
Solving Generalized Maximum-Weight
Connected Subgraph Problem for Network

Enrichment Analysis

Alexander A. Loboda1, Maxim N. Artyomov2,
and Alexey A. Sergushichev1(B)

1 Computer Technologies Department, ITMO University,
Saint Petersburg 197101, Russia
{loboda,alserg}@rain.ifmo.ru

2 Department of Pathology and Immunology,
Washington University in St. Louis, St. Louis, MO, USA

martyomov@pathology.wustl.edu

Abstract. Network enrichment analysis methods allow to identify
active modules without being biased towards a priori defined pathways.
One of mathematical formulations of such analysis is a reduction to a
maximum-weight connected subgraph problem. In particular, in analysis
of metabolic networks a generalized maximum-weight connected sub-
graph (GMWCS) problem, where both nodes and edges are scored, nat-
urally arises. Here we present the first to our knowledge practical exact
GMWCS solver. We have tested it on real-world instances and com-
pared to similar solvers. First, the results show that on node-weighted
instances GMWCS solver has a similar performance to the best solver for
that problem. Second, GMWCS solver is faster compared to the closest
analogue when run on GMWCS instances with edge weights.

Keywords: Network enrichment · Maximum weight connected sub-
graph problem · Exact solver · Mixed integer programming

1 Introduction

Gene set enrichment methods are widely used for the analysis of untargeted bio-
logical data such as transcriptomic, proteomic or metabolomic profiles. These
methods allow to identify molecular pathways, in a form of gene sets, that have
non-random group behaviour in the data. Determining such overenriched path-
ways provides insights into the data and allows to better understand the consid-
ered system.

Network enrichment methods, in opposite to gene set enrichment, do not rely
on the predefined gene sets and, thus, allow to identify novel pathways. These
methods use network of interacting entities, such as genes, proteins, metabolites,
etc. and try to identify the most regulated subnetwork. There are different math-
ematical formulations of the network enrichment problem, but many of them are
NP-hard [1,6,9].
c© Springer International Publishing Switzerland 2016
M. Frith and C.N.S. Pedersen (Eds.): WABI 2016, LNBI 9838, pp. 210–221, 2016.
DOI: 10.1007/978-3-319-43681-4 17

Solving Generalized Maximum-Weight Connected Subgraph Problem 211

Dittrich et al. in [6] suggested a formulation as a maximum-weight connected
subgraph (MWCS) problem. Originally, the authors considered node-weighted
graph, such that positive weight corresponded to “interesting” nodes and neg-
ative weight corresponded to “non-interesting” nodes. The goal was to find a
connected graph with the maximal sum of weights of its nodes, which corre-
sponded to an “active module”.

Here we consider a slightly different form of MWCS: generalized MWCS
(GMWCS), which naturally arises in the studies of metabolic networks [4,11].
In such networks nodes in the graph represent metabolites and edges represent
their interconversions via reactions. Compared to MWCS, GMWCS has edges
also weighted: the nodes can be scored using metabolomic profiles and the edges
can be scored using gene or protein expression profiles.

In recent years, a huge role of metabolic regulation became more and more
recognised, especially in a context of immune system [10] and cancer [5]. This
warrants the development of effective computational approaches for studying it,
such as metabolic network enrichment. The method results in a subnetwork of
connected reactions which are hypothesized to be the most important in the
considered process. Using such subnetwork one can get a better understanding
of the corresponding metabolic regulation and, for example, to infer its critical
points [13].

In this paper we describe an exact solver for the node-and-edge-weighted
GMWCS problem. First, in Sect. 2 we give formal definitions. Then in Sect. 3 we
describe preprocessing steps adapted for the edge-based formulation. In Sect. 4
we show how the instance can be split into three smaller instances. Section 5
is dedicated to a mixed-integer programming (MIP) formulation of the prob-
lem. In Sect. 6 we show experimental results of running the solver on real-world
instances that appear in GAM web-service and show that it is faster and more
accurate than Heinz [3] on edge-weighted instances and is similar in performance
to Heinz2 [7] on node-weighted instances.

2 Formal Definitions

Here we consider the Maximum-Weight Connected Subgraph (MWCS) problem
for which there are two slightly different formulations. In the most commonly
used definition of MWCS only nodes are weighted [2,7]. In this paper we consider
problem where edges are weighted too [8]. To remove the ambiguity we call the
former problem Simple MWCS (SMWCS) and the latter one Generalized MWCS
(GMWCS).

The goal of MWCS problems is to find in a given graph a connected subgraph
with the maximal the maximal sum of weights. As a subgraph is connected we
can consider connected components of the graph independently. Thus, below we
assume that the input graph is connected.

First, we give definition of a Simple Maximum-Weight Connected Subgraph
problem.

212 A.A. Loboda et al.

Definition 1. Given a connected undirected graph G = (V,E) and weight func-
tion ωv : V → R, the Simple Maximum-Weight Connected Subgraph (SMWCS)
problem is the problem of finding a connected subgraph ˜G = (˜V , ˜E) with the
maximal total weight

Ω(˜G) =
∑

v∈˜V
ω(v) → max

Second, we define generalized variant of this problem, where both nodes and
edges could be weighted.

Definition 2. Given a connected undirected graph G = (V,E) and a weight
function ω : (V ∪E) → R, the Generalized Maximum-Weight Connected Subgraph
(GMWCS) problem is the problem of finding a connected subgraph ˜G = (˜V , ˜E)
with the maximal total weight

Ω(˜G) =
∑

v∈˜V
ω(v) +

∑

e∈ ˜E
ω(e) → max

Now we define a rooted variant of the problem with one of the vertices forced
to in a solution. It is used as an auxiliary subproblem of GMWCS.

Definition 3. Given a connected undirected graph G = (V,E), a weight func-
tion ω : (V ∪ E) → R and a root node r ∈ V the Rooted Generalized Maximum-
Weight Connected Subgraph (R-GMWCS) problem is the problem of finding a
connected subgraph ˜G = (˜V , ˜E) such that r ∈ ˜V and

Ω(˜G) =
∑

v∈˜V
ω(v) +

∑

e∈ ˜E
ω(e) → max

El-Kebir and Klau in [7] have shown that MWCS problem is NP-hard. Since
MWCS is a special case of GMWCS then GMWCS is also NP-hard. R-GMWCS
problem is NP-hard too because any instance of GMWCS problem can be solved
by solving an R-GMWCS instance for each node as a root.

Finally, below we use n as a shorthand for the number of nodes |V | and m
for the number of edges |E| in the graph G.

3 Preprocessing

We introduce two preprocessing rules adapted from [7] that simplify the problem.
These rules make a new graph with a smaller number of vertices and edges in such
a way that the GMWCS solution for the original graph can be easily recovered
from the GMWCS solution for the simplified graph.

First, we merge groups of close vertices that either none or all of them are
in the optimal solution (Fig. 1A). Let e = (u, v) be an edge with ω(e) ≥ 0 with
simultaneously ω(e) + ω(v) ≥ 0 and ω(e) + ω(u) ≥ 0. In this case if one of the

Solving Generalized Maximum-Weight Connected Subgraph Problem 213

vertices is included in the solution then the edge and the other vertex can also be
included without decreasing the total weight. Thus, we can contract edge e into
a new vertex w with a weight ω(w) = ω(e) + ω(u) + ω(v). After the contraction
parallel edges between w and some vertex t could appear. In that case we merge
all non-negative one into a single edge with weight of the sum of their weights.
After that, we remove all edges between w and t except one with the maximal
weight. To exhaustively apply the rule in O(m + kn) time, where k is a number
of contracted edges, we can use Algorithm 1.

-5 37

-1

7

-1

7

5

7

-2

-7 0

6 -5

-2

1

-7 0

-2

A

2 -2-1

-7 0

6 -5

-2

1

-7 0 2 -2-8

-7 0

6 -5

-2

1

B

Fig. 1. Applying first rule that contract an edge (A) and second rule that replace
negative chain by a single edge (B). New vertices and nodes painted yellow.

Algorithm 1. Edges contraction preprocessing
1: procedure ContractEdges(V, E)
2: for all e ∈ E do
3: (u, v) ← e
4: if ω(u) + ω(e) < 0 or ω(v) + ω(e) < 0 then
5: e ← null
6: while e �= null do
7: w ← contract(e)
8: e ← null
9: for all z ∈ δw do
10: if ∃ parallel edges e1, e2 between w, z then
11: if ω(e1) ≥ 0 and ω(e2) ≥ 0 then
12: merge(e1, e2)
13: else remove(argmin

e′∈{e1,e2}
(ω(e′)))

14: for all z ∈ δw do
15: e′ ← (z, w)
16: if ω(u) + ω(e′) ≥ 0 and ω(v) + ω(e′) ≥ 0 then
17: e ← e′

Second, similarly to the previous step, we merge nonpositive chains (Fig. 1B).
Let v be a vertex with deg(v) = 2 with corresponding incident edges e1 = (u, v)
and e2 = (v, w). If all three weights ω(v), ω(e1) and ω(e2) are nonpositive, then
v, e1 and e2 could be replaced with a single edge e = (u,w) with a weight
ω(e) = ω(v)+ω(e1)+ω(e2). Merging negative chains is implemented in a single

214 A.A. Loboda et al.

pass by iteratively trying to apply the rule for all the nodes. This operation takes
Θ(n) time.

4 Cut Vertex Decomposition

In this section we discuss how a GMWCS instance can be decompose into three
smaller problems. The decomposition is based on the idea that biconnected com-
ponents can be considered separately [7].

A B

C D

Fig. 2. Input graph and instances spawned by decomposition

Briefly, we have a GMWCS instance as input (Fig. 2A). First, we merge
the largest biconnected component into a single vertex with zero weight and
solve an R-GMWCS instance for this modified graph and the new vertex as a
root (Fig. 2B). Then, we replace each of the components branching from the
largest biconnected component by a single vertex with weight equal to the
weight of corresponding subgraph in the R-GMWCS solution from the previ-
ous step (Fig. 2C). Last, we try to find a subgraph with a greater weight which
fully lies in one of the branching components (Fig. 2D).

Formally, let B be a biconnected component of the graph G with the maximal
number of vertices. Let C be a set of cut vertices of the graph G that are also
contained in B. Let Bc be a component containing c in the graph G \ (B \ C).

Proposition 1. Let a subgraph ˜G of G be an optimal solution of GMWCS for
graph G and ˜Gc, ∀c ∈ C, are optimal solutions for R-GMWCS instances for
graphs Bc with a root c. In this case, if ˜G contains a vertex c ∈ C, then we
can construct an optimal solution ˜G′ such that: (1) ˜G′ ∩ B = ˜G ∩ B and (2)
˜G′ ∩ Bc = ˜Gc.

Solving Generalized Maximum-Weight Connected Subgraph Problem 215

Proof. Let ˜Bc = ˜G ∩ Bc. We prove that it can be replaced by ˜Gc without loss of
connectivity and optimality. First, ˜Bc must be connected. Let it be disconnected.
Then there is no path between c and some vertex v. Since ˜G is connected then
there is a simple path vc in G. However, by definition of cut vertex, path vc can
not contain vertices from G \ Bc and, thus it fully lies in Bc, a contradiction.
Since ˜Bc is connected and contains c then it cannot have weight greater than
˜Gc by construction of ˜Gc.

Now we prove that the replacement keeps the graph connected. Repeating
the reasoning from the previous step we can get that ˜G ∩ B must be connected.
So, ˜Gc is connected, ˜G ∩ B connected and both these graphs contain c. Thus,
˜G′ is also connected. �	

This proposition allows us to consider only optimal solutions that either
include a vertex from B and in subgraphs Bc are identical to the corresponding
R-GMWCS instance or fully lie in some of the subgraphs Bc.

First, for each c ∈ C we want to know the best solution of the problem for
the graph Bc containing vertex c. It is precisely an R-GMWCS instance. For
practical reasons, it is better to spawn one instance at this step instead of |C|
instances. Let G∗ =

⋃

∀c∈C Bc. Then we merge all vertices from C contained in
G∗ into a single vertex r with ω(r) = 0 and solve R-GMWCS problem for such
graph. Let S to be the solution of this instance. To get solution for the graph Bc

we replace back r to c in S, and remove all the vertices which are not contained
in Bc.

Second, we find best scored subgraph of G that do not lies fully in some of Bc.
Let ˜Gc be the solution of R-GMWCS for graph Bc with root c obtained on the
previous step. We obtain a new GMWCS instance by considering the component
B and for all c ∈ C attaching a vertex v with weight ω(v) = Ω(˜Gc). We solve
the resulting instance and then recover a solution for the original problem.

Last, we find all potential solutions that fully lie in Bc for all c ∈ C. For this
purpose we spawn one instance for the graph G∗ =

⋃

∀c∈C Bc. Clearly that if
the solution of the problem for the graph G lies fully in some of Bc then we will
find it at this step.

Decomposition of the graph into biconnected components takes O(n + m)
time, generating all the three instances also takes linear time, so overall time
complexity at this step is O(n + m).

5 Mixed Integer Programming Formulation

Here we describe a MIP formulation of the problem. The GMWCS can be repre-
sented as two parts: objective function (weight of the subgraph) that should
be maximized and constraints that ensure that the subgraph is connected.

216 A.A. Loboda et al.

The objective function is linear and can be put into a MIP problem in a straight-
forward way. However, getting effective linear subgraph connectivity constraints
is not trivial. In this section we describe how it can be done. The resulting MIP
problem is solved by IBM ILOG CPLEX.

First, we consider a nonlinear formulation of the GMWCS problem, as pro-
posed in [8]. Then, we show how to eliminate nonlinearity and get a linear system.
Finally, we introduce extra symmetry-breaking and cuts, which do not impact
on the correctness of the formulation, but improve the performance.

5.1 Subgraph Representation

We use one binary variable for each vertex or edge that represent the presence
in the subgraph:

1. Binary variable yv takes the value of 1 iff v ∈ V belongs to the subgraph.
2. Binary variable we takes the value of 1 iff e ∈ E belongs to the subgraph.

For these variables to be representing a valid subgraph (not necessarily con-
nected) we need to introduce a set of constraints:

we ≤ yv, ∀v ∈ V, e ∈ δv. (1)

These constraints state that an edge can be a part of the subgraph, only if both
of its endpoints are a part of the subgraph.

5.2 Nonlinear Formulation

The nonlinear formulation of the subgraph connectivity constraints is based on
the idea that any connected graph can be traversed from any of its vertices. The
output of the traversal can be represented as an arborescence where an arc (v, u)
denotes that v has been visited before u. Accordingly, we can ensure connectivity
of a subgraph if we can provide an arborescence corresponding to the traversal
of this subgraph.

For a given graph G = (V,E), let S = (V,A) be a directed graph, where A
is obtained from E by replacing each undirected edge e = (v, u) by two directed
arcs (v, u) and (u, v).

Now, we are going to introduce variables that we will use in the formulation
and show nonlinear system of constraints, that ensure connectivity of subgraph:

1. Binary variable xa takes the value of 1 iff a ∈ A belongs to the arborescence.
2. Binary variable rv takes the value of 1 iff v ∈ V is the root of the arborescence.
3. Continuous variable dv takes the value of n if the path in the arborescence

from the root to vertex v contains n vertices. If v does not belong to the
solution then value can be arbitrary.

Solving Generalized Maximum-Weight Connected Subgraph Problem 217

Then we introduce constraints that ensure the validity of an arborescence:
∑

v∈V

rv = 1; (2)

1 ≤ dv ≤ n, ∀v ∈ V ; (3)
∑

(u,v)∈A

xuv + rv = yv, ∀v ∈ V ; (4)

xvu + xuv ≤ we, ∀e = (v, u) ∈ E; (5)
dvrv = rv, ∀v ∈ V ; (6)

duxvu = (dv + 1)xvu, ∀(v, u) ∈ A. (7)

Inequality (2) states that there is only one root in the arborescence; (3) is a
limitation on the distance between any vertex and the root; (4) states that if a
vertex is a part of the subgraph then either it is a root of the arborescence or
degin(v) = 1; (5) says that an arc of the arborescence can be in the solution only
if the corresponding edge is also in it. Last two inequalities (6) and (7) control
correct distances in the arborescence.

Haouari et al. have shown in [8] that this nonlinear system is a correct formu-
lation of GMWCS. That is, the arborescence covers all vertices of the resulting
subgraph and the solution can induce this arborescence.

However, inequalities (6) and (7) are not linear and should be replaced, so
that the formulation can be represented as a MIP problem.

5.3 Linearization

Nonlinear equations (6) and (7) can be replaced with the following system of
linear inequalities:

dv + nrv ≤ n, ∀v ∈ V ; (8)
n + du − dv ≥ (n + 1)xvu, ∀(v, u) ∈ A; (9)
n + dv − du ≥ (n − 1)xvu, ∀(v, u) ∈ A. (10)

Proposition 2. Every feasible solution to (1)–(7) is also feasible to (1)–(5),
(8)–(10) and vice versa.

Proof. First, we prove that (8) is equivalent to (6) in a sense of feasibility of the
solution. Since rv is a binary variable, we can consider two cases. Suppose that
rv = 1, then (6) will take the form dv = 1 while (8) will take the from dv ≤ 1,
and with (3) we have dv = 1. Now suppose that rv = 0, (6) will look 0 = 0, it
means that in this case there is no additional restrictions on variables and (8)
will take the form dv ≤ n, but system already have such inequality. Thus (6)
and (8) are equivalent for both possible values of rv.

At the second part of the proof we will use the same approach. Here we prove
that (7) can be represented as linear inequalities (9) and (10).

218 A.A. Loboda et al.

1. Let xvu = 1. Then after substitution into (7) we have du = dv + 1. Then we
substitute xvu into (9) and (10)

n + du − dv ≥ n + 1
n + dv − du ≥ n − 1

or, equivalently,

du ≥ dv + 1
dv + 1 ≥ du

or du = dv + 1.
2. Let xvu = 0. The original nonlinear equation will take the form 0 = 0. As

mentioned above, it means that there is no additional restrictions on variables.
We have to show that (9) and (10) also do not add such restrictions. After
substitution these inequalities take the form:

n + du − dv ≥ 0
n + dv − du ≥ 0

or |dv − du| ≤ n. Obviously, variables that hold (3) automatically hold such
inequality. Thus, additional restrictions have not be added. �	

5.4 Symmetry-Breaking

It is a common practice to decrease the number of feasible solutions by limiting
the number of different but logically equivalent feasible solutions. Such solutions
are called symmetric. In our formulation constraints (1)–(5), (8)–(10) allow any
arborescence of the graph to show its connectivity. So, in this section we show
how to decrease the number of feasible arborescences and thus decrease the
search space.

Root Order Rule. First of all, for the unrooted GMWCS problem we force
the arborescence root to be a vertex with the maximal weight among present in
the subgraph. Corresponding constraint that is added in the MIP instance is:

∑

v≺u

rv ≤ 1 − yu, ∀u ∈ V, (11)

where v ≺ u if ω(v) < ω(u) or if weights are equal, we use some fixed linear
order on vertices.

For the R-GMWCS we set root of the arborescence to be the same as the
instance root.

Solving Generalized Maximum-Weight Connected Subgraph Problem 219

Restricting Traversal. Moreover, connected graph can be traversed from the
same vertex in different ways. Similarly to [12], we show how to make infeasible
such solutions that could not be reached by a breadth-first search (BFS).

To achieve such form of the arborescence we add constraints:

dv − du ≤ n − (n − 1)we, ∀e = (v, u) ∈ E; (12)
du − dv ≤ n − (n − 1)we, ∀e = (v, u) ∈ E. (13)

These constraints state that if an edge e is present the subgraph then the
distances to endpoints differ by one.

Proposition 3. For any connected subgraph Gs of the graph G there exists a solu-
tion (r, y, w, x, d) that encodes subgraph Gs and is feasible to (1)–(5), (8)–(10)
and (11)–(13).

Proof. First, for any subgraph Gs we can select any of its vertices, in particu-
lar one with the maximal weight, and make a BFS traversal starting from that
vertex. As was shown above for any connected subgraph Gs and any its arbores-
cence there is a corresponding encoding (r, y, w, x, d) that satisfy constraints
(1)–(5) and (8)–(10). By selection of the vertex with the maximal weight as an
arborescence root constraint (11) holds. Constraints (12)–(13) also hold as they
directly follow from the BFS ordering. �	

6 Experimental Results

As a testing dataset we used 101 instance generated by Shiny GAM, a web-
service for integrated transcriptional and metabolic network analysis [11], based
on user-submitted data during its testing phase. In the dataset, there are 38
instances of node-weighted SMWCS and 63 instances of GMWCS. Archive with
instances is available at http://genome.ifmo.ru/files/papers files/WABI2016/
gmwcs/instances.tar.gz. Briefly, node-weighted instances contain about 2200
nodes and 2500 edges and correspond to a network with nodes for both metabo-
lites and reactions which are connected if the metabolite is a substrate or a
product of the reaction. Edge-weighted instances contain about 700 nodes and
900 edges. Metabolites and reactions are scored proportionally to logarithm of
corresponding differential expression p-values.

For the comparison we selected two other solvers: Heinz version 1.68 [6] and
Heinz2 version 2.1 [7]. The first one, Heinz, was initially developed for node-
weighted SMWCS, but later was adjusted to account for edge weights, however,
only acyclic solutions are considered. The second one, Heinz2, does not accept
edge weights, but works faster than Heinz on node-weighted instances.

We ran each of the solver on each of the instances for 10 times with a
time limit of 1000 s. Heinz2 and our GMWCS solver were run using 4 threads.
The processor was AMD Opteron 6380 2.5 GHz. A table with the results table
are available at http://genome.ifmo.ru/files/papers files/WABI2016/gmwcs/
results.final.tsv.

http://genome.ifmo.ru/files/papers_files/WABI2016/gmwcs/instances.tar.gz
http://genome.ifmo.ru/files/papers_files/WABI2016/gmwcs/instances.tar.gz
http://genome.ifmo.ru/files/papers_files/WABI2016/gmwcs/results.final.tsv
http://genome.ifmo.ru/files/papers_files/WABI2016/gmwcs/results.final.tsv

220 A.A. Loboda et al.

6.1 Results for Simple MWCS

The experiments have shown that on the node-weighted instances GMWCS
solver has a performance similar to Heinz2 (Fig. 3A). For 24 instances (63 %)
GMWCS is slower than Heinz2. However, 32 instances (84 %) were solved by
GMWCS within 30 s, compared to 27 (71 %) of Heinz2. Moreover, 4 instances
were not solved by Heinz2 in the allowed time of 1000 s compared to only 1
instance for GMWCS.

Fig. 3. Comparison of GMWCS with Heinz2 and Heinz solvers on node-weighted (A)
and node-and-edge-weighted (B) instances. The points represent median times of 10
runs on one instance. Horizontal and vertical grey lines represent the second minimal
and the second maximal times. For convenience a small random noise was added to
the median values of more then 950 s.

6.2 Results for Generalized MWCS

For the edge-weighted GMWCS instances GMWCS solver was able to find opti-
mal solutions within 10 s all instances except two, while it took for Heinz more
than 10 s to solve 30 of the instances (48 %) (Fig. 3B). Moreover, only 35 instances
(56 %) had an acyclic solution, accordingly, 28 instances were not solved to
GMWCS-optimality by Heinz.

7 Conclusion

Network analysis approaches are being actively developed for analyzing bio-
logical data. From the mathematical point of view this usually correspond to
NP-hard problems. Here we described an exact practical solver for a particular
formulation of generalized maximum weight connected subgraph problem that
naturally arises in metabolic networks. We have tested the method on the real-
world data and have shown that the developed solver is similar in performance

Solving Generalized Maximum-Weight Connected Subgraph Problem 221

to an existing solver Heinz2 on a simple MWCS instances and works better
and more accurately compared to Heinz on the edge-weighted instances. The
implementation is freely available at https://github.com/ctlab/gmwcs-solver.

Funding. This work was supported by Government of Russian Federation [Grant 074-
U01 to A.A.S., A.A.L.].

References

1. Alcaraz, N., Pauling, J., Batra, R., Barbosa, E., Junge, A., Christensen, A.G.L.,
Azevedo, V., Ditzel, H.J., Baumbach, J.: KeyPathwayMiner 4.0: condition-
specific pathway analysis by combining multiple omics studies and networks with
cytoscape. BMC Syst. Biol. 8(1), 99 (2014)

2. Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The maximum weight connected sub-
graph problem. In: Jünger, M., Reinelt, G. (eds.) Festschrift for Martin Grötschel,
pp. 245–270. Springer, Heidelberg (2013)

3. Beisser, D., Brunkhorst, S., Dandekar, T., Klau, G.W., Dittrich, M.T., Müller,
T.: Robustness and accuracy of functional modules in integrated network analysis.
Bioinformatics 28(14), 1887–1894 (2012). (Oxford, England)

4. Beisser, D., et al.: Integrated pathway modules using time-course metabolic profiles
and EST data from Milnesium tardigradum. BMC Syst. Biol. 6, 72 (2012)

5. Cairns, R.A., Harris, I.S., Mak, T.W.: Regulation of cancer cell metabolism. Nat.
Rev. Cancer 11(2), 85–95 (2011)

6. Dittrich, M.T., Klau, G.W., Rosenwald, A., Dandekar, T., Müller, T.: Identifying
functional modules in protein-protein interaction networks: an integrated exact
approach. Bioinformatics 24(13), i223–i231 (2008). (Oxford, England)

7. El-Kebir, M., Klau, G.W.: Solving the maximum-weight connected subgraph prob-
lem to optimality (2014). arXiv:1409.5308

8. Haouari, M., Maculan, N., Mrad, M.: Enhanced compact models for the connected
subgraph problem and for the shortest path problem in digraphs with negative
cycles. Comput. Oper. Res. 40(10), 2485–2492 (2013)

9. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and
signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1),
S233–S240 (2002). (Oxford, England)

10. Mathis, D., Shoelson, S.E.: Immunometabolism: an emerging frontier. Nat. Rev.
Immunol. 11(2), 81 (2011)

11. Sergushichev, A., Loboda, A., Jha, A., Vincent, E., Driggers, E., Jones, R., Pearce,
E., Artyomov, M.: GAM: a web-service for integrated transcriptional and metabolic
network analysis. Nucleic Acids Res. (2016). http://nar.oxfordjournals.org/citmgr?
type=bibtex&gca=nar%3Bgkw266v1

12. Ulyantsev, V., Zakirzyanov, I., Shalyto, A.: BFS-based symmetry breaking pred-
icates for DFA identification. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C.,
Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 611–622. Springer, Heidelberg
(2015)

13. Vincent, E.E., et al.: Mitochondrial phosphoenolpyruvate carboxykinase regulates
metabolic adaptation and enables glucose-independent tumor growth. Mol. Cell
60(2), 195–207 (2015)

https://github.com/ctlab/gmwcs-solver
http://arxiv.org/abs/1409.5308
http://nar.oxfordjournals.org/citmgr?type=bibtex&gca=nar%3Bgkw266v1
http://nar.oxfordjournals.org/citmgr?type=bibtex&gca=nar%3Bgkw266v1

	Solving Generalized Maximum-Weight Connected Subgraph Problem for Network Enrichment Analysis
	1 Introduction
	2 Formal Definitions
	3 Preprocessing
	4 Cut Vertex Decomposition
	5 Mixed Integer Programming Formulation
	5.1 Subgraph Representation
	5.2 Nonlinear Formulation
	5.3 Linearization
	5.4 Symmetry-Breaking

	6 Experimental Results
	6.1 Results for Simple MWCS
	6.2 Results for Generalized MWCS

	7 Conclusion
	References

