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Learning Objectives

• Understand how the study objective and data types determine the type of data
analysis.

• Understand the basics of the three most common analysis techniques used in the
studies involving health data.

• Execute a case study to fulfil the study objective, and interpret the results.

16.1 Introduction to Data Analysis

16.1.1 Introduction

This chapter presents an overview of data analysis for health data. We give a brief
introduction to some of the most common methods for data analysis of health care
data, focusing on choosing appropriate methodology for different types of study
objectives, and on presentation and the interpretation of data analysis generated
from health data. We will provide an overview of three very powerful analysis
methods: linear regression, logistic regression and Cox proportional hazards
models, which provide the foundation for most data analysis conducted in clinical
studies.

Chapter Goals
By the time you complete this chapter you should be able to:

1. Understand how different study objectives will influence the type of data
analysis (Sect. 16.1)

2. Be able to carry out three different types of data analysis that are common for
health data (Sects. 16.2–16.4).

3. Present and interpret the results of these analyses types (Sects. 16.2–16.4)
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4. Understand the limitations and assumptions underlying the different types of
analyses (Sects. 16.2–16.4).

5. Replicate an analysis from a case study using some of the methods learned in the
chapter (Sect. 16.5)

Outline
This chapter is composed of five sections. First, in this section we will cover
identifying data types and study objectives. These topics will enable us to pick an
appropriate analysis method among linear (Sect. 16.2) or logistic (Sect. 16.3)
regression, and survival analysis (Sect. 16.4), which comprise the next three sec-
tions. Following that, we will use what we learned on a case study using real data
from Medical Information Mart for Intensive Care II (MIMIC-II), briefly discuss
model building and finally, summarize what we have learned (Sect. 16.5)

16.1.2 Identifying Data Types and Study Objectives

In this section we will examine how different study objectives and data types affect
the approaches one takes for data analysis. Understanding the data structure and
study objective is likely the most important aspect to choosing an appropriate
analysis technique.

Study Objectives
Identifying the study objective is an extremely important aspect of planning data
analysis for health data. A vague or poorly described objective often leads to a
poorly executed analysis. The study objective should clearly identify the study
population, the outcome of interest, the covariate(s) of interest, the relevant time
points of the study, and what you would like to do with these items. Investing time
to make the objective very specific and clear often will save time in the long run.

An example of a clearly stated study objective would be:

To estimate the reduction in 28 day mortality associated with vasopressor use during the
first three days from admission to the MICU in MIMIC II.

An example of a vague and difficult to execute study objective may be:

To predict mortality in ICU patients.

While both may be trying to accomplish the same goal, the first gives a much
clearer path for the data scientist to perform the necessary analysis, as it identifies
the study population (those admitted to the MICU in MIMIC II), outcome (28 day
mortality), covariate of interest (vasopressor use in the first three days of the MICU
admission), relevant time points (28 days for the outcome, within the first three
days for the covariate). The objective does not need to be overly complicated, and
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it’s often convenient to specify primary and secondary objectives, rather than an
overly complex single objective.

Data Types
After specifying a clear study objective, the next step is to determine the types of
data one is dealing with. The first distinction is between outcomes and covariates.
Outcomes are what the study aims to investigate, improve or affect. In the above
example of a clearly stated objective, our outcome is 28 day mortality. Outcomes
are also sometimes referred to as response or dependent variables. Covariates are
the variables you would like to study for their effect on the outcome, or believe may
have some nuisance effect on the outcome you would like to control for. Covariates
also go by several different names, including: features, predictors, independent
variables and explanatory variables. In our example objective, the primary covariate
of interest is vasopressor use, but other covariates may also be important in
affecting 28 day mortality, including age, gender, and so on.

Once you have identified the study outcomes and covariates, determining the
data types of the outcomes will often be critical in choosing an appropriate analysis
technique. Data types can generally be identified as either continuous or discrete.
Continuous variables are those which can plausibly take on any numeric (real
number) value, although this requirement is often not explicitly met. This contrasts
with discrete data, which usually takes on only a few values. For instance, gender
can take on two values: male or female. This is a binary variable as it takes on two
values. More discussion on data types can be found in Chap. 11.

There is a special type of data which can be considered simultaneously as
continuous and discrete types, as it has two components. This frequently occurs in
time to event data for outcomes like mortality, where both the occurrence of death
and the length of survival are of interest. In this case, the discrete component is if
the event (e.g., death) occurred during the observation period, and the continuous
component is the time at which death occurred. The time at which the death
occurred is not always available: in this case the time of the last observation is used,
and the data is partially censored. We discuss censoring in more detail later in
Sect. 16.4.

Figure 16.1 outlines the typical process by which you can identify outcomes
from covariates, and determine which type of data type your outcome is. For each
of the types of outcomes we highlighted—continuous, binary and survival, there are
a set of analysis methods that are most common for use in health data—linear
regression, logistic regression and Cox proportional hazards models, respectively.

Other Important Considerations
The discussion thus far has given a basic outline of how to choose an analysis
method for a given study objective. Some caution is merited as this discussion has
been rather brief and while it covers some of the most frequently used methods for
analyzing health data, it is certainly not exhaustive. There are many situations
where this framework and subsequent discussion will break down and other
methods will be necessary. In particular, we highlight the following situations:
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1. When the data is not patient level data, such as aggregated data (totals) instead
of individual level data.

2. When patients contribute more than one observation (i.e., outcome) to the
dataset.

In these cases, other techniques should be used.

Fig. 16.1 Flow diagram of simplified process for choosing an analysis method based on the study
objective and outcome data types
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16.1.3 Case Study Data

We will be using a case study [1] to explore data analysis approaches in health data.
The case study data originates from a study examining the effect of indwelling
arterial catheters (IAC) on 28 day mortality in the intensive care unit (ICU) in
patients who were mechanically ventilated during the first day of ICU admission.
The data comes from MIMIC II v2.6. At this point you are ready to do data analysis
(the data extraction and cleaning has already been completed) and we will be using
a comma separated (.csv) file generated after this process, which you can load
directly off of PhysioNet [2, 3]:

The header of this file with the variable names can be accessed using the names
function in R.

There are 46 variables listed. The primary focus of the study was on the effect
that IAC placement (aline_flg) has on 28 day mortality (day_28_flg). After we
have covered the basics, we will identify a research objective and an appropriate
analysis technique, and execute an abbreviated analysis to illustrate how to use
these techniques to address real scientific questions. Before we do this, we need to
cover the basic techniques, and we will introduce three powerful data analysis
methods frequently used in the analysis of health data. We will use examples from
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the case study dataset to introduce these concepts, and will return to the the question
of the effect of IAC has on mortality towards the end of thischapter.

16.2 Linear Regression

16.2.1 Section Goals

In this section, the reader will learn the fundamentals of linear regression, and how
to present and interpret such an analysis.

16.2.2 Introduction

Linear regression provides the foundation for many types of analyses we perform
on health data. In the simplest scenario, we try to relate one continuous outcome, y,
to a single continuous covariate, x, by trying to find values for b0 and b1 so that the
following equation:

y ¼ b0 þ b1 � x

fits the data ‘optimally’.1 We call these optimal values: b̂0 and b̂1 to distinguish
them from the true values of b0 and b1 which are often unknowable. In Fig. 16.2,
we see a scatter plot of TCO2 (y: outcome) levels versus PCO2 (x: covariate) levels.
We can clearly see that as PCO2 levels increase, the TCO2 levels also increase.
This would suggest that we may be able to fit a linear regression model which
predicts TCO2 from PCO2.

It is always a good idea to visualize the data when you can, which allows one to
assess if the subsequent analysis corresponds to what you could see with your eyes.
In this case, a scatter plot can be produced using the plot function:

which produces the scattered points in Fig. 16.2.
Finding the best fit line for the scatter plot in Fig. 16.2 in R is relatively

straightforward:

1Exactly what optimally means is beyond the scope of this chapter, but for those who are inter-
ested, we are trying to find values of b0 and b1 which minimize the squared distance between the
fitted line and the observed data point, summed over all data points. This quantity is known as
sum of squares error, or when divided by the number of observations is known as the mean
squared error.
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Dissecting this command from left to right. The co2.lm <- part assigns the
right part of the command to a new variable or object called co2.lm which
contains information relevant to our linear regression model. The right side of this
command runs the lm function in R. lm is a powerful function in R that fits linear
models. As with any command in R, you can find additional help information by
running ?lm from the R command prompt. The basic lm command has two parts.
The first is the formula which has the general syntax outcome * covariates.
Here, our outcome variable is called tco2_first and we are just fitting one
covariate, pco2_first, so our formula is tco2_first * pco2_first. The
second argument is separated by a comma and is specifying the data frame to use.
In our case, the data frame is called dat, so we pass data = dat, noting that both
tco2_first and pco2_first are columns in the dataframe dat. The overall
procedure of specifying a model formula (tco2_first * pco2_first), a data
frame (data = dat) and passing it an appropriate R function (lm) will be used
throughout this chapter, and is the foundation for many types of statistical modeling
in R.

We would like to see some information about the model we just fit, and often a
good way of doing this is to run the summary command on the object we created:
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Fig. 16.2 Scatterplot of PCO2 (x-axis) and TCO2 (y-axis) along with linear regression estimates
from the quadratic model (co2.quad.lm) and linear only model (co2.lm)
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This outputs information about the lm object we created in the previous
step. The first part recalls the model we fit, which is useful when we have fit many
models, and are trying to compare them. The second part lists some summary
information about what are called residuals—an important topic for validating
modeling assumptions covered in [8]. Next lists the coefficient estimates—these are
the b̂0, (Intercept), and b̂1, pco2_first, parameters in the best fit line we are
trying to estimate. This output is telling us that the best fit equation for the data is:

tco2 first ¼ 16:21þ 0:189� pco2 first:

These two quantities have important interpretations. The estimated intercept (b̂0)
tells us what TCO2 level we would predict for an individual with a PCO2 level of 0.
This is the mathematical interpretation, and often this quantity has limited practical
use. The estimated slope (b̂1) on the other hand can be interpreted as how quickly
the predicted value of TCO2 goes up for every unit increase in PCO2. In this case,
we estimate that TCO2 goes up about 0.189 mmol/L for every 1 mm Hg increase in
PCO2. Each coefficient estimate has a corresponding Std. Error (standard
error). This is a measure of how certain we are about the estimate. If the standard
error is large relative to the coefficient then we are less certain about our estimate.
Many things can affect the standard error, including the study sample size. The next
column in this table is the t value, which is simply the coefficient estimate
divided by the standard error. This is followed by Pr(>|t|) which is also known
as the p-value. The last two quantities are relevant to an area of statistics called
hypothesis testing which we will cover briefly now.
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Hypothesis Testing
Hypothesis testing in statistics is fundamentally about evaluating two competing
hypotheses. One hypothesis, called the null hypothesis is setup as a straw man (a
sham argument set up to be defeated), and is the hypothesis you would like to
provide evidence against. In the analysis methods we will discuss in this chapter,
this is almost always bk ¼ 0, and it is often written as H0 : bk ¼ 0. The alternative
(second) hypothesis is commonly assumed to be bk 6¼ 0, and will often be written
as HA : bk 6¼ 0. A statistical significance level, a, should be established before any
analysis is performed. This value is known as the Type I error, and is the probability
of rejecting the null hypothesis when the null hypothesis is true, i.e. of incorrectly
concluding that the null hypothesis is false. In our case, it is the probability that we
falsely conclude that the coefficient is non-zero, when the coefficient is actually
zero. It is common to set the Type I error at 0.05.

After specifying the null and alternative hypotheses, along with the significance
level, hypotheses can be tested by computing a p-value. The actual computation of
p-values is beyond the scope of this chapter, but we will cover the interpretation and
provide some intuition. P-values are the probability of observing data as extreme or
more extreme than what was seen, assuming the null hypothesis is true. The null
hypothesis is bk ¼ 0, so when would this be unlikely? It is probably unlikely when
we estimate bk to be rather large. However, how large is large enough? This would
likely depend on how certain we are about the estimate of bk. If we were very
certain, b̂k likely would not have to be very large, but if we are less certain, then we
might not think it to be unlikely for even very large values of b̂k. A p-value
balances both of these aspects, and computes a single number. We reject the null
hypothesis when the p-value is smaller than the significance level, a.

Returning to our fit model, we see that the p-value for both coefficients are tiny
(<2e-16), and we would reject both null hypotheses, concluding that neither
coefficient is likely zero. What do these two hypotheses mean at a practical level?
The intercept being zero, b0 ¼ 0 would imply the best fit line goes through the
origin [ the (x, y) point (0, 0)], and we would reject this hypothesis. The slope being
zero would mean that the best fit line would be a flat horizontal line, and did not
increase as PCO2 increases. Clearly there is a relationship between TCO2 and
PCO2, so we would also reject this hypothesis. In summary, we would conclude
that we need both an intercept and a slope in the model. A next obvious question
would be, could the relationship be more complicated than a straight line? We will
examine this next.

16.2.3 Model Selection

Model selection are techniques related to selecting the best model from a list
(perhaps rather large list) of candidate models. We will cover some basics here, as
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more complicated techniques will be covered in a later chapter. In the simplest case,
we have two models, and we want to know which one we should use.

We will begin by examining if the relationship between TCO2 and PCO2 is
more complicated than the model we fit in the previous section. If you recall, we fit
a model where we considered a linear pco2_first term: tco2_-
first = b0 þ b1� pco2_first. One may wonder if including a quadratic term
would fit the data better, i.e. whether:

tco2 first ¼ b0 þ b1 � pco2 firstþ b2 � pco2 first2;

is a better model. One way to evaluate this is by testing the null hypothesis: b2 ¼ 0.
We do this by fitting the above model, and looking at the output. Adding a
quadratic term (or any other function) is quite easy using the lm function. It is best
practice to enclose any of these functions in the I() function to make sure they get
evaluated as you intended. The I() forces the formula to evaluate what is passed to
it as is, as the ^ operator has a different use in formulas in R (see ?formula for
further details). Fitting this model, and running the summary function for the
model:

You will note that we have abbreviated the output from the summary function
by appending $coef to the summary function: this tells R we would like infor-
mation about the coefficients only. Looking first at the estimates, we see the best fit
line is estimated as:

tco2 first ¼ 160:09þ 0:19� pco2 firstþ 0:00004� pco2 first2:

We can add both best fit lines to Fig. 16.2 using the abline function:

and one can see that the red (linear term only) and blue (linear and quadratic
terms) fits are nearly identical. This corresponds with the relatively small coefficient
estimate for the I(pco2_firstˆ2) term. The p-value for this coefficient is about
0.86, and at the 0.05 significance level we would likely conclude that a quadratic
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term is not necessary in our model to fit the data, as the linear term only model fits
the data nearly as well.

Statistical Interactions and Testing Nested Models
We have concluded that a linear (straight line) model fit the data quite well, but thus
far we have restricted our exploration to just one variable at a time. When we
include other variables, we may wonder if the same straight line is true for all
patients. For example, could the relationship between PCO2 and TCO2 be different
among men and women? We could subset the data into a data frame for men and a
data frame for women, and then fit separate regressions for each gender. Another
more efficient way to accomplish this is by fitting both genders in a single model,
and including gender as a covariate. For example, we may fit:

tco2 first ¼ b0 þ b1 � pco2 firstþ b2 � gender num:

The variable gender_num takes on values 0 for women and 1 for men, and for
men the model is:

tco2 first ¼ ðb0 þ b2Þ
|fflfflfflfflffl{zfflfflfflfflffl}

intercept

þ b1 � pco2 first;

and in women:

tco2 first ¼ b0 þ b1 � pco2 first:

As one can see these models have the same slope, but different intercepts (the
distance between the slopes is b2). In other words, the lines fit for men and women
will be parallel and be separated by a distance of b2 for all values of pco2_first.
This isn’t exactly what we would like, as the slopes may also be different. To allow
for this, we need to discuss the idea of an interaction between two variables. An
interaction is essentially the product of two covariates. In this case, which we will
call the interaction model, we would be fitting:

tco2 first ¼ b0 þ b1 � pco2 firstþ b2 � gender numþ b3
� gender num� pco2 first
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

interaction term

:

Again, separating the cases for men:

tco2 first ¼ ðb0 þ b2Þ
|fflfflfflfflffl{zfflfflfflfflffl}

intercept

þ ðb1 þ b3Þ
|fflfflfflfflffl{zfflfflfflfflffl}

slope

�pco2 first;

and women:
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tco2 first ¼ ðb0Þ
|{z}

intercept

þ ðb1Þ
|{z}

slope

�pco2 first:

Now men and women have different intercepts and slopes.
Fitting these models in R is relatively straightforward. Although not absolutely

required in this particular circumstance, it is wise to make sure that R handles data
types in the correct way by ensuring our variables are of the right class. In this
particular case, men are coded as 1 and women as 0 (a discrete binary covariate)
but R thinks this is numeric (continuous) data:

Leaving this unaltered, will not affect the analysis in this instance, but it can be
problematic when dealing with other types of data such as categorical data with
several categories (e.g., ethnicity). Also, by setting the data to the right type, the
output R generates can also be more informative. We can set the gender_num
variable to the class factor by using the as.factor function.

Here we have just overwritten the old variable in the dat data frame with a new
copy which is of class

Now that we have the gender variable correctly encoded, we can fit the models
we discussed above. First the model with gender as a covariate, but no interaction.
We can do this by simply adding the variable gender_num to the previous
formula for our co2.lm model fit.
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This output is very similar to what we had before, but now there’s a gen-
der_num term as well. The 1 is present in the first column after gender_num,
and it tells us who this coefficient is relevant to (subjects with 1 for the gen-
der_num – men). This is always relative to the baseline group, and in this case this
is women.

The estimate is negative, meaning that the line fit for males will be below the line
for females. Plotting this fit curve in Fig. 16.3:

we see that the lines are parallel, but almost indistinguishable. In fact, this plot
has been cropped in order to see any difference at all. From the estimate from the
summary output above, the difference between the two lines is −0.182 mmol/L,
which is quite small, so perhaps this isn’t too surprising. We can also see in the
above summary output that the p-value is about 0.42, and we would likely not
reject the null hypothesis that the true value of the gender_num coefficient is
zero.

And now moving on to the model with an interaction between pco2_first and
gender_num. To add an interaction between two variables use the * operator
within a model formula. By default, R will add all of the main effects (variables
contained in the interaction) to the model as well, so simply adding pco2_-
first*gender_num will add effects for pco2_first and gender_num in
addition to the interaction between them to the model fit.

The estimated coefficients are b̂0; b̂1; b̂2 and b̂3, respectively, and we can
determine the best fit lines for men:
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tco2 first ¼ 15:85þ 0:81ð Þþ 0:20� 0:023ð Þ � pco2 first

¼ 16:67þ 0:18� pco2 first;

and for women:

tco2 first ¼ 15:85þ 0:20� pco2 first:

Based on this, the men’s intercept should be higher, but their slope should be not
as steep, relative to the women. Let’s check this and add the new model fits as
dotted lines and add a legend to Fig. 16.3.

We can see that the fits generated from this plot are a little different than the one
generated for a model without the interaction. The biggest difference is that the
dotted lines are no longer parallel. This has some serious implications, particularly
when it comes to interpreting our result. First note that the estimated coefficient for
the gender_num variable is now positive. This means that at pco2_first = 0,
men (red) have higher tco2_first levels than women (black). If you recall in the
previous model fit, women had higher levels of tco2_first at all levels of
pco2_first. At some point around pco2_first = 35 this changes and women
(black) have higher tco2_first levels than men (red). This means that the effect
of gender_num may vary as you change the level of pco2_first, and is why
interactions are often referred to as effect modification in the epidemiological
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Fig. 16.3 Regression fits of PCO2 on TCO2 with gender (black female; red male; solid no
interaction; dotted with interaction). Note Both axes are cropped for illustration purposes

218 16 Data Analysis



literature. The effect need not change signs (i.e., the lines do not need to cross) over
the observed range of values for an interaction to be present.

The question remains, is the variable gender_num important? We looked at
this briefly when we examined the t value column in the no interaction model
which included gender_num. What if we wanted to test (simultaneously) the null
hypothesis: b2 and b3 ¼ 0. There is a useful test known as the F-test which can help
us in this exact scenario where we want to look at if we should use a larger model
(more covariates) or use a smaller model (fewer covariates). The F-test applies only
to nested models—the larger model must contain each covariate that is used in the
smaller model, and the smaller model cannot contain covariates which are not in the
larger model. The interaction model and the model with gender are nested models
since all the covariates in the model with gender are also in the larger interaction
model. An example of a non-nested model would be the quadratic model and the
interaction model: the smaller (quadratic) model has a term (pco2 first2) which
is not in the larger (interaction) model. An F-test would not be appropriate for this
latter case.

To perform an F-test, first fit the two models you wish to consider, and then run
the anova command passing the two model objects.

As you can see, the anova command first lists the models it is considering.
Much of the rest of the information is beyond the scope of this chapter, but we will
highlight the reported F-test p-value (Pr(>F)), which in this case is 0.2515. In
nested models, the null hypothesis is that all coefficients in the larger model and not
in the smaller model are zero. In the case we are testing, our null hypothesis is b2
and b3 ¼ 0. Since the p-value exceeds the typically used significance level
(a ¼ 0:05), we would not reject the null hypothesis, and likely say the smaller
model explains the data just as well as the larger model. If these were the only
models we were considering, we would use the smaller model as our final model
and report the final model in our results. We will now discuss what exactly you
should report and how you can interpret the results.
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16.2.4 Reporting and Interpreting Linear Regression

We will briefly discuss how to communicate a linear regression analysis. In general,
before you present the results, some discussion of how you got the results should be
done. It is a good idea to report: whether you transformed the outcome or any
covariates in anyway (e.g., by taking the logarithm), what covariates you consid-
ered and how you chose the covariates which were in the model you reported. In
our above example, we did not transform the outcome (TCO2), we considered
PCO2 both as a linear and quadratic term, and we considered gender on its own and
as an interaction term with PCO2. We first evaluated whether a quadratic term
should be included in the model by using a t-test, after which we considered a
model with gender and a gender-PCO2 interaction, and performed model selection
with an F-test. Our final model involved only a linear PCO2 term and an intercept.

When reporting your results, it’s a good idea to report three aspects for each
covariate. Firstly, you should always report the coefficient estimate. The coefficient
estimate allows the reader to assess the magnitude of the effect. There are many
circumstances where a result may be statistically significant, but practically
meaningless. Secondly, alongside your estimate you should always report some
measure of uncertainty or precision. For linear regression, the standard error (Std.
Error column in the R output) can be reported. We will cover another method
called a confidence interval later on in this section. Lastly, reporting a p-value for
each of the coefficients is also a good idea. An example of appropriate presentation
of our final model would be something similar to: TCO2 increased 0.18 (SE: 0.008,
p-value <0.001) units per unit increase of PCO2. You will note we reported p-value
<0.001, when in fact it is smaller than this. It is common to report very small p-
values as <0.001 or <0.0001 instead of using a large number of decimal places.
While sometimes it’s simply reported whether p < 0.05 or not (i.e., if the result is
statistically significant or not), this practice should be avoided.

Often it’s a good idea to also discuss how well the overall model fit. There are
several ways to accomplish this, but reporting a unitless quantity known as R2

(pronounced r-squared) is often done. Looking back to the output R provided for
our chosen final model, we can find the value of R2 for this model under
Multiple R-squared: 0.2647. This quantity is a proportion (a number between
0 and 1), and describes how much of the total variability in the data is explained by
the model. An R2 of 1 indicates a perfect fit, where 0 explains no variability in the
data. What exactly constitutes a ‘good’ R2 depends on subject matter and how it
will be used. Another way to describe the fit in your model is through the residual
standard error. This is also in the lm output when using the summary function.
This roughly estimates square-root of the average squared distance between the
model fit and the data. While it is in the same units as the outcome, it is in general
more difficult to interpret than R2. It should be noted that for evaluating prediction
error, these values are likely too optimistic when applied to new data, and a better
estimate of the error should be evaluated by other methods (e.g., cross-validation),
which will be covered in another chapter and elsewhere [4, 5].
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Interpreting the Results
Interpreting the results is an important component to any data analysis. We have
already covered interpreting the intercept, which is the prediction for the outcome
when all covariates are set at zero. This quantity is not of direct interest in most
studies. If one does want to interpret it, subtracting the mean from each of the
model’s covariates will make it more interpretable—the expected value of the
outcome when all covariates are set to the study’s averages.

The coefficient estimates for the covariates are in general the quantities most of
scientific interest. When the covariate is binary (e.g., gender_num), the coeffi-
cient represents the difference between one level of the covariate (1) relative to the
other level (0), while holding any other covariates in the model constant. Although
we won’t cover it until the next section, extending discrete covariates to the case
when they have more than two levels (e.g., ethnicity or service_unit) is quite
similar, with the noted exception that it’s important to reference the baseline group
(i.e., what is the effect relative to). We will return to this topic later on in the
chapter. Lastly, when the covariate is continuous the interpretation is the expected
change in the outcome as a result of increasing the covariate in question by one unit,
while holding all other covariates fixed. This interpretation is actually universal for
any non-intercept coefficient, including for binary and other discrete data, but relies
more heavily on understanding how R is coding these covariates with dummy
variables.

We examined statistical interactions briefly, and this topic can be very difficult to
interpret. It is often advisable, when possible, to represent the interaction graphi-
cally, as we did in Fig. 16.3.

Confidence and Prediction Intervals
As mentioned above, one method to quantify the uncertainty around coefficient

estimates is by reporting the standard error. Another commonly used method is to
report a confidence interval, most commonly a 95 % confidence interval. A 95 %
confidence interval for b is an interval for which if the data were collected
repeatedly, about 95 % of the intervals would contain the true value of the
parameter, b, assuming the modeling assumptions are correct.

To get 95 % confidence intervals of coefficients, R has a confint function,
which you pass an lm object to. It will then output 2.5 and 97.5 % confidence
interval limits for each coefficient.

The 95 % confidence interval for pco2_first is about 0.17–0.20, which may
be slightly more informative than reporting the standard error. Often people will
look at if the confidence interval includes zero (no effect). Since it does not, and in
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fact since the interval is quite narrow and not very close to zero, this provides some
additional evidence of its importance. There is a well known link between
hypothesis testing and confidence intervals which we will not get into detail here.

When plotting the data with the model fit, similar to Fig. 16.2, it is a good idea to
include some sort of assessment of uncertainty as well. To do this in R, we will first
create a data frame with PCO2 levels which we would like to predict. In this case,
we would like to predict the outcome (TCO2) over the range of observed covariate
(PCO2) values. We do this by creating a data frame, where the variable names in
the data frame must match the covariates used in the model. In our case, we have
only one covariate (pco2_first), and we predict the outcome over the range of
covariate values we observed determined by the min and max functions.

Then, by using the predict function, we can predict TCO2 levels at these
PCO2 values. The predict function has three arguments: the model we have
constructed (in this case, using lm), newdata, and interval. The newdata
argument allows you to pass any data frame with the same covariates as the model
fit, which is why we created grid.pred above. Lastly, the interval argument
is optional, and allows for the inclusion of any confidence or prediction intervals.
We want to illustrate a prediction interval which incorporates both uncertainty
about the model coefficients, in addition to the uncertainty generated by the data
generating process, so we will pass interval = ”prediction”.

We have printed out the first two rows of our predictions, preds, which are the
model’s predictions for PCO2 at 8 and 9. We can see that our predictions (fit) are
about 0.18 apart, which make sense given our estimate of the slope (0.18). We also
see that our 95 % prediction intervals are very wide, spanning about 9 (lwr) to 26
(upr). This indicates that, despite coming up with a model which is very statisti-
cally significant, we still have a lot of uncertainty about the predictions generated
from such a model. It is a good idea to capture this quality when plotting how well
your model fits by adding the interval lines as dotted lines. Let’s plot our final
model fit, co2.lm, along with the scatterplot and prediction interval in Fig. 16.4.
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16.2.5 Caveats and Conclusions

Linear regression is an extremely powerful tool for doing data analysis on con-
tinuous outcomes. Despite this, there are several aspects to be aware of when
performing this type of analysis.

1. Hypothesis testing and the interval generation are reliant on modelling
assumptions. Doing diagnostic plots is a critical component when conducting
data analysis. There is subsequent discussion on this elsewhere in the book, and
we will refer you to [6–8] for more information about this important topic.

2. Outliers can be problematic when fitting models. When there are outliers in the
covariates, it’s often easiest to turn a numeric variable into a categorical one (2 or
more groups cut along values of the covariate). Removing outliers should be
avoided when possible, as they often tell you a lot of information about the data
generating process. In other cases, they may identify problems for the extraction
process. For instance, a subset of the data may use different units for the same
covariate (e.g., inches and centimeters for height), and thus the data needs to be
converted to common units. Methods robust to outliers are available in R, a brief
introduction of how to get started with some of the functions in R is available [7].
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Fig. 16.4 Scatterplot of PCO2 (x-axis) and TCO2 (y-axis) along with linear regression estimates
from the linear only model (co2.lm). The dotted line represents 95 % prediction intervals for the
model
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3. Be concerned about missing data. R reports information about missing data in
the summary output. For our model fit co2.lm, we had 186 observations with
missing pco2_first observations. R will leave these observations out of the
analysis, and fit on the remaining non-missing observations. Always check the
output to ensure you have as many observations as you think that you are
supposed to. When many observations have missing data and you try to build a
model with a large number of coefficients, you may be fitting the model on only
a handful of observations.

4. Assess potential multi-colinearity. Co-linearity can occur when two or more
covariates are highly correlated. For instance, if blood pressure on the left and
right arms were simultaneously measured, and both used as covariates in the
model. In this case, consider taking the sum, average or difference (whichever is
most useful in the particular case) to craft a single covariate. Co-linearity can
also occur when a categorical variable has been improperly generated. For
instance, defining groups along the PCO2 covariate of 0–25, 5–26, 26–50, >50
may cause linear regression to encounter some difficulties as the first and second
groups are nearly identical (usually these types of situations are programming
errors). Identifying covariates which may be colinear is a key part of the
exploratory analysis stage, where they can often (but not always) be seen by
plotting the data.

5. Check to see if outcomes are dependent. This most commonly occurs when one
patient contributes multiple observations (outcomes). There are alternative
methods for dealing with this situation [9], but it is beyond the scope of this
chapter.

These concerns should not discourage you from using linear regression. It is
extremely powerful and reasonably robust to some of the problems discussed
above, depending on the situation. Frequently a continuous outcome is converted to
a binary outcome, and often there is no compelling reason this is done. By dis-
cretizing the outcome you may be losing information about which patients may
benefit or be harmed most by a therapy, since a binary outcome may treat patients
who had very different outcomes on the continuous scale as the same. The overall
framework we took in linear regression will closely mirror the way in which we
approach the other analysis techniques we discuss later in this chapter.

16.3 Logistic Regression

16.3.1 Section Goals

In this section, the reader will learn the fundamentals of logistic regression, and
how to present and interpret such an analysis.
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16.3.2 Introduction

In Sect. 16.2 we covered a very useful methodology for modeling quantitative or
continuous outcomes. We of course know though that health outcomes come in all
different kinds of data types. In fact, the health outcomes we often care about most
—cured/not cured, alive/dead, are discrete binary outcomes. It would be ideal if we
could extend the same general framework for continuous outcomes to these binary
outcomes. Logistic regression allows us to incorporate much of what we learned in
the previous section and apply the same principles to binary outcomes.

When dealing with binary data, we would like to be able to model the probability
of a type of outcome given one or more covariates. One might ask, why not just
simply use linear regression? There are several reasons why this is generally a bad
idea. Probabilities need to be somewhere between zero and one, and there is
nothing in linear regression to constrain the estimated probabilities to this interval.
This would mean that you could have an estimated probability 2, or even a negative
probability! This is one unattractive property of such a method (there are others),
and although it is sometimes used, the availability of good software such as R
allows us to perform better analyses easily and efficiently. Before introducing such
software, we should introduce the analysis of small contingency tables.

16.3.3 2 � 2 Tables

Contingency tables are the best way to start to think about binary data.
A contingency table cross-tabulates the outcome across two or more levels of a
covariate. Let’s begin by creating a new variable (age.cat) which dichotomizes
age into two age categories: � 55 and [ 55. Note, because we are making age a
discrete variable, we also change the data type to a factor. This is similar to what we
did for the gender_num variable when discussing linear regression in the pre-
vious section. We can get a breakdown of the new variable using the table
function.

We would like to see how 28 day mortality is distributed among the age cate-
gories. We can do so by constructing a contingency table, or in this case what is
commonly referred to as a 2 � 2 table.
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From the above table, you can see that 40 patients in the young group � 55ð Þ
died within 28 days, while 243 in the older group died. These correspond to
Pðdiejage� 55Þ ¼ 0:043) or 4.3 % and P(die|age > 55) = 0.284 or 28.4 %, where
the “|” can be interpreted as “given” or “for those who have.” This difference is
quite marked, and we know that age is an important factor in mortality, so this is not
surprising.

The odds of an event happening is a positive number and can be calculated from
the probability of an event, p, by the following formula

Odds ¼ p
1� p

:

An event with an odds of zero never happens, and an event with a very large
odds (>100) is very likely to happen. Here, the odds of dying within 28 days in the
young group is 0.043/(1 − 0.043) = 0.045, and in the older group is 0.284/(1
−0.284) = 0.40. It is convenient to represent these two figures as a ratio, and the
choice of what goes in the numerator and the denominator is somewhat arbitrary. In
this case, we will choose to put the older group’s odds on the numerator and the
younger in the denominator, and it’s important to make it clear which group is in
the numerator and denominator in general. In this case the Odds ratio is
0.40/0.045 = 8.79, which indicates a very strong association between age and
death, and means that the odds of dying in the older group is nearly 9 fold higher
than when compared to the younger group. There is a convenient shortcut for doing
odds ratio calculation by making an X on a 2 � 2 table and multiplying top left by
bottom right, then dividing it by the product of bottom left and top right. In this case
883�243
610�40 ¼ 8:79.

Now let us look at a slightly different case—when the covariate takes on more
than two values. Such a variable is the service_unit. Let’s see how the deaths
are distributed among the different units:
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we can get frequencies of these service units by applying the prop.table
function to our cross-tabulated table.

It appears as though the FICU may have a lower rate of death than either the
MICU or SICU. To compute an odds ratios, first compute the odds:

and then we need to pick which of FICU, MICU or SICU will serve as the
reference or baseline group. This is the group which the other two groups will be
compared to. Again the choice is arbitrary, but should be dictated by the study
objective. If this were a clinical trial with two drug arms and a placebo arm, it
would be foolish to use one of the treatments as the reference group, particularly if
you wanted to compare the efficacy of the treatments. In this particular case, there is
no clear reference group, but since the FICU is so much smaller than the other two
units, we will use it as the reference group. Computing the odds ratio for MICU and
SICU we get 4.13 and 3.63, respectively. These are also very strong associations,
meaning that the odds of dying in the SICU and MICU are around 4 times higher
than in the FICU, but relatively similar.

Contingency tables and 2 � 2 tables in particular are the building blocks of
working with binary data, and it’s often a good way to begin looking at the data.

16.3.4 Introducing Logistic Regression

While contingency tables are a fundamental way of looking at binary data, they are
somewhat limited. What happens when the covariate of interest is continuous? We
could of course create categories from the covariate by establishing cut points, but
we may still miss some important aspect of the relationship between the covariate
and the outcome by not choosing the right cut points. Also, what happens when we
know that a nuisance covariate is related to both the outcome and the covariate of
interest. This type of nuisance variable is called a confounder and occurs frequently
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in observational data, and although there are ways of accounting for confounding in
contingency tables, they become more difficult to use when there are more than one
present.

Logistic regression is a way of addressing both of these issues, among many
others. If you recall, using linear regression is problematic because it is prone to
estimating probabilities outside of the [0, 1] range. Logistic regression has no such
problem per se, because it uses a link function known as the logit function which
maps probabilities in the interval ½0; 1� to a real number ð�1;1Þ. This is important
for many practical and technical reasons. The logit of px (i.e. the probability of an
event for certain covariate values xÞ is related to the covariates in the following way

logitðpxÞ ¼ logðOddsxÞ ¼ logð px
1� px

Þ ¼ b0 þ b1 � x:

It is worth pointing out here that log here, and in most places in statistics is
referring to the natural logarithm, sometimes denoted ln.

The first covariate we were considering, age.cat was also a binary variable,
where it takes on values 1 when the age [ 55 and 0 when age � 55. So plugging
these values in, first for the young group ðx ¼ 0Þ:

logitðpx¼0Þ ¼ logðOddsx¼0Þ ¼ logð px¼0

1� px¼0
Þ ¼ b0 þ b1 � 0 ¼ b0;

and then for the older group ðx ¼ 1Þ:

logitðpx¼1Þ ¼ logðOddsx¼1Þ ¼ logð px¼1

1� px¼1
Þ ¼ b0 þ b1 � 1 ¼ b0 þ b1:

If we subtract the two cases
logitðpx¼1Þ � logitðpx¼0Þ ¼ logðOddsx¼1Þ � logðOddsx¼0Þ, and we notice that this
quantity is equal to b1. If you recall the properties of logarithms, that the difference
of two logs is the log of their ratio, so logðOddsx¼1Þ � logðOddsx¼0Þ ¼
logðOddsx¼1=Oddsx¼0Þ, which may be looking familiar. This is the log ratio of the
odds or the log odds ratio in the x ¼ 1 group relative to the x ¼ 0 group. Hence, we
can estimate odds ratios using logistic regression by exponentiating the coefficients
of the model (the intercept notwithstanding, which we will get to in a moment).

Let’s fit this model, and see how this works using a real example. We fit logistic
regression very similarly to how we fit linear regression models, with a few
exceptions. First, we will use a new function called glm, which is a very powerful
function in R which allow one to fit a class of models known as generalized linear
models or GLMs [10]. The glm function works in much the same way the lm
function does. We need to specify a formula of the form: outcome * co-
variates, specify what dataset to use (in our case the dat data frame), and then
specify the family. For logistic regression family = ‘binomial’ will be our
choice. You can run the summary function, just like you did for lm and it pro-
duces output very similar to what lm did.

228 16 Data Analysis



As you can see, we get a coefficients table that is similar to the lm table we used
earlier. Instead of a t value, we get a z value, but this can be interpreted
similarly. The rightmost column is a p-value, for testing the null hypothesis b ¼ 0.
If you recall, the non-intercept coefficients are log-odds ratios, so testing if they are
zero is equivalent to testing if the odds ratios are one. If an odds ratio is one the
odds are equal in the numerator group and denominator group, indicating the
probabilities of the outcome are equal in each group. So, assessing if the coefficients
are zero will be an important aspect of doing this type of analysis.

Looking more closely at the coefficients. The intercept is −3.09 and the
age.cat coefficient is 2.17. The coefficient for age.cat is the log odds ratio for
the 2 � 2 table we previously did the analysis on. When we exponentiate 2.17, we
get exp(2.17) = 8.79. This corresponds with the estimate using the 2 � 2 table.
For completeness, let’s look at the other coefficient, the intercept. If you recall,
logðOddsx¼0Þ ¼ b0, so b0 is the log odds of the outcome in the younger
group. Exponentiating again, exp(−3.09) = 0.045, and this corresponds with the
previous analysis we did. Similarly, logðOddsx¼1Þ ¼ b0 þ b1, and the estimated
odds of 28 day death in the older group is exp(−3.09 + 2.17) = 0.4, as was found
above. Converting estimated odds into a probability can be done directly using the
plogis function, but we will cover a more powerful and easier way of doing this
later on in the section.

Beyond a Single Binary Covariate
While the above analysis is useful for illustration, it does not readily demonstrate
anything we could not do with our 2 � 2 table example above. Logistic regression
allows us to extend the basic idea to at least two very relevant areas. The first is the
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case where we have more than one covariate of interest. Perhaps we have a con-
founder, we are concerned about, and want to adjust for it. Alternatively, maybe
there are two covariates of interest. Secondly, it allows use to use covariates as
continuous quantities, instead of discretizing them into categories. For example,
instead of dividing age up into exhaustive strata (as we did very simply by just
dividing the patients into two groups, � 55 and [ 55), we could instead use age as
a continuous covariate.

First, having more than one covariate is simple. For example, if we wanted to
add service_unit to our previous model, we could just add it as we did when
using the lm function for linear regression. Here we specify *day_28_flg
age.cat + service_unit and run the summary function.

A coefficient table is produced, and now we have four estimated coefficients.
The same two, (Intercept) and age.cat which were estimated in the unad-
justed model, but also we have service_unitMICU and
service_unitSICU which correspond to the log odds ratios for the MICU and
SICU relative to the FICU. Taking the exponential of these will result in an odds
ratio for each variable, adjusted for the other variables in the model. In this case the
adjusted odds ratios for Age > 55, MICU and SICU are 8.68, 3.25, and 3.08,
respectively. We would conclude that there is an almost 9-fold increase in the odds
of 28 day mortality for those in the >55 year age group relative to the younger
� 55 group while holding service unit constant. This adjustment becomes impor-
tant in many scenarios where groups of patients may be more or less likely to
receive treatment, but also more or less likely to have better outcomes, where one
effect is confounded by possibly many others. Such is almost always the case with
observational data, and this is why logistic regression is such a powerful data
analysis tool in this setting.

Another case we would like to be able to deal with is when we have a continuous
covariate we would like to include in the model. One can always break the con-
tinuous covariate into mutually exclusive categories by selecting break or cut
points, but selecting the number and location of these points can be arbitrary, and in
many cases unnecessary or inefficient. Recall that in logistic regression we are
fitting a model:
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logitðpxÞ ¼ logðOddsxÞ ¼ logð px
1� px

Þ ¼ b0 þ b1 � x;

but now assume x is continuous. Imagine a hypothetical scenario where you know
b0 and b1 and have a group of 50 year olds, and a group of 51 year olds. The
difference in the log Odds between the two groups is:

logðOdds51Þ � logðOdds50Þ ¼ ðb0 þ b1 � 51Þ � ðb0 þ b1 � 50Þ ¼ b1ð51� 50Þ
¼ b1:

Hence, the odds ratio for 51 year olds versus 50 year olds is expðb1Þ. This is
actually true for any group of patients which are 1 year apart, and this gives a useful
way to interpret and use these estimated coefficients for continuous covariates. Let’s
work with an example. Again fitting the 28 day mortality outcome as a function of
age, but treating age as it was originally recorded in the dataset, a continuous
variable called age.

We see the estimated coefficient is 0.07 and still very statistically significant.
Exponentiating the log odds ratio for age, we get an estimated odds ratio of 1.07,
which is per 1 year increase in age. What if the age difference of interest is ten years
instead of one year? There are at least two ways of doing this. One is to replace age
with I(age/10), which uses a new covariate which is age divided by ten. The
second is to use the agects.glm estimated log odds ratio, and multiple by ten
prior to exponentiating. They will yield equivalent estimates of 1.92, but it is now
per 10 year increases in age. This is useful when the estimated odds ratios (or log
odds ratios) are close to one (or zero). When this is done, one unit of the covariate is
10 years, so the generic interpretation of the coefficients remains the same, but the
units (per 10 years instead of per 1 year) changes.

This of course assumes that the form of our equation relating the log odds of the
outcome to the covariate is correct. In cases where odds of the outcome decreases
and increases as a function of the covariate, it is possible to estimate a relatively
small effect of the linear covariate, when the outcome may be strongly affected by
the covariate, but not in the way the model is specified. Assessing the linearity of
the log odds of the outcome and some discretized form of the covariate can be done
graphically. For instance, we can break age into 5 groups, and estimate the log odds
of 28 day mortality in each group. Plotting these quantities in Fig. 16.5 (left), we
can see in this particular case, age is indeed strongly related to the odds of the
outcome. Further, expressing age linearly appears like it would be a good
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approximation. If on the other hand, 28 day mortality has more of a “U”-shaped
curve, we may falsely conclude that no relationship between age and mortality
exists, when the relationship may be rather strong. Such may be the case when
looking at the the log odds of mortality by the first temperature (temp_1st) in
Fig. 16.5 (right).

16.3.5 Hypothesis Testing and Model Selection

Just as in the case for linear regression, there is a way to test hypotheses for logistic
regression. It follows much of the same framework, with the null hypothesis being
b ¼ 0. If you recall, this is the log odds ratio, and testing if it is zero is equivalent to
a test for the odds ratio being equal to one. In this chapter, we focus on how to
conduct such a test in R.

As was the case when using lm, we first fit the two competing models, a larger
(alternative model), and a smaller (null model). Provided that the models are nested,
we can again use the anova function, passing the smaller model, then the larger
model. Here our larger model is the one which contained service_unit and
age.cat, and the smaller only contains age.cat, so they are nested. We are
then testing if the log odds ratios for the two coefficients associated with ser-
vice_unit are zero. Let’s call these coefficients bMICU and bSICU . To test if
bMICU and bSICU ¼ 0, we can use the anova function, where this time we will
specify the type of test, in this case set the test parameter to “Chisq”.

Here the output of the anova function when applied to glm objects looks
similar to the output generated when used on lm objects. A couple good practices to
get in a habit are to first make sure the two competing models are correctly spec-
ified. He we are are testing * age.cat versus age.cat + service_unit.
Next, the difference between the residual degrees of freedom (Resid. Df) in the
two models tell us how many more parameters the larger model has when compared
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to the smaller model. Here we see 1774 − 1772 = 2 which means that there are
two more coefficients estimated in the larger model than the smaller one, which
corresponds with the output from the summary table above. Next looking at the p-
value (Pr(>Chi)), we see a test for bMICU and bSICU ¼ 0 has a p-value of around
0.08. At the typical 0.05 significance level, we would not reject the null, and use the
simpler model without the service unit. In logistic regression, this is a common way
of testing whether a categorical covariate should be retained in the model, as it can
be difficult to assess using the z value in the summary table, particularly when
one is very statistically significant, and one is not.

16.3.6 Confidence Intervals

Generating confidence intervals for either the log-odds ratios or the odds ratios are
relatively straightforward. To get the log-odds ratios and respective confidence
intervals for the ageunit.glm model which includes both age and service unit.
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Fig. 16.5 Plot of log-odds of mortality for each of the five age and temperature groups. Error
bars represent 95 % confidence intervals for the log odds
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Here the coefficient estimates and confidence intervals are presented in much the
same way as for a linear regression. In logistic regression, it is often convenient to
exponentiate these quantities to get it on a more interpretable scale.

Similar to linear regression, we will look at if the confidence intervals for the log
odds ratios include zero. This is equivalent to seeing if the intervals for the odds
ratios include 1. Since the odds ratios are more directly interpretable it is often more
convenient to report them instead of the coefficients on the log odds ratio scale.

16.3.7 Prediction

Once you have decided on your final model, you may want to generate predictions
from your model. Such a task may occur when doing a propensity score analysis
(Chap. 25) or creating tools for clinical decision support. In the logistic regression
setting this involves attempting to estimate the probability of the outcome given the
characteristics (covariates) of a patient. This quantity is often denoted
PðoutcomejXÞ. This is relatively easy to accomplish in R using the predict
function. One must pass a dataset with all the variables contained in the model.
Let’s assume that we decided to include the service_unit in our final model,
and want to generate predictions from this based on a new set of patients. Let’s first
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create a new data frame called newdat using the expand.grid function which
computes all combinations of the values of variables passed to it.

We followed this by adding a pred column to our new data frame by using the
predict function. The predict function for logistic regression works similar to
when we used it for linear regression, but this time we also specify
type = ”response” which ensures the quantities computed are what we need, P
(outcome|X). Outputting this new object shows our predicted probability of 28 day
mortality for six hypothetical patients. Two in each of the service units, where one
is in the younger group and another in the older group. We see that our lowest
prediction is for the youngest patients in the FICU, while the patients with highest
risk of 28 day mortality are the older group in the MICU, but the predicted
probability is not all that much higher than the same age patients in the SICU.

To do predictions on a different dataset, just replace the newdata argument
with the other dataset. We could, for instance, pass newdata = dat and receive
predictions for the dataset we built the model on. As was the case with linear
regression, evaluating the predictive performance of our model on data used to
build the model will generally be too optimistic as to how well it would perform in
the real world. How to get a better sense of the accuracy of such models is covered
in Chap. 17.

16.3.8 Presenting and Interpreting Logistic Regression
Analysis

In general, presenting the results from a logistic regression model will follow quite
closely to what was done in the linear regression setting. Results should always be
put in context, including what variables were considered and which variables were
in the final model. Reporting the results should always include some form of the
coefficient estimate, a measure of uncertainty and likely a p-value. In medical and
epidemiological journals, coefficients are usually exponentiated so that they are no
longer on the log scale, and reported as odds ratios. Frequently, multivariable
analyses (analysis with more than one covariate) is distinguished from univariate
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analyses (one covariate) by denoting the estimated odds ratios as adjusted odds
ratios (AOR).

For the age.glm model, an example of what could be reported is:

Mortality at 28 days was much higher in the older ([ 55 years) group than the younger
group (� 55 years), with rates of 28.5 and 4.3 %, respectively (OR = 8.79, 95 % CI:
6.27-12.64, p < 0.001).

When treating age as a continuous covariate in the agects.glm model we
could report:

Mortality at 28 days was associated with older age (OR = 1.07 per year increase, 95 % CI:
1.06–1.08, p < 0.001).

And for the case with more than one covariate, (ageunit.glm) an example of
what could be reported:

Older age ([ 55 versus � 55 years) was independently associated with 28 day mortality
(AOR = 8.68, 95 % CI: 6.18-12.49, p < 0.001) after adjusting for service unit.

16.3.9 Caveats and Conclusions

As was the case with linear regression, logistic regression is an extremely powerful
tool for data analysis of health data. Although the study outcomes in each approach
are different, the framework and way of thinking of the problem have similarities.
Likewise, many of the problems encountered in linear regression are also of con-
cern in logistic regression. Outliers, missing data, colinearity and
dependent/correlated outcomes are all problems for logistic regression as well, and
can be dealt with in a similar fashion. Modelling assumptions are as well, and we
briefly touched on this when discussing whether it was appropriate to use age as a
continuous covariate in our models. Although continuous covariates are frequently
modeled in this way, it is important to ensure if the relationship between the log
odds of the outcome is indeed linear with the covariate. In cases where the data has
been divided into too many subgroups (or the study may be simply too small), you
may encounter a level of a discrete variable where none (or very few) of one of the
outcomes occurred. For example, if we had an additional service_unit with 50
patients, all of whom lived. In such a case, the estimated odds ratios and subsequent
confidence intervals or hypothesis testing may not be appropriate to use. In such a
case, collapsing the discrete covariate into fewer categories will often help return
the analysis into a manageable form. For our hypothetical new service unit, creating
a new group of it and FICU would be a possible solution. Sometimes a covariate is
so strongly related to the outcome, and this is no longer possible, and the only
solution may be to report this finding, and remove these patients.

Overall, logistic regression is a very valuable tool in modelling binary and
categorical data. Although we did not cover this latter case, a similar framework is
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available for discrete data which is ordered or has more than one category (see
?multinom in the nnet package in R for details about multinomial logistic
regression). This and other topics such as assessing model fit, and using logistic
regression in more complicated study designs are discussed in [11].

16.4 Survival Analysis

16.4.1 Section Goals

In this section, the reader will learn the fundamentals of survival analysis, and how
to present and interpret such an analysis.

16.4.2 Introduction

As you will note that in the previous section on logistic regression, we specifically
looked at the mortality outcome at 28 days. This was deliberate, and illustrates a
limitation of using logistic regression for this type of outcome. For example, in the
previous analysis, someone who died on day 29 was treated identically as someone
who went on to live for 80+ years. You may wonder, why not just simply treat the
survival time as a continuous variable, and perform linear regression analysis on
this outcome? There are several reasons, but the primary reason is that you likely
won’t be able to wait around for the lifetime for each study participant. It is likely in
your study only a fraction of your subjects will die before you’re ready to publish
your results.

While we often focus on mortality this can occur for many other outcomes,
including times to patient relapse, re-hospitalization, reinfection, etc. In each of
these types of outcomes, it is presumed the patients are at risk of the outcome until
the event happens, or until they are censored. Censoring can happen for a variety of
different reasons, but indicates the event was not observed during the observation
time. In this sense, survival or more generally time-to-event data is a bivariate
outcome incorporating the observation or study time in which the patient was
observed and whether the event happened during the period of observation. The
particular case we will be most interested is right censoring (subjects are observed
only up to a point in time, and we don’t know what happens beyond this point), but
there is also left censoring (we only know the event happened before some time
point) and interval censoring (events happen inside some time window). Right
censoring is generally the most common type, but it is important to understand how
the data was collected to make sure that it is indeed right censored.

Establishing a common time origin (i.e., a place to start counting time) is often
easy to identify (e.g., admission to the ICU, enrollment in a study, administration of
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a drug, etc.), but in other scenarios it may not be (e.g., perhaps interest lies in
survival time since disease onset, but patients are only followed from the time of
disease diagnosis). For a good treatment on this topic and other issues, see Chap. 3
of [12].

With this additional complexity in the data (relative to logistic and linear
regression), there are additional technical aspects and assumptions to the data
analysis approaches. In general, each approach attempts to compare groups or
identify covariates which modify the survival rates among the patients studied.

Overall survival analysis is a complex and fascinating area of study, and we will
only touch briefly on two types of analysis here. We largely ignore the technical
details of these approaches focusing on general principles and intuition instead.
Before we begin doing any survival analysis, we need to load the survival
package in R, which we can do by running:

Normally, you can skip the next step, but since this dataset was used to analyze
the data in a slightly different way, we need to correct the observation times for a
subset of the subjects in the dataset.

16.4.3 Kaplan-Meier Survival Curves

Now that we have the technical issues sorted out, we can begin by visualizing the
data. Just as the 2 � 2 table is a fundamental step in the analysis of binary data, the
fundamental step for survival data is often plotting what is known as a
Kaplan-Meier survival function [13]. The survival function is a function of time,
and is the probability of surviving at least that amount of time. For example, if there
was 80 % survival at one year, the survival function at one year is 0.8. Survival
functions normally start at time = 0, where the survivor function is 1 (or 100 % –

everyone is alive), and can only stay the same or decrease. If it were to increase as
time progressed, that would mean people were coming back to life! Kaplan-Meier
plots are one of the most widely used plots in medical research.

Before plotting the Kaplan-Meier plot, we need to setup a survfit object. This
object has a familiar form, but differs slightly from the previous methodologies we
covered. Specifying a formula for survival outcomes is somewhat more compli-
cated, since as we noted, survival data has two components. We do this by creating
a Surv object in R. This will be our survival outcome for subsequent analysis.
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The first step setups a new kind of R object useful for survival data. The Surv
function normally takes two arguments: a vector of times, and some kind of indi-
cator for which patients had an event (death in our case). In our case, the vector of
death and censoring times are the mort_day_censored, and deaths are coded
with a zero in the censor_flg variable (hence we identify the events where
censor_flg == 0). The last step prints out 5 entries of the new object (obser-
vations 101 to 105). We can see there are three entries of 731.00+.
The + indicates that this observation is censored. The other entries are not cen-
sored, indicating deaths at those times.

Fitting a Kaplan-Meier curve is quite easy after doing this, but requires two
steps. The first specifies a formula similar to how we accomplished this for linear
and logistic regression, but now using the survfit function. We want to ‘fit’ by
gender (gender_num), so the formula is, datSurv * gender_num. We can
then plot the newly created object, but we pass some additional arguments to the
plot function which include 95 % confidence intervals for the survival functions
(conf.int = TRUE), and includes a x- and y- axis label (xlab and ylab).
Lastly we add a legend, coding black for the women and red for the men. This plot
is in Fig. 16.6.

In Fig. 16.6, there appears to be a difference between the survival function
between the two gender groups, with again the male group (red) dying at slightly
slower rate than the female group (black). We have included 95 % point-wise
confidence bands for the survival function estimate, which assesses how much
certain we are about the estimated survivorship at each point in time. We can do the
same for service_unit, but since it has three groups, we need to change the
color argument and legend to ensure the plot is properly labelled. This plot is in
Fig. 16.7.
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16.4.4 Cox Proportional Hazards Models

Kaplan-Meier curves are a good first step in examining time to event data before
proceeding with any more complex statistical model. Time to event outcomes are in
general more complex than the other types of outcomes we have examined thus far.
There are several different modelling approaches, each of which has some advan-
tages and limitations. The most popular approach for health data is likely the Cox
Proportional Hazards Model [14], which is also sometimes called the Cox model or
Cox Regression. As the name implies this method models something called the
hazard function. We will not dwell on the technical details, but attempt to provide
some intuition. The hazard function is a function of time (hours, days, years) and is
approximately the instantaneous probability of the event occurring (i.e., chance the
event is happening in some very small time window) given the event has not
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Fig. 16.7 Kaplan-Meier plot of the estimated survivor function stratified by service unit
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Fig. 16.6 Kaplan-Meier plot of the estimated survivor function stratified by gender
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already happened. It is frequently used to study mortality, sometimes going by the
name force of mortality or instantaneous death rate, and can be interpreted simply
as the risk of death at a particular time, given that the person has survived up until
that point. The “proportional” part of Cox’s model assumes that the way covariates
effect the hazard function for different types of patients is through a proportionality
assumption relative to the baseline hazard function. For illustration, consider a
simple case where two treatments are given, for treatment 0 (e.g., the placebo) we
determine the hazard function is h0ðtÞ, and for treatment 1 we determine the hazard
function is h1ðtÞ, where t is time. The proportional hazards assumption is that:

h1ðtÞ ¼ HR� h0ðtÞ:

It’s easy to see that HR ¼ h1ðtÞ=h0ðtÞ. This quantity is often called the hazard
ratio, and if for example it is two, this would mean that the risk of death in the
treatment 1 group was twice as high as the risk of death in the treatment zero
group. We will note, that HR is not a function of time, meaning that the risk of
death is always twice as high in the first group when compared to the second
group. This assumption means that if the proportional hazards assumption is valid
we need only know the hazard function from group 0, and the hazard ratio to know
the hazard function for group 1. Estimation of the hazard function under this model
is often considered a nuisance, as the primary focus is on the hazard ratio, and this
is key to being able to fit and interpret these models. For a more technical treatment
of this topic, we refer you to [12, 15–17].

As was the case with logistic regression, we will model the log of the hazard
ratio instead of the hazard ratio itself. This allows us to use the familiar framework
we have used thus far for modeling other types of health data. Like logistic
regression, when the logðHRÞ is zero, the HR is one, meaning the risk between the
groups is the same. Furthermore, this extends to multiple covariate models or
continuous covariates in the same manner as logistic regression.

Fitting Cox regression models in R will follow the familiar pattern we have seen
in the previous cases of linear and logistic regressions. The coxph function (from
the survival package) is the fitting function for Cox models, and it continues the
general pattern of passing a model formula (outcome * covariate), and the
dataset you would like to use. In our case, let’s continue our example of using
gender (gender_num) to model the datSurv outcome we created, and running
the summary function to see what information is outputted.
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The coefficients table has the familiar format, which we’ve seen before. The
coef for gender_num is about −0.29, and this is the estimate of our log-hazard
ratio. As discussed, taking the exponential of this gives the hazard ratio (HR),
which the summary output computes in the next column (exp(coef)). Here, the
HR is estimated at 0.75, indicating that men have about a 25 % reduction in the
hazards of death, under the proportional hazards assumption.

The next column in the coefficient table has the standard error for the log hazard
ratio, followed by the z score and p-value (Pr(>|z|)), which is very similar to
what we saw in the case of logistic regression. Here we see the p-value is quite
small, and we would reject the null hypothesis that the hazard functions are the
same between men and women. This is consistent with the exploratory figures we
produced using Kaplan-Meier curves in the previous section. For coxph, the
summary function also conveniently outputs the confidence interval of the HR a
few lines down, and here our estimate of the HR is 0.75 (95 % CI: 0.63–0.89,
p = 0.001). This is how the HR would typically be reported.

Using more than one covariate works the same as our other analysis techniques.
Adding a co-morbidity to the model such as atrial fibrillation (afib_flg) can be
done as you would do for logistic regression.
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Here again male gender is associated with reduced time to death, while atrial
fibrillation increases the hazard of death by almost four-fold. Both are statistically
significant in the summary output, and we know from before that we can test a large
number of other types of statistical hypotheses using the anova function. Again we
pass anova the smaller (gender_num only) and larger (gender_num and
afib_flg) nested models.

As expected, atrial fibrillation is very statistically significant, and therefore we
would like to keep it in the model.

Cox regression also allows one to use covariates which change over time. This
would allow one to incorporate changes in treatment, disease severity, etc. within
the same patient without need for any different methodology. The major challenge
to do this is mainly in the construction of the dataset, which is discussed in some of
the references at the end of this chapter. Some care is required when the time
dependent covariate is only measure periodically, as the method requires that it be
known at every event time for the entire cohort of patients, and not just those
relevant to the patient in question. This is more practical for changes in treatment
which may be recorded with some precision, particularly in a database like
MIMIC II, and less so for laboratory results which may be measured at the reso-
lution of hours, days or weeks. Interpolating between lab values or carrying the last
observation forward has been shown to introduce several types of problems.

16.4.5 Caveats and Conclusions

We will conclude this brief overview of survival analysis, but acknowledge we
have only scratched the surface. There are many topics we have not covered or we
have only briefly touched on.

Survival analysis is distinguished from other forms of analyses covered in this
Chapter, as it allows the data to be censored. As was the case for the other
approaches we considered, there are modeling assumptions. For instance, it is
important that the censoring is not informative of the survival time. For example, if
censoring occurs when treatment is withdrawn because the patient is too sick to
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continue therapy, this would be an example of informative censoring. The validity
of all methods discussed in this section are then invalid. Care should be taken to
make sure you understand the censoring mechanism as to avoid any false inferences
drawn.

Assessment of the proportional hazards assumption is an important part of any
Cox regression analysis. We refer you to the references (particularly [17] and see
?cox.zph) at the end of this chapter for strategies and alternatives for when the
proportional hazards assumption breaks down. In some circumstances, the pro-
portional hazards assumption is not valid, and alternative approaches can be used.
As is always the case, when outcomes are dependent (e.g., one patient may con-
tribute more than one observation), the methods discussed in this section should not
be used directly. Generally the standard error estimates will be too small, and p-
values will be incorrect. The concerns in logistic regression regarding outliers,
co-linearity, missing data, and covariates with sparse outcomes apply here as well,
as do the concerns about model misspecification for continuous covariates.

Survival analysis is a powerful analysis technique which is extremely relevant
for health studies. We have only given a brief overview of the subject, and would
encourage you to further explore these methods.

16.5 Case Study and Summary

16.5.1 Section Goals

In this section, we will work through a case study, and discuss the data analysis
components which should be included in an original research article suitable for a
clinical journal. We will also discuss some approaches for model and feature
selection.

16.5.2 Introduction

We will now use what we learned in the previous sections to examine if indwelling
arterial catheters (IAC) have any effect on patient mortality. As reiterated
throughout, clearly identifying a study objective is important for a smooth data
analysis. In our case, we’d like to estimate the effect of IAC on mortality, but
acknowledge a few potential problem areas. First, the groups who receive IAC and
and those who don’t are likely different in many respects, and many of these
differences likely also have some effect on mortality. Second, we would like to be
able to limit ourselves on mortality events which occur in close proximity to the
ICU admission. The dataset includes 28 day mortality, so that would seem to be in
close proximity to the ICU admission. As for the first issue, we also have many
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covariates which capture some of the features we may be concerned with, including
severity of illness (sapsi_first and sofa_first), age (age), patient gender
(gender_num) and co-morbidities (chf_flg, afib_flg, renal_flg, etc.).

With all these in mind, we should have a good start on determining our study
objective. In our case, it might be,

To estimate the effect that administration of IAC during an ICU admission has on 28 day
mortality in patients within the MIMIC II study who received mechanical ventilation, while
adjusting for age, gender, severity of illness and comorbidities.

For now, this describes our outcome and covariates quite well. One of the first
things that is often done is to describe our population by computing summary
statistics of all or a subset of variables collected in the study. This description
allows the reader to understand how well the study would generalize to other
populations. We have made available an R package on GitHub that will allow one
to construct preliminary forms of such a table quite quickly. To install the R
package, first install and load the devtools package:

and then install and load our package by using the install_github
function.

Before we do any in depth analysis, let’s make sure we are using the original
dataset, first by removing and then reloading the dat data frame. In order to ensure
our research is reproducible, it’s a good idea to make sure the entire process of
doing the analysis is documented. By starting from the original copy of the dataset,
we are able to present precisely what methods we used in an analysis.

As mentioned before, recoding binary encoded variables (ones which are 0s and
1s) to the R data class factor can sometimes make interpreting the R output
easier. The following piece of code cycles through all the columns in dat and
converts any binary variables to a factor.
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We are now ready to generate a summary of the patient characteristics in our
study. The MIMICbook package has a produce.table1 function. This gen-
erates a summary table of the data frame you pass to it, using an appropriate
summary for continuous variables (average and standard deviation) and categorical
variables (number and percentages) for each variable. In its most simple form,
produce.table1 can be passed a data frame as an argument, which we do
(passing it the dat data frame). This output is not very nice, and we can make it
look nicer by using a powerful R package called knitr, which provides many
tools to assist in performing reproducible research. You can find out more about
knitr (which can be installed using install.packages (‘knitr’)), by
running ?knitr on the R console after loading it. We will be using the kable
command, which will take our tab1 variable—a summary table we generated
using the produce.table1 function, and make it look a little nicer.

The row descriptors are not very informative, and what we have produced would
not be usable for final publication, but it suits our purposes for now. knitr allows
one to output such tables in HTML, LaTeX or even a Word document, which you
can edit and make the table more informative. The results are contained in
Table 16.1.

A couple things we may notice from the baseline characteristics are:

1. Some variables have a lot of missing observations (e.g., bmi, po2_first,
iv_day_1).

2. None of the patients have sepsis.

Both of these points are important, and illustrates why it is always a good idea to
perform basic descriptive analyses before beginning any modeling. The missing
data is primarily related to weight/BMI, or lab values. For the purpose of this
chapter, we are going to ignore both of these classes of variables. While we would
likely want to adjust for some of these covariates in a final version of the paper, and
Chap. 11 gives some useful techniques for dealing with such a situation, we are
going to focus on the set of covariates we had identified in our study objective,
which do not include these variables. The issue related to sepsis is also of note.
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Table 16.1 Overall patient
characteristics

Average (SD), or N (%)

aline_flg==1 984 (55.4 %)

icu_los_day 3.3 (3.4)

hospital_los_day 8.1 (8.2)

age 54.4 (21.1)

gender_num==1 1025 (57.7 %) [Missing: 1]

weight_first 80.1 (22.5) [Missing: 110]

bmi 27.8 (8.2) [Missing: 466]

sapsi_first 14.1 (4.1) [Missing: 85]

sofa_first 5.8 (2.3) [Missing: 6]

service_unit==SICU 982 (55.3 %)

service_num==1 982 (55.3 %)

day_icu_intime==Saturday 278 (15.7 %)

day_icu_intime_num 4.1 (2)

hour_icu_intime 10.6 (7.9)

hosp_exp_flg==0 1532 (86.3 %)

icu_exp_flg==0 1606 (90.4 %)

day_28_flg ==0 1493 (84.1 %)

mort_day_censored 614.3 (403.1)

censor_flg==1 1279 (72 %)

sepsis_flg==0 1776 (100 %)

chf_flg==0 1563 (88 %)

afib_flg==0 1569 (88.3 %)

renal_flg==0 1716 (96.6 %)

liver_flg==0 1677 (94.4 %)

copd_flg==0 1619 (91.2 %)

cad_flg==0 1653 (93.1 %)

stroke_flg==0 1554 (87.5 %)

mal_flg==0 1520 (85.6 %)

resp_flg==0 1211 (68.2 %)

map_1st 88.2 (17.6)

hr_1st 87.9 (18.8)

temp_1st 97.8 (4.5) [Missing: 3]

spo2_1st 98.4 (5.5)

abg_count 6 (8.7)

wbc_first 12.3 (6.6) [Missing: 8]

hgb_first 12.6 (2.2) [Missing: 8]

platelet_first 246.1 (99.9) [Missing: 8]

sodium_first 139.6 (4.7) [Missing: 5]

potassium_first 4.1 (0.8) [Missing: 5]

tco2_first 24.4 (5) [Missing: 5]

chloride_first 103.8 (5.7) [Missing: 5]
(continued)
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Sepsis certainly would contribute to higher rates of mortality when compared to
patients without sepsis, but since we do not have any patients with sepsis, we
cannot and do not need to adjust for this covariate per se. What we do need to do is
acknowledge this fact by revising our study objective. We originally identified our
population as patients within MIMIC, but because this is a subset of MIMIC—those
without sepsis, we should revise the study objective to:

To estimate the effect that administration of IAC during an ICU admission has on 28 day
mortality in patients without sepsis who received mechanical ventilation within MIMIC II,
while adjusting for age, gender, severity of illness and comorbidities.

We will also not want to include the sepsis_flg variable as a covariate in any
of our models, as there are no patients with sepsis within this study to estimate the
effect of sepsis. Now that we have examined the basic overall characteristics of the
patients, we can begin the next steps in the analysis.

The next steps will vary slightly, but it is often useful to put yourself in the shoes
of a peer reviewer. What problems will a reviewer likely find with your study and
how can you address them? Usually, the reviewer will want to see how the pop-
ulation differs for different values of the covariate of interest. In our case study, if
the treated group (IAC) differed substantially from the untreated group (no IAC),
then this may account for any effect we demonstrate. We can do this by summa-
rizing the two groups in a similar fashion as was done for Table 16.1. We can reuse
the produce.table1 function, but we pass it the two groups separately by
splitting the dat data frame into two using the split function (by the aline_flg
variable), later combining them into one table using cbind to yield Table 16.2. It’s
important to ensure that the same reference groups are used across the two study
groups, and that’s what the labels argument is used for (see ?produce.table1
for more details).

Table 16.1 (continued) Average (SD), or N (%)

aline_flg==1 984 (55.4 %)

bun_first 19.3 (14.4) [Missing: 5]

creatinine_first 1.1 (1.1) [Missing: 6]

po2_first 227.6 (144.9) [Missing: 186]

pco2_first 43.4 (14) [Missing: 186]

iv_day_1 1622.9 (1677.1) [Missing: 143]
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Table 16.2 Patient characteristics stratified by IAC administration

Average (SD), or N (%),
No-IAC

Average (SD), or N (%),
IAC

aline_flg==0 792 (100 %) 0 (0 %)

icu_los_day 2.1 (1.9) 4.3 (3.9)

hospital_los_day 5.4 (5.4) 10.3 (9.3)

age 53 (21.7) 55.5 (20.5)

gender_num==1 447 (56.5 %) [Missing: 1] 578 (58.7 %)

weight_first 79.2 (22.6) [Missing: 71] 80.7 (22.4) [Missing: 39]

bmi 28 (9.1) [Missing: 220] 27.7 (7.5) [Missing: 246]

sapsi_first 12.7 (3.8) [Missing: 70] 15.2 (4) [Missing: 15]

sofa_first 4.8 (2.1) [Missing: 4] 6.6 (2.2) [Missing: 2]

service_unit==MICU 480 (60.6 %) 252 (25.6 %)

service_num==0 504 (63.6 %) 290 (29.5 %)

day_icu_intime==Saturday 138 (17.4 %) 140 (14.2 %)

day_icu_intime_num 4 (2) 4.1 (2)

hour_icu_intime 9.9 (7.7) 11 .2 (8. 1)

hosp_exp_flg==0 702 (88.6 %) 830 (84.3 %)

icu_exp_flg==0 734 (92.7 %) 872 (88.6 %)

day_28_flg==0 679 (85.7 %) 814 (82.7 %)

mort_day_censored 619.1 (388.3) 610.5 (414.8)

censor_flg==1 579 (73.1 %) 700 (71.1 %)

sepsis_flg==0 792 (100 %) 984 (100 %)

chf_flg==0 695 (87.8 %) 868 (88.2 %)

afib_flg==0 710 (89.6 %) 859 (87.3 %)

renal_flg==0 764 (96.5 %) 952 (96.7 %)

liver_flg==0 754 (95.2 %) 923 (93.8 %)

copd_flg==0 711 (89.8 %) 908 (92.3 %)

cad_flg==0 741 (93.6 %) 912 (92.7 %)

stroke_flg==0 722 (91.2 %) 832 (84.6 %)

mal_flg==0 700 (88.4 %) 820 (83.3 %)

resp_flg==0 514 (64.9 %) 697 (70.8 %)

map_1st 87.5 (15.9) 88.9 (18.8)

hr_st 88.4 (18.8) 87.5 (18.7)

temp_1st 97.9 (3.8) [Missing: 3] 97.7 (5.1)

spo2_1st 98.4 (5.7) 98.5 (5.4)

abg_count 1.4 (1.6) 9.7 (10.2)

wbc_first 11.7 (6.5) [Missing: 6] 12.8 (6.6) [Missing: 2]

hgb_first 12.7 (2.2) [Missing: 6] 12.4 (2.2) [Missing: 2]

platelet_first 254.3 (104.5) [Missing: 6] 239.5 (95.6) [Missing: 2]

sodium_first 139.8 (4.8) [Missing: 3] 139.4 (4.7) [Missing: 2]

potassium_first 4.1 (0.8) [Missing: 3] 4.1 (0.8) [Missing: 2]
(continued)
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As you can see in Table 16.2, the IAC group differs in many respects to the
non-IAC group. Patients who were given IAC tended to have higher severity of
illness at baseline (sapsi_first and sofa_first), slightly older, less likely to
be from the MICU, and have slightly different co-morbidity profiles when com-
pared to the non-IAC group.

Next, we can see how the covariates are distributed among the different out-
comes (death within 28 days versus alive at 28 days). This will give us an idea of
which covariates may be important for affecting the outcome. The code to generate
this is nearly identical to that used to produce Table 16.2, but instead, we replace
aline_flg with day_28_flg (the outcome) to get Table 16.3.

As can be seen in Table 16.3, those patients who died within 28 days differ in
many ways with those who did not. Those who died had higher SAPS and SOFA
scores, were on average older, and had different co-morbidity profiles.

16.5.3 Logistic Regression Analysis

In Table 16.3, we see that of the 984 subjects receiving IAC, 170 (17.2 %) died
within 28 days, whereas 113 of 792 (14.2 %) died in the no-IAC group. In a
univariate analysis we can assess if the lower rate of mortality is statistically sig-
nificant, by fitting a single covariate aline_flg logistic regression.

Table 16.2 (continued)

Average (SD), or N (%),
No-IAC

Average (SD), or N (%),
IAC

tco2_first 24.7 (4.9) [Missing: 3] 24.2 (5.1) [Missing: 2]

chloride_first 103.3 (5.4) [Missing: 3] 104.3 (5.9) [Missing: 2]

bun_first 18.9 (14.5) [Missing: 3] 19.6 (14.3) [Missing: 2]

creatinine_first 1.1 (1.2) [Missing: 4] 1.1 (1) [Missing: 2]

po2_first 223.8 (152.9) [Missing: 178] 230.1 (139.6) [Missing: 8]

pco2_first 44.9 (15.9) [Missing: 178] 42.5 (12.5) [Missing: 8]

iv_day_1 [1364.2 (1406.8) Missing: 110] 1808.4 (1825) [Missing: 33]
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Table 16.3 Patient characteristics stratified by 28 day mortality

Average (SD), or N (%), alive Average (SD), or N (%),
dead

aline_flg==1 814 (54.5 %) 170 (60.1 %)

icu_los_day 3.2 (3.2) 4 (4)

hospital_los_day 8.4 (8.4) 6.4 (6.4)

age 50.8 (20.1) 73.3 (15.3)

gender_num==1 886 (59.4 %) [Missing: 1] 139 (49.1 %)

weight_first 81.4 (22.7) [Missing: 77] 72.4 (19.9) [Missing: 33]

bmi 28.2 (8.3) [Missing: 392] 26 (7.2) [Missing: 74]

sapsi_first 13.6 (3.9) [Missing: 51] 17.3 (3.8) [Missing: 34]

sofa_first 5.7 (2.3) [Missing: 3] 6.6 (2.4) [Missing: 3]

service_unit==SICU 829 (55.5 %) 153 (54.1 %)

service_num==1 829 (55.5 %) 153 (54.1 %)

day_icu_intime==Saturday 235 (15.7 %) 43 (15.2 %)

day_icu_intime_num 4 (2) 4.1 (2)

hour_icu_intime 10.5 (7.9) 11 (8)

hosp_exp_flg==0 1490 (99.8 %) 42 (14.8 %)

icu_exp_flg==0 1493 (100 %) 113 (39.9 %)

day_28_flg==0 1493 (100 %) 0 (0 %)

mort_day_censored 729.6 (331.4) 6.1 (6.4)

censor_flg==1 1279 (85.7 %) 0 (0 %)

sepsis_flg==0 1493 (100 %) 283 (100 %)

chf_flg==0 1348 (90.3 %) 215 (76 %)

afib_flg==0 1372 (91.9 %) 197 (69.6 %)

renal_flg==0 1447 (96.9 %) 269 (95.1 %)

liver_flg==0 1413 (94.6 %) 264 (93.3 %)

copd_flg==0 1377 (92.2 %) 242 (85.5 %)

cad_flg==0 1403 (94 %) 250 (88.3 %)

stroke_flg==0 1386 (92.8 %) 168 (59.4 %)

mal_flg==0 1294 (86.7 %) 226 (79.9 %)

resp_flg==0 1056 (70.7 %) 155 (54.8 %)

map_1st 88.2 (17.5) 88.3 (17.9)

hr_1st 88.3 (18.4) 85.8 (20.6)

temp_1st 97.8 (4.6) [Missing: 1] 97.7 (4.5) [Missing: 2]

spo2_1st 98.6 (5) 97.8 (7.6)

abg_count 5.7 (7.7) 7.5 (12.5)

wbc_first 12.2 (6.4) [Missing: 6] 12.7 (7.5) [Missing: 2]

hgb_first 12.7 (2.2) [Missing: 6] 11.9 (2.1) [Missing: 2]
(continued)
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Those who received IAC had over a 25 % increase in odds of 28 day mortality
when compared to those who did not receive IAC. The confidence interval includes
one, so we would expect the p-value would be >0.05. Running the summary
function, we see that this is the case.

Indeed, the p-value for aline_flg is about 0.09. As we saw in Table 16.2,
there are likely several important covariates that differed among those who received
IAC and those who did not. These may serve as confounders, and the possible
association we observed in the univariate analysis may be stronger, non-existent or
in the opposite direction (i.e., IAC having lower rates of mortality) depending on
the situation. Our next step would be to adjust for these confounders. This is an

Table 16.3 (continued)

Average (SD), or N (%), alive Average (SD), or N (%),
dead

platelet_first 246.8 (97.3) [Missing: 6] 242.1 (112.6) [Missing: 2]

sodium_first 139.6 (4.6) [Missing: 4] 139.1 (5.4) [Missing: 1]

potassium_first 4.1 (0.8) [Missing: 4] 4.2 (0.9) [Missing: 1]

tco2_first 24.3 (4.8) [Missing: 4] 25 (5.8) [Missing: 1]

chloride_first 104.1 (5.6) [Missing: 4] 102.6 (6.4) [Missing: 1]

bun_first 18 (12.9) [Missing: 4] 26.2 (19) [Missing: 1]

creatinine_first 1.1 (1.1) [Missing: 5] 1.2 (0.9) [Missing: 1]

po2_first 231.3 (146.3) [Missing: 153] 207.9 (135.8) [Missing: 33]

pco2_first 43.3 (12.9) [Missing: 153] 43.8 (18.6) [Missing: 33]

iv_day_1 1694.2 (1709.5) [Missing:
127]

1258 (1449.4) [Missing: 16]
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exercise in what is known as model building, and there are several ways people do
this in the literature. A common approach is to fit all univariate models (one
covariate at a time, as we did with aline_flg, but separately for each covariate
and without aline_flg), and perform a hypothesis test on each model. Any
variables which had statistical significance under the univariate models would then
be included in a multivariable model. Another approach begins with the model we
just fit (uvr.glm which only has aline_flg as a covariate), and then sequentially
adds variables one at a time. This approach is often called step-wise forward
selection. We will make a choice to do step-wise backwards selection, which is as it
sounds—the opposite direction of step-wise forward selection. Model selection is a
challenging task in data analysis, and there are many other methods [18] we
couldn’t possibly describe in full detail here. As an overall philosophy, it is
important to outline and describe the process by which you will do model selection
before you actually do it and stick with the process.

In our stepwise backwards elimination procedure, we are going to fit a model
containing IAC (aline_flg), age (age), gender, (gender_num), disease severity
(sapsi_first and sofa_first), service type (service_unit), and comor-
bidities (chf_flg, afib_flg, renal_flg, liver_flg, copd_flg, cad_flg,
stroke_flg, mal_flg and resp_flg). This is often called the full model, and is
fit below (mva.full.glm). From the full model, we will proceed by eliminating
one variable at a time, until we are left with a model with only statistically sig-
nificant covariates. Because aline_flg is the covariate of interest, it will remain in
the model regardless of its statistical significance. At each step we need to come up
with a criteria to choose which variable we will eliminate. There are several ways of
doing this, but one way we can make this decision is performing a hypothesis test
for each covariate, and choosing to eliminate the covariate with the largest p-value,
unless all p-values are <0.05 or the largest p-value is aline_flg, in which case we
would stop or eliminate the next largest p-value, respectively.

Most of the covariates are binary or categorical in nature, and we’ve already
converted them to factors. The disease severity scores (SAPS and SOFA) are
continuous. We could add them as we did age, but this assumes a linear trend in the
odds of death as these scores change. This may or may not be appropriate (see
Fig. 16.8). Indeed, when we plot the log odds of 28 day death by SOFA score, we
note that while the log odds of death generally increase as the SOFA score increases
the relationship may not be linear (Fig. 16.8).
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What can be done in this situation is to turn a continuous covariate into a discrete
one. A quick way of doing this is using the cut2 function in the Hmisc package.2

Applying cut2(sofa_first, g = 5) turns the sofa_first variable into five
approximately equal sized groups by SOFA score. For illustration, SOFA breaks
down into the following sized groups by SOFA scores:

with not quite equal groups, due to the already discretized nature of SOFA to
begin with. We will treat both SAPS and SOFA in this way in order to avoid any
model misspecification that may occur as a result of assuming a linear relationship.

Returning to fitting the full model, we use these new disease severity scores,
along with the other covariates we identified to include in the full model.

−4

−2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14−17
SOFA Group

Lo
g 

O
dd

s 
of

 2
8 

D
ay

 M
or

ta
lit

y

Fig. 16.8 Plot of log-odds of mortality for each of the SOFA groups. Error bars represent 95 %
confidence intervals for the log odds

2You may need to install Hmisc, which can be done by running install.packages
(‘Hmisc’) from the R command prompt.
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The summary output show that some of the covariates are very statistically
significant, while others may be expendable. Ideally, we would like as simple of a
model as possible that can explain as much of the variation in the outcome as
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possible. We will attempt to remove our first covariate by the procedure we outlined
above. For each of the variables we consider removing, we could fit a logistic
regression model without that covariate, and then test it against the current model. R
has a useful function that automates this process for us, called drop1. We pass to
drop1 our logistic regression object (mva.full.glm) and the type of test you
would like to do. If you recall from the logistic regression section, we used
test = ”Chisq”, and this is what we will pass the drop1 function as well.

As you see from the output, each covariate is listed, along with a p-value (Pr
(> Chi)). Each row represents a hypothesis test with the bigger (alternative
model) being the full model (mva.full.glm), and each null being the full model
without the row’s covariate. The p-values here should match those output if you
were to do this exact test with anova. As we can see from the listed p-values,
aline_flg has the largest p-value, but we stipulated in our model selection plan
that we would retain this covariate as it’s our covariate of interest. We will then go
to the next largest p-value which is the cad_flg variable (coronary artery disease).
We will update our model, and repeat the backwards elimination step on the
updated model. We could just cut and paste the mva.full.glm command and
remove + cad_flg, but an easier way less prone to errors is to use the update
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command. The update function can take a glm or lm object, and alter one of the
covariates. To do a backwards elimination, the second argument is.*. -
variable. The.*. part indicates keep the outcome and the rest of the variables
the same, and the - variable indicates to fit the model without the variable
called variable. Hence, to fit a new model from the full model, but without the
cad_flg variable, we would run:

We then repeat the drop1 step:

and see that aline_flg still has the largest p-value, but chf_flag has the
second largest, so we’ll choose to remove it next. To update the new model, and run
another elimination step, we would run:
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where again aline_flg has the largest p-value, and gender_num has the
second largest. We continue, eliminating gender_num, copd_flg, liver_flg,
cut2(sofa_first, g = 5), renal_flg, and service_unit, in that order
(results omitted). The table produced by drop1 from our final model is as follows:

All variables are statistically significant at the 0.05 significance level. Looking at
the summary output, we see that aline_flg is not statistically significant
(p = 0.98), but all other terms are statistically significant, with the exception of the
cut2(sapsi_first, g = 5)[12,14), which suggest that the second to
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lowest SAPS group may not be statistically significantly different than the baseline
(lowest SAPS group).

We would call this model our final model, and would present it in a table similar
to Table 16.4. Since the effect of IAC was of particular focus, we will highlight it
by saying that it is not associated with 28 day mortality with an estimated adjusted
odds ratio of 1.01 (95 % CI: 0.71–1.43, p = 0.98). We may conclude that after
adjusting for the other potential confounders found in Table 16.4, we do not find
any statistically significant impact of using IAC on mortality.

16.5.4 Conclusion and Summary

This brief overview of the modeling techniques for health data has provided you
with the foundation to perform the most common types of analyses in health
studies. We have cited how important having a clear study objective before
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conducting data analysis is, as it identifies all the important aspects you need to plan
and execute your analysis. In particular by identifying the outcome, you should be
able to determine what analysis methodology would be most appropriate. Often you
will find that you will be using multiple analysis techniques for different study
objectives within the same study. Table 16.5 summarizes some of the important
aspects of each analysis approach.

Fortunately, R’s framework for conducting these analyses is very similar across
the different types of techniques, and this framework will often extend more gen-
erally to other more complex models (including machine learning algorithms)
and data structures (including dependent/correlated data such as longitudinal data).

Table 16.4 Multivariable logistic regression analysis for mortality at 28 days outcome (final
model

Covariate AOR Lower 95 %
CI

Upper 95 %
CI

p-
value

IAC 1.01 0.71 1.43 0.977

Age (per year increase) 1.04 1.03 1.05 <0.001

SAPSI [12–14)* (relative to SAPSI
<2)

1.35 0.63 2.97 0.440

SAPSI [14–16)* 3.09 1.61 6.28 0.001

SAPSI [16–19)* 2.80 1.45 5.74 0.003

SAPSI [19–32]* 6.58 3.42 13.46 <0.001

Atrial fibrillation 1.69 1.13 2.51 0.010

Stroke 6.49 4.40 9.64 <0.001

Malignancy 1.81 1.21 2.68 0.003

Non-COPD respiratory disease 2.66 1.90 3.73 <0.001

Table 16.5 Summary of different methods

Linear regression Logistic regression Cox proportional
hazards model

Outcome data type Continuous Binary Time to an event
(possibly censored)

Useful preliminary
analysis

Scatterplot Contingency and
2 � 2 tables

Kaplan-Meier
survivor function
estimate

Presentation
Output

Coefficient Odds Ratio Hazard ratio

R output Coefficient Log Odds ratio Log hazard ratio

Presentation
Interpretation

An estimate of the
expected change in
the outcome per one
unit increase in the
covariate, while
keeping all other
covariates constant

An estimate of the
fold change in the
odds of the outcome
per unit increase in
the covariate, while
keeping all other
covariates constant

An estimate of the
fold change in the
hazards of the
outcome per unit
increase in the
covariate, while
keeping all other
covariates constant
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We have highlighted some areas of concern that careful attention should be paid to
including missing data, colinearity, model misspecification, and outliers. Some of
these items will be looked at more closely in Chap. 17.
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