
Chapter 3
Massive MIMO in Small Cell Networks:
Wireless Backhaul

Abstract Dense small cell networks are expected to be deployed in the next
generation wireless system to provide better coverage and throughput to meet the
ever-increasing requirements of high data rate applications. As the trend toward
densification calls for more and more wireless links to forward a massive backhaul
traffic into the core network, it is critically important to take into account the pres-
ence of a wireless backhaul for the energy-efficient design of small cell networks.
In this chapter, we develop a general framework to analyze the energy efficiency of
a two-tier small cell network with massive MIMO macro base stations and wireless
backhaul. Our analysis reveal that under spatial multiplexing, the energy efficiency
of a small cell network is sensitive to the network load, and it should be taken
into account when controlling the number of users served by each base station. We
also demonstrate that a two-tier small cell network with wireless backhaul can be
significantly more energy efficient than a one-tier cellular network. However, this
requires the bandwidth division between radio access links and wireless backhaul to
be optimally designed according to the load conditions.

3.1 Introduction

The next generation of wireless communication systems targets a thousandfold
capacity improvement to meet the exponentially growing mobile data demand, and
the prospective increase in energy consumption poses urgent environmental and eco-
nomic challenges [1, 2]. Green communications have become an inevitable necessity,
andmuch effort is beingmade both in industry and academia to develop new network
architectures that can reduce the energy per bit from current levels, thus ensuring the
sustainability of future wireless networks [3–7].

3.1.1 Background and Motivation

Since the current growth rate of wireless data exceeds both spectral efficiency
advances and availability of new wireless spectrum, a trend toward network den-
sification is essential to respond adequately to the continued surge in mobile data
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traffic [8–10]. To this end, small cell networks are proposed to provide higher cover-
age and throughput by overlayingmacro cells with a vast number of low-power small
access points, thus offloading traffic and reducing the distance between transmitter
and receiver [11, 12]. Forwarding a massive cellular traffic to the backbone net-
work becomes a key problem when small cells are densely deployed, and a wireless
backhaul is regarded as the only practical solution where wired links are hardly avail-
able [13–17]. However, the power consumption incurred on the wireless backhaul
links, together with the power consumed by the multitude of access points deployed,
becomes a crucial issue, and an energy-efficient design is necessary to ensure the
viability of future small cell networks [18].

Various approaches have been investigated to improve the energy efficiency of
small cell networks. Cell size, deployment density, and number of antennas were
optimized to minimize the power consumption of small cells [19, 20]. Cognitive
sensing and sleepmode strategieswere also proposed to turn off inactive access points
and enhance the energy efficiency [21, 22]. A further energy efficiency gain was
shown to be attainable by serving users that experience better channel conditions, and
by dynamically assigning users to different tiers of the network [23, 24]. Although
various studies have been conducted on the energy efficiency of small cell networks,
the impact of a wireless backhaul has typically been neglected. On the other hand,
the power consumption of backhauling operations at small cell access points (SAPs)
might be comparable to the amount of power necessary to operate macrocell base
stations (MBSs) [25–27]. Moreover, since it is responsible to aggregate traffic from
SAPs toward MBSs, the backhaul may significantly affect the rates and therefore
the energy efficiency of the entire network. With a potential evolution toward dense
infrastructures, where many small access points are expected to be used, it is of
critical importance to take into account the presence of a wireless backhaul for the
energy-efficient design of heterogeneous networks.

3.1.2 Approach and Main Outcomes

Our main goal in this chapter is to study the energy-efficient design of small cell
networks with wireless backhaul. In particular, we consider a two-tier small cell
network which consists of MBSs and SAPs, where SAPs are connected to MBSs
via a multiple-input-multiple-output (MIMO) wireless backhaul that uses a fraction
of the total available bandwidth. We undertake an analytical approach to derive
data rates and power consumption for the entire network in the presence of both
uplink (UL) and downlink (DL) transmissions and spatial multiplexing, which is
a practical scenario that has not yet been addressed. Similar to the framework we
developed in Chap.2, we model the spatial locations of MBSs, SAPs, and UEs as
independent homogeneous Poisson point processes (PPPs), and analyze the energy
efficiency by combining tools from stochastic geometry and random matrix theory.
The analysis enable us to take a complete treatment of all the key features in a
small cell network, i.e., interference, load, deployment strategy, and capability of the
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wireless infrastructure components.With the developed framework,we can explicitly
characterize the power consumption of the small cell network due to signal processing
operations in macro cells, small cells, and wireless backhaul, as well as the rates and
ultimately the energy efficiency of the whole network. The main contributions in this
chapter are summarized below.

• We provide a general toolset to analyze the energy efficiency of a two-tier small
-network with wireless backhaul. Our model accounts for both UL and DL trans-
missions and spatial multiplexing, for the bandwidth and power allocated between
macro cells, small cells, and backhaul, and for the infrastructure deployment
strategy.

• Wecombine tools from stochastic geometry and randommatrix theory to derive the
uplink and downlink rates of macro cells, small cells, and wireless backhaul. The
resulting analysis is tractable and captures the effects ofmultiantenna transmission,
fading, shadowing, and random network topology.

• Using the developed framework, we find that the energy efficiency of a small cell
network is sensitive to the load conditions of the network, thus establishing the
importance of scheduling the right number of UEs per base station. Moreover, by
comparing the energy efficiency under different deployment scenarios, we find
that such property does not depend on the infrastructure.

• We show that if the wireless backhaul is not allocated sufficient resources, then
the energy efficiency of a two-tier small cell network with wireless backhaul can
be worse than that of a one-tier cellular network. However, the two-tier small cell
network can achieve a significant energy efficiency gain if the backhaul bandwidth
is optimally allocated according to the load conditions of the network.

The remainder of this chapter is organized as follows. The system model is intro-
duced in Sect. 3.2. In Sect. 3.3, we detail the power consumption of a heterogeneous
network with wireless backhaul. In Sect. 3.4, we analyze the data rates and the energy
efficiency, and we provide simulations that confirm the accuracy of our analysis.
Numerical results are shown in Sect. 3.5 to give insights into the energy-efficient
design of a HetNet with wireless backhaul. The chapter is concluded in Sect. 3.6.

3.2 System Model

3.2.1 Topology and Channel

We study a two-tier small cell network which consists of MBSs, SAPs, and UEs, as
depicted in Fig. 3.1. The spatial locations of MBSs, SAPs, and UEs follow indepen-
dent PPPs Φm, Φs, and Φu, with spatial densities λm, λs, and λu, respectively. All
MBSs, SAPs, and UEs are equipped with Mm, Ms, and 1 antennas, respectively, each
UE associates with the base station that provides the largest average received power,
and each SAP associates with the closest MBS. The links between MBSs and UEs,
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Fig. 3.1 Illustration of a two-tier small cell network with wireless backhaul

SAPs and UEs, and MBSs and SAPs are referred to as macro cell links, small cell
links, and backhaul links, respectively. In light of its higher spectral efficiency [28],
we consider spatial multiplexing where each MBS and each SAP simultaneously
serve Km and Ks UEs, respectively. In practice, due to a finite number of anten-
nas, MBSs and SAPs use traffic scheduling to limit the number of UEs served to
Km ≤ Mm and Ks ≤ Ms [29]. Similarly, each MBS limits to Kb the number of SAPs
served on the backhaul, with KbMs ≤ Mm. The MIMO dimensionality ratio for
linear processing on macrocells, small cells, and backhaul is denoted by βm = Km

Mm
,

βs = Ks
Ms
, and βb = KbMs

Mm
, respectively.

In this work, we consider a co-channel deployment of small cells with the macro
cell tier, i.e., macro cells and small cells share the same frequency band for trans-
mission.1 In order to avoid severe interference which may degrade the performance
of the network, we assume that the access and backhaul links share the same pool
of radio resources through orthogonal division, i.e., the total available bandwidth
is divided into two portions, where a fraction ζb is used for the wireless backhaul,
and the remaining (1 − ζb) is shared by the radio access links (macro cells and
small cells) [13, 15, 34, 35]. In order to adapt the radio resources to the variation of
the DL/UL traffic demand, we assume that MBSs and SAPs operate in a dynamic
time division duplex (TDD) mode [36, 37], where at every time slot, all MBSs and

1Many frequency planning possibilities exist for MBSs and SAPs, where the optimal solution is
traffic load dependent. Though a non-co-channel allocation is justified for highly dense scenarios
[30–32], in some cases a co-channel deployment may be preferred from an operator’s perspec-
tive, since MBSs and SAPs can share the same spectrum thus improving the spectral utilization
ratio [33].
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SAPs independently transmit in downlink with probabilities τm, τs, and τb on the
macro cell, small cell, and backhaul, respectively, and they transmit in uplink for the
remaining time.2 Wemodel the channels between any pair of antennas in the network
as independent, narrowband, and affected by three attenuation components, namely,
small-scale Rayleigh fading, shadowing SD and SB for data link and backhaul link,
respectively, and large-scale path loss, where α is the path loss exponent and the

shadowing satisfies E[S 2
α

D ] < ∞ and E[S 2
α

B ] < ∞, and by thermal noise with vari-
ance σ 2. We finally assume that all MBSs and SAPs use a zero forcing (ZF) scheme
for both transmission and reception, due to its practical simplicity [38].3

3.2.2 Energy Efficiency

We consider the power consumption due to transmission and signal processing oper-
ations performed on the entire network, therefore energy-efficiency tradeoffs will be
such that savings at theMBSs and SAPs are not counteracted by increased consump-
tion at the UEs, and vice versa [4, 43]. To this end, we identify the three aspects
as the major power consumption in the network, namely, the power spent on macro
cells, small cells, and wireless backhaul. Consistent with previous work [43–46], we
account for the power consumption due to transmission, encoding, decoding, and
analog circuits.

Let P[ W
m2 ] be the total power consumption per area, which includes the power

consumed on all links.We denote byR[ bitm2 ] the sum rate per unit area of the network,
i.e., the total number of bits per second successfully transmitted per square meter.
The energy efficiency η = R

P is then defined as the number of bits successfully
transmitted per joule of energy spent [43, 47]. For the sake of clarity, the main
notations used in this paper are summarized in Table3.1.

3.3 Power Consumption

In this section, we model in detail the power consumption of the small cell network
with wireless backhaul.

To start with, notice that each UE associates with the base station, i.e., MBS
or SAP that provides the largest average received power, the probability that a UE
associates to a MBS or to a SAP can be respectively calculated as [48]

2We note that different SAPs and MBSs may have different uplink/downlink resource partitions
for their associated UEs. Since the aggregate interference is affected by the average value of such
partitions, we assume fixed and uniform uplink/downlink partitions.
3Note that the results involving the machinery of random matrix theory can be adjusted to account
for different transmit precoders and receive filters, imperfect channel state information, and antenna
correlation [39–42].
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Table 3.1 Notation summary

Notation Definition

P; R; η Power per area; rate per area; energy efficiency

RDL
m ; RDL

s ; RDL
b Downlink rate on macrocells, small cells, and backhaul

RUL
m ; RUL

s ; RUL
b Uplink rate on macrocells, small cells, and backhaul

Pmt; Pst ; Put Transmit power for MBSs, SAPs, and UEs

Pmb; Psb Backhaul transmit power for MBSs and SAPs

Pmc; Psc Analog circuit power consumption at macrocells and small cells

Pme; Pse; Pue Encoding power per bit on macrocells, small cells, and backhaul

Pmd; Psd; Pud Decoding power per bit on macrocells, small cells, and backhaul

Φm; Φs; Φu PPPs modeling locations of MBSs, SAPs, and UEs

λm; λs; λu Spatial densities of MBSs, SAPs, and UEs

Am; As Association probabilities for MBSs and SAPs

Mm; Ms Number of transmit antennas per MBSs and SAPs

Km; Ks; Kb UEs served per macrocell and small cell; SAPs per MBSs on backhaul

τm; τs; τb Fraction of time in DL for macrocells, small cells, and backhaul

ζb; α Fraction of bandwidth for backhaul; path loss exponent

SD; SB Shadowing on radio access link and wireless backhaul

Am = λmP
2
α

mt

λmP
2
α

mt + λsP
2
α

st

(3.1)

and

As = λsP
2
α

st

λmP
2
α

mt + λsP
2
α

st

. (3.2)

In the remainder of this chapter, we make the assumption that the number of UEs,
the number of SAPs associated to aMBS, and the number of UEs associated to a SAP
by constant values Km, Kb, and Ks, respectively, which are upper bounds imposed
by practical antenna limitations at MBSs and SAPs.4

The assumption above is motivated by the fact that the number of UEs Nm served
by a MBS has distribution [48]

P(Nm = n) =
3.53.5Γ (n + 3.5)

(
λm
Amλu

)3.5

Γ (3.5)n! (1 + 3.5λm/λu)
n+3.5 , (3.3)

4The number of base station antennas imposes a constraint on the maximum number of UEs sched-
uled for transmission. In fact, under linear precoding, the number of scheduled UEs should not
exceed the number of antennas, in order for the achievable rate not to be significantly degraded
[49–51].
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Fig. 3.2 Complementary cumulative distribution function (CCDF) of the number of UEs Nm
associated to a MBS, where Km is the maximum number of UEs that can be served due to antenna
limitations

where Γ (·) is the gamma function. Let Km be a limit on the number of users that can
be served by a MBS, the probability that a MBS serves less than Km UEs is given by

P (Nm < Km) =
Km−1∑
n=0

3.53.5Γ (n + 3.5)
(

λm
Amλu

)3.5

Γ (3.5)n! (1 + 3.5λm/λu)
n+3.5

≤
(
2λm

λu

)3.5 Km−1∑
n=0

Γ (n + 3.5)

n!
3.53.5

Γ (3.5)
, (3.4)

which rapidly tends to zero as λu
λm

grows. This indicates that in a practical network
with a high density of UEs, i.e., where λu � λm, each MBS serves Km UEs with
probability almost one. Figure3.2 shows the probability P(Nm ≥ Km) that a MBS
has at least Km UEs to serve, where values of P(Nm ≥ Km) are plotted for three
UE–MBS density ratios λu/λm, and for various numbers of scheduled users Km. It
can be seen that P(Nm ≥ Km) ≈ 1 for moderate-to-high UE densities and low-
to-moderate values of Km, therefore confirming that each MBS tends to serve a
fixed number Km of UEs with probability one. A similar approach can be used to
show that P(Ns < Ks) ≈ 0 and P(Nb < Kb) ≈ 0 when λu � λm and λs � λm,
respectively, and therefore each SAP serves Ks UEs and each MBS serves Kb SAPs
on the backhaul with probability almost one.

In the following, we use the power consumption model introduced in [43], which
captures all the key contributions to the power consumption of signal processing
operations. This model is flexible since the various power consumption values can
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be tuned according to different scenarios. We note that the results presented in this
paper hold under more general conditions and apply to different power consumption
models [52, 53].

Under the previous assumption, and by using the model in [43], we can write the
power consumption on each macro cell link as follows

Pm = τmPmt + (1 − τm) KmPut + τmKm (Pme + Pud) R
DL
m

+ Pmc + (1 − τm) Km (Pmd + Pue) R
UL
m , (3.5)

where Pmt and Put are the DL and UL transmit power from the MBS and the Km

UEs, respectively, Pmc is the analog circuit power consumption, Pme and Pmd are
encoding and decoding power per bit of information for MBS, while Pue and Pud
are encoding and decoding power per bit of information for UE, and RDL

m and RUL
m

denote the DL and UL rates for each MBS–UE pair. The analog circuit power can
be modeled as [43]

Pmc = Pmf + PmaMm + PuaKm, (3.6)

where Pmf is a fixed power accounting for control signals, baseband processor, local
oscillator at MBS, cooling system, etc., Pma is the power required to run each circuit
component attached to the MBS antennas, such as converter, mixer, and filters, Pua
is the power consumed by circuits to run a single-antenna UE. Under this model, the
total power consumption on the macrocell can be written as

Pm = τmPmt+(1−τm) KmPut+τmKm(Pme+Pud)R
DL
m

+Pmf+PmaMm+PuaKm+(1−τm)Km(Pmd+Pue)R
UL
m . (3.7)

Through a similar approach, the power consumption on each small cell and back-
haul link can be written as

Ps = τsPst + (1 − τs) KsPut + Psf + τsKs (Pse + Pud) R
DL
s

+ PsaMs + PuaKs + (1 − τs) Ks (Psd + Pue) R
UL
s (3.8)

and

Pb = τbPmb + (1 − τb) KbPsb + τbKbKs (Pme + Psd) R
DL
b

+ PmaMm + KbMsPsa + (1 − τb) KbKs (Pmd + Pse) R
UL
b , (3.9)

respectively, the analog circuit power consumption in (3.9) accounts for power spent
on out of band SAPs. In the above equations, Pst is the transmit power on a small
cell, Pmb and Psb are the powers transmitted by MBSs and SAPs on the backhaul,
and Psf and Psa are the small-cell equivalents of Pmf and Pma. Moreover, RDL

s and
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RUL
s denote the DL and UL rates for each SAP–UE pair, and RDL

b and RUL
b denote

the DL and UL rates for each wireless backhaul link.
With the above results, the average power consumption per area can be expressed

as

P = Pmλm + Psλs + Pbλm, (3.10)

where Pm, Ps, and Pb are given, respectively, in (3.7), (3.8), and (3.9).

3.4 Rates and Energy Efficiency

In this section, we analyze the data rates and the energy efficiency of a small cell net-
work with wireless backhaul. Particularly, we combine tools from stochastic geom-
etry and random matrix theory to derive the uplink and downlink rates of macro
cells, small cells, and wireless backhaul. The analytical expressions provided in this
section are tight approximations of the actual data rates. For a better readability,
proofs and mathematical derivations have been relegated to the Appendix.

To start with, we consider a typical DL transmission link between a typical UE
located at the origin and served by its associatedMBS.Note that under dynamic TDD
[36, 37], the DL communication is corrupted by DL interference from other MBSs
and SAPs, and by UL interference from UEs that associated with other MBSs and
SAPs. Results from stochastic geometry indicates that the UL interference fromUEs
that associated with MBSs follow a homogeneous PPP with density (1− τm)λmKm,
and similarly, and similarly, the UL interference fromUEs that associated with SAPs
follow a homogeneous PPPwith density (1−τs)λsKs. TheUL interference fromUEs
that associated with SAPs follow a homogeneous PPP with density (1 − τs)λsKs.
Using composition theorem [54], we have the UL interfering UEs follow a PPP with
density λ̃u = (1 − τm)λmKm + (1 − τs)λsKs.

The large antenna array at MBS allows us to apply random matrix theory tools to
obtain the DL rate on a macro cell link.

Lemma 3.1 The downlink rate on a macrocell is given by

RDL
m = (1 − ζb)

∫ ∞

0

∫ ∞

0

e−σ 2z

z ln 2

(
1 − e−zνD

m

)
exp

(
−2π2λ̃uPδ

utE[Sδ
D]zδ

α sin
(
2π
α

)
)

×exp

(
−τmamCα,Km (zPmt, t)

(
zPmt

Km

)δ

− τsasCα,Ks(zPmt, t)

(
zPst
Ks

)δ
)
fLm (t)dtdz,

(3.11)

where δ = 2/α, am = λmπE[Sδ
D], as = λsπE[Sδ

D], λ̃u = (1 − τm)λmKm + (1 −
τs)λsKs, while νD

m, fLm (t), and Cα,K (z, t) given as follows
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νD
m = Pmt (1 − βm) (Gm)

α
2

βmΓ
(
1 + α

2

) , (3.12)

fLm (t) = Gmδxδ−1 exp
(−Gmx

δ
)
, x ≥ 0 (3.13)

Cα,K (z, t) = 2

α

K∑
n=1

(
K
n

)[
B

(
1; K − n + 2

α
, n − 2

α

)

− B

((
1 + s

t K

)−1; K − n + 2

α
, n − 2

α

)]
(3.14)

with Gm = am +as (Pst/Pmt)
δ , and B(x; y, z) = ∫ x

0 t y−1(1− t)z−1dt the incomplete
Beta function.

The proof of this lemma is given in Appendix section “Proof of Lemma 3.1”. In
Fig. 3.3, we provide a comparison between the simulated macrocell downlink rate
and the analytical result obtained in Lemma 3.1 with different antenna numbers at
the MBS. The downlink rate is plotted versus the transmit power at the MBSs. It can
be seen that analytical results and simulations fairly well match, thus confirming the
accuracy of Lemma 3.1.

We next deal with the analysis to the uplink achievable rate of an MBS UE. Note
that in the downlink, due to the maximum received power association, interfering
base station cannot be located closer to the typical user than the tagged base station,
i.e., an exclusion region exists where the distance between a UE and the interfering
base stations is bounded away from zero. However in the uplink, since PPP deploy-
ment assumption ignores a minimum inter-site distance between base stations, it can
happen that an interfering base station locates arbitrarily close to a typical MBS, i.e.,
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the distance between aMBS and the interfering base stations can be arbitrarily small.
In the following, we treat the latter as a composition of three independent PPPs with
different spatial densities. We then apply stochastic geometry to obtain the macrocell
uplink rate as follows:

Lemma 3.2 The uplink rate on a macro cell is given by

RUL
m = (1 − ζb)

∫ ∞

0

∫ ∞

0

(
1 − e−zνUm/t

)

zeσ 2z ln 2
exp

{
−λ̃uπE[Sδ

D]
∫ ∞

0

1 − e−Gmu

1 + z−1u
1
δ /Put

du

− Γ (1+δ) δπ2zδ

sin(δπ)

[
τmamPδ

mt
∏Km−1

i=1 (i + δ)

Γ (Km)K δ
m

+ τsasPδ
st
∏Ks−1

i=1 (i + δ)

Γ (Ks)K δ
s

]}
fLm (t)dtdz

(3.15)

with νU
m = (1 − βm)MmPmt.

The proof is given in Appendix section “Proof of Lemma 3.2.”
In order to derive the downlink and uplink rate of an SAP UE, we apply similar

trick as we used in the derivation of macrocell rate. However, unlike the macrocell,
due to the relatively small number of antennas at the SAPs, random matrix theory
tools cannot be employed to calculate the rate on a small cell. We therefore use the
effective channel distribution as follows:

Lemma 3.3 The downlink rate on a small cell is given by

RDL
s =

∫ ∞
0

∫ ∞
0

(1 − ζb)

zeσ 2z ln 2

(
1 − 1(

1 + zPstt−1/Ks
)Δs

)
exp

⎛
⎝−2π2λ̃uP

2
α
ut E[S

2
α

D ]z 2
α

α sin
(
2π
α

)
⎞
⎠

× exp

(
−τsas Cα,Ks (zPst, t)

(
zPst
Ks

)δ

− τmam Cα,Km (zPst, t)

(
zPmt

Km

)δ
)

fLs (t)dtdz,

(3.16)

where Δs = Ms − Ks + 1, and fLs(t) is given as

fLs(t) = Gsδt
δ−1 exp

(−Gst
δ
)
, t ≥ 0 (3.17)

with Gs = as + am (Pmt/Pst)
δ .

Following a similar approach as the one in Lemma 3.2, we can obtain the uplink
rate on a small cell.

Lemma 3.4 The uplink rate on a small cell is given by

RUL
s =

∫ ∞

0

(1 − ζb)

zeσ 2z ln 2

[
1 −

∫ ∞

0

fLs (t)dt

(1+zPut/t)Δs

]
exp

{
−λ̃uπE[Sδ

D]
∫ ∞

0

1 − e−Gsz

1 + z−1u
1
δ /Put

du

− Γ (1 + δ) δπ2zδ

sin(δπ)

[
τsasPδ

st
∏Ks−1

i=1 (i + δ)

Γ (Ks)K δ
s

+ τmamPδ
mt

∏Km−1
i=1 (i + δ)

Γ (Km)K δ
m

]}
dz.

(3.18)
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The proof of Lemmas 3.3 and 3.4 can be found in [55].
Now, it remains to derive the downlink and uplink rates on the wireless backhaul.

In the communication between MBS and SAP, each end of the transmission link
involves multiple antennas. For this scenario, it has been shown that using block
diagonalization (BD) is the optimal way to achieve capacity. However, there are no
closed form expression is available for the rate achievable by BD. To this end, we
treat each antenna of SAPs as an individual UE, and use ZF at the MBS to do the
precoding/decoding. Although ZF is suboptimal compared to the BD, we will show
by Fig. 3.4 that the rate gap between these two transmission schemes is limited, and
that the rates under BD and ZF follow a similar trend. Therefore, our findings on
the energy efficiency tradeoffs remain valid irrespective of the scheme used. In the
following, we present the uplink and downlink rate of the wireless backhaul, and
then show the simulation comparison to confirm the above claim.

Lemma 3.5 The downlink rate on the wireless backhaul is given by

RDL
b = ζbMs

Ks

∫ ∞

0

∫ ∞

0

(
1 − e−zνD

b

)

zeσ 2z ln 2
exp

(
−τbabCα,KbMs (zPmb, t)

(
zPmb

KbMs

)δ
)

× exp

(
−Γ (1 + δ) δπ2zδPδ

sb

sin(δπ)Γ (Ms)Mδ
s

E[Sδ
B](1 − τb)λs

Ms−1∏
i=1

(i + δ)

)
fLb(t)dtdz,

(3.19)

where ab = λmπE[Sδ
B], fLb(t) and νD

b are given as
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fLb(t) = abδt
δ−1 exp(−abt

δ), t > 0 (3.20)

νD
b = Pmb(1 − βb)aδ

b

βbΓ (1 + 1/δ)
. (3.21)

Lemma 3.6 The uplink rate on the wireless backhaul is given by

RUL
b = ζbMs

Ks

∫ ∞

0

∫ ∞

0

(
1 − e−zνUb /t

)

zeσ 2z ln 2
exp

{
− τbabΓ (1+δ)δπ2Pδ

mbz
δ
∏KbMs−1

i=1 (i + δ)

sin(δπ) (MsKb)
δ Γ (MsKb)

}

× exp

{
− (1−τb) abKb

Ms∑
n=1

(
Ms

n

)∫ ∞

0

(
zu−1/δPsb/Ms

)n (
1 − e−abu

)
(
1 + zu−1/δPsb/Ms

)Ms
du

}
fLb (t)dtdz

(3.22)

where νU
b = (1 − βb)MmPsb.

In Fig. 3.4 compares the rate on the wireless backhaul under BD and ZF, respec-
tively, with different numbers of SAPs. It can be seen that although ZF achieves a
lower rate than BD, the rate gap is limited as the antenna number grows, and the
rates under BD and ZF follow a similar trend. Therefore, the conclusions drawn in
this paper on the energy efficiency tradeoffs remain valid irrespective of the scheme
used.

We can now write the data rate per area in a small cell network with wireless
backhaul by combining results from above.

Lemma 3.7 The sum rate per area in a small cell network with wireless backhaul
is given by

R = B
(
Kmλm + Ksλs

){
Am

[
τmR

DL
m + (1 − τm)RUL

m

]

+ As

[
τs min

{
RDL
s , RDL

b

}
+ (1 − τs)min

{
RUL
s , RUL

b

}]}
, (3.23)

where B is the total available bandwidth, and RDL
m , RUL

m , RDL
s , RUL

s , RDL
b , and RUL

b
are given in (3.11), (3.15), (3.16), (3.18), (3.19), and (3.22), respectively.

Proof See Appendix “Proof of Lemma 3.7”.

Note that the energy efficiency is obtained as the ratio between the data rate per
area and the power consumption per area. We finally obtain the energy efficiency
of a heterogeneous network with wireless backhaul, defined as the number of bits
successfully transmitted per joule of energy spent.

Theorem 3.1 The energy efficiency η of a heterogeneous network with wireless
backhaul is given by



48 3 Massive MIMO in Small Cell Networks: Wireless Backhaul

η = B (Kmλm + Ksλs)

Pmλm + Psλs + Pbλm

(
Am

[
τmR

DL
m + (1 − τm)RUL

m

]

+ As

[
τs min

{
RDL
s , RDL

b

}
+ (1 − τs)min

{
RUL
s , RUL

b

}])
. (3.24)

Equation (3.24) quantifies how all the key features of a small cell network, i.e.,
interference, deployment strategy, and capability of the wireless infrastructure com-
ponents, affect the energy efficiency when a wireless backhaul is used to forward
traffic into the core network. Several numerical results based on (3.24) will be shown
in Sect. 3.5 to give more practical insights.

3.5 Numerical Results

In this section, we provide numerical results to show how the energy efficiency is
affected by various network parameters and to give insights into the optimal design of
a small cell networkwithwireless backhaul.As an example,we consider twodifferent
deployment scenarios, namely, (i) femto cells that consist of a dense deployment of
low-power SAPs with a small number of antennas, and (ii) pico cells that have a
less dense deployment of larger and more powerful SAPs. We refer to light load
and heavy load conditions as the ones of a network with βm = βs = βb = 0.25
and 0.9 ≤ βm, βs, βb < 1, respectively. The network is considered to be operating
at 2GHz, with path loss exponent set to α = 3.8 to model an urban scenario,
the shadowing SB and SD are set to be lognormal distributed as SB = 10

XB
10 and

SD = 10
XD
10 , where XB ∼ N (0, σ 2

B) and XD ∼ N (0, σ 2
D), with σB = 3 dB and

σD = 6 dB, respectively [56]. In addition, we equal the backhaul transmit power
to the radio access power, i.e., Pmb = Pmt, Psb = Pst. All other system and power
consumption parameters are set as follows: Pmt = 47.8 dBm, for pico cell SAPs
Pst = 30 dBm, for femto cell SAP Pst = 23.7 dBm, Put = 17 dBm, Pma = 1 W, for
pico cell SAPs Psa = 0.8 W, for femto cell SAP Psa = 0.8 W, Pua = 0.1 W [32];
Pmf = 225 W, for pico cell SAPs Psf = 7.3 W, for femto cell SAPs Psf = 5.2 W
[52, 53]; Pme = 0.1 W/Gb, Pmd = 0.8W/Gb, Pse = 0.2 W/Gb, Psd = 1.6 W/Gb,
Pue = 0.3 W/Gb, Pmd = 2.4 W/Gb [43].

Results from Fig. 3.5 illustrate the effect of network load on the energy efficiency.
Particularly, we compare the energy efficiency of small cell networks that use pico
cells and femto cells in Fig. 3.5a, under various load conditions and for different
portions of the bandwidth allocated to the wireless backhaul. The figure shows that
femto cell and pico cell deployments exhibit similar performance in terms of energy
efficiency. Moreover, Fig. 3.5a shows that the energy efficiency of the network is
highly sensitive to the portion of bandwidth allocated to the backhaul, and that
there is an optimal value of ζb which maximizes the energy efficiency. This optimal
value of ζb is not affected by the network infrastructure, i.e., it is the same for pico
cells and femto cells. However, the optimal ζb increases as the load on the network
increases. In fact, when more UEs associate with each SAPs, more data need to
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Fig. 3.5 Effect of network load on energy efficiency: a Energy efficiency of a small cell network
that uses pico cells and femto cells, respectively, versus fraction of bandwidth ζb allocated to the
backhaul, under different load conditions; and b Optimal fraction of bandwidth to be allocated to
the backhaul versus load on the backhaul, for various values of the number of UEs per SAP, Ks

be forwarded from MBSs to SAPs through the wireless backhaul in order to meet
the rate demand. In summary, the figure shows that irrespective of the deployment
strategy, an optimal backhaul bandwidth allocation that depends on the network load
can be highly beneficial to the energy efficiency of a small cell network.

In Fig. 3.5b, we plot the optimal value ζ ∗
b for the fraction of bandwidth to be

allocated to the backhaul as a function of the load on the backhaul βb. We consider
femto cell deployment for three different values of the number of UEs per SAP, Ks.
Consistently with Fig. 3.5a, this figure shows that the optimal fraction of bandwidth
ζ ∗
b to be allocated to the wireless backhaul increases as βb or Ks increase, since the
load on the wireless backhaul becomes heavier and more resources are needed to
meet the data rate demand.

In Fig. 3.6, the energy efficiency of the small cell network is plotted as a function of
the MBS transmit power under different deployment strategies and load conditions.
From the figure we can see that there is an optimal value for the transmit power, and
this is given by a tradeoff between the data rate that the wireless backhaul can support
and the power consumption incurred. Under spatial multiplexing, the data rate of the
network is affected by the number of scheduled UEs per base station antenna, which
we denote as the network load. As a consequence, the network load highly affects
the data rate, and in turn affects the energy efficiency.

In Fig. 3.7, we plot the energy efficiency of the small cell network versus the
number of SAPs per MBS. We consider four scenarios: (i) optimal bandwidth allo-
cation, where the fraction of bandwidth ζb for the backhaul is chosen as the one
that maximizes the overall energy efficiency; (ii) proportional bandwidth allocation,
where the fraction of bandwidth allocated to the backhaul is equal to the fraction
of load on the backhaul, i.e., ζb = KbKs

Km+KbKs
[35]; (iii) fixed bandwidth allocation,

where the bandwidth is equally divided between macro- and small-cell links and
wireless backhaul, i.e., ζb = 0.5; and (iv) one-tier cellular network, where no SAPs
or wireless backhaul are used at all, and all the bandwidth is allocated to the macro
cell link, i.e., ζb = 0. Figure3.7 shows that in a two-tier small cell network there is
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schemes

an optimal number of SAPs associated to each MBS via the wireless backhaul that
maximizes the energy efficiency. Such number is given by a tradeoff between the
data rate that the SAPs can provide to the UEs and the total power consumption. This
figure also indicates that a two-tier small cell network with wireless backhaul can
be less energy efficient than a single tier cellular network if the wireless backhaul is
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not supported well. However, when the backhaul bandwidth is optimally allocated,
the small cell network can achieve a significant gain over a one-tier deployment in
terms of energy efficiency.

3.6 Concluding Remarks

In this chapter, we undertook an analytical study for the energy-efficient design of
small cell network with a wireless backhaul. By combining stochastic geometry
and random matrix theory, we developed a framework that is general and accounts
for uplink and downlink transmissions, spatial multiplexing, and resource allocation
between radio access links and backhaul. The framework allows to explicitly charac-
terize the power consumption of the small cell network due to the signal processing
operations in macro cells, small cells, and wireless backhaul, as well as the data rates
and ultimately the energy efficiency of the whole network.

Our results revealed that, irrespective of the deployment strategy, it is critical to
control the network load in order to maintain a high energy efficiency. Moreover, a
two-tier small cell network with wireless backhaul can achieve a significant energy
efficiency gain over a one-tier deployment, as long as the bandwidth division between
radio access links and wireless backhaul is optimally designed.

Appendix

Proof of Lemma 3.1

The channel matrix between a MBS to its Km associated UEs can be written as
Ĥ = L

1
2H, where L = diag{L−1

1 , . . . , L−1
Km

}, with Li = rα
i /Si being the path loss

from the MBS to its i th UE, where ri is the corresponding distance and Si denotes
the shadowing, H = [h1, . . . ,hKm ]T is the Km × Mm small-scale fading matrix,
with hi ∼ CN (0, I). The ZF precoder is then given by W = ξĤ∗(ĤĤ∗)−1, where
ξ 2 = 1/tr[(Ĥ∗Ĥ)−1] normalizes the transmit power [56]. In the following, we use the
notation ΦU as ΦD to denote the subsets of Φ that transmit in uplink and downlink,
respectively, we further denote Ux as the set of UEs that are associated with access
point x , and denote x̂ as the transmitter that locates closest to the origin. Since the
locations of MBSs and SAPs follow a stationary PPP, we can apply the Slivnyark’s
theorem [54], which implies that it is sufficient to evaluate the SINR of a typical
UE at the origin. As such, by noticing that under dynamic TDD, every wireless link
experiences interference from the downlink transmitting MBSs and SAPs, and from
the uplink transmitting UEs, the downlink SINR between a typical UE at the origin
and its serving MBS can be written as



52 3 Massive MIMO in Small Cell Networks: Wireless Backhaul

γ DL
m = Pmt|h∗

x̂m,owx̂m,o|2L−1
x̂m,o

Imu
oc + Iu + σ 2

, (3.25)

where hx̂m,o is the small-scale fading,wx̂m,o is the ZF precoding vector, Lx̂m,o denotes
the corresponding path loss, while Imu

oc is the aggregate interference from other cells
to the MBS UE, and Iu denotes the interference from UEs, respectively given as
follows:

Imu
oc =

∑
xm∈ΦD

m\x̂m

Pmtgxm,o

KmLxm,o
+

∑
xs∈ΦD

s

Pstgxs,o
KsLxs,o

(3.26)

and

Iu =
∑
xu∈ΦU

u

Put|hxu,o|2
Lxu,o

, (3.27)

whereas gxm,o and gxs,o represent the effective small-scale fading from the interfering
MBS xm and SAP xs to the origin, respectively, given by [57]

gxm,o =
∑

u∈Uxm

Km|h∗
xm,owxm,u |2 ∼ Γ (Km, 1) (3.28)

and
gxs,o =

∑
u∈Uxs

Ks|h∗
xs,owxs,u |2 ∼ Γ (Ks, 1) . (3.29)

By conditioning on the interference, when Km, Mm → ∞ with βm = Km/

Mm < 1, the SINR under ZF precoding converges to [39]

γ DL
m → γ̄ DL

m = PmtMm(
Imu
oc + Iu + σ 2

)∑Km
j=1 e

−1
j

, a.s. (3.30)

where ei is the solution of the fixed point equation

L−1
x̂m,ui

ei
= 1 + J

Mm
, i = 1, 2, . . . , Km (3.31)

with J = ∑Km
j=1 L

−1
x̂m,u j

e−1
j . By summing (3.31) over i we obtain

J = Km + Km

Mm
J. (3.32)

Solving the equation above results in J = KmMm/(Mm − Km), and by substituting
the value of J into (3.31) we can have
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1

ēi
= Mm

Mm − Km
· Lx̂m,ui , (3.33)

which substituted into (3.30) yields

γ̄ DL
m = (1 − βm) MmPmt(

Imu
oc + Iu + σ 2

)∑Km
j=1 Lx̂m,u j

. (3.34)

Notice that {Lx̂m,u j }Km
j=1 is an independent i.i.d. sequence with finite first moment,

given by

E
[
Lx̂m,u j

] = Γ

(
1 + 1

δ

)
G−1

m < ∞,

by applying the strong law of large numbers (SLLN) to (3.34), we have

γ̄ DL
m → (1 − βm)G1/δ

m Pmt

βmΓ
(
1 + 1

δ

) (
Imu
oc + Iu + σ 2

) , a.s. (3.35)

As such, using the continuous mapping theorem and the lemma in [58], we can
compute the ergodic rate as

E
[
log2

(
1 + γ̄ DL

m

)] = 1

ln 2
E

[
ln

(
1 + νD

m

Imu
oc + Iu + σ 2

)]

=
∫ ∞

0

e−σ 2z

z ln 2

(
1 − e−νD

mz
)
E
[
e−z Iu

]
E
[
e−z Imu

oc
]
dz. (3.36)

Due to the composition of independent PPPs and the displacement theorem [59], the
interference Iu follows a homogeneous PPP with spatial density λ̃u = (1 − τm) λm

Km + (1 − τs) λsKs, and the corresponding Laplace transform is given as [54]

E
[
e−z Iu

] = exp

⎛
⎝−2π2λ̃uE[S 2

α

D ]P 2
α

ut z
2
α

α sin
(
2π
α

)
⎞
⎠ . (3.37)

As for the Laplace transform of Imu
oc , the conditional Laplace transform on Lx̂m,o can

be computed as

E
[
e−z Imu

oc |Lx̂m,o = t
]

= exp

(
−τmamCα,Km (zPmt, t)

(
zPmt

Km

)δ

− τsasCα,Ks(zPmt, t)

(
zPst
Ks

)δ
)

. (3.38)
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Notice that Lx̂m,o has its distribution given by (3.13), and the rate RDL
m given as

RDL
m = (1 − ζb)E

[
log2

(
1 + γ̄ DL

m

)]
, (3.39)

substituting (3.37) and (3.38) into (3.36), and decondition Lx̂m,o with respect to (3.13)
we have the corresponding result.

Proof of Lemma 3.2

Let us consider a UE transmitting in uplink to a typical MBS located at the origin,
which employs a ZF receive filter r∗

o,x̂u
= ĥ∗

o,x̂u
(
∑

u∈Uo
ĥo,u ĥ∗

o,u)
−1 [56], the SINR is

then given by

γ UL
m = PutL

−1
o,x̂u

|r∗
o,x̂u

ho,x̂u |2(
Imbs
oc + Iu + σ 2

) ‖ro,x̂u‖2
, (3.40)

where Imbs
oc denotes the interference from other cells received at the MBS. By con-

ditioning on the interference, when Km, Mm → ∞ with βm = Km/Mm < 1, the
SINR above converges to [39]

γ UL
m → γ̄ UL

m = PutMm(1 − βm)L−1
o,x̂u

Imbs
oc + Iu + σ 2

, a.s. (3.41)

By using the continuous mapping theorem [58], the uplink ergodic rate can be
calculated as

E

[
log2

(
1 + γ̄UL

m

)]
= 1

ln 2
E

[
ln

(
1 + νUmL−1

o,xu

Imbs
oc + Iu + σ 2

)]

=
∫ ∞
0

∫ ∞
0

e−σ 2z

z ln 2

(
1 − e−zνUm/t

)
E

[
e−z Iu

]
E

[
e−z Imbs

oc
]
fLm (t)dzdt.

(3.42)

The Laplace transform of Imbs
oc can be computed as

E

[
e−z Imbs

oc

]

= exp

(
−Γ (1+δ) δπ2zδ

sin(δπ)

[
τmamPδ

mt

∏Km−1
i=1 (i+δ)

Γ (Km)K δ
m

+ τsasPδ
st

∏Ks−1
i=1 (i+δ)

Γ (Ks)K δ
s

])
.

(3.43)
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On the other hand, to consider the uplink interference from UEs, we use the result
in [60] where the path loss from MBS UEs and SAP UEs are modeled as two
independent inhomogeneous PPP with intensity measure being

Λ(m)
mu (dx) = δamx

δ−1 [1 − exp
(−Gmx

δ
)]

, (3.44)

Λ(m)
su (dx) = δasx

δ−1
[
1 − exp

(−Gmx
δ
)]

. (3.45)

The Laplace transform of the UE interference can then be calculated as

E[e−z Iu ] = exp

(
−(1 − τm)Km

∫ ∞
0

Λ
(m)
mu (dx)

1 + z−1x/Put
− (1 − τs)Ks

∫ ∞
0

Λ
(m)
su (dx)

1 + z−1x/Put

)

= exp

(
−λ̃uπE[Sδ

D]
∫ ∞
0

1 − e−Gmu

1 + z−1u
1
δ /Put

du

)
. (3.46)

As such, noticing that

RUL
m = (1 − ζb)E

[
log2

(
1 + γ̄ UL

m

)]
(3.47)

the result follows by substituting (3.43) and (3.46) into (3.42).

Proof of Lemma 3.7

The average rate for a typical UE located at the origin is given by

R = AmRm + AsRs, (3.48)

where Rm and Rs are the data rates when the UE associates to a MBS and a SAP,
respectively, given by

Rm = τmR
DL
m + (1 − τm)RUL

m (3.49)

and

Rs = τs min
{
RDL
s , RDL

b

} + (1 − τs)min
{
RUL
s , RUL

b

}
. (3.50)

As each MBS and each SAP serve Km and Ks UEs, respectively, the total density
of active UEs is given by Kmλm + Ksλs. Let B be the available bandwidth, the sum
rate per area is obtained asR = (Kmλm + Ksλs) BR. Lemma 3.7 then follows from
Lemmas 3.1 to 3.6 and by the continuous mapping theorem.
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