
A Graph Extension of the Positional
Burrows-Wheeler Transform

and Its Applications

Adam M. Novak1(B), Erik Garrison2, and Benedict Paten1(B)

1 Genomics Institute, University of California Santa Cruz,
Santa Cruz, CA 95064, USA

{anovak,benedict}@soe.ucsc.edu
2 Wellcome Trust Sanger Institute, Cambridge, UK

eg10@sanger.ac.uk

Abstract. We present a generalization of the Positional Burrows-
Wheeler Transform, or PBWT, to genome graphs, which we call the
gPBWT. A genome graph is a collapsed representation of a set of genomes
described as a graph. In a genome graph, a haplotype corresponds to a
restricted form of walk. The gPBWT is a compressible representation of a
set of these graph-encoded haplotypes that allows for efficient subhaplo-
type match queries. We give efficient algorithms for gPBWT construction
and query operations. We describe our implementation, showing the com-
pression and search of 1000 Genomes data.

As a demonstration, we use the gPBWT to quickly count the number
of haplotypes consistent with random walks in a genome graph, and with
the paths taken by mapped reads; results suggest that haplotype consis-
tency information can be practically incorporated into graph-based read
mappers.

1 Introduction

The PBWT is a compressible data structure for storing haplotypes that provides
an efficient search operation for subhaplotype matches [2]. Implementations, such
as BGT (https://github.com/lh3/bgt), can be used to compactly store and query
thousands of samples. The PBWT can also allow existing haplotype-based algo-
rithms to work on much larger collections of haplotypes than would otherwise
be practical [4]. In the PBWT, each site (corresponding to a genetic variant) is
a binary feature and the sites are totally ordered. The input haplotypes to the
PBWT are binary strings, with each element in the string indicating the state
of a site. In the generalization we present, each input haplotype is a walk in a
general bidirected graph. This allows haplotypes to be partial (they can start
and end at arbitrary nodes) and to traverse arbitrary structural variation. It
does not require the sites (nodes in the graph) to have a biologically relevant
ordering to provide compression. However, despite these generalizations, the core
data structures are similar, the compression still exploits genetic linkage and the
haplotype matching algorithm is essentially the same.
c© Springer International Publishing Switzerland 2016
M. Frith and C.N.S. Pedersen (Eds.): WABI 2016, LNBI 9838, pp. 246–256, 2016.
DOI: 10.1007/978-3-319-43681-4 20

https://github.com/lh3/bgt


A Graph Extension of the Positional Burrows-Wheeler Transform 247

2 Definitions

We define G = (V,E) as a genome graph in a bidirected formulation [5,6].
Each node in V has a DNA-sequence label; a left, or 5′, side; and a right, or 3′,
side. Each edge in E is a pairset of sides. The graph is not a multigraph: only
one edge may connect a given pair of sides and thus only one self-loop can be
present on any given side.

We consider all the sides in the graph to be (arbitrarily) ordered relative
to one another. We also define the idea of the opposite of a side s, with the
notation s, meaning the side of s’s node which is not s (i.e. the left side of the
node if s is the right side, and the right side of the node if s is the left side).
Finally, we use the notation n(s) to denote the node to which a side s belongs.

Within the graph G, we define the concept of a thread, which can be used
to represent a haplotype or haplotype fragment. A thread t on G is a reversible
nonempty sequence of sides, such that for 0 ≤ i < N sides t2i and t2i+1 are
opposites of each other, and such that G contains an edge connecting every pair
of sides t2i and t2i+1. In other words, a thread is a walk through the sides of the
graph that alternates traversing nodes and traversing edges and which starts and
ends with nodes. Note that a thread is reversible: exactly reversing the sequence
of sides making up a thread produces an equivalent thread. We call a thread
traversed in a certain direction an orientation.

We consider G to have associated with it a collection of embedded
threads, denoted as T . We propose an efficient storage and query mechanism
for T given G.

Our high-level strategy is to store T by grouping together threads that have
recently visited the same sequences of sides, and storing in one place the next
sides that those threads will visit. As with the Positional Burrows-Wheeler
Transform, used to store haplotypes against a linear reference, and the ordi-
nary Burrows-Wheeler transform, we consider the recent history of a thread to
be a strong predictor of where the thread is likely to go next [2]. By grouping
together the next side data such that nearby entries are likely to share values,
we can use efficient encodings (such as run-length encodings) and achieve high
compression.

More concretely, our approach is as follows. We call an instance of side in a
thread a visit; a thread may visit a given side multiple times. Consider all visits
of threads in T to a side s where the thread arrives at s either by traversing an
edge incident to s (and not by traversing n(s)) or by beginning at s. For each
such visit, take the sequence of sides coming before this arrival at s in the thread
and reverse it, and then sort the visits lexicographically by these sequences of
sides, breaking ties by an arbitrary global ordering of the threads. Then, for
each visit, look two steps ahead in its thread (past s and s), and note what side
comes next (or the null side if the thread ends). After repeating for all the sorted
visits to s, take all the noted sides in order and produce the array Bs[] for side
s. An example B[] array and its interpretation are shown in Fig. 1. (Note that,
throughout, arrays are indexed from 0 and can produce their lengths trivially
upon demand.)



248 A.M. Novak et al.

Each unoriented edge {s, s′} in E has two orientations (s, s′) and (s′, s). Let
c() be a function of these oriented edges, such that for an oriented edge (s, s′),
c(s, s′) is the smallest index in Bs′ [] of a visit of s′ that arrives at s′ by traversing
{s, s′}. Note that, because of the global ordering of sides and the sorting rules
defined for Bs′ [] above, c(s0, s′) will be less than or equal to c(s1, s′) for s0 < s1
both adjacent to s′.

For a given G, we call the combination of the c() function and the B[] arrays
a graph Positional Burrows Wheeler Transform (gPBWT). We submit
that a gPBWT is sufficient to represent T , and, moreover, that it allows efficient
counting of the number of threads in T that contain a given new thread as a
subthread. Figure 2 and Table 1 give a worked example.

Fig. 1. An illustration of the B0[] array for a single side numbered 0. Threads visiting
this side may enter their next nodes on sides 1, 2, or 3. The B0[] array records, for each
visit of a thread to side 0, the side on which it enters its next node. This determines
through which of the available edges it should leave the current node. Because threads
tend to be similar to each other, they are likely to run in “ribbons” of multiple threads
that both enter and leave together. These ribbons cause the Bs[] arrays to contain runs
of identical values, which may be compressed.

3 Extracting Threads

To reproduce T from G, and the gPBWT, consider each side s in G in turn.
Establish how many threads begin (or, equivalently, end) at s by taking the
minimum of c(x, s) for all sides x adjacent to s. If s has no incident edges, take
the length of Bs[] instead. Call this number b. Then, for i running from 0 to
b, exclusive, begin a new thread at n(s) with the sides [s, s]. Next, we traverse
from n(s) to the next node. Consult the Bs[i] entry. If it is the null side, stop
traversing, yield the thread, and start again from the original node s with the



A Graph Extension of the Positional Burrows-Wheeler Transform 249

Fig. 2. A diagram of a graph containing two embedded threads. The graph consists of
nodes [1, 2, 3, 4, 5], with sides [1L, 1R, 2L, 2R, . . .], connected by edges [1R, 3L], [2R, 3L],
[3R, 4L], [3R, 5L], [4R, 4R], and [5R, 5L]. Embedded threads travel on the right-hand
side of the nodes they are traveling through. Each thread here corresponds to a pair
of “lanes” running in opposite directions. Visits are ordered from top to bottom, with
“lanes” for lesser visits above those for greater ones. the “lanes” on the top half of each
node are ordered in correspondence with the Bs[] entries for the right side of the node,
and those on the bottom half are ordered in correspondence with the Bs[] entries for
the left side of the node. The threads shown here are [1L, 1R, 3L, 3R, 5L, 5R, 5L, 5R]
and [2L, 2R, 3L, 3R, 4L, 4R, 4R, 4L].

Table 1. Bs[] and c() values for the embedding of threads illustrated in Fig. 2.

Side Bs[] Array Edge c(s, t) count

1L [3L] c(1R, 3L) 0

1R [null] c(2R, 3L) 1

2L [3L] c(3R, 4L) 1

2R [null] c(3R, 5L) 0

3L [5L, 4L] c(4R, 4R) 0

3R [2R, 1R] c(5R, 5L) 1

4L [4R, 4R] c(3L, 1R) 0

4R [3R, null] c(3L, 2R) 0

5L [5L, null] c(4L, 3R) 0

5R [5R, 3R] c(5L, 3R) 1



250 A.M. Novak et al.

Algorithm 1. Algorithm for extracting threads from a graph.
function starting at(Side, G, B[], c())

� Count instances of threads starting at Side.
� Replace by an access to a partial sum data structure if appropriate.
if Side has incident edges then

return c(s, Side) for minimum s over all sides adjacent to Side.
else

return length(BSide[])

function rank(b[], Index, Item)
� Count instances of Item before Index in b[].
� Replace by rank of a rank-select data structure if appropriate.
Rank ← 0
for all index i in b[] do

if b[i] = Item then
Rank ← Rank + 1

return Rank
function where to(Side, Index, B[], c())

� For thread visiting Side with Index in the reverse prefix sort order, get the
corresponding sort index of the thread for the next side in the thread.

return c(Side, BSide[Index]) + Rank(BSide[], Index, BSide[Index])

function extract(G, c(), B[])
� Extract all oriented threads from graph G.
for all Side s in G do

TotalStarting ← starting at(s, G, B[], c())
for all i in [0, T otalStarting) do

Side ← s
Index ← i
Thread ← [s, s]
NextSide ← BSide[Index]
while NextSide �= null do

Thread ← Thread + [NextSide, NextSide]
Index ← where to(Side, Index, B[], c())
Side ← NextSide
NextSide ← BSide[Index]

yield Thread

next i value less than b. Otherwise, traverse to side s′ = Bs[i]. Calculate the
arrival index i′ as c(s, s′) plus the number of entries in Bs[] before entry i that
are also equal to s′. This gives the index in s′ of the thread being extracted.
Then append s′ and s′ to the growing thread, and repeat the traversal process
with i ← i′ and s ← s′, until the end of the thread is reached.

This process will enumerate all threads in the graph, and will enumerate
each such thread twice (once from each end). The threads merely need to be
deduplicated (such that two enumerated threads produce one actual thread, as
the original collection of embedded threads may have had duplicates) in order to
produce the collection of embedded threads T . Pseudocode for thread extraction
is shown in Algorithm 1.



A Graph Extension of the Positional Burrows-Wheeler Transform 251

4 Succinct Storage

For the case of storing haplotype threads specifically, we can assume that,
because of linkage, many threads in T are identical local haplotypes for long
runs, diverging from each other only at relatively rare crossovers or mutations.
Because of the reverse prefix sorting of the visits to each side, successive entries
in the B[] arrays are thus quite likely to refer to locally identical haplotypes,
and thus to contain the same value for the side to enter the next node on. Thus,
the B[] arrays should benefit from run-length compression. Moreover, since (as
will be seen below) one of the most common operations on the B[] arrays will be
expected to be rank queries, a succinct representation, such as a collection of bit
vectors or a dynamic wavelet tree, would be appropriate. To keep the alphabet
of symbols in the B[] arrays small, it is possible to replace the stored sides for
each B[] with numbers referring to the nodes adjacent to s.

We note that, for contemporary variant collections (e.g. the 1000 Genomes
Project), the underlying graph G may be very large, while there may be relatively
few threads (of the order of thousands) [1]. Implementers should thus consider
combining multiple B[] arrays into a single data structure to minimize overhead.

5 Embedding Threads

A trivial construction algorithm for the gPBWT is to independently construct
Bs[] and c(s, s′) for all sides s and oriented edges (s, s′) according to their defini-
tions above. However, this would be very inefficient. Here we present an efficient
algorithm for gPBWT construction, in which the problem of constructing the
gPBWT is reduced to the problem of embedding an additional thread.

Each thread is embedded by embedding its two orientations, one after the
other. To embed a thread orientation t = [t0, t1, . . . t2N , t2N+1], we first look at
node n(t0), entering by t0. We insert a new entry for this visit into Bt0 [], length-
ening the array by one. The location of the new entry is near the beginning,
before all the entries for visits arriving by edges, with the exact location deter-
mined by the arbitrary order imposed on thread orientations. Thus, its addition
necessitates incrementing c(s, t0) by one for all oriented edges (s, t0) incident on
t0 from sides s in G. If no other order of thread orientations suggests itself, the
order created by their addition to the graph will suffice, in which case the new
entry can be placed at the beginning of Bt0 []. We call the location of this entry
k. The value of the entry will be t2, or, if t is not sufficiently long, the null side,
in which case we have finished.

If we have not finished the thread, we first increment c(s, t2) by one for each
side s adjacent to t2 and after t1 in the global ordering of sides. This updates the
c() function to account for the insertion into Bt2 [] we are about to make. We then
find the index at which the next visit in t ought to have its entry in Bt2 [], given
that the entry of the current visit in t falls at index k in Bt0 []. This is given by
the same procedure used to calculate the arrival index when extracting threads,
denoted as WHERE TO(t1, k) (see Algorithm 1). Setting k to this value, we



252 A.M. Novak et al.

Algorithm 2. Algorithm for embedding a thread in a graph.
procedure insert(b[], Index, Item)

� Insert Item at Index in b[].
� Replace by insert of a rank-select-insert data structure if appropriate.
length(b[]) ← length(b[]) + 1 � Increase length of the array by 1
for all i in (Index, length(b[]) − 1], descending do

b[i] ← b[i − 1]

b[Index] = Item

procedure increment c(Side, NextSide, c())
� Modify c() to reflect the addition of a visit to the edge (Side, NextSide).
for all side s adjacent to NextSide in G do

if s > Side in side ordering then
c(s, NextSide) ← c(s, NextSide) + 1

procedure embed(t, G, B[], c())
� Embed an oriented thread t in graph G.
� Call this twice to embed it for search in both directions.
k ← 0 � Index we are at in Bt2i []
for all i in [0, length(t)/2) do

if 2i + 2 < length(t) then
� The thread has somewhere to go next.
insert(Bt2i [], k, t2i+2)
increment c(t2i+1, t2i+2, c())
k ← where to(t2i, k, B[], c())

else
insert(Bt2i [], k, null)

can then repeat the preceding steps to embed t2, t3, etc. until t is exhausted and
its embedding terminated with a null-side entry. Pseudocode for this process is
shown in Algorithm2.

Assuming that the B[] array information is both indexed for O(log(n)) rank
queries and stored in such a way as to allow O(log(n)) insertion and update (in
the length of the array n), this insertion algorithm is O(N · log(N + E)) in the
length of the thread to be inserted (N) and the total length of existing threads
(E). Inserting M threads of length N will take O(M · N · log(M · N)) time.

6 Counting Occurrences of Subthreads

The generalized PBWT data structure presented here preserves some of the
original PBWT’s efficient haplotype search properties [2]. The algorithm for
counting all subthread instances in T of a new thread orientation t runs as
follows.

We define fi and gi as the first and past-the-last indexes for the range of
visits of threads in T to side t2i, ordered as in Bt2i [].

For the first step of the algorithm, f0 and g0 are initialized to 0 and the
length of Bt0 [], respectively, so that they select all visits to node n(t0), seen as



A Graph Extension of the Positional Burrows-Wheeler Transform 253

entering through t0. On subsequent steps, fi+1 and gi+1, are calculated from fi
and gi merely by applying the WHERE TO() function (see Algorithm 1). We
calculate fi+1 = WHERE TO(t2i, fi) and gi+1 = WHERE TO(t2i, gi).

This process can be repeated until either fi+1 ≥ gi+1, in which case we can
conclude that the threads in the graph have no matches to t in its entirety, or
until t2N , the last entry in t, has its range fN and gN calculated, in which case
gN − fN gives the number of occurrences of t as a subthread in threads in T .
Moreover, given the final range from counting the occurrences for a thread t, we
can count the occurrences of any longer thread that begins with t, merely by
continuing the algorithm with the additional entries in the longer thread.

Assuming that the B[] arrays have been indexed for O(1) rank queries, the
algorithm is O(N) in the length of the subthread t to be searched for, and has
a runtime independent of the number of occurrences of t. Pseudocode is shown
in Algorithm 3.

Algorithm 3. Algorithm for searching for a subthread in the graph.
function count(t, G, B[], c())

� Count occurrences of subthread t in graph G.
f ← 0
g ← length(Bt0 [])
for all i in [0, length(t)/2 − 1) do

f ← where to(t2i, f, B[], c())
g ← where to(t2i, g, B[], c())
if f ≥ g then

return 0
return g − f

7 Results

The gPBWT was implemented within xg, the succinct graph indexing component
of the vg variation graph toolkit [3]. Due to the succinct data structure libraries
employed, efficient integer vector insert operations were not possible, and so
a batch construction algorithm, applicable only to directed acyclic graphs, was
implemented. A modified release of vg, which can be used to replicate the results
shown here, is available from https://github.com/adamnovak/vg/releases/tag/
gpbwt-paper.

The modified vg was used to create a genome graph for human chromosome
22, using the 1000 Genomes Phase 3 VCF on the hg19 assembly, embedding
information about the correspondence between VCF variants and graph elements
[1]. Note that the graph constructed from the VCF was directed and acyclic; it
described only substitutions and indels, with no structural variants, and thus
was amenable to the the batch gPBWT construction algorithm. Next, haplo-
type information for the 5,008 haplotypes stored in the VCF was imported and
stored in a gPBWT-enabled xg index for the graph, using the batch construction

https://github.com/adamnovak/vg/releases/tag/gpbwt-paper
https://github.com/adamnovak/vg/releases/tag/gpbwt-paper


254 A.M. Novak et al.

algorithm mentioned above. In cases where the VCF specified self-inconsistent
haplotypes (for example, a haplotype with a G to C SNP and a G to GAT insertion
at the same position), they were broken apart at the inconsistent positions. The
xg indexing and gPBWT construction process took 25 h and 45 min using a sin-
gle indexing thread on an Intel Xeon X7560 running at 2.27 GHz, and consumed
344 GB of memory. The high memory usage was a result of the decision to retain
the entire data set in memory in an uncompressed format during construction.
However, the resulting xg index was 662 MB on disk, of which 573 MB was used
by the gPBWT. Information on the 5,008 haplotypes across the 1,103,547 vari-
ants was thus stored in about 1.7 bits per phased diploid genotype in the succinct
self-indexed representation, or 0.018 bits per haplotype base. Extrapolating lin-
early from the 51 megabases of chromosome 22 to the entire 3.1 gigabase human
reference genome, a similar index of the entire 1000 Genomes dataset would take
40 GB, with 35 GB devoted to the gPBWT. This is well within the storage and
memory capacities of modern computer systems.

Random Walks. To evaluate query performance, 1 million random walks of
100 bp each were simulated from the graph. To remove walks covering ambigu-
ous regions, walks that contained two or more N bases in a row were eliminated,
leaving 686,897 random walks. The number of haplotypes in the gPBWT index
consistent with each walk was then determined, taking 81.30 s in total using
a single query thread on the above-mentioned Xeon system. The entire opera-
tion took a maximum of 685 MB of memory, indicating that the on-disk index
did not require significant expansion during loading to be usable. Overall, the
gPBWT index required 118 microseconds per count operation on the 100 bp ran-
dom walks. It was found that 317,681 walks, or 46 %, were not consistent with
any haplotype in the graph. The distribution of of the number of haplotypes
consistent with each random walk is visible in Fig. 3.

Read Mapping. To further evaluate the performance of the query implementa-
tion, 1000 Genomes Low Coverage Phase 3 reads for NA12878 that were mapped
in the official alignment to chromosome 22 were downloaded and re-mapped to
the chromosome 22 graph, using the xg/GCSA2-based mapper in vg, allowing
for up to a single secondary mapping per read. The reads which mapped with
scores of at least 90 points out of a maximum of 101 points (for a perfectly-
mapped 101 bp read) were selected (so filtering out alignments highly like to
be erroneous), and broken down into primary and secondary mappings. The
number of haplotypes in the gPBWT index consistent with each read’s path
through the graph was calculated (Fig. 3). For 1,509,672 primary mappings, the
count operation took 226.36 s in total, or 150 microseconds per mapping, again
using 685 MB of memory. It was found that 13,918 of these primary mappings,
or 0.9 %, and 1,280 of 57,115 secondary mappings, or 2.2 %, were not consistent
with any haplotype path in the graph. These read mappings, despite having
reasonable edit based scores, may represent rare recombinations, but the set is
also likely to be enriched for spurious mappings.



A Graph Extension of the Positional Burrows-Wheeler Transform 255

Fig. 3. Distribution (top) and cumulative distribution (bottom) of the number of
1000 Genomes Phase 3 haplotypes consistent with short paths in the chromosome
22 graph. Primary mappings of 101 bp reads with scores of 90 out of 101 or above
(n = 1, 509, 672) are the solid blue line. Secondary mappings meeting the same score
criteria (n = 57, 115) are the dashed green line. Simulated 100 bp random walks in
the graph without consecutive N characters (n = 686, 897) are the dotted red line.
Consistent haplotypes were counted using the gPBWT support added to vg [3].

8 Discussion

We have introduced the gPBWT, a graph based generalization of the PBWT.
We have demonstrated that a gPBWT can be built for a substantial genome
graph (all of human chromosome 22 and the associated chromosome 22 substi-
tutions and indels in 1000 Genomes). Using this data structure, we have been
able to quickly determine that the haplotype consistency rates of random walks
and primary and secondary read mappings differ substantially from each other,
and based on the observed distributions we hypothesize that consistency with



256 A.M. Novak et al.

very few haplotypes can be a symptom of a poor alignment. A sophisticated
analysis of haplotype consistency rate distributions could thus improve align-
ment scoring (although from a variant calling perspective it would be incorrect
to independently penalize each read with the full cost of a required recombina-
tion).

In the present experiment, we have examined only relatively simple variation:
substitutions and short indels. More complex variation, like large inversions and
translocations, which would have induced cycles in our genome graphs, was both
absent from the 1000 Genomes data set we used and unsupported by the opti-
mized DAG-based construction algorithm which we implemented. We expect
that complex structural variation is well suited to representation as a genome
graph, so supporting it efficiently should be a priority for a serious practical
gPBWT construction implementation.

Extrapolating from our results on chromosome 22, we predict that a
whole-genome gPBWT could be constructed for all 5,008 haplotypes of the
1000 Genomes data and stored in the main memory of a contemporary com-
puter. Looking forward, this combination of genome graph and gPBWT could
potentially enable efficient mapping not just to one reference genome or col-
lapsed genome graph, but simultaneously to a large set of genomes related by a
genome graph.

Acknowledgements. We would like to thank Richard Durbin for inspiration and
David Haussler for his extremely helpful comments on the manuscript.

References

1. 1000 Genomes Project Consortium, et al.: A global reference for human genetic
variation. Nature, 526(7571), 68–74 (2015)

2. Durbin, R.: Efficient haplotype matching and storage using the positional Burrows-
Wheeler transform (PBWT). Bioinformatics 30(9), 1266–1272 (2014)

3. Garrison, E.: vg: the variation graph toolkit (2016). https://github.com/vgteam/
vg/blob/80e823f5d241796f10b7af6284e0d3d3d464c18f/doc/paper/main.tex

4. Lunter, G.: Fast haplotype matching in very large cohorts using the Li and Stephens
model. bioRxiv (2016). http://biorxiv.org/content/early/2016/04/12/048280

5. Medvedev, P., Brudno, M.: Maximum likelihood genome assembly. J. Comput. Biol.
16(8), 1101–1116 (2009)

6. Paten, B., Novak, A., Haussler, D.: Mapping to a reference genome structure, April
2014, ArXiv e-Prints. http://arxiv.org/abs/1404.5010

https://github.com/vgteam/vg/blob/80e823f5d241796f10b7af6284e0d3d3d464c18f/doc/paper/main.tex
https://github.com/vgteam/vg/blob/80e823f5d241796f10b7af6284e0d3d3d464c18f/doc/paper/main.tex
http://biorxiv.org/content/early/2016/04/12/048280
http://arxiv.org/abs/1404.5010

	A Graph Extension of the Positional Burrows-Wheeler Transform and Its Applications
	1 Introduction
	2 Definitions
	3 Extracting Threads
	4 Succinct Storage
	5 Embedding Threads
	6 Counting Occurrences of Subthreads
	7 Results
	8 Discussion
	References


