
Further Improvement in Approximating
the Maximum Duo-Preservation String

Mapping Problem

Brian Brubach(B)

Department of Computer Science,
University of Maryland–College Park, College Park, MD, USA

bbrubach@cs.umd.edu

Abstract. We present an improved approximation for the Maximum
Duo-Preservation String Mapping Problem (MPSM). This problem was
introduced in [7] as the complement to the well-studied Minimum Com-
mon String Partition problem (MCSP). Prior work also considers the
k-MPSM and k-MCSP variants in which each letter occurs at most k
times. The authors of [7] showed a k2-appoximation for k ≥ 3 and 2-
approximation for k = 2. A 4-approximation independent of k was shown
in [4]. In [4], they also showed that k-MPSM is APX-Hard and achieved
approximation ratios of 8/5 for k = 2 and 3 for k = 3. In this paper, we
show an algorithm which achieves a 13/4-approximation for the general
MPSM problem using a new combinatorial triplet matching approach.
During publication of this paper, [3] presented a local search algorithm
yielding 7/2, which falls in between the previous best and this paper.
The remainder of the paper has not been altered to reflect this.

Keywords: String algorithms · Polynomial-time approximation · Max
Duo-Preservation String Mapping Problem · Min Common String
Partition Problem

1 Introduction

String comparison is one of the most fundamental problems in many fields such as
bioinformatics and data compression. In computer science, the difference between
two strings is often measured by edit distance, the number of edit operations
required to transform one string into the other. The most widely known defini-
tions of edit distance include insertion, deletion, and/or substitution operations.
However, the more general edit distance with moves problem studied in [10]
allows an additional operation wherein an entire block of text is shifted within
a string.

B. Brubach—Supported in part by NSF award CCF-1422569.
The author wishes to acknowledge internship mentor Prof. Srinivas Aluru for his
support.

c© Springer International Publishing Switzerland 2016
M. Frith and C.N.S. Pedersen (Eds.): WABI 2016, LNBI 9838, pp. 52–64, 2016.
DOI: 10.1007/978-3-319-43681-4 5

Further Improvement in Approximating the MPSM Problem 53

These shift operations, also known as rearrangements, are especially rele-
vant in biology [8,18]. String comparison can be performed on DNA or protein
sequences to estimate how closely related different species are. In data compres-
sion, we may want to store many similar strings as a single string along with the
edits required to recover all strings. These two applications even overlap natu-
rally in the field of bioinformatics where extremely large datasets of biological
sequences are common. For example, the challenge of pan-genome storage is to
store many highly similar sequences from the same clade such as a bacterial
species.

One way to capture just the “moves” operation is to solve the Minimum
Common String Partition problem (MCSP) which seeks to partition two strings
into minimum cardinality sets of substrings that are permutations of each other.
While the MCSP problem has been heavily studied, the complementary Max-
imum Duo-Preservation String Mapping Problem (MPSM) is a relatively new
and under-explored problem in this area.

1.1 Problem Description

The Maximum Duo-Preservation String Mapping Problem (MPSM) is defined
as follows. We are given two strings A = a1a2 . . . an and B = b1b2 . . . bn of length
n such that B is a permutation of A. Let ai and bj be the ith and jth characters
of their respective strings. A proper mapping π from A to B is a one-to-one
mapping with ai = bπ(i) for all i = 1, . . . , n. A duo is simply two consecutive
characters from the same string. We say that a duo (ai, ai+1) is preserved if ai

is mapped some bj and ai+1 is mapped to bj+1. The objective is to return a
proper mapping from the letters of A to the letters of B which preserves the
maximum number of duos. Note that the number of duos preserved in each
string is identical and by convention we count the number of duos preserved in
a single string rather than the sum over both strings. Let OPTMPSM denote
the number of duos preserved from a single string in an optimal solution to
the MPSM problem. Figure 1 shows an example of an optimal mapping which
preserves the maximum possible number of duos.

A: a b c d d c b a

B: b c a d d c a b

Fig. 1. Illustration of a mapping π from A to B that preserves 3 duos: bc, dd, and dc. A
solution to the complementary MCSP problem on the same strings would be partitions
PA = a, bc, ddc, b, a and PB = bc, a, ddc, a, b with |PA| = |PB | = 5.

54 B. Brubach

The complementary Minimum Common String Partition problem (MCSP)
seeks to find partitions of the strings A and B where a partition PA of A is
defined as a set of substrings whose concatenation is A. The objective is to
find minimum cardinality partitions PA of A and PB of B such that PB is a
permutation of PA. Let OPTMCSP denote the cardinality of a partition in an
optimal solution to this problem. We can see that

OPTMCSP = |PA| = |PB | = n − OPTMPSM

The variants, k-MPSM and k-MCSP, add the restriction that each letter occurs
at most k times in each string. For a given algorithm, let ALGMPSM be number
of duos preserved by the algorithm. The approximation ratio for that algorithm
is defined as

OPTMPSM

ALGMPSM

1.2 Related Work

The Maximum Duo-Preservation String Mapping Problem (MPSM) was intro-
duced in [7] along with the related Constrained Maximum Induced Subgraph
(CMIS) and Constrained Minimum Induced Subgraph (CNIS) problems. They
used a linear programming and randomized rounding approach to approximate
the k-CMIS problem which they show is a generalization of k-MPSM. This leads
to a k2-approximation for k ≥ 3 and a 2-approximation for k = 2. This was
improved by [4] to a 4-approximation independent of k as well as approximation
ratios of 3 for k = 3 and 8/5 for k = 2. [4] also show that k-MPSM is APX-hard
even for k = 2, meaning no polynomial-time approximation scheme (PTAS)
exists assuming P �= NP . The fixed-parameter tractability was studied in [1]
and MPSM was shown to be fixed-parameter tractable when parameterized by
the number of preserved duos.

The Minimum Common String Partition problem (MCSP) has been exten-
sively studied from many angles including polynomial-time approximation [7,9,
10,14,16,17], fixed-parameter tractability [5,6,11,15], and heuristics [2,12,13].
FPT algorithms have been parameterized by maximum number of times any
character occurs, minimum block size, and the size of the optimal minimum par-
tition. Heuristic approaches range from an ant colony optimization algorithm [12]
to integer linear programming (ILP) based strategies [2,13] which in some cases
solve the problem optimally for strings up to 2, 000 characters in length.

The problem was shown to be NP-hard (thus implying MPSM is also NP-
hard) and APX-hard even for 2-MCSP [14]. The current best approximations
are an O(log n log∗ n)-approximation due to [10] for general MCSP and an O(k)-
approximation for k-MCSP due to [17]. Applications to evolutionary distance
and genome rearrangement can be found in [8,18].

Further Improvement in Approximating the MPSM Problem 55

1.3 Our Contributions

We show a 13/4-approximation ratio for the general MPSM problem using a
new combinatorial triplet matching approach. This improves the previous best
approximation ratio of 4 for the general problem due to [4].

Theorem 1. For any two strings A and B such that B is a permutation of A,
there is an algorithm which finds a proper mapping from A to B that preserves
at least 4/13 of the duos that the optimal algorithm preserves.

2 Preliminaries

Let A = a1a2 . . . an and B = b1b2 . . . bn be the two strings of length n with ai

and bi being the ith characters of their respective strings. A duo DA
i = (ai, ai+1)

corresponds to the pair of consecutive characters ai and ai+1 in the string. We
use DA = (DA

1 , . . . , DA
n−1) and DB = (DB

1 , . . . , DB
n−1) to denote the sets of duos

for A and B, respectively. We similarly define a triplet TA
i = (ai, ai+1, ai+2) as

a set of three consecutive characters ai, ai+1, and ai+2 in the string and sets
of triplets TA = (TA

1 , . . . , TA
n−2) and TB = (TB

1 , . . . , TB
n−2) for strings A and B,

respectively. Observe that the duos DA
i and DA

i+1 correspond to the first two
and last two characters, respectively, of the triplet TA

i . We refer to duos DA
i and

DA
i+1 as subsets of the triplet TA

i .

Important note: In the first step of our algorithm, we append a special char-
acter ‘&’ to the beginning and end of each string (indices 0 and n+1). We define
this character to be not equal to any other character including itself (meaning
& �= &). This ensures that each duo can be a subset of exactly two triplets.

A proper mapping π from A to B is a one-to-one mapping from the letters
of A to the letters of B with ai = bπ(i) for all ∀ i = 1, . . . , n. Recall that a duo
(ai, ai+1) is preserved if and only if ai is mapped to some bj and ai+1 is mapped
to bj+1. We call a pair of duos (DA

i ,DB
j) preservable if and only if ai = bj and

ai+1 = bj+1.
For consistency, we define the concept of conflicting pairs of duos using the

terminology of [4] with a small modification to accommodate our particular
analysis. Two preservable pairs of duos (DA

i ,DB
j) and (DA

h ,DB
�) are said to be

conflicting if no proper mapping can preserve both of them. These conflicts can
be of two types Type 1 and Type 2.

– Type 1: Either i = h ∧ j �= � or i �= h ∧ j = �.
– Type 2: Either i = h + 1 ∧ j �= � + 1 or i �= h + 1 ∧ j = � + 1.

Exception: In our analysis, we also consider two pairs of consecutive preserv-
able duos (DA

i ,DB
j) and (DA

i+1,D
B
j+1) and a third pair of duos (DA

h ,DB
�) which

conflicts with one or both of them, potentially creating conflicts of both Type 1
and Type 2. However, we classify such conflicts simply as Type 1 conflicts.

56 B. Brubach

3 Triplet Matching Approach

In this section, we introduce and analyze the triplet matching algorithm.

3.1 The Triplet Matching Algorithm

We start by finding a weighted matching on triplets that upper bounds the
optimal solution, translating that to a fractional matching on duos, and rounding
the fractional solution to a mapping S that preserves a number of duos that is
at least 4/13 the weight of the triplet matching.

Step 1: Construct a weighted bipartite graph GT on the triplets.
We first append the special character ‘&’ to the beginning and end of each

string as discussed in the preliminaries. Recall that & �= &. This ensures that
each duo can be a subset of exactly two triplets.

We then construct a weighted bipartite graph GT = (TA ∪ TB, E) with each
partition being the set of triplets from a string. We add three types of edges to
this graph: full edges, first-half edges, and last-half edges. For a given pair of
triplets, (TA

i , TB
j), from the different strings, we can add at most one type of

edge. A full edge is added if (ai = bj)∧(ai+1 = bj+1)∧(ai+2 = bj+2). A first-half
edge is added if (ai = bj) ∧ (ai+1 = bj+1) ∧ (ai+2 �= bj+2). Similarly, a last-half
edge is added if (ai �= bj) ∧ (ai+1 = bj+1) ∧ (ai+2 = bj+2). The full edges have
weight 1 and the half edges have weight 1/2.

In other words, if the triplets are a perfect match, the weight of the edge is 1.
Otherwise, if only the first two or last two characters match, the weight is 1/2.
Finally, if the previous conditions are not met, we do not add an edge between
these triplets. Figure 2 illustrates this step.

(1)

A: a b c b a a

B: a b a a b c

(2)

&ab abc bcb cba baa aa&

&ab aba baa aab abc bc&

Fig. 2. Step 1 of the algorithm. (1) shows the original strings. (2) shows the bipartite
triplet graph GT .

Further Improvement in Approximating the MPSM Problem 57

(3)

&ab abc bcb cba baa aa&

&ab aba baa aab abc bc&

(4)

&ab abc bcb cba baa aa&

ab bc cb ba aa

&ab aba baa aab abc bc&

ab ba aa ab bc

Fig. 3. Steps 2 and 3 of the algorithm. (3) shows the maximum weight matching found
in Step 2. (4) shows the construction of the bipartite duo graph GD in Step 3. Note
that the double edges connecting the duos (b, c), (b, a), and (a, a) will each be collapsed
into single edges of weight 1.

Step 2: Find a maximum weight matching MT on the triplets in GT.
We find a maximum weight matching MT in the graph GT . We will prove

later that the weight of this matching is a valid upper bound on the optimum
solution to the MPSM problem. Figure 3 illustrates this step.

Step 3: Transfer the matching to a weighted bipartite graph GD on
the duos.

We now construct a bipartite graph GD = (DA ∪ DB , E) on the duos using
the edges of the matching MT found on GT . For every edge (TA

i , TB
j) ∈ MT ,

we add one or two edges to GD. Each edge added to GD has weight 1/2. Since
each duo from the original string is contained in two separate triplets, it can
happen that we get two copies of the edge (DA

i ,DB
j). In this case, we simply

merge them into a single edge with weight 1. Edges are added according to the
following simple rules:

– If (TA
i , TB

j) is a full edge, we add the edges (DA
i ,DB

j) and (DA
i+1,D

B
j+1) to

GD.
– If (TA

i , TB
j) is a first-half edge, we add the edge (DA

i ,DB
j) to GD.

58 B. Brubach

– If (TA
i , TB

j) is a last-half edge, we add the edge (DA
i+1,D

B
j+1) to GD.

Recall that TA
i and DA

i refer to the triplet and duo, respectively, starting at
letter ai in the string A and the duos DA

i and DA
i+1 are both subsets of the triplet

TA
i . If the triplet edge (TA

i , TB
j) causes duo edges (DA

i ,DB
j) or (DA

i+1,D
B
j+1), we

say that the triplets support the duo edges. The extra ‘&’ characters are discarded
in this step since by definition, they can’t be part of any pair of matched duos.

Step 4: Use GD to find a mapping from string A to string B.
In this step, we select a subset of the edges in GD to be the duos preserved in

our final mapping solution S. This step happens in three phases, each of which
may include many iterations. Each iteration of a phase removes edges from GD

corresponding to one or two pairs of duos preserved as well as any conflicting
edges. The first two phases each remove all instances of a particular structure
from the graph while the third phase tries to preserve as many duos as possible
from the remaining graph.

Phase 1. For each edge (DA
i ,DB

j) ∈ GD with weight 1. We remove (DA
i ,DB

j)
from GD and map ai and ai+1 to bi and bi+1 in S. We also remove any conflicting
edges from GD.

Phase 2. Define a pair of consecutive parallel edges to be edges (DA
i ,DB

j) and
(DA

i+1,D
B
j+1) in GD such that the triplet edge (TA

i , TB
j) was chosen in MT .

Starting at the beginning of string A, we choose the first pair of consecutive
parallel edges (DA

i ,DB
j) and (DA

i+1,D
B
j+1) in GD. In other words, we find the

smallest i such that (DA
i ,DB

j) and (DA
i+1,D

B
j+1) are a pair of consecutive parallel

edges. We map ai, ai+1, and ai+2 to bi, bi+1, and bi+2 in S. We then remove
the edges (DA

i ,DB
j) and (DA

i+1,D
B
j+1) from GD as well as any conflicting edges.

We continue this process until we reach the end of string A and no pairs of
consecutive parallel edges remain in GD.

Phase 3. Starting at the beginning of string A, we add the duos of the first edge
we encounter to S and remove any conflicting edges. We repeat this step until
we reach the end of A and no edges remain in GD.

3.2 Proof of 13/4-approximation

We will first show that the weight of the maximum weight triplet matching MT

found in Step 2 (and by construction the total weight of GD) is an upper bound
on the maximum number of duos preserved. Then, we will show that the number
of preserved duos added to S in each iteration of Step 4 is at least 4/13 of the
total weight of edges removed from GD in that iteration. Finally, we will show
that at the end of Phase 3 of Step 4, no edges remain in GD.

Further Improvement in Approximating the MPSM Problem 59

Lemma 1. The weights of the maximum weight triplet matching MT and the
corresponding duo graph GD are an upper bound on the maximum number of
duos preserved.

Proof. We show that any proper mapping π from A to B which preserves Δ
duos implies a matching MT of weight at least Δ in the corresponding triplet
graph GT .

For each preserved duo (DA
i ,DB

j) in π, we add the triplet edges (TA
i−1, T

B
j−1)

and (TA
i , TB

j) to MT if they have not been added already. Note that in the
construction of GT , (DA

i ,DB
j) was responsible for adding 1/2 to the weights of

both (TA
i−1, T

B
j−1) and (TA

i , TB
j) for a total contribution of 1. Thus, if we can

guarantee that both triplet edges are added to the matching for each preserved
duo, that ensures MT has weight at least Δ.

Assume for the sake of contradiction that we encounter some preserved duo
(DA

i ,DB
j) and at least one of the triplet edges corresponding to (DA

i ,DB
j) cannot

be added. WLOG assume the triplet edge which cannot be added is (TA
i , TB

j) and
it is blocked by some other edge (TA

i , TB
�), j �= �. The edge (TA

i , TB
�) must have

been added by either the preserved duo (DA
i ,DB

�) or (DA
i+1,D

B
�+1). However,

both of those duos are in conflict with (DA
i ,DB

j) and therefore could not exist
in the mapping π, leading to a contradiction. It follows that both triplet edges
are added to the matching for each preserved duo in π. �	
Lemma 2. The number of preserved duos added to S in each iteration of Phase
1 of Step 4 is at least 1/3 the total weight of edges removed from GD in that
iteration.

Proof. The worst case structure for this phase is illustrated in Fig. 4.
Suppose some edge (DA

i ,DB
j) has weight 1 in GD. Then both triplet edges

(TA
i−1, T

B
j−1) and (TA

i , TB
j) containing (DA

i ,DB
j) must have been chosen in the

matching MT . Therefore, there can be no conflicts of Type 1.
Note that the edge (DA

i ,DB
j) can have at most four conflicts of Type 2 arising

from the neighboring duos DA
i−1, DA

i+1, DB
j−1, and DB

j+1. Each of these potential
conflicts is symmetric. So WLOG, we focus on the conflict with DA

i−1 and show
that there is at most one edge (DA

i−1,D
B
�), � �= j − 1, and this edge can only

have weight 1/2.
By construction, the edge (DA

i−1,D
B
�) can only be added by the triplet edges

(TA
i−2, , T

B
�−1) or (TA

i−1, , T
B
�). However, the latter triplet edge (TA

i−1, , T
B
�) could

not exist in MT since we assume MT contains the edge (TA
i−1, T

B
j−1) and MT is a

matching. Therefore, there is at most one such edge (DA
i−1,D

B
�) with weight 1/2

which must have come from a triplet edge (TA
i−2, T

B
�−1) chosen in the matching MT .

Then the sum of weights of edges removed is at most the weight (DA
i ,DB

j)
plus the weight of four Type 2 conflicting edges with weight 1/2 each:

1 + 4(1/2) = 3

60 B. Brubach

TA
i−2 TA

i−1 TA
i TA

i+1

DA
i−1 DA

i DA
i+1

TB
j−2 TB

j−1 TB
j TB

j+1

DB
j−1 DB

j DB
j+1

1

1/2 1/2

1/2 1/2

Fig. 4. Illustration of the worst case for Phase 1 of Step 4 in Lemma 2. The solid
black lines correspond to the edge (DA

i , DB
j) and its supporting triplets. The dashed

lines correspond to conflicting edges of Type 2 that must be removed. The gray lines
illustrate other edges that may or may not exist, but are not conflicting.

It follows that the ratio of the number of preserved duos added to S to weight
of edges removed from GD is at least 1/3. �	

Note that after Phase 1 of Step 4, all remaining edges in GD have weight 1/2
since the edges with weight 1 have been removed.

Lemma 3. The number of preserved duos added to S in each iteration of Phase
2 of Step 4 is at least 4/13 of the total weight of edges removed from GD in that
iteration.

Proof. The worst case structure for this phase is illustrated in Fig. 5.
Suppose we select edges (DA

i ,DB
j) and (DA

i+1,D
B
j+1) in Phase 2. We can

upper bound the number of edges removed by identifying all triplets that could
support conflicting duo edges and bounding the number of such edges they could
have supported. Recall that a triplet supports a duo edge if it belongs to a triplet
edge in MT and thus caused the duo edge to be added to GD.

First, there are four triplets at distance two from i and j that could each
support at most one conflicting edge. These are triplets TA

i−2, TA
i+2, TB

j−2, and
TB

j+2. Second, there are four triplets at distance one. Three of these, TA
i+1, TB

j−1,
and TB

j+1, can support two conflicting edges. However, the fourth triplet, TA
i−1,

can support at most one conflicting edge since we chose the smallest i such that
(DA

i ,DB
j) and (DA

i+1,D
B
j+1) are a pair of consecutive parallel edges.

Further Improvement in Approximating the MPSM Problem 61

TA
i−2 TA

i−1 TA
i TA

i+1 TA
i+2

DA
i−1 DA

i DA
i+1 DA

i+2

TB
j−2 TB

j−1 TB
j TB

j+1 TB
j+2

DB
j−1 DB

j DB
j+1 DB

j+2

Fig. 5. Illustration of the worst case for Phase 2 of Step 4 in Lemma 3. The solid lines
correspond to the edges (DA

i , DB
j) and (DA

i+1, D
B
j+1) and their supporting triplets. The

dashed lines correspond to conflicting edges that must be removed. The pair of parallel
dotted lines originating from TA

i−1 represent two edges that could not both exist. This is
due to the assumption that (DA

i , DB
j) and (DA

i+1, D
B
j+1) is the first pair of consecutive

parallel edges in the string A.

In addition to these conflicting edges, we also remove the two edges (DA
i ,DB

j)
and (DA

i+1,D
B
j+1) leading to a total weight removed of

4(1/2) + 7(1/2) + 2(1/2) = 6.5

It follows that the ratio of the number of preserved duos added to S to weight
of edges removed from GD is at least 2/6.5 = 4/13. �	
Lemma 4. The number of preserved duos added to S in each iteration of Phase
3 of Step 4 is at least 1/3 of the total weight of edges removed from GD in that
iteration.

Proof. Suppose we select the duo edge (DA
i ,DB

j) in some iteration of Phase 3. We
can upper bound the weight of edges deleted from GD by counting the number
of triplets which could have supported duo edges that conflict with (DA

i ,DB
j).

Recall that a triplet supports a duo edge if it belongs to a triplet edge in MT

and thus caused the duo edge to be added to GD. Because we have removed all
pairs of consecutive parallel edges in Phase 2, each triplet can support at most
one duo edge remaining in GD.

62 B. Brubach

There are eight triplets which could potentially support a conflicting duo
edge: TA

i−2, TA
i−1, TA

i , TA
i+1, TB

j−2, TB
j−1, TB

j , TB
j+1. Notice that we have been

selecting edges starting from the beginning of A and moving towards the end.
Therefore any edge supported by the triplet TA

i−2 would have already been
selected or removed prior to the current iteration. Further note that two of
those triplets must support the currently selected edge. Therefore, we removed
the selected duo edge (DA

i ,DB
j) and at most five other duo edges. Each of these

edges has weight at most 1/2 since all edges of weight 1 were removed in Phase 1.
Then the sum of weights of edges removed is at most

1/2 + 5(1/2) = 3

It follows that the ratio of the number of preserved duos added to S to weight
of edges removed from GD is at least 1/3. �	
Lemma 5. At the conclusion of Step 4, no edges remain in GD.

Proof. Phase 3 iterates through every remaining edge in GD, thus removing all
of them. �	

4 Conclusion and Future Directions

We have shown that a combinatorial triplet matching approach yields an
improved approximation to the Maximum Duo Preservation String Mapping
problem. Given the fact that triplet matching allows for an improvement over
the ratio achieved by the duo matching approach in [4], a natural question is
whether a 4-tuple matching could yield even better results. However, a direct
extension of the work in this paper to a 4-tuple matching approach is not possible
because the 4-tuple matching would not provide an upper bound on the MPSM.
The issue with such an approach is that the first and last duos in a 4-tuple have
no potential to be conflicting and likely should not be grouped together. On
the bright side, we conjecture that the triplet matching approach can be pushed
further to achieve a 3-approximation. The clear bottleneck in this paper arises
from Phase 2 of Step 4, but we’re hopeful this obstacle can be avoided somehow.

Other interesting future directions would be to follow the lead of the work
on the MCSP problem. This could include analyzing the performance of faster
algorithms such as greedy algorithms or searching for heuristics that solve smaller
instances of the problem near optimally. Further, since MPSM currently appears
to be “easier” than MCSP, it could be fruitful to explore more applications for
this problem in fields such as bioinformatics and data compression.

References

1. Beretta, S., Castelli, M., Dondi, R.: Parameterized tractability of the maximum-
duo preservation string mapping problem. CoRR abs/1512.03220 (2015). http://
arxiv.org/abs/1512.03220

http://arxiv.org/abs/1512.03220
http://arxiv.org/abs/1512.03220

Further Improvement in Approximating the MPSM Problem 63

2. Blum, C., Lozano, J.A., Davidson, P.: Mathematical programming strategies
for solving the minimum common string partition problem. Eur. J. Oper.
Res. 242(3), 769–777 (2015). http://www.sciencedirect.com/science/article/pii/
S0377221714008716

3. Boria, N., Cabodi, G., Camurati, P., Palena, M., Pasini, P., Quer, S.: A 7/2-
approximation algorithm for the maximum duo-preservation string mapping prob-
lem. In: Grossi, R., Lewenstein, M. (eds.) CPM 2016. LIPIcs, vol. 54, pp.
11:1–11:8. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2016).
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11

4. Boria, N., Kurpisz, A., Leppänen, S., Mastrolilli, M.: Improved approximation for
the maximum duo-preservation string mapping problem. In: Brown, D., Morgen-
stern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 14–25. Springer, Heidelberg
(2014)

5. Bulteau, L., Fertin, G., Komusiewicz, C., Rusu, I.: A Fixed-parameter algorithm
for minimum common string partition with few duplications. In: Darling, A., Stoye,
J. (eds.) WABI 2013. LNCS, vol. 8126, pp. 244–258. Springer, Heidelberg (2013)

6. Bulteau, L., Komusiewicz, C.: Minimum common string partition parameterized
by partition size is fixed-parameter tractable, Chap. 8, pp. 102–121 (2014). http://
epubs.siam.org/doi/abs/10.1137/1.9781611973402.8

7. Chen, W., Chen, Z., Samatova, N.F., Peng, L., Wang, J., Tang, M.: Solving the
maximum duo-preservation string mapping problem with linear programming.
Theoret. Comput. Sci. 530, 1–11 (2014). http://www.sciencedirect.com/science/
article/pii/S0304397514001108

8. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assignment
of orthologous genes via genome rearrangement. IEEE/ACM Trans. Comput. Biol.
Bioinform. 2(4), 302–315 (2005)

9. Chrobak, M., Kolman, P., Sgall, J.: The greedy algorithm for the minimum com-
mon string partition problem. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D.
(eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 84–95. Springer,
Heidelberg (2004)

10. Cormode, G., Muthukrishnan, S.: The string edit distance matching
problem with moves. ACM Trans. Algorithms 3(1), 2:1–2:19 (2007).
http://doi.acm.org/10.1145/1186810.1186812

11. Damaschke, P.: Minimum common string partition parameterized. In: Crandall,
K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 87–98.
Springer, Heidelberg (2008)

12. Ferdous, S.M., Rahman, M.S.: Solving the minimum common string partition prob-
lem with the help of ants. In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013, Part I.
LNCS, vol. 7928, pp. 306–313. Springer, Heidelberg (2013)

13. Ferdous, S.M., Rahman, M.S.: An integer programming formulation of the mini-
mum common string partition problem. PLoS ONE 10(7), 1–16 (2015)

14. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partition problem:
hardness and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004.
LNCS, vol. 3341, pp. 484–495. Springer, Heidelberg (2004)

15. Jiang, H., Zhu, B., Zhu, D., Zhu, H.: Minimum common string partition
revisited. J. Comb. Optim. 23(4), 519–527 (2012). http://dx.doi.org/10.1007/
s10878-010-9370-2

16. Kolman, P., Waleń, T.: Approximating reversal distance for strings with
bounded number of duplicates. Disc. Appl. Math. 155(3), 327–336 (2007).
http://www.sciencedirect.com/science/article/pii/S0166218X0600309X

http://www.sciencedirect.com/science/article/pii/S0377221714008716
http://www.sciencedirect.com/science/article/pii/S0377221714008716
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11
http://epubs.siam.org/doi/abs/10.1137/1.9781611973402.8
http://epubs.siam.org/doi/abs/10.1137/1.9781611973402.8
http://www.sciencedirect.com/science/article/pii/S0304397514001108
http://www.sciencedirect.com/science/article/pii/S0304397514001108
http://doi.acm.org/10.1145/1186810.1186812
http://dx.doi.org/10.1007/s10878-010-9370-2
http://dx.doi.org/10.1007/s10878-010-9370-2
http://www.sciencedirect.com/science/article/pii/S0166218X0600309X

64 B. Brubach

17. Kolman, P., Waleń, T.: Reversal distance for strings with duplicates: linear time
approximation using hitting set. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA
2006. LNCS, vol. 4368, pp. 279–289. Springer, Heidelberg (2007)

18. Swenson, K.M., Marron, M., Earnest-deyoung, J.V., Moret, B.M.E.: Approximat-
ing the true evolutionary distance between two genomes. In: Proceedings of 7th
SIAM Workshop on Algorithm Engineering and Experiments (ALENEX 2005), p.
121. SIAM Press (2005)

	Further Improvement in Approximating the Maximum Duo-Preservation String Mapping Problem
	1 Introduction
	1.1 Problem Description
	1.2 Related Work
	1.3 Our Contributions

	2 Preliminaries
	3 Triplet Matching Approach
	3.1 The Triplet Matching Algorithm
	3.2 Proof of 13/4-approximation

	4 Conclusion and Future Directions
	References

