zhang and Jia 2013). Remote-sensing imagery has also been used for drought-

monitoring purposes. Satellite-based drought indices are capable of characterizing

spatial variability of drought, and therefore, they became the most promising tools

for monitoring drought at regional scales (Kogan 1997).

Generally, the application of satellite data in drought studies can be classified in

two categories: an atmospheric perspective focusing on acquiring drought-related

atmospheric variables from satellites (e.g., precipitation or relative humidity), as

well as a land surface standpoint which is associated with earth surface. The latter

includes variables that are used directly for drought-monitoring purposes (e.g.,

NDVI), which is capable of determining the ecosystem impacts of drought; as

well as the variables used indirectly for assimilating state variables to hydrologic

and land surface models (e.g., soil moisture or snow cover) in order to improve the

accuracy of hydrologic predictions (DeChant and Moradkhani 2014a, 2015).

During the past decade, a number of satellite instruments have been launched.

They provide observation for various environmental variables, some of which are

useful for drought-monitoring purposes from different perspectives (e.g., precipi-

tation, soil moisture, snow cover, land surface temperature, terrestrial water stor-

age, evaporation, and vegetation). These progresses along with the analytical/

modeling advances have eventuated in many recent remote-sensing tools and

products that are applicable for drought-monitoring purposes.

This chapter highlights the advances in earth remote sensing and provides an

insight into satellite-based drought monitoring and prediction. First, from a hydro-

meteorological perspective, the remote-sensing retrievals of different variables are

introduced along with their features and attributes. Furthermore, some of the

drought indices related to each variable are explained. Then, the satellite instru-

ments acquiring vegetation health data are introduced along with the development

and progresses of vegetation health indices. The application of one of the most

common vegetation health indices is then investigated for long-term assessment of

agricultural drought. Finally, the latest advances in assimilation of satellite data into

hydrologic models for drought monitoring and prediction purposes are described.
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7.2 Remote Sensing of Hydrologic Variables for Drought
Assessment

7.2.1 Precipitation

Precipitation is one of the primary meteorological variables, which has a direct

impact on drought. Because of large spatial variability as well as dynamic nature of

precipitation, it is difficult to generate an accurate spatial pattern of precipitation

from point measurements. Obtaining gridded mean areal precipitation (MAP) is

essential since most of the current distributed hydrologic models require gridded

input data. Hence, satellite estimation of precipitation has the potential to be used

for hydrologic modeling as well as drought-monitoring purposes.

After the launch of TIROS-1 in 1960, satellite observations of weather provided

an invaluable tool for weather forecast. This lead to the establishment of the World

Weather Watch program in 1963 by the World Meteorological Organization

(WMO) to commence the application of a network of operational geostationary

(GEO) as well as low Earth orbiting (LEO) meteorological satellites referred to as

the Global Observing System (GOS) (Kidd et al. 2011). The remarkable capabilities

of satellite observations demanded constant advancement and development of new

algorithms and methods for further improving the quality of observations. The main

input to all of these methods is the brightness temperature which is acquired from

infrared instruments in geostationary orbit satellites and allows them to provide

continuous space–time precipitation measurement.

Several satellite precipitation missions have provided data which have been

utilized for various applications. Among these datasets are the CPC Merged

Analysis of Precipitation (CMAP) (Xie and Arkin 1997), Special Sensor Micro-

wave Imager (SSM/I) on board the Defense Meteorological Satellite Program

(DMSP) platform (Ferraro 1997), Global Precipitation Climatology Project

(GPCP) (Adler et al. 2003), Climate Predicting Center (CPC) Morphing Technique

(CMORPH) (Joyce et al. 2004), Tropical Rainfall Measuring Mission (TRMM)

Multi-satellite Precipitation Analysis (TMPA) (Huffman et al. 2007), Precipitation

Estimation from Remotely Sensed Information using Artificial Neural Networks

(PERSIANN) (Ashouri et al. 2015; Sorooshian et al. 2000); all of which have been

widely used for different climate and hydrologic applications. Recently, National

Aeronautics and Space Administration (NASA) started a new era in the satellite

remote sensing of precipitation through the Global Precipitation Measurement

(GPM) mission (Hou et al. 2014) to develop the Integrated Multi-satellitE

Retrievals for GPM (IMERG) (Huffman et al. 2015). Table 7.1 provides a summary

of characteristics of the above-mentioned satellite precipitation measurements.

Although satellite precipitation retrievals provide useful high-resolution global

precipitation estimates, they are associated with high uncertainty and bias

(Alemohammad et al. 2015; Sorooshian et al. 2008). It has been shown that the

uncertainty in precipitation (input uncertainty) is the major source of uncertainty in

hydrologic modeling and ensemble streamflow prediction (Hong et al. 2006;
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Moradkhani et al. 2005, 2006). Because of indirect measurement of satellite

precipitation, they are noisy with lower accuracy than ground measurements, and

sometimes limited to space and time.

Satellite-based precipitation products have been extensively evaluated in many

studies (Yong et al. 2016). The issue of high uncertainty and large biases in satellite

precipitation has urged some researchers quantify and characterize precipitation

uncertainty for various applications (Alemohammad et al. 2015), as well as devel-

oping post-processing techniques which are capable of bias correcting these pre-

cipitation products (Madadgar et al. 2014). Recently, Khajehei (2015) presented a

new ensemble post-processing approach to bias correct precipitation data using

Copula functions and account for uncertainties through their ensemble generating

approach. The method is capable of bias correcting monthly precipitation and

generating post-processed ensemble precipitation data. This provides more accu-

rate precipitation forecast eventuating in more reliable meteorological drought

characteristics.

Satellite precipitation measurements have been widely utilized for drought-

monitoring and characterization purposes (Zhang and Jia 2013). Standardized

Precipitation Index (SPI) (McKee et al. 1993) is among the most widely used

drought indices that solely requires precipitation data. However, it needs long

period of data (about 30 years) for accurate characterization of drought. Therefore,

some of the more recent missions (e.g., TMPA), although having acceptable

accuracy in many regions, are not yet practical for data-driven drought indices

such as SPI. Nevertheless, remotely sensed precipitation has been utilized in some

recent studies for drought-monitoring purposes (Sahoo et al. 2015; Zhang and Jia

2013). Some studies have utilized remotely sensed data as the input to land surface

models to estimate other hydro-meteorological fluxes such as runoff or soil mois-

ture and analyzed them from a different perspective (Zulkafli et al. 2014). The

availability of long-term records for satellite-based precipitation, e.g., GPCP or

PERSIANN-CDR, provides the opportunity to assess drought from a climatological

perspective.

Table 7.1 Summary of the characteristics of some of the satellite-based precipitation measure-

ment missions

Product

abbreviation Period

Temporal

resolution

Spatial

resolution References

CMAP 1979–Present Monthly 2.5 Deg. Xie and Arkin 1997

SSM/I 1988–Present Daily 12.5 km Ferraro 1997

GPCP 1979–Present Monthly 2.5 Deg. Adler et al. 2003

CMORPH 2002–Present Daily 0.25 Deg. Joyce et al. 2004

TMPA 1998–Present 3 h 0.25 Deg. Huffman et al. 2007

PERSIANN 2000–Present 3 h 0.25 Deg. Sorooshian et al. 2000

PERSIANN-CDR 1983–Present Daily 0.25 Deg. Ashouri et al. 2015

IMERG 2014–Present 0.5 h 0.1 Deg. Huffman et al. 2015
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7.2.2 Surface Soil Moisture

Soil moisture generally refers to the amount of water stored in the unsaturated zone.

Soil moisture is a key variable in examining the global water-energy cycle, agri-

cultural planning, and water resources management (Seneviratne et al. 2010). In

2010, the Global Climate Observing System (GCOS) included soil moisture in the

list of 50 Essential Climate Variables (ECVs) to support the work of the United

Nations Framework Convention on Climate Change (UNFCCC) and the Intergov-

ernmental Panel on Climate Change (IPCC) (Bojinski et al. 2014).

Contrary to the meteorological and hydrological drought, the agricultural

drought is defined based on soil moisture availability in the root-zone. The soil

moisture can be measured either by ground sensors or satellite sensors. Networks of

ground sensors are only available for limited regions and cannot represent the

spatial heterogeneity of soil moisture. As an alternative, the remotely sensed

surface soil moisture retrievals can provide an unprecedented spatial and temporal

resolution of soil moisture data across a range of scales. Especially, microwave

satellites (C/X/L bands) have shown useful retrievals of surface soil moisture as

they are able to penetrate cloud cover and are sensitive to soil moisture (Njoku

et al. 2003). The principles of the microwave retrievals are based on the sensitivity

of passive brightness temperature and active backscattering to the soil moisture

content.

A series of passive/active microwave sensors have been launched since 1978 to

measure soil moisture, including the Scanning Multichannel Microwave Radiom-

eter (SMMR), the Special Sensor Microwave Imager (SSM/I), the microwave

imager from the Tropical Rainfall Measuring Mission (TRMM), the European

Remote Sensing scatterometer, the Advanced Microwave Scanning Radiometer,

the Advanced Scatterometer (ASCAT), the Soil Moisture Ocean Salinity Satellite

(SMOS), the Advanced Microwave Scanning Radiometer2 (AMSR2), and the Soil

Moisture Active Passive (SMAP) (Moradkhani 2008; Entekhabi et al. 2010;

McMullan et al. 2008; Wagner et al. 2013). Besides the single sensor soil moisture

products, Liu et al. (2011) developed a blended soil moisture product by merging

both passive and active soil moisture from multiple sensors. The long-term blended

soil moisture products (1978–2014) can be used for agricultural drought monitoring

and trend studies. Table 7.2 summarizes the microwave sensors used for soil

moisture estimation.

7.2.3 Evapotranspiration

Evapotranspiration (ET) is a crucial variable in the hydrologic cycle and one of the

major hydrological fluxes (Sima et al. 2013). It has huge impacts on agriculture,

irrigation water demand, and consequently crop yield. Similar to precipitation,

gauge-based ground observations of ET are not capable of quantifying spatial
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variations. Meanwhile, remotely sensed data provides valuable tools to estimate ET

at large scales.

The application of actual and potential evapotranspiration (ET and PET) for

drought analysis has been developed and examined in numerous studies, and

several different drought indices have been developed to characterize drought

from various perspectives. Palmer Drought Severity Index (PDSI) (Palmer 1965),

Crop Water Stress Index (CWSI) (Jackson et al. 1981), Supply-Demand Drought

Index (SDDI) (Rind et al. 1990), Reconnaissance Drought Index (RDI) (Tsakiris

and Vangelis 2005), Evaporative Drought Index (EDI) (Yao et al. 2010), Standard-

ized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al. 2010),

Evaporative Stress Index (ESI) (Anderson et al. 2011, 2013), Drought Severity

Index (DSI) (Mu et al. 2013), Green Water Scarcity Index (GWSI) (Nú~nez
et al. 2013), and Green Water Stress Index (GrWSI) (Wada 2013) are among the

drought variables that incorporate evapotranspiration into their assessment.

One of the satellite instruments that is extensively practical for drought analysis

from evapotranspiration viewpoint is the Moderate Resolution Imaging Spectrora-

diometer (MODIS). Yao et al. (2010) proposed Evaporative Drought Index (EDI) to

monitor droughts over the Contiguous United States (CONUS). Mu et al. (2007,

2011) developed a technique to use MOD16 products in order to generate a global

ET/PET dataset with an algorithm based on Penman-Monteith equation. Then, they

developed Drought Severity Index (DSI), which incorporates ET/PET data as well

as vegetation status (Mu et al. 2013).

Table 7.2 Summary of the microwave sensors for soil moisture estimation

Sensor Channel

Temporal

resolution

Spatial

resolution

(km) Data period

Scanning Multichannel Micro-

wave Radiometer (SMMR)

Multiple from

6.6 GHz

Daily 140 1978–1987

Special Sensor Microwave

Imager (SSM/I)

Multiple from

19.4 GHz

Daily 25 1987–Present

Microwave Imager TRMM Multiple from

10.7 GHz

Daily 25 1997–2015

Scatterometer ERS 5.3 GHz 3–4 days 50 1992–Present

Advanced Microwave Scanning

Radiometer (AMSR-E)

Multiple from

6.9 GHz

Daily 25 2002–2011

Advanced Scatterometer

(ASCAT)

5.3 GHz 1–2 days 25 2006–Present

Soil Moisture Ocean Salinity

Satellite (SMOS)

1.4 GHz 2–3 days 35 2009–Present

Advanced Microwave Scanning

Radiometer2 (AMSR2)

Multiple from

6.9 GHz

Daily 25 2012–Present

Soil Moisture Active Passive

(SMAP)

1.4 GHz 2–3 days 3, 9, 36 2015–Present
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Air temperature, radiation, and air relative humidity are among the primary

variables affecting evapotranspiration (Yin et al. 2014). Therefore, satellite mis-

sions measuring each of these variables are useful in understanding evapotranspi-

ration and drought. Currently, several remote-sensing platforms provide continuous

worldwide measurement of land surface temperature (LST) including Terra/Aqua-

MODIS, Terra-Aster, NOAA-AVHRR, Meteosat-MVIRI, Landsat, and the ATSR

series of instruments (Westermann et al. 2011). These LST products have been

evaluated in several studies at various regions, and results show that they provide

accurate measurements with slight positive bias in some cases (Crosman and Horel

2009; Sima et al. 2013). Furthermore, numerous studies have focused on estimating

air temperature from land surface temperature measurement of satellite products

(Benali et al. 2012; Shen and Leptoukh 2011). Temperature data can also be utilized

to calculate radiation, another variable affecting evapotranspiration.

7.2.4 Terrestrial Water Storage and Groundwater

Since 2002, regional estimates of changes in the terrestrial water storage (TWS),

i.e., water content both on and below the land surface, have been provided by the

Gravity Recovery and Climate Experiment (GRACE) mission on a monthly time-

scale (Reager and Famiglietti 2009). Changes in TWS include the changes in

surface water storage, soil moisture storage, and groundwater storage. GRACE

consists of two twin satellites that orbit the Earth with about 220 km distance at an

altitude of about 500 km. Changes in Earth’s gravity field alter the distance between
the two satellites, and precisely acquiring the distance, makes it possible to deter-

mine the TWS anomalies. The distance between the twin satellites is determined

using a highly accurate inter-satellite K-Band microwave ranging system. GRACE

tracks the variations in gravity field of an area, which is then translated into

estimates of TWS (Rodell and Famiglietti 2002).

GRACE data provides a valuable tool for observing the water availability

(Velicogna et al. 2012). It has been utilized to study regional climate variability

and drought (Chen et al. 2013; Zhang et al. 2015b), assess the impacts of water

availability on vegetation growth (Velicogna et al. 2015), and assimilate into land

surface models (Reager et al. 2015). Many studies have evaluated GRACE data

across various regions (Feng et al. 2013). Some studies have tried to utilize GRACE

data to estimate different hydrological variables. Syed et al. (2005) developed an

approach to estimate basin discharge using GRACE data. Rodell et al. (2004)

employed GRACE data to estimate basin-scale evapotranspiration.

One of the limitations of GRACE is that it provides data at a spatial resolution of

more than 150,000 km2 per grid for TWS, which makes it impractical for regional

drought assessments. Furthermore, currently the GRACE TWS timeseries contains

about 14 years of data, which is not sufficient for drought assessment from a

climatological perspective. Therefore, researchers have utilized statistical methods,

e.g., Artificial Neural Networks, to extend and reconstruct TWS data for previous
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years (Zhang et al. 2015a), as well as downscaling GRACE TWS data to a finer

spatial resolution (Zaitchik et al. 2008). Information offered by GRACE TWS data

can be employed for investigating the impacts of drought and estimating the

amount of precipitation required for drought recovery.

7.2.5 Snow Cover

Snow cover is an important characteristic of land surface as it can impact surface

radiation, energy, and hydrologic cycle (Kongoli et al. 2012). It is a natural

reservoir of water resources and a great source of soil moisture supply for agricul-

tural crops. Snowmelt contributes to a considerable fraction of runoff in many

mountainous regions. A shortage in winter snowpack can yield to a hydrological

drought in summer, and a deficit in soil moisture during winter can result in

agricultural drought. Therefore, monitoring snow is an important task for water

management and it provides an essential tool for drought prediction in many

regions.

Snowpack measurements that are important in hydrology are the Snow Water

Equivalent (SWE), Snow Depth (SD), Snow Covered Area (SCA), and Snow

Albedo (SA) (Kongoli et al. 2012). SWE indicates the amount of water contained

in the snowpack (which is calculated by multiplying SD by the effective snow cover

density). It is the most important parameter for runoff during the snowmelt season.

In the western US and Alaska, an automated SWE monitoring system is maintained

by the U.S. Department of Agriculture (USDA), which is called the SNOwpack

TELemetry (SNOTEL) (Molotch and Bales 2006).

Remote sensing of snow can be classified into three methods of optical, micro-

wave (MW), and the combination of optical and MW. Optical measurements can

only provide estimate for SCA, whereas MW and combined methods can measure

SCA, SC, and SWE. Snow has an intense spectral gradient in reflectance from a

high albedo in visible ranges to low reflectance in the middle infrared wavelengths

(Dozier et al. 2009; Lettenmaier et al. 2015). Therefore, the visible reflectance

(RVIS) and the middle IR reflectance (RmIR) can be utilized to monitor snow

(Romanov et al. 2000). The Normalized Difference Snow Index (NDSI) is defined

as RVIS � RmIRð Þ= RVIS þ RmIRð Þ and was developed to detect snow using reflec-

tance information (Dozier 1989; Hall et al. 2002). Former to this attempt, several

algorithms were developed for optical-based remote sensing of snow from AVHRR

satellite data.

The accuracy and availability of optical-based snow estimates are affected by

the presence of clouds (Lettenmaier et al. 2015). Therefore, microwave measure-

ment of snow can provide a practical alternative for temporally continuous snow

monitoring. Microwave sensors are available onboard polar-orbiting satellites, e.g.,

MODIS and AMSR-E, which provide less frequent observations compared to

optical sensors onboard geostationary satellites. Thus, many studies have tried to

improve the accuracy of snow-related measurements. In some studies, snow
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retrieval algorithms are introduced that merge snow observations from both optical

and microwave sensors (Foster et al. 2011). Remotely sensed snow observations

have also been evaluated for various regions (Moser et al. 2011).

Snow data has been used in numerous studies for drought monitoring and

prediction purposes (Guan et al. 2013). Many studies have focused on assimilating

snow observations into land surface models to improve the accuracy of streamflow

simulations, and consequently, hydrological drought prediction (Dong et al. 2007).

Since snow does not directly relate to drought and because there is a spatial and

temporal lag between the snow occurrence and its impact on surface and

sub-surface water availability, snow-based indicators of drought are not

developed yet.

7.3 Remote Sensing of Vegetation for Drought Analysis

Agricultural production, especially in less developed regions, is dependent on

weather conditions and rainfall to a great extent (Zhang et al. 2016). The changes

in climate along with increase in food demand due to the increase in population

have resulted in substantial aggravation of the agricultural drought risk over the past

decades (Naumann et al. 2015). Studies have shown that climate change and severe

drought events have robust negative impacts on agricultural production (Lobell

et al. 2014).

Vegetation abundance and vegetation health information are strongly related to

rainfall and can be utilized for drought assessments (Tucker 1979). Among various

remote sensing-based indices, the Normalized Difference Vegetation Index (NDVI)

has been extensively utilized for drought-monitoring purposes. Studies have found

a significant relationship between NDVI and soil moisture and precipitation (Wang

et al. 2001). In 1979, the first AVHRR instrument was launched, which revolution-

ized remote sensing of drought by providing high resolution data for monitoring

vegetation condition. In fact, the application of time-series satellite observations for

drought monitoring began in 1980s after the availability of AVHRR NDVI

data (Tucker and Choudhury 1987). NDVI is defined as the difference between

reflected near-infrared (NIR) and red (R) radiances divided by their sum; NDVI

¼ NIR� Rð Þ= NIRþ Rð Þ (Rouse et al. 1974). Studies have shown that NDVI is

related to the leaf area index (LAI) and to the photosynthetic activity of green

vegetation (Rojas et al. 2011). Therefore, NDVI can be used during the growing

season as a means to monitor vegetation condition and drought.

Several drought indicators have been introduced which consider vegetation

condition, surface temperature, and a combination of both. The application

of remotely sensed data for drought detection was generalized through the

development of the Vegetation Condition Index (VCI) defined as

VCI ¼ NDVI� NDVIminð Þ � 100= NDVImax þ NDVIminð Þ (Kogan 1995). The

inter-annual variations of NDVI can be due to the changes in weather or ecological

components; however, VCI discriminates between these two components. Some of
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the other vegetation indicators (VIs) that take NDVI into consideration are the

Anomaly Vegetation Index (AVI) (Weiying et al. 1994), Standardized Vegetation

Index (SVI) (Peters et al. 2002), Normalized Difference Water Index Anomaly

(NDWIA) (Gu et al. 2007), and Percent of Average Seasonal Greenness (PASG)

(Brown et al. 2008).

Other studies have attempted to monitor drought using remotely sensed bright-

ness temperature acquired from the thermal channels of various instruments, e.g.,

AVHRR, MODIS, and TM. The Temperature Condition Index (TCI) is among the

earliest indices that is based on thermal infrared (TIR) observations for character-

izing vegetation stress (Kogan 1995). It is defined as

TCI ¼ BTmax � BTð Þ � 100= BTmax � BTminð Þ, where BT, BTmax, and BTmin are

the smoothed weekly brightness temperature and its multiple-year maximum and

minimum values, respectively. It is demonstrated that the TCI outperforms NDVI

and VCI, especially when excessive soil moisture is available due to heavy rainfall

or persistent cloudiness, so that NDVI is depressed and VCI indicates low values

eventuating in erroneous interpretation of drought (Kogan 1995).

Although NDVI provides valuable information about drought, it is affected by

some limitations, e.g., effects of soil humidity and surface anisotropy. Therefore,

NDVI alone cannot describe drought condition, and some researchers have devel-

oped indices that combine NDVI and temperature information; such as the Vege-

tation Health Index (VHI) (Kogan 1995), Temperature Vegetation Index (TVI)

(McVicar and Jupp 1998), Vegetation Supply Water Index (VSWI) (McVicar and

Jupp 1998), Temperature Vegetation Drought Index (TVDI) (Sandholt et al. 2002),

and Vegetation Temperature Condition Index (VTCI) (Wan et al. 2004). The VHI is

one of the most commonly used indices developed from the additive combination of

VCI and TCI, and it provides a powerful tool for monitoring vegetation stress and

drought.

Building on the concept of NDVI, several other indices have been developed to

monitor vegetation condition, such as the Soil-Adjusted Vegetation Index (SAVI)

(Huete 1988), Normalized Difference Infrared Index (NDII) (Hunt and Rock 1989),

Normalized Ratio Vegetation Index (NRVI) (Baret and Guyot 1991), Normalized

Difference Water Index (NDWI) (Gao 1996), Global Vegetation Monitoring Index

(GVMI) (Ceccato et al. 2002a, b), Shortwave Infrared Water Stress Index (SIWSI)

(Fensholt and Sandholt 2003), Normalized Difference Drought Index (NDDI)

(Gu et al. 2007), Perpendicular Drought Index (PDI) (Ghulam et al. 2007), Nor-

malized Multiband Drought Index (NMDI) (Wang and Qu 2007), and Scaled

Drought Condition Index (SDCI) (Rhee et al. 2010).

Currently, satellite-derived vegetation indices can be acquired from various

instruments at a global scale with high frequencies. These include AVHRR

(Advanced Very High Resolution Radiometer), SPOT (Satellite Pour l’Observation
de la Terre) VEGETATION, and Moderate Resolution Imaging Spectroradiometer

(MODIS). AVHRR has the longest data period, but has a relatively coarser resolu-

tion than others. However, AVHRR offers the advantage of a thermal channel

(Rojas et al. 2011). Although MODIS data are available at a finer resolution with

more advanced instruments, the delay in their data processing makes it less
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favorable for real-time drought monitoring (Anyamba and Tucker 2012). Recently,

the Global Monitoring for Environment and Security (GMES) Sentinel-3 mission

was designed to provide accurate and timely data for environmental management

and better understanding of the effects of climate change (Donlon et al. 2012).

7.3.1 Application of VHI for Long-Term Assessment
of Agricultural Drought Across the CONUS

The Vegetation Health Index (VHI) has been widely applied for analyzing agricul-

tural drought and vegetation health at different regions (Rhee et al. 2010; Rojas

et al. 2011). VHI is calculated by coupling VCI and TCI, i.e.,

VHI ¼ αVCIþ 1� αð ÞTCI, where α depends on the relative contribution of mois-

ture and temperature components. Since the contribution of moisture and temper-

ature during the crop cycle is not known, it is assumed that α ¼ 0:5.
VHI acquired from AVHRR has the great advantage of covering a long duration

of data, i.e., from 1981 until present, which can even be utilized to investigate the

impacts of climate change. VHI is freely available at the Center for Satellite

Applications and Research (STAR) of the NOAA Satellite and Information Service

(NESDIS) on a weekly timescale at 16 km spatial resolution over the globe. VHI is

able to detect drought at any season. However, since crop yield is immensely

affected by agricultural drought during the growing season, a lot of studies have

focused on the application of VHI during the growing season (Rhee et al. 2010;

Rojas et al. 2011). Furthermore, different types of vegetation respond differently to

drought and moisture deficit. Therefore, land cover classifications are employed to

assess VHI for each land cover types separately.

Here, weekly VHI is utilized across the contiguous United States (CONUS) for

long-term assessment of agricultural drought and vegetation stress during the

growing season in different land cover types. The spatial resolution of VHI is

16 km, and the study period is from 1982 to 2015 at a weekly temporal scale.

Growing season months of May through October are used for analyzing the VHI. In

order to classify land cover, MOD12Q1 data from MODIS instrument onboard

Terra satellite is acquired with 500 m resolution and aggregated to 16 km. Then,

using UMD Land Cover Classification (Hansen et al. 1981), VHI is analyzed for

three categories, i.e., grasslands, croplands, and forests. Figure 7.1 represents the

coverage of each land cover type over the CONUS. Because forests cover a large

area, it is divided into three parts; western, southeastern, and northeastern forests.

The number of 16 km grids in each class are as follows: 9777 grids for croplands,

6390 grids for grasslands, 4675 grids for western forests, 7565 grids for northeast-

ern forests, and 5614 grids for southern forests; totaling over 34,000 grids covering

the entire CONUS.
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7.3.1.1 Spatial Extent of Agricultural Drought

A VHI value of 35 or less is translated as drought condition (Rembold et al. 2015;

Rojas et al. 2011). Therefore, the spatial extent of drought (grids with VHI< 35) is

calculated for each of the five land cover regions (shown in Fig. 7.1) during the

growing season of 1982–2015 on a weekly temporal scale, and the results are

shown in Fig. 7.2. According to the results, grasslands (which are mostly located

in the western U.S.) show the highest increase in drought extent. On the other hand,

eastern forests indicate an increase in the spatial extent of drought over the past

three decades.

To better understand how the drought extent has changed over time, an inter-

decadal assessment has been done, and the drought extent for the period of

1982–1998 is compared to that of 1999–2015. The assessment is done using

cumulative distribution function (CDF) of drought extent at each region. Figure 7.3

represents the results of inter-decadal assessment. A shift to the right in the CDF

indicates an increase in the value of drought extent. Therefore, CDF plots of Fig. 7.3

clearly highlight the increase in drought extent of cropland, grassland, and western

forests.

7.3.1.2 Trend of VHI (Changes in the Intensity of Drought)

As mentioned earlier, a persistent VHI value below 35 is assumed as drought.

However, lower values of VHI indicate more severe agricultural drought and

vegetation stress. Therefore, it is of great importance to study the time-series of

VHI in order to investigate for any significant changes in the intensity of

Fig. 7.1 Land cover classification and the sub-regions considered
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agricultural drought and vegetation stress. Furthermore, the spatial pattern of VHI

changes can be useful for assessing the effects of large-scale climate signals on

agricultural drought. Figure 7.4 shows the linear trend of VHI during the growing

season of 1982–2015. A negative trend (red color) indicates decreasing VHI, which

corresponds to an increase in the severity of drought and vegetation stress. The

figure shows that most of the western regions indicate a decrease in VHI value,

meaning an increasing trend in the intensity of agricultural droughts at western

regions. For instance, more than 60% of western forests indicate increasing severity

Fig. 7.2 Spatial extent of agricultural drought according to VHI for the growing season of

1982–2015
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Fig. 7.3 CDF of drought extent based on VHI for two time frames in the historical period. A shift

to the right in CDF represents an increase in drought extent

Fig. 7.4 Linear Trend of VHI during the growing season of 1982–2015
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of drought. The case is similar for grasslands, with over 60% of area showing

increasing trend in drought intensity. On the other hand, southeastern forests show

less areas with increasing drought intensity, with about 25% of area showing

intensifying drought over the past three decades.

7.4 Drought Monitoring with Data Assimilation

7.4.1 The Challenges in Remote Sensing of Drought

Drought monitoring is based on drought indicators computed using hydro-

meteorological variables. In general, the remotely sensed observations are not

currently used for operational drought monitoring. One of the main limitations is

the short length of record (AghaKouchak et al. 2015; Lettenmaier et al. 2015). For

instance, a decade of soil moisture data from AMSR-E may not be sufficient to

monitor drought. However, the remotely sensed observations still provide valuable

information of the hydrologic variables at an unprecedented spatial and temporal

resolution. For instance, the L-band soil moisture from the SMAP mission provides

immense opportunities to aid agricultural drought detection and improve early

agricultural drought warning. In the meantime, current and future satellite missions

offer the opportunities to generate higher-quality and long-term data records by

merging the satellite observations with model simulations; the method which is

referred to as data assimilation (DA). In this chapter, the remotely sensed soil

moisture is used as an example to illustrate the agricultural drought-monitoring

framework through DA. Other remotely sensed hydrologic variables, such as

precipitation from GPM or ground water component from GRACE, can also be

assimilated into hydrologic models in the same way for meteorological and hydro-

logic drought monitoring, respectively.

7.4.2 Data Assimilation in Agricultural Drought Monitoring

Agricultural drought monitoring is based on root-zone soil moisture. The root-zone

soil moisture drought indicator has been used in different approaches including the

soil moisture percentile, soil moisture anomaly, and standardized soil moisture

index (Hao and AghaKouchak 2013; Luo and Wood 2007; Mao et al. 2015). In

U.S., ground-based measurements of soil moisture are only available at the point

scale at a limited number of sites, while the remotely sensed retrievals can provide

unprecedented spatial and temporal resolution of soil moisture. However, micro-

waves only penetrate the top few centimeters, retrieving only the surface soil

moisture rather than the root-zone soil moisture. Hydrologic model simulations

can estimate long-term root-zone soil moisture across a range of scales, but the
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simulation results are potentially biased due to the errors in forcing data, parame-

ters, and the deficiencies in model physics (DeChant and Moradkhani 2014a, b;

Parrish et al. 2012).

A plausible approach to improve the root-zone soil moisture estimation is to

assimilate the satellite surface soil moisture observations to a dynamic hydrologic

model to update the model states (root-zone soil moisture storages) (Moradkhani

2008). Currently, the majority of satellite soil moisture DA studies are relying on

the ensemble Kalman filter (EnKF) (Crow et al. 2008; Kumar et al. 2014; Reichle

et al. 2002, 2008; Ryu et al. 2009). However, for the highly nonlinear hydrologic

models, the assumption of Gaussian distribution of errors in the EnKF may not be

valid and adjusting states using the linear updating rule violates the conservation of

mass (Dechant and Moradkhani 2012). The effectiveness of EnKF also depends on

the cross covariance between the surface and root-zone soil moisture. The weak and

highly nonlinear linkage between the surface and root-zone layers prevents the

EnKF from updating the root-zone soil moisture effectively when the satellite

surface soil moisture is assimilated (Brocca et al. 2012; Massari et al. 2015). As

an alternative, the particle filter (PF) method can relax the Gaussian assumption and

does not violate the conservation of mass (Moradkhani et al. 2012). The PF also

does not depend on the cross covariance between the surface and root-zone layers,

rather it seeks good performance for the two layers at the same time. Therefore, the

PF can achieve better performance on root-zone soil moisture estimation than the

EnKF method (Yan et al. 2015). The newly developed PF-Markov Chain Monte

Carlo (MCMC) (Moradkhani et al. 2012) method, with a combination of PF and

MCMC, can further improve the root-zone soil moisture estimations. Yan and

Moradkhani (2016) suggested that with the assimilation of satellite surface soil

moisture using PF-MCMC, the root-zone soil moisture estimation can be improved

resulting in improvement of the drought-monitoring skill (Fig. 7.5). In addition,

current operational drought-monitoring system is a deterministic system and the

root-zone soil moisture uncertainty is not considered (Mao et al. 2015; Sheffield

et al. 2004; Wang et al. 2011). In DA framework, the root-zone soil moisture

uncertainty can be explicitly quantified within an ensemble framework that leads

to increasingly accurate estimate of root-zone soil moisture states for agricultural

drought monitoring.

7.4.3 Synthetic Study Results

To objectively assess the potential benefit of assimilation of satellite soil moisture, a

synthetic study is first conducted through a procedure called observing system

simulation experiment (OSSE) (Moradkhani 2008). The synthetic study includes

the following four steps: (1) a “truth” run of hydrologic model with the

pre-calibrated model parameters; (2) simulated satellite surface soil moisture

observations, which are generated from the truth run by incorporating the observa-

tion errors; (3) open-loop (OL) ensemble run with perturbed forcing data without
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DA; and (4) the DA step that assimilates the simulated surface soil moisture

observations from step 2 to the model. Then the OL and DA results are compared

against the truth simulation to evaluate the impact of satellite soil moisture

assimilation.

In this study, the Precipitation-Runoff Modeling System (PRMS) (Leavesley

et al. 1983) is used to model the root-zone soil moisture. The meteorological forcing

data, precipitation, maximum, and minimum temperature (January 1, 1979 to

December 31, 2015) were acquired from the Phase 2 of the North American Land

Data Assimilation Systems (NLDAS-2) (Xia et al. 2014). The blended microwave

soil moisture climate change initiative (CCI) products v02.2 released on February

2016 (Liu et al. 2012) and the Advanced Microwave Scanning Radiometer2

(AMSR2) soil moisture products (Imaoka et al. 2010) were used in this study.

Calibration of the PRMS was performed on a daily timescale utilizing a combina-

tion of unregulated U.S. Geological Survey (USGS) streamflow data and No
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Fig. 7.5 Assimilation of synthetic SMOS soil moisture (temporal resolution: 3 days) for surface

and root-zone soil moisture prediction using the PF-MCMC method
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Regulation No Irrigation (NRNI) streamflow data provided by Bonneville Power

Administration (BPA). The results are assessed over the Columbia River Basin

(CRB) in the Pacific Northwest U.S. The PF is performed by assimilation of the

synthetic satellite surface soil moisture for the period of October 1, 2014 to

September 30, 2015. The hindcast focuses on the drought events in the year

2015, since the CRB received historically low snowpack conditions in this year

and drought emergencies were declared in Oregon (OR), Washington (WA), and

Idaho (ID) States. An ensemble size of 200 is used in this study to obtain the soil

moisture posteriors.

The improvement or degradation of DA on soil moisture predictions are assessed

using the normalized information contribution (NIC) (Kumar et al. 2014). The NIC

for root-mean-square-error (RMSE) is defined as:

NIC ¼ RMSEOL-RMSEDA

RMSEOL

ð7:1Þ

where the RMSEOL indicates the RMSE values between the OL and synthetic truth,

RMSEDA indicates the RMSE values between DA and synthetic truth. If NIC> 0,

the DA improves the OL skill; if NIC¼ 0, the DA does not add any skill; if NIC< 0,

the DA degrades the OL skill; and if NIC¼ 1, the DA achieves the maximum skill.

Figure 7.6 presented the NIC values in the surface and root-zone soil moisture and

their spatial distributions across the CRB. The majority of the grid cells show the

positive NIC values indicating the added-value of the DA. Generally, the improve-

ments in the surface soil moisture field are consistent with the improvements in the

root-zone soil moisture field. For surface soil moisture, the daily domain-averaged

RMSE (m3/m3) for the OL is 0.021, and it decreases to 0.011with DA. Similarly,

the daily domain-averaged root-zone soil moisture RMSE value decreases from

0.019 in the OL to 0.012 after DA.

In this study, drought is characterized with the soil moisture percentile and

drought intensity is classified based on the National Drought Mitigation Center

(NDMC) United States Drought Monitoring (USDM) (Svoboda et al. 2002). Five

categories are defined: D0 (abnormally dry, percentile� 30%), D1 (moderate

drought, percentile� 20%), D2 (severe drought, percentile� 10%), D3 (extreme

drought, percentile� 5%), and D4 (exceptional drought, percentile� 2%). The

root-zone soil moisture generated from the OL and DA seasonal integrations was

compared against the corresponding synthetic truth percentiles. It is noted that the

percentiles from the OL and DA in these comparisons were generated using the

ensemble mean estimates. Figures 7.7 and 7.8 present the spatial distribution of

drought intensities and the drought extent bias (%) for five different drought (D0–

D4) categories. The four seasons in the PNW (fall: OND; winter: JFM; spring:

AMJ; summer: JAS) are considered for the period of October 1, 2014 to September

30, 2015. The severe drought events in spring and summer of 2015 across the PNW

can be seen in the synthetic truth. In all comparisons, the DA estimates show

systematic improvements over the OL estimates. For fall 2014, the OL underesti-

mates the intensity of drought across WA and ID states, whereas DA improves
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these representations. The drought extent bias (%) for D0–D4 between the OL and

synthetic truth is 4.33%, and it decreases to 1.24% with DA. For winter and spring

2015, the OL underestimates the intensity of drought across PNW, and DA help to

reduce these large biases. Similarly, drought extent biases (%) decrease from

Fig. 7.6 The normalized information contribution (NIC) value between the OL and DA (Eq. 7.1).

The positive value indicates that the DA improves soil moisture prediction against OL; negative

value indicates the degradation over the OL
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Fig. 7.7 Comparison of the drought-monitoring skill between the OL and DA for fall 2014 and

winter/spring/summer 2015

Fig. 7.8 The absolute bias of drought extent (%) against the synthetic truth in the U.S. portion of

the CRB
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3.46% and 3.13% in the OL to 1.20% and 0.42% in the DA, respectively.

Although the majority of grid cells in WA and OR states show relatively high

root-zone soil moisture values in summer 2015, the DA still helps reduce these

biases. The drought extent bias (%) decrease from 20.13 to 13.71%. These results

are consistent with the trends in Fig. 7.6, which show the improvements obtained by

data assimilation.

7.4.4 Real Case Study Results

Since no “truth” data exist for real case study, the state drought declaration was

used as the references to assess the drought-monitoring skill (Kumar et al. 2014;

Shukla et al. 2011). Two case studies are presented here to indicate the added-value

of soil moisture DA for improving drought-monitoring skill. In spring 2013,

drought declarations were issued for nine counties in the southern Idaho (ID).

Three months later, a total of 19 counties in ID issued drought emergency. In

winter 2015, the PNW received historically low snowpack conditions. In June

2015, the WA Governor declared the statewide drought; the OR Governor declared

drought emergencies for 19 out of 36 Oregon counties (about 80% of the state’s
landmass); and more than 90% of Idaho had either declared drought or was

bordering drought.

Figures 7.9 and 7.10 present the drought conditions in spring 2013 and winter

2015 and the detected drought areas with OL and DA. For 2013 spring, the OL

missed the drought events in parts of southeast ID; however, the DA helped to

correct these biases. The detected drought areas of CRB for OL and DA are 73.17%

Fig. 7.9 Spatial assessment of drought for 2013 and 2015 before and after DA
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and 81.43%, respectively. For winter 2015, the OL underestimated the drought

events in parts of OR and ID, whereas DA improved these representations. The

detected drought areas increased from 36.37% in the OL to 58.85% after the

DA. The DA provides a more accurate estimate of drought areas, more consistent

with the state drought conditions. In summary, compared with the OL, the DA

improves the drought-monitoring skill for both 2013 and 2015. These results

demonstrate the added-value of DA to facilitate the state drought preparation and

declaration, at least 3 month before the official state drought declaration.

7.5 Summary and Conclusion

Satellite observations have provided invaluable information about many

hydroclimatic and environmental variables. This chapter highlights the evolution

and progresses of satellite remote sensing of the earth, practical for drought-

monitoring purposes from various perspectives. Sections 7.1–7.3 explain the instru-

ments and missions for retrieving hydrological and vegetation data from different

satellite platforms and discuss their attributes and characteristics. In Sect. 7.4, data

assimilation is explained as a useful method to improve the drought-monitoring

skill. We examine the impacts of assimilating remotely sensed surface soil moisture

for improving surface and root-zone soil moisture estimates and their subsequent

contributions toward an improved assessment of agricultural droughts. Similar to

what has been explained here, other satellite data, e.g., precipitation and total water

storage, can also be assimilated in the same way to improve the estimations of

meteorological and hydrologic droughts.

Fig. 7.10 Drought extent for spring 2013 and winter 2015 drought events before and after data

assimilation
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Chapter 8

Drought Monitoring and Assessment
Using Remote Sensing

Z. Su, Y. He, X. Dong, and L. Wang

8.1 Introduction

Drought has wreaked havoc to human societies throughout history. Impacts of

drought include devastated crops, famine and conflicts and wars. Serious and severe

droughts have occurred on every continent throughout history (Heffernan 2013),

including the global mega drought of 4200 years ago that is linked to demise of

Akkadian Empire (Kerr 1998) and civilisations in Greece, Egypt and the Indus

Valley of Pakistan, the great famine in 1876–1878 which resulted in more than

5 million deaths in India and 30 million in total, the federation drought in 1901 in

Australian, the US dust bowl in the 1930s, the central European drought in the

1940s and the Sahel drought in 1970s and 1980s when famine led to 600,000 deaths

in 1972–1975, and again in 1984–1985. These droughts have all been associated

with climatic shifts that caused low rainfall and as such climate change is now an

accepted powerful causal agent in the evolution of civilisation. In many regions,

climate change is expected to increase the amount of land at risk from drought and

heat and will threaten more arable areas. Timely assessment and monitoring of

drought will increase the drought preparedness, relief and mitigation and reduce the

damage of drought impacts to the environment, economy and society.
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Drought may be defined as the lack of water of a certain location in a certain

period compared to a climatic average. From a climatic perspective, we may

distinguish meteorological, soil moisture and hydrological drought. Meteorological

drought refers to a shortage of precipitation compared to a climatic average; soil

moisture drought can be caused by a shortage of precipitation, excessive evapora-

tion and transpiration due to dry weathers and lack of irrigation, while hydrological

drought is caused by a combination of lack of precipitation and excessive use of

available water resources. When the impact of drought is also taken into consider-

ation, four types of droughts are usually defined such as meteorological drought,

agricultural drought, hydrological drought and socioeconomic drought.

As remote sensing provides real-time spatial observations of several atmo-

spheric and land surface variables that can be used to estimate precipitation,

evapotranspiration, soil moisture and vegetation conditions, such data can be used

for assessment and monitoring of drought characteristics: its intensity, duration and

spatial extent. When combined with modelling and forecasting of the water cycle,

information on future drought can also be generated for drought preparedness.

In next section, we will briefly review some commonly used drought indices

with a focus on the use of remote sensing. A unified framework for drought

monitoring and assessment is discussed in Sect. 8.3, and Sect. 8.4 presents several

practical examples. Conclusions and recommendations are presented in the last

section.

8.2 Drought Indices

Due to the complexity of the drought phenomena and the needs for their descrip-

tions in applications, a panoply of indices has been developed and many recent

studies have evaluated their usefulness and consistencies in describing drought

events (e.g. Zargar et al. 2011; Eden 2012; van Hoek 2016 among others). In

particular, Zargar et al. (2011) reviewed 74 such indices and mentioned that around

150 had been developed in the past. Eden (2012) assessed the droughts in Twente in

the Netherlands from 2003 to 2012 by mapping evapotranspiration using the Water

Cycle Multi-mission Observation Strategy (WACMOS) methodology

(Su et al. 2014) in applying the Surface Energy Balance System (SEBS)

(Su 2002). van Hoek (2016) developed a web-based open source platform for

global drought monitoring using eight indices (see later for more details).

From a process point of view, meteorological drought occurs when a consistent

decline of precipitation reduces water available on land in snow packs, ice sheets,

lakes and rivers, therefore a relevant index should primarily describe the decline of

precipitation, the Standardised Precipitation Index (SPI) (McKee et al. 1993, 1995;

Guttman 1999) can be used for this purpose, although the Palmer Drought Severity
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Index (PDSI) (Palmer 1965, 1968) is also widely used but its estimation is more

involved than SPI.

Soil moisture drought (or commonly referred to as agricultural drought but this

latter gives the impression concerning only agricultural lands and ignoring other

natural surfaces) occurs when soil dries out due to evaporation into the atmosphere,

drainage into deeper layers that cannot be accessed any more by vegetation or due

to excessive human extraction of aquifer storage. The most relevant indices should

be those reflecting the soil moisture status in the rooting zone. The PDSI may serve

also this purpose. Other relevant indices are the Drought Severity Index (DSI)

derived from surface energy balance to infer water balance in the rooting zone

(Su et al. 2003a, b) and the Evapotranspiration Deficit Index (ETDI) derived from a

hydrological model of the unsaturated zone (Narasimhan and Srinivasan 2005) as

well as the Standardised Precipitation and Evaporation Index (SPEI) (Vicente-

Serrano et al. 2010a).

Hydrological drought occurs when water reserves in aquifers, lakes and reser-

voirs fall below averages due to high human demand or low rainfall supplies. The

most relevant indices for this should reflect the changes in total storage in an area;

the PDSI can be used in part as it considers the accumulation of precipitation, but

better is the changes derived from water cycle budget for a certain area which will

be described in Sect. 8.3.

From an impact point of view, many remotely sensed indices have been devel-

oped in the past decades to describe different aspects of droughts, despite the fact

that they mostly reflect the surface conditions instead of the amount of water in the

different storages. The following indices are often used: Normalised Difference

Vegetation Index (NDVI), Anomaly Vegetation Index, Vegetation Condition

Index, Normalised Difference Water Index, Normalised Difference Drought

Index and Vegetation Supplication Water Index based on visible, near infrared,

shortwave reflectance data for partly and fully covered surface, Temperature

Vegetation Dryness Index, Temperature Condition Index, Crop Water Stress

Index and Water Deficit Index based on thermal infrared remote sensing data for

partly and fully covered surface. A detailed review of these indices can be found in

McVicar and Jupp (1998).

In the following, we briefly review some commonly used drought indices

focusing on the use of remote sensing as well as reanalysis type of gridded data

that use remote sensing data as input or assimilate such data as state variables.

8.2.1 PDSI

The procedure to estimate PDSI is as follows: (1) Carry out a hydrologic accounting

by months for a long series of years. (2) Summarise the results to obtain certain

constants or coefficients which are dependent on the climate of the area being

analysed. (3) Reanalyse the series using the derived coefficients to determine the

amount of moisture required for “normal” weather during each month. (4) Convert
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the departures to indices of moisture anomaly. (5) Analyse the index series to

develop: (a) Criteria for determining the beginning and ending of drought periods.

(b) A formula for determining drought severity.

As the estimation of PDSI relies on a hydrological accounting, the challenges in

using this approach are in the definition of the two soil layers with the

corresponding field capacity which requires some knowledge of soil hydraulic

properties and the estimation of the potential recharge, loss, precipitation, evapo-

ration and runoff as well as the associated coefficients (i.e. evapotranspiration,

recharge, runoff, and loss). A comprehensive land surface hydrological modelling

may easily accomplish this task given adequate forcings.

8.2.2 SPI

SPI (McKee et al. 1993) is based only on precipitation data, thus provides a rapid

drought index once precipitation data is available. SPI compares precipitation with

its climatic mean estimated as multiyear average. To estimate SPI, the precipitation

record is first fitted to a gamma distribution, which is then transformed into a

normal distribution using an equal probability transformation. After

standardisation, i.e. SPI¼ (Xi�m[X])/std[X], where Xi is the precipitation variable,

m[X] the average (typically over a period of 30 years) and std[X] the standard

deviation, SPI values above zero indicate wet periods and values below zero

indicate dry periods.

For any given event, its SPI score represents how many standard deviations its

cumulative precipitation deficit deviates from the normalised average. If a value of

less than zero is consistently observed and it reaches a value of�1 or less, a drought

is said to have occurred (McKee et al. 1993), thus the onset of a drought can be

defined. SPI can be calculated for different time periods, but typically it is applied

for the 3, 6, 12, 24 and 48-month periods. Because over time precipitation deficit

gradually and variably affects different water resources (e.g. snowpack, stream flow

and groundwater), the multitude of SPI durations can be used to reflect change in

different drought features.

8.2.3 NDVI, VCI, TCI and VHI

NDVI (Kriegler et al. 1969; Rouse et al. 1973; Tucker 1979) has been used as a

surrogate for detecting the condition of green vegetation, as it is defined as NDVI¼
(NIR�VIS)/(NIR +VIS), where VIS and NIR stand for the spectral reflectance

measurements acquired in the visible (red) and near-infrared regions of the spec-

trum. Because the pigment in plant leaves (chlorophyll) strongly absorbs visible

light (from 0.4 to 0.7 μm) for use in photosynthesis and the cell structure of the

leaves strongly reflects near-infrared light (from 0.7 to 1.1 μm), the more green
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leaves a plant has, the more these wavelengths of light are affected, respectively,

and hence the higher the NDVI. As such NDVI has also been used for detecting

drought effects on vegetation and used as a base index for a number of remote

sensing indices that similarly measure vegetation conditions.

Among these the most popular ones are the Vegetation Condition Index (VCI)

(Kogan 1990), defined as VCI¼ (NDVI�NDVImin)/(NDVImax�NDVImin) for a

certain period (week/month), NDVI is the NDVI for the period under study,

NDVImax and NDVImin are the maximum and minimum NDVIs, respectively, in

the record for the specific period; and the Temperature Condition Index (TCI)

(Kogan 1995), defined as TCI¼ (BTmax�BT)/(BTmax�BTmin) which describes

the deviation of the brightness temperature (BT) in a period (e.g. a month) from

recorded maximum assuming the higher the temperature deviation, the higher the

drought. BT, BTmax and BTmin are the actual, maximum and minimum BTs,

respectively, in the record for the specific period. Combining the VCI and TCI

using a weight factor α for the contributions of VCI and TCI, the Vegetation Health

Index (VHI) (Kogan 1995) can be defined as VHI¼ αVCI + (1� α)TCI and often α
is set to 0.5 and is found more effective than other vegetative drought indices

(Kogan 2001).

By replacing the respective minimum or maximum values in the definition of

VCI, TCI with the mean values and make proper adjustment in the equations, Jia

et al. (2012) defined the Normalised Vegetation Anomaly Index (NVCI),

the Normalised Temperature Anomaly Index (NTCI) and the Normalised

Drought Anomaly Index (NDAI), respectively, as, NVAI¼ (NDVI�m[NDVI])/
(NDVImax�NDVImin), NTAI¼ (BT�m[BT])/(BTmax�BTmin), NDAI¼ α
NVCI�(1� α) NTAI, where m[.] is the respectively corresponding mean value.

van Hoek (2016) has evaluated these indices with ground observations in China

and concluded that the normalised values to be more stable than the original

indices, while also pointing out difficulties to validate the satellite-derived drought

maps with the national hazard database of China Meteorological Administration.

8.2.4 DSI, ETDI and SPEI

The Drought Severity Index (DSI) (Su et al. 2003a) was developed to infer rooting

zone soil moisture from surface energy balance consideration. By considering only

the vertical movement of water, which is a valid approximation in the absence of

heavy rainfall and irrigation and under deep groundwater conditions, it is possible

to derive a physical relationship between the temporal changes of the evaporation

and the changes of the soil water content. Using the mass conservation principle for

an infinitesimal soil layer in the vertical direction, we obtain
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∂θ z; tð Þ
∂t

¼ �∂q z; tð Þ
∂z

ð8:1Þ

where θ, q, t, z are volumetric soil moisture content, soil water flux density (water

amount per unit area per unit time) across a vertical plane, time and vertical

distance increment, respectively. Integrating (8.1) from z1 to z2 in depth and from

t1 to t2 in time and assuming that there is no source/sink between z1 and z2, we
obtain the water balance equation,

ðz2
z1

θ z; t2ð Þdz�
ðz2
z1

θ z; t1ð Þdz ¼ Q z1ð Þ � Q z2ð Þ ð8:2Þ

Applying (8.2) to the active rooting zone with the boundary conditions

Q z1ð Þ ¼ P0þI0 � E at the soil surface and Q z2ð Þ ¼ Ic at the bottom of the rooting

zone, the change of total soil water content in this zone can be written as

Θ t2ð Þ � Θ t1ð Þ ¼ P0 þ I0 þ Ic � E ð8:3Þ

where Θ is the volumetric soil water content in the rooting zone, P0, I0, Ic, E are,

respectively, precipitation, irrigation, capillary flux and evapotranspiration amount

from t1 to t2.
Similar to the determination of relative evaporation as used in SEBS (Su 2002),

the water balance at limiting cases can be considered. Without losing generality, we

assume that the soil in the rooting zone was completely saturated at t1, i.e. Θ t1ð Þ
¼ Θwet (i.e. at the wet limit) after a sufficient precipitation or irrigation event.

During the drying-down process (i.e. there is no precipitation or irrigation taking

place during this period), the rooting zone will eventually reach the dry limit

Θ t2ð Þ ¼ Θdry, i.e. the evaporation becomes zero due to the limitation of the soil

moisture (which drops to below the wilting point), from (8.3) we have,

Θwet � Θdry ¼ Ic,wet � Ewet ð8:4Þ

Similarly, for any time between the wet-limit and the dry-limit cases, we obtain

from (8.3)

Θ� Θdry ¼ Ic � E ð8:5Þ

Manipulating (8.4) and (8.5) results in

Θ� Θdry

Θwet � Θdry

¼ E� Ic
Ewet � Ic,wet

ð8:6Þ

Assuming the capillary flux is only related to soil texture and is small compared to

root water uptake which can be quantified by the transpiration flux, i.e.

Ic ¼ Ic,wet << E as observed by Aydin (1994) who reported that the capillary
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flux was very small when compared with root water uptake, even in clay soils.

Subsequently by defining Rθ ¼ Θ=Θwet as the relative soil water content with

respect to the porosity and using (8.6) (and multiplying the right-hand side by λ,
the latent heat of vaporisation), we arrive at

Rθ ¼ Θ
Θwet

¼ λE

λEwet

ð8:7Þ

Equation (8.7) shows that the relative soil water content is directly related to the

relative evapotranspiration. As such if defining the Drought Severity Index as

DSI ¼ 1� Rθ, i.e. the relative soil water deficit in the rooting zone, one obtains

from the SEBS relationship (Su 2002),

DSI ¼ H � Hwet

Hdry � Hwet

ð8:8Þ

Equation (8.8) is the required quantitative measure for soil water deficit in the

rooting depth and can be directly derived from SEBS calculation (Su 2002). When

DSI is high, soil water content is low and vice versa.

By relating DSI to soil hydraulic characteristics (i.e. the porosity) and to crop

phenology (i.e. the rooting depth), location-specific soil water deficit in the rooting

zone can be determined for a particular soil, thus leading to a quantitative assess-

ment of drought severity for the concerned crop at the particular location and time.

This can be done as follows by defining the relative evapotranspiration as in SEBS

(Su 2002) and linking it to (8.6) as

DSI ¼ 1� Λr ¼ 1� s
Θ� Θdry

Θwet � Θdry

� �
ð8:9Þ

A general form with a sigmoid function, y ¼ 1
1þe�xa , can then be fitted to the soil

moisture function s(.) to account for the local soil properties. By relating the factor

a (the exponent) to different soil hydraulic properties all conditions can be taken

into account as shown in Fig. 8.1.

8.2.5 Case Studies

The Evapotranspiration Deficit Index (ETDI) was defined (Narasimhan and

Srinivasan 2005) by using simulated data with the SWAT model (Arnold

et al. 1998; Neitsch et al. 2002). The water stress anomaly (WSA) is calculated as

case A: if WSi,j <¼ MWSj, then WSAi,j¼ (MWSj�WSi,j)/(MWSj�minWSj)

*100, or case B: If WSi,j>MWSj, then WSAi,j¼ (MWSj�WSi,j)/

(maxMWSj�NWSj)*100 (Note: it was specified in Narasimhan and Srinivasan
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2005 that A holds for WSi,j¼MWSj, but this is likely a typo, as it would make no

difference for A or B if WSi,j¼MWSj), and in these expressions, WSA is the

weekly water stress anomaly, MWSj is the long-term median water stress of week j,
MaxWSj, MinWSj are the long-term maximum and minimum water stress of week

j, and WS is the weekly water stress ratio, defined as WS¼ (ET0�ET)/ET0, where

ET0 is the weekly reference crop evapotranspiration, and ET is the weekly actual

transpiration. Eden (2012) evaluated the usefulness of ETDI for regional drought

analysis and compared it to SPI from a meteorological station operated by the Royal

Meteorological Institute of the Netherlands (KNMI) from 2003 to 2010 and con-

cluded that the ETDI can be used to estimate the onset, intensity and duration of

spatially regional drought.

The Standardised Precipitation Evapotranspiration Index (SPEI) (Vicente-

Serrano et al. 2010a) is defined using precipitation and potential evapotranspiration

(PET) similar to the PDSI. First, the climatic water balance, i.e. the difference

between precipitation and ET0, is estimated as:

D ¼ P� ET0 ð8:10Þ

where P is the monthly precipitation (mm) and ET0 (mm) is estimated with the

method of Thornthwaite (1948), using only mean monthly temperature and the

geographical location of the region of interest. Then the calculated D values were

aggregated at various time scales:

Dk
n ¼

Xk�1

i¼0

Pn�i � ETn�ið Þ, n � k ð8:11Þ
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Fig. 8.1 Generalised form y ¼ 1
1þe�xa between relative evaporation (y, ordinate) and normalised

soil moisture (x, abscissa), the factor a (the exponent) can be used to fit different soil properties.

The dashed line indicates the simple linear relationship of (8.7)
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where k (months) is the time scale of the aggregation and n is the calculation

number. The D values are undefined for k> n. Finally a log-logistic probability

distribution function was then fitted to the data series of D, as it adapts very well to
all time scales (Vicente-Serrano et al. 2010b).

The SPEI combines the sensitivity of the PDSI to changes in evaporation

demand (caused by temperature fluctuations and trends) with the multitemporal

nature of the SPI and the main advantage of the new index lies in its multiscalar

character, which allows discrimination between different types of drought.

Different time scales are needed for monitoring drought conditions in different

hydrological subsystems, as short time scales are mainly related to soil water

content and river discharge in headwater areas, medium time scales to reservoir

storages and discharge in the medium course of the rivers, and long time scales to

variations in groundwater storage. For regional drought assessment and mitigation,

spatial data of high resolution (i.e. kilometre scale or field scale) will be of great

benefit; therefore, in next section we propose a unified framework for multiscale

temporal and spatial drought assessment, monitoring and analysis as well as

prediction.

8.3 A Unified Framework for Drought Monitoring
and Assessment

As discussed in Sect. 8.2, many indices have been proposed for drought assessment,

each of these indices addresses a specific aspect of drought. It is therefore desirable

to have one or a set of consistent indices to describe all aspects of a drought, its

onset, severity and duration, as well as their spatial distribution and simultaneously

addressing meteorological, soil moisture and hydrological drought. Recently, van

Hoek (2016) has evaluated different indices and proposed the use of eight indices

for drought monitoring in China in a web-GIS-based system. The used indices are

as follows: Precipitation Anomaly Percentage (PAP), TCI, NTAI, VCI, NVAI,

VHI, NDAI and the Evapotranspiration Deficit Index (EDI).

On the basis of the review presented in Sect. 8.2 and the studies by Eden (2012)

and van Hoek (2016), a drought monitoring and analysis system should take into

account the meteorological, soil moisture as well as hydrological characteristics,

thus a system using SPI, DSI-ETDI, SPEI and VCI should be able to describe

surface characteristics of droughts (i.e. meteorological and soil moisture drought),

and as for hydrological drought a water cycle closure (or the simplified water

budget closure for a catchment) approach (Fig. 8.2) is then needed.

In order to be able to compare these indices, the same standardisation procedure

can be used for other indices and variables providing a uniform descriptor for

different aspects of the same event. We shall name this index as: SXI¼ (Xi�m
[X])/std[X], where Xi is the variable in question and m[X] is the average (typically
over a period of 30 years), std[X] is the standard deviation, and when X is replaced

by a certain variable we derive a specific index for that variable (e.g. precipitation,
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evaporation/transpiration, soil moisture, vegetation condition, etc.). As such this

SXI is defined in the same manner as standardised anomaly and will be used

interchangeably.

For water budget closure of a catchment, the following equation can be used,

∂Si, j
∂t

¼ Pi, j � Ei, j � RObs*f Pi, j;Ei, j

� � ð8:11Þ

The left-hand side of the equation represents the change of total water storage and

the right-hand side states that the total water storage change equals to precipitation

less evaporation and discharge. The function f(.) is used to scale the aggregated

discharge at the gauge station to runoff generation at each grid.

In the calculation to be presented in Sect. 8.4, the precipitation is from satellite

observation (e.g. Adler et al. 2003), the evaporation is calculated by SEBS

(Su 2002; Chen et al. 2014) and the discharge is from in situ observation. This

equation also expresses the consistency validation among in situ observation

datasets, thus different datasets for precipitation, evaporation and runoff can be

used and their consistency evaluated.

In addition to satellite and in situ observation datasets, reanalysis data, e.g. the

ERA-Interim, provide these three variables as well, so ERA-interim results will be

Fig. 8.2 Concept of water budget closure. SPI is the Standardised Precipitation Index, SPEI is
standardised Precipitation Evaporation Index, SDSI-ETDI is the Standardised Drought Severity

Index-Evapotranspiration Deficit Index, SVCI is Standardised Vegetation Condition Index, STWSI
is the Standardised Terrestrial Water Storage Index, all calculated on weekly or monthly time

interval from 1 to N time intervals (e.g. for 48 months) (i.e. as anomalies and cumulative

anomalies)
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applied with this equation to calculate the total water storage change as well. On the

other hand, the total water storage can be measured by using the GRACE satellite,

thus these different data sources can be assessed in one consistent framework.

A set of sequential standardised indices can then be used to describe the different

aspects of droughts, SPI for precipitation, SPEI for precipitation and potential

evaporation and SDSI-ETDI for evapotranspiration, SVCI for vegetation condition

and STWSI for the terrestrial water storage in the catchment, all calculated on

weekly or monthly time interval from 1 to N time intervals (e.g. for 48 months)

(i.e. as standardised anomalies and cumulative anomalies) (Fig. 8.2).

For the determination of the drought intensity, a similarly uniform approach

could be proposed for the different indices, and as they are standardised a normal

distribution can be fitted to them (or after some transformation), as such it is

sufficient to use the standard deviation of the indices to define their departure

from the mean. The corresponding drought intensity classes are listed in Table 8.1.

The utilities of these indices and definitions will be illustrated with some

practical examples in next section as executed in the Dragon drought monitoring

project supported by the European Space Agency and the Ministry of Science and

Technology of China.

8.4 Drought Monitoring and Prediction over Continental
China: A Case Study

The conflict between supply and demand of water resources constitutes the biggest

problem for food security of an increasing world population. Since 1970s, some

progresses have been made in drought quantification and research. However, the

methods employed are mostly based on data collected on local meteorological

variables and cannot quantify real-time, large-scale actual drought process, i.e. its

intensity, duration and its actual extent. It has also often happened that a drought is

not recognised while it is in fact already underway of its development. As a result of

this inability, no adequate measure can be deployed to effectively fight any big

drought disaster often causing great hunger and social instability. Most recently,

China Meteorological Administration has installed nation-wide automatic soil

moisture monitoring stations providing important in situ observation of the status

of soil moisture, such that information derived from spatial remote sensing data can

be validated and improved for real-time drought monitoring.

8.4.1 Satellite Earth Observation of Land Surface Processes

The project strategy is to derive land surface parameters and heat fluxes using

satellite earth observation techniques and to apply these parameters and fluxes in a

hydrometeorological model as initial conditions and constraints at the
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land–atmosphere interface. Further data assimilation allows controlling the model

drifts. Since a hydrological model treats, in reality, heterogeneous land surfaces by

means of effective parameters, and there is no any other adequate means, except

satellite earth observation techniques, to derive the actual distribution of these

parameters over any large area, this proposed strategy makes a major progress to

monitor and predict drought on a quantitative way. It is also well known that both

type of models treat soil water content, which controls the energy and water partition

at the land–atmosphere interface, as a prognostic variable or put it plainly as a

residual of the mass balance equation. Any prediction of soil water content using

these models, without other actual physical information, is simply a collection of

residual errors of other terms and does not provide any reliable indication of the

actual soil water content. The latter as a matter of fact is the most important variable

sorted after for drought problems. On the other hand, since satellite earth observation

provides actual measurements of land surface parameters andmodels enable tomake

predictions, it becomes fairly clear that only a combined approach will provide the

definitive opportunities to adequately solve the drought problem over a large area.

Radiometric observations aboard earth observation satellites are an attractive

source of spatial observations of land surface processes and can be used to deter-

mine the required model parameters. In the Dragon drought monitoring project, we

have considered the following variables: sensible and latent heat fluxes; evaporative

fraction and actual evaporation; and root zone soil water content index, all impor-

tant to hydrological modelling. Different satellite data were used to derive land

surface physical variables as given by Su (2001).

The state-of-the-art remote sensing algorithm package SEBS (Surface Energy

Balance System) (Su 2001, 2002) for mapping heat fluxes for heterogeneous land

surfaces was used to derive sensible and latent heat fluxes. The main input data to

SEBS are satellite images and meteorological variables. Spatial inputs to SEBS are

land surface parameters such as incoming global radiation, albedo, vegetation index

for fractional coverage and roughness determination, surface temperature, emissiv-

ity and roughness length due to both topography and vegetation effects. The

advantage of the system is that no a priori knowledge of heat fluxes is required

and no site-specific calibration is needed. Data of high or low spatial resolution

from all sensors in the visible, near-infrared and thermal infrared frequency ranges

can be used in the system.

After obtaining the sensible and latent heat fluxes, the evaporative fraction

(EF) can be calculated as the ratio of the latent heat flux to the total available

energy. Further, by making the assumption that the derived evaporative fraction

represents the daily average, the actual evaporation can be calculated with an

estimate of daily net radiation (Su 2001; Li 2001).

Since it has been demonstrated that EF is often conservative during daytime, and

from its definition given earlier (see Sect. 8.2), it represents physically the amount

of energy used for evaporation during daytime. As it has long been established that

evaporation is strongly regulated by soil water availability under the same atmo-

spheric forcing, i.e. from potential when the soil is saturated to nearly zero when it

dries out, EF can be used to quantify the soil water availability. Compared to
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surface soil moisture as can be determined using both active microwave and passive

microwave techniques (e.g. Su et al. 1997), use of EF gives a good indication of the

water availability in the whole rooting zone.

Because of cloud contamination and missing data in satellite data, the derived

land surface parameters will contain missing values and gaps causing undesirable

uncertainty in drought monitoring and prediction. The Harmonic Analysis of Time

Series (HANTS) algorithm (Verhoef 2000) can be used to replace the wrong or

missing data. The advantages of HANTS include: (a) screening and removing

cloud-affected observations; (b) temporal interpolation of remaining observations

to reconstruct images at any prescribed time. Roerink et al. (2000) have demon-

strated the capability of HANTS in reconstructing cloud-free vegetation index

images. Using HANTS reconstructed monthly evaporative fraction and surface

albedo in combination with observed monthly global radiation provided by mete-

orological stations, it has been shown that this strategy is successful in deriving

monthly actual evaporation in Northwest China (Li 2001).

8.4.2 Hydrometeorological Modelling

Ideally a large-scale hydrological model should be operated for real-time tracking

of water budget and such a model should include precipitation, snow melt, evap-

oration/transpiration, surface runoff, unsaturated flow and groundwater flow, flow

routing, reservoir and lakes regulation. When the model is embedded in a GIS

(Geographic Information System) environment and operated on a predefined grid

scale, a better compatibility can be achieved with both satellite earth observation

products and the atmospheric models, for prediction purposes.

As large hydrometeorological fields are generated by ECMWF (European Cen-

tre for Medium-range Weather Forecast) Integrated Forecast System over global

scale as well as the global data assimilation system for land (GLDAS) operated by

the National Aeronautics and Space Administration (NASA), they can be converted

into standardised indices or anomalies for drought analysis. The reliability of the

modelling and prediction for China can be established by comparing historical

predictions, especially for drought prone areas, to national statistics. Surface obser-

vations of precipitation from the meteorological networks in China (around 600 sta-

tions) are used to validate and update the consistency of the different fields.

In the following, we show some analyses conducted for several river basins and

for the whole China when its southwest region suffered a heavy drought lasting for

several months in 2010.

To do so, the country is divided into various river basins by means of a digital

elevation model in the Integrated Land and Water Information System (ILWIS)

(https://www.itc.nl/Pub/research_programme/Research-review-and-output/

ILWIS_-_Remote_Sensing_and_GIS_software.html) (Fig. 8.3).

Then the calculations are done as follows for each river basin using the

standardised indices.
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• GLDAS_STWS2I: GLDAS-derived Standardised total water storage index,

generated by the following equation:

GLDAS_STWS2I¼ΔTWS2/GLDAS_TWS2 (std)

GLDAS_TWS2¼P�ET�R
GLDAS_TWS2: GLDAS-derived total water storage of a specific month and

year

GLDAS_TWS2(mean)¼mean long-term GLDAS_TWS2 of a specific month

ΔTWS2¼GLDAS_TWS2�GLDAS_TWS2(mean)

GLDAS_TWS2 (std)¼ standard deviation of long-term GLDAS_TWS2 of a

specific month

• TRMM_SPI

The Standardised precipitation index from TRMM

SPI¼ (P�P(mean))/P(std)
P¼ precipitation of a specific month and year

P(mean)¼mean long-term precipitation of a specific month

P(std)¼ standard deviation of long-term precipitation of a specific month

• GLDAS_SRI

The Standardised runoff index from GLDAS

SRI¼ (R�R(mean))/R(std)
R¼GLDAS-derived runoff of a specific month and year

R(mean)¼mean long-term GLDAS-derived runoff of a specific month

R(std)¼ standard deviation of long-term runoff of a specific month

Fig. 8.3 River basins delineated in a GIS system, No. 1—Namco basin, No. 2—The upper Yellow

River Basin, No. 3—the whole Yellow River Basin (incl. the upper part), No. 4—the Yangtze river

basin
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As the observed runoff is only available for upper yellow river basin, GLDAS-

derived runoff is used for TWS2 calculation.

Figures 8.4, 8.5, 8.6 and 8.7 show the calculated indices for the four river basins,

and by comparing them to the drought categories, specific drought situation in the

basin can be identified.

In Fig. 8.8, we show the Standardised Terrestrial Water Storage Index derived

from GLDAS simulation which is generated as follows:

Fig. 8.4 Standardised index in Namco basin (Note: the definition of drought categories here

follows those by CMA and differs from Table 8.1 in that only severely situations (beyond two

standard deviations) were observed but indicated as extremely situations for consistency)

Fig. 8.5 Standardised index in upper Yellow river basin
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GLDAS_STWS1I¼ΔTWS1/std(GLDAS_TWS1)

GLDAS-derived total water storage of a specific month and year is given as:

GLDAS_TWS1¼ SM+SWE+CWS

mean(GLDAS_TWS1)¼mean of long-term GLDAS_TWS1 of a specific month

ΔTWS1¼GLDAS_TWS1�mean(GLDAS_TWS1)

std(GLDAS_TWS1)¼ standard deviation of long-term GLDAS_TWS1 of a spe-

cific month

Figure 8.8 shows that the drought affected areas in southwest China persisted

from January till June 2010 and affected large area with extremely dry conditions.

Fig. 8.6 Standardised index in whole Yellow river basin

Fig. 8.7 Standardised index in Yangtze basin
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To further show the complex character of the drought phenomenon, we display

in Fig. 8.9 the spatial drought severity maps derived for southwest China and

compare them to in situ observation of soil moisture and drought reports.

The challenges in interpreting these maps and comparing them to both soil

moisture observation and drought reports are very obvious. From the satellite-

derived SEBS-DSI values, it can be concluded that the regional spatiotemporal

variability is very big within the studied region in southwest China. The drought in

northwest of Chengdu appeared most severe and persistent for months from begin-

ning of January till beginning of May, but unfortunately there are no in situ soil

moisture observations, nor drought reports available. Near Chongqing, the in situ

soil moisture stations report large wet conditions, while SEBS-DSI have often

missing values due to cloud contamination, but implicitly the consistency of the

two datasets is confirmed. Near Guiyang, the information provided by in situ soil

moisture observation and drought reports are not consistent while droughts are

reported for all the months, the soil moisture observations indicate wetter

201001 201002 201003

201004 201005 201006

201007 201008 201009

201010 201011 201012

Extremely dry
Severely dry
Moderately dry
Near normal
Moderately wet
Severely wet
Extremely wet

Fig. 8.8 GLDAS-derived Standardised terrestrial water storage index expressed in drought

intensity as defined in Table 8.1
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conditions. Ideally the SEBS-DSI should be compared to in situ soil moisture

observations to establish the accuracy of the calculations, but the real challenges

lay in the very local nature of the in situ observations where both very dry and very

wet observations are reported within short distance of each other, which may be

Fig. 8.9 SEBS-DSI with measured 10 cm relative soil moisture overlaid and reported drought

situation, January–May 2010 (from left to right: first, second, third decade and reported droughts)
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influenced by local agricultural practices. Nevertheless and broadly higher SEBS-

DSI values correspond to drier soil moisture conditions and the global patterns are

consistent. Future analysis should focus on stratification of SEBS-DSI and in situ

soil moisture observation per land use (e.g. using NDVI information) and soil

textures.

8.5 Summary and Conclusions

Drought phenomenon is very complex as it is caused by a multitude of factors

starting from the deficit of precipitation when compared to climatic mean. Such a

deficit, when combined with sustained dry weather conditions entertain high evap-

oration and transpiration and thus result in soil moisture drought if there is no

adequate irrigation. Finally, hydrological drought emerges by a combination of lack

of precipitation and excessive use of available water resources for a sustained

period. To assess historical droughts and to provide drought monitoring, various

indices have been proposed for different purposes and using different datasets.

Despite the panoply of these indices, when one focuses on the processes that caused

droughts, a set of consistent indices may adequately describe the different aspects

of the droughts. We propose the use of standardised index, such as SPI for

precipitation, SPEI for precipitation and potential evaporation and SDSI-ETDI

for evapotranspiration, SVCI for vegetation condition and STWSI for the terrestrial

water storage in the catchment, all calculated on weekly or monthly time interval

from 1 to N time intervals (e.g. for 48 months) (i.e. as standardised anomalies and

cumulative anomalies). As remote sensing and hydrometeorological data assimila-

tion systems routinely provide data to derive the different indices, use of them can

provide a uniform framework for drought assessment, monitoring and analysis as

well as predictions.
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Chapter 9

A Framework for Assessing Soil Moisture
Deficit and Crop Water Stress at Multiple
Space and Time Scales Under Climate
Change Scenarios Using Model Platform,
Satellite Remote Sensing, and Decision
Support System

Binayak P. Mohanty, Amor V.M. Ines, Yongchul Shin, Nandita Gaur,

Narendra Das, and Raghavendra Jana

9.1 Introduction

NASA has fostered, in response to its contribution to the U.S. Climate Assessment,

the development of several enabling tools that incorporate satellite era (1979–

present) observations into land surface models. The most relevant to land surface

hydrology is the integrated terrestrial water analysis system, known as NCA-LDAS

(National Climate Assessment – Land Data Assimilation System). NCA-LDAS is

an end-to-end enabling tool for the development, evaluation, and dissemination of

terrestrial hydrologic time series and indicators in support of the NCA (Jasinski

et al. 2014; Kumar et al. 2014; Rui et al. 2014) using the Land Information System

(LIS) modeling framework (Kumar et al. 2006; Peters-Lidard et al. 2007). The

NCA-LDAS archive contains, for the satellite era period 1979 and 2013, over
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60 data products associated with land surface fluxes and stores over the continental

U.S. These products were developed though multivariate data assimilation of

satellite-based Environmental Data Records (EDRs) of soil moisture (SMMR/

SSMI/AMSR-E), snow depth and cover (SMMR/SSMI/AMSR-E/ASCAT), terres-

trial storage anomalies (GRACE), and irrigation intensity (MODIS). For sustained

assessment NCA-LDAS will expand its capability by ingesting data from more

recently launched and near future sensors (e.g., SMOS, VIIRS, SMAP, AMSR-2) as

well as by developing new tools to facilitate output dissemination (using NASA

GES-DISC) and analyses/decision making (using NASA Giovanni system) by

stakeholders. Leveraging this ongoing project we are putting a complementary

effort for multiscale analysis of lagging indices such as growing aridity index

(ratio between precipitation and potential evapotranspiration), available soil mois-

ture deficit in the root zone (weekly deficit of soil water during different phases of

crop growth), and crop water stress (based on available soil moisture deficit and

evapotranspiration deficit). Aridity index, soil moisture deficit index, crop water

stress index ranging from LDAS model grid / satellite footprint (encompassing

multiple land covers and soil types) to individual farm (encompassing uniform land

cover and soil type) will be developed for assessing impact of future climate change

scenarios and better adaption of agricultural water/crop management practices.

Although the framework later will be focused on agricultural water management

issues, these indices at multiple scales and associated display, dissemination, and

analyses framework can further be adapted for more holistic analysis and decision

making for water sustainability at county, state, regional, and national level with

increasing demand of water from competing sectors such as agriculture, munici-

pality, energy, and industry under future climate scenarios.

9.2 Rational and Problem Statement

Using Aridity Index (AI) based on temperature and precipitation (e.g., precipitation

over potential evapotranspiration, P/PET) is the simplest method to account for

crop yield in a field, but it could be insufficient to explain spatial and temporal crop

yield variability, eventually leading to annual agricultural production, economics,

security, and sustainability in a broader sense. Soil water availability is significantly

correlated with crop yield because of soil water uptake by plant roots and relations

with crop water stress. Spatial yield variability can be obtained by examining the

effect of landscape features (e.g., Normalized Difference Vegetation Index, NDVI,

and Leaf Area Index, LAI) or site-specific soil properties (e.g., soil types, soil water

retention, and hydraulic properties) that affect soil moisture patterns. Soil water

availability in a field can be included in the Aridity Index or Soil Moisture Deficit

Index (SMDI) based on weekly soil moisture deficit for any particular crop. Further,

timing of water stress with crop growth stage is also important to understand crop

yield variability. Thus, smaller time scale (e.g., weekly) and spatial scale (e.g., at

the farm/field, 1-km or less) should be considered in developing the lagging
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indicators for improving the agricultural drought outlook, particularly under the

evolving climate change scenarios.

Root zone soil moisture dynamics is a key factor in water resources/agricultural

water management, rainfall-runoff processes, and ecosystem dynamics and alter-

ation. Its spatiotemporal variability in a field influences runoff at the soil surface

and subsurface, evapotranspiration, and groundwater recharge. Root zone soil

moisture content also plays a pivotal role in ecological processes at individual

plant to system scale. Importance of root zone soil moisture prediction has

increased in agricultural water management because of unbalanced water supply

and demand due to agricultural drought, differences in irrigation and drainage

practices, farm level water distribution and scheduling, etc. Our effort aims at

developing algorithms, tools for improved prediction of Soil Moisture Deficit

Index (SMDI), and Crop Water Stress Index (CWSI) at multiple space–time scales

under NCA themes leading to adaptive water/crop management schemes and

decision support systems (DSS).

9.3 State of Land Information System (LIS)

LIS is a framework for high resolution distributed land surface modeling. LIS is the

software framework for the Land Data Assimilation System (LDAS) projects of

Global Land Data Assimilation System (GLDAS) and North America Land Data

Assimilation System (NLDAS) developed within the Hydrological Sciences Lab-

oratory at NASA Goddard. The LIS software takes into account most of the

physical aspects and governing equations of hydrology and boundary layer physics

in modeling and therefore expected to provide reasonable simulation of soil mois-

ture profile (Arsenault et al. 2014; Kumar et al. 2013, 2014; Santanello et al. 2013;

Zaitchik et al. 2013; and Liu et al. 2013). The LIS is capable to use ensemble of

Land Surface Models (LSMs). The LSMs in LIS are Community Land Model

(CLM) (Dai et al. 2003), Noah (Ek et al. 2003), Variable Infiltration Capacity

(VIC) (Liang et al. 1996), Mosaic (Koster and Suarez 1996), and Hydrology with

Simple SIB (HySSIB) (Sud and Mocko 1999). The LSMs require three types of

inputs: (a) initial conditions; (b) boundary conditions (fluxes and forcings); and

(c) parameters that are functions of vegetation, soil, topography, and other surface

properties. Using these, the LSMs solve the governing equations. The input datasets

to LIS include satellite-based remote sensing products such as precipitation, tem-

perature, normalized difference vegetation index (NDVI), Leaf Area Index (LAI),

surface albedo, etc. The soil moisture and fluxes fields from LIS are the resultant of

physical modeling of hydrology within the CONUS region.
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9.4 State of Remotely Sensed Soil Moisture Products
and Disaggregation to Local Scale

A remote sensing (RS) scheme has advantages for mapping soil moisture measure-

ments near the land surface. Many space-borne (Advanced Microwave Scanning

Radiometer-Earth Observing System, AMSR-E, Soil Moisture and Ocean Salinity,

SMOS satellites) have been used to observe pixel-based (tens of km scale) soil

moisture products (Jackson et al. 1999, 2005). Recently launched Soil Moisture

Active and Passive (SMAP) satellite provide soil moisture at 36 km (passive)

resolutions in the recent years (Entekhabi et al. 2010, 2014). However, most of

these available RS datasets suffer from its poor spatial resolution for agricultural/

water management at local/field scales. Engman (1991) and Entekhabi et al. (1999)

reported that the satellite-based passive microwave radiometers have disadvantage

for predicting hydrologic processes due to the scaling discrepancy between the

pixel resolution (~tens of km) and the local scale (1-km or less) at which the

hydrological processes occur. Thus, the RS soil moisture product needs to be

downscaled for improving its spatial resolution through a disaggregation approach.

Kim and Barros (2002) reported that fine-scale surface information can be extracted

with fractal interpolation methods. Bindlish and Barros (2002) studied a scaling and

fractal interpolation approach for downscaling passive microwave data to the

spatial resolution of active radar data. Recently, Ines and Mohanty (2008a, b;

2009), Shin and Mohanty (2013), and Ines et al. (2013) have developed disaggre-

gation methods to obtain various land surface information (representing soil prop-

erties and subarea fractions, leading to soil moisture) within a RS footprint using

optimization algorithm and uncertainty analyses techniques.

9.5 Limitation of Soil Moisture Prediction

Historically, very few studies have been conducted to forecast soil moisture

changes based on climate forecast models coupled with a local land surface

parameterization approach. The scale incompatibility between hydrologic and the

climate models leads to errors at the catchment-, watershed-, and basin-scales for

predicting root zone soil moisture dynamics. Root zone soil moisture content at the

local scale is affected by precipitation, soil texture, which determines the water

holding capacity, vegetation/land cover, which affects evapotranspiration and per-

colation, topography, which impacts runoff and infiltration. To address proper

water balance in the root zone at the local/field scale, we need to develop better

long-term root zone soil moisture prediction schemes at localized regions by

scaling down the coarse-scale LDAS simulated and RS assimilated data.
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9.6 Motivation for National Climate Assessment Indicators
at Field Scale

Most of the processes in hydrology that influence drought monitoring, agricultural

productivity, and watershed/basin management occur at much finer spatial resolu-

tion. Especially, agricultural and hydrological drought monitoring/delineation

require high spatial and temporal resolution soil moisture data. As discussed earlier,

there have been no dedicated studies: (1) to understand the relation of the soil

moisture dynamics between the LDAS grid/RS pixel resolution and local/field scale

(1 km or less) and its implications on a disaggregation method, or (2) to predict the

distributed root zone soil moisture dynamics with climatic models at local regions

for addressing potential agricultural drought risk assessment and efficient water/

crop management. Specific goals and outcomes of our current agricultural drought

assessment platform effort include:

1. develop lagging climate indicators as Aridity Index (AI), Soil Moisture Deficit

Index (SMDI), and Crop Water Stress Index (CWSI) at spatial (farm/field,

county, state, regional, and national) and temporal (weekly, biweekly, monthly,

and seasonal) scale using past (1995–2015) and future (GCM predicted

2015–2045) climatic data and LDAS outputs for the conterminous USA,

2. calibration/validation of the projected climate indicators in several

hydroclimatic regions (e.g., Great Plains, Midwest, West, Northeast, Southeast,

and Southwest) during the course of the project using soil moisture networks

(USCRN, SCAN) and past/upcoming field campaigns data,

3. disseminate the lagging climate indicators as AI, SMDI, and CWSI using

interactive/searchable graphical (zoomable) and tabular displays over the web,

4. develop decision support tools/scenarios for application in planning and adap-

tion/mitigation during crop growing season by farmers, water resource man-

agers, and decision makers at local, state, regional, and national level.

9.7 Soil Moisture Physical Controls and Multiscale Physics
and Relevant Activities

At a particular point in time soil moisture content is influenced by: (1) the precip-

itation history; (2) the texture of the soil, which determines the water-holding

capacity; (3) the slope of the land surface, which affects runoff and infiltration;

and (4) the vegetation and land cover, which influences evapotranspiration and deep

percolation.

Soil: Soil heterogeneity (Gaur and Mohanty 2013, 2015; Joshi and Mohanty 2010;

Joshi et al. 2011; Das et al. 2008a, b, 2010a, b; Mohanty and Skaggs 2001) affects

the distribution of soil moisture through variations in texture, organic matter

content, porosity, structure, and macroporosity. Each of these factors affects the
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fluid transmission and retention properties. Variability in soil hydraulic conductiv-

ity and soil water retention greatly influences the vertical and lateral transmission

properties (Mohanty and Zhu 2007). Significant soil moisture variation may exist

over very small distances due to variation in soil particle/pore sizes which in turn

determines transient upward and downward soil water fluxes.

Topography: Topography (macro or micro) (Gaur and Mohanty 2013, 2015; Joshi

and Mohanty 2010; Joshi et al. 2011; Mohanty et al. 2000a; Mohanty and Skaggs

2001; Jacobs et al. 2004) also plays an important role in the spatial organization of

soil moisture at different scales. Variations in slope, aspect, curvature, upslope

contributing area, and relative elevation all affect the distribution of soil moisture

near the land surface. At the small catchment and hill-slope scales, soil moisture

varies as a result of water-routing processes, radiative (aspect) effects, and hetero-

geneity in vegetation and soil textural deposition/characteristics.

Vegetation: Land cover is also critical for understanding the soil moisture regimes

as it affects infiltration, runoff, and evapotranspiration through root water uptake.

Vegetation type, density, and uniformity are some of the associated features that

contribute to soil moisture variation at different space and time scales. Furthermore,

the influence of vegetation on soil moisture is more dynamic (Mohanty et al. 2000b;

Das and Mohanty 2008; Gaur and Mohanty 2013) as compared to soil and topo-

graphic factors. Literature also shows that the variability of soil moisture is lowest

with full canopy cover and highest with partial coverage.

Climate: Precipitation, solar radiation, temperature, wind, and humidity are some of

the important climatic factors that contribute to the space–time dynamics of soil

moisture and resultant fluxes. Precipitation is the single most important climatic

forcing for soil moisture content and its distribution. As shown by Sivapalan

et al. (1987), the dominant runoff producing mechanism may vary with storm

characteristics and antecedent soil moisture conditions resulting in the spatiotem-

poral variability in soil moisture. During the SGP97 hydrology campaign,

Famiglietti et al. (1999) found a distinct trend in mean soil moisture for SGP97

locations with a south-to-north precipitation gradient.

Mohanty and Skaggs (2001), Jacobs et al. (2004), Cosh et al. (2004), Joshi and

Mohanty (2010), Joshi et al. (2011), and Gaur and Mohanty (2013, 2016) conducted

analyses of ground and remote sensing soil moisture data collected during the

SGP97, SGP99, SMEX02, SMEX03, SMEX04, CLASIC 2007, and SMAPVEX12

and concluded that characteristic differences were observed in the space–time

dynamics of soil moisture within selected remote sensing footprints with various

combinations of soil texture, slope, vegetation, and precipitation. To better under-
stand the dynamics of soil moisture in different hydroclimatic regions scaling
factors relating to dominant physical controls at different spatial scales are being
developed in a current effort. We (Jana 2010; Jana and Mohanty 2012a, b, c; Crow

et al. 2012; Gaur and Mohanty 2015) hypothesized that different landscape features

(soil, topography, vegetation, and precipitation) are dominant /controlling factors

governing soil moisture variability at different spatial scales (Fig. 9.1). In other
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words, soil moisture spatiotemporal pattern reflects a conjoint variability of soil

properties, topography, vegetation, and precipitation attributes. Soil moisture var-

iability is dominated by soil properties at the field/remote sensor footprint (e.g., of

the order of 10–100 m) scale, topographic features at the catchment scale, vegeta-

tion characteristics at watershed scale, and precipitation patterns at the regional

scale and beyond. Ensemble hydrologic fluxes (including evapotranspiration, infil-

tration, shallow ground water recharge) within and across the root zone reflect the

evolution of soil moisture at a particular spatial scale (field, catchment, watershed,

or region) and can be “effectively” represented by one or more linear/nonlinear

hydrologic (soil/field, topography/catchment, vegetation/watershed, or precipita-

tion/region) scale parameters reflecting dominant heterogeneity of the landscape.

Our ongoing/previous studies also revealed that the soil moisture statistics

change whenever heterogeneity in any of these physical controls is encountered.

This happens across all spatial scales. Heterogeneity evolves differently for various

physical controls across observation scales. Soil texture can change across a scale

of a few meters and as we go further in scale the variability in soil texture increases.

However, beyond a certain scale, similar soil textures may be observed resulting in

variability in soil texture at larger scale being averaged out in comparison to other

physical controls. Similarly, topographic heterogeneity becomes important at scales

larger than the plot/field scale, whereas vegetation heterogeneity becomes impor-

tant at the scale of biomes, and beyond that we notice heterogeneity in precipitation,

which changes with hydro-climate. However, this is a very generic assumption for

the land surface without accounting for agricultural management practices, crop

root growth across season, or land use change over time. Based on the dominant

physical control concept a comprehensive multiscale soil moisture data analyses

Coarsening
Scale

Climate Forcings

Point
Scale

F
ie

ld
 S

ca
le

W
at

er
sh

ed
 S

ca
le

R
eg

io
na

l S
ca

le

Continental
Scale

Land Cover Patterns

Topographic Features

Soil Texture
and Structure

Fig. 9.1 Multiple/dominant physical controls for soil moisture at different spatial scales ranging

from local, field, catchment, watershed, regional, to continental scale by Jana (2010), Jana and

Mohanty (2012a, b, c) as cited in Crow et al. (2012)
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and assimilation scheme (Das and Mohanty 2008) using data from various in situ

and remote sensing platforms has been developed. This long-term data, analyses,

and process understanding with dominant physical controls provide us the basis for

our proposed downscaling scheme at various scales efficiently (e.g., LDAS grid/

satellite footprint, watershed, catchment, field) described later.

9.8 Disaggregation of Soil Moisture from Larger Scale Soil
Moisture Imagery/LIS Output

Primarily, the use of large-scale RS/LIS/GCM products at the local scale is the

major challenge and question is how to extract valuable information from satellite/

model-based products at the local scale. In the proposed effort, we develop several

tools/methods to disaggregate large-scale remote sensing/LDAS soil moisture

products, and on the predictions of effective soil moisture in the rooting zone (top

~1 m), and hydrologic fluxes as surface runoff, evapotranspiration, and groundwa-

ter recharge. The downscaling approach includes statistical and numerical methods,

e.g., mapping probability distributions between satellite measurements and obser-

vations in the field, nonhomogenous hidden Markov modeling (Robertson

et al. 2004), mixture modeling (Ines and Honda 2005; Ines et al. 2013), multiscale

artificial/Bayesian neural network with bias correction (Jana et al. 2007, 2008),

adaptive Markov Chain Monte Carlo (Das et al. 2008b), and data-driven (Das

et al. 2016) schemes. For accomplishing downscaling of satellite-based soil mois-

ture to subgrid scales, few (selected) alternative approaches (based on types of

available data in a particular region) are elaborated as follows:

Method 1—Mapping Probability Distributions: Pixel-based soil moisture data will

result from its individual components based on soil types (or similarly land cover

types or topographic features) based on our recent findings on dominant soil

moisture physical controls at different scales. Assuming that the individual com-

ponents can be predicted by the pixel-based soil moisture data, a simple approach to

downscale the synoptic data into its possible components can be developed by

mapping the probability distribution of the synoptic data with the respective

probability distributions of the measured components.

Mapping probabilities from one scale to another would perhaps account for the

nonlinearity involved on the physical processes (controls) occurring between scales

(Ines and Hansen 2006). Assuming further that a time series of pixel-based soil

moisture and its respective components (i.e., subpixel data) are available, the distri-

bution functions Fp(xp;θp) and Fsub(xsub-p;θsub-p) can be determined, where x is a

vector of soil moisture data and θ is a vector of parameters (i.e., the scaling and shape

parameters of the distribution functions), the subscripts p and sub-p denote pixel-

based and subpixel data, respectively. The downscaling procedure is schematized in

Fig. 9.2 where it is simply a mapping of distributions between the scales as a function

of time. The downscaled soil moisture data can be determined by,
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xsub-p ¼ F�1
t, sub-p Ft, p xp

� �� � ð9:1Þ

where t is an index for day of the year. We investigate the appropriate probability

distributions that would best describe the soil moisture data at different scales

matching various ground-based, air-borne, and space-borne RS footprints. We

also examine how the distribution functions would be constructed, either by a

general distribution for each scale or by calendar month basis for each scale

(synoptic vs. components). The problem that may arise when using only one

distribution function to describe the data series is the seasonality on the downscaled

soil moisture. Prescribing the probability distributions on a weekly/monthly basis

might address this problem (e.g., Ines 2004; Wood et al. 2002). Once developed

these hydroclimate and scale-specific distribution functions will help downscale the

satellite and LDAS (grid-based) soil moisture forecasts and national climate indi-

cators (2015–2045) to finer scales. Data from soil moisture networks (USCRN,

SCAN), available field campaigns, and other physical control-based estimations at

various scales are being used for this “pdf”-based downscaling method.

Method 2—Nonhomogeneous Hidden Markov Model: This model aims to relate

regional or local hydrologic process (discrete or continuous), e.g., soil moisture

dynamics to large-scale measurements from remote sensing or simulated variables

from SVAT models. The unifying feature of the model is the hypothesis of an

unobserved “soil moisture state” so-called here “hidden state” which transcends the

differences in scales between the two observed processes (synoptic vs. regional/

local). The hidden state is regarded as an automatic classifier of large-scale obser-

vational/simulated patterns into classes that are associated with the local process

patterns (Hughes and Guttorp 1994).

In NHMM, there are two underlying assumptions given as follows (Robertson

et al. 2004):

F(x1p)

Xp

Xsub-p

F(x1p)=F(xsub-p)

x1sub-p

x1p

F(xp;θθ pp ))

F(xsub-p;θθ subsub --pp ))
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θθ subsub --pp ))
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distribution

Sub-pixel-
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Fig. 9.2 Mapping of

cumulative distribution

functions of pixel-based soil

moisture and subpixel data

at time¼ t
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��� ð9:3Þ

where Rt is the measurement of the regional (multivariate from network of points)

or local hydrologic process at time t, St is the hidden state at time t (unobserved),
and Xt is the measurement (summary or ensemble average if multivariate) of

remote sensing data at time t for 1� t� T.
Equation (9.2) assumes that the local process Rt is conditionally independent

given the hidden state St. Meaning, the temporal persistence in the local process is

captured by the persistence in the hidden state derived from Eq. (9.3). Equation

(9.3) assumes that the hidden state process is first-order Markov, i.e., given the

history of the hidden state up to t� 1 and the entire record of the remote sensing

data (past and future), the hidden state at time t depends only on the previous hidden
state and the current remote sensing data (Robertson et al. 2004; Hughes and

Guttorp 1994; Hughes et al. 1999). From these underlying principles, large-scale

near-surface soil moisture data could be possibly downscaled into smaller

continuous soil moisture fields. P(Rt|St) can be modeled as a mixture of 2 or

3 normal distributions, representing a wetting, drying, and/or an extended drying

phase. P
�
St St-1,Xt

��� is modeled in NHMM as nonstationary transition probability

matrix. Hughes and Guttorp (1994) defined this function by multiplying the base-

line transition probabilities γji (when S is not dependent on X), with a function of

the process predictors. Robertson et al. (2004) defined the hidden state transition by

a polytomous (multinomial) logistic regression.

The NHMM is a general spatial disaggregator and can be used in downscaling of

large-scale soil moisture and its predictions into network of points/subgrids, per-

haps, also at various soil depths given that there are available data at these depths

for model learning. This hypothesis will be also examined in the study. Moreover,

the conditional independence assumption for Rt in Eq. (9.2) may not well represent

the spatial structure of the network (of points/subgrids). An extension of NHMM

to capture both dependencies across time and network variables can be

implemented by embedding Chow-Liu tree within the HMM framework (see

Kirshner et al. 2004). This may account for the effect of overland/subsurface flow

from higher to lower elevation (e.g., pattern, connectedness) or any mutual relation-

ships among network variables existing in the landscape, e.g., the effects of

vegetation activities, soil management, crop management, irrigation, planning

and harvest timing, tillage, etc.

Method 3—Mixture Modeling: Mixture modeling using satellite remote sensing

data, LDAS outputs, and genetic algorithms (see Ines et al. 2013; Shin and Mohanty

2013) could be potentially used to downscale pixel-based soil moisture data at least

to area fractions of land covers and/or soil types of the study pixel/region.

For example, let Si be the soil types in the pixel, and Vi represents their

vegetation/crop area fractions (Fig. 9.3). The mixture problem for one pixel can

be formulated as follows,
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θ kð Þt ¼
Xm
i¼1

Viθti 8t ð9:4Þ

θti ¼ θ Sið Þ 8t8i ð9:5Þ
k ¼ Vi; Sif g 8i ð9:6Þ

Equation (9.4) defines the mixed signature of soil moisture at any time t (i.e., the
remote sensing pixel data or model grid data), Eq. (9.5) defines the possible

components of this signature, and Eq. (9.6) defines the mixing parameters, which

Fig. 9.3 Sample grid (10� 10) domain for the complex soil-vegetation pixel experiments (e.g.,

two vegetation and three soil types) for downscaling using a mixture model
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are the vegetation/crop area fractions (Vi) and soil types (Si); i and t are the indices
for the number of soil types and time domain, respectively, m denotes the total

number of soil types in the pixel. θ(Si) can be determined using a simulation model,

e.g., Noah (Ek et al. 2003) or SMAT (Das and Mohanty 2006). To determine k, we

must apply an un-mixing algorithm; objective function (simulated θ(k)
vs. observed, θ�) can be defined as

Obj kð ÞMin ¼ Min
1

n

Xn
t¼1

θ kð Þt � θ̂
o

t

��� ���
( )

ð9:7Þ

subject to the constraints.

The presented mixture model can be extended to account for the variability of
other dominant physical controls within the pixel at different scales by factoring
the possible combinations of soils and vegetation types, etc., and then applying the
same principle.

Figure 9.4 shows a sample result from the proposed grid-based disaggregation

approach reflecting the proof of the concept under the hypothetical conditions at a

site in Little Washita, Oklahoma. It is apparent that the mixed soil moisture

estimated by the grid-based disaggregation method was identified well with the

observations. The soil ID (soil properties) values and subgrid fractions derived by

Ensemble Multiple Operators Genetic Algorithm (EMOGA) (Shin and Mohanty

2013) respond well to the actual soil moisture values (Fig. 9.4), although there are

Fig. 9.4 Sample results from the grid-based disaggregation algorithm; (Left) Little Washita

(LW 21) field site with mixed vegetation and soil type including the in situ distributed soil

moisture sampling points, and (Right) Downscaled soil moisture dynamics at subpixel scale

time series (bullets: target values, lines: estimated) (after Shin and Mohanty 2013)
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uncertainties due to the inherent weakness of RS products, modeling and measure-

ment errors, and optimization errors. It indicates that this approach is applicable for

disaggregating a large-scale RS/LDAS model products and climate indicators to

field scale.

9.9 Prediction of Future Climate Change Scenarios Using
General Circulation Models (GCMs)

In general, the purpose of General Circulation Models (GCMs) is to numerically

simulate atmospheric processes based on physical principles. GCMs reproduce

observed measurements of recent/past climate changes and provide credible esti-

mates of future climate change (e.g., precipitation, temperature, humidity, wind

speed, solar radiation, etc.) on various large scales. The Intergovernmental Panel on

Climate Change (IPCC) provides the spatiotemporal distributed scenarios of cli-

mate change and related environmental and socioeconomic factors for use in

climate impact and adaptation assessment. The IPCC reported Scientific Assess-

ment scenario in 1990 (SA90), which assumes the future population, CO2 emis-

sions, circulation, etc., and provides scenarios in 2000, published in the Third

Assessment Report (Special Report on Emissions Scenarios—SRES). In 2013,

the IPCC published Fifth Assessment Report (AR5) and Representative Concen-

tration Pathways (RCPs) scenarios. The SRES/RCP scenarios explore future devel-

opments in the global environment due to the production of greenhouse gases and

aerosol precursor emissions.

As shown by Nakicenovic et al. (2000), the SRES provides the four storyline

(labeled A1, A2, B1, and B2) describing the relationships between the forces

driving greenhouse gas and aerosol emissions and their evolution during the

twenty-first century world. Each scenario has different demographic, social, eco-

nomic, technological, and environmental developments that diverge in increasingly

irreversible ways. In simple terms, the four storylines combine two sets of divergent

tendencies: one set varying between strong economic values and strong environ-

mental values, the other set between increasing globalization and increasing region-

alization. The storylines are summarized as follows:

A1 storyline and scenario family: based on scenarios with respect to very rapid
economic growth, global population that peaks in mid-century and declines
thereafter, and rapid introduction of new and more efficient technologies.

A2 storyline and scenario family: based on scenarios with regionally oriented
economic growth which is fragmented and slower than in other storylines and
continuously increasing global population.

B1 storyline and scenario family: based on the same global population with the A1
storyline, but B1 is rapidly changed in economic structures toward a service and
information economy, with reductions in material intensity, and the introduction
of clean and resource-efficient technologies.
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B2 storyline and scenario family: B1 is assumed under the emphasis is on local
solutions to economic, social, and environmental sustainability, with continu-
ously increasing population (lower than A2) and intermediate economic
development.

Many GCMs have been developed/ improved to simulate earth’s climate

changes (Ines and Hansen 2006; Chervin 1981; among others) based on the

above storylines. In Goddard Institute for Space Studies (GISS, http://www.giss.

nasa.gov/tools/), NASA provides various GCMs versions (e.g., Model E, Model

AOM-GR, and Model II). Using ECHAM v4.5 GCMmodel (Roeckner et al. 1996),

Gong et al. (2003) simulated global climate that is available at IRI/LDEO Climate

Data Library (http://iri.columbia.edu). Canadian Centre for Climate Modeling and

Analysis (CCCma: http://www.cccma.ec.gc.ca/) also provides a number of climate

models (AGCM1, AGCM2, AGCM3, AGCM4/CanAM4, CGCM1, CGCM2,

CGCM3, and CGCM/CanCM4) for understanding climate changes and variability

under the various processes.

Despite better understanding in climatic forecasts, hydrologists still struggle to

improve a bias of GCM scenarios in applications (e.g., water resource planning,

management, etc.). One of bias factors of forecast information is the scale discrep-

ancy between the climate model outputs and local scale. Various studies have

conducted for downscaling algorithm with how best to reproduce realistic fore-

casted outputs. The widely used approaches are dynamical modeling such as a

regional climate model (RCM—see Leung et al. 2004) within GCM scenarios,

statistical or empirical transfer functions (Hewitson and Crane 1996; Wilby and

Wigley 1997; Wilby et al. 1998), etc. Wood et al. (2004) has used a quantile-based

mapping for a bias correction of GCM/RCM scenarios. Ines and Hansen (2006)

developed the bias correction method for the frequency and the intensity distribu-

tion of daily GCM rainfall. The output of GCMmodels is extremely dynamic based

on the modeling types, assumptions, and initial and bottom boundary conditions,

etc. Thus, we consider the uncertainty range of GCM scenarios with agricultural

drought index representing the average, maximum, and minimum GCM (GCMAve,

GCMMax, and GCMMin) scenarios.

9.10 LIS-Based Modeling/Bayesian Multimodel Averaging
(BMA) for Root Zone Soil Moisture

Once regional features and GCM/RCM scenarios were obtained, surface soil

moisture estimated and downscaled to local scale, the local-scale daily root zone

(top 1 m) soil moisture dynamics can be forecasted using a suite of SVAT (SWAP,

CLM, VIC, Noah from LIS, e.g., Fig. 9.5) models. A multimodel combination using

the Bayesian Model Averaging (BMA) scheme will help exploit the diversity of

skillful predictions made by different hydrologic models. BMA is a probabilistic

scheme for model combination that infers more reliable and skillful predictions
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from several competing models, by weighing individual predictions based on their

probabilistic likelihood measures, with the better performing predictions receiving

higher weights than the worse performing ones (Madigan et al. 1996; Duan

et al. 2007; Kim et al. 2015). The BMA prediction is the average of predictions

weighted by the likelihood that an individual model is correct (Ajami et al. 2007).

With the soil ID values and subgrid fractions extracted from a RS soil moisture

product and bias corrected GCM scenarios during the past two decades

(1995–2015), we forecast the field-scale long-term root zone (0–5, 0–30, 0–60,

60–90 cm) soil moisture changes using GCM scenarios across various

hydroclimatic regions of USA for the next three decades (2015–2045). Although

inherent uncertainties of land–atmosphere interaction models remain, the proposed

approach provides a process-based unified platform for better understanding of soil

moisture dynamics with climate variability and changes across the USA.

9.11 Estimating Climate Indicators at Different
Space–Time Scales

Root zone soil moisture and fluxes (e.g., ET, groundwater recharge) are predicted

using the integrated LIS framework (LDAS-NCA) in a distributed manner. Run-on

and run-off routing are included to account for the estimation of runoff at the

watershed(s) outlet. Using the derived effective soil hydraulic parameters, we can

simulate the water balance within a specified period, giving opportunity to evaluate

the effective soil moisture in the rooting zone, surface run-off, evapotranspiration,

and groundwater recharge. Auxiliary remote sensing data such as land use-land

cover (LANDSAT), vegetation (MODIS), DEM (SRTM), etc., are being used to

characterize our modeling/study domain. The grid-based disaggregation algorithm

is tested with pixel-based soil moisture (e.g., PSR, ESTAR, AMSR-E, SMOS,

SMAP) and network (NOAA-USCRN and USDA-SCAN) products at selected

hydroclimatic regional sites (e.g., Oklahoma (Southern Great Plains), Iowa (Mid-
west), Arizona (Semiarid Southwest), Idaho (Arid Northwest), Georgia (Humid
Southeast), Pennsylvania (Northeast), and California (Mediterranean West)) for

Fig. 9.5 A sample surface soil moisture snapshot map across USA at 9 km from LIS platform
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multiple years from the National Snow and Ice Data Center (NSIDC: http://nsidc.

org/). We extracted field-scale (~100 m to 1 km) land surface information (soil ID

representing soil properties and subgrid fractions) from a RS product using the

downscaling-simulation–optimization scheme. With the soil ID values derived by

the simulation–optimization scheme and various GCM/RCM scenarios from cli-

matic models (described earlier), the long-term daily root zone (0–5, 0–30, 0–60,

0–90 cm) soil moisture dynamics are forecasted using SVAT modeling and Bayes-

ian multimodel averaging (BMA) at the subgrid/field scales. These root zone soil
moisture and fluxes are used to develop various agricultural drought indicators (AI,
SMDI, and CWSI) and aggregate them at multiple spatiotemporal scales ranging
spatial (farm/field, county, catchment, state, region, to national) and temporal
(weekly, biweekly, monthly, and seasonal) scales. Once validated at selected loca-

tions, approach will be replicated to populate the findings across similar regions for

the conterminous USA.

Aridity Index (AI): Using GCM/RCM estimation of precipitation (P) and tempera-

ture (T) and land-cover and crop-specific potential evapotranspiration (PET) based

on SVAT models in LIS, aridity index (P/PET) is calculated at field scale for study

regions and aggregated to higher space and time scales (Products 1–4) in incre-

mental fashion (as shown later).

Soil Moisture Deficit Index (SMDI): The weekly SMDI is calculated using the daily

available soil water content in the root zone as shown in Eqs. (9.8), (9.9a), and

(9.9b) (defined in Narasimhan and Srinivasan 2005). The soil water contents of

7 days are averaged for each of 52 weeks in a year at the field scale and the median

value is obtained during the simulation period (52 weeks) (Fig. 9.6). Then the

maximum and minimum soil water contents for each week are also taken for the

simulation period,

SMDIj ¼

Xj

t¼1

SDt

25tþ 25
ð9:8Þ

SDi, j ¼ SWi, j �MSWj

MSWj �minSWj
� 100, if SWi, j ¼ MSWj ð9:9aÞ

SDi, j ¼ SWi, j �MSWj

maxSWj �MSWj
� 100, if SWi, j > MSWj ð9:9bÞ

where SDi,j is the soil water deficit in the root zone (%), SWi,j is the mean weekly

soil water available in the soil profile (mm), MSWj is the long-term median

available soil water in the soil profile (mm), maxSWj the long-term maximum

available soil water in the soil profile (mm), minSWj is the long-term minimum

available soil water in the soil profile (mm), i is the simulation (hindcast:

1995–2015, forecast: 2015–2045) period, and j is the (1–52) weeks in a year,

respectively. According to this definition, SD value during any week gives dryness
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during that week when compared to long-term historical data. Agricultural drought

occurs when dryness prolongs that can affect crop growth.

Crop Water Stress Index (CWSI): Based on Narashiman and Srinivasan (2005) crop

water stress index on a weekly basis can be calculated as

CWSI ¼ PET� AET

PET
ð9:10Þ

where CWSI is the weekly water stress ratio, PET the weekly reference crop

evapotranspiration, and AET the actual weekly evapotranspiration. From the

long-term median, maximum, and minimum crop water stress, percentage water

stress anomaly during any week ( j) in year (i) can be calculated as.

CWSAi, j ¼ MCWSIj � CWSIi, j

MCWSIj �minCWSIj
� 100, if CWSIi, j ¼ MCWSIj ð9:11aÞ

CWSAi, j ¼ MCWSIj � CWSIi, j

maxCWSIj � CWSIj
� 100, if CWSIi, j > MCWSIj ð9:11bÞ

Fig. 9.6 Comparison of the monthly soil moisture deficit index (SMDI) and standardized

precipitation index (SPI) at the field sites using the un-filtered solutions derived by EMOGA;

(a) mixed-scale (s1v1 + s2v1 + s3v1) for the airborne sensing (AS)-scale Walnut Creek (WCAS 1)

site. Note that the average root zone soil moisture dynamics in the depth of 0–30 cm were used.

(b) Diaggregated SMDI for s1v1 (Shin and Mohanty, WRR, under review, 2016)
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where CWSA is the weekly water stress anomaly, MCWSIj is the long-term median

water stress of week j, maxCWSIj is the long-term maximum water stress of week j,
and minCWSIj is the long-term minimum water stress of week j. Most widely used

drought indices as the Palmer Drought Severity Index (PDSI) or Standardized

Precipitation Index (SPI) are too slow to evaluate short-term dry conditions,

which could influence severe impacts on crop growth. On the other hand, proposed

SMDI and CWSI evaluate drought severity based on weekly soil moisture and ET

deficit.

How to read Fig. 9.7: Water resources allocation for agriculture requires
intensive planning at different levels of the governance hierarchy. The decision-
making process can initiate at the national scale when droughts are predicted for
certain regions and subsequently decisions can be made given the present and
projected water resources availability status for different states. The final alloca-
tion of water resources from a governance point of view is logistically feasible only
at the county scale. However, due to the nonlinear scaling of moisture and water
fluxes, these estimates made at coarser time–space scales may not reflect the actual
need of the farmers and as such lead to wastage and mismanagement of water
resources. In order to optimize the agricultural water use, we propose to develop

Fig. 9.7 Proposed Agricultural Drought Decision Support System (DSS) based on NCA Indica-
tors at Different Space (field/farm, county/catchment, and state/regional/national) and Time

(weekly, monthly, to seasonal) Scales
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indices (aridity index, soil moisture deficit index, crop water stress index) that are
crucial for a farmer to make decisions at a temporal and spatial scale suitable to
him. These indices will then be aggregated at subsequently coarser space–time
scales for the decision-making authorities. This study bridge the scale gap and
enables the decisions made by the governing bodies with limited manageable data
to still positively impact the farmers at their scale of interest.

9.12 Risk Assessment for Agricultural Drought
and Adaptive Water Management Strategies

In addition to understand the impact of climate change on root zone soil moisture

reflected by AI, SMDI, and CWSI at multiple space and time scales, we conduct

scenario analyses with various management strategies within the soil hydrology and

crop growth model (SWAP) including water management practices and cropping

rotations (Fig. 9.8). We also evaluate the agricultural drought severity under various

conditions (e.g., vegetation covers, soil types, precipitation/temperature timings,

cropping/ soil management practices, soil organic matter status, irrigation and

drainage, the presence of shallow water table, etc.). For example, implementing

drip irrigation instead of furrow or flood irrigation, alternate cropping with drought

resistant characteristics, soil amendment in the root zone for manipulating water

holding capacity, adjusting sowing dates in the irrigated area, and recycling drain-

age water across neighboring fields will be investigated. Figure 9.8 shows the

schematic outline of the data flow, modeling, and analyses leading to agricultural

drought risk assessment and possible management strategies. This task is very

useful for potential risk assessment during agricultural drought and enables greater

understanding of agricultural and hydrological water management at the selected

watershed/regions.
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Chapter 10

Monitoring Drought in Brazil by Remote
Sensing

Vitor Paiva Alcoforado Rebello, Augusto Getirana, Venkat Lakshmi,

and Otto Corrêa Rotunno Filho

10.1 Introduction

Drought is considered a natural hazard that affects most people around the globe. It

is a normal and recurring climate extreme event in most parts of the word affecting

both wet and dry regions. Especially in previous but relatively recent drought

studies, it has been pointed out that frequency has increased mainly as a function

of the variability of hydro-meteorological variables due to climate change (Mishra

and Singh 2011).

Drought is in fact a complex and multicomponent phenomena, and in the

absence of a precise and objective definition, it turns out to be a difficult task to

quantify their social impact and corresponding mitigation (Wilhite 1993). How-

ever, in a broad sense, drought is associated with water shortage regarding several

water needs. Consequently in a supply and demand context, drought can be seen as
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a water deficit, which can be traditionally classified in meteorological, hydrologi-

cal, or agricultural drought (Dracup et al. 1980).

Traditionally, drought is associated with a long period of deficit in precipitation

with respect to climatological normal values. As stated above, droughts can be

classified into three categories. Meteorological drought is associated with precipi-

tation levels lower than the climatological normal values. For this type of drought,

we have to define a threshold value to assume a drought occurrence when lower

levels are recorded. Agricultural drought corresponds to soil moisture content that

is below the minimum required to fully support crop development for a certain

month. Hydrological drought is associated with negative anomalies of surface

water, notably surface storage and flowing water in rivers and streams. However,

a fourth type of drought has emerged known as the sociological drought which

focuses on the impacts of the meteorological, agricultural, and hydrological

droughts on human and ecological water demands.

From a hydrological cycle point of view, drought can be assessed by examining

the cycle’s three main components: precipitation, soil moisture, and streamflow, all

of which are strongly correlated with each other (Dracup et al. 1980). First,

precipitation is the driving force triggering the onset of drought. Changes in

precipitation can reduce, delay, or shift the beginning of the wet period and are

related to atmospheric phenomena such as El Nino-Southern Oscillation (ENSO)

and Sea Surface Temperature (SST) climate conditions which causes drought in

tropical regions (Lyon 2004). Soil moisture of the vadoze zone is the intermediate

system component, acting as the water reservoir and accounts for the interchange of

water between the surface and atmosphere through evapotranspiration. Water

retention capacity is strongly influenced by antecedent moisture conditions, so

water depletion in soil will strongly affect water availability for plants. As dry

periods are frequently associated with high temperatures, potential evapotranspira-

tion also increases in these conditions, which in turn will provoke higher evapo-

transpiration from the land surface. Lastly, streamflow is the water system output

reflecting an integrated effect of drought via hydrological component interactions

all over the catchment.

Compared to other natural hazards, drought effects accumulate at a lower time

step, leading to an extension of the hydrological cycle. Consequently, the time

series for drought are usually at monthly or yearly temporal scales. The temporal

scale will also depend on different variables. Thus, for example, precipitation

requires usually at least a monthly temporal approach since rainfall varies season-

ally. On the other side, a reliable analysis for streamflow requires a time series that

is longer than 2 years to discriminate low streamflow from normal streamflows. The

spatial scale is also an important issue to be considered as we extend the study area

from regional to global where longer time period analyses are more representative.

To quantify drought severity and corresponding extent, it is necessary to convert

the value of the studied variable into an index for further interpretation. A single

index cannot be applied to all situations, leading to a large variety of proposed

indices to address each type of drought for which they have been developed. The

calculation can be done for different temporal scales, ranging from yearly, espe-

cially for global analysis or large areas, to monthly which are more suitable for
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regional scales (Mishra and Singh 2010). The formulated index can make use of any

variable of interest, depending on the intended application.

The widely used Palmer Drought Severity Index (PDSI) is based on anomalies in

the water balance equation. PDSI uses a two-layer soil model to quantify water

balance by monthly water input (rain) and it measures outputs (runoff and evapo-

ration) by considering the previous soil moisture status. The data is standardized so

that different location values can be compared. For agriculture/crop monitoring, the

use of Crop Moisture Index (CMI) is more suitable since it works in a shorter time

scale than a weekly scale to access plant drought stress. The CMI is calculated from

precipitation and surface moisture deficits instead of the ratio between actual and

potential evapotranspiration (Palmer 1968). Although suitable for agriculture, this

index cannot be used to monitor long-term changes.

The Standardized Precipitation Index (SPI) is a simple index that utilizes

precipitation as the only input data. An interesting feature of the index is that it

can be calculated on different time scales. Initially, the precipitation time series is

fitted to a gamma distribution and then transformed into a normal distribution

having the mean value of zero. Values below zero are indicative of negative

anomalies of precipitation values (Hayes et al. 1999).

In drought studies, some commonly used variables derived from the drought

index are: (a) duration, (b) intensity, and (c) severity. The starting point is to

establish a threshold level, which is a constant value over time, so that the portion

of time series below this truncation level is the duration of the drought. The

threshold can be defined arbitrarily or by using a stochastic approach such as

deciles. Drought intensity, often called magnitude, is the mean value below the

critical level. The severity is the cumulative deficit of critical level, or simply the

multiplication between duration and intensity. Once this information is gathered, it

is possible to explore data mining techniques, multivariate distribution, and spatial–

temporal analysis of indexes for forecasting and impact assessment (Mishra and

Singh 2011). The impact of droughts on water resources management goes beyond

its frequency, severity, and duration analysis and should also comprise drought

spatial patterns. For this purpose, the severity-area-frequency curve (SAF) depicts

drought severity and drought area with respect to drought return periods so as to

describe and characterize the spatial and recurrence patterns of drought (Mishra and

Desai 2005). González and Valdés (2004) created a model for regional drought

distribution analysis using a synthetic precipitation time series to design a SAF and

used the same return period of the historical time series. The same SAF approach

was applied by Kim et al. (2002) in his study for kriging-interpolated PSDI.

Their Principal Component Analysis (PCA) and Empirical Orthogonal Func-

tions (EOF) represent a second method capable of revealing spatial patterns of the

drought as the variable of interest. These multivariate techniques are often applied

to dimensionality reduction and also emphasize data patterns and reveal relation-

ships among variables themselves and between variables and observations (Santos

et al. 2010). van der Schrier et al. (2013) have applied the EOF method in a self-

calibrated version of PSDI through a global analysis. The first mode was able to

show different regions with wet and dry patterns, although this tendency changes
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over different decades. In a regional assessment for Turkey, Tatli and Türkeş (2011)
compared several drought indexes, including PSDI, and they were able to group

several of them that were driven by the same physically driven forces. Santos

et al. (2010) also showed that, in addition to PCA, a nonhierarchical cluster analysis

(KMC) was able to separate regions with distinct behaviors in a 94-year rainfall

dataset with SPI ranging along three time scales.

10.2 Monitoring Drought Using Remote Sensing Data

To better monitor and minimize drought impact, weather data availability is

necessary. However, ground source information is costly and scarce in many

regions of the world. Also, to use and assess the spatial extent of this information,

interpolation techniques with various limitations are required. From this point of

view, remote sensing can play an essential role and can contribute to significant

advances in drought phenomena research. After more than four decades of several

spatial missions, we have currently a broad data set of observations from the space

continuously providing us global and reliable information from a wide range of

sensors, each with different physical principles.

Remote sensing is the technique of acquiring information from an object area of

phenomenon through a sensor from a remote location. Several satellites orbit the

Earth that record information through different physical approaches such as

electric-magnetic energy, including reflectance, emission and backscattering,

acoustic waves, or gravimetric field, which can be used for remote sensing. One

major remote sensing classification is regarding the sensor energy source which can

be a passive system dependent on solar radiation or an active system if it emits

energy and registers its own energy back. Passive systems can be subdivided into

three more groups. The first detects sun-reflected radiation on the visible and near-

infrared. The following two groups register the Earth’s thermal emission, one in the

so-called infrared part of the spectrum and the other at longer wavelengths of the

microwave part of spectrum (Rees 2012).

From a historical perspective, the Advanced Very High Resolution Radiometer

(AVHRR) on the board of the NOAA series of satellites since 1978 provided a

major contribution to global drought monitoring. This sensor operates from the

visible to thermal-infrared regions of the spectrum, highlighting low to moderate

spatial resolution and a relatively high temporal frequency pattern with a great

potential for large-scale monitoring of vegetation dynamics. More recently, the

Moderate Resolution Imaging Spectroradiometer (MODIS) started to operate on

2002 until today and followed AVHRR characteristics with improvements mainly

in spatial resolution, reaching 1000–250 m, and also higher spectral resolution.

Vegetation indexes (VI) are spectral transformations of two or more bands

designed to enhance the contribution of vegetation properties. Such indexes allow

us to monitor seasonal, annual, and long-term variations of structural, phenological,

and biophysical vegetation parameters (Huete et al. 2002). For instance, the
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Normalized Differential Vegetation Index (NDVI) is a widely used index defined

by the difference between the reflectance in the red part of the spectrum, which

interacts with the chlorophyll content, and near-infrared spectra, which reflects

changes in spongy mesophyll (Gu et al. 2007). Nevertheless, there are still limita-

tions in the performance of this index due to a certain degree of saturation in closed

canopies, sensitivity to atmospheric aerosols, and soil background (Anderson

et al. 2010). The Enhanced Vegetation Index (EVI) is a trial to improve NVDI by

including the blue band reflectance to minimize canopy background and aerosol

influence (Huete et al. 2002). There is also the Soil Adjust Vegetation Index (SAVI)

and the Normalized Difference Water Index (NDWI). The NDWI was proposed

after NDVI, in such a way that this new index uses short wave infrared and near-

infrared channels, with the former channel having a higher liquid absorption

compared to the latest one, which then makes this index more sensitive to water

content (Gao 1996).

On the other side, passive microwave radiometers measure the natural emission

of microwave energy and the brightness temperature from land surfaces. Active

sensors, on the other hand, including Synthetic Aperture Radar (SAR) and

scatterometers, transmit signals to a target surface area and measure the scattering

return, called the backscattering. These sensors are characterized by their fre-

quency. Some examples with their respective frequency/band are: (radiometers)

the Special Sensor Microwave/Imager (SSM/I) ranging from 19.35 to 85.5 GHz

bands, Tropical Rainfall Measuring Mission (TRMM), Microwave Imager (TMI),

Advanced Microwave Scanning Radiometer (AMSR-E) ranging from 6.9 to

89 GHz bands and Soil Moisture and Ocean Salinity (SMOS) 1.4 GHz band

(L-band) along with (active systems) scatterometers, European Remote Sensing

(ERS) with a 5.3 GHz band (C-band), and QuikSCAT (QSCAT) 5.255 GHz band

(C-band). The microwave system has an advantage because of its relative transpar-

ency with respect to the atmosphere and sensitivity to soil moisture variation. At the

range of microwave frequencies, the soil dielectric constant has a remarkable

dependence on the soil water content (Huffman et al. 2007), making these systems

more prone to potentially monitor soil moisture globally. Some current limitations

of microwave systems include soil moisture measurements that are limited to the

interaction with very top soil moisture layer (0–10 cm) and constrained to the high

noise-to-signal ratio in areas fully vegetated. Another constraint for passive systems

is related to its coarse image resolution.

The global remote sensing provided a broader view and more suitable conditions

for exploring the formulation of drought indexes previously limited to weather

station data sources. Fundamental hydroclimate variables such as surface temper-

ature, precipitation, and soil moisture that jointly provide reliable information of

land parameters status are available, thanks to the launch of various recent space

missions. Moreover, remote sensing information nowadays provide appropriate

spatial coverage information and convenient time resolution for addressing differ-

ent physical processes varying from the local scale to the global perspective.
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10.2.1 MODIS

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument

onboard the Earth Observation System (EOS) Terra satellite launched on 1999 and

also onboard the NASA Aqua satellite launched on 4 May 2002. This mission was

designed to provide reliable information for atmosphere, ocean, and land disci-

plines through different high-quality spectral products. MODIS is composed of

36 spectral bands of 12-bit radiometric resolution and acquires data at three spatial

resolutions: 250 m, 500 m, and 1000 m (Justice et al. 2002). The first seven bands

are designed for land surface studies, noting that the band 1 (red, 620–670 nm) and

band 2 (near infrared, 841–876 nm) have spatial resolutions of 250 m and band

3 (blue, 459–479 nm), band 4 (green, 545–565 nm), band 5, 6, 7 (1230–1250,

1628–1652, 2105–2155 nm) have spatial resolutions of 500 m. Also crucial for land

surface studies are the MODIS emissive bands in the infrared spectrum

(3000–15,000 nm) with seven of them used as input for surface temperature and

emissivity land products.

The data is distributed across different levels. Level-2 is based on geophysical-

derived variables at the same resolution and location as Level-1 source data. Level-

3 includes gridded variables in derived spatial and/or temporal resolutions. Level-4

is a model output or results from analyses of lower-level data. Our focus will be on

MODLAND, which represents a suite of global land products of special interest for

drought studies, including spectral vegetation indices, surface temperature, and

other biophysical variables associated to global carbon and to hydrologic cycles.

The MODIS standard surface reflectance product is MOD09, which is distrib-

uted as daily and 8-day composite images involving from band 1 to 7. The algo-

rithm corrects for aerosol and atmospheric effects and Bidirectional Reflectance

Distribution Function (BRDF) (Justice et al. 2002; Vermote and Vermeulen 1999).

The MOD 13 provides two gridded 16-day products of vegetation indices products,

namely NDVI and EVI, and a quality analysis image with flags indicating pixel

information. This is a Level-3 product generated by MOD09, with spatial resolution

of 250 m, 500 m, 1 km, and a 25 km for a monthly coarser climate modeling grid

product version (Justice et al. 2002). The MOD11 is a product for LST and

emissivity collected during daytime and nighttime for a 1 km spatial resolution

and for daily and 8-day temporal resolution. A view-angle-dependent split-window

algorithm has been developed for retrieval of LST, taking into account the incor-

poration of atmospheric correction and emissivity effects for the broad range of

land cover types. It is also available for a monthly quarter degree latitude/longitude

global climate modeling grid (Wan 1999). Other MODLAND products of impor-

tance for drought studies are: MOD16 for actual and potential evapotranspiration

(EVP and PET) (Mu et al. 2011), MOD17 for gross and net primary production

(GPP and NPP) (Running et al. 2004), and MOD 15 for Leaf Area Index (LAI) and

Fractional Photosynthetically Active Radiation (FPAR) (Privette et al. 2002).

Over non-homogeneous landscapes, a wide range of vegetation indices

(VI) might be observed mainly due to different vegetation categories. However, a
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seasonal pattern is expected over this entire region induced by a local weather

(Singh et al. 2003). Therefore, the easiest method to detect drought periods using VI

is by calculating NDVI anomalies for each region. Anomalies are the deviation

between the NDVI value and its long-term average value, which can be calculated

for the month or annual time period. Similarly, a standardized anomaly is the

deviation divided by a standard deviation. Despite vegetation is a good indicator

for drought, the time lag between rainfall and vegetation change in addition to

variability of vegetation poses still some limitations to be overcome. LST is highly

related to canopy water content (Yao et al. 2010) and it is more sensible to moisture

condition especially after long drought periods (Singh et al. 2003). For this reason,

coupling between NDVI and LST might provide a better characterization of

drought.

The Vegetation Condition Index (VCI) and the Temperature Condition Index

(TCI) are estimated relative to the maximum and minimum pixel values with

respect to NDVI and LST, respectively. In sequence, both are combined additively

resulting in the Vegetation Health Index (VHI) (Kogan 1995). Moreover, the

negative relationship observed between NDVI and LST could be explored as a

proxy of surface soil moisture condition. A strong relationship between surface

moisture condition and vegetation indices has been already observed and verified

through remotely sensed data (Gu et al. 2007; Sun and Kafatos 2007; Brown

et al. 2008; Wu et al. 2015). Thus, NDVI will present a relatively high value for a

pixel in wet regions when considering a large enough mapped region, whereas LST

will be expected to be relatively low, since the surface radiant temperatures are

dependent on the surface soil water content (Carlson 2007 and Karnieli et al. 2010).

On the other hand, the opposite relationship will be observed in dry regions. The

scatterplot of NDVI and LST images form a triangular shape, and by its simple

interpretation, one can distinguish between dry and wet pixels (Carlson et al. 1995

and Sandholt et al. 2002). A detailed and complete review of this approach is

provided by Petropoulos et al. (2009). The triangle’s upper and lowest boundary

correspond, respectively, to the dry and wet edge and both regions can be delineated

using a linear regression curve (Sandholt et al. 2002).

Drought affects vegetation structure and plant physiology and also impacts

entire ecosystems by reducing CO2 uptake and increasing CO2 concentration in

the atmosphere (AghaKouchak et al. 2015). The NPP is the quantification of net

CO2 exchange between atmosphere and plant biomass, while GPP is the amount of

carbon uptake by daily photosynthesis. Remote sensing techniques enable us to

estimate both variables over an entire region, noticeably at ecosystem scales. The

incident solar radiation and air temperature are limiting factors for NPP. However,

water availability seems to be the factor that most limits NPP around the globe

(Running et al. 2004), although one should consider lag responses between water

stress and ecosystem response.

The adoption of rain use efficiency metric (RUE), which is the rate of annual

NPP by precipitation, can better explain CO2 exchanges in different biomes

between dry and wet years (Zhang et al. 2012; Zhang et al. 2014). Another direct

result of precipitation reduction is the decrease of evapotranspiration, which is also
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linked to carbon uptake by plants. Water use efficiency (WUE), which corresponds

to NEE divided by evapotranspiration, measures the amount of carbon fixed per

water unit transpirated and it is more sensible to RUE because each vegetation type

has different evapotranspiration patterns as stated by Liu et al. (2015). Their

findings have shown that different regions in China respond positively or negatively

to either slight or severe droughts.

Evapotranspiration is one of the main components of the hydrological cycle and

it is the connecting link between the water budget and the energy budget in the soil-

water-vegetation system. In past years, several attempts have focused on estimating

distributed evapotranspiration from remote sensing data. Some methods are based

on physical models which estimate evapotranspiration from the energy balance

residual using thermal infra-red band, VI, and auxiliary meteorological data

(Bastiaanssen et al. 1998; Allen et al. 2007; Anderson 1997; Su 2002). Potential

evapotranspiration is defined as the amount of water that would evapotranspirate if

water were plentiful for a set of standard meteorological conditions, such as

temperature, radiation, wind, and relativity humidity. Once PET could be seen as

an atmospheric demand to extract water from the surface, one can consider a

balance between precipitation as an input and potential evapotranspiration as an

output. This is the basic idea of the Reconnaissance Drought Index (RDI) proposed

by Tsakiris and Vangelis (2005), which is the ratio between two aggregated

quantities of precipitation and potential evapotranspiration. RDI is a more physi-

cally based index and can be applied to hydrological and agricultural drought and it

is more sensible when compared to SPI (Tsakiris et al. 2006).

Drought severity can be intensified when below-normal rainfall combines with

heat waves, strong winds, and sunny skies that enhance vegetation evaporative

stress (Otkin et al. 2014). The evaporative stress index (ESI) quantifies anomalies in

the actual and potential evapotranspiration ratio using thermal band remotely

sensed or modeled data (Yao et al. 2011 and Mu et al. 2013). Using orbital data,

ESI can provide finer spatial resolution compared to precipitation-derived indices.

Anderson et al. (2011) demonstrated that ESI has a fast-drought response and

agrees well with United States Drought Monitor (USDM) compared to other

remotely sensed drought indexes. A recent study assessed ESI as an indicator of

agricultural drought in Brazil for the 2003–2013 period (Anderson et al. 2016). ESI,

precipitation from Tropical Rainfall Mapping Mission (TRMM), and leaf area

index (LAI) from MODIS were compared with state and municipality level crop

productivity. In general, all metrics provided similar spatial and temporal correla-

tion with agricultural statistics at southeast and northeast regions of Brazil.

Although, at a finer municipality level, ESI had higher annual yield correlation

and strength of correlative signal. Specifically in the northeastern dry region, ESI

better emphasizes flash drought events compared to the other satellite-derived

information.
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10.2.2 AMSR

The Advanced Microwave Scanning Radiometer (AMSR) is a multi-channel pas-

sive microwave-radiometer system on board NASA Aqua satellite that was

launched in 2002 and provides terrestrial and oceanic global coverage brightness

temperature values at five frequencies in the range of 6.9–89 GHz (Bolten

et al. 2010; Zhang et al. 2013). Since 2001, AMSR has provided soil moisture

values derived from global surface temperature coverage at 3–5 daily intervals of

0.25� � 0.25� spatial resolution.
Many research centers have established and validated algorithms to retrieve soil

moisture from AMSR microwave brightness temperature. This can be achieved

through land–surface radiative transfer models which accounts for soil moisture,

soil temperature, and vegetation, factors that contribute to evaluate passive micro-

wave emissions. Some common algorithms, as listed by Draper et al. (2009), are

from the following institutes: NASA, Japanese Aerospace Exploration Agency

(JAXA), United States Department of Agriculture (USDA), and Vrije Universiteit

Amsterdam (VUA).

Soil moisture is a simple and effective indicator of drought and weather

extremes (Hirschi et al. 2014; Lakshmi et al. 2004; Cai et al. 2009; Tang and

Piechota 2009). To evaluate and monitor drought onset and progress, the use of an

index is necessary. A soil moisture index aims to describe the water content deficit

at the root zone profile. One of the first indices used as a proxy to estimate soil

moisture at the watershed level in the beginning of a rainfall event was the

Antecedent Precipitation Index (API) (Kohler and Linsley 2008). The index is a

weighted sum of daily precipitations values previous to the precipitation event of

interest, as can be seen in Hong et al. (2007) for further details.

Other indices have been developed applying statistical methods, such as para-

metric (Sheffield 2004; Rahmani et al. 2016) and non-parametric probability

distribution (Carr~ao et al. 2016). Additional indices measure deviation from histor-

ical soil moisture values (Narasimhan and Srinivasan 2005). Soil moisture can also

be combined with other hydrological variables to produce a multivariable drought

index.

Integrating soil moisture, precipitation, and surface temperature data in such a

unique procedure from microwave remote sensing data sets has been shown to be

more suitable tracking with respect to a short-term drought over semi-arid envi-

ronment (Zhang et al. 2013). In East Africa during 2010–2011 drought period, the

Multivariate Standardized Drought Index (MSDI), which integrates soil moisture

and precipitation, was able to detect the drought onset and persistence with obser-

vations consistent with previous studies (AghaKouchak 2015).

At this point, we should mention that agricultural drought is potentially the most

complex drought category. While meteorological and hydrological categories can

be more easily assessed by direct precipitation measurements, stream flow records,

and reservoir levels, soil moisture has high spatial-temporal variability and hetero-

geneous distribution over soil layers Once made this remark, it can be emphasized
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that soil moisture index, as derived from models or remote sensing data, is the most

straightforward tool for agricultural monitoring at local, regional, and global scale.

Different crop types production well correlate with soil moisture index at different

time scales and locations (Carr~ao et al. 2016; Narasimhan and Srinivasan 2005).

Narasimhan and Srinivasan (2005) were able to identify critical time periods of

growth stages affecting crops production through a soil moisture index. Assimila-

tion of remote sensing data into models by means of Kalman filter is another way to

improve model results during drought periods. For instance, AMSR-E soil moisture

and MODIS LAI improved the estimation of aggregated yields when assimilated

into crop model framework (Mishra et al. 2015). The same sensor was assimilated

on PDSI-based model to better predict root-zone soil moisture (Bolten et al. 2010).

Soil moisture from microwave sensors is constrained to the first few centimeters,

which is considered a shallow depth compared to the root zones. Wagner

et al. (1999) developed an exponential filter to extrapolate moisture into the root

zone. This simple model takes into account water propagation through the profile

considering a defined time lag and a homogeneous and isotropic porous media with

a constant soil hydraulic conductivity.

Microwave soil moisture measurements or modeling estimations are subject to

errors or driven forces’ uncertainties (Gruber et al. 2016). One way to overcome this

problem is to use the Triple Collocation Analysis (TCA), which is a statistical

method to cross compare geophysical variables (Stoffelen 1998). This method has

been suggested to spatially evaluate different soil moisture data sets (de Jeu and

Dorigo 2016). Anderson et al. (2012) assessed the TCA with three different soil

moisture products using three soil moisture data sets, more specifically AMSR-E,

thermal remote sensing using ALEXI, and modeled soil moisture simulations in

Africa during a drought period. The final results showed the corresponding data

limitation.

Beyond the limitation pointed out above, the coarse resolution typical of micro-

wave sensor can narrow some of the potential use or application of soil moisture

content information. To overcome this, many efforts have been made to disaggre-

gate spatial data into a finer resolution. In this sense, most common methods

employ NDVI, LST, and other surface variables for disaggregate pixel value. A

method based on the linear thermal inertial relationship under different vegetation

conditions was proposed and validated using AMSR-E at Oklahoma Mesonet, USA

(Fang et al. 2013). Using the same sensor, Zhao and Li (2013) fitted a second-order

multivariable polynomial for vegetation, diurnal surface temperature variation, and

albedo at REMEDHUS soil moisture network, Spain. Other algorithms are based on

the so-called “universal triangle” concept (Piles et al. 2011) and the evaporative

fraction (Merlin et al. 2008).
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10.2.3 NDVI and Soil Moisture Products for Drought
Monitoring

The southeast region of Brazil (SE) suffered a great drought event observed in the

austral summer of 2013/2014 and 2014/2015 and early 2015 caused by a significant

precipitation deficit (Coelho et al. 2015a). The SE region is the most populated and

industrial area in Brazil, corresponding to the most important socioeconomic region

of the country with the highest Gross National Product (GNP) and featuring a

significant set of reservoirs for hydroelectricity power generation. This recent

drought event caused a huge water resources shortage, although it has not caused

an energy crisis as observed in the drought of 1999/2001, because at that time the

electric system was also facing simultaneously important changes in policy making

procedures for integrated power generation. These two recent years of drought

(2013/2015) have led to a water consumption crisis in the state of S~ao Paulo, where
the precipitation deficit was extreme in such a way to compromise the operation of

one of the main systems of reservoirs responsible by supplying water for the city of

S~ao Paulo, namely the Cantareira system, with a volume level that reached 5–15%

of its capacity including the dead volume of the reservoir (Coelho et al. 2015b; Seth

et al. 2015).

The Northeast region of Brazil (NE) contrasts with SE, noting that the former is

less populated and has a relatively poor economical development. Regarding the

climate, NE region climate is mainly drier and its central part encompasses a large

semi-arid landscape, covered by a xeromorphic vegetation (Moura et al. 2013). The

NE region is dominated by two different biomes, the Atlantic tropical rain forest,

located in the east coast and in the western part, and the Caatinga (desert shrubs)

located in the central part (Liu and Juárez 2001). NE is a drought-prone region due

to high rainfall interannual variability and many of these past drought events were

responsible for several social impacts, mainly poor local farms, over the last years

(Silva et al. 2015). Drought occurrence in NE is in general associated with sea

surface temperature variations in the tropical Pacific ocean expressed as the

extremes of El Ni~no Southern Oscillation (ENSO), such as the droughts of 1998

and 2002. However, the 2012–2013 drought occurred during La Ni~na event, when
more precipitation was expected (Marengo et al. 2013). This most recent drought

has been considered the worst in the last 60 years (Marengo and Bernasconi 2014)

and some authors have reported its persistence until 2015 (Silva et al. 2015).

Figure 10.1a, b display monthly average of AMSR-E (2002–2012) and AMSR-2

(2012–2014) soil moisture and MODIS MYD13C2 NDVI product for the two

studied regions, southeast and northeast of Brazil. The central NE region is less

vegetated compared to the whole western Brazil. Higher NDVI values are located

close to the coast, in the northeastern and eastern NE and SE regions, respectively.

Soil moisture spatial distribution has a great correspondence with NDVI. A long-

term soil moisture and NDVI time series (Fig. 10.1c–f) show considerable drought

impact in the NE region especially from 2012 to 2013, when a great decay in

average-area had been observed. The NDVI was slightly lower in SE region during
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2014, when compared with other years, although this region had a strong reduction

on soil moisture values during the last years. However, AMSR soil moisture in the

SE region seems noisy and less representative of real soil moisture condition as

observed in the NE region, where soil moisture has a typical seasonal annual cycle.

Northeast region landscape is dominated by flat and bare soils, which better

contributes to the remote sensing soil moisture retrievals algorithm.

EOF analysis was conducted for monthly anomalies of AMSR soil moisture and

MODIS NDVI in order to better understand the spatio-temporal variations in both

regions. The EOF approach allows to determine the modes that govern the vari-

ability of a climatic phenomenon (Bj€ornsson and Venegas 1997). The

corresponding time series of each EOF, named expanded coefficients, elucidates

the temporal evolution of the variance in the areas of maximum variability (Syed

et al. 2004). In general, the first mode usually corresponds to the seasonal oscilla-

tion of the studied variable, while subsequent modes can display annual perturba-

tions, such as the ones produced by El Ni~no events (Toumazou and Cretaux 2001).

In remote sensing multi-temporal images applications, the most part of variance is

concentrated until the fourth to fifth component. Thus, we have selected the first

two components for conducting the analysis.

Figure 10.2a, b show EOF 1 and 2 for AMSR in the NE region, depicting that the

first two components explain 38% and 12%, respectively, of the corresponding

Fig. 10.1 AMSR (a) and NDVI (b) average images and time series of soil moisture (c, d) and
NDVI (e, f) for, respectively, Northeast (NE) and Southeast (SE) Brazilian regions from 2002

to 2014
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variability for AMSR. The spatial pattern of EOF 1 is characterized by a strong

negative value in the central part and positive value in each margin. The second

EOF has a negative anomaly centered over the south-central region and a positive

anomaly located in the northwest board of the NE region. The associated time series

does not reveal a seasonal pattern, but it shows an increasing trend after 2012.

The first EOF for SE region (30% of explained variability), Fig. 10.2d, is

dominated by a positive homogeneous signal over the entire region, while the

second EOF mode (21% of explained variability), Fig. 10.2e, seems to indicate a

subregional dipole like between the north and the southwest part of SE region. This

is in accordance with the observed northwest–southeast diagonally oriented spatial

pattern of precipitation over this region (Coelho et al. 2015b). The temporal series,

Fig. 10.2c, f, depict a similar temporal pattern until 2011, followed by an increasing

trend after 2012, EOF 1, and decreasing trend, EOF 2.

EOF analysis results of NDVI developed for the NE represent 41% of total

variance as given in Fig. 10.2g, h. The EOF 1 shows similar results with AMSR

EOF 1, Fig. 10.2a, with a major negative signal otherwise, while EOF 2, which

explains about 9% of variance , shows positive values in southwestern NE

contrasting with negatives anomalies over the NE shore. The rainfall distribution

is a dominant factor in the dynamics of vegetation in the NE region (Barbosa and

Lakshmi Kumar 2016). The EOF 1 might be strongly connected to vegetation

Fig. 10.2 AMSR EOF loadings (a, b, d, e) and expansion coefficients (c, f) and NDVI (g–j, l,m)

for, respectively, Northeast (NE) and Southeast (SE) regions
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cover-averaged yearly rainfall. EOF 2 probably captures different local wet regimes

as the NE is subjected to irregular spatio-temporal distribution of precipitation over

the year, which occurs from February to May in the semiarid zone and from April to

August over the east coast (Cunha et al. 2015; Marengo and Bernasconi 2014). The

time series show a typical seasonal oscillation with an up to 3 months lag between

the first and second expanded coefficient. One might observe that both time series

have their lowest values during 2012–2013 drought, followed by an intense vege-

tation vigor recovery.

The remaining EOF 1 and 2 for NDVI in SE region explains 48 and 8% of total

variance, Fig. 10.2j, l, with the first EOF been more significant and with a homo-

geneous positive value, while the second EOF seems to separate the signal in a

north–south pattern in the second mode and an east–west pattern in the third mode.

The temporal plot, Fig. 10.2m, shows two minimum peaks in 2011 and 2014 and an

increase of variability after 2011.

In summary, the EOF analyses of the soil moisture and NDVI indicate that there

was a sudden decrease over both studied regions during the drought periods

reported. For NDVI in the NE region, we were able to describe the time series of

two distinct regions, semi-arid and the east-coast, and how they reacted during

2012–2013 drought event. Further studies could describe the link between NDVI

and soil moisture, and possibly other variables like rainfall through statistical

multivariate analyses, such as the single value decomposition method.

10.3 GRACE

The Gravity Recovery and Climate Experiment (GRACE) mission is a joint

US-German satellite mission launched in March 2002, designed to detect the

spatiotemporal variation of the Earth’s gravity field. GRACE is composed of two

orbiting tandem satellites approximately 250 km apart. Water mass variation in

large areas has a gravitational potential strong enough to alter the orbit of satellites,

which, for instance, can alter the distance between GRACE in both aircrafts. The

distance is measured using onboard microwave tracking systems, and in this way,

can be used to quantify terrestrial water storage. Consequently, mass variations in

land will comprise of changes in total column-water storage due to changes in

groundwater , soil moisture due to snow, ice, and lakes, rivers, and other bodies of

water-containing biomass.

Time series of spherical harmonic coefficients of Earth’s Gravity field named

GRACE Level-2 RL05 are available in three data processing centers: the Center of

Spatial Research of the University of Texas (CSR), the NASA’s Jet Propulsion

Laboratory (JPL), and the German GeoForschungsZentrum Information System

and Data Center (GFZISDC).

Previous studies have taken advantage of terrestrial water storage anomalies

(TWSA) derived from the Gravity Recovery and Climate Experiment (GRACE)

mission (Tapley 2004) in order to identify droughts and quantify their severity
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worldwide (Rodell et al. 2009; Famiglietti and Rodell 2013; Thomas et al. 2014).

The GRACE mission, designed to measure changes in Earth’s gravimetric field,

enables estimation of TWSA over large areas. TWSA is an aggregate estimate,

including surface water (rivers, wetlands, and lakes) and sub-surface (soil moisture

and groundwater) reservoirs, along with water on the leaves and snow. GRACE

data have been used to determine the evapotranspiration over land (Ramillien

et al. 2006; Rodell et al. 2011), groundwater storage change (Frappart et al. 2011)

and depletion (Rodell et al. 2009), impacts of severe floods on water storage

(Espinoza et al. 2013), and drought detection (Famiglietti and Rodell 2013) and

its characterization (Thomas et al. 2014). GRACE estimates of TWSA have also

been used in data assimilation schemes (Zaitchik et al. 2008; Li et al. 2012; Kumar

2014) and in the calibration (Werth et al. 2009) and evaluation (Getirana

et al. 2014) of hydrological models.

10.3.1 Recent Drought Studies with Grace in Brazil

A recent study presented by Getirana (2016) has characterized and quantified an

extended drought occurring in Southeast Brazil using GRACE TWSA, GLDAS

vertical flux data, and ground-based reservoir water storage change (RWSC). That

region has an approximate area of 930,000 km2 and accommodates major hydro-

power plants in the country, numerous industrial centers, and irrigation fields,

which together require a continuous and large amount of water.

In order to identify major breaks in GRACE TWSA time series, the author used

two break tests, Pettitt’s (1979) method and Hubert’s segmentation procedure

(Hubert et al. 1989). The application of the Hubert’s segmentation points out to a

few breaks in the 13-year time series, but two dates seem to be especially signif-

icant: the transition January–February 2004 and February–March 2012, both occur-

ring during wet seasons (austral summer). The first one defines the end of an

extended and severe dry season that began in the early 2000s, causing extreme

reservoir depletions and subsequent nationwide electricity crisis and blackouts in

2001. The second one is identified in the time series as the transition between an

unusually wet season (with a few dry months) and an extended more-than usual dry

season. The Pettitt test indicates that a breakpoint occurred in February 2012. This

result corroborates with those obtained with Hubert’s segmentation, evidencing that

the latter was the most significant break occurring in the 13-year monthly time

series.

Comparisons between GRACE TWSA and RWSC resulted in high correlations,

demonstrating the ability of GRACE in detecting water volume change in reser-

voirs covering small fractions of TWSA product’s spatial resolution. Despite the

small reservoir surface area relative to the spatial resolution of GRACE, statisti-

cally significant correlations were found between RWSC and TWSA averaged over

3� 3 grid cell boxes. These results could be explained by RWSC amplitude,

reservoir size, and their proximity to the drought nucleus. However, the actual

10 Monitoring Drought in Brazil by Remote Sensing 211



impact of reservoirs on GRACE TWSA is inconclusive since other factors can

influence the observed correlations. These factors include the natural hydrological

seasonality observed in the surrounding area (other water bodies, such as rivers and

other lakes), soil moisture, and aquifers. Additionally, GRACE TWSA amplitude

errors over those boxes should be in the order of 2 km3, indicating that the RWSC of

small reservoirs might not significantly impact GRACE TWSA anomalies. An

effective way to demonstrate such dependencies would be to perform model runs

(LSMs coupled with river routing schemes capable of simulating reservoir opera-

tion rules), considering multiple scenarios, and quantitatively determine a correla-

tion between variables. However, such analysis is beyond the scope of this paper.

Based on complementary data from model outputs derived from GLDAS, it was

demonstrated that the recent water deficit observed over Eastern Brazil is mostly

due to lower-than-usual precipitation rates. Though the reasons for the recent low

precipitation are still unknown and are under research investigation, there is an

increasing speculation that man-induced climate change (Escobar 2015) and defor-

estation in Amazonia (Nazareno and Laurance 2015) may be altering the moisture

transport from Amazonia to Southeast South America (SESA). Indeed, recent

studies have demonstrated the existence of a dipole-like structure between SESA

and the South American Convective Zone (SACZ) (e.g., Junquas et al. 2011) and

moisture transport across the continent through low-level jets and aerial rivers from

tropical to subtropical regions of South America (e.g., Marengo et al. 2004; Poveda

et al. 2014). Future studies investigating possible causes for the reduced precipita-

tion are recommended. These studies should consider, among other factors, the

simultaneous drought over Eastern Brazil and floods over the Amazon (Marengo

et al. 2013), potential relationships with low-level jets and aerial rivers carrying

moisture from tropical to subtropical regions in South America (Marengo

et al. 2004; Poveda et al. 2014), and impacts of deforestation on these fluxes.

Lastly, the use of remote sensing data in environmental studies can empower

policy and decision makers to develop social, economic, and environmental poli-

cies better adapted to extreme events and capable of preventing major socio-

economic losses due to extreme droughts. Due to the short time series and a

non-negligible time shift between data acquisition, processing, and availability to

the scientific community, GRACE is not yet ready for use in seasonal predictions,

nor near real-time drought forecasts (Thomas et al. 2014). However, such data,

combined with additional hydrological information from current and next-

generation satellite missions (Alsdorf et al. 2007; Getirana and Peters-Lidard

2013; Papa et al. 2013; Kumar 2014), as well as model outputs, can be used to

diagnose recent extreme water-related events and can contribute to water scarcity

predictions for upcoming dry seasons (Landerer and Swenson 2012) and be inte-

grated into model calibration frameworks and decision support systems. Combining

such techniques with GRACE data assimilation framework (Li and Rodell 2015)

and model forecasts could produce useful decision-making tools for minimizing the

impacts of future extreme and prolonged drought events on water supply and

energy generation.
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Liu WT, Juárez RIN (2001) ENSO drought onset prediction in northeast brazil using NDVI. Int J

Remote Sens 22(17):3483–3501. doi:10.1080/01431160010006430

Lyon B (2004) The strength of El Ni~no and the spatial extent of tropical drought. Geophys Res Lett
31(21), L21204. doi:10.1029/2004gl020901

10 Monitoring Drought in Brazil by Remote Sensing 215

http://dx.doi.org/10.1175/1520-0477(1999)080%3C0429:mtduts%3E2.0.co;2
http://dx.doi.org/10.1175/1520-0477(1999)080%3C0429:mtduts%3E2.0.co;2
http://dx.doi.org/10.1175/1520-0477(1999)080%3C0429:mtduts%3E2.0.co;2
http://dx.doi.org/10.1175/1520-0477(1999)080%3C0429:mtduts%3E2.0.co;2
http://dx.doi.org/10.1016/j.rse.2014.08.030
http://dx.doi.org/10.1029/2006wr005739
http://dx.doi.org/10.1016/0022-1694(89)90197-2
http://dx.doi.org/10.1016/s0034-4257(02)00096-2
http://dx.doi.org/10.1175/jhm560.1
http://dx.doi.org/10.1175/jhm560.1
http://dx.doi.org/10.1016/j.jag.2015.10.007
http://dx.doi.org/10.1007/s00382-011-1141-y
http://dx.doi.org/10.1007/s00382-011-1141-y
http://dx.doi.org/10.1016/s0034-4257(02)00084-6
http://dx.doi.org/10.1175/2009jcli2900.1
http://dx.doi.org/10.1080/02508060208687021
http://dx.doi.org/10.1016/0273-1177(95)00079-t
http://www.nrc.gov/docs/ML0819/ML081900279.pdf
http://www.nrc.gov/docs/ML0819/ML081900279.pdf
http://dx.doi.org/10.1029/2004gl019930
http://dx.doi.org/10.1029/2011wr011453
http://dx.doi.org/10.1016/j.jhydrol.2014.09.027
http://dx.doi.org/10.1016/j.jhydrol.2012.04.035
http://dx.doi.org/10.3390/rs70101154
http://dx.doi.org/10.1080/01431160010006430
http://dx.doi.org/10.1029/2004gl020901


Marengo JA, Alves LM, Soares WR, Rodriguez DA, Camargo H, Riveros MP, Pabló AD (2013)
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Chapter 11

Multi-Sensor Remote Sensing
of Drought from Space

M. Sadegh, C. Love, A. Farahmand, A. Mehran, M.J. Tourian,

and A. AghaKouchak

Abstract Drought monitoring is vital considering the immense costs of this natural

hazard. The root cause for all types of drought (meteorological, agricultural,

hydrological, and socio-economic) is sustained below average precipitation. Since

regional precipitation variability depends on large-scale climatic and oceanic

circulation patterns, it is necessary to study droughts from a global perspective

which requires satellite observations. Satellite data allow comprehensive assess-

ment of drought onset, development, and recovery through a multi-sensor multi-

variate monitoring of hydrological variables. However, there are major challenges

in using satellite data, including consistency, reliability, uncertainty, and length of

record that merit more in-depth research.

11.1 Introduction

Droughts are among the costliest natural disasters that pose food and water security

concerns around the world (Wilhite 2005; Hoerling 2013; Godfray

et al. 2010; AghaKouchak et al. 2015a). While droughts are typically caused by

sustained below average precipitation, they are classified into four types based on

the different hydrological variables they impact. Deficit in precipitation is typically

referred to as meteorological drought (Hayes et al. 1999). Deficit in soil moisture

(i.e., below average moisture in the soil) is known as agricultural drought
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(AghaKouchak 2014). Hydrological drought corresponds to a deficit in runoff or

groundwater resources (Wood and Lettenmaier 2008; Van Loon 2015). Socio-

economic drought (Mehran et al. 2015), also termed anthropogenic drought

(AghaKouchak et al. 2015b), refers to water stress intensified by human activities

and increasing water demands (see also Van Loon et al. 2016). Typically, sustained

deficit in precipitation leads to deficit in soil moisture, runoff, and groundwater

resources with a certain time lag. For this reason, a comprehensive assessment of

drought onset, development, and recovery requires a multi-sensor approach in

which multiple hydrological variables are monitored.

Drought monitoring and prediction have long relied on ground-based observa-

tions (Shen and Tabios 1996; Sheffield et al. 2012; Aghakouchak

et al. 2014; Gallagher et al. 1976; Palmer 1965). However, understanding the causes

of drought and explaining the underlying processes requires a global (or at least,

continental) perspective, since regional precipitation variability has been linked to

large-scale climatic and oceanic circulation patterns (Hoerling and

Kumar 2003; Rasmusson et al. 1983; Keyantash and Dracup 2004; Golian

et al. 2015; Hidalgo 2004; Wegren 2011). This highlights the need for monitoring

droughts from a global perspective to better understand regional drought trends and

patterns (Grasso and Singh 2011). However, many areas of the world are not

sufficiently covered with ground-based observations, making large-scale monitor-

ing and assessment challenging (Easterling 2013). Moreover, ground-based obser-

vations are not necessarily available in a timely manner for drought monitoring and

assessment. This underscores the need for global satellite observations which can

provide improved initial and boundary condition information for drought monitor-

ing and prediction (AghaKouchak and Nakhjiri 2012).

In the past four decades, satellite-based observations have provided valuable

information to the hydrology and climate communities with respect to precipitation,

temperature, evapotranspiration, soil moisture, vegetation greenness, land cover con-

dition, and total water storage at the global scale (NASA 2010; AghaKouchak

et al. 2015a;Wardlowet al. 2012;Krajewski et al. 2006;Whitcraft et al. 2015). Satellite

observations not only provide near real-time quasi-global to global information, but

also allowmulti-sensor drought monitoring from different viewpoints, such as precip-

itation, evapotranspiration, soil moisture, and vegetation health (Barrett and

Herschy 1989; Morgan 1989; Heumann 2011; Sorooshian et al. 2011; Entekhabi

et al. 2004; Anderson and Kustas 2008; Running et al. 1989; Karnieli

et al. 2010; McVicar and Jupp 1998; Price 1982; Fensholt et al. 2006; Wang and

Qu 2007; Anderson et al. 2011b; Allen et al. 2007; Cashion et al. 2005).

Remotely sensed observations have also been widely used to assess droughts

based on corresponding impacts on the ecosystem, such as photosynthetic capacity,

vegetation growth rate, and vegetation greenness (Tucker and

Choudhury 1987; Asrar et al. 1984, 1989; Asner and Alencar 2010; Wardlow

et al. 2012; Hatfield et al. 1984). While the abundance of remotely sensed obser-

vations provides opportunities for advancing drought monitoring and prediction,

there are major challenges which include data consistency, reliability, underlying

uncertainties, length of record, and interoperability of data sources.
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In a recent study, AghaKouchak et al. (2015a) reviewed opportunities and

challenges in remote sensing of drought from meteorological and ecological per-

spectives. In this chapter, however, we focus solely on drought monitoring from a

climatic perspective. After a brief review of the available satellite-based data

products, we concentrate further on opportunities for multi-sensor multivariate

drought monitoring and assessment using multiple satellite data products.

11.2 Remotely Sensed Precipitation Information

Precipitation information is necessary for the computation of widely used drought

indicators, such as Standardized Precipitation Index (SPI) (McKee et al. 1993) and

Percent of Normal Precipitation (PNP) (Werick et al. 1994). This often requires the

use of Geostationary (GEO) and Low Earth Orbit (LEO) satellites, which retrieve

precipitation information using infrared (IR), typically from GEOs, and passive

microwave (PMW) from LEOs. GEOs, positioned at altitudes of 35,880 km, offer

higher temporal resolution since they hover over the same location on the Earth,

whereas LEOs orbit the Earth at much lower altitudes visiting any location on Earth

typically twice each day (Levizzani 2008).

IR-based precipitation estimates typically rely on cloud-top temperature and

albedo information (Joyce and Arkin 1997; Arkin et al. 1994; Turk et al. 1999).

Passive microwave sensors offer more accurate, but infrequent, instantaneous

precipitation estimates (Kummerow et al. 1996, 2001). The infrequency of PMW

information can be compensated for by merging both IR and PMW information for

improving precipitation retrieval (Sorooshian et al. 2011; Joyce et al. 2004). Several

satellite-based precipitation products are now available for research and operational

applications including (Levizzani et al. 2007; Kidd 2001):

– Precipitation Estimation from Remotely Sensed Information using Artificial

Neural Networks (PERSIANN) (Sorooshian et al. 2000; Hsu et al. 1997; Hong

et al. 2004; Sorooshian et al. 2014).

– Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation

Analysis (TMPA) (Huffman et al. 2007).

– CPC Morphing Technique (CMORPH) (Joyce et al. 2004).

– Precipitation Estimation from Remotely Sensed Information using Artificial

Neural Networks—Climate Data Record (PERSIANN-CDR) (Ashouri

et al. 2015).

– Global Precipitation Climatology Project (GPCP) (Adler et al. 2003).

– Global Satellite Mapping of Precipitation (GSMaP) (Kubota et al. 2007).

– Integrated Multi-satellitE Retrievals for GPM (IMERG) (Huffman et al. 2013;

Prakash et al. 2016a).

These satellite precipitation products have been used in a wide variety of studies

including drought monitoring and assessment (Damberg and AghaKouchak 2014;

Paridal et al. 2008; Anderson et al. 2008; Sheffield et al. 2006). These products all
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use similar inputs but provide information at different spatial and temporal scales.

For a detailed discussion, interested readers are referred to AghaKouchak

et al. (2012), Tian et al. (2009), Ebert et al. (2007), Chappell et al. (2013), Prakash

et al. (2016b), Prakash et al. (2015), Anagnostou et al. (2010), Maggioni

et al. (2016), AghaKouchak et al. (2011), Hirpa et al. (2010), Gebremichael (2010),

and Hossain and Anagnostou (2005).

One limitation of the available satellite precipitation products for drought

monitoring is their relative short length of record. Among the ones listed above,

GPCP and PERSIANN-CDR offer over 30 years of data, making them more

desirable for drought monitoring, although these two products are not currently

available in real-time. The diversity of satellite precipitation products, however,

does allow for the merging of long-term records (e.g., PERSIANN-CDR, GPCP)

with near real-time satellite products (e.g., TMPA, PERSIANN, and CMORPH) for

drought monitoring purposes (see, for example, AghaKouchak and Nakhjiri 2012).

There are multiple satellite data visualization systems that can be used for viewing

and extracting precipitation information, such as UCI’s GWADI System (see

Fig. 11.1), which offers near real-time high resolution (0.04 ∘) precipitation data

based on PERSIANN-Cloud Classification System (PERSIANN-CCS) (Hong

et al. 2004). This data product has been used in a variety of applications, an example

of which is provided by Nguyen et al. (2015).

11.3 Satellite Soil Moisture Estimates

Soil moisture deficit is a key variable in defining and monitoring agricultural

drought, plant growth, and vegetation stress (Liu et al. 2016; D’Odorico
et al. 2007; Boken et al. 2005). Soil moisture information is important for assessing

the persistence of droughts which is closely related to drought duration

(AghaKouchak 2014). Several soil moisture-based indicators, such as soil moisture

Fig. 11.1 UCI’s GWADI map server (http://hydis.eng.uci.edu/gwadi/) offers near real-time 0.04 ∘

precipitation information based on PERSIANN-Cloud Classification System (PERSIANN-CCS)

(Hong et al. 2004)
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percentile (Sheffield et al. 2004; Wang et al. 2009) and Standardized Soil Moisture

Index (SSI) (Hao and AghaKouchak 2013), have been used for both drought

monitoring and prediction.

The basic concept for retrieving soil moisture estimates from satellite observa-

tions relies on the association between the soil’s liquid water content and its

permittivity. There are empirical relationships that can be used to link passive

microwave information to soil’s volumetric water content (Njoku et al. 2003; Jack-

son 1997; Njoku and Entekhabi 1996). Similar relationships exist between active

microwave backscatter and soil moisture (Wagner et al. 1999; Takada et al. 2009).

There exist soil moisture retrieval methods that combine information from multiple

sensors to improve both the spatial coverage/resolution and the quality of estimates

(Wilson et al. 2001; Gruhier et al. 2010; Entekhabi et al. 2010a; Liu et al. 2011; Kim

and Hogue 2012; Wagner et al. 2012; Liu et al. 2011). Satellite-based soil moisture

estimates typically provide information only about the top soil layer (around 5 cm

of soil depth Entekhabi et al. 2010a; Njoku et al. 2003; Wang and Qu 2009).

However, for agricultural drought monitoring, root zone soil moisture is the key

variable of interest. While satellite observations do not provide root zone soil

moisture, they can be assimilated into land-surface or land-atmosphere models to

improve simulations of root zone soil moisture (Reichle et al. 2004; Wang and

Qu 2009).

The long-term satellite-based soil moisture time series obtained from the

Water Cycle Multi-Mission Observation Strategy (WACMOS) have been used

for drought detection and monitoring in the Horn of Africa region (Ambaw 2013).

The United States Department of Agriculture (USDA) International Production

Assessment Division (IPAD) estimates surface and root zone soil moisture with a

two-layer modified Palmer soil moisture model forced by global precipitation and

near-surface air temperature measurements (Palmer and Havens 1958). In this

approach, only near-surface air temperature is used to approximate potential

evapotranspiration, which has limitations in estimating evapotranspiration

(McVicar et al. 2012; Donohue et al. 2010; Hobbins et al. 2008). Soil moisture

data retrieved from the Advanced Microwave Scanning Radiometer on Earth

Observing System (AMSR-E) (Jackson 1993) have been integrated into the

real-time USDA IPAD soil model to improve drought monitoring and prediction

(Bolten et al. 2010).

Recently, NASA’s Soil Moisture Active Passive (SMAP) mission (Entekhabi

et al. 2010a) began providing near real-time top soil moisture estimates

(Fig. 11.2). Currently, SMAP’s length of record is not sufficient for analyzing

droughts from a climatological perspective. However, it can be merged with other

data products for improving agricultural drought monitoring. Potential applica-

tions of SMAP’s soil moisture estimates for drought assessment are yet to be

explored, but we anticipate broad applications of SMAP data in drought-related

studies in the near future.
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11.4 Relative Humidity

Remotely sensed water vapor and relative humidity are available from NASA’s
Atmospheric Infrared Sounder (AIRS) instrument. While the AIRS instrument was

not specifically designed for drought analysis, recent studies show that near-surface

air relative humidity can provide valuable information on drought onset and

development (Farahmand et al. 2015; AghaKouchak et al. 2015a). Precipitation is

closely associated with relative humidity. Near-surface air relative humidity also

affects local evaporation, which has feedback on precipitation. For these reasons,

relative humidity is expected to provide relevant information for drought monitor-

ing and assessment.

While many studies indicate that precipitation is perhaps the best indicator for

early drought onset detection (Mo 2011; Hao and AghaKouchak 2013), recent

studies show that integrating relative humidity from AIRS could improve the

drought onset detection. Figure 11.3 displays the 3-month (top) SPI and (middle)

Standardized Relative Humidity Index (SRHI; Farahmand et al. 2015). The latter is

obtained by standardizing the AIRS-based relative humidity information using an

empirical approach outlined in Farahmand and AghaKouchak (2015). The two

panels show similarities due to the relationship between precipitation and humidity.

Exploring time series of precipitation- and relative humidity-based indicators

(Fig. 11.3 (bottom)) highlights the opportunity for early drought onset detection

(see Farahmand et al. 2015 for more information).

Fig. 11.2 3-day satellite-based soil moisture (m3/m3) information from the SMAP mission on

(left) June 4th, 2016, and (right) March 4th, 2016 (Source: Princeton University’s African Flood

and Drought Monitor, http://stream.princeton.edu/AWCM/WEBPAGE/interface.php?locale¼en)
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11.5 Terrestrial Water Storage from Space

The Gravity Recovery and Climate Experiment (GRACE) mission, launched in

2002, provides an invaluable source of information to evaluate drought impacts, at

regional to global scales, on terrestrial water storage and groundwater conditions

(Tapley et al. 2004). GRACE employs traces of global variations in Earth’s gravity
field which can be used to estimate terrestrial water storage (TWS) (Rodell and

Famiglietti 2002). The principle of gravimetry that governs TWS estimation posits

that the gravitational potential of surface and subsurface water mass alters the

Fig. 11.3 (top) 3-month standardized precipitation index (SPI) and (middle) standardized relative
humidity index (SRHI) for Sept. 2011; (bottom) 3-month standardized precipitation index (SPI),

standardized soil moisture index (SSI), and standardized relative humidity index (SRHI) for a

location affected by the 2011 Texas-Mexico drought (modified after Farahmand

et al. 2015; AghaKouchak et al. 2015a)
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Earth’s gravity field, indicators of which can be utilized to estimate the total amount

of water in the vertical medium. The twin GRACE satellites, being approximately

220 km apart along-track, orbit the earth at an altitude of 500 km. The distance

between the two satellites changes as they speed up, or slow down, in response to

variations in Earth’s gravity field. Utilizing this concept, GRACE provides a

measure of temporal TWS (or Equivalent Water Height) anomalies by observing

the relative motion of the center-of-mass of the two satellites with a highly precise

inter-satellite K-band microwave link, in addition to high precision accelerometers

and Global Positioning System (GPS) receivers (Rodell 2012).

GRACE’s estimation of TWS enables quantification of groundwater changes,

ΔG, as ΔG ¼ ΔTWS� ΔSM � ΔSWE, in which SM and SWE signify soil mois-

ture and snow water equivalence, respectively (Rodell et al. 2007). The TWS data

from GRACE has empowered several drought monitoring and water storage

assessment studies over a diverse pool of regions, such as the Canadian Prairie

(Yirdaw et al. 2008), Australia (Leblanc et al. 2009; van Dijk et al. 2011, 2013), the

Amazon River basin (Chen et al. 2009), the Lake Urmia in Iran (Tourian et al. 2015),

and western and central Europe (Li et al. 2012), among others. This data set has also

offered invaluable information to link meteorological and hydrological drought

conditions during the 2011 Texas drought (Long et al. 2013).

Such great advantages of GRACE-based data, however, coincide with some

limitations. GRACE provides only about 14 years of data, restricting its application

for climatological drought assessment. An example of such data is presented in

Fig. 11.4, which demonstrates anomalies of Equivalent Water Height in California.

Moreover, a coarse spatial resolution of> 150,000 km2 for the GRACE TWS data

(Houborg et al. 2012) limits its ability to be used for subregional drought

assessments.

To diminish the limitations of a coarse spatial resolution, GRACE data has

recently been assimilated into models and/or hydrological data, and down-scaled

Fig. 11.4 Spaced-based equivalent water height (mm) in California from GRACE satellites
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to higher resolutions (Zaitchik et al. 2008; Reager et al. 2015; Lorenz et al. 2015).

The assimilated data set offers a potential improvement in drought monitoring and a

more advanced evaluation of groundwater resources at finer spatial resolutions.

Indeed, a GRACE-based drought indicator has been developed and integrated into

the United States and North America Drought Monitor (Houborg et al. 2012), using

the GRACE Data Assimilation System (GRACE-DAS) (Zaitchik et al. 2008) and

the Catchment Land Surface Model (CLSM) (Koster et al. 2000). Since GRACE

provides detailed information regarding the total water storage deficit, it can also be

employed to quantify the amount of water input, i.e., precipitation, required to

recover from a drought (Thomas et al. 2014).

11.6 Evapotranspiration

Evapotranspiration (ET) is a key constituent of the water and energy cycle (Senay

et al. 2012; Wang and Dickinson 2012); manifests mass and energy exchange

among terrestrial ecosystems and atmosphere; and depends on net radiation,

air temperature, wind speed, and relative humidity (Donohue et al. 2010; Hobbins

et al. 2008; McVicar et al. 2012; Yin et al. 2014). Obtaining ground-based mea-

surements of ET is a challenging, if not impossible, task at regional to global scales.

Therefore, scientists have resorted to remotely sensed data to estimate ET at large

scales. The availability of such invaluable data and the unique characteristic of ET

which simultaneously reflects the water/moisture availability and its consumption

rate (Anderson et al. 2012a) offer a great opportunity for drought analysis and

monitoring studies.

Indeed, several drought indicators, such as Crop Water Stress Index (CWSI)

(Idso et al. 1981; Jackson et al. 1981), Water Deficit Index (WDI) (Moran

et al. 1994), Evaporative Stress Index (ESI) (Anderson et al. 2011a, b, 2013a),

Evaporative Drought Index (EDI) (Yao et al. 2010), Drought Severity Index (DSI)

(Mu et al. 2013), and Reconnaissance Drought Index (RDI) (Tsakiris and

Vangelis 2005; Tsakiris et al. 2007), which integrate ET as an input variable in

the drought analysis, have been proposed in the literature. These indices are briefly

explained in the following paragraphs.

CWSI is expressed on the basis of the ratio of actual to potential ET (AET to

PET) asCWSI ¼ 1� AET
PET. WDI is developed on the same concept, but using rate, λ,

instead of the original value of AET and PET: WDI ¼ 1� λAET
λPET

. ESI, developed on

the standardized anomalies in the ratio of AET to PET (Anderson et al. 2011b), has

shown to be a propitious drought indicator for characterizing streamflow and soil

moisture anomalies (Choi et al. 2013), and offers indispensable information for

early warning of “flash” (swiftly developing) droughts (Anderson et al. 2013b; Otkin

et al. 2014). EDI, similar to ESI in development, has also been employed for

drought monitoring at continental and global scales (Yao et al. 2011).
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DSI is computed by adding the normalized ratio of AET
PET to the Normalized

Difference Vegetation Index (NDVI) (Mu et al. 2013). Short wave satellite obser-

vations obtained from the Moderate-resolution Imaging Spectroradiometer

(MODIS) are used, in this approach, within a Penman-Monteith ET formulation

to quantify the ratio of AET
PET (Mu et al. 2007, 2009, 2011). DSI is a dimensional

indicator ranging between [�1, 1], with lower values indicating more severe

drought condition. This indicator has been shown in the literature to be consistent

with the drought indices based on precipitation and satellite-based measures of

vegetation net primary production (NPP) (Running et al. 2004). However, DSI is

distinct from other indicators in the sense that it is not a standardized measure of

drought severity.

RDI, also coined as Aridity Index (UNESCO 1979), is formulated as a ratio of

aggregated precipitation (P) to PET ( P
PET) for drought monitoring purposes (Tsakiris

and Vangelis 2005; Tsakiris et al. 2007). Being widely used in the literature, this

index can be standardized for cross comparison with other drought indices. RDI is

dissimilar to other indicators in not using AET in its formulation. PET estimates in

RDI have been derived from satellite-based air temperature data (Dalezios

et al. 2012), disregarding other dominant meteorological drivers, such as net

radiation, wind speed, and relative humidity (McVicar et al. 2012; Donohue

et al. 2010), that shed concern on the accuracy of such estimation.

11.7 Snow

Snow is an important natural water bank. Indeed, some regions depend to a large

extent on this water reservoir, and snow melt constitutes a significant portion of

their annual runoff (Kongoli et al. 2012; Bales et al. 2006). Monitoring snow pack is

essential for drought assessment in such regions, as decreases in this reservoir may

potentially result in a summer hydrological drought (e.g., diminished stream flows

and/or groundwater levels) or agricultural drought (e.g., exhausted soil moisture

reserves). In this sense, Snow Water Equivalent (SWE), Snow Covered Area

(SCA), Snow Depth (SD), and Snow Albedo (SA) (Kongoli et al. 2012; Painter

et al. 2013; Molotch and Bales 2006) are among the most important hydrological

variables. These snow-based indices are usually derived from the remotely sensed

estimation of snow pack including (a) optical; (b) microwave (MW); and

(c) composite optical and MW methods. Information provided by the optical

approach only yield the SCA index, whereas the other two approaches can be

used to estimate SCA, SD, and SWE.

The characteristic of snow to exhibit a strong spectral gradient in reflectance

constructs the basis for optical monitoring of snow (Dozier et al. 2009; Kongoli

et al. 2012; Wiscombe and Warren 1980). Indeed, the ratio of visible reflectance

(RVIS) and middle infrared (IR) reflectance (RmIR) helps monitor and record snow

pack (Romanov et al. 2000). Snow can, alternatively, be detected through
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the Normalized Difference Snow Index (NDSI), formulated as RVIS�RmIR

RVISþRmIR

(Hall et al. 2002). A cohort of optical-based snow products from MODIS

(Hall et al. 2002), and snow algorithms from Advanced Very High Resolution

Radiometer (AVHRR) satellite data record (Simpson et al. 1998) are available with

a variety of spatial and temporal resolutions. Accuracy of such optical-based snow

estimates can be compromised by cloud blockage. If such blockage is persistent,

it can also hinder temporal continuity of the snow data.

Microwave radiation, on the contrary, can penetrate through clouds and offer a

temporally continuous estimation of snow pack (Kongoli et al. 2012; Schanda

et al. 1983). The MW approach renders a more significant advantage by allowing

the estimation of SWE and SD, since microwaves can penetrate through snow as

well (Durand et al. 2008). A great deal of research has been devoted to develop

algorithms that can approximate SCA from MW data sets (Grody and Basist 1996).

Interested readers are referred to Kongoli et al. (2007) for a detailed discussion on

the empirical regression relationship between variations in observed SWE/SD and

the difference in brightness temperature of two low frequency channels; and to

Kunzi et al. (1982) and Goodison (1989) for static, as well as Foster et al. (2005)

and Kelly et al. (2003) for dynamic empirical regression models to estimate

SWE/SD.

Temporal frequency of MW-based snow estimates are, however, lower than that

of optical-based products, since MW sensors are solely available onboard polar

orbiting satellites that bear longer revisit times compared to the geostationary

satellites that carry optical sensors. To overcome the limitations of each sensor,

snow retrieval algorithms based on joint optical and MW data sets have been

proposed Liang et al. (2008) and Foster et al. (2011).

A number of studies have incorporated snow information into drought analysis

(Wiesnet 1981; Kongoli et al. 2012; Painter et al. 2013; Guan et al. 2013; Molotch

and Margulis 2008), mainly focusing on assimilating remotely sensed snow data

into hydrological models to improve runoff simulation and hydrological drought

prediction (Dong et al. 2007; Andreadis and Lettenmaier 2005; Margulis et al. 2006;

He et al. 2012). Snow derived drought indicators are still in their early stages of

development, mainly due to the time lag between snow occurrence and change in

the availability of streamflow and soil moisture. This time lag, varying from a few

weeks (e.g., low elevation snow and in lower latitudes) to a few months (e.g., high

elevation snow and in higher latitudes), warrants a unique opportunity for an early

drought warning system. Estimation of the lag time between snowfall, snowmelt,

and runoff is very complex, even in a specific location as it depends on seasonal

temperatures and the timing of snow accumulation (McCabe and Clark 2005). This

poses a significant challenge in deriving snow-based drought indices.
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11.8 Multi-Index Multivariate Drought Monitoring

Numerous studies have argued that a more robust and integrated measure of

drought should be adopted based on multiple variables/indicators (Hao and

AghaKouchak 2013; Keyantash and Dracup 2004; Kao and Govindaraju 2010; Hao

and Singh 2015), to capture a diverse range of vegetation response to drought across

different biomes. Having a wide range of satellite observations, such as precipita-

tion, soil moisture, relative humidity, temperature, total water storage anomalies,

and vegetation health indices, offers the opportunity to investigate droughts from

different viewpoints (Fig. 11.5).

A number of premier studies in this field promoted the Vegetation Drought

Response Index (VegDRI) (Tadesse et al. 2005; Brown et al. 2008) to quantify

vegetation drought stress using climate-based drought indices, satellite-based

observations of vegetation conditions, and other biophysical information. VegDRI

builds upon NDVI (Rouse et al. 1974), and incorporates climate-based data from

SPI and the Palmer Drought Severity Index (PDSI) (Palmer 1968) to improve

identification of the root causes of vegetation stress. NDVI-based information

regarding vegetation health is distorted from a drought point of view by other

factors, such as fire, land cover change, plant disease, pest infestation, biomass

harvesting, and flooding.

In an effort to improve drought monitoring, Anderson et al. (2012b) successfully

developed a composite soil moisture product using triple collocation analysis

Fig. 11.5 Opportunities for multi-index multivariate drought monitoring using satellite observa-

tions (modified after AghaKouchak et al. 2015a)
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(TCA) of different soil moisture products (i.e., microwave AMSR-E, thermal

remote sensing using ALEXI, and physically based model simulations). The prod-

uct shows promising results for monitoring of the 2010–2011 Horn of Africa

drought.

The Microwave Integrated Drought Index (MIDI) by Zhang and Jia (2013), as

an alternative composite model, incorporates in its formulation satellite-based

precipitation data from the Tropical Rainfall Measuring Mission (TRMM),

and soil moisture and land-surface temperature data from the Advanced Microwave

Scanning Radiometer for EOS (AMSR-E) as MIDI ¼ αPCI þ βSMCI
þð1� α� βÞTCI. In the recent equation, PCI signifies the precipitation condition

index, SMCI denotes the soil moisture condition index, and TCI represents the

temperature condition index. MIDI is developed for monitoring short-term

droughts, specifically meteorological drought in semi-arid regions.

Following a similar scheme, the Scaled Drought Condition Index (SDCI) (Rhee

et al. 2010) merges scaled TRMM-based precipitation data with LST and NDVI

information to monitor agricultural drought. This index is defined as SDCI ¼
αLST þ βTRMM þ γNDVI. It is worth mentioning that multiple indicators for

drought monitoring should be carefully selected so as not to be fully correlated.

In other words, multiple indices should render independent pieces of information,

and redundancy should be avoided.

The composite approaches for drought monitoring discussed thus far solely

depend on satellite obtained information in their analysis. Other approaches exist

that incorporate information from physically based models along with remotely

sensed data for drought analysis. An example of such an approach is the United

States Drought Monitor (USDM) (Svoboda et al. 2002), which combines indicators

from satellite observations (e.g., VegDRI, VHI, ESI, and GRACE TWS), in situ

measurements, and expert opinion to deliver weekly drought monitoring

information.

Finally, the Global Integrated Drought Monitoring and Prediction System

(GIDMaPS) (Hao et al. 2014) utilizes the Multivariate Standardized Drought

Index (MSDI) (Hao and AghaKouchak 2014) to deliver composite drought infor-

mation. MSDI derives a composite drought index from precipitation and soil

moisture, and provides a measure of agro-meteorological drought based on the

joint state of precipitation and soil moisture (AghaKouchak 2015; Hao and

AghaKouchak 2013). MSDI is a standardized indicator, hence comparable to

other standardized indices, such as SPI and SSI, that can utilize satellite-based

information as well as model simulations to compose a drought map. As an example,

Fig. 11.6 displays SPI (top), SSI (middle), and MSDI (bottom) for Summer 1999–

2001 based on NASA’s Modern-Era Retrospective Analysis for Research and

Applications (MERRA-Land) precipitation and soil moisture simulations.
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11.9 Ecosystem and Vegetation Health

There are numerous remotely sensed vegetation and ecosystem health models and

indicators that can be combined with other satellite observations (Tucker and

Choudhury 1987; Silleos et al. 2006; Nemani et al. 2009; Boken et al. 2005). The

Normalized Difference Vegetation Index (NDVI) (Rouse et al. 1974; Karnieli

Fig. 11.6 (top) Standardized precipitation index (SPI), (middle) standardized soil moisture index

(SSI), and (bottom) multivariate standardized drought index (MSDI) for summer 1999–2001. Input

data are from modern-era retrospective analysis for research and applications (MERRA-Land)

precipitation and soil moisture simulations
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et al. 2010; Tucker 1979; Funk and Budde 2009), for example, is a widely used

vegetation greenness and health indicator that sheds light on the ecosystem

response to water stress. Previous studies have shown that there exists a strong

association between climatic variables (e.g., precipitation, soil moisture) and NDVI

(Di et al. 1994; Adegoke and Carleton 2002; Richard and Poccard 1998; Hielkema

et al. 1986; Farrar et al. 1994; Wang et al. 2001).

Based on the notion of NDVI, a series of indicators have been developed for

different applications which employ visible satellite data, surface brightness tem-

perature, and short wave infrared observations. These indicators include the fol-

lowing: Vegetation Condition Index (VCI) (Kogan and Sullivan 1993),

Perpendicular Vegetation Index (PVI) (Wiegand et al. 1991), Transformed Vege-

tation Index (TVI) (Deering and Rouse 1975; Tucker 1979), Corrected

Transformed Vegetation Index (CTVI) (Perry and Lautenschlager 1984), Standard-

ized Vegetation Index (SVI) (Peters et al. 2002; Park et al. 2008), Soil-Adjusted

Vegetation Index (SAVI) (Huete 1988), Normalized Ratio Vegetation Index

(NRVI) (Baret and Guyot 1991), Distance Drought Index (DDI) (Qin et al. 2010),

Perpendicular Drought Index (PDI) (Ghulam et al. 2007a), Modified Perpendicular

Drought Index (MPDI) (Ghulam et al. 2007b), Normalized Difference Infrared

Index (NDIIb6) (Hunt Jr and Rock 1989), Enhanced Vegetation Index (EVI) (Huete

et al. 2002), Temperature Condition Index (TCI) (Kogan 1995), Normalized Dif-

ference Temperature Index (NDTI) (McVicar and Jupp 1999, 2002), Vegetation

Temperature Condition Index (VTCI) (Wan et al. 2004), Normalized Difference

Water Index (NDWI) (Gao 1996; Gu et al. 2008, 2007), Enhanced Thematic

Mapper (ETM) (Jackson et al. 2004; Chen et al. 2005; Wang and Qu 2009),

Normalized Difference Drought Index (NDDI) (Gu et al. 2007), Normalized

Multi-band Drought Index (NMDI) (Wang and Qu 2007), and Shortwave infrared

Drought Index (VSDI) (Zhang et al. 2013)—see AghaKouchak et al. (2015a),

Payero et al. (2004), and Silleos et al. (2006) for a comprehensive list of indicators.

Because of the strong relationship between climatic conditions and vegetation

response, NDVI and its derivatives have been widely used for large-scale drought

monitoring (Tucker and Choudhury 1987; Roderick et al. 1999; Prince

et al. 1998; Donohue et al. 2009; Nicholson et al. 1998; Ji and Peters 2003; Lu

et al. 2003; McVicar and Jupp 1998). An exciting research direction would be the

advancement of drought monitoring through effectively merging climate-based

indicators with vegetation health indices. Understanding the lags between climate

anomalies and the impact on vegetation can lead to significant improvement of

drought monitoring and prediction.

11.10 Discussion

Satellite sensors and their associated products have become increasingly abundant

since the 2000s, the number of which will only increase in the future. The most

relevant available, or upcoming, missions for drought monitoring include the
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Global Precipitation Mission (GPM), Geostationary Operational Environmental

Satellites R series (GOES-R), GRACE Follow-On, SMAP, and SWOT missions.

These satellites establish a comprehensive ground to study, monitor, and assess

drought from different perspectives using multivariate analyses. However, the

challenges of data continuity, unquantified uncertainty, sensor changes, community

acceptability, and data maintenance remain for the community to resolve.

The continuity of data is essential to the development of reliable drought

monitoring and assessment tools. The relatively short life span of satellites, mostly

less than a decade of operation sometimes with a few years of extension, poses a

challenge on the extent of reliability of the provided data sets for drought studies.

Ideally, follow-up missions should extend the length of available data sets, but the

planning, approval, and design of new satellites may take decades, not to mention

the extensive monetary investment required. Examples of such follow-up missions

include GPM, GOES-R, and GRACE Follow-On that are aimed to elude disconti-

nuity of the current satellite-based precipitation and total water storage records. The

Visible Infrared Imager Radiometer Suite (VIIRS) (Justice et al. 2013; Welsch

et al. 2001; Vargas et al. 2013) is also a successor to MODIS and AVHRR.

Acknowledging all these satellites, the availability of long-term multidecadal data

for robust drought studies from a climatological perspective remains uncertain.

Managing the data volume and making them accessible to the public is another

major challenge that requires continual investment in hardware infrastructure to

store and serve the data, as well as training professionals to process the data and

maintain the infrastructure.

Recent literature has proven that indicators based on multiple data sets enhance

drought detection (Hao et al. 2014) and monitoring ability (Mu et al. 2013). Indeed,

availability of multiple satellite data sets has empowered the development of

numerous multi-index multi-sensor frameworks for drought analysis. This has

refined our ability to describe the onset, development, and termination of drought

(Keyantash and Dracup 2004; Kao and Govindaraju 2010; Tadesse et al. 2005; Hao

and AghaKouchak 2013; Svoboda et al. 2002; Rajsekhar et al. 2014).

Snow is one of the least explored hydrological variables in drought monitoring

studies. Incorporating snow data into seasonal precipitation and runoff forecasts can

lead to major improvements in drought monitoring for regions that depend on snow

melt, such as the western United States. Such data may be acquired from the Snow

and Cold Land Processes (SCLP) mission (Rott et al. 2010). Snow information can

be used in multivariate composite drought monitoring frameworks to address

multiple aspects of drought simultaneously.

Limited and sparse ground observations of hydrological variables, such as total

water storage, water vapor, soil moisture, snow, and streamflow, restrict the devel-

opment of multi-index drought monitoring indicators. However, remotely sensed

hydrological variables enable development of composite drought assessment

frameworks, which have only recently been explored. Much research is still

required to develop methodologies that deliver robust multivariate drought

information.
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What limits the application of satellite-based data sets for climatological drought

assessment is the relatively short period of observation, with the exception of

Landsat, GOES, and AVHRR-MODIS-VIIRS missions. Some missions, such as

GRACE, provide only sightly more than a decade of data. Other satellite sensors are

only research instruments, and their replacement is highly uncertain. Persistent

long-term investments in satellites designed for Earth observation are essential to

guarantee data continuity.

The absence of secure support and investment in this area is a major challenge

for developing a consistent, long-term remotely sensed data record that is necessary

to accurately detect anomalies against a historical record. It is worth mentioning

that short-term records provide valuable drought assessment and monitoring infor-

mation (Rodell 2012; Famiglietti and Rodell 2013), but are not enough for studies

focused on a climatological perspective of drought. To diminish this limitation,

some studies strive to construct longer inter-sensor records by combining data from

multiple satellite missions, such as AVHRR and MODIS (Tucker et al. 2005). More

effective models and frameworks are yet to be developed to merge different data

sets and/or model simulations, and generate long-term data sets of hydrological and

climatic variables (AghaKouchak andNakhjiri 2012;Houborg et al. 2012;Andreadis

and Lettenmaier 2005; Zaitchik et al. 2008)

Moreover, underlying uncertainties of satellite-based data sets due to retrieval

and sensor errors are not yet fully quantified (Dorigo et al. 2010; Mehran and

AghaKouchak 2014; Pinker et al. 2009). Several studies have tried to address this

issue through the development of models and indicators for uncertainty quantifica-

tion of remotely sensed data (Gebremichael 2010; AghaKouchak and

Mehran 2013; Entekhabi et al. 2010b; Hossain and Huffman 2008); however,

most satellite-based data sets still lack uncertainty estimates. Furthermore, land-

surface and hydrological models that use such data as input and/or boundary

conditions are also subject to model structural and parameter uncertainties

(Li et al. 2012; Dong et al. 2007; Houborg et al. 2012). Model simulations,

therefore, bear an amalgam of these uncertainties which is almost impossible to

trace. The unavailability of uncertainty estimates for satellite-based data sets might

avert usage of such data in decision-making and operational applications.

Remote sensing products should be carefully scrutinized, and their strengths and

limitations should be communicated to decision-makers in a non-technical lan-

guage. Moreover, to enhance the usage and improve the acceptability of current and

future satellite data sets, further research should target the assessment and quanti-

fication of their underlying uncertainties.

Finally, it is critical to develop new products and tailor remotely sensed data into

output formats amenable to drought monitoring systems. It is specifically important

to communicate valuable information from emerging satellites to the drought

community. This aspect of the data-to-information process is overlooked and

requires more attention. It is critical to engage drought experts and decision-makers

in this process to develop applicable tools and information from remote sensing

data for operational drought monitoring and early warning systems.
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